1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "Record.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Support/Debug.h" 19 #include <set> 20 #include <algorithm> 21 #include <iostream> 22 using namespace llvm; 23 24 //===----------------------------------------------------------------------===// 25 // Helpers for working with extended types. 26 27 /// FilterVTs - Filter a list of VT's according to a predicate. 28 /// 29 template<typename T> 30 static std::vector<MVT::SimpleValueType> 31 FilterVTs(const std::vector<MVT::SimpleValueType> &InVTs, T Filter) { 32 std::vector<MVT::SimpleValueType> Result; 33 for (unsigned i = 0, e = InVTs.size(); i != e; ++i) 34 if (Filter(InVTs[i])) 35 Result.push_back(InVTs[i]); 36 return Result; 37 } 38 39 template<typename T> 40 static std::vector<unsigned char> 41 FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) { 42 std::vector<unsigned char> Result; 43 for (unsigned i = 0, e = InVTs.size(); i != e; ++i) 44 if (Filter((MVT::SimpleValueType)InVTs[i])) 45 Result.push_back(InVTs[i]); 46 return Result; 47 } 48 49 static std::vector<unsigned char> 50 ConvertVTs(const std::vector<MVT::SimpleValueType> &InVTs) { 51 std::vector<unsigned char> Result; 52 for (unsigned i = 0, e = InVTs.size(); i != e; ++i) 53 Result.push_back(InVTs[i]); 54 return Result; 55 } 56 57 static inline bool isInteger(MVT::SimpleValueType VT) { 58 return EVT(VT).isInteger(); 59 } 60 61 static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 62 return EVT(VT).isFloatingPoint(); 63 } 64 65 static inline bool isVector(MVT::SimpleValueType VT) { 66 return EVT(VT).isVector(); 67 } 68 69 static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS, 70 const std::vector<unsigned char> &RHS) { 71 if (LHS.size() > RHS.size()) return false; 72 for (unsigned i = 0, e = LHS.size(); i != e; ++i) 73 if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end()) 74 return false; 75 return true; 76 } 77 78 namespace llvm { 79 namespace EEVT { 80 /// isExtIntegerInVTs - Return true if the specified extended value type vector 81 /// contains iAny or an integer value type. 82 bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) { 83 assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); 84 return EVTs[0] == MVT::iAny || !(FilterEVTs(EVTs, isInteger).empty()); 85 } 86 87 /// isExtFloatingPointInVTs - Return true if the specified extended value type 88 /// vector contains fAny or a FP value type. 89 bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) { 90 assert(!EVTs.empty() && "Cannot check for FP in empty ExtVT list!"); 91 return EVTs[0] == MVT::fAny || !(FilterEVTs(EVTs, isFloatingPoint).empty()); 92 } 93 94 /// isExtVectorInVTs - Return true if the specified extended value type 95 /// vector contains vAny or a vector value type. 96 bool isExtVectorInVTs(const std::vector<unsigned char> &EVTs) { 97 assert(!EVTs.empty() && "Cannot check for vector in empty ExtVT list!"); 98 return EVTs[0] == MVT::vAny || !(FilterEVTs(EVTs, isVector).empty()); 99 } 100 } // end namespace EEVT. 101 } // end namespace llvm. 102 103 bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const { 104 return LHS->getID() < RHS->getID(); 105 } 106 107 /// Dependent variable map for CodeGenDAGPattern variant generation 108 typedef std::map<std::string, int> DepVarMap; 109 110 /// Const iterator shorthand for DepVarMap 111 typedef DepVarMap::const_iterator DepVarMap_citer; 112 113 namespace { 114 void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 115 if (N->isLeaf()) { 116 if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) { 117 DepMap[N->getName()]++; 118 } 119 } else { 120 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 121 FindDepVarsOf(N->getChild(i), DepMap); 122 } 123 } 124 125 //! Find dependent variables within child patterns 126 /*! 127 */ 128 void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 129 DepVarMap depcounts; 130 FindDepVarsOf(N, depcounts); 131 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { 132 if (i->second > 1) { // std::pair<std::string, int> 133 DepVars.insert(i->first); 134 } 135 } 136 } 137 138 //! Dump the dependent variable set: 139 void DumpDepVars(MultipleUseVarSet &DepVars) { 140 if (DepVars.empty()) { 141 DEBUG(errs() << "<empty set>"); 142 } else { 143 DEBUG(errs() << "[ "); 144 for (MultipleUseVarSet::const_iterator i = DepVars.begin(), e = DepVars.end(); 145 i != e; ++i) { 146 DEBUG(errs() << (*i) << " "); 147 } 148 DEBUG(errs() << "]"); 149 } 150 } 151 } 152 153 //===----------------------------------------------------------------------===// 154 // PatternToMatch implementation 155 // 156 157 /// getPredicateCheck - Return a single string containing all of this 158 /// pattern's predicates concatenated with "&&" operators. 159 /// 160 std::string PatternToMatch::getPredicateCheck() const { 161 std::string PredicateCheck; 162 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { 163 if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) { 164 Record *Def = Pred->getDef(); 165 if (!Def->isSubClassOf("Predicate")) { 166 #ifndef NDEBUG 167 Def->dump(); 168 #endif 169 assert(0 && "Unknown predicate type!"); 170 } 171 if (!PredicateCheck.empty()) 172 PredicateCheck += " && "; 173 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; 174 } 175 } 176 177 return PredicateCheck; 178 } 179 180 //===----------------------------------------------------------------------===// 181 // SDTypeConstraint implementation 182 // 183 184 SDTypeConstraint::SDTypeConstraint(Record *R) { 185 OperandNo = R->getValueAsInt("OperandNum"); 186 187 if (R->isSubClassOf("SDTCisVT")) { 188 ConstraintType = SDTCisVT; 189 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 190 } else if (R->isSubClassOf("SDTCisPtrTy")) { 191 ConstraintType = SDTCisPtrTy; 192 } else if (R->isSubClassOf("SDTCisInt")) { 193 ConstraintType = SDTCisInt; 194 } else if (R->isSubClassOf("SDTCisFP")) { 195 ConstraintType = SDTCisFP; 196 } else if (R->isSubClassOf("SDTCisVec")) { 197 ConstraintType = SDTCisVec; 198 } else if (R->isSubClassOf("SDTCisSameAs")) { 199 ConstraintType = SDTCisSameAs; 200 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 201 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 202 ConstraintType = SDTCisVTSmallerThanOp; 203 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 204 R->getValueAsInt("OtherOperandNum"); 205 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 206 ConstraintType = SDTCisOpSmallerThanOp; 207 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 208 R->getValueAsInt("BigOperandNum"); 209 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 210 ConstraintType = SDTCisEltOfVec; 211 x.SDTCisEltOfVec_Info.OtherOperandNum = 212 R->getValueAsInt("OtherOpNum"); 213 } else { 214 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; 215 exit(1); 216 } 217 } 218 219 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 220 /// N, which has NumResults results. 221 TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo, 222 TreePatternNode *N, 223 unsigned NumResults) const { 224 assert(NumResults <= 1 && 225 "We only work with nodes with zero or one result so far!"); 226 227 if (OpNo >= (NumResults + N->getNumChildren())) { 228 errs() << "Invalid operand number " << OpNo << " "; 229 N->dump(); 230 errs() << '\n'; 231 exit(1); 232 } 233 234 if (OpNo < NumResults) 235 return N; // FIXME: need value # 236 else 237 return N->getChild(OpNo-NumResults); 238 } 239 240 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 241 /// constraint to the nodes operands. This returns true if it makes a 242 /// change, false otherwise. If a type contradiction is found, throw an 243 /// exception. 244 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 245 const SDNodeInfo &NodeInfo, 246 TreePattern &TP) const { 247 unsigned NumResults = NodeInfo.getNumResults(); 248 assert(NumResults <= 1 && 249 "We only work with nodes with zero or one result so far!"); 250 251 // Check that the number of operands is sane. Negative operands -> varargs. 252 if (NodeInfo.getNumOperands() >= 0) { 253 if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands()) 254 TP.error(N->getOperator()->getName() + " node requires exactly " + 255 itostr(NodeInfo.getNumOperands()) + " operands!"); 256 } 257 258 const CodeGenTarget &CGT = TP.getDAGPatterns().getTargetInfo(); 259 260 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults); 261 262 switch (ConstraintType) { 263 default: assert(0 && "Unknown constraint type!"); 264 case SDTCisVT: 265 // Operand must be a particular type. 266 return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP); 267 case SDTCisPtrTy: { 268 // Operand must be same as target pointer type. 269 return NodeToApply->UpdateNodeType(MVT::iPTR, TP); 270 } 271 case SDTCisInt: { 272 // If there is only one integer type supported, this must be it. 273 std::vector<MVT::SimpleValueType> IntVTs = 274 FilterVTs(CGT.getLegalValueTypes(), isInteger); 275 276 // If we found exactly one supported integer type, apply it. 277 if (IntVTs.size() == 1) 278 return NodeToApply->UpdateNodeType(IntVTs[0], TP); 279 return NodeToApply->UpdateNodeType(MVT::iAny, TP); 280 } 281 case SDTCisFP: { 282 // If there is only one FP type supported, this must be it. 283 std::vector<MVT::SimpleValueType> FPVTs = 284 FilterVTs(CGT.getLegalValueTypes(), isFloatingPoint); 285 286 // If we found exactly one supported FP type, apply it. 287 if (FPVTs.size() == 1) 288 return NodeToApply->UpdateNodeType(FPVTs[0], TP); 289 return NodeToApply->UpdateNodeType(MVT::fAny, TP); 290 } 291 case SDTCisVec: { 292 // If there is only one vector type supported, this must be it. 293 std::vector<MVT::SimpleValueType> VecVTs = 294 FilterVTs(CGT.getLegalValueTypes(), isVector); 295 296 // If we found exactly one supported vector type, apply it. 297 if (VecVTs.size() == 1) 298 return NodeToApply->UpdateNodeType(VecVTs[0], TP); 299 return NodeToApply->UpdateNodeType(MVT::vAny, TP); 300 } 301 case SDTCisSameAs: { 302 TreePatternNode *OtherNode = 303 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults); 304 return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) | 305 OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP); 306 } 307 case SDTCisVTSmallerThanOp: { 308 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 309 // have an integer type that is smaller than the VT. 310 if (!NodeToApply->isLeaf() || 311 !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || 312 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 313 ->isSubClassOf("ValueType")) 314 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 315 MVT::SimpleValueType VT = 316 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 317 if (!isInteger(VT)) 318 TP.error(N->getOperator()->getName() + " VT operand must be integer!"); 319 320 TreePatternNode *OtherNode = 321 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults); 322 323 // It must be integer. 324 bool MadeChange = false; 325 MadeChange |= OtherNode->UpdateNodeType(MVT::iAny, TP); 326 327 // This code only handles nodes that have one type set. Assert here so 328 // that we can change this if we ever need to deal with multiple value 329 // types at this point. 330 assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!"); 331 if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT) 332 OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error. 333 return false; 334 } 335 case SDTCisOpSmallerThanOp: { 336 TreePatternNode *BigOperand = 337 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults); 338 339 // Both operands must be integer or FP, but we don't care which. 