1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include <algorithm>
29 #include <cstdio>
30 #include <iterator>
31 #include <set>
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "dag-patterns"
35 
36 static inline bool isIntegerOrPtr(MVT VT) {
37   return VT.isInteger() || VT == MVT::iPTR;
38 }
39 static inline bool isFloatingPoint(MVT VT) {
40   return VT.isFloatingPoint();
41 }
42 static inline bool isVector(MVT VT) {
43   return VT.isVector();
44 }
45 static inline bool isScalar(MVT VT) {
46   return !VT.isVector();
47 }
48 
49 template <typename Predicate>
50 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
51   bool Erased = false;
52   // It is ok to iterate over MachineValueTypeSet and remove elements from it
53   // at the same time.
54   for (MVT T : S) {
55     if (!P(T))
56       continue;
57     Erased = true;
58     S.erase(T);
59   }
60   return Erased;
61 }
62 
63 // --- TypeSetByHwMode
64 
65 // This is a parameterized type-set class. For each mode there is a list
66 // of types that are currently possible for a given tree node. Type
67 // inference will apply to each mode separately.
68 
69 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
70   for (const ValueTypeByHwMode &VVT : VTList) {
71     insert(VVT);
72     AddrSpaces.push_back(VVT.PtrAddrSpace);
73   }
74 }
75 
76 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
77   for (const auto &I : *this) {
78     if (I.second.size() > 1)
79       return false;
80     if (!AllowEmpty && I.second.empty())
81       return false;
82   }
83   return true;
84 }
85 
86 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
87   assert(isValueTypeByHwMode(true) &&
88          "The type set has multiple types for at least one HW mode");
89   ValueTypeByHwMode VVT;
90   auto ASI = AddrSpaces.begin();
91 
92   for (const auto &I : *this) {
93     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
94     VVT.getOrCreateTypeForMode(I.first, T);
95     if (ASI != AddrSpaces.end())
96       VVT.PtrAddrSpace = *ASI++;
97   }
98   return VVT;
99 }
100 
101 bool TypeSetByHwMode::isPossible() const {
102   for (const auto &I : *this)
103     if (!I.second.empty())
104       return true;
105   return false;
106 }
107 
108 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
109   bool Changed = false;
110   bool ContainsDefault = false;
111   MVT DT = MVT::Other;
112 
113   SmallDenseSet<unsigned, 4> Modes;
114   for (const auto &P : VVT) {
115     unsigned M = P.first;
116     Modes.insert(M);
117     // Make sure there exists a set for each specific mode from VVT.
118     Changed |= getOrCreate(M).insert(P.second).second;
119     // Cache VVT's default mode.
120     if (DefaultMode == M) {
121       ContainsDefault = true;
122       DT = P.second;
123     }
124   }
125 
126   // If VVT has a default mode, add the corresponding type to all
127   // modes in "this" that do not exist in VVT.
128   if (ContainsDefault)
129     for (auto &I : *this)
130       if (!Modes.count(I.first))
131         Changed |= I.second.insert(DT).second;
132 
133   return Changed;
134 }
135 
136 // Constrain the type set to be the intersection with VTS.
137 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
138   bool Changed = false;
139   if (hasDefault()) {
140     for (const auto &I : VTS) {
141       unsigned M = I.first;
142       if (M == DefaultMode || hasMode(M))
143         continue;
144       Map.insert({M, Map.at(DefaultMode)});
145       Changed = true;
146     }
147   }
148 
149   for (auto &I : *this) {
150     unsigned M = I.first;
151     SetType &S = I.second;
152     if (VTS.hasMode(M) || VTS.hasDefault()) {
153       Changed |= intersect(I.second, VTS.get(M));
154     } else if (!S.empty()) {
155       S.clear();
156       Changed = true;
157     }
158   }
159   return Changed;
160 }
161 
162 template <typename Predicate>
163 bool TypeSetByHwMode::constrain(Predicate P) {
164   bool Changed = false;
165   for (auto &I : *this)
166     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
167   return Changed;
168 }
169 
170 template <typename Predicate>
171 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
172   assert(empty());
173   for (const auto &I : VTS) {
174     SetType &S = getOrCreate(I.first);
175     for (auto J : I.second)
176       if (P(J))
177         S.insert(J);
178   }
179   return !empty();
180 }
181 
182 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
183   SmallVector<unsigned, 4> Modes;
184   Modes.reserve(Map.size());
185 
186   for (const auto &I : *this)
187     Modes.push_back(I.first);
188   if (Modes.empty()) {
189     OS << "{}";
190     return;
191   }
192   array_pod_sort(Modes.begin(), Modes.end());
193 
194   OS << '{';
195   for (unsigned M : Modes) {
196     OS << ' ' << getModeName(M) << ':';
197     writeToStream(get(M), OS);
198   }
199   OS << " }";
200 }
201 
202 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
203   SmallVector<MVT, 4> Types(S.begin(), S.end());
204   array_pod_sort(Types.begin(), Types.end());
205 
206   OS << '[';
207   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
208     OS << ValueTypeByHwMode::getMVTName(Types[i]);
209     if (i != e-1)
210       OS << ' ';
211   }
212   OS << ']';
213 }
214 
215 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
216   // The isSimple call is much quicker than hasDefault - check this first.
217   bool IsSimple = isSimple();
218   bool VTSIsSimple = VTS.isSimple();
219   if (IsSimple && VTSIsSimple)
220     return *begin() == *VTS.begin();
221 
222   // Speedup: We have a default if the set is simple.
223   bool HaveDefault = IsSimple || hasDefault();
224   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
225   if (HaveDefault != VTSHaveDefault)
226     return false;
227 
228   SmallDenseSet<unsigned, 4> Modes;
229   for (auto &I : *this)
230     Modes.insert(I.first);
231   for (const auto &I : VTS)
232     Modes.insert(I.first);
233 
234   if (HaveDefault) {
235     // Both sets have default mode.
236     for (unsigned M : Modes) {
237       if (get(M) != VTS.get(M))
238         return false;
239     }
240   } else {
241     // Neither set has default mode.
242     for (unsigned M : Modes) {
243       // If there is no default mode, an empty set is equivalent to not having
244       // the corresponding mode.
245       bool NoModeThis = !hasMode(M) || get(M).empty();
246       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
247       if (NoModeThis != NoModeVTS)
248         return false;
249       if (!NoModeThis)
250         if (get(M) != VTS.get(M))
251           return false;
252     }
253   }
254 
255   return true;
256 }
257 
258 namespace llvm {
259   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
260     T.writeToStream(OS);
261     return OS;
262   }
263 }
264 
265 LLVM_DUMP_METHOD
266 void TypeSetByHwMode::dump() const {
267   dbgs() << *this << '\n';
268 }
269 
270 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
271   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
272   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
273 
274   if (OutP == InP)
275     return berase_if(Out, Int);
276 
277   // Compute the intersection of scalars separately to account for only
278   // one set containing iPTR.
279   // The itersection of iPTR with a set of integer scalar types that does not
280   // include iPTR will result in the most specific scalar type:
281   // - iPTR is more specific than any set with two elements or more
282   // - iPTR is less specific than any single integer scalar type.
283   // For example
284   // { iPTR } * { i32 }     -> { i32 }
285   // { iPTR } * { i32 i64 } -> { iPTR }
286   // and
287   // { iPTR i32 } * { i32 }          -> { i32 }
288   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
289   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
290 
291   // Compute the difference between the two sets in such a way that the
292   // iPTR is in the set that is being subtracted. This is to see if there
293   // are any extra scalars in the set without iPTR that are not in the
294   // set containing iPTR. Then the iPTR could be considered a "wildcard"
295   // matching these scalars. If there is only one such scalar, it would
296   // replace the iPTR, if there are more, the iPTR would be retained.
297   SetType Diff;
298   if (InP) {
299     Diff = Out;
300     berase_if(Diff, [&In](MVT T) { return In.count(T); });
301     // Pre-remove these elements and rely only on InP/OutP to determine
302     // whether a change has been made.
303     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
304   } else {
305     Diff = In;
306     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
307     Out.erase(MVT::iPTR);
308   }
309 
310   // The actual intersection.
311   bool Changed = berase_if(Out, Int);
312   unsigned NumD = Diff.size();
313   if (NumD == 0)
314     return Changed;
315 
316   if (NumD == 1) {
317     Out.insert(*Diff.begin());
318     // This is a change only if Out was the one with iPTR (which is now
319     // being replaced).
320     Changed |= OutP;
321   } else {
322     // Multiple elements from Out are now replaced with iPTR.
323     Out.insert(MVT::iPTR);
324     Changed |= !OutP;
325   }
326   return Changed;
327 }
328 
329 bool TypeSetByHwMode::validate() const {
330 #ifndef NDEBUG
331   if (empty())
332     return true;
333   bool AllEmpty = true;
334   for (const auto &I : *this)
335     AllEmpty &= I.second.empty();
336   return !AllEmpty;
337 #endif
338   return true;
339 }
340 
341 // --- TypeInfer
342 
343 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
344                                 const TypeSetByHwMode &In) {
345   ValidateOnExit _1(Out, *this);
346   In.validate();
347   if (In.empty() || Out == In || TP.hasError())
348     return false;
349   if (Out.empty()) {
350     Out = In;
351     return true;
352   }
353 
354   bool Changed = Out.constrain(In);
355   if (Changed && Out.empty())
356     TP.error("Type contradiction");
357 
358   return Changed;
359 }
360 
361 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
362   ValidateOnExit _1(Out, *this);
363   if (TP.hasError())
364     return false;
365   assert(!Out.empty() && "cannot pick from an empty set");
366 
367   bool Changed = false;
368   for (auto &I : Out) {
369     TypeSetByHwMode::SetType &S = I.second;
370     if (S.size() <= 1)
371       continue;
372     MVT T = *S.begin(); // Pick the first element.
373     S.clear();
374     S.insert(T);
375     Changed = true;
376   }
377   return Changed;
378 }
379 
380 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
381   ValidateOnExit _1(Out, *this);
382   if (TP.hasError())
383     return false;
384   if (!Out.empty())
385     return Out.constrain(isIntegerOrPtr);
386 
387   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
388 }
389 
390 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
391   ValidateOnExit _1(Out, *this);
392   if (TP.hasError())
393     return false;
394   if (!Out.empty())
395     return Out.constrain(isFloatingPoint);
396 
397   return Out.assign_if(getLegalTypes(), isFloatingPoint);
398 }
399 
400 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
401   ValidateOnExit _1(Out, *this);
402   if (TP.hasError())
403     return false;
404   if (!Out.empty())
405     return Out.constrain(isScalar);
406 
407   return Out.assign_if(getLegalTypes(), isScalar);
408 }
409 
410 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
411   ValidateOnExit _1(Out, *this);
412   if (TP.hasError())
413     return false;
414   if (!Out.empty())
415     return Out.constrain(isVector);
416 
417   return Out.assign_if(getLegalTypes(), isVector);
418 }
419 
420 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
421   ValidateOnExit _1(Out, *this);
422   if (TP.hasError() || !Out.empty())
423     return false;
424 
425   Out = getLegalTypes();
426   return true;
427 }
428 
429 template <typename Iter, typename Pred, typename Less>
430 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
431   if (B == E)
432     return E;
433   Iter Min = E;
434   for (Iter I = B; I != E; ++I) {
435     if (!P(*I))
436       continue;
437     if (Min == E || L(*I, *Min))
438       Min = I;
439   }
440   return Min;
441 }
442 
443 template <typename Iter, typename Pred, typename Less>
444 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
445   if (B == E)
446     return E;
447   Iter Max = E;
448   for (Iter I = B; I != E; ++I) {
449     if (!P(*I))
450       continue;
451     if (Max == E || L(*Max, *I))
452       Max = I;
453   }
454   return Max;
455 }
456 
457 /// Make sure that for each type in Small, there exists a larger type in Big.
458 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
459                                    TypeSetByHwMode &Big) {
460   ValidateOnExit _1(Small, *this), _2(Big, *this);
461   if (TP.hasError())
462     return false;
463   bool Changed = false;
464 
465   if (Small.empty())
466     Changed |= EnforceAny(Small);
467   if (Big.empty())
468     Changed |= EnforceAny(Big);
469 
470   assert(Small.hasDefault() && Big.hasDefault());
471 
472   std::vector<unsigned> Modes = union_modes(Small, Big);
473 
474   // 1. Only allow integer or floating point types and make sure that
475   //    both sides are both integer or both floating point.
476   // 2. Make sure that either both sides have vector types, or neither
477   //    of them does.
478   for (unsigned M : Modes) {
479     TypeSetByHwMode::SetType &S = Small.get(M);
480     TypeSetByHwMode::SetType &B = Big.get(M);
481 
482     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
483       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
484       Changed |= berase_if(S, NotInt) |
485                  berase_if(B, NotInt);
486     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
487       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
488       Changed |= berase_if(S, NotFP) |
489                  berase_if(B, NotFP);
490     } else if (S.empty() || B.empty()) {
491       Changed = !S.empty() || !B.empty();
492       S.clear();
493       B.clear();
494     } else {
495       TP.error("Incompatible types");
496       return Changed;
497     }
498 
499     if (none_of(S, isVector) || none_of(B, isVector)) {
500       Changed |= berase_if(S, isVector) |
501                  berase_if(B, isVector);
502     }
503   }
504 
505   auto LT = [](MVT A, MVT B) -> bool {
506     return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
507            (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
508             A.getSizeInBits() < B.getSizeInBits());
509   };
510   auto LE = [](MVT A, MVT B) -> bool {
511     // This function is used when removing elements: when a vector is compared
512     // to a non-vector, it should return false (to avoid removal).
513     if (A.isVector() != B.isVector())
514       return false;
515 
516     // Note on the < comparison below:
517     // X86 has patterns like
518     //   (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))),
519     // where the truncated vector is given a type v16i8, while the source
520     // vector has type v4i32. They both have the same size in bits.
521     // The minimal type in the result is obviously v16i8, and when we remove
522     // all types from the source that are smaller-or-equal than v8i16, the
523     // only source type would also be removed (since it's equal in size).
524     return A.getScalarSizeInBits() <= B.getScalarSizeInBits() ||
525            A.getSizeInBits() < B.getSizeInBits();
526   };
527 
528   for (unsigned M : Modes) {
529     TypeSetByHwMode::SetType &S = Small.get(M);
530     TypeSetByHwMode::SetType &B = Big.get(M);
531     // MinS = min scalar in Small, remove all scalars from Big that are
532     // smaller-or-equal than MinS.
533     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
534     if (MinS != S.end())
535       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
536 
537     // MaxS = max scalar in Big, remove all scalars from Small that are
538     // larger than MaxS.
539     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
540     if (MaxS != B.end())
541       Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
542 
543     // MinV = min vector in Small, remove all vectors from Big that are
544     // smaller-or-equal than MinV.
545     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
546     if (MinV != S.end())
547       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
548 
549     // MaxV = max vector in Big, remove all vectors from Small that are
550     // larger than MaxV.
551     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
552     if (MaxV != B.end())
553       Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
554   }
555 
556   return Changed;
557 }
558 
559 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
560 ///    for each type U in Elem, U is a scalar type.
561 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
562 ///    type T in Vec, such that U is the element type of T.
563 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
564                                        TypeSetByHwMode &Elem) {
565   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
566   if (TP.hasError())
567     return false;
568   bool Changed = false;
569 
570   if (Vec.empty())
571     Changed |= EnforceVector(Vec);
572   if (Elem.empty())
573     Changed |= EnforceScalar(Elem);
574 
575   for (unsigned M : union_modes(Vec, Elem)) {
576     TypeSetByHwMode::SetType &V = Vec.get(M);
577     TypeSetByHwMode::SetType &E = Elem.get(M);
578 
579     Changed |= berase_if(V, isScalar);  // Scalar = !vector
580     Changed |= berase_if(E, isVector);  // Vector = !scalar
581     assert(!V.empty() && !E.empty());
582 
583     SmallSet<MVT,4> VT, ST;
584     // Collect element types from the "vector" set.
585     for (MVT T : V)
586       VT.insert(T.getVectorElementType());
587     // Collect scalar types from the "element" set.
588     for (MVT T : E)
589       ST.insert(T);
590 
591     // Remove from V all (vector) types whose element type is not in S.
592     Changed |= berase_if(V, [&ST](MVT T) -> bool {
593                               return !ST.count(T.getVectorElementType());
594                             });
595     // Remove from E all (scalar) types, for which there is no corresponding
596     // type in V.
597     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
598   }
599 
600   return Changed;
601 }
602 
603 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
604                                        const ValueTypeByHwMode &VVT) {
605   TypeSetByHwMode Tmp(VVT);
606   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
607   return EnforceVectorEltTypeIs(Vec, Tmp);
608 }
609 
610 /// Ensure that for each type T in Sub, T is a vector type, and there
611 /// exists a type U in Vec such that U is a vector type with the same
612 /// element type as T and at least as many elements as T.
613 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
614                                              TypeSetByHwMode &Sub) {
615   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
616   if (TP.hasError())
617     return false;
618 
619   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
620   auto IsSubVec = [](MVT B, MVT P) -> bool {
621     if (!B.isVector() || !P.isVector())
622       return false;
623     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
624     // but until there are obvious use-cases for this, keep the
625     // types separate.
626     if (B.isScalableVector() != P.isScalableVector())
627       return false;
628     if (B.getVectorElementType() != P.getVectorElementType())
629       return false;
630     return B.getVectorNumElements() < P.getVectorNumElements();
631   };
632 
633   /// Return true if S has no element (vector type) that T is a sub-vector of,
634   /// i.e. has the same element type as T and more elements.
635   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
636     for (const auto &I : S)
637       if (IsSubVec(T, I))
638         return false;
639     return true;
640   };
641 
642   /// Return true if S has no element (vector type) that T is a super-vector
643   /// of, i.e. has the same element type as T and fewer elements.
