1 //=== - llvm/unittest/Support/Alignment.cpp - Alignment utility tests -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Support/Alignment.h" 10 #include "gtest/gtest.h" 11 12 #include <vector> 13 14 #ifdef _MSC_VER 15 // Disable warnings about potential divide by 0. 16 #pragma warning(push) 17 #pragma warning(disable : 4723) 18 #endif 19 20 using namespace llvm; 21 22 namespace { 23 24 TEST(AlignmentTest, AlignOfConstant) { 25 EXPECT_EQ(Align::Of<uint8_t>(), Align(alignof(uint8_t))); 26 EXPECT_EQ(Align::Of<uint16_t>(), Align(alignof(uint16_t))); 27 EXPECT_EQ(Align::Of<uint32_t>(), Align(alignof(uint32_t))); 28 EXPECT_EQ(Align::Of<uint64_t>(), Align(alignof(uint64_t))); 29 } 30 31 TEST(AlignmentTest, AlignConstant) { 32 EXPECT_EQ(Align::Constant<1>(), Align(1)); 33 EXPECT_EQ(Align::Constant<2>(), Align(2)); 34 EXPECT_EQ(Align::Constant<4>(), Align(4)); 35 EXPECT_EQ(Align::Constant<8>(), Align(8)); 36 EXPECT_EQ(Align::Constant<16>(), Align(16)); 37 EXPECT_EQ(Align::Constant<32>(), Align(32)); 38 EXPECT_EQ(Align::Constant<64>(), Align(64)); 39 } 40 41 TEST(AlignmentTest, AlignConstexprConstant) { 42 constexpr Align kConstantAlign = Align::Of<uint64_t>(); 43 EXPECT_EQ(Align(alignof(uint64_t)), kConstantAlign); 44 } 45 46 std::vector<uint64_t> getValidAlignments() { 47 std::vector<uint64_t> Out; 48 for (size_t Shift = 0; Shift < 64; ++Shift) 49 Out.push_back(1ULL << Shift); 50 return Out; 51 } 52 53 TEST(AlignmentTest, AlignDefaultCTor) { 54 EXPECT_EQ(Align().value(), 1ULL); 55 } 56 57 TEST(AlignmentTest, MaybeAlignDefaultCTor) { 58 EXPECT_FALSE(MaybeAlign().hasValue()); 59 } 60 61 TEST(AlignmentTest, ValidCTors) { 62 for (uint64_t Value : getValidAlignments()) { 63 EXPECT_EQ(Align(Value).value(), Value); 64 EXPECT_EQ((*MaybeAlign(Value)).value(), Value); 65 } 66 } 67 68 TEST(AlignmentTest, CheckMaybeAlignHasValue) { 69 EXPECT_TRUE(MaybeAlign(1)); 70 EXPECT_TRUE(MaybeAlign(1).hasValue()); 71 EXPECT_FALSE(MaybeAlign(0)); 72 EXPECT_FALSE(MaybeAlign(0).hasValue()); 73 EXPECT_FALSE(MaybeAlign()); 74 EXPECT_FALSE(MaybeAlign().hasValue()); 75 } 76 77 TEST(AlignmentTest, Division) { 78 for (uint64_t Value : getValidAlignments()) { 79 if (Value > 1) { 80 EXPECT_EQ(Align(Value) / 2, Value / 2); 81 EXPECT_EQ(MaybeAlign(Value) / 2, Value / 2); 82 } 83 } 84 EXPECT_EQ(MaybeAlign(0) / 2, MaybeAlign(0)); 85 } 86 87 TEST(AlignmentTest, AlignTo) { 88 struct { 89 uint64_t alignment; 90 uint64_t offset; 91 uint64_t rounded; 92 const void *forgedAddr() const { 93 // A value of any integral or enumeration type can be converted to a 94 // pointer type. 95 return reinterpret_cast<const void *>(offset); 96 } 97 } kTests[] = { 98 // MaybeAlign 99 {0, 0, 0}, 100 {0, 1, 1}, 101 {0, 5, 5}, 102 // MaybeAlign / Align 103 {1, 0, 0}, 104 {1, 1, 1}, 105 {1, 5, 5}, 106 {2, 0, 0}, 107 {2, 1, 2}, 108 {2, 2, 2}, 109 {2, 7, 8}, 110 {2, 16, 16}, 111 {4, 0, 0}, 112 {4, 1, 4}, 113 {4, 4, 4}, 114 {4, 6, 8}, 115 }; 116 for (const auto &T : kTests) { 117 MaybeAlign A(T.alignment); 118 // Test MaybeAlign 119 