1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/TableGen/Error.h" 22 #include "llvm/TableGen/Record.h" 23 #include <algorithm> 24 #include <cstdio> 25 #include <set> 26 using namespace llvm; 27 28 #define DEBUG_TYPE "dag-patterns" 29 30 //===----------------------------------------------------------------------===// 31 // EEVT::TypeSet Implementation 32 //===----------------------------------------------------------------------===// 33 34 static inline bool isInteger(MVT::SimpleValueType VT) { 35 return MVT(VT).isInteger(); 36 } 37 static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 38 return MVT(VT).isFloatingPoint(); 39 } 40 static inline bool isVector(MVT::SimpleValueType VT) { 41 return MVT(VT).isVector(); 42 } 43 static inline bool isScalar(MVT::SimpleValueType VT) { 44 return !MVT(VT).isVector(); 45 } 46 47 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { 48 if (VT == MVT::iAny) 49 EnforceInteger(TP); 50 else if (VT == MVT::fAny) 51 EnforceFloatingPoint(TP); 52 else if (VT == MVT::vAny) 53 EnforceVector(TP); 54 else { 55 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || 56 VT == MVT::iPTRAny || VT == MVT::Any) && "Not a concrete type!"); 57 TypeVec.push_back(VT); 58 } 59 } 60 61 62 EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) { 63 assert(!VTList.empty() && "empty list?"); 64 TypeVec.append(VTList.begin(), VTList.end()); 65 66 if (!VTList.empty()) 67 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && 68 VTList[0] != MVT::fAny); 69 70 // Verify no duplicates. 71 array_pod_sort(TypeVec.begin(), TypeVec.end()); 72 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); 73 } 74 75 /// FillWithPossibleTypes - Set to all legal types and return true, only valid 76 /// on completely unknown type sets. 77 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, 78 bool (*Pred)(MVT::SimpleValueType), 79 const char *PredicateName) { 80 assert(isCompletelyUnknown()); 81 ArrayRef<MVT::SimpleValueType> LegalTypes = 82 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); 83 84 if (TP.hasError()) 85 return false; 86 87 for (MVT::SimpleValueType VT : LegalTypes) 88 if (!Pred || Pred(VT)) 89 TypeVec.push_back(VT); 90 91 // If we have nothing that matches the predicate, bail out. 92 if (TypeVec.empty()) { 93 TP.error("Type inference contradiction found, no " + 94 std::string(PredicateName) + " types found"); 95 return false; 96 } 97 // No need to sort with one element. 98 if (TypeVec.size() == 1) return true; 99 100 // Remove duplicates. 101 array_pod_sort(TypeVec.begin(), TypeVec.end()); 102 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); 103 104 return true; 105 } 106 107 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an 108 /// integer value type. 109 bool EEVT::TypeSet::hasIntegerTypes() const { 110 return std::any_of(TypeVec.begin(), TypeVec.end(), isInteger); 111 } 112 113 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 114 /// a floating point value type. 115 bool EEVT::TypeSet::hasFloatingPointTypes() const { 116 return std::any_of(TypeVec.begin(), TypeVec.end(), isFloatingPoint); 117 } 118 119 /// hasScalarTypes - Return true if this TypeSet contains a scalar value type. 120 bool EEVT::TypeSet::hasScalarTypes() const { 121 return std::any_of(TypeVec.begin(), TypeVec.end(), isScalar); 122 } 123 124 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector 125 /// value type. 126 bool EEVT::TypeSet::hasVectorTypes() const { 127 return std::any_of(TypeVec.begin(), TypeVec.end(), isVector); 128 } 129 130 131 std::string EEVT::TypeSet::getName() const { 132 if (TypeVec.empty()) return "<empty>"; 133 134 std::string Result; 135 136 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { 137 std::string VTName = llvm::getEnumName(TypeVec[i]); 138 // Strip off MVT:: prefix if present. 139 if (VTName.substr(0,5) == "MVT::") 140 VTName = VTName.substr(5); 141 if (i) Result += ':'; 142 Result += VTName; 143 } 144 145 if (TypeVec.size() == 1) 146 return Result; 147 return "{" + Result + "}"; 148 } 149 150 /// MergeInTypeInfo - This merges in type information from the specified 151 /// argument. If 'this' changes, it returns true. If the two types are 152 /// contradictory (e.g. merge f32 into i32) then this flags an error. 153 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ 154 if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError()) 155 return false; 156 157 if (isCompletelyUnknown()) { 158 *this = InVT; 159 return true; 160 } 161 162 assert(!TypeVec.empty() && !InVT.TypeVec.empty() && "No unknowns"); 163 164 // Handle the abstract cases, seeing if we can resolve them better. 165 switch (TypeVec[0]) { 166 default: break; 167 case MVT::iPTR: 168 case MVT::iPTRAny: 169 if (InVT.hasIntegerTypes()) { 170 EEVT::TypeSet InCopy(InVT); 171 InCopy.EnforceInteger(TP); 172 InCopy.EnforceScalar(TP); 173 174 if (InCopy.isConcrete()) { 175 // If the RHS has one integer type, upgrade iPTR to i32. 176 TypeVec[0] = InVT.TypeVec[0]; 177 return true; 178 } 179 180 // If the input has multiple scalar integers, this doesn't add any info. 181 if (!InCopy.isCompletelyUnknown()) 182 return false; 183 } 184 break; 185 } 186 187 // If the input constraint is iAny/iPTR and this is an integer type list, 188 // remove non-integer types from the list. 189 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 190 hasIntegerTypes()) { 191 bool MadeChange = EnforceInteger(TP); 192 193 // If we're merging in iPTR/iPTRAny and the node currently has a list of 194 // multiple different integer types, replace them with a single iPTR. 195 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 196 TypeVec.size() != 1) { 197 TypeVec.assign(1, InVT.TypeVec[0]); 198 MadeChange = true; 199 } 200 201 return MadeChange; 202 } 203 204 // If this is a type list and the RHS is a typelist as well, eliminate entries 205 // from this list that aren't in the other one. 206 TypeSet InputSet(*this); 207 208 TypeVec.clear(); 209 std::set_intersection(InputSet.TypeVec.begin(), InputSet.TypeVec.end(), 210 InVT.TypeVec.begin(), InVT.TypeVec.end(), 211 std::back_inserter(TypeVec)); 212 213 // If the intersection is the same size as the original set then we're done. 214 if (TypeVec.size() == InputSet.TypeVec.size()) 215 return false; 216 217 // If we removed all of our types, we have a type contradiction. 218 if (!TypeVec.empty()) 219 return true; 220 221 // FIXME: Really want an SMLoc here! 222 TP.error("Type inference contradiction found, merging '" + 223 InVT.getName() + "' into '" + InputSet.getName() + "'"); 224 return false; 225 } 226 227 /// EnforceInteger - Remove all non-integer types from this set. 228 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { 229 if (TP.hasError()) 230 return false; 231 // If we know nothing, then get the full set. 232 if (TypeVec.empty()) 233 return FillWithPossibleTypes(TP, isInteger, "integer"); 234 235 if (!hasFloatingPointTypes()) 236 return false; 237 238 TypeSet InputSet(*this); 239 240 // Filter out all the fp types. 241 TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(), 242 std::not1(std::ptr_fun(isInteger))), 243 TypeVec.end()); 244 245 if (TypeVec.empty()) { 246 TP.error("Type inference contradiction found, '" + 247 InputSet.getName() + "' needs to be integer"); 248 return false; 249 } 250 return true; 251 } 252 253 /// EnforceFloatingPoint - Remove all integer types from this set. 254 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { 255 if (TP.hasError()) 256 return false; 257 // If we know nothing, then get the full set. 258 if (TypeVec.empty()) 259 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); 260 261 if (!hasIntegerTypes()) 262 return false; 263 264 TypeSet InputSet(*this); 265 266 // Filter out all the integer types. 267 TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(), 268 std::not1(std::ptr_fun(isFloatingPoint))), 269 TypeVec.end()); 270 271 if (TypeVec.empty()) { 272 TP.error("Type inference contradiction found, '" + 273 InputSet.getName() + "' needs to be floating point"); 274 return false; 275 } 276 return true; 277 } 278 279 /// EnforceScalar - Remove all vector types from this. 280 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { 281 if (TP.hasError()) 282 return false; 283 284 // If we know nothing, then get the full set. 285 if (TypeVec.empty()) 286 return FillWithPossibleTypes(TP, isScalar, "scalar"); 287 288 if (!hasVectorTypes()) 289 return false; 290 291 TypeSet InputSet(*this); 292 293 // Filter out all the vector types. 294 TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(), 295 std::not1(std::ptr_fun(isScalar))), 296 TypeVec.end()); 297 298 if (TypeVec.empty()) { 299 TP.error("Type inference contradiction found, '" + 300 InputSet.getName() + "' needs to be scalar"); 301 return false; 302 } 303 return true; 304 } 305 306 /// EnforceVector - Remove all vector types from this. 307 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { 308 if (TP.hasError()) 309 return false; 310 311 // If we know nothing, then get the full set. 312 if (TypeVec.empty()) 313 return FillWithPossibleTypes(TP, isVector, "vector"); 314 315 TypeSet InputSet(*this); 316 bool MadeChange = false; 317 318 // Filter out all the scalar types. 319 TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(), 320 std::not1(std::ptr_fun(isVector))), 321 TypeVec.end()); 322 323 if (TypeVec.empty()) { 324 TP.error("Type inference contradiction found, '" + 325 InputSet.getName() + "' needs to be a vector"); 326 return false; 327 } 328 return MadeChange; 329 } 330 331 332 333 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. For vectors 334 /// this should be based on the element type. Update this and other based on 335 /// this information. 336 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { 337 if (TP.hasError()) 338 return false; 339 340 // Both operands must be integer or FP, but we don't care which. 341 bool MadeChange = false; 342 343 if (isCompletelyUnknown()) 344 MadeChange = FillWithPossibleTypes(TP); 345 346 if (Other.isCompletelyUnknown()) 347 MadeChange = Other.FillWithPossibleTypes(TP); 348 349 // If one side is known to be integer or known to be FP but the other side has 350 // no information, get at least the type integrality info in there. 351 if (!hasFloatingPointTypes()) 352 MadeChange |= Other.EnforceInteger(TP); 353 else if (!hasIntegerTypes()) 354 MadeChange |= Other.EnforceFloatingPoint(TP); 355 if (!Other.hasFloatingPointTypes()) 356 MadeChange |= EnforceInteger(TP); 357 else if (!Other.hasIntegerTypes()) 358 MadeChange |= EnforceFloatingPoint(TP); 359 360 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && 361 "Should have a type list now"); 362 363 // If one contains vectors but the other doesn't pull vectors out. 364 if (!hasVectorTypes()) 365 MadeChange |= Other.EnforceScalar(TP); 366 else if (!hasScalarTypes()) 367 MadeChange |= Other.EnforceVector(TP); 368 if (!Other.hasVectorTypes()) 369 MadeChange |= EnforceScalar(TP); 370 else if (!Other.hasScalarTypes()) 371 MadeChange |= EnforceVector(TP); 372 373 // This code does not currently handle nodes which have multiple types, 374 // where some types are integer, and some are fp. Assert that this is not 375 // the case. 376 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && 377 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && 378 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 379 380 if (TP.hasError()) 381 return false; 382 383 // Okay, find the smallest type from current set and remove anything the 384 // same or smaller from the other set. We need to ensure that the scalar 385 // type size is smaller than the scalar size of the smallest type. For 386 // vectors, we also need to make sure that the total size is no larger than 387 // the size of the smallest type. 388 { 389 TypeSet InputSet(Other); 390 MVT Smallest = TypeVec[0]; 391 auto I = std::remove_if(Other.TypeVec.begin(), Other.TypeVec.end(), 392 [Smallest](MVT OtherVT) { 393 // Don't compare vector and non-vector types. 394 if (OtherVT.isVector() != Smallest.isVector()) 395 return false; 396 // The getSizeInBits() check here is only needed for vectors, but is 397 // a subset of the scalar check for scalars so no need to qualify. 398 return OtherVT.getScalarSizeInBits() <= Smallest.getScalarSizeInBits()|| 399 OtherVT.getSizeInBits() < Smallest.getSizeInBits(); 400 }); 401 MadeChange |= I != Other.TypeVec.end(); // If we're about to remove types. 402 Other.TypeVec.erase(I, Other.TypeVec.end()); 403 404 if (Other.TypeVec.empty()) { 405 TP.error("Type inference contradiction found, '" + InputSet.getName() + 406 "' has nothing larger than '" + getName() +"'!"); 407 return false; 408 } 409 } 410 411 // Okay, find the largest type from the other set and remove anything the 412 // same or smaller from the current set. We need to ensure that the scalar 413 // type size is larger than the scalar size of the largest type. For 414 // vectors, we also need to make sure that the total size is no smaller than 415 // the size of the largest type. 416 { 417 TypeSet InputSet(*this); 418 MVT Largest = Other.TypeVec[Other.TypeVec.size()-1]; 419 auto I = std::remove_if(TypeVec.begin(), TypeVec.end(), 420 [Largest](MVT OtherVT) { 421 // Don't compare vector and non-vector types. 422 if (OtherVT.isVector() != Largest.isVector()) 423 return false; 424 return OtherVT.getScalarSizeInBits() >= Largest.getScalarSizeInBits() || 425 OtherVT.getSizeInBits() > Largest.getSizeInBits(); 426 }); 427 MadeChange |= I != TypeVec.end(); // If we're about to remove types. 428 TypeVec.erase(I, TypeVec.end()); 429 430 if (TypeVec.empty()) { 431 TP.error("Type inference contradiction found, '" + InputSet.getName() + 432 "' has nothing smaller than '" + Other.getName() +"'!"); 433 return false; 434 } 435 } 436 437 return MadeChange; 438 } 439 440 /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type 441 /// whose element is specified by VTOperand. 442 bool EEVT::TypeSet::EnforceVectorEltTypeIs(MVT::SimpleValueType VT, 443 TreePattern &TP) { 444 bool MadeChange = false; 445 446 MadeChange |= EnforceVector(TP); 447 448 TypeSet InputSet(*this); 449 450 // Filter out all the types which don't have the right element type. 451 auto I = std::remove_if(TypeVec.begin(), TypeVec.end(), 452 [VT](MVT VVT) { 453 return VVT.getVectorElementType().SimpleTy != VT; 454 }); 455 MadeChange |= I != TypeVec.end(); 456 TypeVec.erase(I, TypeVec.end()); 457 458 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 459 TP.error("Type inference contradiction found, forcing '" + 460 InputSet.getName() + "' to have a vector element of type " + 461 getEnumName(VT)); 462 return false; 463 } 464 465 return MadeChange; 466 } 467 468 /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type 469 /// whose element is specified by VTOperand. 470 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, 471 TreePattern &TP) { 472 if (TP.hasError()) 473 return false; 474 475 // "This" must be a vector and "VTOperand" must be a scalar. 476 bool MadeChange = false; 477 MadeChange |= EnforceVector(TP); 478 MadeChange |= VTOperand.EnforceScalar(TP); 479 480 // If we know the vector type, it forces the scalar to agree. 481 if (isConcrete()) { 482 MVT IVT = getConcrete(); 483 IVT = IVT.getVectorElementType(); 484 return MadeChange || VTOperand.MergeInTypeInfo(IVT.SimpleTy, TP); 485 } 486 487 // If the scalar type is known, filter out vector types whose element types 488 // disagree. 489 if (!VTOperand.isConcrete()) 490 return MadeChange; 491 492 MVT::SimpleValueType VT = VTOperand.getConcrete(); 493 494 MadeChange |= EnforceVectorEltTypeIs(VT, TP); 495 496 return MadeChange; 497 } 498 499 /// EnforceVectorSubVectorTypeIs - 'this' is now constrained to be a 500 /// vector type specified by VTOperand. 501 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, 502 TreePattern &TP) { 503 if (TP.hasError()) 504 return false; 505 506 // "This" must be a vector and "VTOperand" must be a vector. 507 bool MadeChange = false; 508 MadeChange |= EnforceVector(TP); 509 MadeChange |= VTOperand.EnforceVector(TP); 510 511 // If one side is known to be integer or known to be FP but the other side has 512 // no information, get at least the type integrality info in there. 513 if (!hasFloatingPointTypes()) 514 MadeChange |= VTOperand.EnforceInteger(TP); 515 else if (!hasIntegerTypes()) 516 MadeChange |= VTOperand.EnforceFloatingPoint(TP); 517 if (!VTOperand.hasFloatingPointTypes()) 518 MadeChange |= EnforceInteger(TP); 519 else if (!VTOperand.hasIntegerTypes()) 520 MadeChange |= EnforceFloatingPoint(TP); 521 522 assert(!isCompletelyUnknown() && !VTOperand.isCompletelyUnknown() && 523 "Should have a type list now"); 524 525 // If we know the vector type, it forces the scalar types to agree. 