644   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
645     for (const auto &I : S)
646       if (IsSubVec(I, T))
647         return false;
648     return true;
649   };
650 
651   bool Changed = false;
652 
653   if (Vec.empty())
654     Changed |= EnforceVector(Vec);
655   if (Sub.empty())
656     Changed |= EnforceVector(Sub);
657 
658   for (unsigned M : union_modes(Vec, Sub)) {
659     TypeSetByHwMode::SetType &S = Sub.get(M);
660     TypeSetByHwMode::SetType &V = Vec.get(M);
661 
662     Changed |= berase_if(S, isScalar);
663 
664     // Erase all types from S that are not sub-vectors of a type in V.
665     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
666 
667     // Erase all types from V that are not super-vectors of a type in S.
668     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
669   }
670 
671   return Changed;
672 }
673 
674 /// 1. Ensure that V has a scalar type iff W has a scalar type.
675 /// 2. Ensure that for each vector type T in V, there exists a vector
676 ///    type U in W, such that T and U have the same number of elements.
677 /// 3. Ensure that for each vector type U in W, there exists a vector
678 ///    type T in V, such that T and U have the same number of elements
679 ///    (reverse of 2).
680 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
681   ValidateOnExit _1(V, *this), _2(W, *this);
682   if (TP.hasError())
683     return false;
684 
685   bool Changed = false;
686   if (V.empty())
687     Changed |= EnforceAny(V);
688   if (W.empty())
689     Changed |= EnforceAny(W);
690 
691   // An actual vector type cannot have 0 elements, so we can treat scalars
692   // as zero-length vectors. This way both vectors and scalars can be
693   // processed identically.
694   auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
695     return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
696   };
697 
698   for (unsigned M : union_modes(V, W)) {
699     TypeSetByHwMode::SetType &VS = V.get(M);
700     TypeSetByHwMode::SetType &WS = W.get(M);
701 
702     SmallSet<unsigned,2> VN, WN;
703     for (MVT T : VS)
704       VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
705     for (MVT T : WS)
706       WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
707 
708     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
709     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
710   }
711   return Changed;
712 }
713 
714 /// 1. Ensure that for each type T in A, there exists a type U in B,
715 ///    such that T and U have equal size in bits.
716 /// 2. Ensure that for each type U in B, there exists a type T in A
717 ///    such that T and U have equal size in bits (reverse of 1).
718 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
719   ValidateOnExit _1(A, *this), _2(B, *this);
720   if (TP.hasError())
721     return false;
722   bool Changed = false;
723   if (A.empty())
724     Changed |= EnforceAny(A);
725   if (B.empty())
726     Changed |= EnforceAny(B);
727 
728   auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
729     return !Sizes.count(T.getSizeInBits());
730   };
731 
732   for (unsigned M : union_modes(A, B)) {
733     TypeSetByHwMode::SetType &AS = A.get(M);
734     TypeSetByHwMode::SetType &BS = B.get(M);
735     SmallSet<unsigned,2> AN, BN;
736 
737     for (MVT T : AS)
738       AN.insert(T.getSizeInBits());
739     for (MVT T : BS)
740       BN.insert(T.getSizeInBits());
741 
742     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
743     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
744   }
745 
746   return Changed;
747 }
748 
749 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
750   ValidateOnExit _1(VTS, *this);
751   const TypeSetByHwMode &Legal = getLegalTypes();
752   assert(Legal.isDefaultOnly() && "Default-mode only expected");
753   const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
754 
755   for (auto &I : VTS)
756     expandOverloads(I.second, LegalTypes);
757 }
758 
759 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
760                                 const TypeSetByHwMode::SetType &Legal) {
761   std::set<MVT> Ovs;
762   for (MVT T : Out) {
763     if (!T.isOverloaded())
764       continue;
765 
766     Ovs.insert(T);
767     // MachineValueTypeSet allows iteration and erasing.
768     Out.erase(T);
769   }
770 
771   for (MVT Ov : Ovs) {
772     switch (Ov.SimpleTy) {
773       case MVT::iPTRAny:
774         Out.insert(MVT::iPTR);
775         return;
776       case MVT::iAny:
777         for (MVT T : MVT::integer_valuetypes())
778           if (Legal.count(T))
779             Out.insert(T);
780         for (MVT T : MVT::integer_vector_valuetypes())
781           if (Legal.count(T))
782             Out.insert(T);
783         return;
784       case MVT::fAny:
785         for (MVT T : MVT::fp_valuetypes())
786           if (Legal.count(T))
787             Out.insert(T);
788         for (MVT T : MVT::fp_vector_valuetypes())
789           if (Legal.count(T))
790             Out.insert(T);
791         return;
792       case MVT::vAny:
793         for (MVT T : MVT::vector_valuetypes())
794           if (Legal.count(T))
795             Out.insert(T);
796         return;
797       case MVT::Any:
798         for (MVT T : MVT::all_valuetypes())
799           if (Legal.count(T))
800             Out.insert(T);
801         return;
802       default:
803         break;
804     }
805   }
806 }
807 
808 const TypeSetByHwMode &TypeInfer::getLegalTypes() {
809   if (!LegalTypesCached) {
810     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
811     // Stuff all types from all modes into the default mode.
812     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
813     for (const auto &I : LTS)
814       LegalTypes.insert(I.second);
815     LegalTypesCached = true;
816   }
817   assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
818   return LegalCache;
819 }
820 
821 #ifndef NDEBUG
822 TypeInfer::ValidateOnExit::~ValidateOnExit() {
823   if (Infer.Validate && !VTS.validate()) {
824     dbgs() << "Type set is empty for each HW mode:\n"
825               "possible type contradiction in the pattern below "
826               "(use -print-records with llvm-tblgen to see all "
827               "expanded records).\n";
828     Infer.TP.dump();
829     llvm_unreachable(nullptr);
830   }
831 }
832 #endif
833 
834 
835 //===----------------------------------------------------------------------===//
836 // ScopedName Implementation
837 //===----------------------------------------------------------------------===//
838 
839 bool ScopedName::operator==(const ScopedName &o) const {
840   return Scope == o.Scope && Identifier == o.Identifier;
841 }
842 
843 bool ScopedName::operator!=(const ScopedName &o) const {
844   return !(*this == o);
845 }
846 
847 
848 //===----------------------------------------------------------------------===//
849 // TreePredicateFn Implementation
850 //===----------------------------------------------------------------------===//
851 
852 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
853 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
854   assert(
855       (!hasPredCode() || !hasImmCode()) &&
856       ".td file corrupt: can't have a node predicate *and* an imm predicate");
857 }
858 
859 bool TreePredicateFn::hasPredCode() const {
860   return isLoad() || isStore() || isAtomic() ||
861          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
862 }
863 
864 std::string TreePredicateFn::getPredCode() const {
865   std::string Code = "";
866 
867   if (!isLoad() && !isStore() && !isAtomic()) {
868     Record *MemoryVT = getMemoryVT();
869 
870     if (MemoryVT)
871       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
872                       "MemoryVT requires IsLoad or IsStore");
873   }
874 
875   if (!isLoad() && !isStore()) {
876     if (isUnindexed())
877       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
878                       "IsUnindexed requires IsLoad or IsStore");
879 
880     Record *ScalarMemoryVT = getScalarMemoryVT();
881 
882     if (ScalarMemoryVT)
883       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
884                       "ScalarMemoryVT requires IsLoad or IsStore");
885   }
886 
887   if (isLoad() + isStore() + isAtomic() > 1)
888     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
889                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
890 
891   if (isLoad()) {
892     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
893         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
894         getScalarMemoryVT() == nullptr)
895       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
896                       "IsLoad cannot be used by itself");
897   } else {
898     if (isNonExtLoad())
899       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
900                       "IsNonExtLoad requires IsLoad");
901     if (isAnyExtLoad())
902       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
903                       "IsAnyExtLoad requires IsLoad");
904     if (isSignExtLoad())
905       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
906                       "IsSignExtLoad requires IsLoad");
907     if (isZeroExtLoad())
908       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
909                       "IsZeroExtLoad requires IsLoad");
910   }
911 
912   if (isStore()) {
913     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
914         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr)
915       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
916                       "IsStore cannot be used by itself");
917   } else {
918     if (isNonTruncStore())
919       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
920                       "IsNonTruncStore requires IsStore");
921     if (isTruncStore())
922       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
923                       "IsTruncStore requires IsStore");
924   }
925 
926   if (isAtomic()) {
927     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
928         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
929         !isAtomicOrderingAcquireRelease() &&
930         !isAtomicOrderingSequentiallyConsistent() &&
931         !isAtomicOrderingAcquireOrStronger() &&
932         !isAtomicOrderingReleaseOrStronger() &&
933         !isAtomicOrderingWeakerThanAcquire() &&
934         !isAtomicOrderingWeakerThanRelease())
935       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
936                       "IsAtomic cannot be used by itself");
937   } else {
938     if (isAtomicOrderingMonotonic())
939       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
940                       "IsAtomicOrderingMonotonic requires IsAtomic");
941     if (isAtomicOrderingAcquire())
942       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
943                       "IsAtomicOrderingAcquire requires IsAtomic");
944     if (isAtomicOrderingRelease())
945       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
946                       "IsAtomicOrderingRelease requires IsAtomic");
947     if (isAtomicOrderingAcquireRelease())
948       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
949                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
950     if (isAtomicOrderingSequentiallyConsistent())
951       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
952                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
953     if (isAtomicOrderingAcquireOrStronger())
954       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
955                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
956     if (isAtomicOrderingReleaseOrStronger())
957       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
958                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
959     if (isAtomicOrderingWeakerThanAcquire())
960       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
961                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
962   }
963 
964   if (isLoad() || isStore() || isAtomic()) {
965     StringRef SDNodeName =
966         isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode";
967 
968     Record *MemoryVT = getMemoryVT();
969 
970     if (MemoryVT)
971       Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" +
972                MemoryVT->getName() + ") return false;\n")
973                   .str();
974   }
975 
976   if (isAtomic() && isAtomicOrderingMonotonic())
977     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
978             "AtomicOrdering::Monotonic) return false;\n";
979   if (isAtomic() && isAtomicOrderingAcquire())
980     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
981             "AtomicOrdering::Acquire) return false;\n";
982   if (isAtomic() && isAtomicOrderingRelease())
983     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
984             "AtomicOrdering::Release) return false;\n";
985   if (isAtomic() && isAtomicOrderingAcquireRelease())
986     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
987             "AtomicOrdering::AcquireRelease) return false;\n";
988   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
989     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
990             "AtomicOrdering::SequentiallyConsistent) return false;\n";
991 
992   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
993     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
994             "return false;\n";
995   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
996     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
997             "return false;\n";
998 
999   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1000     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1001             "return false;\n";
1002   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1003     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1004             "return false;\n";
1005 
1006   if (isLoad() || isStore()) {
1007     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1008 
1009     if (isUnindexed())
1010       Code += ("if (cast<" + SDNodeName +
1011                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1012                "return false;\n")
1013                   .str();
1014 
1015     if (isLoad()) {
1016       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1017            isZeroExtLoad()) > 1)
1018         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1019                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1020                         "IsZeroExtLoad are mutually exclusive");
1021       if (isNonExtLoad())
1022         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1023                 "ISD::NON_EXTLOAD) return false;\n";
1024       if (isAnyExtLoad())
1025         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1026                 "return false;\n";
1027       if (isSignExtLoad())
1028         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1029                 "return false;\n";
1030       if (isZeroExtLoad())
1031         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1032                 "return false;\n";
1033     } else {
1034       if ((isNonTruncStore() + isTruncStore()) > 1)
1035         PrintFatalError(
1036             getOrigPatFragRecord()->getRecord()->getLoc(),
1037             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1038       if (isNonTruncStore())
1039         Code +=
1040             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1041       if (isTruncStore())
1042         Code +=
1043             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1044     }
1045 
1046     Record *ScalarMemoryVT = getScalarMemoryVT();
1047 
1048     if (ScalarMemoryVT)
1049       Code += ("if (cast<" + SDNodeName +
1050                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1051                ScalarMemoryVT->getName() + ") return false;\n")
1052                   .str();
1053   }
1054 
1055   std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1056 
1057   Code += PredicateCode;
1058 
1059   if (PredicateCode.empty() && !Code.empty())
1060     Code += "return true;\n";
1061 
1062   return Code;
1063 }
1064 
1065 bool TreePredicateFn::hasImmCode() const {
1066   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1067 }
1068 
1069 std::string TreePredicateFn::getImmCode() const {
1070   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1071 }
1072 
1073 bool TreePredicateFn::immCodeUsesAPInt() const {
1074   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1075 }
1076 
1077 bool TreePredicateFn::immCodeUsesAPFloat() const {
1078   bool Unset;
1079   // The return value will be false when IsAPFloat is unset.
1080   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1081                                                                    Unset);
1082 }
1083 
1084 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1085                                                    bool Value) const {
1086   bool Unset;
1087   bool Result =
1088       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1089   if (Unset)
1090     return false;
1091   return Result == Value;
1092 }
1093 bool TreePredicateFn::usesOperands() const {
1094   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1095 }
1096 bool TreePredicateFn::isLoad() const {
1097   return isPredefinedPredicateEqualTo("IsLoad", true);
1098 }
1099 bool TreePredicateFn::isStore() const {
1100   return isPredefinedPredicateEqualTo("IsStore", true);
1101 }
1102 bool TreePredicateFn::isAtomic() const {
1103   return isPredefinedPredicateEqualTo("IsAtomic", true);
1104 }
1105 bool TreePredicateFn::isUnindexed() const {
1106   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1107 }
1108 bool TreePredicateFn::isNonExtLoad() const {
1109   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1110 }
1111 bool TreePredicateFn::isAnyExtLoad() const {
1112   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1113 }
1114 bool TreePredicateFn::isSignExtLoad() const {
1115   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1116 }
1117 bool TreePredicateFn::isZeroExtLoad() const {
1118   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1119 }
1120 bool TreePredicateFn::isNonTruncStore() const {
1121   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1122 }
1123 bool TreePredicateFn::isTruncStore() const {
1124   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1125 }
1126 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1127   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1128 }
1129 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1130   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1131 }
1132 bool TreePredicateFn::isAtomicOrderingRelease() const {
1133   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1134 }
1135 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1136   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1137 }
1138 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1139   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1140                                       true);
1141 }
1142 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1143   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1144 }
1145 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1146   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1147 }
1148 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1149   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1150 }
1151 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1152   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1153 }
1154 Record *TreePredicateFn::getMemoryVT() const {
1155   Record *R = getOrigPatFragRecord()->getRecord();
1156   if (R->isValueUnset("MemoryVT"))
1157     return nullptr;
1158   return R->getValueAsDef("MemoryVT");
1159 }
1160 Record *TreePredicateFn::getScalarMemoryVT() const {
1161   Record *R = getOrigPatFragRecord()->getRecord();
1162   if (R->isValueUnset("ScalarMemoryVT"))
1163     return nullptr;
1164   return R->getValueAsDef("ScalarMemoryVT");
1165 }
1166 bool TreePredicateFn::hasGISelPredicateCode() const {
1167   return !PatFragRec->getRecord()
1168               ->getValueAsString("GISelPredicateCode")
1169               .empty();
1170 }
1171 std::string TreePredicateFn::getGISelPredicateCode() const {
1172   return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
1173 }
1174 
1175 StringRef TreePredicateFn::getImmType() const {
1176   if (immCodeUsesAPInt())
1177     return "const APInt &";
1178   if (immCodeUsesAPFloat())
1179     return "const APFloat &";
1180   return "int64_t";
1181 }
1182 
1183 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1184   if (immCodeUsesAPInt())
1185     return "APInt";
1186   else if (immCodeUsesAPFloat())
1187     return "APFloat";
1188   return "I64";
1189 }
1190 
1191 /// isAlwaysTrue - Return true if this is a noop predicate.
1192 bool TreePredicateFn::isAlwaysTrue() const {
1193   return !hasPredCode() && !hasImmCode();
1194 }
1195 
1196 /// Return the name to use in the generated code to reference this, this is
1197 /// "Predicate_foo" if from a pattern fragment "foo".
1198 std::string TreePredicateFn::getFnName() const {
1199   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1200 }
1201 
1202 /// getCodeToRunOnSDNode - Return the code for the function body that
1203 /// evaluates this predicate.  The argument is expected to be in "Node",
1204 /// not N.  This handles casting and conversion to a concrete node type as
1205 /// appropriate.
1206 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1207   // Handle immediate predicates first.
1208   std::string ImmCode = getImmCode();
1209   if (!ImmCode.empty()) {
1210     if (isLoad())
1211       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1212                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1213     if (isStore())
1214       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1215                       "IsStore cannot be used with ImmLeaf or its subclasses");
1216     if (isUnindexed())
1217       PrintFatalError(
1218           getOrigPatFragRecord()->getRecord()->getLoc(),
1219           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1220     if (isNonExtLoad())
1221       PrintFatalError(
1222           getOrigPatFragRecord()->getRecord()->getLoc(),
1223           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1224     if (isAnyExtLoad())
1225       PrintFatalError(
1226           getOrigPatFragRecord()->getRecord()->getLoc(),
1227           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1228     if (isSignExtLoad())
1229       PrintFatalError(
1230           getOrigPatFragRecord()->getRecord()->getLoc(),
1231           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1232     if (isZeroExtLoad())
1233       PrintFatalError(
1234           getOrigPatFragRecord()->getRecord()->getLoc(),
1235           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1236     if (isNonTruncStore())
1237       PrintFatalError(
1238           getOrigPatFragRecord()->getRecord()->getLoc(),
1239           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1240     if (isTruncStore())
1241       PrintFatalError(
1242           getOrigPatFragRecord()->getRecord()->getLoc(),
1243           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1244     if (getMemoryVT())
1245       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1246                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1247     if (getScalarMemoryVT())
1248       PrintFatalError(
1249           getOrigPatFragRecord()->getRecord()->getLoc(),
1250           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1251 
1252     std::string Result = ("    " + getImmType() + " Imm = ").str();
1253     if (immCodeUsesAPFloat())
1254       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1255     else if (immCodeUsesAPInt())
1256       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1257     else
1258       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1259     return Result + ImmCode;
1260   }
1261 
1262   // Handle arbitrary node predicates.
