1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/TableGen/Error.h" 27 #include "llvm/TableGen/Record.h" 28 #include <algorithm> 29 #include <cstdio> 30 #include <set> 31 using namespace llvm; 32 33 #define DEBUG_TYPE "dag-patterns" 34 35 static inline bool isIntegerOrPtr(MVT VT) { 36 return VT.isInteger() || VT == MVT::iPTR; 37 } 38 static inline bool isFloatingPoint(MVT VT) { 39 return VT.isFloatingPoint(); 40 } 41 static inline bool isVector(MVT VT) { 42 return VT.isVector(); 43 } 44 static inline bool isScalar(MVT VT) { 45 return !VT.isVector(); 46 } 47 48 template <typename Predicate> 49 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 50 bool Erased = false; 51 // It is ok to iterate over MachineValueTypeSet and remove elements from it 52 // at the same time. 53 for (MVT T : S) { 54 if (!P(T)) 55 continue; 56 Erased = true; 57 S.erase(T); 58 } 59 return Erased; 60 } 61 62 // --- TypeSetByHwMode 63 64 // This is a parameterized type-set class. For each mode there is a list 65 // of types that are currently possible for a given tree node. Type 66 // inference will apply to each mode separately. 67 68 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 69 for (const ValueTypeByHwMode &VVT : VTList) 70 insert(VVT); 71 } 72 73 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 74 for (const auto &I : *this) { 75 if (I.second.size() > 1) 76 return false; 77 if (!AllowEmpty && I.second.empty()) 78 return false; 79 } 80 return true; 81 } 82 83 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 84 assert(isValueTypeByHwMode(true) && 85 "The type set has multiple types for at least one HW mode"); 86 ValueTypeByHwMode VVT; 87 for (const auto &I : *this) { 88 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 89 VVT.getOrCreateTypeForMode(I.first, T); 90 } 91 return VVT; 92 } 93 94 bool TypeSetByHwMode::isPossible() const { 95 for (const auto &I : *this) 96 if (!I.second.empty()) 97 return true; 98 return false; 99 } 100 101 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 102 bool Changed = false; 103 bool ContainsDefault = false; 104 MVT DT = MVT::Other; 105 106 SmallDenseSet<unsigned, 4> Modes; 107 for (const auto &P : VVT) { 108 unsigned M = P.first; 109 Modes.insert(M); 110 // Make sure there exists a set for each specific mode from VVT. 111 Changed |= getOrCreate(M).insert(P.second).second; 112 // Cache VVT's default mode. 113 if (DefaultMode == M) { 114 ContainsDefault = true; 115 DT = P.second; 116 } 117 } 118 119 // If VVT has a default mode, add the corresponding type to all 120 // modes in "this" that do not exist in VVT. 121 if (ContainsDefault) 122 for (auto &I : *this) 123 if (!Modes.count(I.first)) 124 Changed |= I.second.insert(DT).second; 125 126 return Changed; 127 } 128 129 // Constrain the type set to be the intersection with VTS. 130 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 131 bool Changed = false; 132 if (hasDefault()) { 133 for (const auto &I : VTS) { 134 unsigned M = I.first; 135 if (M == DefaultMode || hasMode(M)) 136 continue; 137 Map.insert({M, Map.at(DefaultMode)}); 138 Changed = true; 139 } 140 } 141 142 for (auto &I : *this) { 143 unsigned M = I.first; 144 SetType &S = I.second; 145 if (VTS.hasMode(M) || VTS.hasDefault()) { 146 Changed |= intersect(I.second, VTS.get(M)); 147 } else if (!S.empty()) { 148 S.clear(); 149 Changed = true; 150 } 151 } 152 return Changed; 153 } 154 155 template <typename Predicate> 156 bool TypeSetByHwMode::constrain(Predicate P) { 157 bool Changed = false; 158 for (auto &I : *this) 159 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 160 return Changed; 161 } 162 163 template <typename Predicate> 164 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 165 assert(empty()); 166 for (const auto &I : VTS) { 167 SetType &S = getOrCreate(I.first); 168 for (auto J : I.second) 169 if (P(J)) 170 S.insert(J); 171 } 172 return !empty(); 173 } 174 175 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 176 SmallVector<unsigned, 4> Modes; 177 Modes.reserve(Map.size()); 178 179 for (const auto &I : *this) 180 Modes.push_back(I.first); 181 if (Modes.empty()) { 182 OS << "{}"; 183 return; 184 } 185 array_pod_sort(Modes.begin(), Modes.end()); 186 187 OS << '{'; 188 for (unsigned M : Modes) { 189 OS << ' ' << getModeName(M) << ':'; 190 writeToStream(get(M), OS); 191 } 192 OS << " }"; 193 } 194 195 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) { 196 SmallVector<MVT, 4> Types(S.begin(), S.end()); 197 array_pod_sort(Types.begin(), Types.end()); 198 199 OS << '['; 200 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 201 OS << ValueTypeByHwMode::getMVTName(Types[i]); 202 if (i != e-1) 203 OS << ' '; 204 } 205 OS << ']'; 206 } 207 208 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 209 // The isSimple call is much quicker than hasDefault - check this first. 210 bool IsSimple = isSimple(); 211 bool VTSIsSimple = VTS.isSimple(); 212 if (IsSimple && VTSIsSimple) 213 return *begin() == *VTS.begin(); 214 215 // Speedup: We have a default if the set is simple. 216 bool HaveDefault = IsSimple || hasDefault(); 217 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); 218 if (HaveDefault != VTSHaveDefault) 219 return false; 220 221 SmallDenseSet<unsigned, 4> Modes; 222 for (auto &I : *this) 223 Modes.insert(I.first); 224 for (const auto &I : VTS) 225 Modes.insert(I.first); 226 227 if (HaveDefault) { 228 // Both sets have default mode. 229 for (unsigned M : Modes) { 230 if (get(M) != VTS.get(M)) 231 return false; 232 } 233 } else { 234 // Neither set has default mode. 235 for (unsigned M : Modes) { 236 // If there is no default mode, an empty set is equivalent to not having 237 // the corresponding mode. 238 bool NoModeThis = !hasMode(M) || get(M).empty(); 239 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 240 if (NoModeThis != NoModeVTS) 241 return false; 242 if (!NoModeThis) 243 if (get(M) != VTS.get(M)) 244 return false; 245 } 246 } 247 248 return true; 249 } 250 251 namespace llvm { 252 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 253 T.writeToStream(OS); 254 return OS; 255 } 256 } 257 258 LLVM_DUMP_METHOD 259 void TypeSetByHwMode::dump() const { 260 dbgs() << *this << '\n'; 261 } 262 263 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 264 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); 265 auto Int = [&In](MVT T) -> bool { return !In.count(T); }; 266 267 if (OutP == InP) 268 return berase_if(Out, Int); 269 270 // Compute the intersection of scalars separately to account for only 271 // one set containing iPTR. 272 // The itersection of iPTR with a set of integer scalar types that does not 273 // include iPTR will result in the most specific scalar type: 274 // - iPTR is more specific than any set with two elements or more 275 // - iPTR is less specific than any single integer scalar type. 276 // For example 277 // { iPTR } * { i32 } -> { i32 } 278 // { iPTR } * { i32 i64 } -> { iPTR } 279 // and 280 // { iPTR i32 } * { i32 } -> { i32 } 281 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 282 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 283 284 // Compute the difference between the two sets in such a way that the 285 // iPTR is in the set that is being subtracted. This is to see if there 286 // are any extra scalars in the set without iPTR that are not in the 287 // set containing iPTR. Then the iPTR could be considered a "wildcard" 288 // matching these scalars. If there is only one such scalar, it would 289 // replace the iPTR, if there are more, the iPTR would be retained. 290 SetType Diff; 291 if (InP) { 292 Diff = Out; 293 berase_if(Diff, [&In](MVT T) { return In.count(T); }); 294 // Pre-remove these elements and rely only on InP/OutP to determine 295 // whether a change has been made. 296 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); }); 297 } else { 298 Diff = In; 299 berase_if(Diff, [&Out](MVT T) { return Out.count(T); }); 300 Out.erase(MVT::iPTR); 301 } 302 303 // The actual intersection. 304 bool Changed = berase_if(Out, Int); 305 unsigned NumD = Diff.size(); 306 if (NumD == 0) 307 return Changed; 308 309 if (NumD == 1) { 310 Out.insert(*Diff.begin()); 311 // This is a change only if Out was the one with iPTR (which is now 312 // being replaced). 313 Changed |= OutP; 314 } else { 315 // Multiple elements from Out are now replaced with iPTR. 316 Out.insert(MVT::iPTR); 317 Changed |= !OutP; 318 } 319 return Changed; 320 } 321 322 bool TypeSetByHwMode::validate() const { 323 #ifndef NDEBUG 324 if (empty()) 325 return true; 326 bool AllEmpty = true; 327 for (const auto &I : *this) 328 AllEmpty &= I.second.empty(); 329 return !AllEmpty; 330 #endif 331 return true; 332 } 333 334 // --- TypeInfer 335 336 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 337 const TypeSetByHwMode &In) { 338 ValidateOnExit _1(Out, *this); 339 In.validate(); 340 if (In.empty() || Out == In || TP.hasError()) 341 return false; 342 if (Out.empty()) { 343 Out = In; 344 return true; 345 } 346 347 bool Changed = Out.constrain(In); 348 if (Changed && Out.empty()) 349 TP.error("Type contradiction"); 350 351 return Changed; 352 } 353 354 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 355 ValidateOnExit _1(Out, *this); 356 if (TP.hasError()) 357 return false; 358 assert(!Out.empty() && "cannot pick from an empty set"); 359 360 bool Changed = false; 361 for (auto &I : Out) { 362 TypeSetByHwMode::SetType &S = I.second; 363 if (S.size() <= 1) 364 continue; 365 MVT T = *S.begin(); // Pick the first element. 366 S.clear(); 367 S.insert(T); 368 Changed = true; 369 } 370 return Changed; 371 } 372 373 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 374 ValidateOnExit _1(Out, *this); 375 if (TP.hasError()) 376 return false; 377 if (!Out.empty()) 378 return Out.constrain(isIntegerOrPtr); 379 380 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 381 } 382 383 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 384 ValidateOnExit _1(Out, *this); 385 if (TP.hasError()) 386 return false; 387 if (!Out.empty()) 388 return Out.constrain(isFloatingPoint); 389 390 return Out.assign_if(getLegalTypes(), isFloatingPoint); 391 } 392 393 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 394 ValidateOnExit _1(Out, *this); 395 if (TP.hasError()) 396 return false; 397 if (!Out.empty()) 398 return Out.constrain(isScalar); 399 400 return Out.assign_if(getLegalTypes(), isScalar); 401 } 402 403 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 404 ValidateOnExit _1(Out, *this); 405 if (TP.hasError()) 406 return false; 407 if (!Out.empty()) 408 return Out.constrain(isVector); 409 410 return Out.assign_if(getLegalTypes(), isVector); 411 } 412 413 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 414 ValidateOnExit _1(Out, *this); 415 if (TP.hasError() || !Out.empty()) 416 return false; 417 418 Out = getLegalTypes(); 419 return true; 420 } 421 422 template <typename Iter, typename Pred, typename Less> 423 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 424 if (B == E) 425 return E; 426 Iter Min = E; 427 for (Iter I = B; I != E; ++I) { 428 if (!P(*I)) 429 continue; 430 if (Min == E || L(*I, *Min)) 431 Min = I; 432 } 433 return Min; 434 } 435 436 template <typename Iter, typename Pred, typename Less> 437 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 438 if (B == E) 439 return E; 440 Iter Max = E; 441 for (Iter I = B; I != E; ++I) { 442 if (!P(*I)) 443 continue; 444 if (Max == E || L(*Max, *I)) 445 Max = I; 446 } 447 return Max; 448 } 449 450 /// Make sure that for each type in Small, there exists a larger type in Big. 451 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, 452 TypeSetByHwMode &Big) { 453 ValidateOnExit _1(Small, *this), _2(Big, *this); 454 if (TP.hasError()) 455 return false; 456 bool Changed = false; 457 458 if (Small.empty()) 459 Changed |= EnforceAny(Small); 460 if (Big.empty()) 461 Changed |= EnforceAny(Big); 462 463 assert(Small.hasDefault() && Big.hasDefault()); 464 465 std::vector<unsigned> Modes = union_modes(Small, Big); 466 467 // 1. Only allow integer or floating point types and make sure that 468 // both sides are both integer or both floating point. 469 // 2. Make sure that either both sides have vector types, or neither 470 // of them does. 471 for (unsigned M : Modes) { 472 TypeSetByHwMode::SetType &S = Small.get(M); 473 TypeSetByHwMode::SetType &B = Big.get(M); 474 475 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) { 476 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 477 Changed |= berase_if(S, NotInt) | 478 berase_if(B, NotInt); 479 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 480 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 481 Changed |= berase_if(S, NotFP) | 482 berase_if(B, NotFP); 483 } else if (S.empty() || B.empty()) { 484 Changed = !S.empty() || !B.empty(); 485 S.clear(); 486 B.clear(); 487 } else { 488 TP.error("Incompatible types"); 489 return Changed; 490 } 491 492 if (none_of(S, isVector) || none_of(B, isVector)) { 493 Changed |= berase_if(S, isVector) | 494 berase_if(B, isVector); 495 } 496 } 497 498 auto LT = [](MVT A, MVT B) -> bool { 499 return A.getScalarSizeInBits() < B.getScalarSizeInBits() || 500 (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 501 A.getSizeInBits() < B.getSizeInBits()); 502 }; 503 auto LE = [](MVT A, MVT B) -> bool { 504 // This function is used when removing elements: when a vector is compared 505 // to a non-vector, it should return false (to avoid removal). 506 if (A.isVector() != B.isVector()) 507 return false; 508 509 // Note on the < comparison below: 510 // X86 has patterns like 511 // (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))), 512 // where the truncated vector is given a type v16i8, while the source 513 // vector has type v4i32. They both have the same size in bits. 514 // The minimal type in the result is obviously v16i8, and when we remove 515 // all types from the source that are smaller-or-equal than v8i16, the 516 // only source type would also be removed (since it's equal in size). 517 return A.getScalarSizeInBits() <= B.getScalarSizeInBits() || 518 A.getSizeInBits() < B.getSizeInBits(); 519 }; 520 521 for (unsigned M : Modes) { 522 TypeSetByHwMode::SetType &S = Small.get(M); 523 TypeSetByHwMode::SetType &B = Big.get(M); 524 // MinS = min scalar in Small, remove all scalars from Big that are 525 // smaller-or-equal than MinS. 526 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 527 if (MinS != S.end()) 528 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS)); 529 530 // MaxS = max scalar in Big, remove all scalars from Small that are 531 // larger than MaxS. 532 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 533 if (MaxS != B.end()) 534 Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1)); 535 536 // MinV = min vector in Small, remove all vectors from Big that are 537 // smaller-or-equal than MinV. 538 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 539 if (MinV != S.end()) 540 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV)); 541 542 // MaxV = max vector in Big, remove all vectors from Small that are 543 // larger than MaxV. 544 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 545 if (MaxV != B.end()) 546 Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1)); 547 } 548 549 return Changed; 550 } 551 552 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 553 /// for each type U in Elem, U is a scalar type. 554 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 555 /// type T in Vec, such that U is the element type of T. 556 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 557 TypeSetByHwMode &Elem) { 558 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 559 if (TP.hasError()) 560 return false; 561 bool Changed = false; 562 563 if (Vec.empty()) 564 Changed |= EnforceVector(Vec); 565 if (Elem.empty()) 566 Changed |= EnforceScalar(Elem); 567 568 for (unsigned M : union_modes(Vec, Elem)) { 569 TypeSetByHwMode::SetType &V = Vec.get(M); 570 TypeSetByHwMode::SetType &E = Elem.get(M); 571 572 Changed |= berase_if(V, isScalar); // Scalar = !vector 573 Changed |= berase_if(E, isVector); // Vector = !scalar 574 assert(!V.empty() && !E.empty()); 575 576 SmallSet<MVT,4> VT, ST; 577 // Collect element types from the "vector" set. 578 for (MVT T : V) 579 VT.insert(T.getVectorElementType()); 580 // Collect scalar types from the "element" set. 581 for (MVT T : E) 582 ST.insert(T); 583 584 // Remove from V all (vector) types whose element type is not in S. 585 Changed |= berase_if(V, [&ST](MVT T) -> bool { 586 return !ST.count(T.getVectorElementType()); 587 }); 588 // Remove from E all (scalar) types, for which there is no corresponding 589 // type in V. 590 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 591 } 592 593 return Changed; 594 } 595 596 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 597 const ValueTypeByHwMode &VVT) { 598 TypeSetByHwMode Tmp(VVT); 599 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 600 return EnforceVectorEltTypeIs(Vec, Tmp); 601 } 602 603 /// Ensure that for each type T in Sub, T is a vector type, and there 604 /// exists a type U in Vec such that U is a vector type with the same 605 /// element type as T and at least as many elements as T. 606 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 607 TypeSetByHwMode &Sub) { 608 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 609 if (TP.hasError()) 610 return false; 611 612 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 613 auto IsSubVec = [](MVT B, MVT P) -> bool { 614 if (!B.isVector() || !P.isVector()) 615 return false; 616 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 617 // but until there are obvious use-cases for this, keep the 618 // types separate. 619 if (B.isScalableVector() != P.isScalableVector()) 620 return false; 621 if (B.getVectorElementType() != P.getVectorElementType()) 622 return false; 623 return B.getVectorNumElements() < P.getVectorNumElements(); 624 }; 625 626 /// Return true if S has no element (vector type) that T is a sub-vector of, 627 /// i.e. has the same element type as T and more elements. 628 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 629 for (const auto &I : S) 630 if (IsSubVec(T, I)) 631 return false; 632 return true; 633 }; 634 635 /// Return true if S has no element (vector type) that T is a super-vector 636 /// of, i.e. has the same element type as T and fewer elements. 637 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 638 for (const auto &I : S) 639 if (IsSubVec(I, T)) 640 return false; 641 return true; 642 }; 643 644 bool Changed = false; 645 646 if (Vec.empty()) 647 Changed |= EnforceVector(Vec); 648 if (Sub.empty()) 649 Changed |= EnforceVector(Sub); 650 651 for (unsigned M : union_modes(Vec, Sub)) { 652 TypeSetByHwMode::SetType &S = Sub.get(M); 653 TypeSetByHwMode::SetType &V = Vec.get(M); 654 655 Changed |= berase_if(S, isScalar); 656 657 // Erase all types from S that are not sub-vectors of a type in V. 658 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 659 660 // Erase all types from V that are not super-vectors of a type in S. 661 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 662 } 663 664 return Changed; 665 } 666 667 /// 1. Ensure that V has a scalar type iff W has a scalar type. 668 /// 2. Ensure that for each vector type T in V, there exists a vector 669 /// type U in W, such that T and U have the same number of elements. 670 /// 3. Ensure that for each vector type U in W, there exists a vector 671 /// type T in V, such that T and U have the same number of elements 672 /// (reverse of 2). 673 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 674 ValidateOnExit _1(V, *this), _2(W, *this); 675 if (TP.hasError()) 676 return false; 677 678 bool Changed = false; 679 if (V.empty()) 680 Changed |= EnforceAny(V); 681 if (W.empty()) 682 Changed |= EnforceAny(W); 683 684 // An actual vector type cannot have 0 elements, so we can treat scalars 685 // as zero-length vectors. This way both vectors and scalars can be 686 // processed identically. 