1 //===- CodeEmitterGen.cpp - Code Emitter Generator ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // CodeEmitterGen uses the descriptions of instructions and their fields to 11 // construct an automated code emitter: a function that, given a MachineInstr, 12 // returns the (currently, 32-bit unsigned) value of the instruction. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CodeGenTarget.h" 17 #include "SubtargetFeatureInfo.h" 18 #include "Types.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/TableGen/Record.h" 22 #include "llvm/TableGen/TableGenBackend.h" 23 #include <map> 24 #include <string> 25 #include <vector> 26 using namespace llvm; 27 28 namespace { 29 30 class CodeEmitterGen { 31 RecordKeeper &Records; 32 public: 33 CodeEmitterGen(RecordKeeper &R) : Records(R) {} 34 35 void run(raw_ostream &o); 36 private: 37 int getVariableBit(const std::string &VarName, BitsInit *BI, int bit); 38 std::string getInstructionCase(Record *R, CodeGenTarget &Target); 39 void AddCodeToMergeInOperand(Record *R, BitsInit *BI, 40 const std::string &VarName, 41 unsigned &NumberedOp, 42 std::set<unsigned> &NamedOpIndices, 43 std::string &Case, CodeGenTarget &Target); 44 45 }; 46 47 // If the VarBitInit at position 'bit' matches the specified variable then 48 // return the variable bit position. Otherwise return -1. 49 int CodeEmitterGen::getVariableBit(const std::string &VarName, 50 BitsInit *BI, int bit) { 51 if (VarBitInit *VBI = dyn_cast<VarBitInit>(BI->getBit(bit))) { 52 if (VarInit *VI = dyn_cast<VarInit>(VBI->getBitVar())) 53 if (VI->getName() == VarName) 54 return VBI->getBitNum(); 55 } else if (VarInit *VI = dyn_cast<VarInit>(BI->getBit(bit))) { 56 if (VI->getName() == VarName) 57 return 0; 58 } 59 60 return -1; 61 } 62 63 void CodeEmitterGen:: 64 AddCodeToMergeInOperand(Record *R, BitsInit *BI, const std::string &VarName, 65 unsigned &NumberedOp, 66 std::set<unsigned> &NamedOpIndices, 67 std::string &Case, CodeGenTarget &Target) { 68 CodeGenInstruction &CGI = Target.getInstruction(R); 69 70 // Determine if VarName actually contributes to the Inst encoding. 71 int bit = BI->getNumBits()-1; 72 73 // Scan for a bit that this contributed to. 74 for (; bit >= 0; ) { 75 if (getVariableBit(VarName, BI, bit) != -1) 76 break; 77 78 --bit; 79 } 80 81 // If we found no bits, ignore this value, otherwise emit the call to get the 82 // operand encoding. 83 if (bit < 0) return; 84 85 // If the operand matches by name, reference according to that 86 // operand number. Non-matching operands are assumed to be in 87 // order. 88 unsigned OpIdx; 89 if (CGI.Operands.hasOperandNamed(VarName, OpIdx)) { 90 // Get the machine operand number for the indicated operand. 91 OpIdx = CGI.Operands[OpIdx].MIOperandNo; 92 assert(!CGI.Operands.isFlatOperandNotEmitted(OpIdx) && 93 "Explicitly used operand also marked as not emitted!"); 94 } else { 95 unsigned NumberOps = CGI.Operands.size(); 96 /// If this operand is not supposed to be emitted by the 97 /// generated emitter, skip it. 98 while (NumberedOp < NumberOps && 99 (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) || 100 (!NamedOpIndices.empty() && NamedOpIndices.count( 101 CGI.Operands.getSubOperandNumber(NumberedOp).first)))) { 102 ++NumberedOp; 103 104 if (NumberedOp >= CGI.Operands.back().MIOperandNo + 105 CGI.Operands.back().MINumOperands) { 106 errs() << "Too few operands in record " << R->getName() << 107 " (no match for variable " << VarName << "):\n"; 108 errs() << *R; 109 errs() << '\n'; 110 111 return; 112 } 113 } 114 115 OpIdx = NumberedOp++; 116 } 117 118 std::pair<unsigned, unsigned> SO = CGI.Operands.getSubOperandNumber(OpIdx); 119 std::string &EncoderMethodName = CGI.Operands[SO.first].EncoderMethodName; 120 121 // If the source operand has a custom encoder, use it. This will 122 // get the encoding for all of the suboperands. 123 if (!EncoderMethodName.empty()) { 124 // A custom encoder has all of the information for the 125 // sub-operands, if there are more than one, so only 126 // query the encoder once per source operand. 