1263   assert(hasPredCode() && "Don't have any predicate code!");
1264   StringRef ClassName;
1265   if (PatFragRec->getOnlyTree()->isLeaf())
1266     ClassName = "SDNode";
1267   else {
1268     Record *Op = PatFragRec->getOnlyTree()->getOperator();
1269     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1270   }
1271   std::string Result;
1272   if (ClassName == "SDNode")
1273     Result = "    SDNode *N = Node;\n";
1274   else
1275     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1276 
1277   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1278 }
1279 
1280 //===----------------------------------------------------------------------===//
1281 // PatternToMatch implementation
1282 //
1283 
1284 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1285 /// patterns before small ones.  This is used to determine the size of a
1286 /// pattern.
1287 static unsigned getPatternSize(const TreePatternNode *P,
1288                                const CodeGenDAGPatterns &CGP) {
1289   unsigned Size = 3;  // The node itself.
1290   // If the root node is a ConstantSDNode, increases its size.
1291   // e.g. (set R32:$dst, 0).
1292   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1293     Size += 2;
1294 
1295   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1296     Size += AM->getComplexity();
1297     // We don't want to count any children twice, so return early.
1298     return Size;
1299   }
1300 
1301   // If this node has some predicate function that must match, it adds to the
1302   // complexity of this node.
1303   if (!P->getPredicateCalls().empty())
1304     ++Size;
1305 
1306   // Count children in the count if they are also nodes.
1307   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1308     const TreePatternNode *Child = P->getChild(i);
1309     if (!Child->isLeaf() && Child->getNumTypes()) {
1310       const TypeSetByHwMode &T0 = Child->getExtType(0);
1311       // At this point, all variable type sets should be simple, i.e. only
1312       // have a default mode.
1313       if (T0.getMachineValueType() != MVT::Other) {
1314         Size += getPatternSize(Child, CGP);
1315         continue;
1316       }
1317     }
1318     if (Child->isLeaf()) {
1319       if (isa<IntInit>(Child->getLeafValue()))
1320         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1321       else if (Child->getComplexPatternInfo(CGP))
1322         Size += getPatternSize(Child, CGP);
1323       else if (!Child->getPredicateCalls().empty())
1324         ++Size;
1325     }
1326   }
1327 
1328   return Size;
1329 }
1330 
1331 /// Compute the complexity metric for the input pattern.  This roughly
1332 /// corresponds to the number of nodes that are covered.
1333 int PatternToMatch::
1334 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1335   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1336 }
1337 
1338 /// getPredicateCheck - Return a single string containing all of this
1339 /// pattern's predicates concatenated with "&&" operators.
1340 ///
1341 std::string PatternToMatch::getPredicateCheck() const {
1342   SmallVector<const Predicate*,4> PredList;
1343   for (const Predicate &P : Predicates)
1344     PredList.push_back(&P);
1345   llvm::sort(PredList, deref<llvm::less>());
1346 
1347   std::string Check;
1348   for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1349     if (i != 0)
1350       Check += " && ";
1351     Check += '(' + PredList[i]->getCondString() + ')';
1352   }
1353   return Check;
1354 }
1355 
1356 //===----------------------------------------------------------------------===//
1357 // SDTypeConstraint implementation
1358 //
1359 
1360 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1361   OperandNo = R->getValueAsInt("OperandNum");
1362 
1363   if (R->isSubClassOf("SDTCisVT")) {
1364     ConstraintType = SDTCisVT;
1365     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1366     for (const auto &P : VVT)
1367       if (P.second == MVT::isVoid)
1368         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1369   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1370     ConstraintType = SDTCisPtrTy;
1371   } else if (R->isSubClassOf("SDTCisInt")) {
1372     ConstraintType = SDTCisInt;
1373   } else if (R->isSubClassOf("SDTCisFP")) {
1374     ConstraintType = SDTCisFP;
1375   } else if (R->isSubClassOf("SDTCisVec")) {
1376     ConstraintType = SDTCisVec;
1377   } else if (R->isSubClassOf("SDTCisSameAs")) {
1378     ConstraintType = SDTCisSameAs;
1379     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1380   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1381     ConstraintType = SDTCisVTSmallerThanOp;
1382     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1383       R->getValueAsInt("OtherOperandNum");
1384   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1385     ConstraintType = SDTCisOpSmallerThanOp;
1386     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1387       R->getValueAsInt("BigOperandNum");
1388   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1389     ConstraintType = SDTCisEltOfVec;
1390     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1391   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1392     ConstraintType = SDTCisSubVecOfVec;
1393     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1394       R->getValueAsInt("OtherOpNum");
1395   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1396     ConstraintType = SDTCVecEltisVT;
1397     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1398     for (const auto &P : VVT) {
1399       MVT T = P.second;
1400       if (T.isVector())
1401         PrintFatalError(R->getLoc(),
1402                         "Cannot use vector type as SDTCVecEltisVT");
1403       if (!T.isInteger() && !T.isFloatingPoint())
1404         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1405                                      "as SDTCVecEltisVT");
1406     }
1407   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1408     ConstraintType = SDTCisSameNumEltsAs;
1409     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1410       R->getValueAsInt("OtherOperandNum");
1411   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1412     ConstraintType = SDTCisSameSizeAs;
1413     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1414       R->getValueAsInt("OtherOperandNum");
1415   } else {
1416     PrintFatalError(R->getLoc(),
1417                     "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1418   }
1419 }
1420 
1421 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1422 /// N, and the result number in ResNo.
1423 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1424                                       const SDNodeInfo &NodeInfo,
1425                                       unsigned &ResNo) {
1426   unsigned NumResults = NodeInfo.getNumResults();
1427   if (OpNo < NumResults) {
1428     ResNo = OpNo;
1429     return N;
1430   }
1431 
1432   OpNo -= NumResults;
1433 
1434   if (OpNo >= N->getNumChildren()) {
1435     std::string S;
1436     raw_string_ostream OS(S);
1437     OS << "Invalid operand number in type constraint "
1438            << (OpNo+NumResults) << " ";
1439     N->print(OS);
1440     PrintFatalError(OS.str());
1441   }
1442 
1443   return N->getChild(OpNo);
1444 }
1445 
1446 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1447 /// constraint to the nodes operands.  This returns true if it makes a
1448 /// change, false otherwise.  If a type contradiction is found, flag an error.
1449 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1450                                            const SDNodeInfo &NodeInfo,
1451                                            TreePattern &TP) const {
1452   if (TP.hasError())
1453     return false;
1454 
1455   unsigned ResNo = 0; // The result number being referenced.
1456   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1457   TypeInfer &TI = TP.getInfer();
1458 
1459   switch (ConstraintType) {
1460   case SDTCisVT:
1461     // Operand must be a particular type.
1462     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1463   case SDTCisPtrTy:
1464     // Operand must be same as target pointer type.
1465     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1466   case SDTCisInt:
1467     // Require it to be one of the legal integer VTs.
1468      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1469   case SDTCisFP:
1470     // Require it to be one of the legal fp VTs.
1471     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1472   case SDTCisVec:
1473     // Require it to be one of the legal vector VTs.
1474     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1475   case SDTCisSameAs: {
1476     unsigned OResNo = 0;
1477     TreePatternNode *OtherNode =
1478       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1479     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1480            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1481   }
1482   case SDTCisVTSmallerThanOp: {
1483     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1484     // have an integer type that is smaller than the VT.
1485     if (!NodeToApply->isLeaf() ||
1486         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1487         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1488                ->isSubClassOf("ValueType")) {
1489       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1490       return false;
1491     }
1492     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1493     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1494     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1495     TypeSetByHwMode TypeListTmp(VVT);
1496 
1497     unsigned OResNo = 0;
1498     TreePatternNode *OtherNode =
1499       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1500                     OResNo);
1501 
1502     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1503   }
1504   case SDTCisOpSmallerThanOp: {
1505     unsigned BResNo = 0;
1506     TreePatternNode *BigOperand =
1507       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1508                     BResNo);
1509     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1510                                  BigOperand->getExtType(BResNo));
1511   }
1512   case SDTCisEltOfVec: {
1513     unsigned VResNo = 0;
1514     TreePatternNode *VecOperand =
1515       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1516                     VResNo);
1517     // Filter vector types out of VecOperand that don't have the right element
1518     // type.
1519     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1520                                      NodeToApply->getExtType(ResNo));
1521   }
1522   case SDTCisSubVecOfVec: {
1523     unsigned VResNo = 0;
1524     TreePatternNode *BigVecOperand =
1525       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1526                     VResNo);
1527 
1528     // Filter vector types out of BigVecOperand that don't have the
1529     // right subvector type.
1530     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1531                                            NodeToApply->getExtType(ResNo));
1532   }
1533   case SDTCVecEltisVT: {
1534     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1535   }
1536   case SDTCisSameNumEltsAs: {
1537     unsigned OResNo = 0;
1538     TreePatternNode *OtherNode =
1539       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1540                     N, NodeInfo, OResNo);
1541     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1542                                  NodeToApply->getExtType(ResNo));
1543   }
1544   case SDTCisSameSizeAs: {
1545     unsigned OResNo = 0;
1546     TreePatternNode *OtherNode =
1547       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1548                     N, NodeInfo, OResNo);
1549     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1550                               NodeToApply->getExtType(ResNo));
1551   }
1552   }
1553   llvm_unreachable("Invalid ConstraintType!");
1554 }
1555 
1556 // Update the node type to match an instruction operand or result as specified
1557 // in the ins or outs lists on the instruction definition. Return true if the
1558 // type was actually changed.
1559 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1560                                              Record *Operand,
1561                                              TreePattern &TP) {
1562   // The 'unknown' operand indicates that types should be inferred from the
1563   // context.
1564   if (Operand->isSubClassOf("unknown_class"))
1565     return false;
1566 
1567   // The Operand class specifies a type directly.
1568   if (Operand->isSubClassOf("Operand")) {
1569     Record *R = Operand->getValueAsDef("Type");
1570     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1571     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1572   }
1573 
1574   // PointerLikeRegClass has a type that is determined at runtime.
1575   if (Operand->isSubClassOf("PointerLikeRegClass"))
1576     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1577 
1578   // Both RegisterClass and RegisterOperand operands derive their types from a
1579   // register class def.
1580   Record *RC = nullptr;
1581   if (Operand->isSubClassOf("RegisterClass"))
1582     RC = Operand;
1583   else if (Operand->isSubClassOf("RegisterOperand"))
1584     RC = Operand->getValueAsDef("RegClass");
1585 
1586   assert(RC && "Unknown operand type");
1587   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1588   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1589 }
1590 
1591 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1592   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1593     if (!TP.getInfer().isConcrete(Types[i], true))
1594       return true;
1595   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1596     if (getChild(i)->ContainsUnresolvedType(TP))
1597       return true;
1598   return false;
1599 }
1600 
1601 bool TreePatternNode::hasProperTypeByHwMode() const {
1602   for (const TypeSetByHwMode &S : Types)
1603     if (!S.isDefaultOnly())
1604       return true;
1605   for (const TreePatternNodePtr &C : Children)
1606     if (C->hasProperTypeByHwMode())
1607       return true;
1608   return false;
1609 }
1610 
1611 bool TreePatternNode::hasPossibleType() const {
1612   for (const TypeSetByHwMode &S : Types)
1613     if (!S.isPossible())
1614       return false;
1615   for (const TreePatternNodePtr &C : Children)
1616     if (!C->hasPossibleType())
1617       return false;
1618   return true;
1619 }
1620 
1621 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1622   for (TypeSetByHwMode &S : Types) {
1623     S.makeSimple(Mode);
1624     // Check if the selected mode had a type conflict.
1625     if (S.get(DefaultMode).empty())
1626       return false;
1627   }
1628   for (const TreePatternNodePtr &C : Children)
1629     if (!C->setDefaultMode(Mode))
1630       return false;
1631   return true;
1632 }
1633 
1634 //===----------------------------------------------------------------------===//
1635 // SDNodeInfo implementation
1636 //
1637 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1638   EnumName    = R->getValueAsString("Opcode");
1639   SDClassName = R->getValueAsString("SDClass");
1640   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1641   NumResults = TypeProfile->getValueAsInt("NumResults");
1642   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1643 
1644   // Parse the properties.
1645   Properties = parseSDPatternOperatorProperties(R);
1646 
1647   // Parse the type constraints.
1648   std::vector<Record*> ConstraintList =
1649     TypeProfile->getValueAsListOfDefs("Constraints");
1650   for (Record *R : ConstraintList)
1651     TypeConstraints.emplace_back(R, CGH);
1652 }
1653 
1654 /// getKnownType - If the type constraints on this node imply a fixed type
1655 /// (e.g. all stores return void, etc), then return it as an
1656 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1657 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1658   unsigned NumResults = getNumResults();
1659   assert(NumResults <= 1 &&
1660          "We only work with nodes with zero or one result so far!");
1661   assert(ResNo == 0 && "Only handles single result nodes so far");
1662 
1663   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1664     // Make sure that this applies to the correct node result.
1665     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1666       continue;
1667 
1668     switch (Constraint.ConstraintType) {
1669     default: break;
1670     case SDTypeConstraint::SDTCisVT:
1671       if (Constraint.VVT.isSimple())
1672         return Constraint.VVT.getSimple().SimpleTy;
1673       break;
1674     case SDTypeConstraint::SDTCisPtrTy:
1675       return MVT::iPTR;
1676     }
1677   }
1678   return MVT::Other;
1679 }
1680 
1681 //===----------------------------------------------------------------------===//
1682 // TreePatternNode implementation
1683 //
1684 
1685 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1686   if (Operator->getName() == "set" ||
1687       Operator->getName() == "implicit")
1688     return 0;  // All return nothing.
1689 
1690   if (Operator->isSubClassOf("Intrinsic"))
1691     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1692 
1693   if (Operator->isSubClassOf("SDNode"))
1694     return CDP.getSDNodeInfo(Operator).getNumResults();
1695 
1696   if (Operator->isSubClassOf("PatFrags")) {
1697     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1698     // the forward reference case where one pattern fragment references another
1699     // before it is processed.
1700     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1701       // The number of results of a fragment with alternative records is the
1702       // maximum number of results across all alternatives.
1703       unsigned NumResults = 0;
1704       for (auto T : PFRec->getTrees())
1705         NumResults = std::max(NumResults, T->getNumTypes());
1706       return NumResults;
1707     }
1708 
1709     ListInit *LI = Operator->getValueAsListInit("Fragments");
1710     assert(LI && "Invalid Fragment");
1711     unsigned NumResults = 0;
1712     for (Init *I : LI->getValues()) {
1713       Record *Op = nullptr;
1714       if (DagInit *Dag = dyn_cast<DagInit>(I))
1715         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1716           Op = DI->getDef();
1717       assert(Op && "Invalid Fragment");
1718       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1719     }
1720     return NumResults;
1721   }
1722 
1723   if (Operator->isSubClassOf("Instruction")) {
1724     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1725 
1726     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1727 
1728     // Subtract any defaulted outputs.
1729     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1730       Record *OperandNode = InstInfo.Operands[i].Rec;
1731 
1732       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1733           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1734         --NumDefsToAdd;
1735     }
1736 
1737     // Add on one implicit def if it has a resolvable type.
1738     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1739       ++NumDefsToAdd;
1740     return NumDefsToAdd;
1741   }
1742 
1743   if (Operator->isSubClassOf("SDNodeXForm"))
1744     return 1;  // FIXME: Generalize SDNodeXForm
1745 
1746   if (Operator->isSubClassOf("ValueType"))
1747     return 1;  // A type-cast of one result.
1748 
1749   if (Operator->isSubClassOf("ComplexPattern"))
1750     return 1;
1751 
1752   errs() << *Operator;
1753   PrintFatalError("Unhandled node in GetNumNodeResults");
1754 }
1755 
1756 void TreePatternNode::print(raw_ostream &OS) const {
1757   if (isLeaf())
1758     OS << *getLeafValue();
1759   else
1760     OS << '(' << getOperator()->getName();
1761 
1762   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1763     OS << ':';
1764     getExtType(i).writeToStream(OS);
1765   }
1766 
1767   if (!isLeaf()) {
1768     if (getNumChildren() != 0) {
1769       OS << " ";
1770       getChild(0)->print(OS);
1771       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1772         OS << ", ";
1773         getChild(i)->print(OS);
1774       }
1775     }
1776     OS << ")";
1777   }
1778 
1779   for (const TreePredicateCall &Pred : PredicateCalls) {
1780     OS << "<<P:";
1781     if (Pred.Scope)
1782       OS << Pred.Scope << ":";
1783     OS << Pred.Fn.getFnName() << ">>";
1784   }
1785   if (TransformFn)
1786     OS << "<<X:" << TransformFn->getName() << ">>";
1787   if (!getName().empty())
1788     OS << ":$" << getName();
1789 
1790   for (const ScopedName &Name : NamesAsPredicateArg)
1791     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1792 }
1793 void TreePatternNode::dump() const {
1794   print(errs());
1795 }
1796 
1797 /// isIsomorphicTo - Return true if this node is recursively
1798 /// isomorphic to the specified node.  For this comparison, the node's
1799 /// entire state is considered. The assigned name is ignored, since
1800 /// nodes with differing names are considered isomorphic. However, if
1801 /// the assigned name is present in the dependent variable set, then
1802 /// the assigned name is considered significant and the node is
1803 /// isomorphic if the names match.
1804 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1805                                      const MultipleUseVarSet &DepVars) const {
1806   if (N == this) return true;
1807   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1808       getPredicateCalls() != N->getPredicateCalls() ||
1809       getTransformFn() != N->getTransformFn())
1810     return false;
1811 
1812   if (isLeaf()) {
1813     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1814       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1815         return ((DI->getDef() == NDI->getDef())
1816                 && (DepVars.find(getName()) == DepVars.end()
1817                     || getName() == N->getName()));
1818       }
1819     }
1820     return getLeafValue() == N->getLeafValue();
1821   }
1822 
1823   if (N->getOperator() != getOperator() ||
1824       N->getNumChildren() != getNumChildren()) return false;
1825   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1826     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1827       return false;
1828   return true;
1829 }
1830 
1831 /// clone - Make a copy of this tree and all of its children.