340 bool MadeChange = false; 341 342 // This code does not currently handle nodes which have multiple types, 343 // where some types are integer, and some are fp. Assert that this is not 344 // the case. 345 assert(!(EEVT::isExtIntegerInVTs(NodeToApply->getExtTypes()) && 346 EEVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) && 347 !(EEVT::isExtIntegerInVTs(BigOperand->getExtTypes()) && 348 EEVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) && 349 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 350 if (EEVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) 351 MadeChange |= BigOperand->UpdateNodeType(MVT::iAny, TP); 352 else if (EEVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) 353 MadeChange |= BigOperand->UpdateNodeType(MVT::fAny, TP); 354 if (EEVT::isExtIntegerInVTs(BigOperand->getExtTypes())) 355 MadeChange |= NodeToApply->UpdateNodeType(MVT::iAny, TP); 356 else if (EEVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) 357 MadeChange |= NodeToApply->UpdateNodeType(MVT::fAny, TP); 358 359 std::vector<MVT::SimpleValueType> VTs = CGT.getLegalValueTypes(); 360 361 if (EEVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) { 362 VTs = FilterVTs(VTs, isInteger); 363 } else if (EEVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) { 364 VTs = FilterVTs(VTs, isFloatingPoint); 365 } else { 366 VTs.clear(); 367 } 368 369 switch (VTs.size()) { 370 default: // Too many VT's to pick from. 371 case 0: break; // No info yet. 372 case 1: 373 // Only one VT of this flavor. Cannot ever satisfy the constraints. 374 return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw 375 case 2: 376 // If we have exactly two possible types, the little operand must be the 377 // small one, the big operand should be the big one. Common with 378 // float/double for example. 379 assert(VTs[0] < VTs[1] && "Should be sorted!"); 380 MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP); 381 MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP); 382 break; 383 } 384 return MadeChange; 385 } 386 case SDTCisEltOfVec: { 387 TreePatternNode *OtherOperand = 388 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, 389 N, NumResults); 390 if (OtherOperand->hasTypeSet()) { 391 if (!isVector(OtherOperand->getTypeNum(0))) 392 TP.error(N->getOperator()->getName() + " VT operand must be a vector!"); 393 EVT IVT = OtherOperand->getTypeNum(0); 394 IVT = IVT.getVectorElementType(); 395 return NodeToApply->UpdateNodeType(IVT.getSimpleVT().SimpleTy, TP); 396 } 397 return false; 398 } 399 } 400 return false; 401 } 402 403 //===----------------------------------------------------------------------===// 404 // SDNodeInfo implementation 405 // 406 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 407 EnumName = R->getValueAsString("Opcode"); 408 SDClassName = R->getValueAsString("SDClass"); 409 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 410 NumResults = TypeProfile->getValueAsInt("NumResults"); 411 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 412 413 // Parse the properties. 414 Properties = 0; 415 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 416 for (unsigned i = 0, e = PropList.size(); i != e; ++i) { 417 if (PropList[i]->getName() == "SDNPCommutative") { 418 Properties |= 1 << SDNPCommutative; 419 } else if (PropList[i]->getName() == "SDNPAssociative") { 420 Properties |= 1 << SDNPAssociative; 421 } else if (PropList[i]->getName() == "SDNPHasChain") { 422 Properties |= 1 << SDNPHasChain; 423 } else if (PropList[i]->getName() == "SDNPOutFlag") { 424 Properties |= 1 << SDNPOutFlag; 425 } else if (PropList[i]->getName() == "SDNPInFlag") { 426 Properties |= 1 << SDNPInFlag; 427 } else if (PropList[i]->getName() == "SDNPOptInFlag") { 428 Properties |= 1 << SDNPOptInFlag; 429 } else if (PropList[i]->getName() == "SDNPMayStore") { 430 Properties |= 1 << SDNPMayStore; 431 } else if (PropList[i]->getName() == "SDNPMayLoad") { 432 Properties |= 1 << SDNPMayLoad; 433 } else if (PropList[i]->getName() == "SDNPSideEffect") { 434 Properties |= 1 << SDNPSideEffect; 435 } else if (PropList[i]->getName() == "SDNPMemOperand") { 436 Properties |= 1 << SDNPMemOperand; 437 } else { 438 errs() << "Unknown SD Node property '" << PropList[i]->getName() 439 << "' on node '" << R->getName() << "'!\n"; 440 exit(1); 441 } 442 } 443 444 445 // Parse the type constraints. 446 std::vector<Record*> ConstraintList = 447 TypeProfile->getValueAsListOfDefs("Constraints"); 448 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 449 } 450 451 //===----------------------------------------------------------------------===// 452 // TreePatternNode implementation 453 // 454 455 TreePatternNode::~TreePatternNode() { 456 #if 0 // FIXME: implement refcounted tree nodes! 457 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 458 delete getChild(i); 459 #endif 460 } 461 462 /// UpdateNodeType - Set the node type of N to VT if VT contains 463 /// information. If N already contains a conflicting type, then throw an 464 /// exception. This returns true if any information was updated. 465 /// 466 bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs, 467 TreePattern &TP) { 468 assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!"); 469 470 if (ExtVTs[0] == EEVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs)) 471 return false; 472 if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) { 473 setTypes(ExtVTs); 474 return true; 475 } 476 477 if (getExtTypeNum(0) == MVT::iPTR || getExtTypeNum(0) == MVT::iPTRAny) { 478 if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny || 479 ExtVTs[0] == MVT::iAny) 480 return false; 481 if (EEVT::isExtIntegerInVTs(ExtVTs)) { 482 std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, isInteger); 483 if (FVTs.size()) { 484 setTypes(ExtVTs); 485 return true; 486 } 487 } 488 } 489 490 // Merge vAny with iAny/fAny. The latter include vector types so keep them 491 // as the more specific information. 492 if (ExtVTs[0] == MVT::vAny && 493 (getExtTypeNum(0) == MVT::iAny || getExtTypeNum(0) == MVT::fAny)) 494 return false; 495 if (getExtTypeNum(0) == MVT::vAny && 496 (ExtVTs[0] == MVT::iAny || ExtVTs[0] == MVT::fAny)) { 497 setTypes(ExtVTs); 498 return true; 499 } 500 501 if (ExtVTs[0] == MVT::iAny && 502 EEVT::isExtIntegerInVTs(getExtTypes())) { 503 assert(hasTypeSet() && "should be handled above!"); 504 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger); 505 if (getExtTypes() == FVTs) 506 return false; 507 setTypes(FVTs); 508 return true; 509 } 510 if ((ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny) && 511 EEVT::isExtIntegerInVTs(getExtTypes())) { 512 //assert(hasTypeSet() && "should be handled above!"); 513 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger); 514 if (getExtTypes() == FVTs) 515 return false; 516 if (FVTs.size()) { 517 setTypes(FVTs); 518 return true; 519 } 520 } 521 if (ExtVTs[0] == MVT::fAny && 522 EEVT::isExtFloatingPointInVTs(getExtTypes())) { 523 assert(hasTypeSet() && "should be handled above!"); 524 std::vector<unsigned char> FVTs = 525 FilterEVTs(getExtTypes(), isFloatingPoint); 526 if (getExtTypes() == FVTs) 527 return false; 528 setTypes(FVTs); 529 return true; 530 } 531 if (ExtVTs[0] == MVT::vAny && 532 EEVT::isExtVectorInVTs(getExtTypes())) { 533 assert(hasTypeSet() && "should be handled above!"); 534 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isVector); 535 if (getExtTypes() == FVTs) 536 return false; 537 setTypes(FVTs); 538 return true; 539 } 540 541 // If we know this is an int, FP, or vector type, and we are told it is a 542 // specific one, take the advice. 543 // 544 // Similarly, we should probably set the type here to the intersection of 545 // {iAny|fAny|vAny} and ExtVTs 546 if ((getExtTypeNum(0) == MVT::iAny && 547 EEVT::isExtIntegerInVTs(ExtVTs)) || 548 (getExtTypeNum(0) == MVT::fAny && 549 EEVT::isExtFloatingPointInVTs(ExtVTs)) || 550 (getExtTypeNum(0) == MVT::vAny && 551 EEVT::isExtVectorInVTs(ExtVTs))) { 552 setTypes(ExtVTs); 553 return true; 554 } 555 if (getExtTypeNum(0) == MVT::iAny && 556 (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny)) { 557 setTypes(ExtVTs); 558 return true; 559 } 560 561 if (isLeaf()) { 562 dump(); 563 errs() << " "; 564 TP.error("Type inference contradiction found in node!"); 565 } else { 566 TP.error("Type inference contradiction found in node " + 567 getOperator()->getName() + "!"); 568 } 569 return true; // unreachable 570 } 571 572 573 void TreePatternNode::print(raw_ostream &OS) const { 574 if (isLeaf()) { 575 OS << *getLeafValue(); 576 } else { 577 OS << "(" << getOperator()->getName(); 578 } 579 580 // FIXME: At some point we should handle printing all the value types for 581 // nodes that are multiply typed. 582 switch (getExtTypeNum(0)) { 583 case MVT::Other: OS << ":Other"; break; 584 case MVT::iAny: OS << ":iAny"; break; 585 case MVT::fAny : OS << ":fAny"; break; 586 case MVT::vAny: OS << ":vAny"; break; 587 case EEVT::isUnknown: ; /*OS << ":?";*/ break; 588 case MVT::iPTR: OS << ":iPTR"; break; 589 case MVT::iPTRAny: OS << ":iPTRAny"; break; 590 default: { 591 std::string VTName = llvm::getName(getTypeNum(0)); 592 // Strip off EVT:: prefix if present. 593 if (VTName.substr(0,5) == "MVT::") 594 VTName = VTName.substr(5); 595 OS << ":" << VTName; 596 break; 597 } 598 } 599 600 if (!isLeaf()) { 601 if (getNumChildren() != 0) { 602 OS << " "; 603 getChild(0)->print(OS); 604 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 605 OS << ", "; 606 getChild(i)->print(OS); 607 } 608 } 609 OS << ")"; 610 } 611 612 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) 613 OS << "<<P:" << PredicateFns[i] << ">>"; 614 if (TransformFn) 615 OS << "<<X:" << TransformFn->getName() << ">>"; 616 if (!getName().empty()) 617 OS << ":$" << getName(); 618 619 } 620 void TreePatternNode::dump() const { 621 print(errs()); 622 } 623 624 /// isIsomorphicTo - Return true if this node is recursively 625 /// isomorphic to the specified node. For this comparison, the node's 626 /// entire state is considered. The assigned name is ignored, since 627 /// nodes with differing names are considered isomorphic. However, if 628 /// the assigned name is present in the dependent variable set, then 629 /// the assigned name is considered significant and the node is 630 /// isomorphic if the names match. 631 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 632 const MultipleUseVarSet &DepVars) const { 633 if (N == this) return true; 634 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 635 getPredicateFns() != N->getPredicateFns() || 636 getTransformFn() != N->getTransformFn()) 637 return false; 638 639 if (isLeaf()) { 640 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 641 if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) { 642 return ((DI->getDef() == NDI->getDef()) 643 && (DepVars.find(getName()) == DepVars.end() 644 || getName() == N->getName())); 645 } 646 } 647 return getLeafValue() == N->getLeafValue(); 648 } 649 650 if (N->getOperator() != getOperator() || 651 N->getNumChildren() != getNumChildren()) return false; 652 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 653 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 654 return false; 655 return true; 656 } 657 658 /// clone - Make a copy of this tree and all of its children. 