1 //===- CodeEmitterGen.cpp - Code Emitter Generator ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // CodeEmitterGen uses the descriptions of instructions and their fields to 10 // construct an automated code emitter: a function that, given a MachineInstr, 11 // returns the (currently, 32-bit unsigned) value of the instruction. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenInstruction.h" 16 #include "CodeGenTarget.h" 17 #include "SubtargetFeatureInfo.h" 18 #include "Types.h" 19 #include "VarLenCodeEmitterGen.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/Support/Casting.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include "llvm/TableGen/Record.h" 26 #include "llvm/TableGen/TableGenBackend.h" 27 #include <cassert> 28 #include <cstdint> 29 #include <map> 30 #include <set> 31 #include <string> 32 #include <utility> 33 #include <vector> 34 35 using namespace llvm; 36 37 namespace { 38 39 class CodeEmitterGen { 40 RecordKeeper &Records; 41 42 public: 43 CodeEmitterGen(RecordKeeper &R) : Records(R) {} 44 45 void run(raw_ostream &o); 46 47 private: 48 int getVariableBit(const std::string &VarName, BitsInit *BI, int bit); 49 std::string getInstructionCase(Record *R, CodeGenTarget &Target); 50 std::string getInstructionCaseForEncoding(Record *R, Record *EncodingDef, 51 CodeGenTarget &Target); 52 void AddCodeToMergeInOperand(Record *R, BitsInit *BI, 53 const std::string &VarName, 54 unsigned &NumberedOp, 55 std::set<unsigned> &NamedOpIndices, 56 std::string &Case, CodeGenTarget &Target); 57 58 void emitInstructionBaseValues( 59 raw_ostream &o, ArrayRef<const CodeGenInstruction *> NumberedInstructions, 60 CodeGenTarget &Target, int HwMode = -1); 61 unsigned BitWidth; 62 bool UseAPInt; 63 }; 64 65 // If the VarBitInit at position 'bit' matches the specified variable then 66 // return the variable bit position. Otherwise return -1. 67 int CodeEmitterGen::getVariableBit(const std::string &VarName, 68 BitsInit *BI, int bit) { 69 if (VarBitInit *VBI = dyn_cast<VarBitInit>(BI->getBit(bit))) { 70 if (VarInit *VI = dyn_cast<VarInit>(VBI->getBitVar())) 71 if (VI->getName() == VarName) 72 return VBI->getBitNum(); 73 } else if (VarInit *VI = dyn_cast<VarInit>(BI->getBit(bit))) { 74 if (VI->getName() == VarName) 75 return 0; 76 } 77 78 return -1; 79 } 80 81 void CodeEmitterGen:: 82 AddCodeToMergeInOperand(Record *R, BitsInit *BI, const std::string &VarName, 83 unsigned &NumberedOp, 84 std::set<unsigned> &NamedOpIndices, 85 std::string &Case, CodeGenTarget &Target) { 86 CodeGenInstruction &CGI = Target.getInstruction(R); 87 88 // Determine if VarName actually contributes to the Inst encoding. 89 int bit = BI->getNumBits()-1; 90 91 // Scan for a bit that this contributed to. 92 for (; bit >= 0; ) { 93 if (getVariableBit(VarName, BI, bit) != -1) 94 break; 95 96 --bit; 97 } 98 99 // If we found no bits, ignore this value, otherwise emit the call to get the 100 // operand encoding. 101 if (bit < 0) return; 102 103 // If the operand matches by name, reference according to that 104 // operand number. Non-matching operands are assumed to be in 105 // order. 106 unsigned OpIdx; 107 if (CGI.Operands.hasOperandNamed(VarName, OpIdx)) { 108 // Get the machine operand number for the indicated operand. 