1832 ///
1833 TreePatternNodePtr TreePatternNode::clone() const {
1834   TreePatternNodePtr New;
1835   if (isLeaf()) {
1836     New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1837   } else {
1838     std::vector<TreePatternNodePtr> CChildren;
1839     CChildren.reserve(Children.size());
1840     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1841       CChildren.push_back(getChild(i)->clone());
1842     New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1843                                             getNumTypes());
1844   }
1845   New->setName(getName());
1846   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1847   New->Types = Types;
1848   New->setPredicateCalls(getPredicateCalls());
1849   New->setTransformFn(getTransformFn());
1850   return New;
1851 }
1852 
1853 /// RemoveAllTypes - Recursively strip all the types of this tree.
1854 void TreePatternNode::RemoveAllTypes() {
1855   // Reset to unknown type.
1856   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1857   if (isLeaf()) return;
1858   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1859     getChild(i)->RemoveAllTypes();
1860 }
1861 
1862 
1863 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1864 /// with actual values specified by ArgMap.
1865 void TreePatternNode::SubstituteFormalArguments(
1866     std::map<std::string, TreePatternNodePtr> &ArgMap) {
1867   if (isLeaf()) return;
1868 
1869   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1870     TreePatternNode *Child = getChild(i);
1871     if (Child->isLeaf()) {
1872       Init *Val = Child->getLeafValue();
1873       // Note that, when substituting into an output pattern, Val might be an
1874       // UnsetInit.
1875       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1876           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1877         // We found a use of a formal argument, replace it with its value.
1878         TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1879         assert(NewChild && "Couldn't find formal argument!");
1880         assert((Child->getPredicateCalls().empty() ||
1881                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1882                "Non-empty child predicate clobbered!");
1883         setChild(i, std::move(NewChild));
1884       }
1885     } else {
1886       getChild(i)->SubstituteFormalArguments(ArgMap);
1887     }
1888   }
1889 }
1890 
1891 
1892 /// InlinePatternFragments - If this pattern refers to any pattern
1893 /// fragments, return the set of inlined versions (this can be more than
1894 /// one if a PatFrags record has multiple alternatives).
1895 void TreePatternNode::InlinePatternFragments(
1896   TreePatternNodePtr T, TreePattern &TP,
1897   std::vector<TreePatternNodePtr> &OutAlternatives) {
1898 
1899   if (TP.hasError())
1900     return;
1901 
1902   if (isLeaf()) {
1903     OutAlternatives.push_back(T);  // nothing to do.
1904     return;
1905   }
1906 
1907   Record *Op = getOperator();
1908 
1909   if (!Op->isSubClassOf("PatFrags")) {
1910     if (getNumChildren() == 0) {
1911       OutAlternatives.push_back(T);
1912       return;
1913     }
1914 
1915     // Recursively inline children nodes.
1916     std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
1917     ChildAlternatives.resize(getNumChildren());
1918     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1919       TreePatternNodePtr Child = getChildShared(i);
1920       Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
1921       // If there are no alternatives for any child, there are no
1922       // alternatives for this expression as whole.
1923       if (ChildAlternatives[i].empty())
1924         return;
1925 
1926       for (auto NewChild : ChildAlternatives[i])
1927         assert((Child->getPredicateCalls().empty() ||
1928                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1929                "Non-empty child predicate clobbered!");
1930     }
1931 
1932     // The end result is an all-pairs construction of the resultant pattern.
1933     std::vector<unsigned> Idxs;
1934     Idxs.resize(ChildAlternatives.size());
1935     bool NotDone;
1936     do {
1937       // Create the variant and add it to the output list.
1938       std::vector<TreePatternNodePtr> NewChildren;
1939       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
1940         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
1941       TreePatternNodePtr R = std::make_shared<TreePatternNode>(
1942           getOperator(), std::move(NewChildren), getNumTypes());
1943 
1944       // Copy over properties.
1945       R->setName(getName());
1946       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
1947       R->setPredicateCalls(getPredicateCalls());
1948       R->setTransformFn(getTransformFn());
1949       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
1950         R->setType(i, getExtType(i));
1951       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
1952         R->setResultIndex(i, getResultIndex(i));
1953 
1954       // Register alternative.
1955       OutAlternatives.push_back(R);
1956 
1957       // Increment indices to the next permutation by incrementing the
1958       // indices from last index backward, e.g., generate the sequence
1959       // [0, 0], [0, 1], [1, 0], [1, 1].
1960       int IdxsIdx;
1961       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
1962         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
1963           Idxs[IdxsIdx] = 0;
1964         else
1965           break;
1966       }
1967       NotDone = (IdxsIdx >= 0);
1968     } while (NotDone);
1969 
1970     return;
1971   }
1972 
1973   // Otherwise, we found a reference to a fragment.  First, look up its
1974   // TreePattern record.
1975   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1976 
1977   // Verify that we are passing the right number of operands.
1978   if (Frag->getNumArgs() != Children.size()) {
1979     TP.error("'" + Op->getName() + "' fragment requires " +
1980              Twine(Frag->getNumArgs()) + " operands!");
1981     return;
1982   }
1983 
1984   TreePredicateFn PredFn(Frag);
1985   unsigned Scope = 0;
1986   if (TreePredicateFn(Frag).usesOperands())
1987     Scope = TP.getDAGPatterns().allocateScope();
1988 
1989   // Compute the map of formal to actual arguments.
1990   std::map<std::string, TreePatternNodePtr> ArgMap;
1991   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
1992     TreePatternNodePtr Child = getChildShared(i);
1993     if (Scope != 0) {
1994       Child = Child->clone();
1995       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
1996     }
1997     ArgMap[Frag->getArgName(i)] = Child;
1998   }
1999 
2000   // Loop over all fragment alternatives.
2001   for (auto Alternative : Frag->getTrees()) {
2002     TreePatternNodePtr FragTree = Alternative->clone();
2003 
2004     if (!PredFn.isAlwaysTrue())
2005       FragTree->addPredicateCall(PredFn, Scope);
2006 
2007     // Resolve formal arguments to their actual value.
2008     if (Frag->getNumArgs())
2009       FragTree->SubstituteFormalArguments(ArgMap);
2010 
2011     // Transfer types.  Note that the resolved alternative may have fewer
2012     // (but not more) results than the PatFrags node.
2013     FragTree->setName(getName());
2014     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2015       FragTree->UpdateNodeType(i, getExtType(i), TP);
2016 
2017     // Transfer in the old predicates.
2018     for (const TreePredicateCall &Pred : getPredicateCalls())
2019       FragTree->addPredicateCall(Pred);
2020 
2021     // The fragment we inlined could have recursive inlining that is needed.  See
2022     // if there are any pattern fragments in it and inline them as needed.
2023     FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2024   }
2025 }
2026 
2027 /// getImplicitType - Check to see if the specified record has an implicit
2028 /// type which should be applied to it.  This will infer the type of register
2029 /// references from the register file information, for example.
2030 ///
2031 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2032 /// the F8RC register class argument in:
2033 ///
2034 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2035 ///
2036 /// When Unnamed is false, return the type of a named DAG operand such as the
2037 /// GPR:$src operand above.
2038 ///
2039 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2040                                        bool NotRegisters,
2041                                        bool Unnamed,
2042                                        TreePattern &TP) {
2043   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2044 
2045   // Check to see if this is a register operand.
2046   if (R->isSubClassOf("RegisterOperand")) {
2047     assert(ResNo == 0 && "Regoperand ref only has one result!");
2048     if (NotRegisters)
2049       return TypeSetByHwMode(); // Unknown.
2050     Record *RegClass = R->getValueAsDef("RegClass");
2051     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2052     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2053   }
2054 
2055   // Check to see if this is a register or a register class.
2056   if (R->isSubClassOf("RegisterClass")) {
2057     assert(ResNo == 0 && "Regclass ref only has one result!");
2058     // An unnamed register class represents itself as an i32 immediate, for
2059     // example on a COPY_TO_REGCLASS instruction.
2060     if (Unnamed)
2061       return TypeSetByHwMode(MVT::i32);
2062 
2063     // In a named operand, the register class provides the possible set of
2064     // types.
2065     if (NotRegisters)
2066       return TypeSetByHwMode(); // Unknown.
2067     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2068     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2069   }
2070 
2071   if (R->isSubClassOf("PatFrags")) {
2072     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2073     // Pattern fragment types will be resolved when they are inlined.
2074     return TypeSetByHwMode(); // Unknown.
2075   }
2076 
2077   if (R->isSubClassOf("Register")) {
2078     assert(ResNo == 0 && "Registers only produce one result!");
2079     if (NotRegisters)
2080       return TypeSetByHwMode(); // Unknown.
2081     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2082     return TypeSetByHwMode(T.getRegisterVTs(R));
2083   }
2084 
2085   if (R->isSubClassOf("SubRegIndex")) {
2086     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2087     return TypeSetByHwMode(MVT::i32);
2088   }
2089 
2090   if (R->isSubClassOf("ValueType")) {
2091     assert(ResNo == 0 && "This node only has one result!");
2092     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2093     //
2094     //   (sext_inreg GPR:$src, i16)
2095     //                         ~~~
2096     if (Unnamed)
2097       return TypeSetByHwMode(MVT::Other);
2098     // With a name, the ValueType simply provides the type of the named
2099     // variable.
2100     //
2101     //   (sext_inreg i32:$src, i16)
2102     //               ~~~~~~~~
2103     if (NotRegisters)
2104       return TypeSetByHwMode(); // Unknown.
2105     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2106     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2107   }
2108 
2109   if (R->isSubClassOf("CondCode")) {
2110     assert(ResNo == 0 && "This node only has one result!");
2111     // Using a CondCodeSDNode.
2112     return TypeSetByHwMode(MVT::Other);
2113   }
2114 
2115   if (R->isSubClassOf("ComplexPattern")) {
2116     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2117     if (NotRegisters)
2118       return TypeSetByHwMode(); // Unknown.
2119     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2120   }
2121   if (R->isSubClassOf("PointerLikeRegClass")) {
2122     assert(ResNo == 0 && "Regclass can only have one result!");
2123     TypeSetByHwMode VTS(MVT::iPTR);
2124     TP.getInfer().expandOverloads(VTS);
2125     return VTS;
2126   }
2127 
2128   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2129       R->getName() == "zero_reg") {
2130     // Placeholder.
2131     return TypeSetByHwMode(); // Unknown.
2132   }
2133 
2134   if (R->isSubClassOf("Operand")) {
2135     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2136     Record *T = R->getValueAsDef("Type");
2137     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2138   }
2139 
2140   TP.error("Unknown node flavor used in pattern: " + R->getName());
2141   return TypeSetByHwMode(MVT::Other);
2142 }
2143 
2144 
2145 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2146 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2147 const CodeGenIntrinsic *TreePatternNode::
2148 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2149   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2150       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2151       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2152     return nullptr;
2153 
2154   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2155   return &CDP.getIntrinsicInfo(IID);
2156 }
2157 
2158 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2159 /// return the ComplexPattern information, otherwise return null.
2160 const ComplexPattern *
2161 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2162   Record *Rec;
2163   if (isLeaf()) {
2164     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2165     if (!DI)
2166       return nullptr;
2167     Rec = DI->getDef();
2168   } else
2169     Rec = getOperator();
2170 
2171   if (!Rec->isSubClassOf("ComplexPattern"))
2172     return nullptr;
2173   return &CGP.getComplexPattern(Rec);
2174 }
2175 
2176 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2177   // A ComplexPattern specifically declares how many results it fills in.
2178   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2179     return CP->getNumOperands();
2180 
2181   // If MIOperandInfo is specified, that gives the count.
2182   if (isLeaf()) {
2183     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2184     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2185       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2186       if (MIOps->getNumArgs())
2187         return MIOps->getNumArgs();
2188     }
2189   }
2190 
2191   // Otherwise there is just one result.
2192   return 1;
2193 }
2194 
2195 /// NodeHasProperty - Return true if this node has the specified property.
2196 bool TreePatternNode::NodeHasProperty(SDNP Property,
2197                                       const CodeGenDAGPatterns &CGP) const {
2198   if (isLeaf()) {
2199     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2200       return CP->hasProperty(Property);
2201 
2202     return false;
2203   }
2204 
2205   if (Property != SDNPHasChain) {
2206     // The chain proprety is already present on the different intrinsic node
2207     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2208     // on the intrinsic. Anything else is specific to the individual intrinsic.
2209     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2210       return Int->hasProperty(Property);
2211   }
2212 
2213   if (!Operator->isSubClassOf("SDPatternOperator"))
2214     return false;
2215 
2216   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2217 }
2218 
2219 
2220 
2221 
2222 /// TreeHasProperty - Return true if any node in this tree has the specified
2223 /// property.
2224 bool TreePatternNode::TreeHasProperty(SDNP Property,
2225                                       const CodeGenDAGPatterns &CGP) const {
2226   if (NodeHasProperty(Property, CGP))
2227     return true;
2228   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2229     if (getChild(i)->TreeHasProperty(Property, CGP))
2230       return true;
2231   return false;
2232 }
2233 
2234 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2235 /// commutative intrinsic.
2236 bool
2237 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2238   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2239     return Int->isCommutative;
2240   return false;
2241 }
2242 
2243 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2244   if (!N->isLeaf())
2245     return N->getOperator()->isSubClassOf(Class);
2246 
2247   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2248   if (DI && DI->getDef()->isSubClassOf(Class))
2249     return true;
2250 
2251   return false;
2252 }
2253 
2254 static void emitTooManyOperandsError(TreePattern &TP,
2255                                      StringRef InstName,
2256                                      unsigned Expected,
2257                                      unsigned Actual) {
2258   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2259            " operands but expected only " + Twine(Expected) + "!");
2260 }
2261 
2262 static void emitTooFewOperandsError(TreePattern &TP,
2263                                     StringRef InstName,
2264                                     unsigned Actual) {
2265   TP.error("Instruction '" + InstName +
2266            "' expects more than the provided " + Twine(Actual) + " operands!");
2267 }
2268 
2269 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2270 /// this node and its children in the tree.  This returns true if it makes a
2271 /// change, false otherwise.  If a type contradiction is found, flag an error.
2272 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2273   if (TP.hasError())
2274     return false;
2275 
2276   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2277   if (isLeaf()) {
2278     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2279       // If it's a regclass or something else known, include the type.
2280       bool MadeChange = false;
2281       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2282         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2283                                                         NotRegisters,
2284                                                         !hasName(), TP), TP);
2285       return MadeChange;
2286     }
2287 
2288     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2289       assert(Types.size() == 1 && "Invalid IntInit");
2290 
2291       // Int inits are always integers. :)
2292       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2293 
2294       if (!TP.getInfer().isConcrete(Types[0], false))
2295         return MadeChange;
2296 
2297       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2298       for (auto &P : VVT) {
2299         MVT::SimpleValueType VT = P.second.SimpleTy;
2300         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2301           continue;
2302         unsigned Size = MVT(VT).getSizeInBits();
2303         // Make sure that the value is representable for this type.
2304         if (Size >= 32)
2305           continue;
2306         // Check that the value doesn't use more bits than we have. It must
2307         // either be a sign- or zero-extended equivalent of the original.
2308         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2309         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2310             SignBitAndAbove == 1)
2311           continue;
2312 
2313         TP.error("Integer value '" + Twine(II->getValue()) +
2314                  "' is out of range for type '" + getEnumName(VT) + "'!");
2315         break;
2316       }
2317       return MadeChange;
2318     }
2319 
2320     return false;
2321   }
2322 
2323   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2324     bool MadeChange = false;
2325 
2326     // Apply the result type to the node.
2327     unsigned NumRetVTs = Int->IS.RetVTs.size();
2328     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2329 
2330     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2331       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2332 
2333     if (getNumChildren() != NumParamVTs + 1) {
2334       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2335                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2336       return false;
2337     }
2338 
2339     // Apply type info to the intrinsic ID.
2340     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2341 
2342     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2343       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2344 
2345       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2346       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2347       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2348     }
2349     return MadeChange;
2350   }
2351 
2352   if (getOperator()->isSubClassOf("SDNode")) {
2353     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2354 
2355     // Check that the number of operands is sane.  Negative operands -> varargs.
2356     if (NI.getNumOperands() >= 0 &&
2357         getNumChildren() != (unsigned)NI.getNumOperands()) {
2358       TP.error(getOperator()->getName() + " node requires exactly " +
2359                Twine(NI.getNumOperands()) + " operands!");
2360       return false;
2361     }
2362 
2363     bool MadeChange = false;
2364     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2365       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2366     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2367     return MadeChange;
2368   }
2369 
2370   if (getOperator()->isSubClassOf("Instruction")) {
2371     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2372     CodeGenInstruction &InstInfo =
2373       CDP.getTargetInfo().getInstruction(getOperator());
2374 
2375     bool MadeChange = false;
2376 
2377     // Apply the result types to the node, these come from the things in the
2378     // (outs) list of the instruction.
2379     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2380                                         Inst.getNumResults());
2381     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2382       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2383 
2384     // If the instruction has implicit defs, we apply the first one as a result.
2385     // FIXME: This sucks, it should apply all implicit defs.
2386     if (!InstInfo.ImplicitDefs.empty()) {
2387       unsigned ResNo = NumResultsToAdd;
2388 
2389       // FIXME: Generalize to multiple possible types and multiple possible
2390       // ImplicitDefs.
2391       MVT::SimpleValueType VT =
2392         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2393 
2394       if (VT != MVT::Other)
2395         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2396     }
2397 
2398     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2399     // be the same.