526 // Also force one vector to have more elements than the other. 527 if (isConcrete()) { 528 MVT IVT = getConcrete(); 529 unsigned NumElems = IVT.getVectorNumElements(); 530 IVT = IVT.getVectorElementType(); 531 532 EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP); 533 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); 534 535 // Only keep types that have less elements than VTOperand. 536 TypeSet InputSet(VTOperand); 537 538 auto I = std::remove_if(VTOperand.TypeVec.begin(), VTOperand.TypeVec.end(), 539 [NumElems](MVT VVT) { 540 return VVT.getVectorNumElements() >= NumElems; 541 }); 542 MadeChange |= I != VTOperand.TypeVec.end(); 543 VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end()); 544 545 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! 546 TP.error("Type inference contradiction found, forcing '" + 547 InputSet.getName() + "' to have less vector elements than '" + 548 getName() + "'"); 549 return false; 550 } 551 } else if (VTOperand.isConcrete()) { 552 MVT IVT = VTOperand.getConcrete(); 553 unsigned NumElems = IVT.getVectorNumElements(); 554 IVT = IVT.getVectorElementType(); 555 556 EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP); 557 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); 558 559 // Only keep types that have more elements than 'this'. 560 TypeSet InputSet(*this); 561 562 auto I = std::remove_if(TypeVec.begin(), TypeVec.end(), 563 [NumElems](MVT VVT) { 564 return VVT.getVectorNumElements() <= NumElems; 565 }); 566 MadeChange |= I != TypeVec.end(); 567 TypeVec.erase(I, TypeVec.end()); 568 569 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 570 TP.error("Type inference contradiction found, forcing '" + 571 InputSet.getName() + "' to have more vector elements than '" + 572 VTOperand.getName() + "'"); 573 return false; 574 } 575 } 576 577 return MadeChange; 578 } 579 580 /// EnforceVectorSameNumElts - 'this' is now constrained to 581 /// be a vector with same num elements as VTOperand. 582 bool EEVT::TypeSet::EnforceVectorSameNumElts(EEVT::TypeSet &VTOperand, 583 TreePattern &TP) { 584 if (TP.hasError()) 585 return false; 586 587 // "This" must be a vector and "VTOperand" must be a vector. 588 bool MadeChange = false; 589 MadeChange |= EnforceVector(TP); 590 MadeChange |= VTOperand.EnforceVector(TP); 591 592 // If we know one of the vector types, it forces the other type to agree. 593 if (isConcrete()) { 594 MVT IVT = getConcrete(); 595 unsigned NumElems = IVT.getVectorNumElements(); 596 597 // Only keep types that have same elements as VTOperand. 598 TypeSet InputSet(VTOperand); 599 600 auto I = std::remove_if(VTOperand.TypeVec.begin(), VTOperand.TypeVec.end(), 601 [NumElems](MVT VVT) { 602 return VVT.getVectorNumElements() != NumElems; 603 }); 604 MadeChange |= I != VTOperand.TypeVec.end(); 605 VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end()); 606 607 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! 608 TP.error("Type inference contradiction found, forcing '" + 609 InputSet.getName() + "' to have same number elements as '" + 610 getName() + "'"); 611 return false; 612 } 613 } else if (VTOperand.isConcrete()) { 614 MVT IVT = VTOperand.getConcrete(); 615 unsigned NumElems = IVT.getVectorNumElements(); 616 617 // Only keep types that have same elements as 'this'. 618 TypeSet InputSet(*this); 619 620 auto I = std::remove_if(TypeVec.begin(), TypeVec.end(), 621 [NumElems](MVT VVT) { 622 return VVT.getVectorNumElements() != NumElems; 623 }); 624 MadeChange |= I != TypeVec.end(); 625 TypeVec.erase(I, TypeVec.end()); 626 627 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 628 TP.error("Type inference contradiction found, forcing '" + 629 InputSet.getName() + "' to have same number elements than '" + 630 VTOperand.getName() + "'"); 631 return false; 632 } 633 } 634 635 return MadeChange; 636 } 637 638 //===----------------------------------------------------------------------===// 639 // Helpers for working with extended types. 640 641 /// Dependent variable map for CodeGenDAGPattern variant generation 642 typedef std::map<std::string, int> DepVarMap; 643 644 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 645 if (N->isLeaf()) { 646 if (isa<DefInit>(N->getLeafValue())) 647 DepMap[N->getName()]++; 648 } else { 649 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 650 FindDepVarsOf(N->getChild(i), DepMap); 651 } 652 } 653 654 /// Find dependent variables within child patterns 655 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 656 DepVarMap depcounts; 657 FindDepVarsOf(N, depcounts); 658 for (const std::pair<std::string, int> &Pair : depcounts) { 659 if (Pair.second > 1) 660 DepVars.insert(Pair.first); 661 } 662 } 663 664 #ifndef NDEBUG 665 /// Dump the dependent variable set: 666 static void DumpDepVars(MultipleUseVarSet &DepVars) { 667 if (DepVars.empty()) { 668 DEBUG(errs() << "<empty set>"); 669 } else { 670 DEBUG(errs() << "[ "); 671 for (const std::string &DepVar : DepVars) { 672 DEBUG(errs() << DepVar << " "); 673 } 674 DEBUG(errs() << "]"); 675 } 676 } 677 #endif 678 679 680 //===----------------------------------------------------------------------===// 681 // TreePredicateFn Implementation 682 //===----------------------------------------------------------------------===// 683 684 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 685 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 686 assert((getPredCode().empty() || getImmCode().empty()) && 687 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 688 } 689 690 std::string TreePredicateFn::getPredCode() const { 691 return PatFragRec->getRecord()->getValueAsString("PredicateCode"); 692 } 693 694 std::string TreePredicateFn::getImmCode() const { 695 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 696 } 697 698 699 /// isAlwaysTrue - Return true if this is a noop predicate. 700 bool TreePredicateFn::isAlwaysTrue() const { 701 return getPredCode().empty() && getImmCode().empty(); 702 } 703 704 /// Return the name to use in the generated code to reference this, this is 705 /// "Predicate_foo" if from a pattern fragment "foo". 706 std::string TreePredicateFn::getFnName() const { 707 return "Predicate_" + PatFragRec->getRecord()->getName(); 708 } 709 710 /// getCodeToRunOnSDNode - Return the code for the function body that 711 /// evaluates this predicate. The argument is expected to be in "Node", 712 /// not N. This handles casting and conversion to a concrete node type as 713 /// appropriate. 714 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 715 // Handle immediate predicates first. 716 std::string ImmCode = getImmCode(); 717 if (!ImmCode.empty()) { 718 std::string Result = 719 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n"; 720 return Result + ImmCode; 721 } 722 723 // Handle arbitrary node predicates. 724 assert(!getPredCode().empty() && "Don't have any predicate code!"); 725 std::string ClassName; 726 if (PatFragRec->getOnlyTree()->isLeaf()) 727 ClassName = "SDNode"; 728 else { 729 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 730 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 731 } 732 std::string Result; 733 if (ClassName == "SDNode") 734 Result = " SDNode *N = Node;\n"; 735 else 736 Result = " auto *N = cast<" + ClassName + ">(Node);\n"; 737 738 return Result + getPredCode(); 739 } 740 741 //===----------------------------------------------------------------------===// 742 // PatternToMatch implementation 743 // 744 745 746 /// getPatternSize - Return the 'size' of this pattern. We want to match large 747 /// patterns before small ones. This is used to determine the size of a 748 /// pattern. 749 static unsigned getPatternSize(const TreePatternNode *P, 750 const CodeGenDAGPatterns &CGP) { 751 unsigned Size = 3; // The node itself. 752 // If the root node is a ConstantSDNode, increases its size. 753 // e.g. (set R32:$dst, 0). 754 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 755 Size += 2; 756 757 // FIXME: This is a hack to statically increase the priority of patterns 758 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. 759 // Later we can allow complexity / cost for each pattern to be (optionally) 760 // specified. To get best possible pattern match we'll need to dynamically 761 // calculate the complexity of all patterns a dag can potentially map to. 762 const ComplexPattern *AM = P->getComplexPatternInfo(CGP); 763 if (AM) { 764 Size += AM->getNumOperands() * 3; 765 766 // We don't want to count any children twice, so return early. 767 return Size; 768 } 769 770 // If this node has some predicate function that must match, it adds to the 771 // complexity of this node. 772 if (!P->getPredicateFns().empty()) 773 ++Size; 774 775 // Count children in the count if they are also nodes. 776 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 777 TreePatternNode *Child = P->getChild(i); 778 if (!Child->isLeaf() && Child->getNumTypes() && 779 Child->getType(0) != MVT::Other) 780 Size += getPatternSize(Child, CGP); 781 else if (Child->isLeaf()) { 782 if (isa<IntInit>(Child->getLeafValue())) 783 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 784 else if (Child->getComplexPatternInfo(CGP)) 785 Size += getPatternSize(Child, CGP); 786 else if (!Child->getPredicateFns().empty()) 787 ++Size; 788 } 789 } 790 791 return Size; 792 } 793 794 /// Compute the complexity metric for the input pattern. This roughly 795 /// corresponds to the number of nodes that are covered. 796 int PatternToMatch:: 797 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 798 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 799 } 800 801 802 /// getPredicateCheck - Return a single string containing all of this 803 /// pattern's predicates concatenated with "&&" operators. 804 /// 805 std::string PatternToMatch::getPredicateCheck() const { 806 std::string PredicateCheck; 807 for (Init *I : Predicates->getValues()) { 808 if (DefInit *Pred = dyn_cast<DefInit>(I)) { 809 Record *Def = Pred->getDef(); 810 if (!Def->isSubClassOf("Predicate")) { 811 #ifndef NDEBUG 812 Def->dump(); 813 #endif 814 llvm_unreachable("Unknown predicate type!"); 815 } 816 if (!PredicateCheck.empty()) 817 PredicateCheck += " && "; 818 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; 819 } 820 } 821 822 return PredicateCheck; 823 } 824 825 //===----------------------------------------------------------------------===// 826 // SDTypeConstraint implementation 827 // 828 829 SDTypeConstraint::SDTypeConstraint(Record *R) { 830 OperandNo = R->getValueAsInt("OperandNum"); 831 832 if (R->isSubClassOf("SDTCisVT")) { 833 ConstraintType = SDTCisVT; 834 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 835 if (x.SDTCisVT_Info.VT == MVT::isVoid) 836 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 837 838 } else if (R->isSubClassOf("SDTCisPtrTy")) { 839 ConstraintType = SDTCisPtrTy; 840 } else if (R->isSubClassOf("SDTCisInt")) { 841 ConstraintType = SDTCisInt; 842 } else if (R->isSubClassOf("SDTCisFP")) { 843 ConstraintType = SDTCisFP; 844 } else if (R->isSubClassOf("SDTCisVec")) { 845 ConstraintType = SDTCisVec; 846 } else if (R->isSubClassOf("SDTCisSameAs")) { 847 ConstraintType = SDTCisSameAs; 848 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 849 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 850 ConstraintType = SDTCisVTSmallerThanOp; 851 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 852 R->getValueAsInt("OtherOperandNum"); 853 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 854 ConstraintType = SDTCisOpSmallerThanOp; 855 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 856 R->getValueAsInt("BigOperandNum"); 857 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 858 ConstraintType = SDTCisEltOfVec; 859 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 860 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 861 ConstraintType = SDTCisSubVecOfVec; 862 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 863 R->getValueAsInt("OtherOpNum"); 864 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 865 ConstraintType = SDTCVecEltisVT; 866 x.SDTCVecEltisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 867 if (MVT(x.SDTCVecEltisVT_Info.VT).isVector()) 868 PrintFatalError(R->getLoc(), "Cannot use vector type as SDTCVecEltisVT"); 869 if (!MVT(x.SDTCVecEltisVT_Info.VT).isInteger() && 870 !MVT(x.SDTCVecEltisVT_Info.VT).isFloatingPoint()) 871 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 872 "as SDTCVecEltisVT"); 873 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 874 ConstraintType = SDTCisSameNumEltsAs; 875 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 876 R->getValueAsInt("OtherOperandNum"); 877 } else { 878 PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 879 } 880 } 881 882 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 883 /// N, and the result number in ResNo. 884 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 885 const SDNodeInfo &NodeInfo, 886 unsigned &ResNo) { 887 unsigned NumResults = NodeInfo.getNumResults(); 888 if (OpNo < NumResults) { 889 ResNo = OpNo; 890 return N; 891 } 892 893 OpNo -= NumResults; 894 895 if (OpNo >= N->getNumChildren()) { 896 std::string S; 897 raw_string_ostream OS(S); 898 OS << "Invalid operand number in type constraint " 899 << (OpNo+NumResults) << " "; 900 N->print(OS); 901 PrintFatalError(OS.str()); 902 } 903 904 return N->getChild(OpNo); 905 } 906 907 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 908 /// constraint to the nodes operands. This returns true if it makes a 909 /// change, false otherwise. If a type contradiction is found, flag an error. 910 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 911 const SDNodeInfo &NodeInfo, 912 TreePattern &TP) const { 913 if (TP.hasError()) 914 return false; 915 916 unsigned ResNo = 0; // The result number being referenced. 917 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 918 919 switch (ConstraintType) { 920 case SDTCisVT: 921 // Operand must be a particular type. 922 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); 923 case SDTCisPtrTy: 924 // Operand must be same as target pointer type. 925 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 926 case SDTCisInt: 927 // Require it to be one of the legal integer VTs. 928 return NodeToApply->getExtType(ResNo).EnforceInteger(TP); 929 case SDTCisFP: 930 // Require it to be one of the legal fp VTs. 931 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); 932 case SDTCisVec: 933 // Require it to be one of the legal vector VTs. 934 return NodeToApply->getExtType(ResNo).EnforceVector(TP); 935 case SDTCisSameAs: { 936 unsigned OResNo = 0; 937 TreePatternNode *OtherNode = 938 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 939 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 940 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 941 } 942 case SDTCisVTSmallerThanOp: { 943 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 944 // have an integer type that is smaller than the VT. 945 if (!NodeToApply->isLeaf() || 946 !isa<DefInit>(NodeToApply->getLeafValue()) || 947 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 948 ->isSubClassOf("ValueType")) { 949 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 950 return false; 951 } 952 MVT::SimpleValueType VT = 953 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 954 955 EEVT::TypeSet TypeListTmp(VT, TP); 956 957 unsigned OResNo = 0; 958 TreePatternNode *OtherNode = 959 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 960 OResNo); 961 962 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); 963 } 964 case SDTCisOpSmallerThanOp: { 965 unsigned BResNo = 0; 966 TreePatternNode *BigOperand = 967 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 968 BResNo); 969 return NodeToApply->getExtType(ResNo). 970 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); 971 } 972 case SDTCisEltOfVec: { 973 unsigned VResNo = 0; 974 TreePatternNode *VecOperand = 975 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 976 VResNo); 977 978 // Filter vector types out of VecOperand that don't have the right element 979 // type. 980 return VecOperand->getExtType(VResNo). 981 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); 982 } 983 case SDTCisSubVecOfVec: { 984 unsigned VResNo = 0; 985 TreePatternNode *BigVecOperand = 986 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 987 VResNo); 988 989 // Filter vector types out of BigVecOperand that don't have the 990 // right subvector type. 991 return BigVecOperand->getExtType(VResNo). 992 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); 993 } 994 case SDTCVecEltisVT: { 995 return NodeToApply->getExtType(ResNo). 996 EnforceVectorEltTypeIs(x.SDTCVecEltisVT_Info.VT, TP); 997 } 998 case SDTCisSameNumEltsAs: { 999 unsigned OResNo = 0; 1000 TreePatternNode *OtherNode = 1001 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1002 N, NodeInfo, OResNo); 1003 return OtherNode->getExtType(OResNo). 