687 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool { 688 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0); 689 }; 690 691 for (unsigned M : union_modes(V, W)) { 692 TypeSetByHwMode::SetType &VS = V.get(M); 693 TypeSetByHwMode::SetType &WS = W.get(M); 694 695 SmallSet<unsigned,2> VN, WN; 696 for (MVT T : VS) 697 VN.insert(T.isVector() ? T.getVectorNumElements() : 0); 698 for (MVT T : WS) 699 WN.insert(T.isVector() ? T.getVectorNumElements() : 0); 700 701 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 702 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 703 } 704 return Changed; 705 } 706 707 /// 1. Ensure that for each type T in A, there exists a type U in B, 708 /// such that T and U have equal size in bits. 709 /// 2. Ensure that for each type U in B, there exists a type T in A 710 /// such that T and U have equal size in bits (reverse of 1). 711 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 712 ValidateOnExit _1(A, *this), _2(B, *this); 713 if (TP.hasError()) 714 return false; 715 bool Changed = false; 716 if (A.empty()) 717 Changed |= EnforceAny(A); 718 if (B.empty()) 719 Changed |= EnforceAny(B); 720 721 auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool { 722 return !Sizes.count(T.getSizeInBits()); 723 }; 724 725 for (unsigned M : union_modes(A, B)) { 726 TypeSetByHwMode::SetType &AS = A.get(M); 727 TypeSetByHwMode::SetType &BS = B.get(M); 728 SmallSet<unsigned,2> AN, BN; 729 730 for (MVT T : AS) 731 AN.insert(T.getSizeInBits()); 732 for (MVT T : BS) 733 BN.insert(T.getSizeInBits()); 734 735 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 736 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 737 } 738 739 return Changed; 740 } 741 742 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { 743 ValidateOnExit _1(VTS, *this); 744 const TypeSetByHwMode &Legal = getLegalTypes(); 745 assert(Legal.isDefaultOnly() && "Default-mode only expected"); 746 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode); 747 748 for (auto &I : VTS) 749 expandOverloads(I.second, LegalTypes); 750 } 751 752 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 753 const TypeSetByHwMode::SetType &Legal) { 754 std::set<MVT> Ovs; 755 for (MVT T : Out) { 756 if (!T.isOverloaded()) 757 continue; 758 759 Ovs.insert(T); 760 // MachineValueTypeSet allows iteration and erasing. 761 Out.erase(T); 762 } 763 764 for (MVT Ov : Ovs) { 765 switch (Ov.SimpleTy) { 766 case MVT::iPTRAny: 767 Out.insert(MVT::iPTR); 768 return; 769 case MVT::iAny: 770 for (MVT T : MVT::integer_valuetypes()) 771 if (Legal.count(T)) 772 Out.insert(T); 773 for (MVT T : MVT::integer_vector_valuetypes()) 774 if (Legal.count(T)) 775 Out.insert(T); 776 return; 777 case MVT::fAny: 778 for (MVT T : MVT::fp_valuetypes()) 779 if (Legal.count(T)) 780 Out.insert(T); 781 for (MVT T : MVT::fp_vector_valuetypes()) 782 if (Legal.count(T)) 783 Out.insert(T); 784 return; 785 case MVT::vAny: 786 for (MVT T : MVT::vector_valuetypes()) 787 if (Legal.count(T)) 788 Out.insert(T); 789 return; 790 case MVT::Any: 791 for (MVT T : MVT::all_valuetypes()) 792 if (Legal.count(T)) 793 Out.insert(T); 794 return; 795 default: 796 break; 797 } 798 } 799 } 800 801 const TypeSetByHwMode &TypeInfer::getLegalTypes() { 802 if (!LegalTypesCached) { 803 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); 804 // Stuff all types from all modes into the default mode. 805 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 806 for (const auto &I : LTS) 807 LegalTypes.insert(I.second); 808 LegalTypesCached = true; 809 } 810 assert(LegalCache.isDefaultOnly() && "Default-mode only expected"); 811 return LegalCache; 812 } 813 814 #ifndef NDEBUG 815 TypeInfer::ValidateOnExit::~ValidateOnExit() { 816 if (Infer.Validate && !VTS.validate()) { 817 dbgs() << "Type set is empty for each HW mode:\n" 818 "possible type contradiction in the pattern below " 819 "(use -print-records with llvm-tblgen to see all " 820 "expanded records).\n"; 821 Infer.TP.dump(); 822 llvm_unreachable(nullptr); 823 } 824 } 825 #endif 826 827 //===----------------------------------------------------------------------===// 828 // TreePredicateFn Implementation 829 //===----------------------------------------------------------------------===// 830 831 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 832 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 833 assert( 834 (!hasPredCode() || !hasImmCode()) && 835 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 836 } 837 838 bool TreePredicateFn::hasPredCode() const { 839 return isLoad() || isStore() || isAtomic() || 840 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 841 } 842 843 std::string TreePredicateFn::getPredCode() const { 844 std::string Code = ""; 845 846 if (!isLoad() && !isStore() && !isAtomic()) { 847 Record *MemoryVT = getMemoryVT(); 848 849 if (MemoryVT) 850 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 851 "MemoryVT requires IsLoad or IsStore"); 852 } 853 854 if (!isLoad() && !isStore()) { 855 if (isUnindexed()) 856 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 857 "IsUnindexed requires IsLoad or IsStore"); 858 859 Record *ScalarMemoryVT = getScalarMemoryVT(); 860 861 if (ScalarMemoryVT) 862 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 863 "ScalarMemoryVT requires IsLoad or IsStore"); 864 } 865 866 if (isLoad() + isStore() + isAtomic() > 1) 867 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 868 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 869 870 if (isLoad()) { 871 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 872 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 873 getScalarMemoryVT() == nullptr) 874 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 875 "IsLoad cannot be used by itself"); 876 } else { 877 if (isNonExtLoad()) 878 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 879 "IsNonExtLoad requires IsLoad"); 880 if (isAnyExtLoad()) 881 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 882 "IsAnyExtLoad requires IsLoad"); 883 if (isSignExtLoad()) 884 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 885 "IsSignExtLoad requires IsLoad"); 886 if (isZeroExtLoad()) 887 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 888 "IsZeroExtLoad requires IsLoad"); 889 } 890 891 if (isStore()) { 892 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 893 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr) 894 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 895 "IsStore cannot be used by itself"); 896 } else { 897 if (isNonTruncStore()) 898 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 899 "IsNonTruncStore requires IsStore"); 900 if (isTruncStore()) 901 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 902 "IsTruncStore requires IsStore"); 903 } 904 905 if (isAtomic()) { 906 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 907 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() && 908 !isAtomicOrderingAcquireRelease() && 909 !isAtomicOrderingSequentiallyConsistent() && 910 !isAtomicOrderingAcquireOrStronger() && 911 !isAtomicOrderingReleaseOrStronger() && 912 !isAtomicOrderingWeakerThanAcquire() && 913 !isAtomicOrderingWeakerThanRelease()) 914 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 915 "IsAtomic cannot be used by itself"); 916 } else { 917 if (isAtomicOrderingMonotonic()) 918 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 919 "IsAtomicOrderingMonotonic requires IsAtomic"); 920 if (isAtomicOrderingAcquire()) 921 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 922 "IsAtomicOrderingAcquire requires IsAtomic"); 923 if (isAtomicOrderingRelease()) 924 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 925 "IsAtomicOrderingRelease requires IsAtomic"); 926 if (isAtomicOrderingAcquireRelease()) 927 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 928 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 929 if (isAtomicOrderingSequentiallyConsistent()) 930 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 931 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 932 if (isAtomicOrderingAcquireOrStronger()) 933 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 934 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 935 if (isAtomicOrderingReleaseOrStronger()) 936 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 937 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 938 if (isAtomicOrderingWeakerThanAcquire()) 939 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 940 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 941 } 942 943 if (isLoad() || isStore() || isAtomic()) { 944 StringRef SDNodeName = 945 isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode"; 946 947 Record *MemoryVT = getMemoryVT(); 948 949 if (MemoryVT) 950 Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" + 951 MemoryVT->getName() + ") return false;\n") 952 .str(); 953 } 954 955 if (isAtomic() && isAtomicOrderingMonotonic()) 956 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 957 "AtomicOrdering::Monotonic) return false;\n"; 958 if (isAtomic() && isAtomicOrderingAcquire()) 959 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 960 "AtomicOrdering::Acquire) return false;\n"; 961 if (isAtomic() && isAtomicOrderingRelease()) 962 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 963 "AtomicOrdering::Release) return false;\n"; 964 if (isAtomic() && isAtomicOrderingAcquireRelease()) 965 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 966 "AtomicOrdering::AcquireRelease) return false;\n"; 967 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 968 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 969 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 970 971 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 972 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 973 "return false;\n"; 974 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 975 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 976 "return false;\n"; 977 978 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 979 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 980 "return false;\n"; 981 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 982 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 983 "return false;\n"; 984 985 if (isLoad() || isStore()) { 986 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 987 988 if (isUnindexed()) 989 Code += ("if (cast<" + SDNodeName + 990 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 991 "return false;\n") 992 .str(); 993 994 if (isLoad()) { 995 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 996 isZeroExtLoad()) > 1) 997 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 998 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 999 "IsZeroExtLoad are mutually exclusive"); 1000 if (isNonExtLoad()) 1001 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 1002 "ISD::NON_EXTLOAD) return false;\n"; 1003 if (isAnyExtLoad()) 1004 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1005 "return false;\n"; 1006 if (isSignExtLoad()) 1007 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1008 "return false;\n"; 1009 if (isZeroExtLoad()) 1010 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1011 "return false;\n"; 1012 } else { 1013 if ((isNonTruncStore() + isTruncStore()) > 1) 1014 PrintFatalError( 1015 getOrigPatFragRecord()->getRecord()->getLoc(), 1016 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1017 if (isNonTruncStore()) 1018 Code += 1019 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1020 if (isTruncStore()) 1021 Code += 1022 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1023 } 1024 1025 Record *ScalarMemoryVT = getScalarMemoryVT(); 1026 1027 if (ScalarMemoryVT) 1028 Code += ("if (cast<" + SDNodeName + 1029 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1030 ScalarMemoryVT->getName() + ") return false;\n") 1031 .str(); 1032 } 1033 1034 std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode"); 1035 1036 Code += PredicateCode; 1037 1038 if (PredicateCode.empty() && !Code.empty()) 1039 Code += "return true;\n"; 1040 1041 return Code; 1042 } 1043 1044 bool TreePredicateFn::hasImmCode() const { 1045 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1046 } 1047 1048 std::string TreePredicateFn::getImmCode() const { 1049 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 1050 } 1051 1052 bool TreePredicateFn::immCodeUsesAPInt() const { 1053 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1054 } 1055 1056 bool TreePredicateFn::immCodeUsesAPFloat() const { 1057 bool Unset; 1058 // The return value will be false when IsAPFloat is unset. 1059 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1060 Unset); 1061 } 1062 1063 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1064 bool Value) const { 1065 bool Unset; 1066 bool Result = 1067 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1068 if (Unset) 1069 return false; 1070 return Result == Value; 1071 } 1072 bool TreePredicateFn::isLoad() const { 1073 return isPredefinedPredicateEqualTo("IsLoad", true); 1074 } 1075 bool TreePredicateFn::isStore() const { 1076 return isPredefinedPredicateEqualTo("IsStore", true); 1077 } 1078 bool TreePredicateFn::isAtomic() const { 1079 return isPredefinedPredicateEqualTo("IsAtomic", true); 1080 } 1081 bool TreePredicateFn::isUnindexed() const { 1082 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1083 } 1084 bool TreePredicateFn::isNonExtLoad() const { 1085 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1086 } 1087 bool TreePredicateFn::isAnyExtLoad() const { 1088 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1089 } 1090 bool TreePredicateFn::isSignExtLoad() const { 1091 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1092 } 1093 bool TreePredicateFn::isZeroExtLoad() const { 1094 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1095 } 1096 bool TreePredicateFn::isNonTruncStore() const { 1097 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1098 } 1099 bool TreePredicateFn::isTruncStore() const { 1100 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1101 } 1102 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1103 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1104 } 1105 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1106 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1107 } 1108 bool TreePredicateFn::isAtomicOrderingRelease() const { 1109 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1110 } 1111 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1112 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1113 } 1114 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1115 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1116 true); 1117 } 1118 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1119 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true); 1120 } 1121 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1122 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false); 1123 } 1124 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1125 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true); 1126 } 1127 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1128 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false); 1129 } 1130 Record *TreePredicateFn::getMemoryVT() const { 1131 Record *R = getOrigPatFragRecord()->getRecord(); 1132 if (R->isValueUnset("MemoryVT")) 1133 return nullptr; 1134 return R->getValueAsDef("MemoryVT"); 1135 } 1136 Record *TreePredicateFn::getScalarMemoryVT() const { 1137 Record *R = getOrigPatFragRecord()->getRecord(); 1138 if (R->isValueUnset("ScalarMemoryVT")) 1139 return nullptr; 1140 return R->getValueAsDef("ScalarMemoryVT"); 1141 } 1142 bool TreePredicateFn::hasGISelPredicateCode() const { 1143 return !PatFragRec->getRecord() 1144 ->getValueAsString("GISelPredicateCode") 1145 .empty(); 1146 } 1147 std::string TreePredicateFn::getGISelPredicateCode() const { 1148 return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"); 1149 } 1150 1151 StringRef TreePredicateFn::getImmType() const { 1152 if (immCodeUsesAPInt()) 1153 return "const APInt &"; 1154 if (immCodeUsesAPFloat()) 1155 return "const APFloat &"; 1156 return "int64_t"; 1157 } 1158 1159 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1160 if (immCodeUsesAPInt()) 1161 return "APInt"; 1162 else if (immCodeUsesAPFloat()) 1163 return "APFloat"; 1164 return "I64"; 1165 } 1166 1167 /// isAlwaysTrue - Return true if this is a noop predicate. 1168 bool TreePredicateFn::isAlwaysTrue() const { 1169 return !hasPredCode() && !hasImmCode(); 1170 } 1171 1172 /// Return the name to use in the generated code to reference this, this is 1173 /// "Predicate_foo" if from a pattern fragment "foo". 1174 std::string TreePredicateFn::getFnName() const { 1175 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1176 } 1177 1178 /// getCodeToRunOnSDNode - Return the code for the function body that 1179 /// evaluates this predicate. The argument is expected to be in "Node", 1180 /// not N. This handles casting and conversion to a concrete node type as 1181 /// appropriate. 1182 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1183 // Handle immediate predicates first. 1184 std::string ImmCode = getImmCode(); 1185 if (!ImmCode.empty()) { 1186 if (isLoad()) 1187 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1188 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1189 if (isStore()) 1190 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1191 "IsStore cannot be used with ImmLeaf or its subclasses"); 1192 if (isUnindexed()) 1193 PrintFatalError( 1194 getOrigPatFragRecord()->getRecord()->getLoc(), 1195 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1196 if (isNonExtLoad()) 1197 PrintFatalError( 1198 getOrigPatFragRecord()->getRecord()->getLoc(), 1199 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1200 if (isAnyExtLoad()) 1201 PrintFatalError( 1202 getOrigPatFragRecord()->getRecord()->getLoc(), 1203 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1204 if (isSignExtLoad()) 1205 PrintFatalError( 1206 getOrigPatFragRecord()->getRecord()->getLoc(), 1207 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1208 if (isZeroExtLoad()) 1209 PrintFatalError( 1210 getOrigPatFragRecord()->getRecord()->getLoc(), 1211 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1212 if (isNonTruncStore()) 1213 PrintFatalError( 1214 getOrigPatFragRecord()->getRecord()->getLoc(), 1215 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1216 if (isTruncStore()) 1217 PrintFatalError( 1218 getOrigPatFragRecord()->getRecord()->getLoc(), 1219 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1220 if (getMemoryVT()) 1221 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1222 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1223 if (getScalarMemoryVT()) 1224 PrintFatalError( 1225 getOrigPatFragRecord()->getRecord()->getLoc(), 1226 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1227 1228 std::string Result = (" " + getImmType() + " Imm = ").str(); 1229 if (immCodeUsesAPFloat()) 1230 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1231 else if (immCodeUsesAPInt()) 1232 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; 1233 else 1234 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1235 return Result + ImmCode; 1236 } 1237 1238 // Handle arbitrary node predicates. 1239 assert(hasPredCode() && "Don't have any predicate code!"); 1240 StringRef ClassName; 1241 if (PatFragRec->getOnlyTree()->isLeaf()) 1242 ClassName = "SDNode"; 1243 else { 1244 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 1245 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 1246 } 1247 std::string Result; 1248 if (ClassName == "SDNode") 1249 Result = " SDNode *N = Node;\n"; 1250 else 1251 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1252 1253 return Result + getPredCode(); 1254 } 1255 1256 //===----------------------------------------------------------------------===// 1257 // PatternToMatch implementation 1258 // 1259 1260 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1261 /// patterns before small ones. This is used to determine the size of a 1262 /// pattern. 