659 /// 660 TreePatternNode *TreePatternNode::clone() const { 661 TreePatternNode *New; 662 if (isLeaf()) { 663 New = new TreePatternNode(getLeafValue()); 664 } else { 665 std::vector<TreePatternNode*> CChildren; 666 CChildren.reserve(Children.size()); 667 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 668 CChildren.push_back(getChild(i)->clone()); 669 New = new TreePatternNode(getOperator(), CChildren); 670 } 671 New->setName(getName()); 672 New->setTypes(getExtTypes()); 673 New->setPredicateFns(getPredicateFns()); 674 New->setTransformFn(getTransformFn()); 675 return New; 676 } 677 678 /// SubstituteFormalArguments - Replace the formal arguments in this tree 679 /// with actual values specified by ArgMap. 680 void TreePatternNode:: 681 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 682 if (isLeaf()) return; 683 684 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 685 TreePatternNode *Child = getChild(i); 686 if (Child->isLeaf()) { 687 Init *Val = Child->getLeafValue(); 688 if (dynamic_cast<DefInit*>(Val) && 689 static_cast<DefInit*>(Val)->getDef()->getName() == "node") { 690 // We found a use of a formal argument, replace it with its value. 691 TreePatternNode *NewChild = ArgMap[Child->getName()]; 692 assert(NewChild && "Couldn't find formal argument!"); 693 assert((Child->getPredicateFns().empty() || 694 NewChild->getPredicateFns() == Child->getPredicateFns()) && 695 "Non-empty child predicate clobbered!"); 696 setChild(i, NewChild); 697 } 698 } else { 699 getChild(i)->SubstituteFormalArguments(ArgMap); 700 } 701 } 702 } 703 704 705 /// InlinePatternFragments - If this pattern refers to any pattern 706 /// fragments, inline them into place, giving us a pattern without any 707 /// PatFrag references. 708 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 709 if (isLeaf()) return this; // nothing to do. 710 Record *Op = getOperator(); 711 712 if (!Op->isSubClassOf("PatFrag")) { 713 // Just recursively inline children nodes. 714 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 715 TreePatternNode *Child = getChild(i); 716 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 717 718 assert((Child->getPredicateFns().empty() || 719 NewChild->getPredicateFns() == Child->getPredicateFns()) && 720 "Non-empty child predicate clobbered!"); 721 722 setChild(i, NewChild); 723 } 724 return this; 725 } 726 727 // Otherwise, we found a reference to a fragment. First, look up its 728 // TreePattern record. 729 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 730 731 // Verify that we are passing the right number of operands. 732 if (Frag->getNumArgs() != Children.size()) 733 TP.error("'" + Op->getName() + "' fragment requires " + 734 utostr(Frag->getNumArgs()) + " operands!"); 735 736 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 737 738 std::string Code = Op->getValueAsCode("Predicate"); 739 if (!Code.empty()) 740 FragTree->addPredicateFn("Predicate_"+Op->getName()); 741 742 // Resolve formal arguments to their actual value. 743 if (Frag->getNumArgs()) { 744 // Compute the map of formal to actual arguments. 745 std::map<std::string, TreePatternNode*> ArgMap; 746 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 747 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 748 749 FragTree->SubstituteFormalArguments(ArgMap); 750 } 751 752 FragTree->setName(getName()); 753 FragTree->UpdateNodeType(getExtTypes(), TP); 754 755 // Transfer in the old predicates. 756 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) 757 FragTree->addPredicateFn(getPredicateFns()[i]); 758 759 // Get a new copy of this fragment to stitch into here. 760 //delete this; // FIXME: implement refcounting! 761 762 // The fragment we inlined could have recursive inlining that is needed. See 763 // if there are any pattern fragments in it and inline them as needed. 764 return FragTree->InlinePatternFragments(TP); 765 } 766 767 /// getImplicitType - Check to see if the specified record has an implicit 768 /// type which should be applied to it. This will infer the type of register 769 /// references from the register file information, for example. 770 /// 771 static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters, 772 TreePattern &TP) { 773 // Some common return values 774 std::vector<unsigned char> Unknown(1, EEVT::isUnknown); 775 std::vector<unsigned char> Other(1, MVT::Other); 776 777 // Check to see if this is a register or a register class... 778 if (R->isSubClassOf("RegisterClass")) { 779 if (NotRegisters) 780 return Unknown; 781 const CodeGenRegisterClass &RC = 782 TP.getDAGPatterns().getTargetInfo().getRegisterClass(R); 783 return ConvertVTs(RC.getValueTypes()); 784 } else if (R->isSubClassOf("PatFrag")) { 785 // Pattern fragment types will be resolved when they are inlined. 786 return Unknown; 787 } else if (R->isSubClassOf("Register")) { 788 if (NotRegisters) 789 return Unknown; 790 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 791 return T.getRegisterVTs(R); 792 } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { 793 // Using a VTSDNode or CondCodeSDNode. 794 return Other; 795 } else if (R->isSubClassOf("ComplexPattern")) { 796 if (NotRegisters) 797 return Unknown; 798 std::vector<unsigned char> 799 ComplexPat(1, TP.getDAGPatterns().getComplexPattern(R).getValueType()); 800 return ComplexPat; 801 } else if (R->isSubClassOf("PointerLikeRegClass")) { 802 Other[0] = MVT::iPTR; 803 return Other; 804 } else if (R->getName() == "node" || R->getName() == "srcvalue" || 805 R->getName() == "zero_reg") { 806 // Placeholder. 807 return Unknown; 808 } 809 810 TP.error("Unknown node flavor used in pattern: " + R->getName()); 811 return Other; 812 } 813 814 815 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 816 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 817 const CodeGenIntrinsic *TreePatternNode:: 818 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 819 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 820 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 821 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 822 return 0; 823 824 unsigned IID = 825 dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); 826 return &CDP.getIntrinsicInfo(IID); 827 } 828 829 /// isCommutativeIntrinsic - Return true if the node corresponds to a 830 /// commutative intrinsic. 831 bool 832 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 833 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 834 return Int->isCommutative; 835 return false; 836 } 837 838 839 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 840 /// this node and its children in the tree. This returns true if it makes a 841 /// change, false otherwise. If a type contradiction is found, throw an 842 /// exception. 843 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 844 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 845 if (isLeaf()) { 846 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 847 // If it's a regclass or something else known, include the type. 848 return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP); 849 } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { 850 // Int inits are always integers. :) 851 bool MadeChange = UpdateNodeType(MVT::iAny, TP); 852 853 if (hasTypeSet()) { 854 // At some point, it may make sense for this tree pattern to have 855 // multiple types. Assert here that it does not, so we revisit this 856 // code when appropriate. 857 assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!"); 858 MVT::SimpleValueType VT = getTypeNum(0); 859 for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i) 860 assert(getTypeNum(i) == VT && "TreePattern has too many types!"); 861 862 VT = getTypeNum(0); 863 if (VT != MVT::iPTR && VT != MVT::iPTRAny) { 864 unsigned Size = EVT(VT).getSizeInBits(); 865 // Make sure that the value is representable for this type. 866 if (Size < 32) { 867 int Val = (II->getValue() << (32-Size)) >> (32-Size); 868 if (Val != II->getValue()) { 869 // If sign-extended doesn't fit, does it fit as unsigned? 870 unsigned ValueMask; 871 unsigned UnsignedVal; 872 ValueMask = unsigned(~uint32_t(0UL) >> (32-Size)); 873 UnsignedVal = unsigned(II->getValue()); 874 875 if ((ValueMask & UnsignedVal) != UnsignedVal) { 876 TP.error("Integer value '" + itostr(II->getValue())+ 877 "' is out of range for type '" + 878 getEnumName(getTypeNum(0)) + "'!"); 879 } 880 } 881 } 882 } 883 } 884 885 return MadeChange; 886 } 887 return false; 888 } 889 890 // special handling for set, which isn't really an SDNode. 891 if (getOperator()->getName() == "set") { 892 assert (getNumChildren() >= 2 && "Missing RHS of a set?"); 893 unsigned NC = getNumChildren(); 894 bool MadeChange = false; 895 for (unsigned i = 0; i < NC-1; ++i) { 896 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 897 MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters); 898 899 // Types of operands must match. 900 MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(), 901 TP); 902 MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(), 903 TP); 904 MadeChange |= UpdateNodeType(MVT::isVoid, TP); 905 } 906 return MadeChange; 907 } else if (getOperator()->getName() == "implicit" || 908 getOperator()->getName() == "parallel") { 909 bool MadeChange = false; 910 for (unsigned i = 0; i < getNumChildren(); ++i) 911 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 912 MadeChange |= UpdateNodeType(MVT::isVoid, TP); 913 return MadeChange; 914 } else if (getOperator()->getName() == "COPY_TO_REGCLASS") { 915 bool MadeChange = false; 916 MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 917 MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); 918 return MadeChange; 919 } else if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 920 bool MadeChange = false; 921 922 // Apply the result type to the node. 923 unsigned NumRetVTs = Int->IS.RetVTs.size(); 924 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 925 926 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 927 MadeChange |= UpdateNodeType(Int->IS.RetVTs[i], TP); 928 929 if (getNumChildren() != NumParamVTs + NumRetVTs) 930 TP.error("Intrinsic '" + Int->Name + "' expects " + 931 utostr(NumParamVTs + NumRetVTs - 1) + " operands, not " + 932 utostr(getNumChildren() - 1) + " operands!"); 933 934 // Apply type info to the intrinsic ID. 935 MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP); 936 937 for (unsigned i = NumRetVTs, e = getNumChildren(); i != e; ++i) { 938 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i - NumRetVTs]; 939 MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP); 940 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 941 } 942 return MadeChange; 943 } else if (getOperator()->isSubClassOf("SDNode")) { 944 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 945 946 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 947 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 948 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 949 // Branch, etc. do not produce results and top-level forms in instr pattern 950 // must have void types. 