1004 EnforceVectorSameNumElts(NodeToApply->getExtType(ResNo), TP); 1005 } 1006 } 1007 llvm_unreachable("Invalid ConstraintType!"); 1008 } 1009 1010 // Update the node type to match an instruction operand or result as specified 1011 // in the ins or outs lists on the instruction definition. Return true if the 1012 // type was actually changed. 1013 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1014 Record *Operand, 1015 TreePattern &TP) { 1016 // The 'unknown' operand indicates that types should be inferred from the 1017 // context. 1018 if (Operand->isSubClassOf("unknown_class")) 1019 return false; 1020 1021 // The Operand class specifies a type directly. 1022 if (Operand->isSubClassOf("Operand")) 1023 return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")), 1024 TP); 1025 1026 // PointerLikeRegClass has a type that is determined at runtime. 1027 if (Operand->isSubClassOf("PointerLikeRegClass")) 1028 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1029 1030 // Both RegisterClass and RegisterOperand operands derive their types from a 1031 // register class def. 1032 Record *RC = nullptr; 1033 if (Operand->isSubClassOf("RegisterClass")) 1034 RC = Operand; 1035 else if (Operand->isSubClassOf("RegisterOperand")) 1036 RC = Operand->getValueAsDef("RegClass"); 1037 1038 assert(RC && "Unknown operand type"); 1039 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1040 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1041 } 1042 1043 1044 //===----------------------------------------------------------------------===// 1045 // SDNodeInfo implementation 1046 // 1047 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 1048 EnumName = R->getValueAsString("Opcode"); 1049 SDClassName = R->getValueAsString("SDClass"); 1050 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1051 NumResults = TypeProfile->getValueAsInt("NumResults"); 1052 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1053 1054 // Parse the properties. 1055 Properties = 0; 1056 for (Record *Property : R->getValueAsListOfDefs("Properties")) { 1057 if (Property->getName() == "SDNPCommutative") { 1058 Properties |= 1 << SDNPCommutative; 1059 } else if (Property->getName() == "SDNPAssociative") { 1060 Properties |= 1 << SDNPAssociative; 1061 } else if (Property->getName() == "SDNPHasChain") { 1062 Properties |= 1 << SDNPHasChain; 1063 } else if (Property->getName() == "SDNPOutGlue") { 1064 Properties |= 1 << SDNPOutGlue; 1065 } else if (Property->getName() == "SDNPInGlue") { 1066 Properties |= 1 << SDNPInGlue; 1067 } else if (Property->getName() == "SDNPOptInGlue") { 1068 Properties |= 1 << SDNPOptInGlue; 1069 } else if (Property->getName() == "SDNPMayStore") { 1070 Properties |= 1 << SDNPMayStore; 1071 } else if (Property->getName() == "SDNPMayLoad") { 1072 Properties |= 1 << SDNPMayLoad; 1073 } else if (Property->getName() == "SDNPSideEffect") { 1074 Properties |= 1 << SDNPSideEffect; 1075 } else if (Property->getName() == "SDNPMemOperand") { 1076 Properties |= 1 << SDNPMemOperand; 1077 } else if (Property->getName() == "SDNPVariadic") { 1078 Properties |= 1 << SDNPVariadic; 1079 } else { 1080 PrintFatalError("Unknown SD Node property '" + 1081 Property->getName() + "' on node '" + 1082 R->getName() + "'!"); 1083 } 1084 } 1085 1086 1087 // Parse the type constraints. 1088 std::vector<Record*> ConstraintList = 1089 TypeProfile->getValueAsListOfDefs("Constraints"); 1090 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 1091 } 1092 1093 /// getKnownType - If the type constraints on this node imply a fixed type 1094 /// (e.g. all stores return void, etc), then return it as an 1095 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1096 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1097 unsigned NumResults = getNumResults(); 1098 assert(NumResults <= 1 && 1099 "We only work with nodes with zero or one result so far!"); 1100 assert(ResNo == 0 && "Only handles single result nodes so far"); 1101 1102 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1103 // Make sure that this applies to the correct node result. 1104 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1105 continue; 1106 1107 switch (Constraint.ConstraintType) { 1108 default: break; 1109 case SDTypeConstraint::SDTCisVT: 1110 return Constraint.x.SDTCisVT_Info.VT; 1111 case SDTypeConstraint::SDTCisPtrTy: 1112 return MVT::iPTR; 1113 } 1114 } 1115 return MVT::Other; 1116 } 1117 1118 //===----------------------------------------------------------------------===// 1119 // TreePatternNode implementation 1120 // 1121 1122 TreePatternNode::~TreePatternNode() { 1123 #if 0 // FIXME: implement refcounted tree nodes! 1124 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1125 delete getChild(i); 1126 #endif 1127 } 1128 1129 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1130 if (Operator->getName() == "set" || 1131 Operator->getName() == "implicit") 1132 return 0; // All return nothing. 1133 1134 if (Operator->isSubClassOf("Intrinsic")) 1135 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1136 1137 if (Operator->isSubClassOf("SDNode")) 1138 return CDP.getSDNodeInfo(Operator).getNumResults(); 1139 1140 if (Operator->isSubClassOf("PatFrag")) { 1141 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1142 // the forward reference case where one pattern fragment references another 1143 // before it is processed. 1144 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 1145 return PFRec->getOnlyTree()->getNumTypes(); 1146 1147 // Get the result tree. 1148 DagInit *Tree = Operator->getValueAsDag("Fragment"); 1149 Record *Op = nullptr; 1150 if (Tree) 1151 if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator())) 1152 Op = DI->getDef(); 1153 assert(Op && "Invalid Fragment"); 1154 return GetNumNodeResults(Op, CDP); 1155 } 1156 1157 if (Operator->isSubClassOf("Instruction")) { 1158 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1159 1160 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1161 1162 // Subtract any defaulted outputs. 1163 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1164 Record *OperandNode = InstInfo.Operands[i].Rec; 1165 1166 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1167 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1168 --NumDefsToAdd; 1169 } 1170 1171 // Add on one implicit def if it has a resolvable type. 1172 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1173 ++NumDefsToAdd; 1174 return NumDefsToAdd; 1175 } 1176 1177 if (Operator->isSubClassOf("SDNodeXForm")) 1178 return 1; // FIXME: Generalize SDNodeXForm 1179 1180 if (Operator->isSubClassOf("ValueType")) 1181 return 1; // A type-cast of one result. 1182 1183 if (Operator->isSubClassOf("ComplexPattern")) 1184 return 1; 1185 1186 Operator->dump(); 1187 PrintFatalError("Unhandled node in GetNumNodeResults"); 1188 } 1189 1190 void TreePatternNode::print(raw_ostream &OS) const { 1191 if (isLeaf()) 1192 OS << *getLeafValue(); 1193 else 1194 OS << '(' << getOperator()->getName(); 1195 1196 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1197 OS << ':' << getExtType(i).getName(); 1198 1199 if (!isLeaf()) { 1200 if (getNumChildren() != 0) { 1201 OS << " "; 1202 getChild(0)->print(OS); 1203 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1204 OS << ", "; 1205 getChild(i)->print(OS); 1206 } 1207 } 1208 OS << ")"; 1209 } 1210 1211 for (const TreePredicateFn &Pred : PredicateFns) 1212 OS << "<<P:" << Pred.getFnName() << ">>"; 1213 if (TransformFn) 1214 OS << "<<X:" << TransformFn->getName() << ">>"; 1215 if (!getName().empty()) 1216 OS << ":$" << getName(); 1217 1218 } 1219 void TreePatternNode::dump() const { 1220 print(errs()); 1221 } 1222 1223 /// isIsomorphicTo - Return true if this node is recursively 1224 /// isomorphic to the specified node. For this comparison, the node's 1225 /// entire state is considered. The assigned name is ignored, since 1226 /// nodes with differing names are considered isomorphic. However, if 1227 /// the assigned name is present in the dependent variable set, then 1228 /// the assigned name is considered significant and the node is 1229 /// isomorphic if the names match. 1230 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1231 const MultipleUseVarSet &DepVars) const { 1232 if (N == this) return true; 1233 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1234 getPredicateFns() != N->getPredicateFns() || 1235 getTransformFn() != N->getTransformFn()) 1236 return false; 1237 1238 if (isLeaf()) { 1239 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1240 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1241 return ((DI->getDef() == NDI->getDef()) 1242 && (DepVars.find(getName()) == DepVars.end() 1243 || getName() == N->getName())); 1244 } 1245 } 1246 return getLeafValue() == N->getLeafValue(); 1247 } 1248 1249 if (N->getOperator() != getOperator() || 1250 N->getNumChildren() != getNumChildren()) return false; 1251 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1252 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1253 return false; 1254 return true; 1255 } 1256 1257 /// clone - Make a copy of this tree and all of its children. 1258 /// 1259 TreePatternNode *TreePatternNode::clone() const { 1260 TreePatternNode *New; 1261 if (isLeaf()) { 1262 New = new TreePatternNode(getLeafValue(), getNumTypes()); 1263 } else { 1264 std::vector<TreePatternNode*> CChildren; 1265 CChildren.reserve(Children.size()); 1266 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1267 CChildren.push_back(getChild(i)->clone()); 1268 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 1269 } 1270 New->setName(getName()); 1271 New->Types = Types; 1272 New->setPredicateFns(getPredicateFns()); 1273 New->setTransformFn(getTransformFn()); 1274 return New; 1275 } 1276 1277 /// RemoveAllTypes - Recursively strip all the types of this tree. 1278 void TreePatternNode::RemoveAllTypes() { 1279 // Reset to unknown type. 1280 std::fill(Types.begin(), Types.end(), EEVT::TypeSet()); 1281 if (isLeaf()) return; 1282 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1283 getChild(i)->RemoveAllTypes(); 1284 } 1285 1286 1287 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1288 /// with actual values specified by ArgMap. 1289 void TreePatternNode:: 1290 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 1291 if (isLeaf()) return; 1292 1293 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1294 TreePatternNode *Child = getChild(i); 1295 if (Child->isLeaf()) { 1296 Init *Val = Child->getLeafValue(); 1297 // Note that, when substituting into an output pattern, Val might be an 1298 // UnsetInit. 1299 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1300 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1301 // We found a use of a formal argument, replace it with its value. 1302 TreePatternNode *NewChild = ArgMap[Child->getName()]; 1303 assert(NewChild && "Couldn't find formal argument!"); 1304 assert((Child->getPredicateFns().empty() || 1305 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1306 "Non-empty child predicate clobbered!"); 1307 setChild(i, NewChild); 1308 } 1309 } else { 1310 getChild(i)->SubstituteFormalArguments(ArgMap); 1311 } 1312 } 1313 } 1314 1315 1316 /// InlinePatternFragments - If this pattern refers to any pattern 1317 /// fragments, inline them into place, giving us a pattern without any 1318 /// PatFrag references. 1319 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 1320 if (TP.hasError()) 1321 return nullptr; 1322 1323 if (isLeaf()) 1324 return this; // nothing to do. 1325 Record *Op = getOperator(); 1326 1327 if (!Op->isSubClassOf("PatFrag")) { 1328 // Just recursively inline children nodes. 1329 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1330 TreePatternNode *Child = getChild(i); 1331 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 1332 1333 assert((Child->getPredicateFns().empty() || 1334 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1335 "Non-empty child predicate clobbered!"); 1336 1337 setChild(i, NewChild); 1338 } 1339 return this; 1340 } 1341 1342 // Otherwise, we found a reference to a fragment. First, look up its 1343 // TreePattern record. 1344 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1345 1346 // Verify that we are passing the right number of operands. 1347 if (Frag->getNumArgs() != Children.size()) { 1348 TP.error("'" + Op->getName() + "' fragment requires " + 1349 utostr(Frag->getNumArgs()) + " operands!"); 1350 return nullptr; 1351 } 1352 1353 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1354 1355 TreePredicateFn PredFn(Frag); 1356 if (!PredFn.isAlwaysTrue()) 1357 FragTree->addPredicateFn(PredFn); 1358 1359 // Resolve formal arguments to their actual value. 1360 if (Frag->getNumArgs()) { 1361 // Compute the map of formal to actual arguments. 1362 std::map<std::string, TreePatternNode*> ArgMap; 1363 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1364 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1365 1366 FragTree->SubstituteFormalArguments(ArgMap); 1367 } 1368 1369 FragTree->setName(getName()); 1370 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1371 FragTree->UpdateNodeType(i, getExtType(i), TP); 1372 1373 // Transfer in the old predicates. 1374 for (const TreePredicateFn &Pred : getPredicateFns()) 1375 FragTree->addPredicateFn(Pred); 1376 1377 // Get a new copy of this fragment to stitch into here. 1378 //delete this; // FIXME: implement refcounting! 1379 1380 // The fragment we inlined could have recursive inlining that is needed. See 1381 // if there are any pattern fragments in it and inline them as needed. 1382 return FragTree->InlinePatternFragments(TP); 1383 } 1384 1385 /// getImplicitType - Check to see if the specified record has an implicit 1386 /// type which should be applied to it. This will infer the type of register 1387 /// references from the register file information, for example. 1388 /// 1389 /// When Unnamed is set, return the type of a DAG operand with no name, such as 1390 /// the F8RC register class argument in: 1391 /// 1392 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 1393 /// 1394 /// When Unnamed is false, return the type of a named DAG operand such as the 1395 /// GPR:$src operand above. 1396 /// 1397 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, 1398 bool NotRegisters, 1399 bool Unnamed, 1400 TreePattern &TP) { 1401 // Check to see if this is a register operand. 1402 if (R->isSubClassOf("RegisterOperand")) { 1403 assert(ResNo == 0 && "Regoperand ref only has one result!"); 1404 if (NotRegisters) 1405 return EEVT::TypeSet(); // Unknown. 1406 Record *RegClass = R->getValueAsDef("RegClass"); 1407 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1408 return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes()); 1409 } 1410 1411 // Check to see if this is a register or a register class. 1412 if (R->isSubClassOf("RegisterClass")) { 1413 assert(ResNo == 0 && "Regclass ref only has one result!"); 1414 // An unnamed register class represents itself as an i32 immediate, for 1415 // example on a COPY_TO_REGCLASS instruction. 1416 if (Unnamed) 1417 return EEVT::TypeSet(MVT::i32, TP); 1418 1419 // In a named operand, the register class provides the possible set of 1420 // types. 1421 if (NotRegisters) 1422 return EEVT::TypeSet(); // Unknown. 1423 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1424 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); 1425 } 1426 1427 if (R->isSubClassOf("PatFrag")) { 1428 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1429 // Pattern fragment types will be resolved when they are inlined. 1430 return EEVT::TypeSet(); // Unknown. 1431 } 1432 1433 if (R->isSubClassOf("Register")) { 1434 assert(ResNo == 0 && "Registers only produce one result!"); 1435 if (NotRegisters) 1436 return EEVT::TypeSet(); // Unknown. 1437 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1438 return EEVT::TypeSet(T.getRegisterVTs(R)); 1439 } 1440 1441 if (R->isSubClassOf("SubRegIndex")) { 1442 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1443 return EEVT::TypeSet(MVT::i32, TP); 1444 } 1445 1446 if (R->isSubClassOf("ValueType")) { 1447 assert(ResNo == 0 && "This node only has one result!"); 1448 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 1449 // 1450 // (sext_inreg GPR:$src, i16) 1451 // ~~~ 1452 if (Unnamed) 1453 return EEVT::TypeSet(MVT::Other, TP); 1454 // With a name, the ValueType simply provides the type of the named 1455 // variable. 1456 // 1457 // (sext_inreg i32:$src, i16) 1458 // ~~~~~~~~ 1459 if (NotRegisters) 1460 return EEVT::TypeSet(); // Unknown. 