1263 static unsigned getPatternSize(const TreePatternNode *P, 1264 const CodeGenDAGPatterns &CGP) { 1265 unsigned Size = 3; // The node itself. 1266 // If the root node is a ConstantSDNode, increases its size. 1267 // e.g. (set R32:$dst, 0). 1268 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 1269 Size += 2; 1270 1271 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { 1272 Size += AM->getComplexity(); 1273 // We don't want to count any children twice, so return early. 1274 return Size; 1275 } 1276 1277 // If this node has some predicate function that must match, it adds to the 1278 // complexity of this node. 1279 if (!P->getPredicateFns().empty()) 1280 ++Size; 1281 1282 // Count children in the count if they are also nodes. 1283 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 1284 const TreePatternNode *Child = P->getChild(i); 1285 if (!Child->isLeaf() && Child->getNumTypes()) { 1286 const TypeSetByHwMode &T0 = Child->getExtType(0); 1287 // At this point, all variable type sets should be simple, i.e. only 1288 // have a default mode. 1289 if (T0.getMachineValueType() != MVT::Other) { 1290 Size += getPatternSize(Child, CGP); 1291 continue; 1292 } 1293 } 1294 if (Child->isLeaf()) { 1295 if (isa<IntInit>(Child->getLeafValue())) 1296 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1297 else if (Child->getComplexPatternInfo(CGP)) 1298 Size += getPatternSize(Child, CGP); 1299 else if (!Child->getPredicateFns().empty()) 1300 ++Size; 1301 } 1302 } 1303 1304 return Size; 1305 } 1306 1307 /// Compute the complexity metric for the input pattern. This roughly 1308 /// corresponds to the number of nodes that are covered. 1309 int PatternToMatch:: 1310 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1311 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1312 } 1313 1314 /// getPredicateCheck - Return a single string containing all of this 1315 /// pattern's predicates concatenated with "&&" operators. 1316 /// 1317 std::string PatternToMatch::getPredicateCheck() const { 1318 SmallVector<const Predicate*,4> PredList; 1319 for (const Predicate &P : Predicates) 1320 PredList.push_back(&P); 1321 llvm::sort(PredList, deref<llvm::less>()); 1322 1323 std::string Check; 1324 for (unsigned i = 0, e = PredList.size(); i != e; ++i) { 1325 if (i != 0) 1326 Check += " && "; 1327 Check += '(' + PredList[i]->getCondString() + ')'; 1328 } 1329 return Check; 1330 } 1331 1332 //===----------------------------------------------------------------------===// 1333 // SDTypeConstraint implementation 1334 // 1335 1336 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1337 OperandNo = R->getValueAsInt("OperandNum"); 1338 1339 if (R->isSubClassOf("SDTCisVT")) { 1340 ConstraintType = SDTCisVT; 1341 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1342 for (const auto &P : VVT) 1343 if (P.second == MVT::isVoid) 1344 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1345 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1346 ConstraintType = SDTCisPtrTy; 1347 } else if (R->isSubClassOf("SDTCisInt")) { 1348 ConstraintType = SDTCisInt; 1349 } else if (R->isSubClassOf("SDTCisFP")) { 1350 ConstraintType = SDTCisFP; 1351 } else if (R->isSubClassOf("SDTCisVec")) { 1352 ConstraintType = SDTCisVec; 1353 } else if (R->isSubClassOf("SDTCisSameAs")) { 1354 ConstraintType = SDTCisSameAs; 1355 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1356 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1357 ConstraintType = SDTCisVTSmallerThanOp; 1358 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1359 R->getValueAsInt("OtherOperandNum"); 1360 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1361 ConstraintType = SDTCisOpSmallerThanOp; 1362 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1363 R->getValueAsInt("BigOperandNum"); 1364 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1365 ConstraintType = SDTCisEltOfVec; 1366 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1367 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1368 ConstraintType = SDTCisSubVecOfVec; 1369 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 1370 R->getValueAsInt("OtherOpNum"); 1371 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1372 ConstraintType = SDTCVecEltisVT; 1373 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1374 for (const auto &P : VVT) { 1375 MVT T = P.second; 1376 if (T.isVector()) 1377 PrintFatalError(R->getLoc(), 1378 "Cannot use vector type as SDTCVecEltisVT"); 1379 if (!T.isInteger() && !T.isFloatingPoint()) 1380 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1381 "as SDTCVecEltisVT"); 1382 } 1383 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1384 ConstraintType = SDTCisSameNumEltsAs; 1385 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1386 R->getValueAsInt("OtherOperandNum"); 1387 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1388 ConstraintType = SDTCisSameSizeAs; 1389 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1390 R->getValueAsInt("OtherOperandNum"); 1391 } else { 1392 PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1393 } 1394 } 1395 1396 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1397 /// N, and the result number in ResNo. 1398 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 1399 const SDNodeInfo &NodeInfo, 1400 unsigned &ResNo) { 1401 unsigned NumResults = NodeInfo.getNumResults(); 1402 if (OpNo < NumResults) { 1403 ResNo = OpNo; 1404 return N; 1405 } 1406 1407 OpNo -= NumResults; 1408 1409 if (OpNo >= N->getNumChildren()) { 1410 std::string S; 1411 raw_string_ostream OS(S); 1412 OS << "Invalid operand number in type constraint " 1413 << (OpNo+NumResults) << " "; 1414 N->print(OS); 1415 PrintFatalError(OS.str()); 1416 } 1417 1418 return N->getChild(OpNo); 1419 } 1420 1421 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1422 /// constraint to the nodes operands. This returns true if it makes a 1423 /// change, false otherwise. If a type contradiction is found, flag an error. 1424 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 1425 const SDNodeInfo &NodeInfo, 1426 TreePattern &TP) const { 1427 if (TP.hasError()) 1428 return false; 1429 1430 unsigned ResNo = 0; // The result number being referenced. 1431 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1432 TypeInfer &TI = TP.getInfer(); 1433 1434 switch (ConstraintType) { 1435 case SDTCisVT: 1436 // Operand must be a particular type. 1437 return NodeToApply->UpdateNodeType(ResNo, VVT, TP); 1438 case SDTCisPtrTy: 1439 // Operand must be same as target pointer type. 1440 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1441 case SDTCisInt: 1442 // Require it to be one of the legal integer VTs. 1443 return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); 1444 case SDTCisFP: 1445 // Require it to be one of the legal fp VTs. 1446 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); 1447 case SDTCisVec: 1448 // Require it to be one of the legal vector VTs. 1449 return TI.EnforceVector(NodeToApply->getExtType(ResNo)); 1450 case SDTCisSameAs: { 1451 unsigned OResNo = 0; 1452 TreePatternNode *OtherNode = 1453 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1454 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 1455 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 1456 } 1457 case SDTCisVTSmallerThanOp: { 1458 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1459 // have an integer type that is smaller than the VT. 1460 if (!NodeToApply->isLeaf() || 1461 !isa<DefInit>(NodeToApply->getLeafValue()) || 1462 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1463 ->isSubClassOf("ValueType")) { 1464 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1465 return false; 1466 } 1467 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue()); 1468 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1469 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1470 TypeSetByHwMode TypeListTmp(VVT); 1471 1472 unsigned OResNo = 0; 1473 TreePatternNode *OtherNode = 1474 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1475 OResNo); 1476 1477 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo)); 1478 } 1479 case SDTCisOpSmallerThanOp: { 1480 unsigned BResNo = 0; 1481 TreePatternNode *BigOperand = 1482 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1483 BResNo); 1484 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), 1485 BigOperand->getExtType(BResNo)); 1486 } 1487 case SDTCisEltOfVec: { 1488 unsigned VResNo = 0; 1489 TreePatternNode *VecOperand = 1490 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1491 VResNo); 1492 // Filter vector types out of VecOperand that don't have the right element 1493 // type. 1494 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), 1495 NodeToApply->getExtType(ResNo)); 1496 } 1497 case SDTCisSubVecOfVec: { 1498 unsigned VResNo = 0; 1499 TreePatternNode *BigVecOperand = 1500 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1501 VResNo); 1502 1503 // Filter vector types out of BigVecOperand that don't have the 1504 // right subvector type. 1505 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), 1506 NodeToApply->getExtType(ResNo)); 1507 } 1508 case SDTCVecEltisVT: { 1509 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); 1510 } 1511 case SDTCisSameNumEltsAs: { 1512 unsigned OResNo = 0; 1513 TreePatternNode *OtherNode = 1514 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1515 N, NodeInfo, OResNo); 1516 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), 1517 NodeToApply->getExtType(ResNo)); 1518 } 1519 case SDTCisSameSizeAs: { 1520 unsigned OResNo = 0; 1521 TreePatternNode *OtherNode = 1522 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1523 N, NodeInfo, OResNo); 1524 return TI.EnforceSameSize(OtherNode->getExtType(OResNo), 1525 NodeToApply->getExtType(ResNo)); 1526 } 1527 } 1528 llvm_unreachable("Invalid ConstraintType!"); 1529 } 1530 1531 // Update the node type to match an instruction operand or result as specified 1532 // in the ins or outs lists on the instruction definition. Return true if the 1533 // type was actually changed. 1534 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1535 Record *Operand, 1536 TreePattern &TP) { 1537 // The 'unknown' operand indicates that types should be inferred from the 1538 // context. 1539 if (Operand->isSubClassOf("unknown_class")) 1540 return false; 1541 1542 // The Operand class specifies a type directly. 1543 if (Operand->isSubClassOf("Operand")) { 1544 Record *R = Operand->getValueAsDef("Type"); 1545 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1546 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1547 } 1548 1549 // PointerLikeRegClass has a type that is determined at runtime. 1550 if (Operand->isSubClassOf("PointerLikeRegClass")) 1551 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1552 1553 // Both RegisterClass and RegisterOperand operands derive their types from a 1554 // register class def. 1555 Record *RC = nullptr; 1556 if (Operand->isSubClassOf("RegisterClass")) 1557 RC = Operand; 1558 else if (Operand->isSubClassOf("RegisterOperand")) 1559 RC = Operand->getValueAsDef("RegClass"); 1560 1561 assert(RC && "Unknown operand type"); 1562 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1563 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1564 } 1565 1566 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1567 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1568 if (!TP.getInfer().isConcrete(Types[i], true)) 1569 return true; 1570 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1571 if (getChild(i)->ContainsUnresolvedType(TP)) 1572 return true; 1573 return false; 1574 } 1575 1576 bool TreePatternNode::hasProperTypeByHwMode() const { 1577 for (const TypeSetByHwMode &S : Types) 1578 if (!S.isDefaultOnly()) 1579 return true; 1580 for (const TreePatternNodePtr &C : Children) 1581 if (C->hasProperTypeByHwMode()) 1582 return true; 1583 return false; 1584 } 1585 1586 bool TreePatternNode::hasPossibleType() const { 1587 for (const TypeSetByHwMode &S : Types) 1588 if (!S.isPossible()) 1589 return false; 1590 for (const TreePatternNodePtr &C : Children) 1591 if (!C->hasPossibleType()) 1592 return false; 1593 return true; 1594 } 1595 1596 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1597 for (TypeSetByHwMode &S : Types) { 1598 S.makeSimple(Mode); 1599 // Check if the selected mode had a type conflict. 1600 if (S.get(DefaultMode).empty()) 1601 return false; 1602 } 1603 for (const TreePatternNodePtr &C : Children) 1604 if (!C->setDefaultMode(Mode)) 1605 return false; 1606 return true; 1607 } 1608 1609 //===----------------------------------------------------------------------===// 1610 // SDNodeInfo implementation 1611 // 1612 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1613 EnumName = R->getValueAsString("Opcode"); 1614 SDClassName = R->getValueAsString("SDClass"); 1615 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1616 NumResults = TypeProfile->getValueAsInt("NumResults"); 1617 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1618 1619 // Parse the properties. 1620 Properties = parseSDPatternOperatorProperties(R); 1621 1622 // Parse the type constraints. 1623 std::vector<Record*> ConstraintList = 1624 TypeProfile->getValueAsListOfDefs("Constraints"); 1625 for (Record *R : ConstraintList) 1626 TypeConstraints.emplace_back(R, CGH); 1627 } 1628 1629 /// getKnownType - If the type constraints on this node imply a fixed type 1630 /// (e.g. all stores return void, etc), then return it as an 1631 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1632 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1633 unsigned NumResults = getNumResults(); 1634 assert(NumResults <= 1 && 1635 "We only work with nodes with zero or one result so far!"); 1636 assert(ResNo == 0 && "Only handles single result nodes so far"); 1637 1638 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1639 // Make sure that this applies to the correct node result. 1640 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1641 continue; 1642 1643 switch (Constraint.ConstraintType) { 1644 default: break; 1645 case SDTypeConstraint::SDTCisVT: 1646 if (Constraint.VVT.isSimple()) 1647 return Constraint.VVT.getSimple().SimpleTy; 1648 break; 1649 case SDTypeConstraint::SDTCisPtrTy: 1650 return MVT::iPTR; 1651 } 1652 } 1653 return MVT::Other; 1654 } 1655 1656 //===----------------------------------------------------------------------===// 1657 // TreePatternNode implementation 1658 // 1659 1660 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1661 if (Operator->getName() == "set" || 1662 Operator->getName() == "implicit") 1663 return 0; // All return nothing. 1664 1665 if (Operator->isSubClassOf("Intrinsic")) 1666 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1667 1668 if (Operator->isSubClassOf("SDNode")) 1669 return CDP.getSDNodeInfo(Operator).getNumResults(); 1670 1671 if (Operator->isSubClassOf("PatFrags")) { 1672 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1673 // the forward reference case where one pattern fragment references another 1674 // before it is processed. 1675 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { 1676 // The number of results of a fragment with alternative records is the 1677 // maximum number of results across all alternatives. 1678 unsigned NumResults = 0; 1679 for (auto T : PFRec->getTrees()) 1680 NumResults = std::max(NumResults, T->getNumTypes()); 1681 return NumResults; 1682 } 1683 1684 ListInit *LI = Operator->getValueAsListInit("Fragments"); 1685 assert(LI && "Invalid Fragment"); 1686 unsigned NumResults = 0; 1687 for (Init *I : LI->getValues()) { 1688 Record *Op = nullptr; 1689 if (DagInit *Dag = dyn_cast<DagInit>(I)) 1690 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) 1691 Op = DI->getDef(); 1692 assert(Op && "Invalid Fragment"); 1693 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); 1694 } 1695 return NumResults; 1696 } 1697 1698 if (Operator->isSubClassOf("Instruction")) { 1699 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1700 1701 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1702 1703 // Subtract any defaulted outputs. 1704 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1705 Record *OperandNode = InstInfo.Operands[i].Rec; 1706 1707 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1708 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1709 --NumDefsToAdd; 1710 } 1711 1712 // Add on one implicit def if it has a resolvable type. 1713 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1714 ++NumDefsToAdd; 1715 return NumDefsToAdd; 1716 } 1717 1718 if (Operator->isSubClassOf("SDNodeXForm")) 1719 return 1; // FIXME: Generalize SDNodeXForm 1720 1721 if (Operator->isSubClassOf("ValueType")) 1722 return 1; // A type-cast of one result. 1723 1724 if (Operator->isSubClassOf("ComplexPattern")) 1725 return 1; 1726 1727 errs() << *Operator; 1728 PrintFatalError("Unhandled node in GetNumNodeResults"); 1729 } 1730 1731 void TreePatternNode::print(raw_ostream &OS) const { 1732 if (isLeaf()) 1733 OS << *getLeafValue(); 1734 else 1735 OS << '(' << getOperator()->getName(); 1736 1737 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1738 OS << ':'; 1739 getExtType(i).writeToStream(OS); 1740 } 1741 1742 if (!isLeaf()) { 1743 if (getNumChildren() != 0) { 1744 OS << " "; 1745 getChild(0)->print(OS); 1746 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1747 OS << ", "; 1748 getChild(i)->print(OS); 1749 } 1750 } 1751 OS << ")"; 1752 } 1753 1754 for (const TreePredicateFn &Pred : PredicateFns) 1755 OS << "<<P:" << Pred.getFnName() << ">>"; 1756 if (TransformFn) 1757 OS << "<<X:" << TransformFn->getName() << ">>"; 1758 if (!getName().empty()) 1759 OS << ":$" << getName(); 1760 1761 } 1762 void TreePatternNode::dump() const { 1763 print(errs()); 1764 } 1765 1766 /// isIsomorphicTo - Return true if this node is recursively 1767 /// isomorphic to the specified node. For this comparison, the node's 1768 /// entire state is considered. The assigned name is ignored, since 1769 /// nodes with differing names are considered isomorphic. However, if 1770 /// the assigned name is present in the dependent variable set, then 1771 /// the assigned name is considered significant and the node is 1772 /// isomorphic if the names match. 1773 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1774 const MultipleUseVarSet &DepVars) const { 1775 if (N == this) return true; 1776 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1777 getPredicateFns() != N->getPredicateFns() || 1778 getTransformFn() != N->getTransformFn()) 1779 return false; 1780 1781 if (isLeaf()) { 1782 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1783 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1784 return ((DI->getDef() == NDI->getDef()) 1785 && (DepVars.find(getName()) == DepVars.end() 1786 || getName() == N->getName())); 1787 } 1788 } 1789 return getLeafValue() == N->getLeafValue(); 1790 } 1791 1792 if (N->getOperator() != getOperator() || 1793 N->getNumChildren() != getNumChildren()) return false; 1794 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1795 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1796 return false; 1797 return true; 1798 } 1799 1800 /// clone - Make a copy of this tree and all of its children. 1801 /// 1802 TreePatternNodePtr TreePatternNode::clone() const { 1803 TreePatternNodePtr New; 1804 if (isLeaf()) { 1805 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes()); 1806 } else { 1807 std::vector<TreePatternNodePtr> CChildren; 1808 CChildren.reserve(Children.size()); 1809 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1810 CChildren.push_back(getChild(i)->clone()); 1811 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren), 1812 getNumTypes()); 1813 } 1814 New->setName(getName()); 1815 New->Types = Types; 1816 New->setPredicateFns(getPredicateFns()); 1817 New->setTransformFn(getTransformFn()); 1818 return New; 1819 } 1820 1821 /// RemoveAllTypes - Recursively strip all the types of this tree. 1822 void TreePatternNode::RemoveAllTypes() { 1823 // Reset to unknown type. 1824 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 1825 if (isLeaf()) return; 1826 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1827 getChild(i)->RemoveAllTypes(); 1828 } 1829 1830 1831 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1832 /// with actual values specified by ArgMap. 