951 if (NI.getNumResults() == 0) 952 MadeChange |= UpdateNodeType(MVT::isVoid, TP); 953 954 return MadeChange; 955 } else if (getOperator()->isSubClassOf("Instruction")) { 956 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 957 bool MadeChange = false; 958 unsigned NumResults = Inst.getNumResults(); 959 960 assert(NumResults <= 1 && 961 "Only supports zero or one result instrs!"); 962 963 CodeGenInstruction &InstInfo = 964 CDP.getTargetInfo().getInstruction(getOperator()->getName()); 965 // Apply the result type to the node 966 if (NumResults == 0 || InstInfo.NumDefs == 0) { 967 MadeChange = UpdateNodeType(MVT::isVoid, TP); 968 } else { 969 Record *ResultNode = Inst.getResult(0); 970 971 if (ResultNode->isSubClassOf("PointerLikeRegClass")) { 972 std::vector<unsigned char> VT; 973 VT.push_back(MVT::iPTR); 974 MadeChange = UpdateNodeType(VT, TP); 975 } else if (ResultNode->getName() == "unknown") { 976 std::vector<unsigned char> VT; 977 VT.push_back(EEVT::isUnknown); 978 MadeChange = UpdateNodeType(VT, TP); 979 } else { 980 assert(ResultNode->isSubClassOf("RegisterClass") && 981 "Operands should be register classes!"); 982 983 const CodeGenRegisterClass &RC = 984 CDP.getTargetInfo().getRegisterClass(ResultNode); 985 MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); 986 } 987 } 988 989 unsigned ChildNo = 0; 990 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 991 Record *OperandNode = Inst.getOperand(i); 992 993 // If the instruction expects a predicate or optional def operand, we 994 // codegen this by setting the operand to it's default value if it has a 995 // non-empty DefaultOps field. 996 if ((OperandNode->isSubClassOf("PredicateOperand") || 997 OperandNode->isSubClassOf("OptionalDefOperand")) && 998 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 999 continue; 1000 1001 // Verify that we didn't run out of provided operands. 1002 if (ChildNo >= getNumChildren()) 1003 TP.error("Instruction '" + getOperator()->getName() + 1004 "' expects more operands than were provided."); 1005 1006 MVT::SimpleValueType VT; 1007 TreePatternNode *Child = getChild(ChildNo++); 1008 if (OperandNode->isSubClassOf("RegisterClass")) { 1009 const CodeGenRegisterClass &RC = 1010 CDP.getTargetInfo().getRegisterClass(OperandNode); 1011 MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); 1012 } else if (OperandNode->isSubClassOf("Operand")) { 1013 VT = getValueType(OperandNode->getValueAsDef("Type")); 1014 MadeChange |= Child->UpdateNodeType(VT, TP); 1015 } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) { 1016 MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP); 1017 } else if (OperandNode->getName() == "unknown") { 1018 MadeChange |= Child->UpdateNodeType(EEVT::isUnknown, TP); 1019 } else { 1020 assert(0 && "Unknown operand type!"); 1021 abort(); 1022 } 1023 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1024 } 1025 1026 if (ChildNo != getNumChildren()) 1027 TP.error("Instruction '" + getOperator()->getName() + 1028 "' was provided too many operands!"); 1029 1030 return MadeChange; 1031 } else { 1032 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1033 1034 // Node transforms always take one operand. 1035 if (getNumChildren() != 1) 1036 TP.error("Node transform '" + getOperator()->getName() + 1037 "' requires one operand!"); 1038 1039 // If either the output or input of the xform does not have exact 1040 // type info. We assume they must be the same. Otherwise, it is perfectly 1041 // legal to transform from one type to a completely different type. 1042 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1043 bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP); 1044 MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP); 1045 return MadeChange; 1046 } 1047 return false; 1048 } 1049 } 1050 1051 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1052 /// RHS of a commutative operation, not the on LHS. 1053 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1054 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1055 return true; 1056 if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue())) 1057 return true; 1058 return false; 1059 } 1060 1061 1062 /// canPatternMatch - If it is impossible for this pattern to match on this 1063 /// target, fill in Reason and return false. Otherwise, return true. This is 1064 /// used as a sanity check for .td files (to prevent people from writing stuff 1065 /// that can never possibly work), and to prevent the pattern permuter from 1066 /// generating stuff that is useless. 1067 bool TreePatternNode::canPatternMatch(std::string &Reason, 1068 const CodeGenDAGPatterns &CDP) { 1069 if (isLeaf()) return true; 1070 1071 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1072 if (!getChild(i)->canPatternMatch(Reason, CDP)) 1073 return false; 1074 1075 // If this is an intrinsic, handle cases that would make it not match. For 1076 // example, if an operand is required to be an immediate. 1077 if (getOperator()->isSubClassOf("Intrinsic")) { 1078 // TODO: 1079 return true; 1080 } 1081 1082 // If this node is a commutative operator, check that the LHS isn't an 1083 // immediate. 1084 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 1085 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 1086 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 1087 // Scan all of the operands of the node and make sure that only the last one 1088 // is a constant node, unless the RHS also is. 1089 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 1090 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 1091 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 1092 if (OnlyOnRHSOfCommutative(getChild(i))) { 1093 Reason="Immediate value must be on the RHS of commutative operators!"; 1094 return false; 1095 } 1096 } 1097 } 1098 1099 return true; 1100 } 1101 1102 //===----------------------------------------------------------------------===// 1103 // TreePattern implementation 1104 // 1105 1106 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 1107 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1108 isInputPattern = isInput; 1109 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) 1110 Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i))); 1111 } 1112 1113 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 1114 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1115 isInputPattern = isInput; 1116 Trees.push_back(ParseTreePattern(Pat)); 1117 } 1118 1119 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 1120 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1121 isInputPattern = isInput; 1122 Trees.push_back(Pat); 1123 } 1124 1125 1126 1127 void TreePattern::error(const std::string &Msg) const { 1128 dump(); 1129 throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 1130 } 1131 1132 TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) { 1133 DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); 1134 if (!OpDef) error("Pattern has unexpected operator type!"); 1135 Record *Operator = OpDef->getDef(); 1136 1137 if (Operator->isSubClassOf("ValueType")) { 1138 // If the operator is a ValueType, then this must be "type cast" of a leaf 1139 // node. 1140 if (Dag->getNumArgs() != 1) 1141 error("Type cast only takes one operand!"); 1142 1143 Init *Arg = Dag->getArg(0); 1144 TreePatternNode *New; 1145 if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) { 1146 Record *R = DI->getDef(); 1147 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { 1148 Dag->setArg(0, new DagInit(DI, "", 1149 std::vector<std::pair<Init*, std::string> >())); 1150 return ParseTreePattern(Dag); 1151 } 1152 New = new TreePatternNode(DI); 1153 } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { 1154 New = ParseTreePattern(DI); 1155 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { 1156 New = new TreePatternNode(II); 1157 if (!Dag->getArgName(0).empty()) 1158 error("Constant int argument should not have a name!"); 1159 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) { 1160 // Turn this into an IntInit. 1161 Init *II = BI->convertInitializerTo(new IntRecTy()); 1162 if (II == 0 || !dynamic_cast<IntInit*>(II)) 1163 error("Bits value must be constants!"); 1164 1165 New = new TreePatternNode(dynamic_cast<IntInit*>(II)); 1166 if (!Dag->getArgName(0).empty()) 1167 error("Constant int argument should not have a name!"); 1168 } else { 1169 Arg->dump(); 1170 error("Unknown leaf value for tree pattern!"); 1171 return 0; 1172 } 1173 1174 // Apply the type cast. 1175 New->UpdateNodeType(getValueType(Operator), *this); 1176 if (New->getNumChildren() == 0) 1177 New->setName(Dag->getArgName(0)); 1178 return New; 1179 } 1180 1181 // Verify that this is something that makes sense for an operator. 1182 if (!Operator->isSubClassOf("PatFrag") && 1183 !Operator->isSubClassOf("SDNode") && 1184 !Operator->isSubClassOf("Instruction") && 1185 !Operator->isSubClassOf("SDNodeXForm") && 1186 !Operator->isSubClassOf("Intrinsic") && 1187 Operator->getName() != "set" && 1188 Operator->getName() != "implicit" && 1189 Operator->getName() != "parallel") 1190 error("Unrecognized node '" + Operator->getName() + "'!"); 1191 1192 // Check to see if this is something that is illegal in an input pattern. 1193 if (isInputPattern && (Operator->isSubClassOf("Instruction") || 1194 Operator->isSubClassOf("SDNodeXForm"))) 1195 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 1196 1197 std::vector<TreePatternNode*> Children; 1198 1199 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { 1200 Init *Arg = Dag->getArg(i); 1201 if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { 1202 Children.push_back(ParseTreePattern(DI)); 1203 if (Children.back()->getName().empty()) 1204 Children.back()->setName(Dag->getArgName(i)); 1205 } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) { 1206 Record *R = DefI->getDef(); 1207 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 1208 // TreePatternNode if its own. 1209 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { 1210 Dag->setArg(i, new DagInit(DefI, "", 1211 std::vector<std::pair<Init*, std::string> >())); 1212 --i; // Revisit this node... 1213 } else { 1214 TreePatternNode *Node = new TreePatternNode(DefI); 1215 Node->setName(Dag->getArgName(i)); 1216 Children.push_back(Node); 1217 1218 // Input argument? 1219 if (R->getName() == "node") { 1220 if (Dag->getArgName(i).empty()) 1221 error("'node' argument requires a name to match with operand list"); 1222 Args.push_back(Dag->getArgName(i)); 1223 } 1224 } 1225 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { 1226 TreePatternNode *Node = new TreePatternNode(II); 1227 if (!Dag->getArgName(i).empty()) 1228 error("Constant int argument should not have a name!"); 1229 Children.push_back(Node); 1230 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) { 1231 // Turn this into an IntInit. 1232 Init *II = BI->convertInitializerTo(new IntRecTy()); 1233 if (II == 0 || !dynamic_cast<IntInit*>(II)) 1234 error("Bits value must be constants!"); 1235 1236 TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II)); 1237 if (!Dag->getArgName(i).empty()) 1238 error("Constant int argument should not have a name!"); 1239 Children.push_back(Node); 1240 } else { 1241 errs() << '"'; 1242 Arg->dump(); 1243 errs() << "\": "; 1244 error("Unknown leaf value for tree pattern!"); 1245 } 1246 } 1247 1248 // If the operator is an intrinsic, then this is just syntactic sugar for for 1249 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 1250 // convert the intrinsic name to a number. 1251 if (Operator->isSubClassOf("Intrinsic")) { 1252 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 1253 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 1254 1255 // If this intrinsic returns void, it must have side-effects and thus a 1256 // chain. 1257 if (Int.IS.RetVTs[0] == MVT::isVoid) { 1258 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 1259 } else if (Int.ModRef != CodeGenIntrinsic::NoMem) { 1260 // Has side-effects, requires chain. 1261 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 1262 } else { 1263 // Otherwise, no chain. 