127 if (SO.second == 0) { 128 Case += " // op: " + VarName + "\n" + 129 " op = " + EncoderMethodName + "(MI, " + utostr(OpIdx); 130 Case += ", Fixups, STI"; 131 Case += ");\n"; 132 } 133 } else { 134 Case += " // op: " + VarName + "\n" + 135 " op = getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")"; 136 Case += ", Fixups, STI"; 137 Case += ");\n"; 138 } 139 140 for (; bit >= 0; ) { 141 int varBit = getVariableBit(VarName, BI, bit); 142 143 // If this bit isn't from a variable, skip it. 144 if (varBit == -1) { 145 --bit; 146 continue; 147 } 148 149 // Figure out the consecutive range of bits covered by this operand, in 150 // order to generate better encoding code. 151 int beginInstBit = bit; 152 int beginVarBit = varBit; 153 int N = 1; 154 for (--bit; bit >= 0;) { 155 varBit = getVariableBit(VarName, BI, bit); 156 if (varBit == -1 || varBit != (beginVarBit - N)) break; 157 ++N; 158 --bit; 159 } 160 161 uint64_t opMask = ~(uint64_t)0 >> (64-N); 162 int opShift = beginVarBit - N + 1; 163 opMask <<= opShift; 164 opShift = beginInstBit - beginVarBit; 165 166 if (opShift > 0) { 167 Case += " Value |= (op & UINT64_C(" + utostr(opMask) + ")) << " + 168 itostr(opShift) + ";\n"; 169 } else if (opShift < 0) { 170 Case += " Value |= (op & UINT64_C(" + utostr(opMask) + ")) >> " + 171 itostr(-opShift) + ";\n"; 172 } else { 173 Case += " Value |= op & UINT64_C(" + utostr(opMask) + ");\n"; 174 } 175 } 176 } 177 178 179 std::string CodeEmitterGen::getInstructionCase(Record *R, 180 CodeGenTarget &Target) { 181 std::string Case; 182 183 BitsInit *BI = R->getValueAsBitsInit("Inst"); 184 const std::vector<RecordVal> &Vals = R->getValues(); 185 unsigned NumberedOp = 0; 186 187 std::set<unsigned> NamedOpIndices; 188 // Collect the set of operand indices that might correspond to named 189 // operand, and skip these when assigning operands based on position. 190 if (Target.getInstructionSet()-> 191 getValueAsBit("noNamedPositionallyEncodedOperands")) { 192 CodeGenInstruction &CGI = Target.getInstruction(R); 193 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 194 unsigned OpIdx; 195 if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx)) 196 continue; 197 198 NamedOpIndices.insert(OpIdx); 199 } 200 } 201 202 // Loop over all of the fields in the instruction, determining which are the 203 // operands to the instruction. 204 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 205 // Ignore fixed fields in the record, we're looking for values like: 206 // bits<5> RST = { ?, ?, ?, ?, ? }; 207 if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete()) 208 continue; 209 210 AddCodeToMergeInOperand(R, BI, Vals[i].getName(), NumberedOp, 211 NamedOpIndices, Case, Target); 212 } 213 214 std::string PostEmitter = R->getValueAsString("PostEncoderMethod"); 215 if (!PostEmitter.empty()) { 216 Case += " Value = " + PostEmitter + "(MI, Value"; 217 Case += ", STI"; 218 Case += ");\n"; 219 } 220 221 return Case; 222 } 223 224 void CodeEmitterGen::run(raw_ostream &o) { 225 CodeGenTarget Target(Records); 226 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 227 228 // For little-endian instruction bit encodings, reverse the bit order 229 Target.reverseBitsForLittleEndianEncoding(); 230 231 ArrayRef<const CodeGenInstruction*> NumberedInstructions = 232 Target.getInstructionsByEnumValue(); 233 234 // Emit function declaration 235 o << "uint64_t " << Target.getName(); 236 o << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n" 237 << " SmallVectorImpl<MCFixup> &Fixups,\n" 238 << " const MCSubtargetInfo &STI) const {\n"; 239 240 // Emit instruction base values 241 o << " static const uint64_t InstBits[] = {\n"; 242 for (const CodeGenInstruction *CGI : NumberedInstructions) { 243 Record *R = CGI->TheDef; 244 245 if (R->getValueAsString("Namespace") == "TargetOpcode" || 246 R->getValueAsBit("isPseudo")) { 247 o << " UINT64_C(0),\n"; 248 continue; 249 } 250 251 BitsInit *BI = R->getValueAsBitsInit("Inst"); 252 253 // Start by filling in fixed values. 254 uint64_t Value = 0; 255 for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i) { 256 if (BitInit *B = dyn_cast<BitInit>(BI->getBit(e-i-1))) 257 Value |= (uint64_t)B->getValue() << (e-i-1); 258 } 259 o << " UINT64_C(" << Value << ")," << '\t' << "// " << R->getName() << "\n"; 260 } 261 o << " UINT64_C(0)\n };\n"; 262 263 // Map to accumulate all the cases. 