109 OpIdx = CGI.Operands[OpIdx].MIOperandNo; 110 assert(!CGI.Operands.isFlatOperandNotEmitted(OpIdx) && 111 "Explicitly used operand also marked as not emitted!"); 112 } else { 113 unsigned NumberOps = CGI.Operands.size(); 114 /// If this operand is not supposed to be emitted by the 115 /// generated emitter, skip it. 116 while (NumberedOp < NumberOps && 117 (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) || 118 (!NamedOpIndices.empty() && NamedOpIndices.count( 119 CGI.Operands.getSubOperandNumber(NumberedOp).first)))) { 120 ++NumberedOp; 121 122 if (NumberedOp >= CGI.Operands.back().MIOperandNo + 123 CGI.Operands.back().MINumOperands) { 124 errs() << "Too few operands in record " << R->getName() << 125 " (no match for variable " << VarName << "):\n"; 126 errs() << *R; 127 errs() << '\n'; 128 129 return; 130 } 131 } 132 133 OpIdx = NumberedOp++; 134 } 135 136 std::pair<unsigned, unsigned> SO = CGI.Operands.getSubOperandNumber(OpIdx); 137 std::string &EncoderMethodName = CGI.Operands[SO.first].EncoderMethodName; 138 139 if (UseAPInt) 140 Case += " op.clearAllBits();\n"; 141 142 // If the source operand has a custom encoder, use it. This will 143 // get the encoding for all of the suboperands. 144 if (!EncoderMethodName.empty()) { 145 // A custom encoder has all of the information for the 146 // sub-operands, if there are more than one, so only 147 // query the encoder once per source operand. 148 if (SO.second == 0) { 149 Case += " // op: " + VarName + "\n"; 150 if (UseAPInt) { 151 Case += " " + EncoderMethodName + "(MI, " + utostr(OpIdx); 152 Case += ", op"; 153 } else { 154 Case += " op = " + EncoderMethodName + "(MI, " + utostr(OpIdx); 155 } 156 Case += ", Fixups, STI);\n"; 157 } 158 } else { 159 Case += " // op: " + VarName + "\n"; 160 if (UseAPInt) { 161 Case += " getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")"; 162 Case += ", op, Fixups, STI"; 163 } else { 164 Case += " op = getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")"; 165 Case += ", Fixups, STI"; 166 } 167 Case += ");\n"; 168 } 169 170 // Precalculate the number of lits this variable contributes to in the 171 // operand. If there is a single lit (consecutive range of bits) we can use a 172 // destructive sequence on APInt that reduces memory allocations. 173 int numOperandLits = 0; 174 for (int tmpBit = bit; tmpBit >= 0;) { 175 int varBit = getVariableBit(VarName, BI, tmpBit); 176 177 // If this bit isn't from a variable, skip it. 178 if (varBit == -1) { 179 --tmpBit; 180 continue; 181 } 182 183 // Figure out the consecutive range of bits covered by this operand, in 184 // order to generate better encoding code. 185 int beginVarBit = varBit; 186 int N = 1; 187 for (--tmpBit; tmpBit >= 0;) { 188 varBit = getVariableBit(VarName, BI, tmpBit); 189 if (varBit == -1 || varBit != (beginVarBit - N)) 190 break; 191 ++N; 192 --tmpBit; 193 } 194 ++numOperandLits; 195 } 196 197 for (; bit >= 0; ) { 198 int varBit = getVariableBit(VarName, BI, bit); 199 200 // If this bit isn't from a variable, skip it. 201 if (varBit == -1) { 202 --bit; 203 continue; 204 } 205 206 // Figure out the consecutive range of bits covered by this operand, in 207 // order to generate better encoding code. 208 int beginInstBit = bit; 209 int beginVarBit = varBit; 210 int N = 1; 211 for (--bit; bit >= 0;) { 212 varBit = getVariableBit(VarName, BI, bit); 213 if (varBit == -1 || varBit != (beginVarBit - N)) break; 214 ++N; 215 --bit; 216 } 217 218 std::string maskStr; 219 int opShift; 220 221 unsigned loBit = beginVarBit - N + 1; 222 unsigned hiBit = loBit + N; 223 unsigned loInstBit = beginInstBit - N + 1; 224 if (UseAPInt) { 225 std::string extractStr; 226 if (N >= 64) { 227 extractStr = "op.extractBits(" + itostr(hiBit - loBit) + ", " + 228 itostr(loBit) + ")"; 229 Case += " Value.insertBits(" + extractStr + ", " + 230 itostr(loInstBit) + ");\n"; 231 } else { 232 extractStr = "op.extractBitsAsZExtValue(" + itostr(hiBit - loBit) + 233 ", " + itostr(loBit) + ")"; 234 Case += " Value.insertBits(" + extractStr + ", " + 235 itostr(loInstBit) + ", " + itostr(hiBit - loBit) + ");\n"; 236 } 237 } else { 238 uint64_t opMask = ~(uint64_t)0 >> (64 - N); 239 opShift = beginVarBit - N + 1; 240 opMask <<= opShift; 241 maskStr = "UINT64_C(" + utostr(opMask) + ")"; 242 opShift = beginInstBit - beginVarBit; 243 244 if (numOperandLits == 1) { 245 Case += " op &= " + maskStr + ";\n"; 246 if (opShift > 0) { 247 Case += " op <<= " + itostr(opShift) + ";\n"; 248 } else if (opShift < 0) { 249 Case += " op >>= " + itostr(-opShift) + ";\n"; 250 } 251 Case += " Value |= op;\n"; 252 } else { 253 if (opShift > 0) { 254 Case += " Value |= (op & " + maskStr + ") << " + 255 itostr(opShift) + ";\n"; 256 } else if (opShift < 0) { 257 Case += " Value |= (op & " + maskStr + ") >> " + 258 itostr(-opShift) + ";\n"; 259 } else { 260 Case += " Value |= (op & " + maskStr + ");\n"; 261 } 262 } 263 } 264 } 265 } 266 267 std::string CodeEmitterGen::getInstructionCase(Record *R, 268 CodeGenTarget &Target) { 269 std::string Case; 270 if (const RecordVal *RV = R->getValue("EncodingInfos")) { 271 if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) { 272 const CodeGenHwModes &HWM = Target.getHwModes(); 273 EncodingInfoByHwMode EBM(DI->getDef(), HWM); 274 Case += " switch (HwMode) {\n"; 275 Case += " default: llvm_unreachable(\"Unhandled HwMode\");\n"; 276 for (auto &KV : EBM) { 277 Case += " case " + itostr(KV.first) + ": {\n"; 278 Case += getInstructionCaseForEncoding(R, KV.second, Target); 279 Case += " break;\n"; 280 Case += " }\n"; 281 } 282 Case += " }\n"; 283 return Case; 284 } 285 } 286 return getInstructionCaseForEncoding(R, R, Target); 287 } 288 289 std::string CodeEmitterGen::getInstructionCaseForEncoding(Record *R, Record *EncodingDef, 290 CodeGenTarget &Target) { 291 std::string Case; 292 BitsInit *BI = EncodingDef->getValueAsBitsInit("Inst"); 293 unsigned NumberedOp = 0; 294 std::set<unsigned> NamedOpIndices; 295 296 // Collect the set of operand indices that might correspond to named 297 // operand, and skip these when assigning operands based on position. 298 if (Target.getInstructionSet()-> 299 getValueAsBit("noNamedPositionallyEncodedOperands")) { 300 CodeGenInstruction &CGI = Target.getInstruction(R); 301 for (const RecordVal &RV : R->getValues()) { 302 unsigned OpIdx; 303 if (!CGI.Operands.hasOperandNamed(RV.getName(), OpIdx)) 304 continue; 305 306 NamedOpIndices.insert(OpIdx); 307 } 308 } 309 310 // Loop over all of the fields in the instruction, determining which are the 311 // operands to the instruction. 312 for (const RecordVal &RV : EncodingDef->getValues()) { 313 // Ignore fixed fields in the record, we're looking for values like: 314 // bits<5> RST = { ?, ?, ?, ?, ? }; 315 if (RV.isNonconcreteOK() || RV.getValue()->isComplete()) 316 continue; 317 318 AddCodeToMergeInOperand(R, BI, std::string(RV.getName()), NumberedOp, 319 NamedOpIndices, Case, Target); 320 } 321 322 StringRef PostEmitter = R->getValueAsString("PostEncoderMethod"); 323 if (!PostEmitter.empty()) { 324 Case += " Value = "; 325 Case += PostEmitter; 326 Case += "(MI, Value"; 327 Case += ", STI"; 328 Case += ");\n"; 329 } 330 331 return Case; 332 } 333 334 static std::string 335 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) { 336 std::string Name = "CEFBS"; 337 for (const auto &Feature : FeatureBitset) 338 Name += ("_" + Feature->getName()).str(); 339 return Name; 340 } 341 342 static void emitInstBits(raw_ostream &OS, const APInt &Bits) { 343 for (unsigned I = 0; I < Bits.getNumWords(); ++I) 344 OS << ((I > 0) ? ", " : "") << "UINT64_C(" << utostr(Bits.getRawData()[I]) 345 << ")"; 346 } 347 348 void CodeEmitterGen::emitInstructionBaseValues( 349 raw_ostream &o, ArrayRef<const