1264 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 1265 } 1266 1267 TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID)); 1268 Children.insert(Children.begin(), IIDNode); 1269 } 1270 1271 TreePatternNode *Result = new TreePatternNode(Operator, Children); 1272 Result->setName(Dag->getName()); 1273 return Result; 1274 } 1275 1276 /// InferAllTypes - Infer/propagate as many types throughout the expression 1277 /// patterns as possible. Return true if all types are inferred, false 1278 /// otherwise. Throw an exception if a type contradiction is found. 1279 bool TreePattern::InferAllTypes() { 1280 bool MadeChange = true; 1281 while (MadeChange) { 1282 MadeChange = false; 1283 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1284 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); 1285 } 1286 1287 bool HasUnresolvedTypes = false; 1288 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1289 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); 1290 return !HasUnresolvedTypes; 1291 } 1292 1293 void TreePattern::print(raw_ostream &OS) const { 1294 OS << getRecord()->getName(); 1295 if (!Args.empty()) { 1296 OS << "(" << Args[0]; 1297 for (unsigned i = 1, e = Args.size(); i != e; ++i) 1298 OS << ", " << Args[i]; 1299 OS << ")"; 1300 } 1301 OS << ": "; 1302 1303 if (Trees.size() > 1) 1304 OS << "[\n"; 1305 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1306 OS << "\t"; 1307 Trees[i]->print(OS); 1308 OS << "\n"; 1309 } 1310 1311 if (Trees.size() > 1) 1312 OS << "]\n"; 1313 } 1314 1315 void TreePattern::dump() const { print(errs()); } 1316 1317 //===----------------------------------------------------------------------===// 1318 // CodeGenDAGPatterns implementation 1319 // 1320 1321 // FIXME: REMOVE OSTREAM ARGUMENT 1322 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) { 1323 Intrinsics = LoadIntrinsics(Records, false); 1324 TgtIntrinsics = LoadIntrinsics(Records, true); 1325 ParseNodeInfo(); 1326 ParseNodeTransforms(); 1327 ParseComplexPatterns(); 1328 ParsePatternFragments(); 1329 ParseDefaultOperands(); 1330 ParseInstructions(); 1331 ParsePatterns(); 1332 1333 // Generate variants. For example, commutative patterns can match 1334 // multiple ways. Add them to PatternsToMatch as well. 1335 GenerateVariants(); 1336 1337 // Infer instruction flags. For example, we can detect loads, 1338 // stores, and side effects in many cases by examining an 1339 // instruction's pattern. 1340 InferInstructionFlags(); 1341 } 1342 1343 CodeGenDAGPatterns::~CodeGenDAGPatterns() { 1344 for (pf_iterator I = PatternFragments.begin(), 1345 E = PatternFragments.end(); I != E; ++I) 1346 delete I->second; 1347 } 1348 1349 1350 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 1351 Record *N = Records.getDef(Name); 1352 if (!N || !N->isSubClassOf("SDNode")) { 1353 errs() << "Error getting SDNode '" << Name << "'!\n"; 1354 exit(1); 1355 } 1356 return N; 1357 } 1358 1359 // Parse all of the SDNode definitions for the target, populating SDNodes. 1360 void CodeGenDAGPatterns::ParseNodeInfo() { 1361 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 1362 while (!Nodes.empty()) { 1363 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 1364 Nodes.pop_back(); 1365 } 1366 1367 // Get the builtin intrinsic nodes. 1368 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 1369 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 1370 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 1371 } 1372 1373 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 1374 /// map, and emit them to the file as functions. 1375 void CodeGenDAGPatterns::ParseNodeTransforms() { 1376 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 1377 while (!Xforms.empty()) { 1378 Record *XFormNode = Xforms.back(); 1379 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 1380 std::string Code = XFormNode->getValueAsCode("XFormFunction"); 1381 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 1382 1383 Xforms.pop_back(); 1384 } 1385 } 1386 1387 void CodeGenDAGPatterns::ParseComplexPatterns() { 1388 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 1389 while (!AMs.empty()) { 1390 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 1391 AMs.pop_back(); 1392 } 1393 } 1394 1395 1396 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 1397 /// file, building up the PatternFragments map. After we've collected them all, 1398 /// inline fragments together as necessary, so that there are no references left 1399 /// inside a pattern fragment to a pattern fragment. 1400 /// 1401 void CodeGenDAGPatterns::ParsePatternFragments() { 1402 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 1403 1404 // First step, parse all of the fragments. 1405 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 1406 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); 1407 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); 1408 PatternFragments[Fragments[i]] = P; 1409 1410 // Validate the argument list, converting it to set, to discard duplicates. 1411 std::vector<std::string> &Args = P->getArgList(); 1412 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 1413 1414 if (OperandsSet.count("")) 1415 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 1416 1417 // Parse the operands list. 1418 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); 1419 DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); 1420 // Special cases: ops == outs == ins. Different names are used to 1421 // improve readability. 1422 if (!OpsOp || 1423 (OpsOp->getDef()->getName() != "ops" && 1424 OpsOp->getDef()->getName() != "outs" && 1425 OpsOp->getDef()->getName() != "ins")) 1426 P->error("Operands list should start with '(ops ... '!"); 1427 1428 // Copy over the arguments. 1429 Args.clear(); 1430 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 1431 if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || 1432 static_cast<DefInit*>(OpsList->getArg(j))-> 1433 getDef()->getName() != "node") 1434 P->error("Operands list should all be 'node' values."); 1435 if (OpsList->getArgName(j).empty()) 1436 P->error("Operands list should have names for each operand!"); 1437 if (!OperandsSet.count(OpsList->getArgName(j))) 1438 P->error("'" + OpsList->getArgName(j) + 1439 "' does not occur in pattern or was multiply specified!"); 1440 OperandsSet.erase(OpsList->getArgName(j)); 1441 Args.push_back(OpsList->getArgName(j)); 1442 } 1443 1444 if (!OperandsSet.empty()) 1445 P->error("Operands list does not contain an entry for operand '" + 1446 *OperandsSet.begin() + "'!"); 1447 1448 // If there is a code init for this fragment, keep track of the fact that 1449 // this fragment uses it. 1450 std::string Code = Fragments[i]->getValueAsCode("Predicate"); 1451 if (!Code.empty()) 1452 P->getOnlyTree()->addPredicateFn("Predicate_"+Fragments[i]->getName()); 1453 1454 // If there is a node transformation corresponding to this, keep track of 1455 // it. 1456 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); 1457 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 1458 P->getOnlyTree()->setTransformFn(Transform); 1459 } 1460 1461 // Now that we've parsed all of the tree fragments, do a closure on them so 1462 // that there are not references to PatFrags left inside of them. 1463 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 1464 TreePattern *ThePat = PatternFragments[Fragments[i]]; 1465 ThePat->InlinePatternFragments(); 1466 1467 // Infer as many types as possible. Don't worry about it if we don't infer 1468 // all of them, some may depend on the inputs of the pattern. 1469 try { 1470 ThePat->InferAllTypes(); 1471 } catch (...) { 1472 // If this pattern fragment is not supported by this target (no types can 1473 // satisfy its constraints), just ignore it. If the bogus pattern is 1474 // actually used by instructions, the type consistency error will be 1475 // reported there. 1476 } 1477 1478 // If debugging, print out the pattern fragment result. 1479 DEBUG(ThePat->dump()); 1480 } 1481 } 1482 1483 void CodeGenDAGPatterns::ParseDefaultOperands() { 1484 std::vector<Record*> DefaultOps[2]; 1485 DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand"); 1486 DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand"); 1487 1488 // Find some SDNode. 1489 assert(!SDNodes.empty() && "No SDNodes parsed?"); 1490 Init *SomeSDNode = new DefInit(SDNodes.begin()->first); 1491 1492 for (unsigned iter = 0; iter != 2; ++iter) { 1493 for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) { 1494 DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps"); 1495 1496 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 1497 // SomeSDnode so that we can parse this. 1498 std::vector<std::pair<Init*, std::string> > Ops; 1499 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 1500 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 1501 DefaultInfo->getArgName(op))); 1502 DagInit *DI = new DagInit(SomeSDNode, "", Ops); 1503 1504 // Create a TreePattern to parse this. 1505 TreePattern P(DefaultOps[iter][i], DI, false, *this); 1506 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 1507 1508 // Copy the operands over into a DAGDefaultOperand. 1509 DAGDefaultOperand DefaultOpInfo; 1510 1511 TreePatternNode *T = P.getTree(0); 1512 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 1513 TreePatternNode *TPN = T->getChild(op); 1514 while (TPN->ApplyTypeConstraints(P, false)) 1515 /* Resolve all types */; 1516 1517 if (TPN->ContainsUnresolvedType()) { 1518 if (iter == 0) 1519 throw "Value #" + utostr(i) + " of PredicateOperand '" + 1520 DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!"; 1521 else 1522 throw "Value #" + utostr(i) + " of OptionalDefOperand '" + 1523 DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!"; 1524 } 1525 DefaultOpInfo.DefaultOps.push_back(TPN); 1526 } 1527 1528 // Insert it into the DefaultOperands map so we can find it later. 1529 DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo; 1530 } 1531 } 1532 } 1533 1534 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 1535 /// instruction input. Return true if this is a real use. 1536 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 1537 std::map<std::string, TreePatternNode*> &InstInputs, 1538 std::vector<Record*> &InstImpInputs) { 1539 // No name -> not interesting. 1540 if (Pat->getName().empty()) { 1541 if (Pat->isLeaf()) { 1542 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 1543 if (DI && DI->getDef()->isSubClassOf("RegisterClass")) 1544 I->error("Input " + DI->getDef()->getName() + " must be named!"); 1545 else if (DI && DI->getDef()->isSubClassOf("Register")) 1546 InstImpInputs.push_back(DI->getDef()); 1547 } 1548 return false; 1549 } 1550 1551 Record *Rec; 1552 if (Pat->isLeaf()) { 1553 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 1554 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 1555 Rec = DI->getDef(); 1556 } else { 1557 Rec = Pat->getOperator(); 1558 } 1559 1560 // SRCVALUE nodes are ignored. 1561 if (Rec->getName() == "srcvalue") 1562 return false; 1563 1564 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 1565 if (!Slot) { 1566 Slot = Pat; 1567 } else { 1568 Record *SlotRec; 1569 if (Slot->isLeaf()) { 1570 SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); 1571 } else { 1572 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 1573 SlotRec = Slot->getOperator(); 1574 } 1575 1576 // Ensure that the inputs agree if we've already seen this input. 