2400     if (getOperator()->getName() == "INSERT_SUBREG") {
2401       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2402       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2403       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2404     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2405       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2406       // variadic.
2407 
2408       unsigned NChild = getNumChildren();
2409       if (NChild < 3) {
2410         TP.error("REG_SEQUENCE requires at least 3 operands!");
2411         return false;
2412       }
2413 
2414       if (NChild % 2 == 0) {
2415         TP.error("REG_SEQUENCE requires an odd number of operands!");
2416         return false;
2417       }
2418 
2419       if (!isOperandClass(getChild(0), "RegisterClass")) {
2420         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2421         return false;
2422       }
2423 
2424       for (unsigned I = 1; I < NChild; I += 2) {
2425         TreePatternNode *SubIdxChild = getChild(I + 1);
2426         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2427           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2428                    Twine(I + 1) + "!");
2429           return false;
2430         }
2431       }
2432     }
2433 
2434     unsigned ChildNo = 0;
2435     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2436       Record *OperandNode = Inst.getOperand(i);
2437 
2438       // If the instruction expects a predicate or optional def operand, we
2439       // codegen this by setting the operand to it's default value if it has a
2440       // non-empty DefaultOps field.
2441       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
2442           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
2443         continue;
2444 
2445       // Verify that we didn't run out of provided operands.
2446       if (ChildNo >= getNumChildren()) {
2447         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2448         return false;
2449       }
2450 
2451       TreePatternNode *Child = getChild(ChildNo++);
2452       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2453 
2454       // If the operand has sub-operands, they may be provided by distinct
2455       // child patterns, so attempt to match each sub-operand separately.
2456       if (OperandNode->isSubClassOf("Operand")) {
2457         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2458         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2459           // But don't do that if the whole operand is being provided by
2460           // a single ComplexPattern-related Operand.
2461 
2462           if (Child->getNumMIResults(CDP) < NumArgs) {
2463             // Match first sub-operand against the child we already have.
2464             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2465             MadeChange |=
2466               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2467 
2468             // And the remaining sub-operands against subsequent children.
2469             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2470               if (ChildNo >= getNumChildren()) {
2471                 emitTooFewOperandsError(TP, getOperator()->getName(),
2472                                         getNumChildren());
2473                 return false;
2474               }
2475               Child = getChild(ChildNo++);
2476 
2477               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2478               MadeChange |=
2479                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2480             }
2481             continue;
2482           }
2483         }
2484       }
2485 
2486       // If we didn't match by pieces above, attempt to match the whole
2487       // operand now.
2488       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2489     }
2490 
2491     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2492       emitTooManyOperandsError(TP, getOperator()->getName(),
2493                                ChildNo, getNumChildren());
2494       return false;
2495     }
2496 
2497     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2498       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2499     return MadeChange;
2500   }
2501 
2502   if (getOperator()->isSubClassOf("ComplexPattern")) {
2503     bool MadeChange = false;
2504 
2505     for (unsigned i = 0; i < getNumChildren(); ++i)
2506       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2507 
2508     return MadeChange;
2509   }
2510 
2511   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2512 
2513   // Node transforms always take one operand.
2514   if (getNumChildren() != 1) {
2515     TP.error("Node transform '" + getOperator()->getName() +
2516              "' requires one operand!");
2517     return false;
2518   }
2519 
2520   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2521   return MadeChange;
2522 }
2523 
2524 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2525 /// RHS of a commutative operation, not the on LHS.
2526 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2527   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2528     return true;
2529   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2530     return true;
2531   return false;
2532 }
2533 
2534 
2535 /// canPatternMatch - If it is impossible for this pattern to match on this
2536 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2537 /// used as a sanity check for .td files (to prevent people from writing stuff
2538 /// that can never possibly work), and to prevent the pattern permuter from
2539 /// generating stuff that is useless.
2540 bool TreePatternNode::canPatternMatch(std::string &Reason,
2541                                       const CodeGenDAGPatterns &CDP) {
2542   if (isLeaf()) return true;
2543 
2544   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2545     if (!getChild(i)->canPatternMatch(Reason, CDP))
2546       return false;
2547 
2548   // If this is an intrinsic, handle cases that would make it not match.  For
2549   // example, if an operand is required to be an immediate.
2550   if (getOperator()->isSubClassOf("Intrinsic")) {
2551     // TODO:
2552     return true;
2553   }
2554 
2555   if (getOperator()->isSubClassOf("ComplexPattern"))
2556     return true;
2557 
2558   // If this node is a commutative operator, check that the LHS isn't an
2559   // immediate.
2560   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2561   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2562   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2563     // Scan all of the operands of the node and make sure that only the last one
2564     // is a constant node, unless the RHS also is.
2565     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2566       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2567       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2568         if (OnlyOnRHSOfCommutative(getChild(i))) {
2569           Reason="Immediate value must be on the RHS of commutative operators!";
2570           return false;
2571         }
2572     }
2573   }
2574 
2575   return true;
2576 }
2577 
2578 //===----------------------------------------------------------------------===//
2579 // TreePattern implementation
2580 //
2581 
2582 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2583                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2584                          isInputPattern(isInput), HasError(false),
2585                          Infer(*this) {
2586   for (Init *I : RawPat->getValues())
2587     Trees.push_back(ParseTreePattern(I, ""));
2588 }
2589 
2590 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2591                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2592                          isInputPattern(isInput), HasError(false),
2593                          Infer(*this) {
2594   Trees.push_back(ParseTreePattern(Pat, ""));
2595 }
2596 
2597 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2598                          CodeGenDAGPatterns &cdp)
2599     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2600       Infer(*this) {
2601   Trees.push_back(Pat);
2602 }
2603 
2604 void TreePattern::error(const Twine &Msg) {
2605   if (HasError)
2606     return;
2607   dump();
2608   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2609   HasError = true;
2610 }
2611 
2612 void TreePattern::ComputeNamedNodes() {
2613   for (TreePatternNodePtr &Tree : Trees)
2614     ComputeNamedNodes(Tree.get());
2615 }
2616 
2617 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2618   if (!N->getName().empty())
2619     NamedNodes[N->getName()].push_back(N);
2620 
2621   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2622     ComputeNamedNodes(N->getChild(i));
2623 }
2624 
2625 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2626                                                  StringRef OpName) {
2627   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2628     Record *R = DI->getDef();
2629 
2630     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2631     // TreePatternNode of its own.  For example:
2632     ///   (foo GPR, imm) -> (foo GPR, (imm))
2633     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2634       return ParseTreePattern(
2635         DagInit::get(DI, nullptr,
2636                      std::vector<std::pair<Init*, StringInit*> >()),
2637         OpName);
2638 
2639     // Input argument?
2640     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2641     if (R->getName() == "node" && !OpName.empty()) {
2642       if (OpName.empty())
2643         error("'node' argument requires a name to match with operand list");
2644       Args.push_back(OpName);
2645     }
2646 
2647     Res->setName(OpName);
2648     return Res;
2649   }
2650 
2651   // ?:$name or just $name.
2652   if (isa<UnsetInit>(TheInit)) {
2653     if (OpName.empty())
2654       error("'?' argument requires a name to match with operand list");
2655     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2656     Args.push_back(OpName);
2657     Res->setName(OpName);
2658     return Res;
2659   }
2660 
2661   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2662     if (!OpName.empty())
2663       error("Constant int or bit argument should not have a name!");
2664     if (isa<BitInit>(TheInit))
2665       TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2666     return std::make_shared<TreePatternNode>(TheInit, 1);
2667   }
2668 
2669   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2670     // Turn this into an IntInit.
2671     Init *II = BI->convertInitializerTo(IntRecTy::get());
2672     if (!II || !isa<IntInit>(II))
2673       error("Bits value must be constants!");
2674     return ParseTreePattern(II, OpName);
2675   }
2676 
2677   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2678   if (!Dag) {
2679     TheInit->print(errs());
2680     error("Pattern has unexpected init kind!");
2681   }
2682   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2683   if (!OpDef) error("Pattern has unexpected operator type!");
2684   Record *Operator = OpDef->getDef();
2685 
2686   if (Operator->isSubClassOf("ValueType")) {
2687     // If the operator is a ValueType, then this must be "type cast" of a leaf
2688     // node.
2689     if (Dag->getNumArgs() != 1)
2690       error("Type cast only takes one operand!");
2691 
2692     TreePatternNodePtr New =
2693         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2694 
2695     // Apply the type cast.
2696     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2697     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2698     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2699 
2700     if (!OpName.empty())
2701       error("ValueType cast should not have a name!");
2702     return New;
2703   }
2704 
2705   // Verify that this is something that makes sense for an operator.
2706   if (!Operator->isSubClassOf("PatFrags") &&
2707       !Operator->isSubClassOf("SDNode") &&
2708       !Operator->isSubClassOf("Instruction") &&
2709       !Operator->isSubClassOf("SDNodeXForm") &&
2710       !Operator->isSubClassOf("Intrinsic") &&
2711       !Operator->isSubClassOf("ComplexPattern") &&
2712       Operator->getName() != "set" &&
2713       Operator->getName() != "implicit")
2714     error("Unrecognized node '" + Operator->getName() + "'!");
2715 
2716   //  Check to see if this is something that is illegal in an input pattern.
2717   if (isInputPattern) {
2718     if (Operator->isSubClassOf("Instruction") ||
2719         Operator->isSubClassOf("SDNodeXForm"))
2720       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2721   } else {
2722     if (Operator->isSubClassOf("Intrinsic"))
2723       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2724 
2725     if (Operator->isSubClassOf("SDNode") &&
2726         Operator->getName() != "imm" &&
2727         Operator->getName() != "fpimm" &&
2728         Operator->getName() != "tglobaltlsaddr" &&
2729         Operator->getName() != "tconstpool" &&
2730         Operator->getName() != "tjumptable" &&
2731         Operator->getName() != "tframeindex" &&
2732         Operator->getName() != "texternalsym" &&
2733         Operator->getName() != "tblockaddress" &&
2734         Operator->getName() != "tglobaladdr" &&
2735         Operator->getName() != "bb" &&
2736         Operator->getName() != "vt" &&
2737         Operator->getName() != "mcsym")
2738       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2739   }
2740 
2741   std::vector<TreePatternNodePtr> Children;
2742 
2743   // Parse all the operands.
2744   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2745     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2746 
2747   // Get the actual number of results before Operator is converted to an intrinsic
2748   // node (which is hard-coded to have either zero or one result).
2749   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2750 
2751   // If the operator is an intrinsic, then this is just syntactic sugar for
2752   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2753   // convert the intrinsic name to a number.
2754   if (Operator->isSubClassOf("Intrinsic")) {
2755     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2756     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2757 
2758     // If this intrinsic returns void, it must have side-effects and thus a
2759     // chain.
2760     if (Int.IS.RetVTs.empty())
2761       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2762     else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2763       // Has side-effects, requires chain.
2764       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2765     else // Otherwise, no chain.
2766       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2767 
2768     Children.insert(Children.begin(),
2769                     std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2770   }
2771 
2772   if (Operator->isSubClassOf("ComplexPattern")) {
2773     for (unsigned i = 0; i < Children.size(); ++i) {
2774       TreePatternNodePtr Child = Children[i];
2775 
2776       if (Child->getName().empty())
2777         error("All arguments to a ComplexPattern must be named");
2778 
2779       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2780       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2781       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2782       auto OperandId = std::make_pair(Operator, i);
2783       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2784       if (PrevOp != ComplexPatternOperands.end()) {
2785         if (PrevOp->getValue() != OperandId)
2786           error("All ComplexPattern operands must appear consistently: "
2787                 "in the same order in just one ComplexPattern instance.");
2788       } else
2789         ComplexPatternOperands[Child->getName()] = OperandId;
2790     }
2791   }
2792 
2793   TreePatternNodePtr Result =
2794       std::make_shared<TreePatternNode>(Operator, std::move(Children),
2795                                         NumResults);
2796   Result->setName(OpName);
2797 
2798   if (Dag->getName()) {
2799     assert(Result->getName().empty());
2800     Result->setName(Dag->getNameStr());
2801   }
2802   return Result;
2803 }
2804 
2805 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2806 /// will never match in favor of something obvious that will.  This is here
2807 /// strictly as a convenience to target authors because it allows them to write
2808 /// more type generic things and have useless type casts fold away.
2809 ///
2810 /// This returns true if any change is made.
2811 static bool SimplifyTree(TreePatternNodePtr &N) {
2812   if (N->isLeaf())
2813     return false;
2814 
2815   // If we have a bitconvert with a resolved type and if the source and
2816   // destination types are the same, then the bitconvert is useless, remove it.
2817   if (N->getOperator()->getName() == "bitconvert" &&
2818       N->getExtType(0).isValueTypeByHwMode(false) &&
2819       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2820       N->getName().empty()) {
2821     N = N->getChildShared(0);
2822     SimplifyTree(N);
2823     return true;
2824   }
2825 
2826   // Walk all children.
2827   bool MadeChange = false;
2828   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2829     TreePatternNodePtr Child = N->getChildShared(i);
2830     MadeChange |= SimplifyTree(Child);
2831     N->setChild(i, std::move(Child));
2832   }
2833   return MadeChange;
2834 }
2835 
2836 
2837 
2838 /// InferAllTypes - Infer/propagate as many types throughout the expression
2839 /// patterns as possible.  Return true if all types are inferred, false
2840 /// otherwise.  Flags an error if a type contradiction is found.
2841 bool TreePattern::
2842 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2843   if (NamedNodes.empty())
2844     ComputeNamedNodes();
2845 
2846   bool MadeChange = true;
2847   while (MadeChange) {
2848     MadeChange = false;
2849     for (TreePatternNodePtr &Tree : Trees) {
2850       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2851       MadeChange |= SimplifyTree(Tree);
2852     }
2853 
2854     // If there are constraints on our named nodes, apply them.
2855     for (auto &Entry : NamedNodes) {
2856       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2857 
2858       // If we have input named node types, propagate their types to the named
2859       // values here.
2860       if (InNamedTypes) {
2861         if (!InNamedTypes->count(Entry.getKey())) {
2862           error("Node '" + std::string(Entry.getKey()) +
2863                 "' in output pattern but not input pattern");
2864           return true;
2865         }
2866 
2867         const SmallVectorImpl<TreePatternNode*> &InNodes =
2868           InNamedTypes->find(Entry.getKey())->second;
2869 
2870         // The input types should be fully resolved by now.
2871         for (TreePatternNode *Node : Nodes) {
2872           // If this node is a register class, and it is the root of the pattern
2873           // then we're mapping something onto an input register.  We allow
2874           // changing the type of the input register in this case.  This allows
2875           // us to match things like:
2876           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2877           if (Node == Trees[0].get() && Node->isLeaf()) {
2878             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2879             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2880                        DI->getDef()->isSubClassOf("RegisterOperand")))
2881               continue;
2882           }
2883 
2884           assert(Node->getNumTypes() == 1 &&
2885                  InNodes[0]->getNumTypes() == 1 &&
2886                  "FIXME: cannot name multiple result nodes yet");
2887           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2888                                              *this);
2889         }
2890       }
2891 
2892       // If there are multiple nodes with the same name, they must all have the
2893       // same type.
2894       if (Entry.second.size() > 1) {
2895         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2896           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2897           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2898                  "FIXME: cannot name multiple result nodes yet");
2899 
2900           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2901           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2902         }
2903       }
2904     }
2905   }
2906 
2907   bool HasUnresolvedTypes = false;
2908   for (const TreePatternNodePtr &Tree : Trees)
2909     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2910   return !HasUnresolvedTypes;
2911 }
2912 
2913 void TreePattern::print(raw_ostream &OS) const {
2914   OS << getRecord()->getName();
2915   if (!Args.empty()) {
2916     OS << "(" << Args[0];
2917     for (unsigned i = 1, e = Args.size(); i != e; ++i)
2918       OS << ", " << Args[i];
2919     OS << ")";
2920   }
2921   OS << ": ";
2922 
2923   if (Trees.size() > 1)
2924     OS << "[\n";
2925   for (const TreePatternNodePtr &Tree : Trees) {
2926     OS << "\t";
2927     Tree->print(OS);
2928     OS << "\n";
2929   }
2930 
2931   if (Trees.size() > 1)
2932     OS << "]\n";
2933 }
2934 
2935 void TreePattern::dump() const { print(errs()); }
2936 
2937 //===----------------------------------------------------------------------===//
2938 // CodeGenDAGPatterns implementation
2939 //
2940 
2941 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
2942                                        PatternRewriterFn PatternRewriter)
2943     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
2944       PatternRewriter(PatternRewriter) {
2945 
2946   Intrinsics = CodeGenIntrinsicTable(Records, false);
2947   TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
2948   ParseNodeInfo();
2949   ParseNodeTransforms();
2950   ParseComplexPatterns();
2951   ParsePatternFragments();
2952   ParseDefaultOperands();
2953   ParseInstructions();
2954   ParsePatternFragments(/*OutFrags*/true);
2955   ParsePatterns();
2956 
2957   // Break patterns with parameterized types into a series of patterns,
2958   // where each one has a fixed type and is predicated on the conditions
2959   // of the associated HW mode.
2960   ExpandHwModeBasedTypes();
2961 
2962   // Generate variants.  For example, commutative patterns can match
2963   // multiple ways.  Add them to PatternsToMatch as well.
2964   GenerateVariants();
2965 
2966   // Infer instruction flags.  For example, we can detect loads,
2967   // stores, and side effects in many cases by examining an
2968   // instruction's pattern.
2969   InferInstructionFlags();
2970 
2971   // Verify that instruction flags match the patterns.
2972   VerifyInstructionFlags();
2973 }
2974 
2975 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2976   Record *N = Records.getDef(Name);
2977   if (!N || !N->isSubClassOf("SDNode"))
2978     PrintFatalError("Error getting SDNode '" + Name + "'!");
2979 
2980   return N;
2981 }
2982 
2983 // Parse all of the SDNode definitions for the target, populating SDNodes.