CodeGenInstruction *> NumberedInstructions, 350 CodeGenTarget &Target, int HwMode) { 351 const CodeGenHwModes &HWM = Target.getHwModes(); 352 if (HwMode == -1) 353 o << " static const uint64_t InstBits[] = {\n"; 354 else 355 o << " static const uint64_t InstBits_" << HWM.getMode(HwMode).Name 356 << "[] = {\n"; 357 358 for (const CodeGenInstruction *CGI : NumberedInstructions) { 359 Record *R = CGI->TheDef; 360 361 if (R->getValueAsString("Namespace") == "TargetOpcode" || 362 R->getValueAsBit("isPseudo")) { 363 o << " "; emitInstBits(o, APInt(BitWidth, 0)); o << ",\n"; 364 continue; 365 } 366 367 Record *EncodingDef = R; 368 if (const RecordVal *RV = R->getValue("EncodingInfos")) { 369 if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) { 370 EncodingInfoByHwMode EBM(DI->getDef(), HWM); 371 if (EBM.hasMode(HwMode)) 372 EncodingDef = EBM.get(HwMode); 373 } 374 } 375 BitsInit *BI = EncodingDef->getValueAsBitsInit("Inst"); 376 377 // Start by filling in fixed values. 378 APInt Value(BitWidth, 0); 379 for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i) { 380 if (BitInit *B = dyn_cast<BitInit>(BI->getBit(e - i - 1))) 381 Value |= APInt(BitWidth, (uint64_t)B->getValue()) << (e - i - 1); 382 } 383 o << " "; 384 emitInstBits(o, Value); 385 o << "," << '\t' << "// " << R->getName() << "\n"; 386 } 387 o << " UINT64_C(0)\n };\n"; 388 } 389 390 void CodeEmitterGen::run(raw_ostream &o) { 391 CodeGenTarget Target(Records); 392 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 393 394 // For little-endian instruction bit encodings, reverse the bit order 395 Target.reverseBitsForLittleEndianEncoding(); 396 397 ArrayRef<const CodeGenInstruction*> NumberedInstructions = 398 Target.getInstructionsByEnumValue(); 399 400 if (any_of(NumberedInstructions, [](const CodeGenInstruction *CGI) { 401 Record *R = CGI->TheDef; 402 return R->getValue("Inst") && isa<DagInit>(R->getValueInit("Inst")); 403 })) { 404 emitVarLenCodeEmitter(Records, o); 405 } else { 406 const CodeGenHwModes &HWM = Target.getHwModes(); 407 // The set of HwModes used by instruction encodings. 408 std::set<unsigned> HwModes; 409 BitWidth = 0; 410 for (const CodeGenInstruction *CGI : NumberedInstructions) { 411 Record *R = CGI->TheDef; 412 if (R->getValueAsString("Namespace") == "TargetOpcode" || 413 R->getValueAsBit("isPseudo")) 414 continue; 415 416 if (const RecordVal *RV = R->getValue("EncodingInfos")) { 417 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) { 418 EncodingInfoByHwMode EBM(DI->getDef(), HWM); 419 for (auto &KV : EBM) { 420 BitsInit *BI = KV.second->getValueAsBitsInit("Inst"); 421 BitWidth = std::max(BitWidth, BI->getNumBits()); 422 HwModes.insert(KV.first); 423 } 424 continue; 425 } 426 } 427 BitsInit *BI = R->getValueAsBitsInit("Inst"); 428 BitWidth = std::max(BitWidth, BI->getNumBits()); 429 } 430 UseAPInt = BitWidth > 64; 431 432 // Emit function declaration 433 if (UseAPInt) { 434 o << "void " << Target.getName() 435 << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n" 436 << " SmallVectorImpl<MCFixup> &Fixups,\n" 437 << " APInt &Inst,\n" 438 << " APInt &Scratch,\n" 439 << " const MCSubtargetInfo &STI) const {\n"; 440 } else { 441 o << "uint64_t " << Target.getName(); 442 o << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n" 443 << " SmallVectorImpl<MCFixup> &Fixups,\n" 444 << " const MCSubtargetInfo &STI) const {\n"; 445 } 446 447 // Emit instruction base values 448 if (HwModes.empty()) { 449 emitInstructionBaseValues(o, NumberedInstructions, Target, -1); 450 } else { 451 for (unsigned HwMode : HwModes) 452 emitInstructionBaseValues(o, NumberedInstructions, Target, (int)HwMode); 453 } 454 455 if (!HwModes.empty()) { 456 o << " const uint64_t *InstBits;\n"; 457 o << " unsigned HwMode = STI.getHwMode();\n"; 458 o << " switch (HwMode) {\n"; 459 o << " default: llvm_unreachable(\"Unknown hardware mode!