1833 void TreePatternNode::SubstituteFormalArguments( 1834 std::map<std::string, TreePatternNodePtr> &ArgMap) { 1835 if (isLeaf()) return; 1836 1837 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1838 TreePatternNode *Child = getChild(i); 1839 if (Child->isLeaf()) { 1840 Init *Val = Child->getLeafValue(); 1841 // Note that, when substituting into an output pattern, Val might be an 1842 // UnsetInit. 1843 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1844 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1845 // We found a use of a formal argument, replace it with its value. 1846 TreePatternNodePtr NewChild = ArgMap[Child->getName()]; 1847 assert(NewChild && "Couldn't find formal argument!"); 1848 assert((Child->getPredicateFns().empty() || 1849 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1850 "Non-empty child predicate clobbered!"); 1851 setChild(i, std::move(NewChild)); 1852 } 1853 } else { 1854 getChild(i)->SubstituteFormalArguments(ArgMap); 1855 } 1856 } 1857 } 1858 1859 1860 /// InlinePatternFragments - If this pattern refers to any pattern 1861 /// fragments, return the set of inlined versions (this can be more than 1862 /// one if a PatFrags record has multiple alternatives). 1863 void TreePatternNode::InlinePatternFragments( 1864 TreePatternNodePtr T, TreePattern &TP, 1865 std::vector<TreePatternNodePtr> &OutAlternatives) { 1866 1867 if (TP.hasError()) 1868 return; 1869 1870 if (isLeaf()) { 1871 OutAlternatives.push_back(T); // nothing to do. 1872 return; 1873 } 1874 1875 Record *Op = getOperator(); 1876 1877 if (!Op->isSubClassOf("PatFrags")) { 1878 if (getNumChildren() == 0) { 1879 OutAlternatives.push_back(T); 1880 return; 1881 } 1882 1883 // Recursively inline children nodes. 1884 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives; 1885 ChildAlternatives.resize(getNumChildren()); 1886 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1887 TreePatternNodePtr Child = getChildShared(i); 1888 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]); 1889 // If there are no alternatives for any child, there are no 1890 // alternatives for this expression as whole. 1891 if (ChildAlternatives[i].empty()) 1892 return; 1893 1894 for (auto NewChild : ChildAlternatives[i]) 1895 assert((Child->getPredicateFns().empty() || 1896 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1897 "Non-empty child predicate clobbered!"); 1898 } 1899 1900 // The end result is an all-pairs construction of the resultant pattern. 1901 std::vector<unsigned> Idxs; 1902 Idxs.resize(ChildAlternatives.size()); 1903 bool NotDone; 1904 do { 1905 // Create the variant and add it to the output list. 1906 std::vector<TreePatternNodePtr> NewChildren; 1907 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) 1908 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); 1909 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 1910 getOperator(), std::move(NewChildren), getNumTypes()); 1911 1912 // Copy over properties. 1913 R->setName(getName()); 1914 R->setPredicateFns(getPredicateFns()); 1915 R->setTransformFn(getTransformFn()); 1916 for (unsigned i = 0, e = getNumTypes(); i != e; ++i) 1917 R->setType(i, getExtType(i)); 1918 1919 // Register alternative. 1920 OutAlternatives.push_back(R); 1921 1922 // Increment indices to the next permutation by incrementing the 1923 // indices from last index backward, e.g., generate the sequence 1924 // [0, 0], [0, 1], [1, 0], [1, 1]. 1925 int IdxsIdx; 1926 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 1927 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) 1928 Idxs[IdxsIdx] = 0; 1929 else 1930 break; 1931 } 1932 NotDone = (IdxsIdx >= 0); 1933 } while (NotDone); 1934 1935 return; 1936 } 1937 1938 // Otherwise, we found a reference to a fragment. First, look up its 1939 // TreePattern record. 1940 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1941 1942 // Verify that we are passing the right number of operands. 1943 if (Frag->getNumArgs() != Children.size()) { 1944 TP.error("'" + Op->getName() + "' fragment requires " + 1945 Twine(Frag->getNumArgs()) + " operands!"); 1946 return; 1947 } 1948 1949 // Compute the map of formal to actual arguments. 1950 std::map<std::string, TreePatternNodePtr> ArgMap; 1951 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 1952 const TreePatternNodePtr &Child = getChildShared(i); 1953 ArgMap[Frag->getArgName(i)] = Child; 1954 } 1955 1956 // Loop over all fragment alternatives. 1957 for (auto Alternative : Frag->getTrees()) { 1958 TreePatternNodePtr FragTree = Alternative->clone(); 1959 1960 TreePredicateFn PredFn(Frag); 1961 if (!PredFn.isAlwaysTrue()) 1962 FragTree->addPredicateFn(PredFn); 1963 1964 // Resolve formal arguments to their actual value. 1965 if (Frag->getNumArgs()) 1966 FragTree->SubstituteFormalArguments(ArgMap); 1967 1968 // Transfer types. Note that the resolved alternative may have fewer 1969 // (but not more) results than the PatFrags node. 1970 FragTree->setName(getName()); 1971 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) 1972 FragTree->UpdateNodeType(i, getExtType(i), TP); 1973 1974 // Transfer in the old predicates. 1975 for (const TreePredicateFn &Pred : getPredicateFns()) 1976 FragTree->addPredicateFn(Pred); 1977 1978 // The fragment we inlined could have recursive inlining that is needed. See 1979 // if there are any pattern fragments in it and inline them as needed. 1980 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives); 1981 } 1982 } 1983 1984 /// getImplicitType - Check to see if the specified record has an implicit 1985 /// type which should be applied to it. This will infer the type of register 1986 /// references from the register file information, for example. 1987 /// 1988 /// When Unnamed is set, return the type of a DAG operand with no name, such as 1989 /// the F8RC register class argument in: 1990 /// 1991 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 1992 /// 1993 /// When Unnamed is false, return the type of a named DAG operand such as the 1994 /// GPR:$src operand above. 1995 /// 1996 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 1997 bool NotRegisters, 1998 bool Unnamed, 1999 TreePattern &TP) { 2000 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2001 2002 // Check to see if this is a register operand. 2003 if (R->isSubClassOf("RegisterOperand")) { 2004 assert(ResNo == 0 && "Regoperand ref only has one result!"); 2005 if (NotRegisters) 2006 return TypeSetByHwMode(); // Unknown. 2007 Record *RegClass = R->getValueAsDef("RegClass"); 2008 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2009 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 2010 } 2011 2012 // Check to see if this is a register or a register class. 2013 if (R->isSubClassOf("RegisterClass")) { 2014 assert(ResNo == 0 && "Regclass ref only has one result!"); 2015 // An unnamed register class represents itself as an i32 immediate, for 2016 // example on a COPY_TO_REGCLASS instruction. 2017 if (Unnamed) 2018 return TypeSetByHwMode(MVT::i32); 2019 2020 // In a named operand, the register class provides the possible set of 2021 // types. 2022 if (NotRegisters) 2023 return TypeSetByHwMode(); // Unknown. 2024 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2025 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 2026 } 2027 2028 if (R->isSubClassOf("PatFrags")) { 2029 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 2030 // Pattern fragment types will be resolved when they are inlined. 2031 return TypeSetByHwMode(); // Unknown. 2032 } 2033 2034 if (R->isSubClassOf("Register")) { 2035 assert(ResNo == 0 && "Registers only produce one result!"); 2036 if (NotRegisters) 2037 return TypeSetByHwMode(); // Unknown. 2038 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2039 return TypeSetByHwMode(T.getRegisterVTs(R)); 2040 } 2041 2042 if (R->isSubClassOf("SubRegIndex")) { 2043 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 2044 return TypeSetByHwMode(MVT::i32); 2045 } 2046 2047 if (R->isSubClassOf("ValueType")) { 2048 assert(ResNo == 0 && "This node only has one result!"); 2049 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 2050 // 2051 // (sext_inreg GPR:$src, i16) 2052 // ~~~ 2053 if (Unnamed) 2054 return TypeSetByHwMode(MVT::Other); 2055 // With a name, the ValueType simply provides the type of the named 2056 // variable. 2057 // 2058 // (sext_inreg i32:$src, i16) 2059 // ~~~~~~~~ 2060 if (NotRegisters) 2061 return TypeSetByHwMode(); // Unknown. 2062 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2063 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 2064 } 2065 2066 if (R->isSubClassOf("CondCode")) { 2067 assert(ResNo == 0 && "This node only has one result!"); 2068 // Using a CondCodeSDNode. 2069 return TypeSetByHwMode(MVT::Other); 2070 } 2071 2072 if (R->isSubClassOf("ComplexPattern")) { 2073 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2074 if (NotRegisters) 2075 return TypeSetByHwMode(); // Unknown. 2076 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType()); 2077 } 2078 if (R->isSubClassOf("PointerLikeRegClass")) { 2079 assert(ResNo == 0 && "Regclass can only have one result!"); 2080 TypeSetByHwMode VTS(MVT::iPTR); 2081 TP.getInfer().expandOverloads(VTS); 2082 return VTS; 2083 } 2084 2085 if (R->getName() == "node" || R->getName() == "srcvalue" || 2086 R->getName() == "zero_reg") { 2087 // Placeholder. 2088 return TypeSetByHwMode(); // Unknown. 2089 } 2090 2091 if (R->isSubClassOf("Operand")) { 2092 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2093 Record *T = R->getValueAsDef("Type"); 2094 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2095 } 2096 2097 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2098 return TypeSetByHwMode(MVT::Other); 2099 } 2100 2101 2102 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2103 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2104 const CodeGenIntrinsic *TreePatternNode:: 2105 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2106 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2107 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2108 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2109 return nullptr; 2110 2111 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 2112 return &CDP.getIntrinsicInfo(IID); 2113 } 2114 2115 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2116 /// return the ComplexPattern information, otherwise return null. 2117 const ComplexPattern * 2118 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2119 Record *Rec; 2120 if (isLeaf()) { 2121 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2122 if (!DI) 2123 return nullptr; 2124 Rec = DI->getDef(); 2125 } else 2126 Rec = getOperator(); 2127 2128 if (!Rec->isSubClassOf("ComplexPattern")) 2129 return nullptr; 2130 return &CGP.getComplexPattern(Rec); 2131 } 2132 2133 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2134 // A ComplexPattern specifically declares how many results it fills in. 2135 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2136 return CP->getNumOperands(); 2137 2138 // If MIOperandInfo is specified, that gives the count. 2139 if (isLeaf()) { 2140 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2141 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2142 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2143 if (MIOps->getNumArgs()) 2144 return MIOps->getNumArgs(); 2145 } 2146 } 2147 2148 // Otherwise there is just one result. 2149 return 1; 2150 } 2151 2152 /// NodeHasProperty - Return true if this node has the specified property. 2153 bool TreePatternNode::NodeHasProperty(SDNP Property, 2154 const CodeGenDAGPatterns &CGP) const { 2155 if (isLeaf()) { 2156 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2157 return CP->hasProperty(Property); 2158 2159 return false; 2160 } 2161 2162 if (Property != SDNPHasChain) { 2163 // The chain proprety is already present on the different intrinsic node 2164 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2165 // on the intrinsic. Anything else is specific to the individual intrinsic. 2166 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2167 return Int->hasProperty(Property); 2168 } 2169 2170 if (!Operator->isSubClassOf("SDPatternOperator")) 2171 return false; 2172 2173 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 2174 } 2175 2176 2177 2178 2179 /// TreeHasProperty - Return true if any node in this tree has the specified 2180 /// property. 2181 bool TreePatternNode::TreeHasProperty(SDNP Property, 2182 const CodeGenDAGPatterns &CGP) const { 2183 if (NodeHasProperty(Property, CGP)) 2184 return true; 2185 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2186 if (getChild(i)->TreeHasProperty(Property, CGP)) 2187 return true; 2188 return false; 2189 } 2190 2191 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2192 /// commutative intrinsic. 2193 bool 2194 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 2195 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2196 return Int->isCommutative; 2197 return false; 2198 } 2199 2200 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 2201 if (!N->isLeaf()) 2202 return N->getOperator()->isSubClassOf(Class); 2203 2204 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 2205 if (DI && DI->getDef()->isSubClassOf(Class)) 2206 return true; 2207 2208 return false; 2209 } 2210 2211 static void emitTooManyOperandsError(TreePattern &TP, 2212 StringRef InstName, 2213 unsigned Expected, 2214 unsigned Actual) { 2215 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2216 " operands but expected only " + Twine(Expected) + "!"); 2217 } 2218 2219 static void emitTooFewOperandsError(TreePattern &TP, 2220 StringRef InstName, 2221 unsigned Actual) { 2222 TP.error("Instruction '" + InstName + 2223 "' expects more than the provided " + Twine(Actual) + " operands!"); 2224 } 2225 2226 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2227 /// this node and its children in the tree. This returns true if it makes a 2228 /// change, false otherwise. If a type contradiction is found, flag an error. 2229 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2230 if (TP.hasError()) 2231 return false; 2232 2233 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2234 if (isLeaf()) { 2235 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2236 // If it's a regclass or something else known, include the type. 2237 bool MadeChange = false; 2238 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2239 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 2240 NotRegisters, 2241 !hasName(), TP), TP); 2242 return MadeChange; 2243 } 2244 2245 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2246 assert(Types.size() == 1 && "Invalid IntInit"); 2247 2248 // Int inits are always integers. :) 2249 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2250 2251 if (!TP.getInfer().isConcrete(Types[0], false)) 2252 return MadeChange; 2253 2254 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2255 for (auto &P : VVT) { 2256 MVT::SimpleValueType VT = P.second.SimpleTy; 2257 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2258 continue; 2259 unsigned Size = MVT(VT).getSizeInBits(); 2260 // Make sure that the value is representable for this type. 2261 if (Size >= 32) 2262 continue; 2263 // Check that the value doesn't use more bits than we have. It must 2264 // either be a sign- or zero-extended equivalent of the original. 2265 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2266 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2267 SignBitAndAbove == 1) 2268 continue; 2269 2270 TP.error("Integer value '" + Twine(II->getValue()) + 2271 "' is out of range for type '" + getEnumName(VT) + "'!"); 2272 break; 2273 } 2274 return MadeChange; 2275 } 2276 2277 return false; 2278 } 2279 2280 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2281 bool MadeChange = false; 2282 2283 // Apply the result type to the node. 2284 unsigned NumRetVTs = Int->IS.RetVTs.size(); 2285 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 2286 2287 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2288 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 2289 2290 if (getNumChildren() != NumParamVTs + 1) { 2291 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2292 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2293 return false; 2294 } 2295 2296 // Apply type info to the intrinsic ID. 2297 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 2298 2299 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 2300 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 2301 2302 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 2303 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 2304 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 2305 } 2306 return MadeChange; 2307 } 2308 2309 if (getOperator()->isSubClassOf("SDNode")) { 2310 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2311 2312 // Check that the number of operands is sane. Negative operands -> varargs. 2313 if (NI.getNumOperands() >= 0 && 2314 getNumChildren() != (unsigned)NI.getNumOperands()) { 2315 TP.error(getOperator()->getName() + " node requires exactly " + 2316 Twine(NI.getNumOperands()) + " operands!"); 2317 return false; 2318 } 2319 2320 bool MadeChange = false; 2321 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2322 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2323 MadeChange |= NI.ApplyTypeConstraints(this, TP); 2324 return MadeChange; 2325 } 2326 2327 if (getOperator()->isSubClassOf("Instruction")) { 2328 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2329 CodeGenInstruction &InstInfo = 2330 CDP.getTargetInfo().getInstruction(getOperator()); 2331 2332 bool MadeChange = false; 2333 2334 // Apply the result types to the node, these come from the things in the 2335 // (outs) list of the instruction. 2336 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 2337 Inst.getNumResults()); 2338 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2339 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2340 2341 // If the instruction has implicit defs, we apply the first one as a result. 2342 // FIXME: This sucks, it should apply all implicit defs. 2343 if (!InstInfo.ImplicitDefs.empty()) { 2344 unsigned ResNo = NumResultsToAdd; 2345 2346 // FIXME: Generalize to multiple possible types and multiple possible 2347 // ImplicitDefs. 2348 MVT::SimpleValueType VT = 2349 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2350 2351 if (VT != MVT::Other) 2352 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2353 } 2354 2355 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2356 // be the same. 2357 if (getOperator()->getName() == "INSERT_SUBREG") { 2358 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 2359 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 2360 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 2361 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2362 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2363 // variadic. 2364 2365 unsigned NChild = getNumChildren(); 2366 if (NChild < 3) { 2367 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2368 return false; 2369 } 2370 2371 if (NChild % 2 == 0) { 2372 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2373 return false; 2374 } 2375 2376 if (!isOperandClass(getChild(0), "RegisterClass")) { 2377 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2378 return false; 2379 } 2380 2381 for (unsigned I = 1; I < NChild; I += 2) { 2382 TreePatternNode *SubIdxChild = getChild(I + 1); 2383 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2384 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2385 Twine(I + 1) + "!"); 2386 return false; 2387 } 2388 } 2389 } 2390 2391 unsigned ChildNo = 0; 2392 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 2393 Record *OperandNode = Inst.getOperand(i); 2394 2395 // If the instruction expects a predicate or optional def operand, we 2396 // codegen this by setting the operand to it's default value if it has a 2397 // non-empty DefaultOps field. 