264 std::map<std::string, std::vector<std::string> > CaseMap; 265 266 // Construct all cases statement for each opcode 267 for (std::vector<Record*>::iterator IC = Insts.begin(), EC = Insts.end(); 268 IC != EC; ++IC) { 269 Record *R = *IC; 270 if (R->getValueAsString("Namespace") == "TargetOpcode" || 271 R->getValueAsBit("isPseudo")) 272 continue; 273 const std::string &InstName = R->getValueAsString("Namespace") + "::" 274 + R->getName(); 275 std::string Case = getInstructionCase(R, Target); 276 277 CaseMap[Case].push_back(InstName); 278 } 279 280 // Emit initial function code 281 o << " const unsigned opcode = MI.getOpcode();\n" 282 << " uint64_t Value = InstBits[opcode];\n" 283 << " uint64_t op = 0;\n" 284 << " (void)op; // suppress warning\n" 285 << " switch (opcode) {\n"; 286 287 // Emit each case statement 288 std::map<std::string, std::vector<std::string> >::iterator IE, EE; 289 for (IE = CaseMap.begin(), EE = CaseMap.end(); IE != EE; ++IE) { 290 const std::string &Case = IE->first; 291 std::vector<std::string> &InstList = IE->second; 292 293 for (int i = 0, N = InstList.size(); i < N; i++) { 294 if (i) o << "\n"; 295 o << " case " << InstList[i] << ":"; 296 } 297 o << " {\n"; 298 o << Case; 299 o << " break;\n" 300 << " }\n"; 301 } 302 303 // Default case: unhandled opcode 304 o << " default:\n" 305 << " std::string msg;\n" 306 << " raw_string_ostream Msg(msg);\n" 307 << " Msg << \"Not supported instr: \" << MI;\n" 308 << " report_fatal_error(Msg.str());\n" 309 << " }\n" 310 << " return Value;\n" 311 << "}\n\n"; 312 313 const auto &All = SubtargetFeatureInfo::getAll(Records); 314 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; 315 SubtargetFeatures.insert(All.begin(), All.end()); 316 317 o << "#ifdef ENABLE_INSTR_PREDICATE_VERIFIER\n" 318 << "#undef ENABLE_INSTR_PREDICATE_VERIFIER\n" 319 << "#include <sstream>\n\n"; 320 321 // Emit the subtarget feature enumeration. 322 SubtargetFeatureInfo::emitSubtargetFeatureFlagEnumeration(SubtargetFeatures, 323 o); 324 325 // Emit the name table for error messages. 326 o << "#ifndef NDEBUG\n"; 327 SubtargetFeatureInfo::emitNameTable(SubtargetFeatures, o); 328 o << "#endif // NDEBUG\n"; 329 330 // Emit the available features compute function. 331 SubtargetFeatureInfo::emitComputeAvailableFeatures( 332 Target.getName(), "MCCodeEmitter", "computeAvailableFeatures", 333 SubtargetFeatures, o); 334 335 // Emit the predicate verifier. 336 o << "void " << Target.getName() 337 << "MCCodeEmitter::verifyInstructionPredicates(\n" 338 << " const MCInst &Inst, uint64_t AvailableFeatures) const {\n" 339 << "#ifndef NDEBUG\n" 340 << " static uint64_t RequiredFeatures[] = {\n"; 341 unsigned InstIdx = 0; 342 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 343 o << " "; 344 for (Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) { 345 const auto &I = SubtargetFeatures.find(Predicate); 346 if (I != SubtargetFeatures.end()) 347 o << I->second.getEnumName() << " | "; 348 } 349 o << "0, // " << Inst->TheDef->getName() << " = " << InstIdx << "\n"; 350 InstIdx++; 351 } 352 o << " };\n\n"; 353 o << " assert(Inst.getOpcode() < " << InstIdx << ");\n"; 354 o << " uint64_t MissingFeatures =\n" 355 << " (AvailableFeatures & RequiredFeatures[Inst.getOpcode()]) ^\n" 356 << " RequiredFeatures[Inst.getOpcode()];\n" 357 << " if (MissingFeatures) {\n" 358 << " std::ostringstream Msg;\n" 359 << " Msg << \"Attempting to emit \" << " 360 "MCII.getName(Inst.getOpcode()).str()\n" 361 << " << \" instruction but the \";\n" 362 << " for (unsigned i = 0; i < 8 * sizeof(MissingFeatures); ++i)\n" 363 << " if (MissingFeatures & (1ULL << i))\n" 364 << " Msg << SubtargetFeatureNames[i] << \" \";\n" 365 << " Msg << \"predicate(s) are not met\";\n" 366 << " report_fatal_error(Msg.str());\n" 367 << " }\n" 368 << "#else\n" 369 << "// Silence unused variable warning on targets that don't use MCII for " 370 "other purposes (e.g. BPF).\n" 371 << "(void)MCII;\n" 372 << "#endif // NDEBUG\n"; 373 o << "}\n"; 374 o << "#endif\n"; 375 } 376 377 } // End anonymous namespace 378 379 namespace llvm { 380 381 void EmitCodeEmitter(RecordKeeper &RK, raw_ostream &OS) { 382 emitSourceFileHeader("Machine Code Emitter", OS); 383 CodeEmitterGen(RK).run(OS); 384 } 385 386 } // End llvm namespace 387