1461 return EEVT::TypeSet(getValueType(R), TP); 1462 } 1463 1464 if (R->isSubClassOf("CondCode")) { 1465 assert(ResNo == 0 && "This node only has one result!"); 1466 // Using a CondCodeSDNode. 1467 return EEVT::TypeSet(MVT::Other, TP); 1468 } 1469 1470 if (R->isSubClassOf("ComplexPattern")) { 1471 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 1472 if (NotRegisters) 1473 return EEVT::TypeSet(); // Unknown. 1474 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), 1475 TP); 1476 } 1477 if (R->isSubClassOf("PointerLikeRegClass")) { 1478 assert(ResNo == 0 && "Regclass can only have one result!"); 1479 return EEVT::TypeSet(MVT::iPTR, TP); 1480 } 1481 1482 if (R->getName() == "node" || R->getName() == "srcvalue" || 1483 R->getName() == "zero_reg") { 1484 // Placeholder. 1485 return EEVT::TypeSet(); // Unknown. 1486 } 1487 1488 if (R->isSubClassOf("Operand")) 1489 return EEVT::TypeSet(getValueType(R->getValueAsDef("Type"))); 1490 1491 TP.error("Unknown node flavor used in pattern: " + R->getName()); 1492 return EEVT::TypeSet(MVT::Other, TP); 1493 } 1494 1495 1496 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 1497 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 1498 const CodeGenIntrinsic *TreePatternNode:: 1499 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 1500 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 1501 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 1502 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 1503 return nullptr; 1504 1505 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 1506 return &CDP.getIntrinsicInfo(IID); 1507 } 1508 1509 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 1510 /// return the ComplexPattern information, otherwise return null. 1511 const ComplexPattern * 1512 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 1513 Record *Rec; 1514 if (isLeaf()) { 1515 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 1516 if (!DI) 1517 return nullptr; 1518 Rec = DI->getDef(); 1519 } else 1520 Rec = getOperator(); 1521 1522 if (!Rec->isSubClassOf("ComplexPattern")) 1523 return nullptr; 1524 return &CGP.getComplexPattern(Rec); 1525 } 1526 1527 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 1528 // A ComplexPattern specifically declares how many results it fills in. 1529 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1530 return CP->getNumOperands(); 1531 1532 // If MIOperandInfo is specified, that gives the count. 1533 if (isLeaf()) { 1534 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 1535 if (DI && DI->getDef()->isSubClassOf("Operand")) { 1536 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 1537 if (MIOps->getNumArgs()) 1538 return MIOps->getNumArgs(); 1539 } 1540 } 1541 1542 // Otherwise there is just one result. 1543 return 1; 1544 } 1545 1546 /// NodeHasProperty - Return true if this node has the specified property. 1547 bool TreePatternNode::NodeHasProperty(SDNP Property, 1548 const CodeGenDAGPatterns &CGP) const { 1549 if (isLeaf()) { 1550 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1551 return CP->hasProperty(Property); 1552 return false; 1553 } 1554 1555 Record *Operator = getOperator(); 1556 if (!Operator->isSubClassOf("SDNode")) return false; 1557 1558 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 1559 } 1560 1561 1562 1563 1564 /// TreeHasProperty - Return true if any node in this tree has the specified 1565 /// property. 1566 bool TreePatternNode::TreeHasProperty(SDNP Property, 1567 const CodeGenDAGPatterns &CGP) const { 1568 if (NodeHasProperty(Property, CGP)) 1569 return true; 1570 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1571 if (getChild(i)->TreeHasProperty(Property, CGP)) 1572 return true; 1573 return false; 1574 } 1575 1576 /// isCommutativeIntrinsic - Return true if the node corresponds to a 1577 /// commutative intrinsic. 1578 bool 1579 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 1580 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 1581 return Int->isCommutative; 1582 return false; 1583 } 1584 1585 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 1586 if (!N->isLeaf()) 1587 return N->getOperator()->isSubClassOf(Class); 1588 1589 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 1590 if (DI && DI->getDef()->isSubClassOf(Class)) 1591 return true; 1592 1593 return false; 1594 } 1595 1596 static void emitTooManyOperandsError(TreePattern &TP, 1597 StringRef InstName, 1598 unsigned Expected, 1599 unsigned Actual) { 1600 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 1601 " operands but expected only " + Twine(Expected) + "!"); 1602 } 1603 1604 static void emitTooFewOperandsError(TreePattern &TP, 1605 StringRef InstName, 1606 unsigned Actual) { 1607 TP.error("Instruction '" + InstName + 1608 "' expects more than the provided " + Twine(Actual) + " operands!"); 1609 } 1610 1611 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 1612 /// this node and its children in the tree. This returns true if it makes a 1613 /// change, false otherwise. If a type contradiction is found, flag an error. 1614 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 1615 if (TP.hasError()) 1616 return false; 1617 1618 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1619 if (isLeaf()) { 1620 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1621 // If it's a regclass or something else known, include the type. 1622 bool MadeChange = false; 1623 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1624 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 1625 NotRegisters, 1626 !hasName(), TP), TP); 1627 return MadeChange; 1628 } 1629 1630 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 1631 assert(Types.size() == 1 && "Invalid IntInit"); 1632 1633 // Int inits are always integers. :) 1634 bool MadeChange = Types[0].EnforceInteger(TP); 1635 1636 if (!Types[0].isConcrete()) 1637 return MadeChange; 1638 1639 MVT::SimpleValueType VT = getType(0); 1640 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 1641 return MadeChange; 1642 1643 unsigned Size = MVT(VT).getSizeInBits(); 1644 // Make sure that the value is representable for this type. 1645 if (Size >= 32) return MadeChange; 1646 1647 // Check that the value doesn't use more bits than we have. It must either 1648 // be a sign- or zero-extended equivalent of the original. 1649 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 1650 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1) 1651 return MadeChange; 1652 1653 TP.error("Integer value '" + itostr(II->getValue()) + 1654 "' is out of range for type '" + getEnumName(getType(0)) + "'!"); 1655 return false; 1656 } 1657 return false; 1658 } 1659 1660 // special handling for set, which isn't really an SDNode. 1661 if (getOperator()->getName() == "set") { 1662 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 1663 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 1664 unsigned NC = getNumChildren(); 1665 1666 TreePatternNode *SetVal = getChild(NC-1); 1667 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 1668 1669 for (unsigned i = 0; i < NC-1; ++i) { 1670 TreePatternNode *Child = getChild(i); 1671 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1672 1673 // Types of operands must match. 1674 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 1675 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 1676 } 1677 return MadeChange; 1678 } 1679 1680 if (getOperator()->getName() == "implicit") { 1681 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 1682 1683 bool MadeChange = false; 1684 for (unsigned i = 0; i < getNumChildren(); ++i) 1685 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1686 return MadeChange; 1687 } 1688 1689 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 1690 bool MadeChange = false; 1691 1692 // Apply the result type to the node. 1693 unsigned NumRetVTs = Int->IS.RetVTs.size(); 1694 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 1695 1696 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 1697 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 1698 1699 if (getNumChildren() != NumParamVTs + 1) { 1700 TP.error("Intrinsic '" + Int->Name + "' expects " + 1701 utostr(NumParamVTs) + " operands, not " + 1702 utostr(getNumChildren() - 1) + " operands!"); 1703 return false; 1704 } 1705 1706 // Apply type info to the intrinsic ID. 1707 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 1708 1709 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 1710 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 1711 1712 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 1713 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 1714 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 1715 } 1716 return MadeChange; 1717 } 1718 1719 if (getOperator()->isSubClassOf("SDNode")) { 1720 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 1721 1722 // Check that the number of operands is sane. Negative operands -> varargs. 1723 if (NI.getNumOperands() >= 0 && 1724 getNumChildren() != (unsigned)NI.getNumOperands()) { 1725 TP.error(getOperator()->getName() + " node requires exactly " + 1726 itostr(NI.getNumOperands()) + " operands!"); 1727 return false; 1728 } 1729 1730 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 1731 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1732 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1733 return MadeChange; 1734 } 1735 1736 if (getOperator()->isSubClassOf("Instruction")) { 1737 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 1738 CodeGenInstruction &InstInfo = 1739 CDP.getTargetInfo().getInstruction(getOperator()); 1740 1741 bool MadeChange = false; 1742 1743 // Apply the result types to the node, these come from the things in the 1744 // (outs) list of the instruction. 1745 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 1746 Inst.getNumResults()); 1747 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 1748 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 1749 1750 // If the instruction has implicit defs, we apply the first one as a result. 1751 // FIXME: This sucks, it should apply all implicit defs. 1752 if (!InstInfo.ImplicitDefs.empty()) { 1753 unsigned ResNo = NumResultsToAdd; 1754 1755 // FIXME: Generalize to multiple possible types and multiple possible 1756 // ImplicitDefs. 1757 MVT::SimpleValueType VT = 1758 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 1759 1760 if (VT != MVT::Other) 1761 MadeChange |= UpdateNodeType(ResNo, VT, TP); 1762 } 1763 1764 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 1765 // be the same. 1766 if (getOperator()->getName() == "INSERT_SUBREG") { 1767 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 1768 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 1769 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 1770 } else if (getOperator()->getName() == "REG_SEQUENCE") { 1771 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 1772 // variadic. 1773 1774 unsigned NChild = getNumChildren(); 1775 if (NChild < 3) { 1776 TP.error("REG_SEQUENCE requires at least 3 operands!"); 1777 return false; 1778 } 1779 1780 if (NChild % 2 == 0) { 1781 TP.error("REG_SEQUENCE requires an odd number of operands!"); 1782 return false; 1783 } 1784 1785 if (!isOperandClass(getChild(0), "RegisterClass")) { 1786 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 1787 return false; 1788 } 1789 1790 for (unsigned I = 1; I < NChild; I += 2) { 1791 TreePatternNode *SubIdxChild = getChild(I + 1); 1792 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 1793 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 1794 itostr(I + 1) + "!"); 1795 return false; 1796 } 1797 } 1798 } 1799 1800 unsigned ChildNo = 0; 1801 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 1802 Record *OperandNode = Inst.getOperand(i); 1803 1804 // If the instruction expects a predicate or optional def operand, we 1805 // codegen this by setting the operand to it's default value if it has a 1806 // non-empty DefaultOps field. 1807 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1808 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1809 continue; 1810 1811 // Verify that we didn't run out of provided operands. 1812 if (ChildNo >= getNumChildren()) { 1813 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 1814 return false; 1815 } 1816 1817 TreePatternNode *Child = getChild(ChildNo++); 1818 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 1819 1820 // If the operand has sub-operands, they may be provided by distinct 1821 // child patterns, so attempt to match each sub-operand separately. 1822 if (OperandNode->isSubClassOf("Operand")) { 1823 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 1824 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 1825 // But don't do that if the whole operand is being provided by 1826 // a single ComplexPattern-related Operand. 1827 1828 if (Child->getNumMIResults(CDP) < NumArgs) { 1829 // Match first sub-operand against the child we already have. 1830 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 1831 MadeChange |= 1832 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 1833 1834 // And the remaining sub-operands against subsequent children. 1835 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 1836 if (ChildNo >= getNumChildren()) { 1837 emitTooFewOperandsError(TP, getOperator()->getName(), 1838 getNumChildren()); 1839 return false; 1840 } 1841 Child = getChild(ChildNo++); 1842 1843 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 1844 MadeChange |= 1845 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 1846 } 1847 continue; 1848 } 1849 } 1850 } 1851 1852 // If we didn't match by pieces above, attempt to match the whole 1853 // operand now. 1854 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 1855 } 1856 1857 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 1858 emitTooManyOperandsError(TP, getOperator()->getName(), 1859 ChildNo, getNumChildren()); 1860 return false; 1861 } 1862 1863 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1864 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1865 return MadeChange; 1866 } 1867 1868 if (getOperator()->isSubClassOf("ComplexPattern")) { 1869 bool MadeChange = false; 1870 1871 for (unsigned i = 0; i < getNumChildren(); ++i) 1872 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1873 1874 return MadeChange; 1875 } 1876 1877 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1878 1879 // Node transforms always take one operand. 1880 if (getNumChildren() != 1) { 1881 TP.error("Node transform '" + getOperator()->getName() + 1882 "' requires one operand!"); 1883 return false; 1884 } 1885 1886 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1887 1888 1889 // If either the output or input of the xform does not have exact 1890 // type info. We assume they must be the same. Otherwise, it is perfectly 1891 // legal to transform from one type to a completely different type. 1892 #if 0 1893 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1894 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); 1895 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); 1896 return MadeChange; 1897 } 1898 #endif 1899 return MadeChange; 1900 } 1901 1902 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1903 /// RHS of a commutative operation, not the on LHS. 1904 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1905 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1906 return true; 1907 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 1908 return true; 1909 return false; 1910 } 1911 1912 1913 /// canPatternMatch - If it is impossible for this pattern to match on this 1914 /// target, fill in Reason and return false. Otherwise, return true. This is 1915 /// used as a sanity check for .td files (to prevent people from writing stuff 1916 /// that can never possibly work), and to prevent the pattern permuter from 1917 /// generating stuff that is useless. 1918 bool TreePatternNode::canPatternMatch(std::string &Reason, 1919 const CodeGenDAGPatterns &CDP) { 1920 if (isLeaf()) return true; 1921 1922 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1923 if (!getChild(i)->canPatternMatch(Reason, CDP)) 1924 return false; 1925 1926 // If this is an intrinsic, handle cases that would make it not match. For 1927 // example, if an operand is required to be an immediate. 1928 if (getOperator()->isSubClassOf("Intrinsic")) { 1929 // TODO: 1930 return true; 1931 } 1932 1933 if (getOperator()->isSubClassOf("ComplexPattern")) 1934 return true; 1935 1936 // If this node is a commutative operator, check that the LHS isn't an 1937 // immediate. 