\"); break;\n"; 460 for (unsigned I : HwModes) { 461 o << " case " << I << ": InstBits = InstBits_" << HWM.getMode(I).Name 462 << "; break;\n"; 463 } 464 o << " };\n"; 465 } 466 467 // Map to accumulate all the cases. 468 std::map<std::string, std::vector<std::string>> CaseMap; 469 470 // Construct all cases statement for each opcode 471 for (Record *R : Insts) { 472 if (R->getValueAsString("Namespace") == "TargetOpcode" || 473 R->getValueAsBit("isPseudo")) 474 continue; 475 std::string InstName = 476 (R->getValueAsString("Namespace") + "::" + R->getName()).str(); 477 std::string Case = getInstructionCase(R, Target); 478 479 CaseMap[Case].push_back(std::move(InstName)); 480 } 481 482 // Emit initial function code 483 if (UseAPInt) { 484 int NumWords = APInt::getNumWords(BitWidth); 485 int NumBytes = (BitWidth + 7) / 8; 486 o << " const unsigned opcode = MI.getOpcode();\n" 487 << " if (Inst.getBitWidth() != " << BitWidth << ")\n" 488 << " Inst = Inst.zext(" << BitWidth << ");\n" 489 << " if (Scratch.getBitWidth() != " << BitWidth << ")\n" 490 << " Scratch = Scratch.zext(" << BitWidth << ");\n" 491 << " LoadIntFromMemory(Inst, (const uint8_t *)&InstBits[opcode * " 492 << NumWords << "], " << NumBytes << ");\n" 493 << " APInt &Value = Inst;\n" 494 << " APInt &op = Scratch;\n" 495 << " switch (opcode) {\n"; 496 } else { 497 o << " const unsigned opcode = MI.getOpcode();\n" 498 << " uint64_t Value = InstBits[opcode];\n" 499 << " uint64_t op = 0;\n" 500 << " (void)op; // suppress warning\n" 501 << " switch (opcode) {\n"; 502 } 503 504 // Emit each case statement 505 std::map<std::string, std::vector<std::string>>::iterator IE, EE; 506 for (IE = CaseMap.begin(), EE = CaseMap.end(); IE != EE; ++IE) { 507 const std::string &Case = IE->first; 508 std::vector<std::string> &InstList = IE->second; 509 510 for (int i = 0, N = InstList.size(); i < N; i++) { 511 if (i) 512 o << "\n"; 513 o << " case " << InstList[i] << ":"; 514 } 515 o << " {\n"; 516 o << Case; 517 o << " break;\n" 518 << " }\n"; 519 } 520 521 // Default case: unhandled opcode 522 o << " default:\n" 523 << " std::string msg;\n" 524 << " raw_string_ostream Msg(msg);\n" 525 << " Msg << \"Not supported instr: \" << MI;\n" 526 << " report_fatal_error(Msg.str().c_str());\n" 527 << " }\n"; 528 if (UseAPInt) 529 o << " Inst = Value;\n"; 530 else 531 o << " return Value;\n"; 532 o << "}\n\n"; 533 } 534 535 const auto &All = SubtargetFeatureInfo::getAll(Records); 536 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; 537 SubtargetFeatures.insert(All.begin(), All.end()); 538 539 o << "#ifdef ENABLE_INSTR_PREDICATE_VERIFIER\n" 540 << "#undef ENABLE_INSTR_PREDICATE_VERIFIER\n" 541 << "#include <sstream>\n\n"; 542 543 // Emit the subtarget feature enumeration. 544 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures, 545 o); 546 547 // Emit the name table for error messages. 548 o << "#ifndef NDEBUG\n"; 549 SubtargetFeatureInfo::emitNameTable(SubtargetFeatures, o); 550 o << "#endif // NDEBUG\n"; 551 552 // Emit the available features compute function. 