1 //=== - llvm/unittest/Support/Alignment.cpp - Alignment utility tests -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Support/Alignment.h" 10 #include "gtest/gtest.h" 11 12 #include <vector> 13 14 #ifdef _MSC_VER 15 // Disable warnings about potential divide by 0. 16 #pragma warning(push) 17 #pragma warning(disable : 4723) 18 #endif 19 20 using namespace llvm; 21 22 namespace { 23 24 TEST(AlignmentTest, AlignOfConstant) { 25 EXPECT_EQ(Align::Of<uint8_t>(), Align(alignof(uint8_t))); 26 EXPECT_EQ(Align::Of<uint16_t>(), Align(alignof(uint16_t))); 27 EXPECT_EQ(Align::Of<uint32_t>(), Align(alignof(uint32_t))); 28 EXPECT_EQ(Align::Of<uint64_t>(), Align(alignof(uint64_t))); 29 } 30 31 TEST(AlignmentTest, AlignConstant) { 32 EXPECT_EQ(Align::Constant<1>(), Align(1)); 33 EXPECT_EQ(Align::Constant<2>(), Align(2)); 34 EXPECT_EQ(Align::Constant<4>(), Align(4)); 35 EXPECT_EQ(Align::Constant<8>(), Align(8)); 36 EXPECT_EQ(Align::Constant<16>(), Align(16)); 37 EXPECT_EQ(Align::Constant<32>(), Align(32)); 38 EXPECT_EQ(Align::Constant<64>(), Align(64)); 39 } 40 41 TEST(AlignmentTest, AlignConstexprConstant) { 42 constexpr Align kConstantAlign = Align::Of<uint64_t>(); 43 EXPECT_EQ(Align(alignof(uint64_t)), kConstantAlign); 44 } 45 46 std::vector<uint64_t> getValidAlignments() { 47 std::vector<uint64_t> Out; 48 for (size_t Shift = 0; Shift < 64; ++Shift) 49 Out.push_back(1ULL << Shift); 50 return Out; 51 } 52 53 TEST(AlignmentTest, AlignDefaultCTor) { 54 EXPECT_EQ(Align().value(), 1ULL); 55 } 56 57 TEST(AlignmentTest, MaybeAlignDefaultCTor) { 58 EXPECT_FALSE(MaybeAlign().hasValue()); 59 } 60 61 TEST(AlignmentTest, ValidCTors) { 62 for (uint64_t Value : getValidAlignments()) { 63 EXPECT_EQ(Align(Value).value(), Value); 64 EXPECT_EQ((*MaybeAlign(Value)).value(), Value); 65 } 66 } 67 68 TEST(AlignmentTest, CheckMaybeAlignHasValue) { 69 EXPECT_TRUE(MaybeAlign(1)); 70 EXPECT_TRUE(MaybeAlign(1).hasValue()); 71 EXPECT_FALSE(MaybeAlign(0)); 72 EXPECT_FALSE(MaybeAlign(0).hasValue()); 73 EXPECT_FALSE(MaybeAlign()); 74 EXPECT_FALSE(MaybeAlign().hasValue()); 75 } 76 77 TEST(AlignmentTest, Division) { 78 for (uint64_t Value : getValidAlignments()) { 79 if (Value > 1) { 80 EXPECT_EQ(Align(Value) / 2, Value / 2); 81 EXPECT_EQ(MaybeAlign(Value) / 2, Value / 2); 82 } 83 } 84 EXPECT_EQ(MaybeAlign(0) / 2, MaybeAlign(0)); 85 } 86 87 TEST(AlignmentTest, AlignTo) { 88 struct { 89 uint64_t alignment; 90 uint64_t offset; 91 uint64_t rounded; 92 const void *forgedAddr() const { 93 // A value of any integral or enumeration type can be converted to a 94 // pointer type. 95 return reinterpret_cast<const void *>(offset); 96 } 97 } kTests[] = { 98 // MaybeAlign 99 {0, 0, 0}, 100 {0, 1, 1}, 101 {0, 5, 5}, 102 // MaybeAlign / Align 103 {1, 0, 0}, 104 {1, 1, 1}, 105 {1, 5, 5}, 106 {2, 0, 0}, 107 {2, 1, 2}, 108 {2, 2, 2}, 109 {2, 7, 8}, 110 {2, 16, 16}, 111 {4, 0, 0}, 112 {4, 1, 4}, 113 {4, 4, 4}, 114 {4, 6, 8}, 115 }; 116 for (const auto &T : kTests) { 117 MaybeAlign A(T.alignment); 118 // Test MaybeAlign 119 EXPECT_EQ(alignTo(T.offset, A), T.rounded); 120 // Test Align 121 if (A) { 122 EXPECT_EQ(alignTo(T.offset, A.getValue()), T.rounded); 123 EXPECT_EQ(alignAddr(T.forgedAddr(), A.getValue()), T.rounded); 124 } 125 } 126 } 127 128 TEST(AlignmentTest, AlignToWithSkew) { 129 EXPECT_EQ(alignTo(5, Align(8), 0), alignTo(5, Align(8))); 130 EXPECT_EQ(alignTo(5, Align(8), 7), 7U); 131 EXPECT_EQ(alignTo(17, Align(8), 1), 17U); 132 EXPECT_EQ(alignTo(~0LL, Align(8), 3), 3U); 133 } 134 135 TEST(AlignmentTest, Log2) { 136 for (uint64_t Value : getValidAlignments()) { 137 EXPECT_EQ(Log2(Align(Value)), Log2_64(Value)); 138 } 139 } 140 141 TEST(AlignmentTest, MinAlign) { 142 struct { 143 uint64_t A; 144 uint64_t B; 145 uint64_t