1938 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 1939 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 1940 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 1941 // Scan all of the operands of the node and make sure that only the last one 1942 // is a constant node, unless the RHS also is. 1943 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 1944 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 1945 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 1946 if (OnlyOnRHSOfCommutative(getChild(i))) { 1947 Reason="Immediate value must be on the RHS of commutative operators!"; 1948 return false; 1949 } 1950 } 1951 } 1952 1953 return true; 1954 } 1955 1956 //===----------------------------------------------------------------------===// 1957 // TreePattern implementation 1958 // 1959 1960 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 1961 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 1962 isInputPattern(isInput), HasError(false) { 1963 for (Init *I : RawPat->getValues()) 1964 Trees.push_back(ParseTreePattern(I, "")); 1965 } 1966 1967 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 1968 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 1969 isInputPattern(isInput), HasError(false) { 1970 Trees.push_back(ParseTreePattern(Pat, "")); 1971 } 1972 1973 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 1974 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 1975 isInputPattern(isInput), HasError(false) { 1976 Trees.push_back(Pat); 1977 } 1978 1979 void TreePattern::error(const Twine &Msg) { 1980 if (HasError) 1981 return; 1982 dump(); 1983 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 1984 HasError = true; 1985 } 1986 1987 void TreePattern::ComputeNamedNodes() { 1988 for (TreePatternNode *Tree : Trees) 1989 ComputeNamedNodes(Tree); 1990 } 1991 1992 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 1993 if (!N->getName().empty()) 1994 NamedNodes[N->getName()].push_back(N); 1995 1996 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 1997 ComputeNamedNodes(N->getChild(i)); 1998 } 1999 2000 2001 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 2002 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2003 Record *R = DI->getDef(); 2004 2005 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2006 // TreePatternNode of its own. For example: 2007 /// (foo GPR, imm) -> (foo GPR, (imm)) 2008 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 2009 return ParseTreePattern( 2010 DagInit::get(DI, "", 2011 std::vector<std::pair<Init*, std::string> >()), 2012 OpName); 2013 2014 // Input argument? 2015 TreePatternNode *Res = new TreePatternNode(DI, 1); 2016 if (R->getName() == "node" && !OpName.empty()) { 2017 if (OpName.empty()) 2018 error("'node' argument requires a name to match with operand list"); 2019 Args.push_back(OpName); 2020 } 2021 2022 Res->setName(OpName); 2023 return Res; 2024 } 2025 2026 // ?:$name or just $name. 2027 if (isa<UnsetInit>(TheInit)) { 2028 if (OpName.empty()) 2029 error("'?' argument requires a name to match with operand list"); 2030 TreePatternNode *Res = new TreePatternNode(TheInit, 1); 2031 Args.push_back(OpName); 2032 Res->setName(OpName); 2033 return Res; 2034 } 2035 2036 if (IntInit *II = dyn_cast<IntInit>(TheInit)) { 2037 if (!OpName.empty()) 2038 error("Constant int argument should not have a name!"); 2039 return new TreePatternNode(II, 1); 2040 } 2041 2042 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2043 // Turn this into an IntInit. 2044 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2045 if (!II || !isa<IntInit>(II)) 2046 error("Bits value must be constants!"); 2047 return ParseTreePattern(II, OpName); 2048 } 2049 2050 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2051 if (!Dag) { 2052 TheInit->dump(); 2053 error("Pattern has unexpected init kind!"); 2054 } 2055 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2056 if (!OpDef) error("Pattern has unexpected operator type!"); 2057 Record *Operator = OpDef->getDef(); 2058 2059 if (Operator->isSubClassOf("ValueType")) { 2060 // If the operator is a ValueType, then this must be "type cast" of a leaf 2061 // node. 2062 if (Dag->getNumArgs() != 1) 2063 error("Type cast only takes one operand!"); 2064 2065 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); 2066 2067 // Apply the type cast. 2068 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2069 New->UpdateNodeType(0, getValueType(Operator), *this); 2070 2071 if (!OpName.empty()) 2072 error("ValueType cast should not have a name!"); 2073 return New; 2074 } 2075 2076 // Verify that this is something that makes sense for an operator. 2077 if (!Operator->isSubClassOf("PatFrag") && 2078 !Operator->isSubClassOf("SDNode") && 2079 !Operator->isSubClassOf("Instruction") && 2080 !Operator->isSubClassOf("SDNodeXForm") && 2081 !Operator->isSubClassOf("Intrinsic") && 2082 !Operator->isSubClassOf("ComplexPattern") && 2083 Operator->getName() != "set" && 2084 Operator->getName() != "implicit") 2085 error("Unrecognized node '" + Operator->getName() + "'!"); 2086 2087 // Check to see if this is something that is illegal in an input pattern. 2088 if (isInputPattern) { 2089 if (Operator->isSubClassOf("Instruction") || 2090 Operator->isSubClassOf("SDNodeXForm")) 2091 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2092 } else { 2093 if (Operator->isSubClassOf("Intrinsic")) 2094 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2095 2096 if (Operator->isSubClassOf("SDNode") && 2097 Operator->getName() != "imm" && 2098 Operator->getName() != "fpimm" && 2099 Operator->getName() != "tglobaltlsaddr" && 2100 Operator->getName() != "tconstpool" && 2101 Operator->getName() != "tjumptable" && 2102 Operator->getName() != "tframeindex" && 2103 Operator->getName() != "texternalsym" && 2104 Operator->getName() != "tblockaddress" && 2105 Operator->getName() != "tglobaladdr" && 2106 Operator->getName() != "bb" && 2107 Operator->getName() != "vt" && 2108 Operator->getName() != "mcsym") 2109 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2110 } 2111 2112 std::vector<TreePatternNode*> Children; 2113 2114 // Parse all the operands. 2115 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2116 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); 2117 2118 // If the operator is an intrinsic, then this is just syntactic sugar for for 2119 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2120 // convert the intrinsic name to a number. 2121 if (Operator->isSubClassOf("Intrinsic")) { 2122 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2123 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2124 2125 // If this intrinsic returns void, it must have side-effects and thus a 2126 // chain. 2127 if (Int.IS.RetVTs.empty()) 2128 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2129 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 2130 // Has side-effects, requires chain. 2131 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2132 else // Otherwise, no chain. 2133 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2134 2135 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1); 2136 Children.insert(Children.begin(), IIDNode); 2137 } 2138 2139 if (Operator->isSubClassOf("ComplexPattern")) { 2140 for (unsigned i = 0; i < Children.size(); ++i) { 2141 TreePatternNode *Child = Children[i]; 2142 2143 if (Child->getName().empty()) 2144 error("All arguments to a ComplexPattern must be named"); 2145 2146 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2147 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2148 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2149 auto OperandId = std::make_pair(Operator, i); 2150 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2151 if (PrevOp != ComplexPatternOperands.end()) { 2152 if (PrevOp->getValue() != OperandId) 2153 error("All ComplexPattern operands must appear consistently: " 2154 "in the same order in just one ComplexPattern instance."); 2155 } else 2156 ComplexPatternOperands[Child->getName()] = OperandId; 2157 } 2158 } 2159 2160 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2161 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 2162 Result->setName(OpName); 2163 2164 if (!Dag->getName().empty()) { 2165 assert(Result->getName().empty()); 2166 Result->setName(Dag->getName()); 2167 } 2168 return Result; 2169 } 2170 2171 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2172 /// will never match in favor of something obvious that will. This is here 2173 /// strictly as a convenience to target authors because it allows them to write 2174 /// more type generic things and have useless type casts fold away. 2175 /// 2176 /// This returns true if any change is made. 2177 static bool SimplifyTree(TreePatternNode *&N) { 2178 if (N->isLeaf()) 2179 return false; 2180 2181 // If we have a bitconvert with a resolved type and if the source and 2182 // destination types are the same, then the bitconvert is useless, remove it. 2183 if (N->getOperator()->getName() == "bitconvert" && 2184 N->getExtType(0).isConcrete() && 2185 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2186 N->getName().empty()) { 2187 N = N->getChild(0); 2188 SimplifyTree(N); 2189 return true; 2190 } 2191 2192 // Walk all children. 2193 bool MadeChange = false; 2194 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2195 TreePatternNode *Child = N->getChild(i); 2196 MadeChange |= SimplifyTree(Child); 2197 N->setChild(i, Child); 2198 } 2199 return MadeChange; 2200 } 2201 2202 2203 2204 /// InferAllTypes - Infer/propagate as many types throughout the expression 2205 /// patterns as possible. Return true if all types are inferred, false 2206 /// otherwise. Flags an error if a type contradiction is found. 2207 bool TreePattern:: 2208 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2209 if (NamedNodes.empty()) 2210 ComputeNamedNodes(); 2211 2212 bool MadeChange = true; 2213 while (MadeChange) { 2214 MadeChange = false; 2215 for (TreePatternNode *Tree : Trees) { 2216 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 2217 MadeChange |= SimplifyTree(Tree); 2218 } 2219 2220 // If there are constraints on our named nodes, apply them. 2221 for (auto &Entry : NamedNodes) { 2222 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 2223 2224 // If we have input named node types, propagate their types to the named 2225 // values here. 2226 if (InNamedTypes) { 2227 if (!InNamedTypes->count(Entry.getKey())) { 2228 error("Node '" + std::string(Entry.getKey()) + 2229 "' in output pattern but not input pattern"); 2230 return true; 2231 } 2232 2233 const SmallVectorImpl<TreePatternNode*> &InNodes = 2234 InNamedTypes->find(Entry.getKey())->second; 2235 2236 // The input types should be fully resolved by now. 2237 for (TreePatternNode *Node : Nodes) { 2238 // If this node is a register class, and it is the root of the pattern 2239 // then we're mapping something onto an input register. We allow 2240 // changing the type of the input register in this case. This allows 2241 // us to match things like: 2242 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 2243 if (Node == Trees[0] && Node->isLeaf()) { 2244 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 2245 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2246 DI->getDef()->isSubClassOf("RegisterOperand"))) 2247 continue; 2248 } 2249 2250 assert(Node->getNumTypes() == 1 && 2251 InNodes[0]->getNumTypes() == 1 && 2252 "FIXME: cannot name multiple result nodes yet"); 2253 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 2254 *this); 2255 } 2256 } 2257 2258 // If there are multiple nodes with the same name, they must all have the 2259 // same type. 2260 if (Entry.second.size() > 1) { 2261 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 2262 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 2263 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 2264 "FIXME: cannot name multiple result nodes yet"); 2265 2266 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 2267 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 2268 } 2269 } 2270 } 2271 } 2272 2273 bool HasUnresolvedTypes = false; 2274 for (const TreePatternNode *Tree : Trees) 2275 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(); 2276 return !HasUnresolvedTypes; 2277 } 2278 2279 void TreePattern::print(raw_ostream &OS) const { 2280 OS << getRecord()->getName(); 2281 if (!Args.empty()) { 2282 OS << "(" << Args[0]; 2283 for (unsigned i = 1, e = Args.size(); i != e; ++i) 2284 OS << ", " << Args[i]; 2285 OS << ")"; 2286 } 2287 OS << ": "; 2288 2289 if (Trees.size() > 1) 2290 OS << "[\n"; 2291 for (const TreePatternNode *Tree : Trees) { 2292 OS << "\t"; 2293 Tree->print(OS); 2294 OS << "\n"; 2295 } 2296 2297 if (Trees.size() > 1) 2298 OS << "]\n"; 2299 } 2300 2301 void TreePattern::dump() const { print(errs()); } 2302 2303 //===----------------------------------------------------------------------===// 2304 // CodeGenDAGPatterns implementation 2305 // 2306 2307 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : 2308 Records(R), Target(R) { 2309 2310 Intrinsics = LoadIntrinsics(Records, false); 2311 TgtIntrinsics = LoadIntrinsics(Records, true); 2312 ParseNodeInfo(); 2313 ParseNodeTransforms(); 2314 ParseComplexPatterns(); 2315 ParsePatternFragments(); 2316 ParseDefaultOperands(); 2317 ParseInstructions(); 2318 ParsePatternFragments(/*OutFrags*/true); 2319 ParsePatterns(); 2320 2321 // Generate variants. For example, commutative patterns can match 2322 // multiple ways. Add them to PatternsToMatch as well. 2323 GenerateVariants(); 2324 2325 // Infer instruction flags. For example, we can detect loads, 2326 // stores, and side effects in many cases by examining an 2327 // instruction's pattern. 2328 InferInstructionFlags(); 2329 2330 // Verify that instruction flags match the patterns. 2331 VerifyInstructionFlags(); 2332 } 2333 2334 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 2335 Record *N = Records.getDef(Name); 2336 if (!N || !N->isSubClassOf("SDNode")) 2337 PrintFatalError("Error getting SDNode '" + Name + "'!"); 2338 2339 return N; 2340 } 2341 2342 // Parse all of the SDNode definitions for the target, populating SDNodes. 2343 void CodeGenDAGPatterns::ParseNodeInfo() { 2344 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 2345 while (!Nodes.empty()) { 2346 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 2347 Nodes.pop_back(); 2348 } 2349 2350 // Get the builtin intrinsic nodes. 2351 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 2352 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 2353 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 2354 } 2355 2356 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 2357 /// map, and emit them to the file as functions. 2358 void CodeGenDAGPatterns::ParseNodeTransforms() { 2359 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 2360 while (!Xforms.empty()) { 2361 Record *XFormNode = Xforms.back(); 2362 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 2363 std::string Code = XFormNode->getValueAsString("XFormFunction"); 2364 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 2365 2366 Xforms.pop_back(); 2367 } 2368 } 2369 2370 void CodeGenDAGPatterns::ParseComplexPatterns() { 2371 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 2372 while (!AMs.empty()) { 2373 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 2374 AMs.pop_back(); 2375 } 2376 } 2377 2378 2379 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 2380 /// file, building up the PatternFragments map. After we've collected them all, 2381 /// inline fragments together as necessary, so that there are no references left 2382 /// inside a pattern fragment to a pattern fragment. 2383 /// 2384 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 2385 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 2386 2387 // First step, parse all of the fragments. 2388 for (Record *Frag : Fragments) { 2389 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 2390 continue; 2391 2392 DagInit *Tree = Frag->getValueAsDag("Fragment"); 2393 TreePattern *P = 2394 (PatternFragments[Frag] = llvm::make_unique<TreePattern>( 2395 Frag, Tree, !Frag->isSubClassOf("OutPatFrag"), 2396 *this)).get(); 2397 2398 // Validate the argument list, converting it to set, to discard duplicates. 2399 std::vector<std::string> &Args = P->getArgList(); 2400 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 2401 2402 if (OperandsSet.count("")) 2403 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 2404 2405 // Parse the operands list. 2406 DagInit *OpsList = Frag->getValueAsDag("Operands"); 2407 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 2408 // Special cases: ops == outs == ins. Different names are used to 2409 // improve readability. 2410 if (!OpsOp || 2411 (OpsOp->getDef()->getName() != "ops" && 2412 OpsOp->getDef()->getName() != "outs" && 2413 OpsOp->getDef()->getName() != "ins")) 2414 P->error("Operands list should start with '(ops ... '!"); 2415 2416 // Copy over the arguments. 