2398 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 2399 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 2400 continue; 2401 2402 // Verify that we didn't run out of provided operands. 2403 if (ChildNo >= getNumChildren()) { 2404 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2405 return false; 2406 } 2407 2408 TreePatternNode *Child = getChild(ChildNo++); 2409 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2410 2411 // If the operand has sub-operands, they may be provided by distinct 2412 // child patterns, so attempt to match each sub-operand separately. 2413 if (OperandNode->isSubClassOf("Operand")) { 2414 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2415 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2416 // But don't do that if the whole operand is being provided by 2417 // a single ComplexPattern-related Operand. 2418 2419 if (Child->getNumMIResults(CDP) < NumArgs) { 2420 // Match first sub-operand against the child we already have. 2421 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2422 MadeChange |= 2423 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2424 2425 // And the remaining sub-operands against subsequent children. 2426 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2427 if (ChildNo >= getNumChildren()) { 2428 emitTooFewOperandsError(TP, getOperator()->getName(), 2429 getNumChildren()); 2430 return false; 2431 } 2432 Child = getChild(ChildNo++); 2433 2434 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2435 MadeChange |= 2436 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2437 } 2438 continue; 2439 } 2440 } 2441 } 2442 2443 // If we didn't match by pieces above, attempt to match the whole 2444 // operand now. 2445 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2446 } 2447 2448 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2449 emitTooManyOperandsError(TP, getOperator()->getName(), 2450 ChildNo, getNumChildren()); 2451 return false; 2452 } 2453 2454 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2455 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2456 return MadeChange; 2457 } 2458 2459 if (getOperator()->isSubClassOf("ComplexPattern")) { 2460 bool MadeChange = false; 2461 2462 for (unsigned i = 0; i < getNumChildren(); ++i) 2463 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2464 2465 return MadeChange; 2466 } 2467 2468 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2469 2470 // Node transforms always take one operand. 2471 if (getNumChildren() != 1) { 2472 TP.error("Node transform '" + getOperator()->getName() + 2473 "' requires one operand!"); 2474 return false; 2475 } 2476 2477 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 2478 return MadeChange; 2479 } 2480 2481 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2482 /// RHS of a commutative operation, not the on LHS. 2483 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 2484 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 2485 return true; 2486 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 2487 return true; 2488 return false; 2489 } 2490 2491 2492 /// canPatternMatch - If it is impossible for this pattern to match on this 2493 /// target, fill in Reason and return false. Otherwise, return true. This is 2494 /// used as a sanity check for .td files (to prevent people from writing stuff 2495 /// that can never possibly work), and to prevent the pattern permuter from 2496 /// generating stuff that is useless. 2497 bool TreePatternNode::canPatternMatch(std::string &Reason, 2498 const CodeGenDAGPatterns &CDP) { 2499 if (isLeaf()) return true; 2500 2501 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2502 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2503 return false; 2504 2505 // If this is an intrinsic, handle cases that would make it not match. For 2506 // example, if an operand is required to be an immediate. 2507 if (getOperator()->isSubClassOf("Intrinsic")) { 2508 // TODO: 2509 return true; 2510 } 2511 2512 if (getOperator()->isSubClassOf("ComplexPattern")) 2513 return true; 2514 2515 // If this node is a commutative operator, check that the LHS isn't an 2516 // immediate. 2517 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2518 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2519 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2520 // Scan all of the operands of the node and make sure that only the last one 2521 // is a constant node, unless the RHS also is. 2522 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2523 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2524 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2525 if (OnlyOnRHSOfCommutative(getChild(i))) { 2526 Reason="Immediate value must be on the RHS of commutative operators!"; 2527 return false; 2528 } 2529 } 2530 } 2531 2532 return true; 2533 } 2534 2535 //===----------------------------------------------------------------------===// 2536 // TreePattern implementation 2537 // 2538 2539 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2540 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2541 isInputPattern(isInput), HasError(false), 2542 Infer(*this) { 2543 for (Init *I : RawPat->getValues()) 2544 Trees.push_back(ParseTreePattern(I, "")); 2545 } 2546 2547 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2548 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2549 isInputPattern(isInput), HasError(false), 2550 Infer(*this) { 2551 Trees.push_back(ParseTreePattern(Pat, "")); 2552 } 2553 2554 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 2555 CodeGenDAGPatterns &cdp) 2556 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2557 Infer(*this) { 2558 Trees.push_back(Pat); 2559 } 2560 2561 void TreePattern::error(const Twine &Msg) { 2562 if (HasError) 2563 return; 2564 dump(); 2565 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2566 HasError = true; 2567 } 2568 2569 void TreePattern::ComputeNamedNodes() { 2570 for (TreePatternNodePtr &Tree : Trees) 2571 ComputeNamedNodes(Tree.get()); 2572 } 2573 2574 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2575 if (!N->getName().empty()) 2576 NamedNodes[N->getName()].push_back(N); 2577 2578 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2579 ComputeNamedNodes(N->getChild(i)); 2580 } 2581 2582 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, 2583 StringRef OpName) { 2584 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2585 Record *R = DI->getDef(); 2586 2587 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2588 // TreePatternNode of its own. For example: 2589 /// (foo GPR, imm) -> (foo GPR, (imm)) 2590 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) 2591 return ParseTreePattern( 2592 DagInit::get(DI, nullptr, 2593 std::vector<std::pair<Init*, StringInit*> >()), 2594 OpName); 2595 2596 // Input argument? 2597 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1); 2598 if (R->getName() == "node" && !OpName.empty()) { 2599 if (OpName.empty()) 2600 error("'node' argument requires a name to match with operand list"); 2601 Args.push_back(OpName); 2602 } 2603 2604 Res->setName(OpName); 2605 return Res; 2606 } 2607 2608 // ?:$name or just $name. 2609 if (isa<UnsetInit>(TheInit)) { 2610 if (OpName.empty()) 2611 error("'?' argument requires a name to match with operand list"); 2612 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1); 2613 Args.push_back(OpName); 2614 Res->setName(OpName); 2615 return Res; 2616 } 2617 2618 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2619 if (!OpName.empty()) 2620 error("Constant int or bit argument should not have a name!"); 2621 if (isa<BitInit>(TheInit)) 2622 TheInit = TheInit->convertInitializerTo(IntRecTy::get()); 2623 return std::make_shared<TreePatternNode>(TheInit, 1); 2624 } 2625 2626 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2627 // Turn this into an IntInit. 2628 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2629 if (!II || !isa<IntInit>(II)) 2630 error("Bits value must be constants!"); 2631 return ParseTreePattern(II, OpName); 2632 } 2633 2634 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2635 if (!Dag) { 2636 TheInit->print(errs()); 2637 error("Pattern has unexpected init kind!"); 2638 } 2639 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2640 if (!OpDef) error("Pattern has unexpected operator type!"); 2641 Record *Operator = OpDef->getDef(); 2642 2643 if (Operator->isSubClassOf("ValueType")) { 2644 // If the operator is a ValueType, then this must be "type cast" of a leaf 2645 // node. 2646 if (Dag->getNumArgs() != 1) 2647 error("Type cast only takes one operand!"); 2648 2649 TreePatternNodePtr New = 2650 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2651 2652 // Apply the type cast. 2653 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2654 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2655 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2656 2657 if (!OpName.empty()) 2658 error("ValueType cast should not have a name!"); 2659 return New; 2660 } 2661 2662 // Verify that this is something that makes sense for an operator. 2663 if (!Operator->isSubClassOf("PatFrags") && 2664 !Operator->isSubClassOf("SDNode") && 2665 !Operator->isSubClassOf("Instruction") && 2666 !Operator->isSubClassOf("SDNodeXForm") && 2667 !Operator->isSubClassOf("Intrinsic") && 2668 !Operator->isSubClassOf("ComplexPattern") && 2669 Operator->getName() != "set" && 2670 Operator->getName() != "implicit") 2671 error("Unrecognized node '" + Operator->getName() + "'!"); 2672 2673 // Check to see if this is something that is illegal in an input pattern. 2674 if (isInputPattern) { 2675 if (Operator->isSubClassOf("Instruction") || 2676 Operator->isSubClassOf("SDNodeXForm")) 2677 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2678 } else { 2679 if (Operator->isSubClassOf("Intrinsic")) 2680 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2681 2682 if (Operator->isSubClassOf("SDNode") && 2683 Operator->getName() != "imm" && 2684 Operator->getName() != "fpimm" && 2685 Operator->getName() != "tglobaltlsaddr" && 2686 Operator->getName() != "tconstpool" && 2687 Operator->getName() != "tjumptable" && 2688 Operator->getName() != "tframeindex" && 2689 Operator->getName() != "texternalsym" && 2690 Operator->getName() != "tblockaddress" && 2691 Operator->getName() != "tglobaladdr" && 2692 Operator->getName() != "bb" && 2693 Operator->getName() != "vt" && 2694 Operator->getName() != "mcsym") 2695 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2696 } 2697 2698 std::vector<TreePatternNodePtr> Children; 2699 2700 // Parse all the operands. 2701 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2702 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2703 2704 // Get the actual number of results before Operator is converted to an intrinsic 2705 // node (which is hard-coded to have either zero or one result). 2706 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2707 2708 // If the operator is an intrinsic, then this is just syntactic sugar for 2709 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2710 // convert the intrinsic name to a number. 2711 if (Operator->isSubClassOf("Intrinsic")) { 2712 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2713 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2714 2715 // If this intrinsic returns void, it must have side-effects and thus a 2716 // chain. 2717 if (Int.IS.RetVTs.empty()) 2718 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2719 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 2720 // Has side-effects, requires chain. 2721 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2722 else // Otherwise, no chain. 2723 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2724 2725 Children.insert(Children.begin(), 2726 std::make_shared<TreePatternNode>(IntInit::get(IID), 1)); 2727 } 2728 2729 if (Operator->isSubClassOf("ComplexPattern")) { 2730 for (unsigned i = 0; i < Children.size(); ++i) { 2731 TreePatternNodePtr Child = Children[i]; 2732 2733 if (Child->getName().empty()) 2734 error("All arguments to a ComplexPattern must be named"); 2735 2736 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2737 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2738 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2739 auto OperandId = std::make_pair(Operator, i); 2740 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2741 if (PrevOp != ComplexPatternOperands.end()) { 2742 if (PrevOp->getValue() != OperandId) 2743 error("All ComplexPattern operands must appear consistently: " 2744 "in the same order in just one ComplexPattern instance."); 2745 } else 2746 ComplexPatternOperands[Child->getName()] = OperandId; 2747 } 2748 } 2749 2750 TreePatternNodePtr Result = 2751 std::make_shared<TreePatternNode>(Operator, std::move(Children), 2752 NumResults); 2753 Result->setName(OpName); 2754 2755 if (Dag->getName()) { 2756 assert(Result->getName().empty()); 2757 Result->setName(Dag->getNameStr()); 2758 } 2759 return Result; 2760 } 2761 2762 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2763 /// will never match in favor of something obvious that will. This is here 2764 /// strictly as a convenience to target authors because it allows them to write 2765 /// more type generic things and have useless type casts fold away. 2766 /// 2767 /// This returns true if any change is made. 2768 static bool SimplifyTree(TreePatternNodePtr &N) { 2769 if (N->isLeaf()) 2770 return false; 2771 2772 // If we have a bitconvert with a resolved type and if the source and 2773 // destination types are the same, then the bitconvert is useless, remove it. 2774 if (N->getOperator()->getName() == "bitconvert" && 2775 N->getExtType(0).isValueTypeByHwMode(false) && 2776 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2777 N->getName().empty()) { 2778 N = N->getChildShared(0); 2779 SimplifyTree(N); 2780 return true; 2781 } 2782 2783 // Walk all children. 2784 bool MadeChange = false; 2785 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2786 TreePatternNodePtr Child = N->getChildShared(i); 2787 MadeChange |= SimplifyTree(Child); 2788 N->setChild(i, std::move(Child)); 2789 } 2790 return MadeChange; 2791 } 2792 2793 2794 2795 /// InferAllTypes - Infer/propagate as many types throughout the expression 2796 /// patterns as possible. Return true if all types are inferred, false 2797 /// otherwise. Flags an error if a type contradiction is found. 2798 bool TreePattern:: 2799 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2800 if (NamedNodes.empty()) 2801 ComputeNamedNodes(); 2802 2803 bool MadeChange = true; 2804 while (MadeChange) { 2805 MadeChange = false; 2806 for (TreePatternNodePtr &Tree : Trees) { 2807 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 2808 MadeChange |= SimplifyTree(Tree); 2809 } 2810 2811 // If there are constraints on our named nodes, apply them. 2812 for (auto &Entry : NamedNodes) { 2813 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 2814 2815 // If we have input named node types, propagate their types to the named 2816 // values here. 2817 if (InNamedTypes) { 2818 if (!InNamedTypes->count(Entry.getKey())) { 2819 error("Node '" + std::string(Entry.getKey()) + 2820 "' in output pattern but not input pattern"); 2821 return true; 2822 } 2823 2824 const SmallVectorImpl<TreePatternNode*> &InNodes = 2825 InNamedTypes->find(Entry.getKey())->second; 2826 2827 // The input types should be fully resolved by now. 2828 for (TreePatternNode *Node : Nodes) { 2829 // If this node is a register class, and it is the root of the pattern 2830 // then we're mapping something onto an input register. We allow 2831 // changing the type of the input register in this case. This allows 2832 // us to match things like: 2833 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 2834 if (Node == Trees[0].get() && Node->isLeaf()) { 2835 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 2836 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2837 DI->getDef()->isSubClassOf("RegisterOperand"))) 2838 continue; 2839 } 2840 2841 assert(Node->getNumTypes() == 1 && 2842 InNodes[0]->getNumTypes() == 1 && 2843 "FIXME: cannot name multiple result nodes yet"); 2844 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 2845 *this); 2846 } 2847 } 2848 2849 // If there are multiple nodes with the same name, they must all have the 2850 // same type. 2851 if (Entry.second.size() > 1) { 2852 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 2853 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 2854 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 2855 "FIXME: cannot name multiple result nodes yet"); 2856 2857 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 2858 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 2859 } 2860 } 2861 } 2862 } 2863 2864 bool HasUnresolvedTypes = false; 2865 for (const TreePatternNodePtr &Tree : Trees) 2866 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 2867 return !HasUnresolvedTypes; 2868 } 2869 2870 void TreePattern::print(raw_ostream &OS) const { 2871 OS << getRecord()->getName(); 2872 if (!Args.empty()) { 2873 OS << "(" << Args[0]; 2874 for (unsigned i = 1, e = Args.size(); i != e; ++i) 2875 OS << ", " << Args[i]; 2876 OS << ")"; 2877 } 2878 OS << ": "; 2879 2880 if (Trees.size() > 1) 2881 OS << "[\n"; 2882 for (const TreePatternNodePtr &Tree : Trees) { 2883 OS << "\t"; 2884 Tree->print(OS); 2885 OS << "\n"; 2886 } 2887 2888 if (Trees.size() > 1) 2889 OS << "]\n"; 2890 } 2891 2892 void TreePattern::dump() const { print(errs()); } 2893 2894 //===----------------------------------------------------------------------===// 2895 // CodeGenDAGPatterns implementation 2896 // 2897 2898 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 2899 PatternRewriterFn PatternRewriter) 2900 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), 2901 PatternRewriter(PatternRewriter) { 2902 2903 Intrinsics = CodeGenIntrinsicTable(Records, false); 2904 TgtIntrinsics = CodeGenIntrinsicTable(Records, true); 2905 ParseNodeInfo(); 2906 ParseNodeTransforms(); 2907 ParseComplexPatterns(); 2908 ParsePatternFragments(); 2909 ParseDefaultOperands(); 2910 ParseInstructions(); 2911 ParsePatternFragments(/*OutFrags*/true); 2912 ParsePatterns(); 2913 2914 // Break patterns with parameterized types into a series of patterns, 2915 // where each one has a fixed type and is predicated on the conditions 2916 // of the associated HW mode. 2917 ExpandHwModeBasedTypes(); 2918 2919 // Generate variants. For example, commutative patterns can match 2920 // multiple ways. Add them to PatternsToMatch as well. 2921 GenerateVariants(); 2922 2923 // Infer instruction flags. For example, we can detect loads, 2924 // stores, and side effects in many cases by examining an 2925 // instruction's pattern. 2926 InferInstructionFlags(); 2927 2928 // Verify that instruction flags match the patterns. 2929 VerifyInstructionFlags(); 2930 } 2931 2932 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 2933 Record *N = Records.getDef(Name); 2934 if (!N || !N->isSubClassOf("SDNode")) 2935 PrintFatalError("Error getting SDNode '" + Name + "'!"); 2936 2937 return N; 2938 } 2939 2940 // Parse all of the SDNode definitions for the target, populating SDNodes. 2941 void CodeGenDAGPatterns::ParseNodeInfo() { 2942 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 2943 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 2944 2945 while (!Nodes.empty()) { 2946 Record *R = Nodes.back(); 2947 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); 2948 Nodes.pop_back(); 2949 } 2950 2951 // Get the builtin intrinsic nodes. 