1577 if (Rec != SlotRec) 1578 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 1579 if (Slot->getExtTypes() != Pat->getExtTypes()) 1580 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 1581 } 1582 return true; 1583 } 1584 1585 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 1586 /// part of "I", the instruction), computing the set of inputs and outputs of 1587 /// the pattern. Report errors if we see anything naughty. 1588 void CodeGenDAGPatterns:: 1589 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 1590 std::map<std::string, TreePatternNode*> &InstInputs, 1591 std::map<std::string, TreePatternNode*>&InstResults, 1592 std::vector<Record*> &InstImpInputs, 1593 std::vector<Record*> &InstImpResults) { 1594 if (Pat->isLeaf()) { 1595 bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); 1596 if (!isUse && Pat->getTransformFn()) 1597 I->error("Cannot specify a transform function for a non-input value!"); 1598 return; 1599 } else if (Pat->getOperator()->getName() == "implicit") { 1600 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 1601 TreePatternNode *Dest = Pat->getChild(i); 1602 if (!Dest->isLeaf()) 1603 I->error("implicitly defined value should be a register!"); 1604 1605 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 1606 if (!Val || !Val->getDef()->isSubClassOf("Register")) 1607 I->error("implicitly defined value should be a register!"); 1608 InstImpResults.push_back(Val->getDef()); 1609 } 1610 return; 1611 } else if (Pat->getOperator()->getName() != "set") { 1612 // If this is not a set, verify that the children nodes are not void typed, 1613 // and recurse. 1614 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 1615 if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid) 1616 I->error("Cannot have void nodes inside of patterns!"); 1617 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 1618 InstImpInputs, InstImpResults); 1619 } 1620 1621 // If this is a non-leaf node with no children, treat it basically as if 1622 // it were a leaf. This handles nodes like (imm). 1623 bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); 1624 1625 if (!isUse && Pat->getTransformFn()) 1626 I->error("Cannot specify a transform function for a non-input value!"); 1627 return; 1628 } 1629 1630 // Otherwise, this is a set, validate and collect instruction results. 1631 if (Pat->getNumChildren() == 0) 1632 I->error("set requires operands!"); 1633 1634 if (Pat->getTransformFn()) 1635 I->error("Cannot specify a transform function on a set node!"); 1636 1637 // Check the set destinations. 1638 unsigned NumDests = Pat->getNumChildren()-1; 1639 for (unsigned i = 0; i != NumDests; ++i) { 1640 TreePatternNode *Dest = Pat->getChild(i); 1641 if (!Dest->isLeaf()) 1642 I->error("set destination should be a register!"); 1643 1644 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 1645 if (!Val) 1646 I->error("set destination should be a register!"); 1647 1648 if (Val->getDef()->isSubClassOf("RegisterClass") || 1649 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 1650 if (Dest->getName().empty()) 1651 I->error("set destination must have a name!"); 1652 if (InstResults.count(Dest->getName())) 1653 I->error("cannot set '" + Dest->getName() +"' multiple times"); 1654 InstResults[Dest->getName()] = Dest; 1655 } else if (Val->getDef()->isSubClassOf("Register")) { 1656 InstImpResults.push_back(Val->getDef()); 1657 } else { 1658 I->error("set destination should be a register!"); 1659 } 1660 } 1661 1662 // Verify and collect info from the computation. 1663 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 1664 InstInputs, InstResults, 1665 InstImpInputs, InstImpResults); 1666 } 1667 1668 //===----------------------------------------------------------------------===// 1669 // Instruction Analysis 1670 //===----------------------------------------------------------------------===// 1671 1672 class InstAnalyzer { 1673 const CodeGenDAGPatterns &CDP; 1674 bool &mayStore; 1675 bool &mayLoad; 1676 bool &HasSideEffects; 1677 public: 1678 InstAnalyzer(const CodeGenDAGPatterns &cdp, 1679 bool &maystore, bool &mayload, bool &hse) 1680 : CDP(cdp), mayStore(maystore), mayLoad(mayload), HasSideEffects(hse){ 1681 } 1682 1683 /// Analyze - Analyze the specified instruction, returning true if the 1684 /// instruction had a pattern. 1685 bool Analyze(Record *InstRecord) { 1686 const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern(); 1687 if (Pattern == 0) { 1688 HasSideEffects = 1; 1689 return false; // No pattern. 1690 } 1691 1692 // FIXME: Assume only the first tree is the pattern. The others are clobber 1693 // nodes. 1694 AnalyzeNode(Pattern->getTree(0)); 1695 return true; 1696 } 1697 1698 private: 1699 void AnalyzeNode(const TreePatternNode *N) { 1700 if (N->isLeaf()) { 1701 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { 1702 Record *LeafRec = DI->getDef(); 1703 // Handle ComplexPattern leaves. 1704 if (LeafRec->isSubClassOf("ComplexPattern")) { 1705 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 1706 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 1707 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 1708 if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true; 1709 } 1710 } 1711 return; 1712 } 1713 1714 // Analyze children. 1715 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 1716 AnalyzeNode(N->getChild(i)); 1717 1718 // Ignore set nodes, which are not SDNodes. 1719 if (N->getOperator()->getName() == "set") 1720 return; 1721 1722 // Get information about the SDNode for the operator. 1723 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 1724 1725 // Notice properties of the node. 1726 if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true; 1727 if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true; 1728 if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true; 1729 1730 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 1731 // If this is an intrinsic, analyze it. 1732 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) 1733 mayLoad = true;// These may load memory. 1734 1735 if (IntInfo->ModRef >= CodeGenIntrinsic::WriteArgMem) 1736 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 1737 1738 if (IntInfo->ModRef >= CodeGenIntrinsic::WriteMem) 1739 // WriteMem intrinsics can have other strange effects. 1740 HasSideEffects = true; 1741 } 1742 } 1743 1744 }; 1745 1746 static void InferFromPattern(const CodeGenInstruction &Inst, 1747 bool &MayStore, bool &MayLoad, 1748 bool &HasSideEffects, 1749 const CodeGenDAGPatterns &CDP) { 1750 MayStore = MayLoad = HasSideEffects = false; 1751 1752 bool HadPattern = 1753 InstAnalyzer(CDP, MayStore, MayLoad, HasSideEffects).Analyze(Inst.TheDef); 1754 1755 // InstAnalyzer only correctly analyzes mayStore/mayLoad so far. 1756 if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it. 1757 // If we decided that this is a store from the pattern, then the .td file 1758 // entry is redundant. 1759 if (MayStore) 1760 fprintf(stderr, 1761 "Warning: mayStore flag explicitly set on instruction '%s'" 1762 " but flag already inferred from pattern.\n", 1763 Inst.TheDef->getName().c_str()); 1764 MayStore = true; 1765 } 1766 1767 if (Inst.mayLoad) { // If the .td file explicitly sets mayLoad, use it. 1768 // If we decided that this is a load from the pattern, then the .td file 1769 // entry is redundant. 1770 if (MayLoad) 1771 fprintf(stderr, 1772 "Warning: mayLoad flag explicitly set on instruction '%s'" 1773 " but flag already inferred from pattern.\n", 1774 Inst.TheDef->getName().c_str()); 1775 MayLoad = true; 1776 } 1777 1778 if (Inst.neverHasSideEffects) { 1779 if (HadPattern) 1780 fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' " 1781 "which already has a pattern\n", Inst.TheDef->getName().c_str()); 1782 HasSideEffects = false; 1783 } 1784 1785 if (Inst.hasSideEffects) { 1786 if (HasSideEffects) 1787 fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' " 1788 "which already inferred this.\n", Inst.TheDef->getName().c_str()); 1789 HasSideEffects = true; 1790 } 1791 } 1792 1793 /// ParseInstructions - Parse all of the instructions, inlining and resolving 1794 /// any fragments involved. This populates the Instructions list with fully 1795 /// resolved instructions. 1796 void CodeGenDAGPatterns::ParseInstructions() { 1797 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 1798 1799 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 1800 ListInit *LI = 0; 1801 1802 if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) 1803 LI = Instrs[i]->getValueAsListInit("Pattern"); 1804 1805 // If there is no pattern, only collect minimal information about the 1806 // instruction for its operand list. We have to assume that there is one 1807 // result, as we have no detailed info. 1808 if (!LI || LI->getSize() == 0) { 1809 std::vector<Record*> Results; 1810 std::vector<Record*> Operands; 1811 1812 CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName()); 1813 1814 if (InstInfo.OperandList.size() != 0) { 1815 if (InstInfo.NumDefs == 0) { 1816 // These produce no results 1817 for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j) 1818 Operands.push_back(InstInfo.OperandList[j].Rec); 1819 } else { 1820 // Assume the first operand is the result. 1821 Results.push_back(InstInfo.OperandList[0].Rec); 1822 1823 // The rest are inputs. 1824 for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j) 1825 Operands.push_back(InstInfo.OperandList[j].Rec); 1826 } 1827 } 1828 1829 // Create and insert the instruction. 1830 std::vector<Record*> ImpResults; 1831 std::vector<Record*> ImpOperands; 1832 Instructions.insert(std::make_pair(Instrs[i], 1833 DAGInstruction(0, Results, Operands, ImpResults, 1834 ImpOperands))); 1835 continue; // no pattern. 1836 } 1837 1838 // Parse the instruction. 1839 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); 1840 // Inline pattern fragments into it. 1841 I->InlinePatternFragments(); 1842 1843 // Infer as many types as possible. If we cannot infer all of them, we can 1844 // never do anything with this instruction pattern: report it to the user. 1845 if (!I->InferAllTypes()) 1846 I->error("Could not infer all types in pattern!"); 1847 1848 // InstInputs - Keep track of all of the inputs of the instruction, along 1849 // with the record they are declared as. 1850 std::map<std::string, TreePatternNode*> InstInputs; 1851 1852 // InstResults - Keep track of all the virtual registers that are 'set' 1853 // in the instruction, including what reg class they are. 1854 std::map<std::string, TreePatternNode*> InstResults; 1855 1856 std::vector<Record*> InstImpInputs; 1857 std::vector<Record*> InstImpResults; 1858 1859 // Verify that the top-level forms in the instruction are of void type, and 1860 // fill in the InstResults map. 1861 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 1862 TreePatternNode *Pat = I->getTree(j); 1863 if (Pat->getExtTypeNum(0) != MVT::isVoid) 1864 I->error("Top-level forms in instruction pattern should have" 1865 " void types"); 1866 1867 // Find inputs and outputs, and verify the structure of the uses/defs. 1868 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 1869 InstImpInputs, InstImpResults); 1870 } 1871 1872 // Now that we have inputs and outputs of the pattern, inspect the operands 1873 // list for the instruction. This determines the order that operands are 1874 // added to the machine instruction the node corresponds to. 1875 unsigned NumResults = InstResults.size(); 1876 1877 // Parse the operands list from the (ops) list, validating it. 1878 assert(I->getArgList().empty() && "Args list should still be empty here!"); 1879 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName()); 1880 1881 // Check that all of the results occur first in the list. 1882 std::vector<Record*> Results; 1883 TreePatternNode *Res0Node = NULL; 1884 for (unsigned i = 0; i != NumResults; ++i) { 1885 if (i == CGI.OperandList.size()) 1886 I->error("'" + InstResults.begin()->first + 1887 "' set but does not appear in operand list!"); 1888 const std::string &OpName = CGI.OperandList[i].Name; 1889 1890 // Check that it exists in InstResults. 