2417 Args.clear(); 2418 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 2419 if (!isa<DefInit>(OpsList->getArg(j)) || 2420 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 2421 P->error("Operands list should all be 'node' values."); 2422 if (OpsList->getArgName(j).empty()) 2423 P->error("Operands list should have names for each operand!"); 2424 if (!OperandsSet.count(OpsList->getArgName(j))) 2425 P->error("'" + OpsList->getArgName(j) + 2426 "' does not occur in pattern or was multiply specified!"); 2427 OperandsSet.erase(OpsList->getArgName(j)); 2428 Args.push_back(OpsList->getArgName(j)); 2429 } 2430 2431 if (!OperandsSet.empty()) 2432 P->error("Operands list does not contain an entry for operand '" + 2433 *OperandsSet.begin() + "'!"); 2434 2435 // If there is a code init for this fragment, keep track of the fact that 2436 // this fragment uses it. 2437 TreePredicateFn PredFn(P); 2438 if (!PredFn.isAlwaysTrue()) 2439 P->getOnlyTree()->addPredicateFn(PredFn); 2440 2441 // If there is a node transformation corresponding to this, keep track of 2442 // it. 2443 Record *Transform = Frag->getValueAsDef("OperandTransform"); 2444 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 2445 P->getOnlyTree()->setTransformFn(Transform); 2446 } 2447 2448 // Now that we've parsed all of the tree fragments, do a closure on them so 2449 // that there are not references to PatFrags left inside of them. 2450 for (Record *Frag : Fragments) { 2451 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 2452 continue; 2453 2454 TreePattern &ThePat = *PatternFragments[Frag]; 2455 ThePat.InlinePatternFragments(); 2456 2457 // Infer as many types as possible. Don't worry about it if we don't infer 2458 // all of them, some may depend on the inputs of the pattern. 2459 ThePat.InferAllTypes(); 2460 ThePat.resetError(); 2461 2462 // If debugging, print out the pattern fragment result. 2463 DEBUG(ThePat.dump()); 2464 } 2465 } 2466 2467 void CodeGenDAGPatterns::ParseDefaultOperands() { 2468 std::vector<Record*> DefaultOps; 2469 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 2470 2471 // Find some SDNode. 2472 assert(!SDNodes.empty() && "No SDNodes parsed?"); 2473 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 2474 2475 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 2476 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 2477 2478 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 2479 // SomeSDnode so that we can parse this. 2480 std::vector<std::pair<Init*, std::string> > Ops; 2481 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 2482 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 2483 DefaultInfo->getArgName(op))); 2484 DagInit *DI = DagInit::get(SomeSDNode, "", Ops); 2485 2486 // Create a TreePattern to parse this. 2487 TreePattern P(DefaultOps[i], DI, false, *this); 2488 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 2489 2490 // Copy the operands over into a DAGDefaultOperand. 2491 DAGDefaultOperand DefaultOpInfo; 2492 2493 TreePatternNode *T = P.getTree(0); 2494 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 2495 TreePatternNode *TPN = T->getChild(op); 2496 while (TPN->ApplyTypeConstraints(P, false)) 2497 /* Resolve all types */; 2498 2499 if (TPN->ContainsUnresolvedType()) { 2500 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 2501 DefaultOps[i]->getName() + 2502 "' doesn't have a concrete type!"); 2503 } 2504 DefaultOpInfo.DefaultOps.push_back(TPN); 2505 } 2506 2507 // Insert it into the DefaultOperands map so we can find it later. 2508 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 2509 } 2510 } 2511 2512 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 2513 /// instruction input. Return true if this is a real use. 2514 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 2515 std::map<std::string, TreePatternNode*> &InstInputs) { 2516 // No name -> not interesting. 2517 if (Pat->getName().empty()) { 2518 if (Pat->isLeaf()) { 2519 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2520 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2521 DI->getDef()->isSubClassOf("RegisterOperand"))) 2522 I->error("Input " + DI->getDef()->getName() + " must be named!"); 2523 } 2524 return false; 2525 } 2526 2527 Record *Rec; 2528 if (Pat->isLeaf()) { 2529 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2530 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 2531 Rec = DI->getDef(); 2532 } else { 2533 Rec = Pat->getOperator(); 2534 } 2535 2536 // SRCVALUE nodes are ignored. 2537 if (Rec->getName() == "srcvalue") 2538 return false; 2539 2540 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 2541 if (!Slot) { 2542 Slot = Pat; 2543 return true; 2544 } 2545 Record *SlotRec; 2546 if (Slot->isLeaf()) { 2547 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 2548 } else { 2549 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 2550 SlotRec = Slot->getOperator(); 2551 } 2552 2553 // Ensure that the inputs agree if we've already seen this input. 2554 if (Rec != SlotRec) 2555 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2556 if (Slot->getExtTypes() != Pat->getExtTypes()) 2557 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2558 return true; 2559 } 2560 2561 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 2562 /// part of "I", the instruction), computing the set of inputs and outputs of 2563 /// the pattern. Report errors if we see anything naughty. 2564 void CodeGenDAGPatterns:: 2565 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 2566 std::map<std::string, TreePatternNode*> &InstInputs, 2567 std::map<std::string, TreePatternNode*>&InstResults, 2568 std::vector<Record*> &InstImpResults) { 2569 if (Pat->isLeaf()) { 2570 bool isUse = HandleUse(I, Pat, InstInputs); 2571 if (!isUse && Pat->getTransformFn()) 2572 I->error("Cannot specify a transform function for a non-input value!"); 2573 return; 2574 } 2575 2576 if (Pat->getOperator()->getName() == "implicit") { 2577 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2578 TreePatternNode *Dest = Pat->getChild(i); 2579 if (!Dest->isLeaf()) 2580 I->error("implicitly defined value should be a register!"); 2581 2582 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 2583 if (!Val || !Val->getDef()->isSubClassOf("Register")) 2584 I->error("implicitly defined value should be a register!"); 2585 InstImpResults.push_back(Val->getDef()); 2586 } 2587 return; 2588 } 2589 2590 if (Pat->getOperator()->getName() != "set") { 2591 // If this is not a set, verify that the children nodes are not void typed, 2592 // and recurse. 2593 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2594 if (Pat->getChild(i)->getNumTypes() == 0) 2595 I->error("Cannot have void nodes inside of patterns!"); 2596 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 2597 InstImpResults); 2598 } 2599 2600 // If this is a non-leaf node with no children, treat it basically as if 2601 // it were a leaf. This handles nodes like (imm). 2602 bool isUse = HandleUse(I, Pat, InstInputs); 2603 2604 if (!isUse && Pat->getTransformFn()) 2605 I->error("Cannot specify a transform function for a non-input value!"); 2606 return; 2607 } 2608 2609 // Otherwise, this is a set, validate and collect instruction results. 2610 if (Pat->getNumChildren() == 0) 2611 I->error("set requires operands!"); 2612 2613 if (Pat->getTransformFn()) 2614 I->error("Cannot specify a transform function on a set node!"); 2615 2616 // Check the set destinations. 2617 unsigned NumDests = Pat->getNumChildren()-1; 2618 for (unsigned i = 0; i != NumDests; ++i) { 2619 TreePatternNode *Dest = Pat->getChild(i); 2620 if (!Dest->isLeaf()) 2621 I->error("set destination should be a register!"); 2622 2623 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 2624 if (!Val) { 2625 I->error("set destination should be a register!"); 2626 continue; 2627 } 2628 2629 if (Val->getDef()->isSubClassOf("RegisterClass") || 2630 Val->getDef()->isSubClassOf("ValueType") || 2631 Val->getDef()->isSubClassOf("RegisterOperand") || 2632 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 2633 if (Dest->getName().empty()) 2634 I->error("set destination must have a name!"); 2635 if (InstResults.count(Dest->getName())) 2636 I->error("cannot set '" + Dest->getName() +"' multiple times"); 2637 InstResults[Dest->getName()] = Dest; 2638 } else if (Val->getDef()->isSubClassOf("Register")) { 2639 InstImpResults.push_back(Val->getDef()); 2640 } else { 2641 I->error("set destination should be a register!"); 2642 } 2643 } 2644 2645 // Verify and collect info from the computation. 2646 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 2647 InstInputs, InstResults, InstImpResults); 2648 } 2649 2650 //===----------------------------------------------------------------------===// 2651 // Instruction Analysis 2652 //===----------------------------------------------------------------------===// 2653 2654 class InstAnalyzer { 2655 const CodeGenDAGPatterns &CDP; 2656 public: 2657 bool hasSideEffects; 2658 bool mayStore; 2659 bool mayLoad; 2660 bool isBitcast; 2661 bool isVariadic; 2662 2663 InstAnalyzer(const CodeGenDAGPatterns &cdp) 2664 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 2665 isBitcast(false), isVariadic(false) {} 2666 2667 void Analyze(const TreePattern *Pat) { 2668 // Assume only the first tree is the pattern. The others are clobber nodes. 2669 AnalyzeNode(Pat->getTree(0)); 2670 } 2671 2672 void Analyze(const PatternToMatch *Pat) { 2673 AnalyzeNode(Pat->getSrcPattern()); 2674 } 2675 2676 private: 2677 bool IsNodeBitcast(const TreePatternNode *N) const { 2678 if (hasSideEffects || mayLoad || mayStore || isVariadic) 2679 return false; 2680 2681 if (N->getNumChildren() != 2) 2682 return false; 2683 2684 const TreePatternNode *N0 = N->getChild(0); 2685 if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue())) 2686 return false; 2687 2688 const TreePatternNode *N1 = N->getChild(1); 2689 if (N1->isLeaf()) 2690 return false; 2691 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) 2692 return false; 2693 2694 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); 2695 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 2696 return false; 2697 return OpInfo.getEnumName() == "ISD::BITCAST"; 2698 } 2699 2700 public: 2701 void AnalyzeNode(const TreePatternNode *N) { 2702 if (N->isLeaf()) { 2703 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 2704 Record *LeafRec = DI->getDef(); 2705 // Handle ComplexPattern leaves. 2706 if (LeafRec->isSubClassOf("ComplexPattern")) { 2707 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 2708 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 2709 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 2710 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 2711 } 2712 } 2713 return; 2714 } 2715 2716 // Analyze children. 2717 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2718 AnalyzeNode(N->getChild(i)); 2719 2720 // Ignore set nodes, which are not SDNodes. 2721 if (N->getOperator()->getName() == "set") { 2722 isBitcast = IsNodeBitcast(N); 2723 return; 2724 } 2725 2726 // Notice properties of the node. 2727 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 2728 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 2729 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 2730 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 2731 2732 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 2733 // If this is an intrinsic, analyze it. 2734 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) 2735 mayLoad = true;// These may load memory. 2736 2737 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem) 2738 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 2739 2740 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem) 2741 // WriteMem intrinsics can have other strange effects. 2742 hasSideEffects = true; 2743 } 2744 } 2745 2746 }; 2747 2748 static bool InferFromPattern(CodeGenInstruction &InstInfo, 2749 const InstAnalyzer &PatInfo, 2750 Record *PatDef) { 2751 bool Error = false; 2752 2753 // Remember where InstInfo got its flags. 2754 if (InstInfo.hasUndefFlags()) 2755 InstInfo.InferredFrom = PatDef; 2756 2757 // Check explicitly set flags for consistency. 2758 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 2759 !InstInfo.hasSideEffects_Unset) { 2760 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 2761 // the pattern has no side effects. That could be useful for div/rem 2762 // instructions that may trap. 2763 if (!InstInfo.hasSideEffects) { 2764 Error = true; 2765 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 2766 Twine(InstInfo.hasSideEffects)); 2767 } 2768 } 2769 2770 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 2771 Error = true; 2772 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 2773 Twine(InstInfo.mayStore)); 2774 } 2775 2776 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 2777 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 2778 // Some targets translate immediates to loads. 2779 if (!InstInfo.mayLoad) { 2780 Error = true; 2781 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 2782 Twine(InstInfo.mayLoad)); 2783 } 2784 } 2785 2786 // Transfer inferred flags. 2787 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 2788 InstInfo.mayStore |= PatInfo.mayStore; 2789 InstInfo.mayLoad |= PatInfo.mayLoad; 2790 2791 // These flags are silently added without any verification. 2792 InstInfo.isBitcast |= PatInfo.isBitcast; 2793 2794 // Don't infer isVariadic. This flag means something different on SDNodes and 2795 // instructions. For example, a CALL SDNode is variadic because it has the 2796 // call arguments as operands, but a CALL instruction is not variadic - it 2797 // has argument registers as implicit, not explicit uses. 2798 2799 return Error; 2800 } 2801 2802 /// hasNullFragReference - Return true if the DAG has any reference to the 2803 /// null_frag operator. 2804 static bool hasNullFragReference(DagInit *DI) { 2805 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 2806 if (!OpDef) return false; 2807 Record *Operator = OpDef->getDef(); 2808 2809 // If this is the null fragment, return true. 2810 if (Operator->getName() == "null_frag") return true; 2811 // If any of the arguments reference the null fragment, return true. 2812 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 2813 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 2814 if (Arg && hasNullFragReference(Arg)) 2815 return true; 2816 } 2817 2818 return false; 2819 } 2820 2821 /// hasNullFragReference - Return true if any DAG in the list references 2822 /// the null_frag operator. 2823 static bool hasNullFragReference(ListInit *LI) { 2824 for (Init *I : LI->getValues()) { 2825 DagInit *DI = dyn_cast<DagInit>(I); 2826 assert(DI && "non-dag in an instruction Pattern list?!"); 2827 if (hasNullFragReference(DI)) 2828 return true; 2829 } 2830 return false; 2831 } 2832 2833 /// Get all the instructions in a tree. 2834 static void 2835 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 2836 if (Tree->isLeaf()) 2837 return; 2838 if (Tree->getOperator()->isSubClassOf("Instruction")) 2839 Instrs.push_back(Tree->getOperator()); 2840 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 2841 getInstructionsInTree(Tree->getChild(i), Instrs); 2842 } 2843 2844 /// Check the class of a pattern leaf node against the instruction operand it 2845 /// represents. 2846 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 2847 Record *Leaf) { 2848 if (OI.Rec == Leaf) 2849 return true; 2850 2851 // Allow direct value types to be used in instruction set patterns. 2852 // The type will be checked later. 2853 if (Leaf->isSubClassOf("ValueType")) 2854 return true; 2855 2856 // Patterns can also be ComplexPattern instances. 2857 if (Leaf->isSubClassOf("ComplexPattern")) 2858 return true; 2859 2860 return false; 2861 } 2862 2863 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern( 2864 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 2865 2866 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 2867 2868 // Parse the instruction. 