2952 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 2953 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 2954 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 2955 } 2956 2957 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 2958 /// map, and emit them to the file as functions. 2959 void CodeGenDAGPatterns::ParseNodeTransforms() { 2960 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 2961 while (!Xforms.empty()) { 2962 Record *XFormNode = Xforms.back(); 2963 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 2964 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 2965 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 2966 2967 Xforms.pop_back(); 2968 } 2969 } 2970 2971 void CodeGenDAGPatterns::ParseComplexPatterns() { 2972 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 2973 while (!AMs.empty()) { 2974 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 2975 AMs.pop_back(); 2976 } 2977 } 2978 2979 2980 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 2981 /// file, building up the PatternFragments map. After we've collected them all, 2982 /// inline fragments together as necessary, so that there are no references left 2983 /// inside a pattern fragment to a pattern fragment. 2984 /// 2985 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 2986 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags"); 2987 2988 // First step, parse all of the fragments. 2989 for (Record *Frag : Fragments) { 2990 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 2991 continue; 2992 2993 ListInit *LI = Frag->getValueAsListInit("Fragments"); 2994 TreePattern *P = 2995 (PatternFragments[Frag] = llvm::make_unique<TreePattern>( 2996 Frag, LI, !Frag->isSubClassOf("OutPatFrag"), 2997 *this)).get(); 2998 2999 // Validate the argument list, converting it to set, to discard duplicates. 3000 std::vector<std::string> &Args = P->getArgList(); 3001 // Copy the args so we can take StringRefs to them. 3002 auto ArgsCopy = Args; 3003 SmallDenseSet<StringRef, 4> OperandsSet; 3004 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 3005 3006 if (OperandsSet.count("")) 3007 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 3008 3009 // Parse the operands list. 3010 DagInit *OpsList = Frag->getValueAsDag("Operands"); 3011 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 3012 // Special cases: ops == outs == ins. Different names are used to 3013 // improve readability. 3014 if (!OpsOp || 3015 (OpsOp->getDef()->getName() != "ops" && 3016 OpsOp->getDef()->getName() != "outs" && 3017 OpsOp->getDef()->getName() != "ins")) 3018 P->error("Operands list should start with '(ops ... '!"); 3019 3020 // Copy over the arguments. 3021 Args.clear(); 3022 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 3023 if (!isa<DefInit>(OpsList->getArg(j)) || 3024 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 3025 P->error("Operands list should all be 'node' values."); 3026 if (!OpsList->getArgName(j)) 3027 P->error("Operands list should have names for each operand!"); 3028 StringRef ArgNameStr = OpsList->getArgNameStr(j); 3029 if (!OperandsSet.count(ArgNameStr)) 3030 P->error("'" + ArgNameStr + 3031 "' does not occur in pattern or was multiply specified!"); 3032 OperandsSet.erase(ArgNameStr); 3033 Args.push_back(ArgNameStr); 3034 } 3035 3036 if (!OperandsSet.empty()) 3037 P->error("Operands list does not contain an entry for operand '" + 3038 *OperandsSet.begin() + "'!"); 3039 3040 // If there is a node transformation corresponding to this, keep track of 3041 // it. 3042 Record *Transform = Frag->getValueAsDef("OperandTransform"); 3043 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3044 for (auto T : P->getTrees()) 3045 T->setTransformFn(Transform); 3046 } 3047 3048 // Now that we've parsed all of the tree fragments, do a closure on them so 3049 // that there are not references to PatFrags left inside of them. 3050 for (Record *Frag : Fragments) { 3051 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3052 continue; 3053 3054 TreePattern &ThePat = *PatternFragments[Frag]; 3055 ThePat.InlinePatternFragments(); 3056 3057 // Infer as many types as possible. Don't worry about it if we don't infer 3058 // all of them, some may depend on the inputs of the pattern. Also, don't 3059 // validate type sets; validation may cause spurious failures e.g. if a 3060 // fragment needs floating-point types but the current target does not have 3061 // any (this is only an error if that fragment is ever used!). 3062 { 3063 TypeInfer::SuppressValidation SV(ThePat.getInfer()); 3064 ThePat.InferAllTypes(); 3065 ThePat.resetError(); 3066 } 3067 3068 // If debugging, print out the pattern fragment result. 3069 LLVM_DEBUG(ThePat.dump()); 3070 } 3071 } 3072 3073 void CodeGenDAGPatterns::ParseDefaultOperands() { 3074 std::vector<Record*> DefaultOps; 3075 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3076 3077 // Find some SDNode. 3078 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3079 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 3080 3081 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3082 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3083 3084 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3085 // SomeSDnode so that we can parse this. 3086 std::vector<std::pair<Init*, StringInit*> > Ops; 3087 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3088 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 3089 DefaultInfo->getArgName(op))); 3090 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3091 3092 // Create a TreePattern to parse this. 3093 TreePattern P(DefaultOps[i], DI, false, *this); 3094 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3095 3096 // Copy the operands over into a DAGDefaultOperand. 3097 DAGDefaultOperand DefaultOpInfo; 3098 3099 const TreePatternNodePtr &T = P.getTree(0); 3100 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3101 TreePatternNodePtr TPN = T->getChildShared(op); 3102 while (TPN->ApplyTypeConstraints(P, false)) 3103 /* Resolve all types */; 3104 3105 if (TPN->ContainsUnresolvedType(P)) { 3106 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3107 DefaultOps[i]->getName() + 3108 "' doesn't have a concrete type!"); 3109 } 3110 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3111 } 3112 3113 // Insert it into the DefaultOperands map so we can find it later. 3114 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3115 } 3116 } 3117 3118 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3119 /// instruction input. Return true if this is a real use. 3120 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3121 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3122 // No name -> not interesting. 3123 if (Pat->getName().empty()) { 3124 if (Pat->isLeaf()) { 3125 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3126 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3127 DI->getDef()->isSubClassOf("RegisterOperand"))) 3128 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3129 } 3130 return false; 3131 } 3132 3133 Record *Rec; 3134 if (Pat->isLeaf()) { 3135 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3136 if (!DI) 3137 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3138 Rec = DI->getDef(); 3139 } else { 3140 Rec = Pat->getOperator(); 3141 } 3142 3143 // SRCVALUE nodes are ignored. 3144 if (Rec->getName() == "srcvalue") 3145 return false; 3146 3147 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3148 if (!Slot) { 3149 Slot = Pat; 3150 return true; 3151 } 3152 Record *SlotRec; 3153 if (Slot->isLeaf()) { 3154 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3155 } else { 3156 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3157 SlotRec = Slot->getOperator(); 3158 } 3159 3160 // Ensure that the inputs agree if we've already seen this input. 3161 if (Rec != SlotRec) 3162 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3163 // Ensure that the types can agree as well. 3164 Slot->UpdateNodeType(0, Pat->getExtType(0), I); 3165 Pat->UpdateNodeType(0, Slot->getExtType(0), I); 3166 if (Slot->getExtTypes() != Pat->getExtTypes()) 3167 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3168 return true; 3169 } 3170 3171 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3172 /// part of "I", the instruction), computing the set of inputs and outputs of 3173 /// the pattern. Report errors if we see anything naughty. 3174 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3175 TreePattern &I, TreePatternNodePtr Pat, 3176 std::map<std::string, TreePatternNodePtr> &InstInputs, 3177 std::map<std::string, TreePatternNodePtr> &InstResults, 3178 std::vector<Record *> &InstImpResults) { 3179 3180 // The instruction pattern still has unresolved fragments. For *named* 3181 // nodes we must resolve those here. This may not result in multiple 3182 // alternatives. 3183 if (!Pat->getName().empty()) { 3184 TreePattern SrcPattern(I.getRecord(), Pat, true, *this); 3185 SrcPattern.InlinePatternFragments(); 3186 SrcPattern.InferAllTypes(); 3187 Pat = SrcPattern.getOnlyTree(); 3188 } 3189 3190 if (Pat->isLeaf()) { 3191 bool isUse = HandleUse(I, Pat, InstInputs); 3192 if (!isUse && Pat->getTransformFn()) 3193 I.error("Cannot specify a transform function for a non-input value!"); 3194 return; 3195 } 3196 3197 if (Pat->getOperator()->getName() == "implicit") { 3198 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3199 TreePatternNode *Dest = Pat->getChild(i); 3200 if (!Dest->isLeaf()) 3201 I.error("implicitly defined value should be a register!"); 3202 3203 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3204 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3205 I.error("implicitly defined value should be a register!"); 3206 InstImpResults.push_back(Val->getDef()); 3207 } 3208 return; 3209 } 3210 3211 if (Pat->getOperator()->getName() != "set") { 3212 // If this is not a set, verify that the children nodes are not void typed, 3213 // and recurse. 3214 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3215 if (Pat->getChild(i)->getNumTypes() == 0) 3216 I.error("Cannot have void nodes inside of patterns!"); 3217 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3218 InstResults, InstImpResults); 3219 } 3220 3221 // If this is a non-leaf node with no children, treat it basically as if 3222 // it were a leaf. This handles nodes like (imm). 3223 bool isUse = HandleUse(I, Pat, InstInputs); 3224 3225 if (!isUse && Pat->getTransformFn()) 3226 I.error("Cannot specify a transform function for a non-input value!"); 3227 return; 3228 } 3229 3230 // Otherwise, this is a set, validate and collect instruction results. 3231 if (Pat->getNumChildren() == 0) 3232 I.error("set requires operands!"); 3233 3234 if (Pat->getTransformFn()) 3235 I.error("Cannot specify a transform function on a set node!"); 3236 3237 // Check the set destinations. 3238 unsigned NumDests = Pat->getNumChildren()-1; 3239 for (unsigned i = 0; i != NumDests; ++i) { 3240 TreePatternNodePtr Dest = Pat->getChildShared(i); 3241 // For set destinations we also must resolve fragments here. 3242 TreePattern DestPattern(I.getRecord(), Dest, false, *this); 3243 DestPattern.InlinePatternFragments(); 3244 DestPattern.InferAllTypes(); 3245 Dest = DestPattern.getOnlyTree(); 3246 3247 if (!Dest->isLeaf()) 3248 I.error("set destination should be a register!"); 3249 3250 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3251 if (!Val) { 3252 I.error("set destination should be a register!"); 3253 continue; 3254 } 3255 3256 if (Val->getDef()->isSubClassOf("RegisterClass") || 3257 Val->getDef()->isSubClassOf("ValueType") || 3258 Val->getDef()->isSubClassOf("RegisterOperand") || 3259 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3260 if (Dest->getName().empty()) 3261 I.error("set destination must have a name!"); 3262 if (InstResults.count(Dest->getName())) 3263 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3264 InstResults[Dest->getName()] = Dest; 3265 } else if (Val->getDef()->isSubClassOf("Register")) { 3266 InstImpResults.push_back(Val->getDef()); 3267 } else { 3268 I.error("set destination should be a register!"); 3269 } 3270 } 3271 3272 // Verify and collect info from the computation. 3273 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3274 InstResults, InstImpResults); 3275 } 3276 3277 //===----------------------------------------------------------------------===// 3278 // Instruction Analysis 3279 //===----------------------------------------------------------------------===// 3280 3281 class InstAnalyzer { 3282 const CodeGenDAGPatterns &CDP; 3283 public: 3284 bool hasSideEffects; 3285 bool mayStore; 3286 bool mayLoad; 3287 bool isBitcast; 3288 bool isVariadic; 3289 bool hasChain; 3290 3291 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3292 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3293 isBitcast(false), isVariadic(false), hasChain(false) {} 3294 3295 void Analyze(const PatternToMatch &Pat) { 3296 const TreePatternNode *N = Pat.getSrcPattern(); 3297 AnalyzeNode(N); 3298 // These properties are detected only on the root node. 3299 isBitcast = IsNodeBitcast(N); 3300 } 3301 3302 private: 3303 bool IsNodeBitcast(const TreePatternNode *N) const { 3304 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3305 return false; 3306 3307 if (N->isLeaf()) 3308 return false; 3309 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf()) 3310 return false; 3311 3312 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 3313 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3314 return false; 3315 return OpInfo.getEnumName() == "ISD::BITCAST"; 3316 } 3317 3318 public: 3319 void AnalyzeNode(const TreePatternNode *N) { 3320 if (N->isLeaf()) { 3321 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 3322 Record *LeafRec = DI->getDef(); 3323 // Handle ComplexPattern leaves. 3324 if (LeafRec->isSubClassOf("ComplexPattern")) { 3325 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3326 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 3327 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 3328 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 3329 } 3330 } 3331 return; 3332 } 3333 3334 // Analyze children. 3335 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3336 AnalyzeNode(N->getChild(i)); 3337 3338 // Notice properties of the node. 3339 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 3340 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 3341 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 3342 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 3343 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true; 3344 3345 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 3346 // If this is an intrinsic, analyze it. 3347 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 3348 mayLoad = true;// These may load memory. 3349 3350 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 3351 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 3352 3353 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 3354 IntInfo->hasSideEffects) 3355 // ReadWriteMem intrinsics can have other strange effects. 3356 hasSideEffects = true; 3357 } 3358 } 3359 3360 }; 3361 3362 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3363 const InstAnalyzer &PatInfo, 3364 Record *PatDef) { 3365 bool Error = false; 3366 3367 // Remember where InstInfo got its flags. 3368 if (InstInfo.hasUndefFlags()) 3369 InstInfo.InferredFrom = PatDef; 3370 3371 // Check explicitly set flags for consistency. 3372 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3373 !InstInfo.hasSideEffects_Unset) { 3374 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3375 // the pattern has no side effects. That could be useful for div/rem 3376 // instructions that may trap. 3377 if (!InstInfo.hasSideEffects) { 3378 Error = true; 3379 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3380 Twine(InstInfo.hasSideEffects)); 3381 } 3382 } 3383 3384 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3385 Error = true; 3386 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 3387 Twine(InstInfo.mayStore)); 3388 } 3389 3390 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3391 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3392 // Some targets translate immediates to loads. 3393 if (!InstInfo.mayLoad) { 3394 Error = true; 3395 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 3396 Twine(InstInfo.mayLoad)); 3397 } 3398 } 3399 3400 // Transfer inferred flags. 3401 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3402 InstInfo.mayStore |= PatInfo.mayStore; 3403 InstInfo.mayLoad |= PatInfo.mayLoad; 3404 3405 // These flags are silently added without any verification. 3406 // FIXME: To match historical behavior of TableGen, for now add those flags 3407 // only when we're inferring from the primary instruction pattern. 3408 if (PatDef->isSubClassOf("Instruction")) { 3409 InstInfo.isBitcast |= PatInfo.isBitcast; 3410 InstInfo.hasChain |= PatInfo.hasChain; 3411 InstInfo.hasChain_Inferred = true; 3412 } 3413 3414 // Don't infer isVariadic. This flag means something different on SDNodes and 3415 // instructions. For example, a CALL SDNode is variadic because it has the 3416 // call arguments as operands, but a CALL instruction is not variadic - it 3417 // has argument registers as implicit, not explicit uses. 3418 3419 return Error; 3420 } 3421 3422 /// hasNullFragReference - Return true if the DAG has any reference to the 3423 /// null_frag operator. 3424 static bool hasNullFragReference(DagInit *DI) { 3425 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3426 if (!OpDef) return false; 3427 Record *Operator = OpDef->getDef(); 3428 3429 // If this is the null fragment, return true. 3430 if (Operator->getName() == "null_frag") return true; 3431 // If any of the arguments reference the null fragment, return true. 3432 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3433 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3434 if (Arg && hasNullFragReference(Arg)) 3435 return true; 3436 } 3437 3438 return false; 3439 } 3440 3441 /// hasNullFragReference - Return true if any DAG in the list references 3442 /// the null_frag operator. 3443 static bool hasNullFragReference(ListInit *LI) { 3444 for (Init *I : LI->getValues()) { 3445 DagInit *DI = dyn_cast<DagInit>(I); 3446 assert(DI && "non-dag in an instruction Pattern list?!"); 3447 if (hasNullFragReference(DI)) 3448 return true; 3449 } 3450 return false; 3451 } 3452 3453 /// Get all the instructions in a tree. 3454 static void 3455 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 3456 if (Tree->isLeaf()) 3457 return; 3458 if (Tree->getOperator()->isSubClassOf("Instruction")) 3459 Instrs.push_back(Tree->getOperator()); 3460 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 3461 getInstructionsInTree(Tree->getChild(i), Instrs); 3462 } 3463 3464 /// Check the class of a pattern leaf node against the instruction operand it 3465 /// represents. 3466 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3467 Record *Leaf) { 3468 if (OI.Rec == Leaf) 3469 return true; 3470 3471 // Allow direct value types to be used in instruction set patterns. 3472 // The type will be checked later. 3473 if (Leaf->isSubClassOf("ValueType")) 3474 return true; 3475 3476 // Patterns can also be ComplexPattern instances. 3477 if (Leaf->isSubClassOf("ComplexPattern")) 3478 return true; 3479 3480 return false; 3481 } 3482 3483 void CodeGenDAGPatterns::parseInstructionPattern( 3484 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 3485 3486 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3487 3488 // Parse the instruction. 