2984 void CodeGenDAGPatterns::ParseNodeInfo() {
2985   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2986   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
2987 
2988   while (!Nodes.empty()) {
2989     Record *R = Nodes.back();
2990     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
2991     Nodes.pop_back();
2992   }
2993 
2994   // Get the builtin intrinsic nodes.
2995   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2996   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2997   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2998 }
2999 
3000 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3001 /// map, and emit them to the file as functions.
3002 void CodeGenDAGPatterns::ParseNodeTransforms() {
3003   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3004   while (!Xforms.empty()) {
3005     Record *XFormNode = Xforms.back();
3006     Record *SDNode = XFormNode->getValueAsDef("Opcode");
3007     StringRef Code = XFormNode->getValueAsString("XFormFunction");
3008     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
3009 
3010     Xforms.pop_back();
3011   }
3012 }
3013 
3014 void CodeGenDAGPatterns::ParseComplexPatterns() {
3015   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3016   while (!AMs.empty()) {
3017     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3018     AMs.pop_back();
3019   }
3020 }
3021 
3022 
3023 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3024 /// file, building up the PatternFragments map.  After we've collected them all,
3025 /// inline fragments together as necessary, so that there are no references left
3026 /// inside a pattern fragment to a pattern fragment.
3027 ///
3028 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3029   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3030 
3031   // First step, parse all of the fragments.
3032   for (Record *Frag : Fragments) {
3033     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3034       continue;
3035 
3036     ListInit *LI = Frag->getValueAsListInit("Fragments");
3037     TreePattern *P =
3038         (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
3039              Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3040              *this)).get();
3041 
3042     // Validate the argument list, converting it to set, to discard duplicates.
3043     std::vector<std::string> &Args = P->getArgList();
3044     // Copy the args so we can take StringRefs to them.
3045     auto ArgsCopy = Args;
3046     SmallDenseSet<StringRef, 4> OperandsSet;
3047     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3048 
3049     if (OperandsSet.count(""))
3050       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3051 
3052     // Parse the operands list.
3053     DagInit *OpsList = Frag->getValueAsDag("Operands");
3054     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3055     // Special cases: ops == outs == ins. Different names are used to
3056     // improve readability.
3057     if (!OpsOp ||
3058         (OpsOp->getDef()->getName() != "ops" &&
3059          OpsOp->getDef()->getName() != "outs" &&
3060          OpsOp->getDef()->getName() != "ins"))
3061       P->error("Operands list should start with '(ops ... '!");
3062 
3063     // Copy over the arguments.
3064     Args.clear();
3065     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3066       if (!isa<DefInit>(OpsList->getArg(j)) ||
3067           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3068         P->error("Operands list should all be 'node' values.");
3069       if (!OpsList->getArgName(j))
3070         P->error("Operands list should have names for each operand!");
3071       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3072       if (!OperandsSet.count(ArgNameStr))
3073         P->error("'" + ArgNameStr +
3074                  "' does not occur in pattern or was multiply specified!");
3075       OperandsSet.erase(ArgNameStr);
3076       Args.push_back(ArgNameStr);
3077     }
3078 
3079     if (!OperandsSet.empty())
3080       P->error("Operands list does not contain an entry for operand '" +
3081                *OperandsSet.begin() + "'!");
3082 
3083     // If there is a node transformation corresponding to this, keep track of
3084     // it.
3085     Record *Transform = Frag->getValueAsDef("OperandTransform");
3086     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3087       for (auto T : P->getTrees())
3088         T->setTransformFn(Transform);
3089   }
3090 
3091   // Now that we've parsed all of the tree fragments, do a closure on them so
3092   // that there are not references to PatFrags left inside of them.
3093   for (Record *Frag : Fragments) {
3094     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3095       continue;
3096 
3097     TreePattern &ThePat = *PatternFragments[Frag];
3098     ThePat.InlinePatternFragments();
3099 
3100     // Infer as many types as possible.  Don't worry about it if we don't infer
3101     // all of them, some may depend on the inputs of the pattern.  Also, don't
3102     // validate type sets; validation may cause spurious failures e.g. if a
3103     // fragment needs floating-point types but the current target does not have
3104     // any (this is only an error if that fragment is ever used!).
3105     {
3106       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3107       ThePat.InferAllTypes();
3108       ThePat.resetError();
3109     }
3110 
3111     // If debugging, print out the pattern fragment result.
3112     LLVM_DEBUG(ThePat.dump());
3113   }
3114 }
3115 
3116 void CodeGenDAGPatterns::ParseDefaultOperands() {
3117   std::vector<Record*> DefaultOps;
3118   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3119 
3120   // Find some SDNode.
3121   assert(!SDNodes.empty() && "No SDNodes parsed?");
3122   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3123 
3124   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3125     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3126 
3127     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3128     // SomeSDnode so that we can parse this.
3129     std::vector<std::pair<Init*, StringInit*> > Ops;
3130     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3131       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3132                                    DefaultInfo->getArgName(op)));
3133     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3134 
3135     // Create a TreePattern to parse this.
3136     TreePattern P(DefaultOps[i], DI, false, *this);
3137     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3138 
3139     // Copy the operands over into a DAGDefaultOperand.
3140     DAGDefaultOperand DefaultOpInfo;
3141 
3142     const TreePatternNodePtr &T = P.getTree(0);
3143     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3144       TreePatternNodePtr TPN = T->getChildShared(op);
3145       while (TPN->ApplyTypeConstraints(P, false))
3146         /* Resolve all types */;
3147 
3148       if (TPN->ContainsUnresolvedType(P)) {
3149         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3150                         DefaultOps[i]->getName() +
3151                         "' doesn't have a concrete type!");
3152       }
3153       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3154     }
3155 
3156     // Insert it into the DefaultOperands map so we can find it later.
3157     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3158   }
3159 }
3160 
3161 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3162 /// instruction input.  Return true if this is a real use.
3163 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3164                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3165   // No name -> not interesting.
3166   if (Pat->getName().empty()) {
3167     if (Pat->isLeaf()) {
3168       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3169       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3170                  DI->getDef()->isSubClassOf("RegisterOperand")))
3171         I.error("Input " + DI->getDef()->getName() + " must be named!");
3172     }
3173     return false;
3174   }
3175 
3176   Record *Rec;
3177   if (Pat->isLeaf()) {
3178     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3179     if (!DI)
3180       I.error("Input $" + Pat->getName() + " must be an identifier!");
3181     Rec = DI->getDef();
3182   } else {
3183     Rec = Pat->getOperator();
3184   }
3185 
3186   // SRCVALUE nodes are ignored.
3187   if (Rec->getName() == "srcvalue")
3188     return false;
3189 
3190   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3191   if (!Slot) {
3192     Slot = Pat;
3193     return true;
3194   }
3195   Record *SlotRec;
3196   if (Slot->isLeaf()) {
3197     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3198   } else {
3199     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3200     SlotRec = Slot->getOperator();
3201   }
3202 
3203   // Ensure that the inputs agree if we've already seen this input.
3204   if (Rec != SlotRec)
3205     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3206   // Ensure that the types can agree as well.
3207   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3208   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3209   if (Slot->getExtTypes() != Pat->getExtTypes())
3210     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3211   return true;
3212 }
3213 
3214 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3215 /// part of "I", the instruction), computing the set of inputs and outputs of
3216 /// the pattern.  Report errors if we see anything naughty.
3217 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3218     TreePattern &I, TreePatternNodePtr Pat,
3219     std::map<std::string, TreePatternNodePtr> &InstInputs,
3220     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3221         &InstResults,
3222     std::vector<Record *> &InstImpResults) {
3223 
3224   // The instruction pattern still has unresolved fragments.  For *named*
3225   // nodes we must resolve those here.  This may not result in multiple
3226   // alternatives.
3227   if (!Pat->getName().empty()) {
3228     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3229     SrcPattern.InlinePatternFragments();
3230     SrcPattern.InferAllTypes();
3231     Pat = SrcPattern.getOnlyTree();
3232   }
3233 
3234   if (Pat->isLeaf()) {
3235     bool isUse = HandleUse(I, Pat, InstInputs);
3236     if (!isUse && Pat->getTransformFn())
3237       I.error("Cannot specify a transform function for a non-input value!");
3238     return;
3239   }
3240 
3241   if (Pat->getOperator()->getName() == "implicit") {
3242     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3243       TreePatternNode *Dest = Pat->getChild(i);
3244       if (!Dest->isLeaf())
3245         I.error("implicitly defined value should be a register!");
3246 
3247       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3248       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3249         I.error("implicitly defined value should be a register!");
3250       InstImpResults.push_back(Val->getDef());
3251     }
3252     return;
3253   }
3254 
3255   if (Pat->getOperator()->getName() != "set") {
3256     // If this is not a set, verify that the children nodes are not void typed,
3257     // and recurse.
3258     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3259       if (Pat->getChild(i)->getNumTypes() == 0)
3260         I.error("Cannot have void nodes inside of patterns!");
3261       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3262                                   InstResults, InstImpResults);
3263     }
3264 
3265     // If this is a non-leaf node with no children, treat it basically as if
3266     // it were a leaf.  This handles nodes like (imm).
3267     bool isUse = HandleUse(I, Pat, InstInputs);
3268 
3269     if (!isUse && Pat->getTransformFn())
3270       I.error("Cannot specify a transform function for a non-input value!");
3271     return;
3272   }
3273 
3274   // Otherwise, this is a set, validate and collect instruction results.
3275   if (Pat->getNumChildren() == 0)
3276     I.error("set requires operands!");
3277 
3278   if (Pat->getTransformFn())
3279     I.error("Cannot specify a transform function on a set node!");
3280 
3281   // Check the set destinations.
3282   unsigned NumDests = Pat->getNumChildren()-1;
3283   for (unsigned i = 0; i != NumDests; ++i) {
3284     TreePatternNodePtr Dest = Pat->getChildShared(i);
3285     // For set destinations we also must resolve fragments here.
3286     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3287     DestPattern.InlinePatternFragments();
3288     DestPattern.InferAllTypes();
3289     Dest = DestPattern.getOnlyTree();
3290 
3291     if (!Dest->isLeaf())
3292       I.error("set destination should be a register!");
3293 
3294     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3295     if (!Val) {
3296       I.error("set destination should be a register!");
3297       continue;
3298     }
3299 
3300     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3301         Val->getDef()->isSubClassOf("ValueType") ||
3302         Val->getDef()->isSubClassOf("RegisterOperand") ||
3303         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3304       if (Dest->getName().empty())
3305         I.error("set destination must have a name!");
3306       if (InstResults.count(Dest->getName()))
3307         I.error("cannot set '" + Dest->getName() + "' multiple times");
3308       InstResults[Dest->getName()] = Dest;
3309     } else if (Val->getDef()->isSubClassOf("Register")) {
3310       InstImpResults.push_back(Val->getDef());
3311     } else {
3312       I.error("set destination should be a register!");
3313     }
3314   }
3315 
3316   // Verify and collect info from the computation.
3317   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3318                               InstResults, InstImpResults);
3319 }
3320 
3321 //===----------------------------------------------------------------------===//
3322 // Instruction Analysis
3323 //===----------------------------------------------------------------------===//
3324 
3325 class InstAnalyzer {
3326   const CodeGenDAGPatterns &CDP;
3327 public:
3328   bool hasSideEffects;
3329   bool mayStore;
3330   bool mayLoad;
3331   bool isBitcast;
3332   bool isVariadic;
3333   bool hasChain;
3334 
3335   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3336     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3337       isBitcast(false), isVariadic(false), hasChain(false) {}
3338 
3339   void Analyze(const PatternToMatch &Pat) {
3340     const TreePatternNode *N = Pat.getSrcPattern();
3341     AnalyzeNode(N);
3342     // These properties are detected only on the root node.
3343     isBitcast = IsNodeBitcast(N);
3344   }
3345 
3346 private:
3347   bool IsNodeBitcast(const TreePatternNode *N) const {
3348     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3349       return false;
3350 
3351     if (N->isLeaf())
3352       return false;
3353     if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3354       return false;
3355 
3356     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3357     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3358       return false;
3359     return OpInfo.getEnumName() == "ISD::BITCAST";
3360   }
3361 
3362 public:
3363   void AnalyzeNode(const TreePatternNode *N) {
3364     if (N->isLeaf()) {
3365       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3366         Record *LeafRec = DI->getDef();
3367         // Handle ComplexPattern leaves.
3368         if (LeafRec->isSubClassOf("ComplexPattern")) {
3369           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3370           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3371           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3372           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3373         }
3374       }
3375       return;
3376     }
3377 
3378     // Analyze children.
3379     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3380       AnalyzeNode(N->getChild(i));
3381 
3382     // Notice properties of the node.
3383     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3384     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3385     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3386     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3387     if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3388 
3389     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3390       // If this is an intrinsic, analyze it.
3391       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3392         mayLoad = true;// These may load memory.
3393 
3394       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3395         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3396 
3397       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3398           IntInfo->hasSideEffects)
3399         // ReadWriteMem intrinsics can have other strange effects.
3400         hasSideEffects = true;
3401     }
3402   }
3403 
3404 };
3405 
3406 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3407                              const InstAnalyzer &PatInfo,
3408                              Record *PatDef) {
3409   bool Error = false;
3410 
3411   // Remember where InstInfo got its flags.
3412   if (InstInfo.hasUndefFlags())
3413       InstInfo.InferredFrom = PatDef;
3414 
3415   // Check explicitly set flags for consistency.
3416   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3417       !InstInfo.hasSideEffects_Unset) {
3418     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3419     // the pattern has no side effects. That could be useful for div/rem
3420     // instructions that may trap.
3421     if (!InstInfo.hasSideEffects) {
3422       Error = true;
3423       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3424                  Twine(InstInfo.hasSideEffects));
3425     }
3426   }
3427 
3428   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3429     Error = true;
3430     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3431                Twine(InstInfo.mayStore));
3432   }
3433 
3434   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3435     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3436     // Some targets translate immediates to loads.
3437     if (!InstInfo.mayLoad) {
3438       Error = true;
3439       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3440                  Twine(InstInfo.mayLoad));
3441     }
3442   }
3443 
3444   // Transfer inferred flags.
3445   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3446   InstInfo.mayStore |= PatInfo.mayStore;
3447   InstInfo.mayLoad |= PatInfo.mayLoad;
3448 
3449   // These flags are silently added without any verification.
3450   // FIXME: To match historical behavior of TableGen, for now add those flags
3451   // only when we're inferring from the primary instruction pattern.
3452   if (PatDef->isSubClassOf("Instruction")) {
3453     InstInfo.isBitcast |= PatInfo.isBitcast;
3454     InstInfo.hasChain |= PatInfo.hasChain;
3455     InstInfo.hasChain_Inferred = true;
3456   }
3457 
3458   // Don't infer isVariadic. This flag means something different on SDNodes and
3459   // instructions. For example, a CALL SDNode is variadic because it has the
3460   // call arguments as operands, but a CALL instruction is not variadic - it
3461   // has argument registers as implicit, not explicit uses.
3462 
3463   return Error;
3464 }
3465 
3466 /// hasNullFragReference - Return true if the DAG has any reference to the
3467 /// null_frag operator.
3468 static bool hasNullFragReference(DagInit *DI) {
3469   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3470   if (!OpDef) return false;
3471   Record *Operator = OpDef->getDef();
3472 
3473   // If this is the null fragment, return true.
3474   if (Operator->getName() == "null_frag") return true;
3475   // If any of the arguments reference the null fragment, return true.
3476   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3477     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3478     if (Arg && hasNullFragReference(Arg))
3479       return true;
3480   }
3481 
3482   return false;
3483 }
3484 
3485 /// hasNullFragReference - Return true if any DAG in the list references
3486 /// the null_frag operator.
3487 static bool hasNullFragReference(ListInit *LI) {
3488   for (Init *I : LI->getValues()) {
3489     DagInit *DI = dyn_cast<DagInit>(I);
3490     assert(DI && "non-dag in an instruction Pattern list?!");
3491     if (hasNullFragReference(DI))
3492       return true;
3493   }
3494   return false;
3495 }
3496 
3497 /// Get all the instructions in a tree.
3498 static void
3499 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3500   if (Tree->isLeaf())
3501     return;
3502   if (Tree->getOperator()->isSubClassOf("Instruction"))
3503     Instrs.push_back(Tree->getOperator());
3504   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3505     getInstructionsInTree(Tree->getChild(i), Instrs);
3506 }
3507 
3508 /// Check the class of a pattern leaf node against the instruction operand it
3509 /// represents.
3510 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3511                               Record *Leaf) {
3512   if (OI.Rec == Leaf)
3513     return true;
3514 
3515   // Allow direct value types to be used in instruction set patterns.
3516   // The type will be checked later.
3517   if (Leaf->isSubClassOf("ValueType"))
3518     return true;
3519 
3520   // Patterns can also be ComplexPattern instances.
3521   if (Leaf->isSubClassOf("ComplexPattern"))
3522     return true;
3523 
3524   return false;
3525 }
3526 
3527 void CodeGenDAGPatterns::parseInstructionPattern(
3528     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3529 
3530   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3531 
3532   // Parse the instruction.
3533   TreePattern I(CGI.TheDef, Pat, true, *this);
3534 
3535   // InstInputs - Keep track of all of the inputs of the instruction, along
3536   // with the record they are declared as.
3537   std::map<std::string, TreePatternNodePtr> InstInputs;
3538 
3539   // InstResults - Keep track of all the virtual registers that are 'set'
3540   // in the instruction, including what reg class they are.
3541   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3542       InstResults;
3543 
3544   std::vector<Record*> InstImpResults;
3545 
3546   // Verify that the top-level forms in the instruction are of void type, and
3547   // fill in the InstResults map.
3548   SmallString<32> TypesString;
3549   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3550     TypesString.clear();
3551     TreePatternNodePtr Pat = I.getTree(j);
3552     if (Pat->getNumTypes() != 0) {
3553       raw_svector_ostream OS(TypesString);
3554       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3555         if (k > 0)
3556           OS << ", ";
3557         Pat->getExtType(k).writeToStream(OS);
3558       }
3559       I.error("Top-level forms in instruction pattern should have"
3560                " void types, has types " +
3561                OS.str());
3562     }
3563 
3564     // Find inputs and outputs, and verify the structure of the uses/defs.