1891 TreePatternNode *RNode = InstResults[OpName]; 1892 if (RNode == 0) 1893 I->error("Operand $" + OpName + " does not exist in operand list!"); 1894 1895 if (i == 0) 1896 Res0Node = RNode; 1897 Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); 1898 if (R == 0) 1899 I->error("Operand $" + OpName + " should be a set destination: all " 1900 "outputs must occur before inputs in operand list!"); 1901 1902 if (CGI.OperandList[i].Rec != R) 1903 I->error("Operand $" + OpName + " class mismatch!"); 1904 1905 // Remember the return type. 1906 Results.push_back(CGI.OperandList[i].Rec); 1907 1908 // Okay, this one checks out. 1909 InstResults.erase(OpName); 1910 } 1911 1912 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 1913 // the copy while we're checking the inputs. 1914 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 1915 1916 std::vector<TreePatternNode*> ResultNodeOperands; 1917 std::vector<Record*> Operands; 1918 for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { 1919 CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i]; 1920 const std::string &OpName = Op.Name; 1921 if (OpName.empty()) 1922 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 1923 1924 if (!InstInputsCheck.count(OpName)) { 1925 // If this is an predicate operand or optional def operand with an 1926 // DefaultOps set filled in, we can ignore this. When we codegen it, 1927 // we will do so as always executed. 1928 if (Op.Rec->isSubClassOf("PredicateOperand") || 1929 Op.Rec->isSubClassOf("OptionalDefOperand")) { 1930 // Does it have a non-empty DefaultOps field? If so, ignore this 1931 // operand. 1932 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 1933 continue; 1934 } 1935 I->error("Operand $" + OpName + 1936 " does not appear in the instruction pattern"); 1937 } 1938 TreePatternNode *InVal = InstInputsCheck[OpName]; 1939 InstInputsCheck.erase(OpName); // It occurred, remove from map. 1940 1941 if (InVal->isLeaf() && 1942 dynamic_cast<DefInit*>(InVal->getLeafValue())) { 1943 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 1944 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) 1945 I->error("Operand $" + OpName + "'s register class disagrees" 1946 " between the operand and pattern"); 1947 } 1948 Operands.push_back(Op.Rec); 1949 1950 // Construct the result for the dest-pattern operand list. 1951 TreePatternNode *OpNode = InVal->clone(); 1952 1953 // No predicate is useful on the result. 1954 OpNode->clearPredicateFns(); 1955 1956 // Promote the xform function to be an explicit node if set. 1957 if (Record *Xform = OpNode->getTransformFn()) { 1958 OpNode->setTransformFn(0); 1959 std::vector<TreePatternNode*> Children; 1960 Children.push_back(OpNode); 1961 OpNode = new TreePatternNode(Xform, Children); 1962 } 1963 1964 ResultNodeOperands.push_back(OpNode); 1965 } 1966 1967 if (!InstInputsCheck.empty()) 1968 I->error("Input operand $" + InstInputsCheck.begin()->first + 1969 " occurs in pattern but not in operands list!"); 1970 1971 TreePatternNode *ResultPattern = 1972 new TreePatternNode(I->getRecord(), ResultNodeOperands); 1973 // Copy fully inferred output node type to instruction result pattern. 1974 if (NumResults > 0) 1975 ResultPattern->setTypes(Res0Node->getExtTypes()); 1976 1977 // Create and insert the instruction. 1978 // FIXME: InstImpResults and InstImpInputs should not be part of 1979 // DAGInstruction. 1980 DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs); 1981 Instructions.insert(std::make_pair(I->getRecord(), TheInst)); 1982 1983 // Use a temporary tree pattern to infer all types and make sure that the 1984 // constructed result is correct. This depends on the instruction already 1985 // being inserted into the Instructions map. 1986 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 1987 Temp.InferAllTypes(); 1988 1989 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; 1990 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 1991 1992 DEBUG(I->dump()); 1993 } 1994 1995 // If we can, convert the instructions to be patterns that are matched! 1996 for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II = 1997 Instructions.begin(), 1998 E = Instructions.end(); II != E; ++II) { 1999 DAGInstruction &TheInst = II->second; 2000 const TreePattern *I = TheInst.getPattern(); 2001 if (I == 0) continue; // No pattern. 2002 2003 // FIXME: Assume only the first tree is the pattern. The others are clobber 2004 // nodes. 2005 TreePatternNode *Pattern = I->getTree(0); 2006 TreePatternNode *SrcPattern; 2007 if (Pattern->getOperator()->getName() == "set") { 2008 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 2009 } else{ 2010 // Not a set (store or something?) 2011 SrcPattern = Pattern; 2012 } 2013 2014 std::string Reason; 2015 if (!SrcPattern->canPatternMatch(Reason, *this)) 2016 I->error("Instruction can never match: " + Reason); 2017 2018 Record *Instr = II->first; 2019 TreePatternNode *DstPattern = TheInst.getResultPattern(); 2020 PatternsToMatch. 2021 push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"), 2022 SrcPattern, DstPattern, TheInst.getImpResults(), 2023 Instr->getValueAsInt("AddedComplexity"))); 2024 } 2025 } 2026 2027 2028 void CodeGenDAGPatterns::InferInstructionFlags() { 2029 std::map<std::string, CodeGenInstruction> &InstrDescs = 2030 Target.getInstructions(); 2031 for (std::map<std::string, CodeGenInstruction>::iterator 2032 II = InstrDescs.begin(), E = InstrDescs.end(); II != E; ++II) { 2033 CodeGenInstruction &InstInfo = II->second; 2034 // Determine properties of the instruction from its pattern. 2035 bool MayStore, MayLoad, HasSideEffects; 2036 InferFromPattern(InstInfo, MayStore, MayLoad, HasSideEffects, *this); 2037 InstInfo.mayStore = MayStore; 2038 InstInfo.mayLoad = MayLoad; 2039 InstInfo.hasSideEffects = HasSideEffects; 2040 } 2041 } 2042 2043 void CodeGenDAGPatterns::ParsePatterns() { 2044 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 2045 2046 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { 2047 DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch"); 2048 DefInit *OpDef = dynamic_cast<DefInit*>(Tree->getOperator()); 2049 Record *Operator = OpDef->getDef(); 2050 TreePattern *Pattern; 2051 if (Operator->getName() != "parallel") 2052 Pattern = new TreePattern(Patterns[i], Tree, true, *this); 2053 else { 2054 std::vector<Init*> Values; 2055 RecTy *ListTy = 0; 2056 for (unsigned j = 0, ee = Tree->getNumArgs(); j != ee; ++j) { 2057 Values.push_back(Tree->getArg(j)); 2058 TypedInit *TArg = dynamic_cast<TypedInit*>(Tree->getArg(j)); 2059 if (TArg == 0) { 2060 errs() << "In dag: " << Tree->getAsString(); 2061 errs() << " -- Untyped argument in pattern\n"; 2062 assert(0 && "Untyped argument in pattern"); 2063 } 2064 if (ListTy != 0) { 2065 ListTy = resolveTypes(ListTy, TArg->getType()); 2066 if (ListTy == 0) { 2067 errs() << "In dag: " << Tree->getAsString(); 2068 errs() << " -- Incompatible types in pattern arguments\n"; 2069 assert(0 && "Incompatible types in pattern arguments"); 2070 } 2071 } 2072 else { 2073 ListTy = TArg->getType(); 2074 } 2075 } 2076 ListInit *LI = new ListInit(Values, new ListRecTy(ListTy)); 2077 Pattern = new TreePattern(Patterns[i], LI, true, *this); 2078 } 2079 2080 // Inline pattern fragments into it. 2081 Pattern->InlinePatternFragments(); 2082 2083 ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs"); 2084 if (LI->getSize() == 0) continue; // no pattern. 2085 2086 // Parse the instruction. 2087 TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this); 2088 2089 // Inline pattern fragments into it. 2090 Result->InlinePatternFragments(); 2091 2092 if (Result->getNumTrees() != 1) 2093 Result->error("Cannot handle instructions producing instructions " 2094 "with temporaries yet!"); 2095 2096 bool IterateInference; 2097 bool InferredAllPatternTypes, InferredAllResultTypes; 2098 do { 2099 // Infer as many types as possible. If we cannot infer all of them, we 2100 // can never do anything with this pattern: report it to the user. 2101 InferredAllPatternTypes = Pattern->InferAllTypes(); 2102 2103 // Infer as many types as possible. If we cannot infer all of them, we 2104 // can never do anything with this pattern: report it to the user. 2105 InferredAllResultTypes = Result->InferAllTypes(); 2106 2107 // Apply the type of the result to the source pattern. This helps us 2108 // resolve cases where the input type is known to be a pointer type (which 2109 // is considered resolved), but the result knows it needs to be 32- or 2110 // 64-bits. Infer the other way for good measure. 2111 IterateInference = Pattern->getTree(0)-> 2112 UpdateNodeType(Result->getTree(0)->getExtTypes(), *Result); 2113 IterateInference |= Result->getTree(0)-> 2114 UpdateNodeType(Pattern->getTree(0)->getExtTypes(), *Result); 2115 } while (IterateInference); 2116 2117 // Verify that we inferred enough types that we can do something with the 2118 // pattern and result. If these fire the user has to add type casts. 2119 if (!InferredAllPatternTypes) 2120 Pattern->error("Could not infer all types in pattern!"); 2121 if (!InferredAllResultTypes) 2122 Result->error("Could not infer all types in pattern result!"); 2123 2124 // Validate that the input pattern is correct. 2125 std::map<std::string, TreePatternNode*> InstInputs; 2126 std::map<std::string, TreePatternNode*> InstResults; 2127 std::vector<Record*> InstImpInputs; 2128 std::vector<Record*> InstImpResults; 2129 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 2130 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 2131 InstInputs, InstResults, 2132 InstImpInputs, InstImpResults); 2133 2134 // Promote the xform function to be an explicit node if set. 2135 TreePatternNode *DstPattern = Result->getOnlyTree(); 2136 std::vector<TreePatternNode*> ResultNodeOperands; 2137 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 2138 TreePatternNode *OpNode = DstPattern->getChild(ii); 2139 if (Record *Xform = OpNode->getTransformFn()) { 2140 OpNode->setTransformFn(0); 2141 std::vector<TreePatternNode*> Children; 2142 Children.push_back(OpNode); 2143 OpNode = new TreePatternNode(Xform, Children); 2144 } 2145 ResultNodeOperands.push_back(OpNode); 2146 } 2147 DstPattern = Result->getOnlyTree(); 2148 if (!DstPattern->isLeaf()) 2149 DstPattern = new TreePatternNode(DstPattern->getOperator(), 2150 ResultNodeOperands); 2151 DstPattern->setTypes(Result->getOnlyTree()->getExtTypes()); 2152 TreePattern Temp(Result->getRecord(), DstPattern, false, *this); 2153 Temp.InferAllTypes(); 2154 2155 std::string Reason; 2156 if (!Pattern->getTree(0)->canPatternMatch(Reason, *this)) 2157 Pattern->error("Pattern can never match: " + Reason); 2158 2159 PatternsToMatch. 