EXPECT_EQ(alignTo(T.offset, A), T.rounded); 120 // Test Align 121 if (A) { 122 EXPECT_EQ(alignTo(T.offset, A.getValue()), T.rounded); 123 EXPECT_EQ(alignAddr(T.forgedAddr(), A.getValue()), T.rounded); 124 } 125 } 126 } 127 128 TEST(AlignmentTest, Log2) { 129 for (uint64_t Value : getValidAlignments()) { 130 EXPECT_EQ(Log2(Align(Value)), Log2_64(Value)); 131 EXPECT_EQ(Log2(MaybeAlign(Value)), Log2_64(Value)); 132 } 133 } 134 135 TEST(AlignmentTest, MinAlign) { 136 struct { 137 uint64_t A; 138 uint64_t B; 139 uint64_t MinAlign; 140 } kTests[] = { 141 // MaybeAlign 142 {0, 0, 0}, 143 {0, 8, 8}, 144 {2, 0, 2}, 145 // MaybeAlign / Align 146 {1, 2, 1}, 147 {8, 4, 4}, 148 }; 149 for (const auto &T : kTests) { 150 EXPECT_EQ(commonAlignment(MaybeAlign(T.A), MaybeAlign(T.B)), T.MinAlign); 151 EXPECT_EQ(MinAlign(T.A, T.B), T.MinAlign); 152 if (T.A) { 153 EXPECT_EQ(commonAlignment(Align(T.A), MaybeAlign(T.B)), T.MinAlign); 154 } 155 if (T.B) { 156 EXPECT_EQ(commonAlignment(MaybeAlign(T.A), Align(T.B)), T.MinAlign); 157 } 158 if (T.A && T.B) { 159 EXPECT_EQ(commonAlignment(Align(T.A), Align(T.B)), T.MinAlign); 160 } 161 } 162 } 163 164 TEST(AlignmentTest, Encode_Decode) { 165 for (uint64_t Value : getValidAlignments()) { 166 { 167 Align Actual(Value); 168 Align Expected = decodeMaybeAlign(encode(Actual)).getValue(); 169 EXPECT_EQ(Expected, Actual); 170 } 171 { 172 MaybeAlign Actual(Value); 173 MaybeAlign Expected = decodeMaybeAlign(encode(Actual)); 174 EXPECT_EQ(Expected, Actual); 175 } 176 } 177 MaybeAlign Actual(0); 178 MaybeAlign Expected = decodeMaybeAlign(encode(Actual)); 179 EXPECT_EQ(Expected, Actual); 180 } 181 182 TEST(AlignmentTest, isAligned_isAddrAligned) { 183 struct { 184 uint64_t alignment; 185 uint64_t offset; 186 bool isAligned; 187 const void *forgedAddr() const { 188 // A value of any integral or enumeration type can be converted to a 189 // pointer type. 190 return reinterpret_cast<const void *>(offset); 191 } 192 } kTests[] = { 193 {1, 0, true}, {1, 1, true}, {1, 5, true}, {2, 0, true}, 194 {2, 1, false}, {2, 2, true}, {2, 7, false}, {2, 16, true}, 195 {4, 0, true}, {4, 1, false}, {4, 4, true}, {4, 6, false}, 196 }; 197 for (const auto &T : kTests) { 198 MaybeAlign A(T.alignment); 199 // Test MaybeAlign 200 EXPECT_EQ(isAligned(A, T.offset), T.isAligned); 201 // Test Align 202 if (A) { 203 EXPECT_EQ(isAligned(A.getValue(), T.offset), T.isAligned); 204 EXPECT_EQ(isAddrAligned(A.getValue(), T.forgedAddr()), T.isAligned); 205 } 206 } 207 } 208 209 TEST(AlignmentTest, offsetToAlignment) { 210 struct { 211 uint64_t alignment; 212 uint64_t offset; 213 uint64_t alignedOffset; 214 const void *forgedAddr() const { 215 // A value of any integral or enumeration type can be converted to a 216 // pointer type. 217 return reinterpret_cast<const void *>(offset); 218 } 219 } kTests[] = { 220 {1, 0, 0}, {1, 1, 0}, {1, 5, 0}, {2, 0, 0}, {2, 1, 1}, {2, 2, 0}, 221 {2, 7, 1}, {2, 16, 0}, {4, 0, 0}, {4, 1, 3}, {4, 4, 0}, {4, 6, 2}, 222 }; 223 for (const auto &T : kTests) { 224 const