3489 TreePattern I(CGI.TheDef, Pat, true, *this); 3490 3491 // InstInputs - Keep track of all of the inputs of the instruction, along 3492 // with the record they are declared as. 3493 std::map<std::string, TreePatternNodePtr> InstInputs; 3494 3495 // InstResults - Keep track of all the virtual registers that are 'set' 3496 // in the instruction, including what reg class they are. 3497 std::map<std::string, TreePatternNodePtr> InstResults; 3498 3499 std::vector<Record*> InstImpResults; 3500 3501 // Verify that the top-level forms in the instruction are of void type, and 3502 // fill in the InstResults map. 3503 SmallString<32> TypesString; 3504 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { 3505 TypesString.clear(); 3506 TreePatternNodePtr Pat = I.getTree(j); 3507 if (Pat->getNumTypes() != 0) { 3508 raw_svector_ostream OS(TypesString); 3509 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3510 if (k > 0) 3511 OS << ", "; 3512 Pat->getExtType(k).writeToStream(OS); 3513 } 3514 I.error("Top-level forms in instruction pattern should have" 3515 " void types, has types " + 3516 OS.str()); 3517 } 3518 3519 // Find inputs and outputs, and verify the structure of the uses/defs. 3520 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3521 InstImpResults); 3522 } 3523 3524 // Now that we have inputs and outputs of the pattern, inspect the operands 3525 // list for the instruction. This determines the order that operands are 3526 // added to the machine instruction the node corresponds to. 3527 unsigned NumResults = InstResults.size(); 3528 3529 // Parse the operands list from the (ops) list, validating it. 3530 assert(I.getArgList().empty() && "Args list should still be empty here!"); 3531 3532 // Check that all of the results occur first in the list. 3533 std::vector<Record*> Results; 3534 SmallVector<TreePatternNodePtr, 2> ResNodes; 3535 for (unsigned i = 0; i != NumResults; ++i) { 3536 if (i == CGI.Operands.size()) 3537 I.error("'" + InstResults.begin()->first + 3538 "' set but does not appear in operand list!"); 3539 const std::string &OpName = CGI.Operands[i].Name; 3540 3541 // Check that it exists in InstResults. 3542 TreePatternNodePtr RNode = InstResults[OpName]; 3543 if (!RNode) 3544 I.error("Operand $" + OpName + " does not exist in operand list!"); 3545 3546 3547 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3548 ResNodes.push_back(std::move(RNode)); 3549 if (!R) 3550 I.error("Operand $" + OpName + " should be a set destination: all " 3551 "outputs must occur before inputs in operand list!"); 3552 3553 if (!checkOperandClass(CGI.Operands[i], R)) 3554 I.error("Operand $" + OpName + " class mismatch!"); 3555 3556 // Remember the return type. 3557 Results.push_back(CGI.Operands[i].Rec); 3558 3559 // Okay, this one checks out. 3560 InstResults.erase(OpName); 3561 } 3562 3563 // Loop over the inputs next. 3564 std::vector<TreePatternNodePtr> ResultNodeOperands; 3565 std::vector<Record*> Operands; 3566 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3567 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3568 const std::string &OpName = Op.Name; 3569 if (OpName.empty()) 3570 I.error("Operand #" + Twine(i) + " in operands list has no name!"); 3571 3572 if (!InstInputs.count(OpName)) { 3573 // If this is an operand with a DefaultOps set filled in, we can ignore 3574 // this. When we codegen it, we will do so as always executed. 3575 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3576 // Does it have a non-empty DefaultOps field? If so, ignore this 3577 // operand. 3578 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3579 continue; 3580 } 3581 I.error("Operand $" + OpName + 3582 " does not appear in the instruction pattern"); 3583 } 3584 TreePatternNodePtr InVal = InstInputs[OpName]; 3585 InstInputs.erase(OpName); // It occurred, remove from map. 3586 3587 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3588 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3589 if (!checkOperandClass(Op, InRec)) 3590 I.error("Operand $" + OpName + "'s register class disagrees" 3591 " between the operand and pattern"); 3592 } 3593 Operands.push_back(Op.Rec); 3594 3595 // Construct the result for the dest-pattern operand list. 3596 TreePatternNodePtr OpNode = InVal->clone(); 3597 3598 // No predicate is useful on the result. 3599 OpNode->clearPredicateFns(); 3600 3601 // Promote the xform function to be an explicit node if set. 3602 if (Record *Xform = OpNode->getTransformFn()) { 3603 OpNode->setTransformFn(nullptr); 3604 std::vector<TreePatternNodePtr> Children; 3605 Children.push_back(OpNode); 3606 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children), 3607 OpNode->getNumTypes()); 3608 } 3609 3610 ResultNodeOperands.push_back(std::move(OpNode)); 3611 } 3612 3613 if (!InstInputs.empty()) 3614 I.error("Input operand $" + InstInputs.begin()->first + 3615 " occurs in pattern but not in operands list!"); 3616 3617 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>( 3618 I.getRecord(), std::move(ResultNodeOperands), 3619 GetNumNodeResults(I.getRecord(), *this)); 3620 // Copy fully inferred output node types to instruction result pattern. 3621 for (unsigned i = 0; i != NumResults; ++i) { 3622 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3623 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3624 } 3625 3626 // FIXME: Assume only the first tree is the pattern. The others are clobber 3627 // nodes. 3628 TreePatternNodePtr Pattern = I.getTree(0); 3629 TreePatternNodePtr SrcPattern; 3630 if (Pattern->getOperator()->getName() == "set") { 3631 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3632 } else{ 3633 // Not a set (store or something?) 3634 SrcPattern = Pattern; 3635 } 3636 3637 // Create and insert the instruction. 3638 // FIXME: InstImpResults should not be part of DAGInstruction. 3639 Record *R = I.getRecord(); 3640 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R), 3641 std::forward_as_tuple(Results, Operands, InstImpResults, 3642 SrcPattern, ResultPattern)); 3643 3644 LLVM_DEBUG(I.dump()); 3645 } 3646 3647 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3648 /// any fragments involved. This populates the Instructions list with fully 3649 /// resolved instructions. 3650 void CodeGenDAGPatterns::ParseInstructions() { 3651 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3652 3653 for (Record *Instr : Instrs) { 3654 ListInit *LI = nullptr; 3655 3656 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3657 LI = Instr->getValueAsListInit("Pattern"); 3658 3659 // If there is no pattern, only collect minimal information about the 3660 // instruction for its operand list. We have to assume that there is one 3661 // result, as we have no detailed info. A pattern which references the 3662 // null_frag operator is as-if no pattern were specified. Normally this 3663 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3664 // null_frag. 3665 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3666 std::vector<Record*> Results; 3667 std::vector<Record*> Operands; 3668 3669 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3670 3671 if (InstInfo.Operands.size() != 0) { 3672 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3673 Results.push_back(InstInfo.Operands[j].Rec); 3674 3675 // The rest are inputs. 3676 for (unsigned j = InstInfo.Operands.NumDefs, 3677 e = InstInfo.Operands.size(); j < e; ++j) 3678 Operands.push_back(InstInfo.Operands[j].Rec); 3679 } 3680 3681 // Create and insert the instruction. 3682 std::vector<Record*> ImpResults; 3683 Instructions.insert(std::make_pair(Instr, 3684 DAGInstruction(Results, Operands, ImpResults))); 3685 continue; // no pattern. 3686 } 3687 3688 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3689 parseInstructionPattern(CGI, LI, Instructions); 3690 } 3691 3692 // If we can, convert the instructions to be patterns that are matched! 3693 for (auto &Entry : Instructions) { 3694 Record *Instr = Entry.first; 3695 DAGInstruction &TheInst = Entry.second; 3696 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); 3697 TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); 3698 3699 if (SrcPattern && ResultPattern) { 3700 TreePattern Pattern(Instr, SrcPattern, true, *this); 3701 TreePattern Result(Instr, ResultPattern, false, *this); 3702 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); 3703 } 3704 } 3705 } 3706 3707 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 3708 3709 static void FindNames(TreePatternNode *P, 3710 std::map<std::string, NameRecord> &Names, 3711 TreePattern *PatternTop) { 3712 if (!P->getName().empty()) { 3713 NameRecord &Rec = Names[P->getName()]; 3714 // If this is the first instance of the name, remember the node. 3715 if (Rec.second++ == 0) 3716 Rec.first = P; 3717 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3718 PatternTop->error("repetition of value: $" + P->getName() + 3719 " where different uses have different types!"); 3720 } 3721 3722 if (!P->isLeaf()) { 3723 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3724 FindNames(P->getChild(i), Names, PatternTop); 3725 } 3726 } 3727 3728 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) { 3729 std::vector<Predicate> Preds; 3730 for (Init *I : L->getValues()) { 3731 if (DefInit *Pred = dyn_cast<DefInit>(I)) 3732 Preds.push_back(Pred->getDef()); 3733 else 3734 llvm_unreachable("Non-def on the list"); 3735 } 3736 3737 // Sort so that different orders get canonicalized to the same string. 3738 llvm::sort(Preds); 3739 return Preds; 3740 } 3741 3742 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3743 PatternToMatch &&PTM) { 3744 // Do some sanity checking on the pattern we're about to match. 3745 std::string Reason; 3746 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3747 PrintWarning(Pattern->getRecord()->getLoc(), 3748 Twine("Pattern can never match: ") + Reason); 3749 return; 3750 } 3751 3752 // If the source pattern's root is a complex pattern, that complex pattern 3753 // must specify the nodes it can potentially match. 3754 if (const ComplexPattern *CP = 3755 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3756 if (CP->getRootNodes().empty()) 3757 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3758 " could match"); 3759 3760 3761 // Find all of the named values in the input and output, ensure they have the 3762 // same type. 3763 std::map<std::string, NameRecord> SrcNames, DstNames; 3764 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3765 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3766 3767 // Scan all of the named values in the destination pattern, rejecting them if 3768 // they don't exist in the input pattern. 3769 for (const auto &Entry : DstNames) { 3770 if (SrcNames[Entry.first].first == nullptr) 3771 Pattern->error("Pattern has input without matching name in output: $" + 3772 Entry.first); 3773 } 3774 3775 // Scan all of the named values in the source pattern, rejecting them if the 3776 // name isn't used in the dest, and isn't used to tie two values together. 3777 for (const auto &Entry : SrcNames) 3778 if (DstNames[Entry.first].first == nullptr && 3779 SrcNames[Entry.first].second == 1) 3780 Pattern->error("Pattern has dead named input: $" + Entry.first); 3781 3782 PatternsToMatch.push_back(PTM); 3783 } 3784 3785 void CodeGenDAGPatterns::InferInstructionFlags() { 3786 ArrayRef<const CodeGenInstruction*> Instructions = 3787 Target.getInstructionsByEnumValue(); 3788 3789 unsigned Errors = 0; 3790 3791 // Try to infer flags from all patterns in PatternToMatch. These include 3792 // both the primary instruction patterns (which always come first) and 3793 // patterns defined outside the instruction. 3794 for (const PatternToMatch &PTM : ptms()) { 3795 // We can only infer from single-instruction patterns, otherwise we won't 3796 // know which instruction should get the flags. 3797 SmallVector<Record*, 8> PatInstrs; 3798 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3799 if (PatInstrs.size() != 1) 3800 continue; 3801 3802 // Get the single instruction. 3803 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 3804 3805 // Only infer properties from the first pattern. We'll verify the others. 3806 if (InstInfo.InferredFrom) 3807 continue; 3808 3809 InstAnalyzer PatInfo(*this); 3810 PatInfo.Analyze(PTM); 3811 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 3812 } 3813 3814 if (Errors) 3815 PrintFatalError("pattern conflicts"); 3816 3817 // If requested by the target, guess any undefined properties. 3818 if (Target.guessInstructionProperties()) { 3819 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3820 CodeGenInstruction *InstInfo = 3821 const_cast<CodeGenInstruction *>(Instructions[i]); 3822 if (InstInfo->InferredFrom) 3823 continue; 3824 // The mayLoad and mayStore flags default to false. 3825 // Conservatively assume hasSideEffects if it wasn't explicit. 3826 if (InstInfo->hasSideEffects_Unset) 3827 InstInfo->hasSideEffects = true; 3828 } 3829 return; 3830 } 3831 3832 // Complain about any flags that are still undefined. 3833 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3834 CodeGenInstruction *InstInfo = 3835 const_cast<CodeGenInstruction *>(Instructions[i]); 3836 if (InstInfo->InferredFrom) 3837 continue; 3838 if (InstInfo->hasSideEffects_Unset) 3839 PrintError(InstInfo->TheDef->getLoc(), 3840 "Can't infer hasSideEffects from patterns"); 3841 if (InstInfo->mayStore_Unset) 3842 PrintError(InstInfo->TheDef->getLoc(), 3843 "Can't infer mayStore from patterns"); 3844 if (InstInfo->mayLoad_Unset) 3845 PrintError(InstInfo->TheDef->getLoc(), 3846 "Can't infer mayLoad from patterns"); 3847 } 3848 } 3849 3850 3851 /// Verify instruction flags against pattern node properties. 3852 void CodeGenDAGPatterns::VerifyInstructionFlags() { 3853 unsigned Errors = 0; 3854 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3855 const PatternToMatch &PTM = *I; 3856 SmallVector<Record*, 8> Instrs; 3857 getInstructionsInTree(PTM.getDstPattern(), Instrs); 3858 if (Instrs.empty()) 3859 continue; 3860 3861 // Count the number of instructions with each flag set. 3862 unsigned NumSideEffects = 0; 3863 unsigned NumStores = 0; 3864 unsigned NumLoads = 0; 3865 for (const Record *Instr : Instrs) { 3866 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3867 NumSideEffects += InstInfo.hasSideEffects; 3868 NumStores += InstInfo.mayStore; 3869 NumLoads += InstInfo.mayLoad; 3870 } 3871 3872 // Analyze the source pattern. 3873 InstAnalyzer PatInfo(*this); 3874 PatInfo.Analyze(PTM); 3875 3876 // Collect error messages. 3877 SmallVector<std::string, 4> Msgs; 3878 3879 // Check for missing flags in the output. 3880 // Permit extra flags for now at least. 3881 if (PatInfo.hasSideEffects && !NumSideEffects) 3882 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 3883 3884 // Don't verify store flags on instructions with side effects. At least for 3885 // intrinsics, side effects implies mayStore. 3886 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 3887 Msgs.push_back("pattern may store, but mayStore isn't set"); 3888 3889 // Similarly, mayStore implies mayLoad on intrinsics. 3890 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 3891 Msgs.push_back("pattern may load, but mayLoad isn't set"); 3892 3893 // Print error messages. 3894 if (Msgs.empty()) 3895 continue; 3896 ++Errors; 3897 3898 for (const std::string &Msg : Msgs) 3899 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 3900 (Instrs.size() == 1 ? 3901 "instruction" : "output instructions")); 3902 // Provide the location of the relevant instruction definitions. 3903 for (const Record *Instr : Instrs) { 3904 if (Instr != PTM.getSrcRecord()) 3905 PrintError(Instr->getLoc(), "defined here"); 3906 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3907 if (InstInfo.InferredFrom && 3908 InstInfo.InferredFrom != InstInfo.TheDef && 3909 InstInfo.InferredFrom != PTM.getSrcRecord()) 3910 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 3911 } 3912 } 3913 if (Errors) 3914 PrintFatalError("Errors in DAG patterns"); 3915 } 3916 3917 /// Given a pattern result with an unresolved type, see if we can find one 3918 /// instruction with an unresolved result type. Force this result type to an 3919 /// arbitrary element if it's possible types to converge results. 3920 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 3921 if (N->isLeaf()) 3922 return false; 3923 3924 // Analyze children. 3925 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3926 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 3927 return true; 3928 3929 if (!N->getOperator()->isSubClassOf("Instruction")) 3930 return false; 3931 3932 // If this type is already concrete or completely unknown we can't do 3933 // anything. 3934 TypeInfer &TI = TP.getInfer(); 3935 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 3936 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) 3937 continue; 3938 3939 // Otherwise, force its type to an arbitrary choice. 3940 if (TI.forceArbitrary(N->getExtType(i))) 3941 return true; 3942 } 3943 3944 return false; 3945 } 3946 3947 // Promote xform function to be an explicit node wherever set. 3948 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { 3949 if (Record *Xform = N->getTransformFn()) { 3950 N->setTransformFn(nullptr); 3951 std::vector<TreePatternNodePtr> Children; 3952 Children.push_back(PromoteXForms(N)); 3953 return std::make_shared<TreePatternNode>(Xform, std::move(Children), 3954 N->getNumTypes()); 3955 } 3956 3957 if (!N->isLeaf()) 3958 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 3959 TreePatternNodePtr Child = N->getChildShared(i); 3960 N->setChild(i, PromoteXForms(Child)); 3961 } 3962 return N; 3963 } 3964 3965 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef, 3966 TreePattern &Pattern, TreePattern &Result, 3967 const std::vector<Record *> &InstImpResults) { 3968 3969 // Inline pattern fragments and expand multiple alternatives. 3970 Pattern.InlinePatternFragments(); 3971 Result.InlinePatternFragments(); 3972 3973 if (Result.getNumTrees() != 1) 3974 Result.error("Cannot use multi-alternative fragments in result pattern!"); 3975 3976 // Infer types. 3977 bool IterateInference; 3978 bool InferredAllPatternTypes, InferredAllResultTypes; 3979 do { 3980 // Infer as many types as possible. If we cannot infer all of them, we 3981 // can never do anything with this pattern: report it to the user. 3982 InferredAllPatternTypes = 3983 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 3984 3985 // Infer as many types as possible. If we cannot infer all of them, we 3986 // can never do anything with this pattern: report it to the user. 3987 InferredAllResultTypes = 3988 Result.InferAllTypes(&Pattern.getNamedNodesMap()); 3989 3990 IterateInference = false; 3991 3992 // Apply the type of the result to the source pattern. This helps us 3993 // resolve cases where the input type is known to be a pointer type (which 3994 // is considered resolved), but the result knows it needs to be 32- or 3995 // 64-bits. Infer the other way for good measure. 3996 for (auto T : Pattern.getTrees()) 3997 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), 3998 T->getNumTypes()); 3999 i != e; ++i) { 4000 IterateInference |= T->UpdateNodeType( 4001 i, Result.getOnlyTree()->getExtType(i), Result); 4002 IterateInference |= Result.getOnlyTree()->UpdateNodeType( 4003 i, T->getExtType(i), Result); 4004 } 4005 4006 // If our iteration has converged and the input pattern's types are fully 4007 // resolved but the result pattern is not fully resolved, we may have a 4008 // situation where we have two instructions in the result pattern and 4009 // the instructions require a common register class, but don't care about 4010 // what actual MVT is used. This is actually a bug in our modelling: 4011 // output patterns should have register classes, not MVTs. 4012 // 4013 // In any case, to handle this, we just go through and disambiguate some 4014 // arbitrary types to the result pattern's nodes. 4015 if (!IterateInference && InferredAllPatternTypes && 4016 !InferredAllResultTypes) 4017 IterateInference = 4018 ForceArbitraryInstResultType(Result.getTree(0).get(), Result); 4019 } while (IterateInference); 4020 4021 // Verify that we inferred enough types that we can do something with the 4022 // pattern and result. If these fire the user has to add type casts. 