3565     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3566                                 InstImpResults);
3567   }
3568 
3569   // Now that we have inputs and outputs of the pattern, inspect the operands
3570   // list for the instruction.  This determines the order that operands are
3571   // added to the machine instruction the node corresponds to.
3572   unsigned NumResults = InstResults.size();
3573 
3574   // Parse the operands list from the (ops) list, validating it.
3575   assert(I.getArgList().empty() && "Args list should still be empty here!");
3576 
3577   // Check that all of the results occur first in the list.
3578   std::vector<Record*> Results;
3579   std::vector<unsigned> ResultIndices;
3580   SmallVector<TreePatternNodePtr, 2> ResNodes;
3581   for (unsigned i = 0; i != NumResults; ++i) {
3582     if (i == CGI.Operands.size()) {
3583       const std::string &OpName =
3584           std::find_if(InstResults.begin(), InstResults.end(),
3585                        [](const std::pair<std::string, TreePatternNodePtr> &P) {
3586                          return P.second;
3587                        })
3588               ->first;
3589 
3590       I.error("'" + OpName + "' set but does not appear in operand list!");
3591     }
3592 
3593     const std::string &OpName = CGI.Operands[i].Name;
3594 
3595     // Check that it exists in InstResults.
3596     auto InstResultIter = InstResults.find(OpName);
3597     if (InstResultIter == InstResults.end() || !InstResultIter->second)
3598       I.error("Operand $" + OpName + " does not exist in operand list!");
3599 
3600     TreePatternNodePtr RNode = InstResultIter->second;
3601     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3602     ResNodes.push_back(std::move(RNode));
3603     if (!R)
3604       I.error("Operand $" + OpName + " should be a set destination: all "
3605                "outputs must occur before inputs in operand list!");
3606 
3607     if (!checkOperandClass(CGI.Operands[i], R))
3608       I.error("Operand $" + OpName + " class mismatch!");
3609 
3610     // Remember the return type.
3611     Results.push_back(CGI.Operands[i].Rec);
3612 
3613     // Remember the result index.
3614     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3615 
3616     // Okay, this one checks out.
3617     InstResultIter->second = nullptr;
3618   }
3619 
3620   // Loop over the inputs next.
3621   std::vector<TreePatternNodePtr> ResultNodeOperands;
3622   std::vector<Record*> Operands;
3623   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3624     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3625     const std::string &OpName = Op.Name;
3626     if (OpName.empty())
3627       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3628 
3629     if (!InstInputs.count(OpName)) {
3630       // If this is an operand with a DefaultOps set filled in, we can ignore
3631       // this.  When we codegen it, we will do so as always executed.
3632       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3633         // Does it have a non-empty DefaultOps field?  If so, ignore this
3634         // operand.
3635         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3636           continue;
3637       }
3638       I.error("Operand $" + OpName +
3639                " does not appear in the instruction pattern");
3640     }
3641     TreePatternNodePtr InVal = InstInputs[OpName];
3642     InstInputs.erase(OpName);   // It occurred, remove from map.
3643 
3644     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3645       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3646       if (!checkOperandClass(Op, InRec))
3647         I.error("Operand $" + OpName + "'s register class disagrees"
3648                  " between the operand and pattern");
3649     }
3650     Operands.push_back(Op.Rec);
3651 
3652     // Construct the result for the dest-pattern operand list.
3653     TreePatternNodePtr OpNode = InVal->clone();
3654 
3655     // No predicate is useful on the result.
3656     OpNode->clearPredicateCalls();
3657 
3658     // Promote the xform function to be an explicit node if set.
3659     if (Record *Xform = OpNode->getTransformFn()) {
3660       OpNode->setTransformFn(nullptr);
3661       std::vector<TreePatternNodePtr> Children;
3662       Children.push_back(OpNode);
3663       OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3664                                                  OpNode->getNumTypes());
3665     }
3666 
3667     ResultNodeOperands.push_back(std::move(OpNode));
3668   }
3669 
3670   if (!InstInputs.empty())
3671     I.error("Input operand $" + InstInputs.begin()->first +
3672             " occurs in pattern but not in operands list!");
3673 
3674   TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3675       I.getRecord(), std::move(ResultNodeOperands),
3676       GetNumNodeResults(I.getRecord(), *this));
3677   // Copy fully inferred output node types to instruction result pattern.
3678   for (unsigned i = 0; i != NumResults; ++i) {
3679     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3680     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3681     ResultPattern->setResultIndex(i, ResultIndices[i]);
3682   }
3683 
3684   // FIXME: Assume only the first tree is the pattern. The others are clobber
3685   // nodes.
3686   TreePatternNodePtr Pattern = I.getTree(0);
3687   TreePatternNodePtr SrcPattern;
3688   if (Pattern->getOperator()->getName() == "set") {
3689     SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3690   } else{
3691     // Not a set (store or something?)
3692     SrcPattern = Pattern;
3693   }
3694 
3695   // Create and insert the instruction.
3696   // FIXME: InstImpResults should not be part of DAGInstruction.
3697   Record *R = I.getRecord();
3698   DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3699                    std::forward_as_tuple(Results, Operands, InstImpResults,
3700                                          SrcPattern, ResultPattern));
3701 
3702   LLVM_DEBUG(I.dump());
3703 }
3704 
3705 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3706 /// any fragments involved.  This populates the Instructions list with fully
3707 /// resolved instructions.
3708 void CodeGenDAGPatterns::ParseInstructions() {
3709   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3710 
3711   for (Record *Instr : Instrs) {
3712     ListInit *LI = nullptr;
3713 
3714     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3715       LI = Instr->getValueAsListInit("Pattern");
3716 
3717     // If there is no pattern, only collect minimal information about the
3718     // instruction for its operand list.  We have to assume that there is one
3719     // result, as we have no detailed info. A pattern which references the
3720     // null_frag operator is as-if no pattern were specified. Normally this
3721     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3722     // null_frag.
3723     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3724       std::vector<Record*> Results;
3725       std::vector<Record*> Operands;
3726 
3727       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3728 
3729       if (InstInfo.Operands.size() != 0) {
3730         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3731           Results.push_back(InstInfo.Operands[j].Rec);
3732 
3733         // The rest are inputs.
3734         for (unsigned j = InstInfo.Operands.NumDefs,
3735                e = InstInfo.Operands.size(); j < e; ++j)
3736           Operands.push_back(InstInfo.Operands[j].Rec);
3737       }
3738 
3739       // Create and insert the instruction.
3740       std::vector<Record*> ImpResults;
3741       Instructions.insert(std::make_pair(Instr,
3742                             DAGInstruction(Results, Operands, ImpResults)));
3743       continue;  // no pattern.
3744     }
3745 
3746     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3747     parseInstructionPattern(CGI, LI, Instructions);
3748   }
3749 
3750   // If we can, convert the instructions to be patterns that are matched!
3751   for (auto &Entry : Instructions) {
3752     Record *Instr = Entry.first;
3753     DAGInstruction &TheInst = Entry.second;
3754     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3755     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3756 
3757     if (SrcPattern && ResultPattern) {
3758       TreePattern Pattern(Instr, SrcPattern, true, *this);
3759       TreePattern Result(Instr, ResultPattern, false, *this);
3760       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3761     }
3762   }
3763 }
3764 
3765 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3766 
3767 static void FindNames(TreePatternNode *P,
3768                       std::map<std::string, NameRecord> &Names,
3769                       TreePattern *PatternTop) {
3770   if (!P->getName().empty()) {
3771     NameRecord &Rec = Names[P->getName()];
3772     // If this is the first instance of the name, remember the node.
3773     if (Rec.second++ == 0)
3774       Rec.first = P;
3775     else if (Rec.first->getExtTypes() != P->getExtTypes())
3776       PatternTop->error("repetition of value: $" + P->getName() +
3777                         " where different uses have different types!");
3778   }
3779 
3780   if (!P->isLeaf()) {
3781     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3782       FindNames(P->getChild(i), Names, PatternTop);
3783   }
3784 }
3785 
3786 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3787   std::vector<Predicate> Preds;
3788   for (Init *I : L->getValues()) {
3789     if (DefInit *Pred = dyn_cast<DefInit>(I))
3790       Preds.push_back(Pred->getDef());
3791     else
3792       llvm_unreachable("Non-def on the list");
3793   }
3794 
3795   // Sort so that different orders get canonicalized to the same string.
3796   llvm::sort(Preds);
3797   return Preds;
3798 }
3799 
3800 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3801                                            PatternToMatch &&PTM) {
3802   // Do some sanity checking on the pattern we're about to match.
3803   std::string Reason;
3804   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3805     PrintWarning(Pattern->getRecord()->getLoc(),
3806       Twine("Pattern can never match: ") + Reason);
3807     return;
3808   }
3809 
3810   // If the source pattern's root is a complex pattern, that complex pattern
3811   // must specify the nodes it can potentially match.
3812   if (const ComplexPattern *CP =
3813         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3814     if (CP->getRootNodes().empty())
3815       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3816                      " could match");
3817 
3818 
3819   // Find all of the named values in the input and output, ensure they have the
3820   // same type.
3821   std::map<std::string, NameRecord> SrcNames, DstNames;
3822   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3823   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3824 
3825   // Scan all of the named values in the destination pattern, rejecting them if
3826   // they don't exist in the input pattern.
3827   for (const auto &Entry : DstNames) {
3828     if (SrcNames[Entry.first].first == nullptr)
3829       Pattern->error("Pattern has input without matching name in output: $" +
3830                      Entry.first);
3831   }
3832 
3833   // Scan all of the named values in the source pattern, rejecting them if the
3834   // name isn't used in the dest, and isn't used to tie two values together.
3835   for (const auto &Entry : SrcNames)
3836     if (DstNames[Entry.first].first == nullptr &&
3837         SrcNames[Entry.first].second == 1)
3838       Pattern->error("Pattern has dead named input: $" + Entry.first);
3839 
3840   PatternsToMatch.push_back(PTM);
3841 }
3842 
3843 void CodeGenDAGPatterns::InferInstructionFlags() {
3844   ArrayRef<const CodeGenInstruction*> Instructions =
3845     Target.getInstructionsByEnumValue();
3846 
3847   unsigned Errors = 0;
3848 
3849   // Try to infer flags from all patterns in PatternToMatch.  These include
3850   // both the primary instruction patterns (which always come first) and
3851   // patterns defined outside the instruction.
3852   for (const PatternToMatch &PTM : ptms()) {
3853     // We can only infer from single-instruction patterns, otherwise we won't
3854     // know which instruction should get the flags.
3855     SmallVector<Record*, 8> PatInstrs;
3856     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3857     if (PatInstrs.size() != 1)
3858       continue;
3859 
3860     // Get the single instruction.
3861     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3862 
3863     // Only infer properties from the first pattern. We'll verify the others.
3864     if (InstInfo.InferredFrom)
3865       continue;
3866 
3867     InstAnalyzer PatInfo(*this);
3868     PatInfo.Analyze(PTM);
3869     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3870   }
3871 
3872   if (Errors)
3873     PrintFatalError("pattern conflicts");
3874 
3875   // If requested by the target, guess any undefined properties.
3876   if (Target.guessInstructionProperties()) {
3877     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3878       CodeGenInstruction *InstInfo =
3879         const_cast<CodeGenInstruction *>(Instructions[i]);
3880       if (InstInfo->InferredFrom)
3881         continue;
3882       // The mayLoad and mayStore flags default to false.
3883       // Conservatively assume hasSideEffects if it wasn't explicit.
3884       if (InstInfo->hasSideEffects_Unset)
3885         InstInfo->hasSideEffects = true;
3886     }
3887     return;
3888   }
3889 
3890   // Complain about any flags that are still undefined.
3891   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3892     CodeGenInstruction *InstInfo =
3893       const_cast<CodeGenInstruction *>(Instructions[i]);
3894     if (InstInfo->InferredFrom)
3895       continue;
3896     if (InstInfo->hasSideEffects_Unset)
3897       PrintError(InstInfo->TheDef->getLoc(),
3898                  "Can't infer hasSideEffects from patterns");
3899     if (InstInfo->mayStore_Unset)
3900       PrintError(InstInfo->TheDef->getLoc(),
3901                  "Can't infer mayStore from patterns");
3902     if (InstInfo->mayLoad_Unset)
3903       PrintError(InstInfo->TheDef->getLoc(),
3904                  "Can't infer mayLoad from patterns");
3905   }
3906 }
3907 
3908 
3909 /// Verify instruction flags against pattern node properties.
3910 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3911   unsigned Errors = 0;
3912   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3913     const PatternToMatch &PTM = *I;
3914     SmallVector<Record*, 8> Instrs;
3915     getInstructionsInTree(PTM.getDstPattern(), Instrs);
3916     if (Instrs.empty())
3917       continue;
3918 
3919     // Count the number of instructions with each flag set.
3920     unsigned NumSideEffects = 0;
3921     unsigned NumStores = 0;
3922     unsigned NumLoads = 0;
3923     for (const Record *Instr : Instrs) {
3924       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3925       NumSideEffects += InstInfo.hasSideEffects;
3926       NumStores += InstInfo.mayStore;
3927       NumLoads += InstInfo.mayLoad;
3928     }
3929 
3930     // Analyze the source pattern.
3931     InstAnalyzer PatInfo(*this);
3932     PatInfo.Analyze(PTM);
3933 
3934     // Collect error messages.
3935     SmallVector<std::string, 4> Msgs;
3936 
3937     // Check for missing flags in the output.
3938     // Permit extra flags for now at least.
3939     if (PatInfo.hasSideEffects && !NumSideEffects)
3940       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3941 
3942     // Don't verify store flags on instructions with side effects. At least for
3943     // intrinsics, side effects implies mayStore.
3944     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3945       Msgs.push_back("pattern may store, but mayStore isn't set");
3946 
3947     // Similarly, mayStore implies mayLoad on intrinsics.
3948     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3949       Msgs.push_back("pattern may load, but mayLoad isn't set");
3950 
3951     // Print error messages.
3952     if (Msgs.empty())
3953       continue;
3954     ++Errors;
3955 
3956     for (const std::string &Msg : Msgs)
3957       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3958                  (Instrs.size() == 1 ?
3959                   "instruction" : "output instructions"));
3960     // Provide the location of the relevant instruction definitions.
3961     for (const Record *Instr : Instrs) {
3962       if (Instr != PTM.getSrcRecord())
3963         PrintError(Instr->getLoc(), "defined here");
3964       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3965       if (InstInfo.InferredFrom &&
3966           InstInfo.InferredFrom != InstInfo.TheDef &&
3967           InstInfo.InferredFrom != PTM.getSrcRecord())
3968         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3969     }
3970   }
3971   if (Errors)
3972     PrintFatalError("Errors in DAG patterns");
3973 }
3974 
3975 /// Given a pattern result with an unresolved type, see if we can find one
3976 /// instruction with an unresolved result type.  Force this result type to an
3977 /// arbitrary element if it's possible types to converge results.
3978 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3979   if (N->isLeaf())
3980     return false;
3981 
3982   // Analyze children.
3983   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3984     if (ForceArbitraryInstResultType(N->getChild(i), TP))
3985       return true;
3986 
3987   if (!N->getOperator()->isSubClassOf("Instruction"))
3988     return false;
3989 
3990   // If this type is already concrete or completely unknown we can't do
3991   // anything.
3992   TypeInfer &TI = TP.getInfer();
3993   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3994     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
3995       continue;
3996 
3997     // Otherwise, force its type to an arbitrary choice.
3998     if (TI.forceArbitrary(N->getExtType(i)))
3999       return true;
4000   }
4001 
4002   return false;
4003 }
4004 
4005 // Promote xform function to be an explicit node wherever set.
4006 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4007   if (Record *Xform = N->getTransformFn()) {
4008       N->setTransformFn(nullptr);
4009       std::vector<TreePatternNodePtr> Children;
4010       Children.push_back(PromoteXForms(N));
4011       return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4012                                                N->getNumTypes());
4013   }
4014 
4015   if (!N->isLeaf())
4016     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4017       TreePatternNodePtr Child = N->getChildShared(i);
4018       N->setChild(i, PromoteXForms(Child));
4019     }
4020   return N;
4021 }
4022 
4023 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4024        TreePattern &Pattern, TreePattern &Result,
4025        const std::vector<Record *> &InstImpResults) {
4026 
4027   // Inline pattern fragments and expand multiple alternatives.
4028   Pattern.InlinePatternFragments();
4029   Result.InlinePatternFragments();
4030 
4031   if (Result.getNumTrees() != 1)
4032     Result.error("Cannot use multi-alternative fragments in result pattern!");
4033 
4034   // Infer types.
4035   bool IterateInference;
4036   bool InferredAllPatternTypes, InferredAllResultTypes;
4037   do {
4038     // Infer as many types as possible.  If we cannot infer all of them, we
4039     // can never do anything with this pattern: report it to the user.
4040     InferredAllPatternTypes =
4041         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4042 
4043     // Infer as many types as possible.  If we cannot infer all of them, we
4044     // can never do anything with this pattern: report it to the user.
4045     InferredAllResultTypes =
4046         Result.InferAllTypes(&Pattern.getNamedNodesMap());
4047 
4048     IterateInference = false;
4049 
4050     // Apply the type of the result to the source pattern.  This helps us
4051     // resolve cases where the input type is known to be a pointer type (which
4052     // is considered resolved), but the result knows it needs to be 32- or
4053     // 64-bits.  Infer the other way for good measure.