Align A(T.alignment); 225 EXPECT_EQ(offsetToAlignment(T.offset, A), T.alignedOffset); 226 EXPECT_EQ(offsetToAlignedAddr(T.forgedAddr(), A), T.alignedOffset); 227 } 228 } 229 230 TEST(AlignmentTest, AlignComparisons) { 231 std::vector<uint64_t> ValidAlignments = getValidAlignments(); 232 std::sort(ValidAlignments.begin(), ValidAlignments.end()); 233 for (size_t I = 1; I < ValidAlignments.size(); ++I) { 234 assert(I >= 1); 235 const Align A(ValidAlignments[I - 1]); 236 const Align B(ValidAlignments[I]); 237 EXPECT_EQ(A, A); 238 EXPECT_NE(A, B); 239 EXPECT_LT(A, B); 240 EXPECT_GT(B, A); 241 EXPECT_LE(A, B); 242 EXPECT_GE(B, A); 243 EXPECT_LE(A, A); 244 EXPECT_GE(A, A); 245 246 EXPECT_EQ(A, A.value()); 247 EXPECT_NE(A, B.value()); 248 EXPECT_LT(A, B.value()); 249 EXPECT_GT(B, A.value()); 250 EXPECT_LE(A, B.value()); 251 EXPECT_GE(B, A.value()); 252 EXPECT_LE(A, A.value()); 253 EXPECT_GE(A, A.value()); 254 255 EXPECT_EQ(std::max(A, B), B); 256 EXPECT_EQ(std::min(A, B), A); 257 258 const MaybeAlign MA(ValidAlignments[I - 1]); 259 const MaybeAlign MB(ValidAlignments[I]); 260 EXPECT_EQ(MA, MA); 261 EXPECT_NE(MA, MB); 262 EXPECT_LT(MA, MB); 263 EXPECT_GT(MB, MA); 264 EXPECT_LE(MA, MB); 265 EXPECT_GE(MB, MA); 266 EXPECT_LE(MA, MA); 267 EXPECT_GE(MA, MA); 268 269 EXPECT_EQ(MA, MA ? (*MA).value() : 0); 270 EXPECT_NE(MA, MB ? (*MB).value() : 0); 271 EXPECT_LT(MA, MB ? (*MB).value() : 0); 272 EXPECT_GT(MB, MA ? (*MA).value() : 0); 273 EXPECT_LE(MA, MB ? (*MB).value() : 0); 274 EXPECT_GE(MB, MA ? (*MA).value() : 0); 275 EXPECT_LE(MA, MA ? (*MA).value() : 0); 276 EXPECT_GE(MA, MA ? (*MA).value() : 0); 277 278 EXPECT_EQ(std::max(A, B), B); 279 EXPECT_EQ(std::min(A, B), A); 280 } 281 } 282 283 TEST(AlignmentTest, Max) { 284 // We introduce std::max here to test ADL. 285 using std::max; 286 287 // Uses llvm::max. 288 EXPECT_EQ(max(MaybeAlign(), Align(2)), Align(2)); 289 EXPECT_EQ(max(Align(2), MaybeAlign()), Align(2)); 290 291 EXPECT_EQ(max(MaybeAlign(1), Align(2)), Align(2)); 292 EXPECT_EQ(max(Align(2), MaybeAlign(1)), Align(2)); 293 294 EXPECT_EQ(max(MaybeAlign(2), Align(2)), Align(2)); 295 EXPECT_EQ(max(Align(2), MaybeAlign(2)), Align(2)); 296 297 EXPECT_EQ(max(MaybeAlign(4), Align(2)), Align(4)); 298 EXPECT_EQ(max(Align(2), MaybeAlign(4)), Align(4)); 299 300 // Uses std::max. 301 EXPECT_EQ(max(Align(2), Align(4)), Align(4)); 302 EXPECT_EQ(max(MaybeAlign(2), MaybeAlign(4)), MaybeAlign(4)); 303 EXPECT_EQ(max(MaybeAlign(), MaybeAlign()), MaybeAlign()); 304 } 305 306 TEST(AlignmentTest, AssumeAligned) { 307 EXPECT_EQ(assumeAligned(0), Align(1)); 308 EXPECT_EQ(assumeAligned(0), Align()); 309 EXPECT_EQ(assumeAligned(1), Align(1)); 310 EXPECT_EQ(assumeAligned(1), Align()); 311 } 312 313 // Death tests reply on assert which is disabled in release mode. 314 #ifndef NDEBUG 315 316 // We use a subset of valid alignments for DEATH_TESTs as they are particularly 317 // slow. 318 std::vector<uint64_t> getValidAlignmentsForDeathTest() { 319 return {1, 1ULL << 31, 1ULL << 63}; 320 } 321 322 std::vector<uint64_t> getNonPowerOfTwo() { return {3, 10, 15}; } 323 324 TEST(AlignmentDeathTest, Log2) { 325 EXPECT_DEATH(Log2(MaybeAlign(0)), ".