4023 if (!InferredAllPatternTypes) 4024 Pattern.error("Could not infer all types in pattern!"); 4025 if (!InferredAllResultTypes) { 4026 Pattern.dump(); 4027 Result.error("Could not infer all types in pattern result!"); 4028 } 4029 4030 // Promote xform function to be an explicit node wherever set. 4031 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); 4032 4033 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4034 Temp.InferAllTypes(); 4035 4036 ListInit *Preds = TheDef->getValueAsListInit("Predicates"); 4037 int Complexity = TheDef->getValueAsInt("AddedComplexity"); 4038 4039 if (PatternRewriter) 4040 PatternRewriter(&Pattern); 4041 4042 // A pattern may end up with an "impossible" type, i.e. a situation 4043 // where all types have been eliminated for some node in this pattern. 4044 // This could occur for intrinsics that only make sense for a specific 4045 // value type, and use a specific register class. If, for some mode, 4046 // that register class does not accept that type, the type inference 4047 // will lead to a contradiction, which is not an error however, but 4048 // a sign that this pattern will simply never match. 4049 if (Temp.getOnlyTree()->hasPossibleType()) 4050 for (auto T : Pattern.getTrees()) 4051 if (T->hasPossibleType()) 4052 AddPatternToMatch(&Pattern, 4053 PatternToMatch(TheDef, makePredList(Preds), 4054 T, Temp.getOnlyTree(), 4055 InstImpResults, Complexity, 4056 TheDef->getID())); 4057 } 4058 4059 void CodeGenDAGPatterns::ParsePatterns() { 4060 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 4061 4062 for (Record *CurPattern : Patterns) { 4063 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 4064 4065 // If the pattern references the null_frag, there's nothing to do. 4066 if (hasNullFragReference(Tree)) 4067 continue; 4068 4069 TreePattern Pattern(CurPattern, Tree, true, *this); 4070 4071 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 4072 if (LI->empty()) continue; // no pattern. 4073 4074 // Parse the instruction. 4075 TreePattern Result(CurPattern, LI, false, *this); 4076 4077 if (Result.getNumTrees() != 1) 4078 Result.error("Cannot handle instructions producing instructions " 4079 "with temporaries yet!"); 4080 4081 // Validate that the input pattern is correct. 4082 std::map<std::string, TreePatternNodePtr> InstInputs; 4083 std::map<std::string, TreePatternNodePtr> InstResults; 4084 std::vector<Record*> InstImpResults; 4085 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4086 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4087 InstResults, InstImpResults); 4088 4089 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults); 4090 } 4091 } 4092 4093 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { 4094 for (const TypeSetByHwMode &VTS : N->getExtTypes()) 4095 for (const auto &I : VTS) 4096 Modes.insert(I.first); 4097 4098 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4099 collectModes(Modes, N->getChild(i)); 4100 } 4101 4102 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4103 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4104 std::map<unsigned,std::vector<Predicate>> ModeChecks; 4105 std::vector<PatternToMatch> Copy = PatternsToMatch; 4106 PatternsToMatch.clear(); 4107 4108 auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) { 4109 TreePatternNodePtr NewSrc = P.SrcPattern->clone(); 4110 TreePatternNodePtr NewDst = P.DstPattern->clone(); 4111 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4112 return; 4113 } 4114 4115 std::vector<Predicate> Preds = P.Predicates; 4116 const std::vector<Predicate> &MC = ModeChecks[Mode]; 4117 Preds.insert(Preds.end(), MC.begin(), MC.end()); 4118 PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc), 4119 std::move(NewDst), P.getDstRegs(), 4120 P.getAddedComplexity(), Record::getNewUID(), 4121 Mode); 4122 }; 4123 4124 for (PatternToMatch &P : Copy) { 4125 TreePatternNodePtr SrcP = nullptr, DstP = nullptr; 4126 if (P.SrcPattern->hasProperTypeByHwMode()) 4127 SrcP = P.SrcPattern; 4128 if (P.DstPattern->hasProperTypeByHwMode()) 4129 DstP = P.DstPattern; 4130 if (!SrcP && !DstP) { 4131 PatternsToMatch.push_back(P); 4132 continue; 4133 } 4134 4135 std::set<unsigned> Modes; 4136 if (SrcP) 4137 collectModes(Modes, SrcP.get()); 4138 if (DstP) 4139 collectModes(Modes, DstP.get()); 4140 4141 // The predicate for the default mode needs to be constructed for each 4142 // pattern separately. 4143 // Since not all modes must be present in each pattern, if a mode m is 4144 // absent, then there is no point in constructing a check for m. If such 4145 // a check was created, it would be equivalent to checking the default 4146 // mode, except not all modes' predicates would be a part of the checking 4147 // code. The subsequently generated check for the default mode would then 4148 // have the exact same patterns, but a different predicate code. To avoid 4149 // duplicated patterns with different predicate checks, construct the 4150 // default check as a negation of all predicates that are actually present 4151 // in the source/destination patterns. 4152 std::vector<Predicate> DefaultPred; 4153 4154 for (unsigned M : Modes) { 4155 if (M == DefaultMode) 4156 continue; 4157 if (ModeChecks.find(M) != ModeChecks.end()) 4158 continue; 4159 4160 // Fill the map entry for this mode. 4161 const HwMode &HM = CGH.getMode(M); 4162 ModeChecks[M].emplace_back(Predicate(HM.Features, true)); 4163 4164 // Add negations of the HM's predicates to the default predicate. 4165 DefaultPred.emplace_back(Predicate(HM.Features, false)); 4166 } 4167 4168 for (unsigned M : Modes) { 4169 if (M == DefaultMode) 4170 continue; 4171 AppendPattern(P, M); 4172 } 4173 4174 bool HasDefault = Modes.count(DefaultMode); 4175 if (HasDefault) 4176 AppendPattern(P, DefaultMode); 4177 } 4178 } 4179 4180 /// Dependent variable map for CodeGenDAGPattern variant generation 4181 typedef StringMap<int> DepVarMap; 4182 4183 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 4184 if (N->isLeaf()) { 4185 if (N->hasName() && isa<DefInit>(N->getLeafValue())) 4186 DepMap[N->getName()]++; 4187 } else { 4188 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 4189 FindDepVarsOf(N->getChild(i), DepMap); 4190 } 4191 } 4192 4193 /// Find dependent variables within child patterns 4194 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 4195 DepVarMap depcounts; 4196 FindDepVarsOf(N, depcounts); 4197 for (const auto &Pair : depcounts) { 4198 if (Pair.getValue() > 1) 4199 DepVars.insert(Pair.getKey()); 4200 } 4201 } 4202 4203 #ifndef NDEBUG 4204 /// Dump the dependent variable set: 4205 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4206 if (DepVars.empty()) { 4207 LLVM_DEBUG(errs() << "<empty set>"); 4208 } else { 4209 LLVM_DEBUG(errs() << "[ "); 4210 for (const auto &DepVar : DepVars) { 4211 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4212 } 4213 LLVM_DEBUG(errs() << "]"); 4214 } 4215 } 4216 #endif 4217 4218 4219 /// CombineChildVariants - Given a bunch of permutations of each child of the 4220 /// 'operator' node, put them together in all possible ways. 4221 static void CombineChildVariants( 4222 TreePatternNodePtr Orig, 4223 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4224 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4225 const MultipleUseVarSet &DepVars) { 4226 // Make sure that each operand has at least one variant to choose from. 4227 for (const auto &Variants : ChildVariants) 4228 if (Variants.empty()) 4229 return; 4230 4231 // The end result is an all-pairs construction of the resultant pattern. 4232 std::vector<unsigned> Idxs; 4233 Idxs.resize(ChildVariants.size()); 4234 bool NotDone; 4235 do { 4236 #ifndef NDEBUG 4237 LLVM_DEBUG(if (!Idxs.empty()) { 4238 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4239 for (unsigned Idx : Idxs) { 4240 errs() << Idx << " "; 4241 } 4242 errs() << "]\n"; 4243 }); 4244 #endif 4245 // Create the variant and add it to the output list. 4246 std::vector<TreePatternNodePtr> NewChildren; 4247 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4248 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4249 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 4250 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); 4251 4252 // Copy over properties. 4253 R->setName(Orig->getName()); 4254 R->setPredicateFns(Orig->getPredicateFns()); 4255 R->setTransformFn(Orig->getTransformFn()); 4256 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4257 R->setType(i, Orig->getExtType(i)); 4258 4259 // If this pattern cannot match, do not include it as a variant. 4260 std::string ErrString; 4261 // Scan to see if this pattern has already been emitted. We can get 4262 // duplication due to things like commuting: 4263 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4264 // which are the same pattern. Ignore the dups. 4265 if (R->canPatternMatch(ErrString, CDP) && 4266 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4267 return R->isIsomorphicTo(Variant.get(), DepVars); 4268 })) 4269 OutVariants.push_back(R); 4270 4271 // Increment indices to the next permutation by incrementing the 4272 // indices from last index backward, e.g., generate the sequence 4273 // [0, 0], [0, 1], [1, 0], [1, 1]. 4274 int IdxsIdx; 4275 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4276 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4277 Idxs[IdxsIdx] = 0; 4278 else 4279 break; 4280 } 4281 NotDone = (IdxsIdx >= 0); 4282 } while (NotDone); 4283 } 4284 4285 /// CombineChildVariants - A helper function for binary operators. 4286 /// 4287 static void CombineChildVariants(TreePatternNodePtr Orig, 4288 const std::vector<TreePatternNodePtr> &LHS, 4289 const std::vector<TreePatternNodePtr> &RHS, 4290 std::vector<TreePatternNodePtr> &OutVariants, 4291 CodeGenDAGPatterns &CDP, 4292 const MultipleUseVarSet &DepVars) { 4293 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4294 ChildVariants.push_back(LHS); 4295 ChildVariants.push_back(RHS); 4296 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4297 } 4298 4299 static void 4300 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4301 std::vector<TreePatternNodePtr> &Children) { 4302 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 4303 Record *Operator = N->getOperator(); 4304 4305 // Only permit raw nodes. 4306 if (!N->getName().empty() || !N->getPredicateFns().empty() || 4307 N->getTransformFn()) { 4308 Children.push_back(N); 4309 return; 4310 } 4311 4312 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 4313 Children.push_back(N->getChildShared(0)); 4314 else 4315 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4316 4317 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 4318 Children.push_back(N->getChildShared(1)); 4319 else 4320 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4321 } 4322 4323 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4324 /// the (potentially recursive) pattern by using algebraic laws. 4325 /// 4326 static void GenerateVariantsOf(TreePatternNodePtr N, 4327 std::vector<TreePatternNodePtr> &OutVariants, 4328 CodeGenDAGPatterns &CDP, 4329 const MultipleUseVarSet &DepVars) { 4330 // We cannot permute leaves or ComplexPattern uses. 4331 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4332 OutVariants.push_back(N); 4333 return; 4334 } 4335 4336 // Look up interesting info about the node. 4337 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4338 4339 // If this node is associative, re-associate. 4340 if (NodeInfo.hasProperty(SDNPAssociative)) { 4341 // Re-associate by pulling together all of the linked operators 4342 std::vector<TreePatternNodePtr> MaximalChildren; 4343 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4344 4345 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4346 // permutations. 4347 if (MaximalChildren.size() == 3) { 4348 // Find the variants of all of our maximal children. 4349 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4350 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4351 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4352 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4353 4354 // There are only two ways we can permute the tree: 4355 // (A op B) op C and A op (B op C) 4356 // Within these forms, we can also permute A/B/C. 4357 4358 // Generate legal pair permutations of A/B/C. 4359 std::vector<TreePatternNodePtr> ABVariants; 4360 std::vector<TreePatternNodePtr> BAVariants; 4361 std::vector<TreePatternNodePtr> ACVariants; 4362 std::vector<TreePatternNodePtr> CAVariants; 4363 std::vector<TreePatternNodePtr> BCVariants; 4364 std::vector<TreePatternNodePtr> CBVariants; 4365 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4366 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4367 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4368 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4369 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4370 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4371 4372 // Combine those into the result: (x op x) op x 4373 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4374 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4375 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4376 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4377 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4378 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4379 4380 // Combine those into the result: x op (x op x) 4381 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4382 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4383 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4384 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4385 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4386 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4387 return; 4388 } 4389 } 4390 4391 // Compute permutations of all children. 4392 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4393 ChildVariants.resize(N->getNumChildren()); 4394 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4395 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4396 4397 // Build all permutations based on how the children were formed. 4398 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4399 4400 // If this node is commutative, consider the commuted order. 4401 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4402 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4403 assert((N->getNumChildren()>=2 || isCommIntrinsic) && 4404 "Commutative but doesn't have 2 children!"); 4405 // Don't count children which are actually register references. 4406 unsigned NC = 0; 4407 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4408 TreePatternNode *Child = N->getChild(i); 4409 if (Child->isLeaf()) 4410 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 4411 Record *RR = DI->getDef(); 4412 if (RR->isSubClassOf("Register")) 4413 continue; 4414 } 4415 NC++; 4416 } 4417 // Consider the commuted order. 4418 if (isCommIntrinsic) { 4419 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 4420 // operands are the commutative operands, and there might be more operands 4421 // after those. 4422 assert(NC >= 3 && 4423 "Commutative intrinsic should have at least 3 children!"); 4424 std::vector<std::vector<TreePatternNodePtr>> Variants; 4425 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id. 4426 Variants.push_back(std::move(ChildVariants[2])); 4427 Variants.push_back(std::move(ChildVariants[1])); 4428 for (unsigned i = 3; i != NC; ++i) 4429 Variants.push_back(std::move(ChildVariants[i])); 4430 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4431 } else if (NC == N->getNumChildren()) { 4432 std::vector<std::vector<TreePatternNodePtr>> Variants; 4433 Variants.push_back(std::move(ChildVariants[1])); 4434 Variants.push_back(std::move(ChildVariants[0])); 4435 for (unsigned i = 2; i != NC; ++i) 4436 Variants.push_back(std::move(ChildVariants[i])); 4437 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4438 } 4439 } 4440 } 4441 4442 4443 // GenerateVariants - Generate variants. For example, commutative patterns can 4444 // match multiple ways. Add them to PatternsToMatch as well. 4445 void CodeGenDAGPatterns::GenerateVariants() { 4446 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4447 4448 // Loop over all of the patterns we've collected, checking to see if we can 4449 // generate variants of the instruction, through the exploitation of 4450 // identities. This permits the target to provide aggressive matching without 4451 // the .td file having to contain tons of variants of instructions. 4452 // 4453 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4454 // intentionally do not reconsider these. Any variants of added patterns have 4455 // already been added. 4456 // 4457 const unsigned NumOriginalPatterns = PatternsToMatch.size(); 4458 BitVector MatchedPatterns(NumOriginalPatterns); 4459 std::vector<BitVector> MatchedPredicates(NumOriginalPatterns, 4460 BitVector(NumOriginalPatterns)); 4461 4462 typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>> 4463 DepsAndVariants; 4464 std::map<unsigned, DepsAndVariants> PatternsWithVariants; 4465 4466 // Collect patterns with more than one variant. 4467 for (unsigned i = 0; i != NumOriginalPatterns; ++i) { 4468 MultipleUseVarSet DepVars; 4469 std::vector<TreePatternNodePtr> Variants; 4470 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4471 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4472 LLVM_DEBUG(DumpDepVars(DepVars)); 4473 LLVM_DEBUG(errs() << "\n"); 4474 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4475 *this, DepVars); 4476 4477 assert(!Variants.empty() && "Must create at least original variant!"); 4478 if (Variants.size() == 1) // No additional variants for this pattern. 4479 continue; 4480 4481 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4482 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n"); 4483 4484 PatternsWithVariants[i] = std::make_pair(DepVars, Variants); 4485 4486 // Cache matching predicates. 4487 if (MatchedPatterns[i]) 4488 continue; 4489 4490 const std::vector<Predicate> &Predicates = 4491 PatternsToMatch[i].getPredicates(); 4492 4493 BitVector &Matches = MatchedPredicates[i]; 4494 MatchedPatterns.set(i); 4495 Matches.set(i); 4496 4497 // Don't test patterns that have already been cached - it won't match. 4498 for (unsigned p = 0; p != NumOriginalPatterns; ++p) 4499 if (!MatchedPatterns[p]) 4500 Matches[p] = (Predicates == PatternsToMatch[p].getPredicates()); 4501 4502 // Copy this to all the matching patterns. 4503 for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p)) 4504 if (p != (int)i) { 4505 MatchedPatterns.set(p); 4506 MatchedPredicates[p] = Matches; 4507 } 4508 } 4509 4510 for (auto it : PatternsWithVariants) { 4511 unsigned i = it.first; 4512 const MultipleUseVarSet &DepVars = it.second.first; 4513 const std::vector<TreePatternNodePtr> &Variants = it.second.second; 4514 4515 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4516 TreePatternNodePtr Variant = Variants[v]; 4517 BitVector &Matches = MatchedPredicates[i]; 4518 4519 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4520 errs() << "\n"); 4521 4522 // Scan to see if an instruction or explicit pattern already matches this. 4523 bool AlreadyExists = false; 4524 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4525 // Skip if the top level predicates do not match. 4526 if (!Matches[p]) 4527 continue; 4528 // Check to see if this variant already exists. 4529 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4530 DepVars)) { 4531 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4532 AlreadyExists = true; 4533 break; 4534 } 4535 } 4536 // If we already have it, ignore the variant. 4537 if (AlreadyExists) continue; 4538 4539 // Otherwise, add it to the list of patterns we have. 4540 PatternsToMatch.push_back(PatternToMatch( 4541 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4542 Variant, PatternsToMatch[i].getDstPatternShared(), 4543 PatternsToMatch[i].getDstRegs(), 4544 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID())); 4545 MatchedPredicates.push_back(Matches); 4546 4547 // Add a new match the same as this pattern. 4548 for (auto &P : MatchedPredicates) 4549 P.push_back(P[i]); 4550 } 4551 4552 LLVM_DEBUG(errs() << "\n"); 4553 } 4554 } 4555