2869 TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this); 2870 // Inline pattern fragments into it. 2871 I->InlinePatternFragments(); 2872 2873 // Infer as many types as possible. If we cannot infer all of them, we can 2874 // never do anything with this instruction pattern: report it to the user. 2875 if (!I->InferAllTypes()) 2876 I->error("Could not infer all types in pattern!"); 2877 2878 // InstInputs - Keep track of all of the inputs of the instruction, along 2879 // with the record they are declared as. 2880 std::map<std::string, TreePatternNode*> InstInputs; 2881 2882 // InstResults - Keep track of all the virtual registers that are 'set' 2883 // in the instruction, including what reg class they are. 2884 std::map<std::string, TreePatternNode*> InstResults; 2885 2886 std::vector<Record*> InstImpResults; 2887 2888 // Verify that the top-level forms in the instruction are of void type, and 2889 // fill in the InstResults map. 2890 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 2891 TreePatternNode *Pat = I->getTree(j); 2892 if (Pat->getNumTypes() != 0) 2893 I->error("Top-level forms in instruction pattern should have" 2894 " void types"); 2895 2896 // Find inputs and outputs, and verify the structure of the uses/defs. 2897 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 2898 InstImpResults); 2899 } 2900 2901 // Now that we have inputs and outputs of the pattern, inspect the operands 2902 // list for the instruction. This determines the order that operands are 2903 // added to the machine instruction the node corresponds to. 2904 unsigned NumResults = InstResults.size(); 2905 2906 // Parse the operands list from the (ops) list, validating it. 2907 assert(I->getArgList().empty() && "Args list should still be empty here!"); 2908 2909 // Check that all of the results occur first in the list. 2910 std::vector<Record*> Results; 2911 SmallVector<TreePatternNode *, 2> ResNodes; 2912 for (unsigned i = 0; i != NumResults; ++i) { 2913 if (i == CGI.Operands.size()) 2914 I->error("'" + InstResults.begin()->first + 2915 "' set but does not appear in operand list!"); 2916 const std::string &OpName = CGI.Operands[i].Name; 2917 2918 // Check that it exists in InstResults. 2919 TreePatternNode *RNode = InstResults[OpName]; 2920 if (!RNode) 2921 I->error("Operand $" + OpName + " does not exist in operand list!"); 2922 2923 ResNodes.push_back(RNode); 2924 2925 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 2926 if (!R) 2927 I->error("Operand $" + OpName + " should be a set destination: all " 2928 "outputs must occur before inputs in operand list!"); 2929 2930 if (!checkOperandClass(CGI.Operands[i], R)) 2931 I->error("Operand $" + OpName + " class mismatch!"); 2932 2933 // Remember the return type. 2934 Results.push_back(CGI.Operands[i].Rec); 2935 2936 // Okay, this one checks out. 2937 InstResults.erase(OpName); 2938 } 2939 2940 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 2941 // the copy while we're checking the inputs. 2942 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 2943 2944 std::vector<TreePatternNode*> ResultNodeOperands; 2945 std::vector<Record*> Operands; 2946 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 2947 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 2948 const std::string &OpName = Op.Name; 2949 if (OpName.empty()) 2950 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 2951 2952 if (!InstInputsCheck.count(OpName)) { 2953 // If this is an operand with a DefaultOps set filled in, we can ignore 2954 // this. When we codegen it, we will do so as always executed. 2955 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 2956 // Does it have a non-empty DefaultOps field? If so, ignore this 2957 // operand. 2958 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 2959 continue; 2960 } 2961 I->error("Operand $" + OpName + 2962 " does not appear in the instruction pattern"); 2963 } 2964 TreePatternNode *InVal = InstInputsCheck[OpName]; 2965 InstInputsCheck.erase(OpName); // It occurred, remove from map. 2966 2967 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 2968 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 2969 if (!checkOperandClass(Op, InRec)) 2970 I->error("Operand $" + OpName + "'s register class disagrees" 2971 " between the operand and pattern"); 2972 } 2973 Operands.push_back(Op.Rec); 2974 2975 // Construct the result for the dest-pattern operand list. 2976 TreePatternNode *OpNode = InVal->clone(); 2977 2978 // No predicate is useful on the result. 2979 OpNode->clearPredicateFns(); 2980 2981 // Promote the xform function to be an explicit node if set. 2982 if (Record *Xform = OpNode->getTransformFn()) { 2983 OpNode->setTransformFn(nullptr); 2984 std::vector<TreePatternNode*> Children; 2985 Children.push_back(OpNode); 2986 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2987 } 2988 2989 ResultNodeOperands.push_back(OpNode); 2990 } 2991 2992 if (!InstInputsCheck.empty()) 2993 I->error("Input operand $" + InstInputsCheck.begin()->first + 2994 " occurs in pattern but not in operands list!"); 2995 2996 TreePatternNode *ResultPattern = 2997 new TreePatternNode(I->getRecord(), ResultNodeOperands, 2998 GetNumNodeResults(I->getRecord(), *this)); 2999 // Copy fully inferred output node types to instruction result pattern. 3000 for (unsigned i = 0; i != NumResults; ++i) { 3001 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3002 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3003 } 3004 3005 // Create and insert the instruction. 3006 // FIXME: InstImpResults should not be part of DAGInstruction. 3007 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 3008 DAGInsts.insert(std::make_pair(I->getRecord(), TheInst)); 3009 3010 // Use a temporary tree pattern to infer all types and make sure that the 3011 // constructed result is correct. This depends on the instruction already 3012 // being inserted into the DAGInsts map. 3013 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 3014 Temp.InferAllTypes(&I->getNamedNodesMap()); 3015 3016 DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second; 3017 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 3018 3019 return TheInsertedInst; 3020 } 3021 3022 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3023 /// any fragments involved. This populates the Instructions list with fully 3024 /// resolved instructions. 3025 void CodeGenDAGPatterns::ParseInstructions() { 3026 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3027 3028 for (Record *Instr : Instrs) { 3029 ListInit *LI = nullptr; 3030 3031 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3032 LI = Instr->getValueAsListInit("Pattern"); 3033 3034 // If there is no pattern, only collect minimal information about the 3035 // instruction for its operand list. We have to assume that there is one 3036 // result, as we have no detailed info. A pattern which references the 3037 // null_frag operator is as-if no pattern were specified. Normally this 3038 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3039 // null_frag. 3040 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3041 std::vector<Record*> Results; 3042 std::vector<Record*> Operands; 3043 3044 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3045 3046 if (InstInfo.Operands.size() != 0) { 3047 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3048 Results.push_back(InstInfo.Operands[j].Rec); 3049 3050 // The rest are inputs. 3051 for (unsigned j = InstInfo.Operands.NumDefs, 3052 e = InstInfo.Operands.size(); j < e; ++j) 3053 Operands.push_back(InstInfo.Operands[j].Rec); 3054 } 3055 3056 // Create and insert the instruction. 3057 std::vector<Record*> ImpResults; 3058 Instructions.insert(std::make_pair(Instr, 3059 DAGInstruction(nullptr, Results, Operands, ImpResults))); 3060 continue; // no pattern. 3061 } 3062 3063 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3064 const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions); 3065 3066 (void)DI; 3067 DEBUG(DI.getPattern()->dump()); 3068 } 3069 3070 // If we can, convert the instructions to be patterns that are matched! 3071 for (auto &Entry : Instructions) { 3072 DAGInstruction &TheInst = Entry.second; 3073 TreePattern *I = TheInst.getPattern(); 3074 if (!I) continue; // No pattern. 3075 3076 // FIXME: Assume only the first tree is the pattern. The others are clobber 3077 // nodes. 3078 TreePatternNode *Pattern = I->getTree(0); 3079 TreePatternNode *SrcPattern; 3080 if (Pattern->getOperator()->getName() == "set") { 3081 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3082 } else{ 3083 // Not a set (store or something?) 3084 SrcPattern = Pattern; 3085 } 3086 3087 Record *Instr = Entry.first; 3088 AddPatternToMatch(I, 3089 PatternToMatch(Instr, 3090 Instr->getValueAsListInit("Predicates"), 3091 SrcPattern, 3092 TheInst.getResultPattern(), 3093 TheInst.getImpResults(), 3094 Instr->getValueAsInt("AddedComplexity"), 3095 Instr->getID())); 3096 } 3097 } 3098 3099 3100 typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 3101 3102 static void FindNames(const TreePatternNode *P, 3103 std::map<std::string, NameRecord> &Names, 3104 TreePattern *PatternTop) { 3105 if (!P->getName().empty()) { 3106 NameRecord &Rec = Names[P->getName()]; 3107 // If this is the first instance of the name, remember the node. 3108 if (Rec.second++ == 0) 3109 Rec.first = P; 3110 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3111 PatternTop->error("repetition of value: $" + P->getName() + 3112 " where different uses have different types!"); 3113 } 3114 3115 if (!P->isLeaf()) { 3116 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3117 FindNames(P->getChild(i), Names, PatternTop); 3118 } 3119 } 3120 3121 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3122 const PatternToMatch &PTM) { 3123 // Do some sanity checking on the pattern we're about to match. 3124 std::string Reason; 3125 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3126 PrintWarning(Pattern->getRecord()->getLoc(), 3127 Twine("Pattern can never match: ") + Reason); 3128 return; 3129 } 3130 3131 // If the source pattern's root is a complex pattern, that complex pattern 3132 // must specify the nodes it can potentially match. 3133 if (const ComplexPattern *CP = 3134 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3135 if (CP->getRootNodes().empty()) 3136 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3137 " could match"); 3138 3139 3140 // Find all of the named values in the input and output, ensure they have the 3141 // same type. 3142 std::map<std::string, NameRecord> SrcNames, DstNames; 3143 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3144 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3145 3146 // Scan all of the named values in the destination pattern, rejecting them if 3147 // they don't exist in the input pattern. 3148 for (const auto &Entry : DstNames) { 3149 if (SrcNames[Entry.first].first == nullptr) 3150 Pattern->error("Pattern has input without matching name in output: $" + 3151 Entry.first); 3152 } 3153 3154 // Scan all of the named values in the source pattern, rejecting them if the 3155 // name isn't used in the dest, and isn't used to tie two values together. 3156 for (const auto &Entry : SrcNames) 3157 if (DstNames[Entry.first].first == nullptr && 3158 SrcNames[Entry.first].second == 1) 3159 Pattern->error("Pattern has dead named input: $" + Entry.first); 3160 3161 PatternsToMatch.push_back(PTM); 3162 } 3163 3164 3165 3166 void CodeGenDAGPatterns::InferInstructionFlags() { 3167 const std::vector<const CodeGenInstruction*> &Instructions = 3168 Target.getInstructionsByEnumValue(); 3169 3170 // First try to infer flags from the primary instruction pattern, if any. 3171 SmallVector<CodeGenInstruction*, 8> Revisit; 3172 unsigned Errors = 0; 3173 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3174 CodeGenInstruction &InstInfo = 3175 const_cast<CodeGenInstruction &>(*Instructions[i]); 3176 3177 // Get the primary instruction pattern. 3178 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern(); 3179 if (!Pattern) { 3180 if (InstInfo.hasUndefFlags()) 3181 Revisit.push_back(&InstInfo); 3182 continue; 3183 } 3184 InstAnalyzer PatInfo(*this); 3185 PatInfo.Analyze(Pattern); 3186 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef); 3187 } 3188 3189 // Second, look for single-instruction patterns defined outside the 3190 // instruction. 3191 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3192 const PatternToMatch &PTM = *I; 3193 3194 // We can only infer from single-instruction patterns, otherwise we won't 3195 // know which instruction should get the flags. 3196 SmallVector<Record*, 8> PatInstrs; 3197 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3198 if (PatInstrs.size() != 1) 3199 continue; 3200 3201 // Get the single instruction. 3202 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 3203 3204 // Only infer properties from the first pattern. We'll verify the others. 3205 if (InstInfo.InferredFrom) 3206 continue; 3207 3208 InstAnalyzer PatInfo(*this); 3209 PatInfo.Analyze(&PTM); 3210 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 3211 } 3212 3213 if (Errors) 3214 PrintFatalError("pattern conflicts"); 3215 3216 // Revisit instructions with undefined flags and no pattern. 3217 if (Target.guessInstructionProperties()) { 3218 for (CodeGenInstruction *InstInfo : Revisit) { 3219 if (InstInfo->InferredFrom) 3220 continue; 3221 // The mayLoad and mayStore flags default to false. 3222 // Conservatively assume hasSideEffects if it wasn't explicit. 3223 if (InstInfo->hasSideEffects_Unset) 3224 InstInfo->hasSideEffects = true; 3225 } 3226 return; 3227 } 3228 3229 // Complain about any flags that are still undefined. 3230 for (CodeGenInstruction *InstInfo : Revisit) { 3231 if (InstInfo->InferredFrom) 3232 continue; 3233 if (InstInfo->hasSideEffects_Unset) 3234 PrintError(InstInfo->TheDef->getLoc(), 3235 "Can't infer hasSideEffects from patterns"); 3236 if (InstInfo->mayStore_Unset) 3237 PrintError(InstInfo->TheDef->getLoc(), 3238 "Can't infer mayStore from patterns"); 3239 if (InstInfo->mayLoad_Unset) 3240 PrintError(InstInfo->TheDef->getLoc(), 3241 "Can't infer mayLoad from patterns"); 3242 } 3243 } 3244 3245 3246 /// Verify instruction flags against pattern node properties. 3247 void CodeGenDAGPatterns::VerifyInstructionFlags() { 3248 unsigned Errors = 0; 3249 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3250 const PatternToMatch &PTM = *I; 3251 SmallVector<Record*, 8> Instrs; 3252 getInstructionsInTree(PTM.getDstPattern(), Instrs); 3253 if (Instrs.empty()) 3254 continue; 3255 3256 // Count the number of instructions with each flag set. 3257 unsigned NumSideEffects = 0; 3258 unsigned NumStores = 0; 3259 unsigned NumLoads = 0; 3260 for (const Record *Instr : Instrs) { 3261 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3262 NumSideEffects += InstInfo.hasSideEffects; 3263 NumStores += InstInfo.mayStore; 3264 NumLoads += InstInfo.mayLoad; 3265 } 3266 3267 // Analyze the source pattern. 3268 InstAnalyzer PatInfo(*this); 3269 PatInfo.Analyze(&PTM); 3270 3271 // Collect error messages. 3272 SmallVector<std::string, 4> Msgs; 3273 3274 // Check for missing flags in the output. 3275 // Permit extra flags for now at least. 3276 if (PatInfo.hasSideEffects && !NumSideEffects) 3277 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 3278 3279 // Don't verify store flags on instructions with side effects. At least for 3280 // intrinsics, side effects implies mayStore. 3281 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 3282 Msgs.push_back("pattern may store, but mayStore isn't set"); 3283 3284 // Similarly, mayStore implies mayLoad on intrinsics. 3285 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 3286 Msgs.push_back("pattern may load, but mayLoad isn't set"); 3287 3288 // Print error messages. 3289 if (Msgs.empty()) 3290 continue; 3291 ++Errors; 3292 3293 for (const std::string &Msg : Msgs) 3294 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 3295 (Instrs.size() == 1 ? 3296 "instruction" : "output instructions")); 3297 // Provide the location of the relevant instruction definitions. 3298 for (const Record *Instr : Instrs) { 3299 if (Instr != PTM.getSrcRecord()) 3300 PrintError(Instr->getLoc(), "defined here"); 3301 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3302 if (InstInfo.InferredFrom && 3303 InstInfo.InferredFrom != InstInfo.TheDef && 3304 InstInfo.InferredFrom != PTM.getSrcRecord()) 3305 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 3306 } 3307 } 3308 if (Errors) 3309 PrintFatalError("Errors in DAG patterns"); 3310 } 3311 3312 /// Given a pattern result with an unresolved type, see if we can find one 3313 /// instruction with an unresolved result type. Force this result type to an 3314 /// arbitrary element if it's possible types to converge results. 3315 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 3316 if (N->isLeaf()) 3317 return false; 3318 3319 // Analyze children. 3320 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3321 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 3322 return true; 3323 3324 if (!N->getOperator()->isSubClassOf("Instruction")) 3325 return false; 3326 3327 // If this type is already concrete or completely unknown we can't do 3328 // anything. 3329 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 3330 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) 3331 continue; 3332 3333 // Otherwise, force its type to the first possibility (an arbitrary choice). 