553 SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures( 554 Target.getName(), "MCCodeEmitter", "computeAvailableFeatures", 555 SubtargetFeatures, o); 556 557 std::vector<std::vector<Record *>> FeatureBitsets; 558 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 559 FeatureBitsets.emplace_back(); 560 for (Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) { 561 const auto &I = SubtargetFeatures.find(Predicate); 562 if (I != SubtargetFeatures.end()) 563 FeatureBitsets.back().push_back(I->second.TheDef); 564 } 565 } 566 567 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A, 568 const std::vector<Record *> &B) { 569 if (A.size() < B.size()) 570 return true; 571 if (A.size() > B.size()) 572 return false; 573 for (auto Pair : zip(A, B)) { 574 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) 575 return true; 576 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) 577 return false; 578 } 579 return false; 580 }); 581 FeatureBitsets.erase( 582 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()), 583 FeatureBitsets.end()); 584 o << "#ifndef NDEBUG\n" 585 << "// Feature bitsets.\n" 586 << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n" 587 << " CEFBS_None,\n"; 588 for (const auto &FeatureBitset : FeatureBitsets) { 589 if (FeatureBitset.empty()) 590 continue; 591 o << " " << getNameForFeatureBitset(FeatureBitset) << ",\n"; 592 } 593 o << "};\n\n" 594 << "static constexpr FeatureBitset FeatureBitsets[] = {\n" 595 << " {}, // CEFBS_None\n"; 596 for (const auto &FeatureBitset : FeatureBitsets) { 597 if (FeatureBitset.empty()) 598 continue; 599 o << " {"; 600 for (const auto &Feature : FeatureBitset) { 601 const auto &I = SubtargetFeatures.find(Feature); 602 assert(I != SubtargetFeatures.end() && "Didn't import predicate?"); 603 o << I->second.getEnumBitName() << ", "; 604 } 605 o << "},\n"; 606 } 607 o << "};\n" 608 << "#endif // NDEBUG\n\n"; 609 610 611 // Emit the predicate verifier. 612 o << "void " << Target.getName() 613 << "MCCodeEmitter::verifyInstructionPredicates(\n" 614 << " const MCInst &Inst, const FeatureBitset &AvailableFeatures) const {\n" 615 << "#ifndef NDEBUG\n" 616 << " static " << getMinimalTypeForRange(FeatureBitsets.size()) 617 << " RequiredFeaturesRefs[] = {\n"; 618 unsigned InstIdx = 0; 619 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { 620 o << " CEFBS"; 621 unsigned NumPredicates = 0; 622 for (Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) { 623 const auto &I = SubtargetFeatures.find(Predicate); 624 if (I != SubtargetFeatures.end()) { 625 o << '_' << I->second.TheDef->getName(); 626 NumPredicates++; 627 } 628 } 629 if (!NumPredicates) 630 o << "_None"; 631 o << ", // " << Inst->TheDef->getName() << " = " << InstIdx << "\n"; 632 InstIdx++; 633 } 634 o << " };\n\n"; 635 o << " assert(Inst.getOpcode() < " << InstIdx << ");\n"; 636 o << " const FeatureBitset &RequiredFeatures = " 637 "FeatureBitsets[RequiredFeaturesRefs[Inst.getOpcode()]];\n"; 638 o << " FeatureBitset MissingFeatures =\n" 639 << " (AvailableFeatures & RequiredFeatures) ^\n" 640 << " RequiredFeatures;\n" 641 << " if (MissingFeatures.any()) {\n" 642 << " std::ostringstream Msg;\n" 643 << " Msg << \"Attempting to emit \" << " 644 "MCII.getName(Inst.getOpcode()).str()\n" 645 << " << \" instruction but the \";\n" 646 << " for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)\n" 647 << " if (MissingFeatures.test(i))\n" 648 << " Msg << SubtargetFeatureNames[i] << \" \";\n" 649 << " Msg << \"predicate(s) are not met\";\n" 650 << " report_fatal_error(Msg.str().c_str());\n" 651 << " }\n" 652 << "#else\n" 653 << " // Silence unused variable warning on targets that don't use MCII for " 654 "other purposes (e.g. BPF).\n" 655 << " (void)MCII;\n" 656 << "#endif // NDEBUG\n"; 657 o << "}\n"; 658 o << "#endif\n"; 659 } 660 661 } // end anonymous namespace 662 663 namespace llvm { 664 665 void EmitCodeEmitter(RecordKeeper &RK, raw_ostream &OS) { 666 emitSourceFileHeader("Machine Code Emitter", OS); 667 CodeEmitterGen(RK).run(OS); 668 } 669 670 } // end namespace llvm 671