* should be defined"); 326 } 327 328 TEST(AlignmentDeathTest, CantConvertUnsetMaybe) { 329 EXPECT_DEATH((MaybeAlign(0).getValue()), ".*"); 330 } 331 332 TEST(AlignmentDeathTest, Division) { 333 EXPECT_DEATH(Align(1) / 2, "Can't halve byte alignment"); 334 EXPECT_DEATH(MaybeAlign(1) / 2, "Can't halve byte alignment"); 335 336 EXPECT_DEATH(Align(8) / 0, "Divisor must be positive and a power of 2"); 337 EXPECT_DEATH(Align(8) / 3, "Divisor must be positive and a power of 2"); 338 } 339 340 TEST(AlignmentDeathTest, InvalidCTors) { 341 EXPECT_DEATH((Align(0)), "Value must not be 0"); 342 for (uint64_t Value : getNonPowerOfTwo()) { 343 EXPECT_DEATH((Align(Value)), "Alignment is not a power of 2"); 344 EXPECT_DEATH((MaybeAlign(Value)), 345 "Alignment is neither 0 nor a power of 2"); 346 } 347 } 348 349 TEST(AlignmentDeathTest, ComparisonsWithZero) { 350 for (uint64_t Value : getValidAlignmentsForDeathTest()) { 351 EXPECT_DEATH((void)(Align(Value) == 0), ".* should be defined"); 352 EXPECT_DEATH((void)(Align(Value) != 0), ".* should be defined"); 353 EXPECT_DEATH((void)(Align(Value) >= 0), ".* should be defined"); 354 EXPECT_DEATH((void)(Align(Value) <= 0), ".* should be defined"); 355 EXPECT_DEATH((void)(Align(Value) > 0), ".* should be defined"); 356 EXPECT_DEATH((void)(Align(Value) < 0), ".* should be defined"); 357 } 358 } 359 360 TEST(AlignmentDeathTest, CompareMaybeAlignToZero) { 361 for (uint64_t Value : getValidAlignmentsForDeathTest()) { 362 // MaybeAlign is allowed to be == or != 0 363 (void)(MaybeAlign(Value) == 0); 364 (void)(MaybeAlign(Value) != 0); 365 EXPECT_DEATH((void)(MaybeAlign(Value) >= 0), ".* should be defined"); 366 EXPECT_DEATH((void)(MaybeAlign(Value) <= 0), ".* should be defined"); 367 EXPECT_DEATH((void)(MaybeAlign(Value) > 0), ".* should be defined"); 368 EXPECT_DEATH((void)(MaybeAlign(Value) < 0), ".* should be defined"); 369 } 370 } 371 372 TEST(AlignmentDeathTest, CompareAlignToUndefMaybeAlign) { 373 for (uint64_t Value : getValidAlignmentsForDeathTest()) { 374 EXPECT_DEATH((void)(Align(Value) == MaybeAlign(0)), ".* should be defined"); 375 EXPECT_DEATH((void)(Align(Value) != MaybeAlign(0)), ".* should be defined"); 376 EXPECT_DEATH((void)(Align(Value) >= MaybeAlign(0)), ".* should be defined"); 377 EXPECT_DEATH((void)(Align(Value) <= MaybeAlign(0)), ".* should be defined"); 378 EXPECT_DEATH((void)(Align(Value) > MaybeAlign(0)), ".* should be defined"); 379 EXPECT_DEATH((void)(Align(Value) < MaybeAlign(0)), ".* should be defined"); 380 } 381 } 382 383 TEST(AlignmentDeathTest, AlignAddr) { 384 const void *const unaligned_high_ptr = 385 reinterpret_cast<const void *>(std::numeric_limits<uintptr_t>::max() - 1); 386 EXPECT_DEATH(alignAddr(unaligned_high_ptr, Align(16)), "Overflow"); 387 } 388 389 #endif // NDEBUG 390 391 } // end anonymous namespace 392 393 #ifdef _MSC_VER 394 #pragma warning(pop) 395 #endif 396