3334 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) 3335 return true; 3336 } 3337 3338 return false; 3339 } 3340 3341 void CodeGenDAGPatterns::ParsePatterns() { 3342 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 3343 3344 for (Record *CurPattern : Patterns) { 3345 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 3346 3347 // If the pattern references the null_frag, there's nothing to do. 3348 if (hasNullFragReference(Tree)) 3349 continue; 3350 3351 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 3352 3353 // Inline pattern fragments into it. 3354 Pattern->InlinePatternFragments(); 3355 3356 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 3357 if (LI->empty()) continue; // no pattern. 3358 3359 // Parse the instruction. 3360 TreePattern Result(CurPattern, LI, false, *this); 3361 3362 // Inline pattern fragments into it. 3363 Result.InlinePatternFragments(); 3364 3365 if (Result.getNumTrees() != 1) 3366 Result.error("Cannot handle instructions producing instructions " 3367 "with temporaries yet!"); 3368 3369 bool IterateInference; 3370 bool InferredAllPatternTypes, InferredAllResultTypes; 3371 do { 3372 // Infer as many types as possible. If we cannot infer all of them, we 3373 // can never do anything with this pattern: report it to the user. 3374 InferredAllPatternTypes = 3375 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 3376 3377 // Infer as many types as possible. If we cannot infer all of them, we 3378 // can never do anything with this pattern: report it to the user. 3379 InferredAllResultTypes = 3380 Result.InferAllTypes(&Pattern->getNamedNodesMap()); 3381 3382 IterateInference = false; 3383 3384 // Apply the type of the result to the source pattern. This helps us 3385 // resolve cases where the input type is known to be a pointer type (which 3386 // is considered resolved), but the result knows it needs to be 32- or 3387 // 64-bits. Infer the other way for good measure. 3388 for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(), 3389 Pattern->getTree(0)->getNumTypes()); 3390 i != e; ++i) { 3391 IterateInference = Pattern->getTree(0)->UpdateNodeType( 3392 i, Result.getTree(0)->getExtType(i), Result); 3393 IterateInference |= Result.getTree(0)->UpdateNodeType( 3394 i, Pattern->getTree(0)->getExtType(i), Result); 3395 } 3396 3397 // If our iteration has converged and the input pattern's types are fully 3398 // resolved but the result pattern is not fully resolved, we may have a 3399 // situation where we have two instructions in the result pattern and 3400 // the instructions require a common register class, but don't care about 3401 // what actual MVT is used. This is actually a bug in our modelling: 3402 // output patterns should have register classes, not MVTs. 3403 // 3404 // In any case, to handle this, we just go through and disambiguate some 3405 // arbitrary types to the result pattern's nodes. 3406 if (!IterateInference && InferredAllPatternTypes && 3407 !InferredAllResultTypes) 3408 IterateInference = 3409 ForceArbitraryInstResultType(Result.getTree(0), Result); 3410 } while (IterateInference); 3411 3412 // Verify that we inferred enough types that we can do something with the 3413 // pattern and result. If these fire the user has to add type casts. 3414 if (!InferredAllPatternTypes) 3415 Pattern->error("Could not infer all types in pattern!"); 3416 if (!InferredAllResultTypes) { 3417 Pattern->dump(); 3418 Result.error("Could not infer all types in pattern result!"); 3419 } 3420 3421 // Validate that the input pattern is correct. 3422 std::map<std::string, TreePatternNode*> InstInputs; 3423 std::map<std::string, TreePatternNode*> InstResults; 3424 std::vector<Record*> InstImpResults; 3425 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 3426 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 3427 InstInputs, InstResults, 3428 InstImpResults); 3429 3430 // Promote the xform function to be an explicit node if set. 3431 TreePatternNode *DstPattern = Result.getOnlyTree(); 3432 std::vector<TreePatternNode*> ResultNodeOperands; 3433 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 3434 TreePatternNode *OpNode = DstPattern->getChild(ii); 3435 if (Record *Xform = OpNode->getTransformFn()) { 3436 OpNode->setTransformFn(nullptr); 3437 std::vector<TreePatternNode*> Children; 3438 Children.push_back(OpNode); 3439 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 3440 } 3441 ResultNodeOperands.push_back(OpNode); 3442 } 3443 DstPattern = Result.getOnlyTree(); 3444 if (!DstPattern->isLeaf()) 3445 DstPattern = new TreePatternNode(DstPattern->getOperator(), 3446 ResultNodeOperands, 3447 DstPattern->getNumTypes()); 3448 3449 for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i) 3450 DstPattern->setType(i, Result.getOnlyTree()->getExtType(i)); 3451 3452 TreePattern Temp(Result.getRecord(), DstPattern, false, *this); 3453 Temp.InferAllTypes(); 3454 3455 3456 AddPatternToMatch(Pattern, 3457 PatternToMatch(CurPattern, 3458 CurPattern->getValueAsListInit("Predicates"), 3459 Pattern->getTree(0), 3460 Temp.getOnlyTree(), InstImpResults, 3461 CurPattern->getValueAsInt("AddedComplexity"), 3462 CurPattern->getID())); 3463 } 3464 } 3465 3466 /// CombineChildVariants - Given a bunch of permutations of each child of the 3467 /// 'operator' node, put them together in all possible ways. 3468 static void CombineChildVariants(TreePatternNode *Orig, 3469 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 3470 std::vector<TreePatternNode*> &OutVariants, 3471 CodeGenDAGPatterns &CDP, 3472 const MultipleUseVarSet &DepVars) { 3473 // Make sure that each operand has at least one variant to choose from. 3474 for (const auto &Variants : ChildVariants) 3475 if (Variants.empty()) 3476 return; 3477 3478 // The end result is an all-pairs construction of the resultant pattern. 3479 std::vector<unsigned> Idxs; 3480 Idxs.resize(ChildVariants.size()); 3481 bool NotDone; 3482 do { 3483 #ifndef NDEBUG 3484 DEBUG(if (!Idxs.empty()) { 3485 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 3486 for (unsigned Idx : Idxs) { 3487 errs() << Idx << " "; 3488 } 3489 errs() << "]\n"; 3490 }); 3491 #endif 3492 // Create the variant and add it to the output list. 3493 std::vector<TreePatternNode*> NewChildren; 3494 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 3495 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 3496 auto R = llvm::make_unique<TreePatternNode>( 3497 Orig->getOperator(), NewChildren, Orig->getNumTypes()); 3498 3499 // Copy over properties. 3500 R->setName(Orig->getName()); 3501 R->setPredicateFns(Orig->getPredicateFns()); 3502 R->setTransformFn(Orig->getTransformFn()); 3503 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 3504 R->setType(i, Orig->getExtType(i)); 3505 3506 // If this pattern cannot match, do not include it as a variant. 3507 std::string ErrString; 3508 // Scan to see if this pattern has already been emitted. We can get 3509 // duplication due to things like commuting: 3510 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 3511 // which are the same pattern. Ignore the dups. 3512 if (R->canPatternMatch(ErrString, CDP) && 3513 std::none_of(OutVariants.begin(), OutVariants.end(), 3514 [&](TreePatternNode *Variant) { 3515 return R->isIsomorphicTo(Variant, DepVars); 3516 })) 3517 OutVariants.push_back(R.release()); 3518 3519 // Increment indices to the next permutation by incrementing the 3520 // indices from last index backward, e.g., generate the sequence 3521 // [0, 0], [0, 1], [1, 0], [1, 1]. 3522 int IdxsIdx; 3523 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 3524 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 3525 Idxs[IdxsIdx] = 0; 3526 else 3527 break; 3528 } 3529 NotDone = (IdxsIdx >= 0); 3530 } while (NotDone); 3531 } 3532 3533 /// CombineChildVariants - A helper function for binary operators. 3534 /// 3535 static void CombineChildVariants(TreePatternNode *Orig, 3536 const std::vector<TreePatternNode*> &LHS, 3537 const std::vector<TreePatternNode*> &RHS, 3538 std::vector<TreePatternNode*> &OutVariants, 3539 CodeGenDAGPatterns &CDP, 3540 const MultipleUseVarSet &DepVars) { 3541 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3542 ChildVariants.push_back(LHS); 3543 ChildVariants.push_back(RHS); 3544 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 3545 } 3546 3547 3548 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 3549 std::vector<TreePatternNode *> &Children) { 3550 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 3551 Record *Operator = N->getOperator(); 3552 3553 // Only permit raw nodes. 3554 if (!N->getName().empty() || !N->getPredicateFns().empty() || 3555 N->getTransformFn()) { 3556 Children.push_back(N); 3557 return; 3558 } 3559 3560 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 3561 Children.push_back(N->getChild(0)); 3562 else 3563 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 3564 3565 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 3566 Children.push_back(N->getChild(1)); 3567 else 3568 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 3569 } 3570 3571 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 3572 /// the (potentially recursive) pattern by using algebraic laws. 3573 /// 3574 static void GenerateVariantsOf(TreePatternNode *N, 3575 std::vector<TreePatternNode*> &OutVariants, 3576 CodeGenDAGPatterns &CDP, 3577 const MultipleUseVarSet &DepVars) { 3578 // We cannot permute leaves or ComplexPattern uses. 3579 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 3580 OutVariants.push_back(N); 3581 return; 3582 } 3583 3584 // Look up interesting info about the node. 3585 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 3586 3587 // If this node is associative, re-associate. 3588 if (NodeInfo.hasProperty(SDNPAssociative)) { 3589 // Re-associate by pulling together all of the linked operators 3590 std::vector<TreePatternNode*> MaximalChildren; 3591 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 3592 3593 // Only handle child sizes of 3. Otherwise we'll end up trying too many 3594 // permutations. 3595 if (MaximalChildren.size() == 3) { 3596 // Find the variants of all of our maximal children. 3597 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 3598 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 3599 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 3600 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 3601 3602 // There are only two ways we can permute the tree: 3603 // (A op B) op C and A op (B op C) 3604 // Within these forms, we can also permute A/B/C. 3605 3606 // Generate legal pair permutations of A/B/C. 3607 std::vector<TreePatternNode*> ABVariants; 3608 std::vector<TreePatternNode*> BAVariants; 3609 std::vector<TreePatternNode*> ACVariants; 3610 std::vector<TreePatternNode*> CAVariants; 3611 std::vector<TreePatternNode*> BCVariants; 3612 std::vector<TreePatternNode*> CBVariants; 3613 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 3614 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 3615 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 3616 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 3617 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 3618 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 3619 3620 // Combine those into the result: (x op x) op x 3621 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 3622 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 3623 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 3624 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 3625 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 3626 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 3627 3628 // Combine those into the result: x op (x op x) 3629 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 3630 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 3631 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 3632 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 3633 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 3634 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 3635 return; 3636 } 3637 } 3638 3639 // Compute permutations of all children. 3640 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3641 ChildVariants.resize(N->getNumChildren()); 3642 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3643 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 3644 3645 // Build all permutations based on how the children were formed. 3646 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 3647 3648 // If this node is commutative, consider the commuted order. 3649 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 3650 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 3651 assert((N->getNumChildren()==2 || isCommIntrinsic) && 3652 "Commutative but doesn't have 2 children!"); 3653 // Don't count children which are actually register references. 3654 unsigned NC = 0; 3655 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 3656 TreePatternNode *Child = N->getChild(i); 3657 if (Child->isLeaf()) 3658 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 3659 Record *RR = DI->getDef(); 3660 if (RR->isSubClassOf("Register")) 3661 continue; 3662 } 3663 NC++; 3664 } 3665 // Consider the commuted order. 3666 if (isCommIntrinsic) { 3667 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 3668 // operands are the commutative operands, and there might be more operands 3669 // after those. 3670 assert(NC >= 3 && 3671 "Commutative intrinsic should have at least 3 children!"); 3672 std::vector<std::vector<TreePatternNode*> > Variants; 3673 Variants.push_back(ChildVariants[0]); // Intrinsic id. 3674 Variants.push_back(ChildVariants[2]); 3675 Variants.push_back(ChildVariants[1]); 3676 for (unsigned i = 3; i != NC; ++i) 3677 Variants.push_back(ChildVariants[i]); 3678 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 3679 } else if (NC == 2) 3680 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 3681 OutVariants, CDP, DepVars); 3682 } 3683 } 3684 3685 3686 // GenerateVariants - Generate variants. For example, commutative patterns can 3687 // match multiple ways. Add them to PatternsToMatch as well. 3688 void CodeGenDAGPatterns::GenerateVariants() { 3689 DEBUG(errs() << "Generating instruction variants.\n"); 3690 3691 // Loop over all of the patterns we've collected, checking to see if we can 3692 // generate variants of the instruction, through the exploitation of 3693 // identities. This permits the target to provide aggressive matching without 3694 // the .td file having to contain tons of variants of instructions. 3695 // 3696 // Note that this loop adds new patterns to the PatternsToMatch list, but we 3697 // intentionally do not reconsider these. Any variants of added patterns have 3698 // already been added. 3699 // 3700 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 3701 MultipleUseVarSet DepVars; 3702 std::vector<TreePatternNode*> Variants; 3703 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 3704 DEBUG(errs() << "Dependent/multiply used variables: "); 3705 DEBUG(DumpDepVars(DepVars)); 3706 DEBUG(errs() << "\n"); 3707 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, 3708 DepVars); 3709 3710 assert(!Variants.empty() && "Must create at least original variant!"); 3711 Variants.erase(Variants.begin()); // Remove the original pattern. 3712 3713 if (Variants.empty()) // No variants for this pattern. 3714 continue; 3715 3716 DEBUG(errs() << "FOUND VARIANTS OF: "; 3717 PatternsToMatch[i].getSrcPattern()->dump(); 3718 errs() << "\n"); 3719 3720 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 3721 TreePatternNode *Variant = Variants[v]; 3722 3723 DEBUG(errs() << " VAR#" << v << ": "; 3724 Variant->dump(); 3725 errs() << "\n"); 3726 3727 // Scan to see if an instruction or explicit pattern already matches this. 3728 bool AlreadyExists = false; 3729 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 3730 // Skip if the top level predicates do not match. 3731 if (PatternsToMatch[i].getPredicates() != 3732 PatternsToMatch[p].getPredicates()) 3733 continue; 3734 // Check to see if this variant already exists. 3735 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 3736 DepVars)) { 3737 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 3738 AlreadyExists = true; 3739 break; 3740 } 3741 } 3742 // If we already have it, ignore the variant. 3743 if (AlreadyExists) continue; 3744 3745 // Otherwise, add it to the list of patterns we have. 3746 PatternsToMatch.emplace_back( 3747 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 3748 Variant, PatternsToMatch[i].getDstPattern(), 3749 PatternsToMatch[i].getDstRegs(), 3750 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()); 3751 } 3752 3753 DEBUG(errs() << "\n"); 3754 } 3755 } 3756