4054     for (auto T : Pattern.getTrees())
4055       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4056                                         T->getNumTypes());
4057          i != e; ++i) {
4058         IterateInference |= T->UpdateNodeType(
4059             i, Result.getOnlyTree()->getExtType(i), Result);
4060         IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4061             i, T->getExtType(i), Result);
4062       }
4063 
4064     // If our iteration has converged and the input pattern's types are fully
4065     // resolved but the result pattern is not fully resolved, we may have a
4066     // situation where we have two instructions in the result pattern and
4067     // the instructions require a common register class, but don't care about
4068     // what actual MVT is used.  This is actually a bug in our modelling:
4069     // output patterns should have register classes, not MVTs.
4070     //
4071     // In any case, to handle this, we just go through and disambiguate some
4072     // arbitrary types to the result pattern's nodes.
4073     if (!IterateInference && InferredAllPatternTypes &&
4074         !InferredAllResultTypes)
4075       IterateInference =
4076           ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4077   } while (IterateInference);
4078 
4079   // Verify that we inferred enough types that we can do something with the
4080   // pattern and result.  If these fire the user has to add type casts.
4081   if (!InferredAllPatternTypes)
4082     Pattern.error("Could not infer all types in pattern!");
4083   if (!InferredAllResultTypes) {
4084     Pattern.dump();
4085     Result.error("Could not infer all types in pattern result!");
4086   }
4087 
4088   // Promote xform function to be an explicit node wherever set.
4089   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4090 
4091   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4092   Temp.InferAllTypes();
4093 
4094   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4095   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4096 
4097   if (PatternRewriter)
4098     PatternRewriter(&Pattern);
4099 
4100   // A pattern may end up with an "impossible" type, i.e. a situation
4101   // where all types have been eliminated for some node in this pattern.
4102   // This could occur for intrinsics that only make sense for a specific
4103   // value type, and use a specific register class. If, for some mode,
4104   // that register class does not accept that type, the type inference
4105   // will lead to a contradiction, which is not an error however, but
4106   // a sign that this pattern will simply never match.
4107   if (Temp.getOnlyTree()->hasPossibleType())
4108     for (auto T : Pattern.getTrees())
4109       if (T->hasPossibleType())
4110         AddPatternToMatch(&Pattern,
4111                           PatternToMatch(TheDef, makePredList(Preds),
4112                                          T, Temp.getOnlyTree(),
4113                                          InstImpResults, Complexity,
4114                                          TheDef->getID()));
4115 }
4116 
4117 void CodeGenDAGPatterns::ParsePatterns() {
4118   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4119 
4120   for (Record *CurPattern : Patterns) {
4121     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4122 
4123     // If the pattern references the null_frag, there's nothing to do.
4124     if (hasNullFragReference(Tree))
4125       continue;
4126 
4127     TreePattern Pattern(CurPattern, Tree, true, *this);
4128 
4129     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4130     if (LI->empty()) continue;  // no pattern.
4131 
4132     // Parse the instruction.
4133     TreePattern Result(CurPattern, LI, false, *this);
4134 
4135     if (Result.getNumTrees() != 1)
4136       Result.error("Cannot handle instructions producing instructions "
4137                    "with temporaries yet!");
4138 
4139     // Validate that the input pattern is correct.
4140     std::map<std::string, TreePatternNodePtr> InstInputs;
4141     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4142         InstResults;
4143     std::vector<Record*> InstImpResults;
4144     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4145       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4146                                   InstResults, InstImpResults);
4147 
4148     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4149   }
4150 }
4151 
4152 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4153   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4154     for (const auto &I : VTS)
4155       Modes.insert(I.first);
4156 
4157   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4158     collectModes(Modes, N->getChild(i));
4159 }
4160 
4161 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4162   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4163   std::map<unsigned,std::vector<Predicate>> ModeChecks;
4164   std::vector<PatternToMatch> Copy = PatternsToMatch;
4165   PatternsToMatch.clear();
4166 
4167   auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4168     TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4169     TreePatternNodePtr NewDst = P.DstPattern->clone();
4170     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4171       return;
4172     }
4173 
4174     std::vector<Predicate> Preds = P.Predicates;
4175     const std::vector<Predicate> &MC = ModeChecks[Mode];
4176     Preds.insert(Preds.end(), MC.begin(), MC.end());
4177     PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4178                                  std::move(NewDst), P.getDstRegs(),
4179                                  P.getAddedComplexity(), Record::getNewUID(),
4180                                  Mode);
4181   };
4182 
4183   for (PatternToMatch &P : Copy) {
4184     TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4185     if (P.SrcPattern->hasProperTypeByHwMode())
4186       SrcP = P.SrcPattern;
4187     if (P.DstPattern->hasProperTypeByHwMode())
4188       DstP = P.DstPattern;
4189     if (!SrcP && !DstP) {
4190       PatternsToMatch.push_back(P);
4191       continue;
4192     }
4193 
4194     std::set<unsigned> Modes;
4195     if (SrcP)
4196       collectModes(Modes, SrcP.get());
4197     if (DstP)
4198       collectModes(Modes, DstP.get());
4199 
4200     // The predicate for the default mode needs to be constructed for each
4201     // pattern separately.
4202     // Since not all modes must be present in each pattern, if a mode m is
4203     // absent, then there is no point in constructing a check for m. If such
4204     // a check was created, it would be equivalent to checking the default
4205     // mode, except not all modes' predicates would be a part of the checking
4206     // code. The subsequently generated check for the default mode would then
4207     // have the exact same patterns, but a different predicate code. To avoid
4208     // duplicated patterns with different predicate checks, construct the
4209     // default check as a negation of all predicates that are actually present
4210     // in the source/destination patterns.
4211     std::vector<Predicate> DefaultPred;
4212 
4213     for (unsigned M : Modes) {
4214       if (M == DefaultMode)
4215         continue;
4216       if (ModeChecks.find(M) != ModeChecks.end())
4217         continue;
4218 
4219       // Fill the map entry for this mode.
4220       const HwMode &HM = CGH.getMode(M);
4221       ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4222 
4223       // Add negations of the HM's predicates to the default predicate.
4224       DefaultPred.emplace_back(Predicate(HM.Features, false));
4225     }
4226 
4227     for (unsigned M : Modes) {
4228       if (M == DefaultMode)
4229         continue;
4230       AppendPattern(P, M);
4231     }
4232 
4233     bool HasDefault = Modes.count(DefaultMode);
4234     if (HasDefault)
4235       AppendPattern(P, DefaultMode);
4236   }
4237 }
4238 
4239 /// Dependent variable map for CodeGenDAGPattern variant generation
4240 typedef StringMap<int> DepVarMap;
4241 
4242 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4243   if (N->isLeaf()) {
4244     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4245       DepMap[N->getName()]++;
4246   } else {
4247     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4248       FindDepVarsOf(N->getChild(i), DepMap);
4249   }
4250 }
4251 
4252 /// Find dependent variables within child patterns
4253 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4254   DepVarMap depcounts;
4255   FindDepVarsOf(N, depcounts);
4256   for (const auto &Pair : depcounts) {
4257     if (Pair.getValue() > 1)
4258       DepVars.insert(Pair.getKey());
4259   }
4260 }
4261 
4262 #ifndef NDEBUG
4263 /// Dump the dependent variable set:
4264 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4265   if (DepVars.empty()) {
4266     LLVM_DEBUG(errs() << "<empty set>");
4267   } else {
4268     LLVM_DEBUG(errs() << "[ ");
4269     for (const auto &DepVar : DepVars) {
4270       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4271     }
4272     LLVM_DEBUG(errs() << "]");
4273   }
4274 }
4275 #endif
4276 
4277 
4278 /// CombineChildVariants - Given a bunch of permutations of each child of the
4279 /// 'operator' node, put them together in all possible ways.
4280 static void CombineChildVariants(
4281     TreePatternNodePtr Orig,
4282     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4283     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4284     const MultipleUseVarSet &DepVars) {
4285   // Make sure that each operand has at least one variant to choose from.
4286   for (const auto &Variants : ChildVariants)
4287     if (Variants.empty())
4288       return;
4289 
4290   // The end result is an all-pairs construction of the resultant pattern.
4291   std::vector<unsigned> Idxs;
4292   Idxs.resize(ChildVariants.size());
4293   bool NotDone;
4294   do {
4295 #ifndef NDEBUG
4296     LLVM_DEBUG(if (!Idxs.empty()) {
4297       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4298       for (unsigned Idx : Idxs) {
4299         errs() << Idx << " ";
4300       }
4301       errs() << "]\n";
4302     });
4303 #endif
4304     // Create the variant and add it to the output list.
4305     std::vector<TreePatternNodePtr> NewChildren;
4306     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4307       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4308     TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4309         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4310 
4311     // Copy over properties.
4312     R->setName(Orig->getName());
4313     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4314     R->setPredicateCalls(Orig->getPredicateCalls());
4315     R->setTransformFn(Orig->getTransformFn());
4316     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4317       R->setType(i, Orig->getExtType(i));
4318 
4319     // If this pattern cannot match, do not include it as a variant.
4320     std::string ErrString;
4321     // Scan to see if this pattern has already been emitted.  We can get
4322     // duplication due to things like commuting:
4323     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4324     // which are the same pattern.  Ignore the dups.
4325     if (R->canPatternMatch(ErrString, CDP) &&
4326         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4327           return R->isIsomorphicTo(Variant.get(), DepVars);
4328         }))
4329       OutVariants.push_back(R);
4330 
4331     // Increment indices to the next permutation by incrementing the
4332     // indices from last index backward, e.g., generate the sequence
4333     // [0, 0], [0, 1], [1, 0], [1, 1].
4334     int IdxsIdx;
4335     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4336       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4337         Idxs[IdxsIdx] = 0;
4338       else
4339         break;
4340     }
4341     NotDone = (IdxsIdx >= 0);
4342   } while (NotDone);
4343 }
4344 
4345 /// CombineChildVariants - A helper function for binary operators.
4346 ///
4347 static void CombineChildVariants(TreePatternNodePtr Orig,
4348                                  const std::vector<TreePatternNodePtr> &LHS,
4349                                  const std::vector<TreePatternNodePtr> &RHS,
4350                                  std::vector<TreePatternNodePtr> &OutVariants,
4351                                  CodeGenDAGPatterns &CDP,
4352                                  const MultipleUseVarSet &DepVars) {
4353   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4354   ChildVariants.push_back(LHS);
4355   ChildVariants.push_back(RHS);
4356   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4357 }
4358 
4359 static void
4360 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4361                                   std::vector<TreePatternNodePtr> &Children) {
4362   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4363   Record *Operator = N->getOperator();
4364 
4365   // Only permit raw nodes.
4366   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4367       N->getTransformFn()) {
4368     Children.push_back(N);
4369     return;
4370   }
4371 
4372   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4373     Children.push_back(N->getChildShared(0));
4374   else
4375     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4376 
4377   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4378     Children.push_back(N->getChildShared(1));
4379   else
4380     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4381 }
4382 
4383 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4384 /// the (potentially recursive) pattern by using algebraic laws.
4385 ///
4386 static void GenerateVariantsOf(TreePatternNodePtr N,
4387                                std::vector<TreePatternNodePtr> &OutVariants,
4388                                CodeGenDAGPatterns &CDP,
4389                                const MultipleUseVarSet &DepVars) {
4390   // We cannot permute leaves or ComplexPattern uses.
4391   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4392     OutVariants.push_back(N);
4393     return;
4394   }
4395 
4396   // Look up interesting info about the node.
4397   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4398 
4399   // If this node is associative, re-associate.
4400   if (NodeInfo.hasProperty(SDNPAssociative)) {
4401     // Re-associate by pulling together all of the linked operators
4402     std::vector<TreePatternNodePtr> MaximalChildren;
4403     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4404 
4405     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4406     // permutations.
4407     if (MaximalChildren.size() == 3) {
4408       // Find the variants of all of our maximal children.
4409       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4410       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4411       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4412       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4413 
4414       // There are only two ways we can permute the tree:
4415       //   (A op B) op C    and    A op (B op C)
4416       // Within these forms, we can also permute A/B/C.
4417 
4418       // Generate legal pair permutations of A/B/C.
4419       std::vector<TreePatternNodePtr> ABVariants;
4420       std::vector<TreePatternNodePtr> BAVariants;
4421       std::vector<TreePatternNodePtr> ACVariants;
4422       std::vector<TreePatternNodePtr> CAVariants;
4423       std::vector<TreePatternNodePtr> BCVariants;
4424       std::vector<TreePatternNodePtr> CBVariants;
4425       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4426       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4427       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4428       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4429       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4430       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4431 
4432       // Combine those into the result: (x op x) op x
4433       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4434       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4435       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4436       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4437       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4438       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4439 
4440       // Combine those into the result: x op (x op x)
4441       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4442       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4443       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4444       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4445       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4446       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4447       return;
4448     }
4449   }
4450 
4451   // Compute permutations of all children.
4452   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4453   ChildVariants.resize(N->getNumChildren());
4454   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4455     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4456 
4457   // Build all permutations based on how the children were formed.
4458   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4459 
4460   // If this node is commutative, consider the commuted order.
4461   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4462   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4463     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4464            "Commutative but doesn't have 2 children!");
4465     // Don't count children which are actually register references.
4466     unsigned NC = 0;
4467     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4468       TreePatternNode *Child = N->getChild(i);
4469       if (Child->isLeaf())
4470         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4471           Record *RR = DI->getDef();
4472           if (RR->isSubClassOf("Register"))
4473             continue;
4474         }
4475       NC++;
4476     }
4477     // Consider the commuted order.
4478     if (isCommIntrinsic) {
4479       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4480       // operands are the commutative operands, and there might be more operands
4481       // after those.
4482       assert(NC >= 3 &&
4483              "Commutative intrinsic should have at least 3 children!");
4484       std::vector<std::vector<TreePatternNodePtr>> Variants;
4485       Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4486       Variants.push_back(std::move(ChildVariants[2]));
4487       Variants.push_back(std::move(ChildVariants[1]));
4488       for (unsigned i = 3; i != NC; ++i)
4489         Variants.push_back(std::move(ChildVariants[i]));
4490       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4491     } else if (NC == N->getNumChildren()) {
4492       std::vector<std::vector<TreePatternNodePtr>> Variants;
4493       Variants.push_back(std::move(ChildVariants[1]));
4494       Variants.push_back(std::move(ChildVariants[0]));
4495       for (unsigned i = 2; i != NC; ++i)
4496         Variants.push_back(std::move(ChildVariants[i]));
4497       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4498     }
4499   }
4500 }
4501 
4502 
4503 // GenerateVariants - Generate variants.  For example, commutative patterns can
4504 // match multiple ways.  Add them to PatternsToMatch as well.
4505 void CodeGenDAGPatterns::GenerateVariants() {
4506   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4507 
4508   // Loop over all of the patterns we've collected, checking to see if we can
4509   // generate variants of the instruction, through the exploitation of
4510   // identities.  This permits the target to provide aggressive matching without
4511   // the .td file having to contain tons of variants of instructions.
4512   //
4513   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4514   // intentionally do not reconsider these.  Any variants of added patterns have
4515   // already been added.
4516   //
4517   const unsigned NumOriginalPatterns = PatternsToMatch.size();
4518   BitVector MatchedPatterns(NumOriginalPatterns);
4519   std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
4520                                            BitVector(NumOriginalPatterns));
4521 
4522   typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
4523       DepsAndVariants;
4524   std::map<unsigned, DepsAndVariants> PatternsWithVariants;
4525 
4526   // Collect patterns with more than one variant.
4527   for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
4528     MultipleUseVarSet DepVars;
4529     std::vector<TreePatternNodePtr> Variants;
4530     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4531     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4532     LLVM_DEBUG(DumpDepVars(DepVars));
4533     LLVM_DEBUG(errs() << "\n");
4534     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4535                        *this, DepVars);
4536 
4537     assert(!Variants.empty() && "Must create at least original variant!");
4538     if (Variants.size() == 1) // No additional variants for this pattern.
4539       continue;
4540 
4541     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4542                PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4543 
4544     PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
4545 
4546     // Cache matching predicates.
4547     if (MatchedPatterns[i])
4548       continue;
4549 
4550     const std::vector<Predicate> &Predicates =
4551         PatternsToMatch[i].getPredicates();
4552 
4553     BitVector &Matches = MatchedPredicates[i];
4554     MatchedPatterns.set(i);
4555     Matches.set(i);
4556 
4557     // Don't test patterns that have already been cached - it won't match.
4558     for (unsigned p = 0; p != NumOriginalPatterns; ++p)
4559       if (!MatchedPatterns[p])
4560         Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
4561 
4562     // Copy this to all the matching patterns.
4563     for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
4564       if (p != (int)i) {
4565         MatchedPatterns.set(p);
4566         MatchedPredicates[p] = Matches;
4567       }
4568   }
4569 
4570   for (auto it : PatternsWithVariants) {
4571     unsigned i = it.first;
4572     const MultipleUseVarSet &DepVars = it.second.first;
4573     const std::vector<TreePatternNodePtr> &Variants = it.second.second;
4574 
4575     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4576       TreePatternNodePtr Variant = Variants[v];
4577       BitVector &Matches = MatchedPredicates[i];
4578 
4579       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4580                  errs() << "\n");
4581 
4582       // Scan to see if an instruction or explicit pattern already matches this.
4583       bool AlreadyExists = false;
4584       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4585         // Skip if the top level predicates do not match.
4586         if (!Matches[p])
4587           continue;
4588         // Check to see if this variant already exists.
4589         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4590                                     DepVars)) {
4591           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4592           AlreadyExists = true;
4593           break;
4594         }
4595       }
4596       // If we already have it, ignore the variant.
4597       if (AlreadyExists) continue;
4598 
4599       // Otherwise, add it to the list of patterns we have.
4600       PatternsToMatch.push_back(PatternToMatch(
4601           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4602           Variant, PatternsToMatch[i].getDstPatternShared(),
4603           PatternsToMatch[i].getDstRegs(),
4604           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4605       MatchedPredicates.push_back(Matches);
4606 
4607       // Add a new match the same as this pattern.
4608       for (auto &P : MatchedPredicates)
4609         P.push_back(P[i]);
4610     }
4611 
4612     LLVM_DEBUG(errs() << "\n");
4613   }
4614 }
4615