2160 push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"), 2161 Pattern->getTree(0), 2162 Temp.getOnlyTree(), InstImpResults, 2163 Patterns[i]->getValueAsInt("AddedComplexity"))); 2164 } 2165 } 2166 2167 /// CombineChildVariants - Given a bunch of permutations of each child of the 2168 /// 'operator' node, put them together in all possible ways. 2169 static void CombineChildVariants(TreePatternNode *Orig, 2170 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 2171 std::vector<TreePatternNode*> &OutVariants, 2172 CodeGenDAGPatterns &CDP, 2173 const MultipleUseVarSet &DepVars) { 2174 // Make sure that each operand has at least one variant to choose from. 2175 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 2176 if (ChildVariants[i].empty()) 2177 return; 2178 2179 // The end result is an all-pairs construction of the resultant pattern. 2180 std::vector<unsigned> Idxs; 2181 Idxs.resize(ChildVariants.size()); 2182 bool NotDone; 2183 do { 2184 #ifndef NDEBUG 2185 if (DebugFlag && !Idxs.empty()) { 2186 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 2187 for (unsigned i = 0; i < Idxs.size(); ++i) { 2188 errs() << Idxs[i] << " "; 2189 } 2190 errs() << "]\n"; 2191 } 2192 #endif 2193 // Create the variant and add it to the output list. 2194 std::vector<TreePatternNode*> NewChildren; 2195 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 2196 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 2197 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren); 2198 2199 // Copy over properties. 2200 R->setName(Orig->getName()); 2201 R->setPredicateFns(Orig->getPredicateFns()); 2202 R->setTransformFn(Orig->getTransformFn()); 2203 R->setTypes(Orig->getExtTypes()); 2204 2205 // If this pattern cannot match, do not include it as a variant. 2206 std::string ErrString; 2207 if (!R->canPatternMatch(ErrString, CDP)) { 2208 delete R; 2209 } else { 2210 bool AlreadyExists = false; 2211 2212 // Scan to see if this pattern has already been emitted. We can get 2213 // duplication due to things like commuting: 2214 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 2215 // which are the same pattern. Ignore the dups. 2216 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) 2217 if (R->isIsomorphicTo(OutVariants[i], DepVars)) { 2218 AlreadyExists = true; 2219 break; 2220 } 2221 2222 if (AlreadyExists) 2223 delete R; 2224 else 2225 OutVariants.push_back(R); 2226 } 2227 2228 // Increment indices to the next permutation by incrementing the 2229 // indicies from last index backward, e.g., generate the sequence 2230 // [0, 0], [0, 1], [1, 0], [1, 1]. 2231 int IdxsIdx; 2232 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2233 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 2234 Idxs[IdxsIdx] = 0; 2235 else 2236 break; 2237 } 2238 NotDone = (IdxsIdx >= 0); 2239 } while (NotDone); 2240 } 2241 2242 /// CombineChildVariants - A helper function for binary operators. 2243 /// 2244 static void CombineChildVariants(TreePatternNode *Orig, 2245 const std::vector<TreePatternNode*> &LHS, 2246 const std::vector<TreePatternNode*> &RHS, 2247 std::vector<TreePatternNode*> &OutVariants, 2248 CodeGenDAGPatterns &CDP, 2249 const MultipleUseVarSet &DepVars) { 2250 std::vector<std::vector<TreePatternNode*> > ChildVariants; 2251 ChildVariants.push_back(LHS); 2252 ChildVariants.push_back(RHS); 2253 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 2254 } 2255 2256 2257 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 2258 std::vector<TreePatternNode *> &Children) { 2259 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 2260 Record *Operator = N->getOperator(); 2261 2262 // Only permit raw nodes. 2263 if (!N->getName().empty() || !N->getPredicateFns().empty() || 2264 N->getTransformFn()) { 2265 Children.push_back(N); 2266 return; 2267 } 2268 2269 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 2270 Children.push_back(N->getChild(0)); 2271 else 2272 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 2273 2274 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 2275 Children.push_back(N->getChild(1)); 2276 else 2277 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 2278 } 2279 2280 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 2281 /// the (potentially recursive) pattern by using algebraic laws. 2282 /// 2283 static void GenerateVariantsOf(TreePatternNode *N, 2284 std::vector<TreePatternNode*> &OutVariants, 2285 CodeGenDAGPatterns &CDP, 2286 const MultipleUseVarSet &DepVars) { 2287 // We cannot permute leaves. 2288 if (N->isLeaf()) { 2289 OutVariants.push_back(N); 2290 return; 2291 } 2292 2293 // Look up interesting info about the node. 2294 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 2295 2296 // If this node is associative, re-associate. 2297 if (NodeInfo.hasProperty(SDNPAssociative)) { 2298 // Re-associate by pulling together all of the linked operators 2299 std::vector<TreePatternNode*> MaximalChildren; 2300 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 2301 2302 // Only handle child sizes of 3. Otherwise we'll end up trying too many 2303 // permutations. 2304 if (MaximalChildren.size() == 3) { 2305 // Find the variants of all of our maximal children. 2306 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 2307 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 2308 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 2309 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 2310 2311 // There are only two ways we can permute the tree: 2312 // (A op B) op C and A op (B op C) 2313 // Within these forms, we can also permute A/B/C. 2314 2315 // Generate legal pair permutations of A/B/C. 2316 std::vector<TreePatternNode*> ABVariants; 2317 std::vector<TreePatternNode*> BAVariants; 2318 std::vector<TreePatternNode*> ACVariants; 2319 std::vector<TreePatternNode*> CAVariants; 2320 std::vector<TreePatternNode*> BCVariants; 2321 std::vector<TreePatternNode*> CBVariants; 2322 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 2323 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 2324 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 2325 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 2326 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 2327 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 2328 2329 // Combine those into the result: (x op x) op x 2330 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 2331 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 2332 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 2333 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 2334 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 2335 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 2336 2337 // Combine those into the result: x op (x op x) 2338 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 2339 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 2340 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 2341 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 2342 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 2343 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 2344 return; 2345 } 2346 } 2347 2348 // Compute permutations of all children. 2349 std::vector<std::vector<TreePatternNode*> > ChildVariants; 2350 ChildVariants.resize(N->getNumChildren()); 2351 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2352 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 2353 2354 // Build all permutations based on how the children were formed. 2355 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 2356 2357 // If this node is commutative, consider the commuted order. 2358 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 2359 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2360 assert((N->getNumChildren()==2 || isCommIntrinsic) && 2361 "Commutative but doesn't have 2 children!"); 2362 // Don't count children which are actually register references. 2363 unsigned NC = 0; 2364 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2365 TreePatternNode *Child = N->getChild(i); 2366 if (Child->isLeaf()) 2367 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { 2368 Record *RR = DI->getDef(); 2369 if (RR->isSubClassOf("Register")) 2370 continue; 2371 } 2372 NC++; 2373 } 2374 // Consider the commuted order. 2375 if (isCommIntrinsic) { 2376 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 2377 // operands are the commutative operands, and there might be more operands 2378 // after those. 2379 assert(NC >= 3 && 2380 "Commutative intrinsic should have at least 3 childrean!"); 2381 std::vector<std::vector<TreePatternNode*> > Variants; 2382 Variants.push_back(ChildVariants[0]); // Intrinsic id. 2383 Variants.push_back(ChildVariants[2]); 2384 Variants.push_back(ChildVariants[1]); 2385 for (unsigned i = 3; i != NC; ++i) 2386 Variants.push_back(ChildVariants[i]); 2387 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 2388 } else if (NC == 2) 2389 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 2390 OutVariants, CDP, DepVars); 2391 } 2392 } 2393 2394 2395 // GenerateVariants - Generate variants. For example, commutative patterns can 2396 // match multiple ways. Add them to PatternsToMatch as well. 2397 void CodeGenDAGPatterns::GenerateVariants() { 2398 DEBUG(errs() << "Generating instruction variants.\n"); 2399 2400 // Loop over all of the patterns we've collected, checking to see if we can 2401 // generate variants of the instruction, through the exploitation of 2402 // identities. This permits the target to provide aggressive matching without 2403 // the .td file having to contain tons of variants of instructions. 2404 // 2405 // Note that this loop adds new patterns to the PatternsToMatch list, but we 2406 // intentionally do not reconsider these. Any variants of added patterns have 2407 // already been added. 2408 // 2409 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 2410 MultipleUseVarSet DepVars; 2411 std::vector<TreePatternNode*> Variants; 2412 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 2413 DEBUG(errs() << "Dependent/multiply used variables: "); 2414 DEBUG(DumpDepVars(DepVars)); 2415 DEBUG(errs() << "\n"); 2416 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, DepVars); 2417 2418 assert(!Variants.empty() && "Must create at least original variant!"); 2419 Variants.erase(Variants.begin()); // Remove the original pattern. 2420 2421 if (Variants.empty()) // No variants for this pattern. 2422 continue; 2423 2424 DEBUG(errs() << "FOUND VARIANTS OF: "; 2425 PatternsToMatch[i].getSrcPattern()->dump(); 2426 errs() << "\n"); 2427 2428 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 2429 TreePatternNode *Variant = Variants[v]; 2430 2431 DEBUG(errs() << " VAR#" << v << ": "; 2432 Variant->dump(); 2433 errs() << "\n"); 2434 2435 // Scan to see if an instruction or explicit pattern already matches this. 2436 bool AlreadyExists = false; 2437 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 2438 // Skip if the top level predicates do not match. 2439 if (PatternsToMatch[i].getPredicates() != 2440 PatternsToMatch[p].getPredicates()) 2441 continue; 2442 // Check to see if this variant already exists. 2443 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), DepVars)) { 2444 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 2445 AlreadyExists = true; 2446 break; 2447 } 2448 } 2449 // If we already have it, ignore the variant. 2450 if (AlreadyExists) continue; 2451 2452 // Otherwise, add it to the list of patterns we have. 2453 PatternsToMatch. 2454 push_back(PatternToMatch(PatternsToMatch[i].getPredicates(), 2455 Variant, PatternsToMatch[i].getDstPattern(), 2456 PatternsToMatch[i].getDstRegs(), 2457 PatternsToMatch[i].getAddedComplexity())); 2458 } 2459 2460 DEBUG(errs() << "\n"); 2461 } 2462 } 2463 2464