MinAlign; 146 } kTests[] = { 147 // MaybeAlign 148 {0, 0, 0}, 149 {0, 8, 8}, 150 {2, 0, 2}, 151 // MaybeAlign / Align 152 {1, 2, 1}, 153 {8, 4, 4}, 154 }; 155 for (const auto &T : kTests) { 156 EXPECT_EQ(commonAlignment(MaybeAlign(T.A), MaybeAlign(T.B)), T.MinAlign); 157 EXPECT_EQ(MinAlign(T.A, T.B), T.MinAlign); 158 if (T.A) { 159 EXPECT_EQ(commonAlignment(Align(T.A), MaybeAlign(T.B)), T.MinAlign); 160 } 161 if (T.B) { 162 EXPECT_EQ(commonAlignment(MaybeAlign(T.A), Align(T.B)), T.MinAlign); 163 } 164 if (T.A && T.B) { 165 EXPECT_EQ(commonAlignment(Align(T.A), Align(T.B)), T.MinAlign); 166 } 167 } 168 } 169 170 TEST(AlignmentTest, Encode_Decode) { 171 for (uint64_t Value : getValidAlignments()) { 172 { 173 Align Actual(Value); 174 Align Expected = decodeMaybeAlign(encode(Actual)).getValue(); 175 EXPECT_EQ(Expected, Actual); 176 } 177 { 178 MaybeAlign Actual(Value); 179 MaybeAlign Expected = decodeMaybeAlign(encode(Actual)); 180 EXPECT_EQ(Expected, Actual); 181 } 182 } 183 MaybeAlign Actual(0); 184 MaybeAlign Expected = decodeMaybeAlign(encode(Actual)); 185 EXPECT_EQ(Expected, Actual); 186 } 187 188 TEST(AlignmentTest, isAligned_isAddrAligned) { 189 struct { 190 uint64_t alignment; 191 uint64_t offset; 192 bool isAligned; 193 const void *forgedAddr() const { 194 // A value of any integral or enumeration type can be converted to a 195 // pointer type. 196 return reinterpret_cast<const void *>(offset); 197 } 198 } kTests[] = { 199 {1, 0, true}, {1, 1, true}, {1, 5, true}, {2, 0, true}, 200 {2, 1, false}, {2, 2, true}, {2, 7, false}, {2, 16, true}, 201 {4, 0, true}, {4, 1, false}, {4, 4, true}, {4, 6, false}, 202 }; 203 for (const auto &T : kTests) { 204 MaybeAlign A(T.alignment); 205 // Test Align 206 if (A) { 207 EXPECT_EQ(isAligned(A.getValue(), T.offset), T.isAligned); 208 EXPECT_EQ(isAddrAligned(A.getValue(), T.forgedAddr()), T.isAligned); 209 } 210 } 211 } 212 213 TEST(AlignmentTest, offsetToAlignment) { 214 struct { 215 uint64_t alignment; 216 uint64_t offset; 217 uint64_t alignedOffset; 218 const void *forgedAddr() const { 219 // A value of any integral or enumeration type can be converted to a 220 // pointer type. 221 return reinterpret_cast<const void *>(offset); 222 } 223 } kTests[] = { 224 {1, 0, 0}, {1, 1, 0}, {1, 5, 0}, {2, 0, 0}, {2, 1, 1}, {2, 2, 0}, 225 {2, 7, 1}, {2, 16, 0}, {4, 0, 0}, {4, 1, 3}, {4, 4, 0}, {4, 6, 2}, 226 }; 227 for (const auto &T : kTests) { 228 const Align A(T.alignment); 229 EXPECT_EQ(offsetToAlignment(T.offset, A), T.alignedOffset); 230 EXPECT_EQ(offsetToAlignedAddr(T.forgedAddr(), A), T.alignedOffset); 231 } 232 } 233 234 TEST(AlignmentTest, AlignComparisons) { 235 std::vector<uint64_t> ValidAlignments = getValidAlignments(); 236 std::sort(ValidAlignments.begin(), ValidAlignments.end()); 237 for (size_t I = 1; I < ValidAlignments.size(); ++I) { 238 assert(I >= 1); 239 const Align A(ValidAlignments[I - 1]); 240 const Align B(ValidAlignments[I]); 241 EXPECT_EQ(A, A); 242 EXPECT_NE(A, B); 243 EXPECT_LT(A, B); 244 EXPECT_GT(B, A); 245 EXPECT_LE(A, B); 246 EXPECT_GE(B, A); 247 EXPECT_LE(A, A); 248 EXPECT_GE(A, A); 249 250 EXPECT_EQ(A, A.value()); 251 EXPECT_NE(A, B.value()); 252 EXPECT_LT(A, B.value()); 253 EXPECT_GT(B, A.value()); 254 EXPECT_LE(A, B.value()); 255 EXPECT_GE(B, A.value()); 256 EXPECT_LE(A, A.value()); 257 EXPECT_GE(A, A.value()); 258 259 EXPECT_EQ(std::max(A, B), B); 260 EXPECT_EQ(std::min(A, B), A); 261 262 const MaybeAlign MA(ValidAlignments[I - 1]); 263 const MaybeAlign MB(ValidAlignments[I]); 264 EXPECT_EQ(MA, MA); 265 EXPECT_NE(MA, MB); 266 267 EXPECT_EQ(MA, MA ? (*MA).value() : 0); 268 EXPECT_NE(MA, MB ? (*MB).value() : 0); 269 270 EXPECT_EQ(std::max(A, B), B); 271 EXPECT_EQ(std::min(A, B), A); 272 } 273 } 274 275 TEST(AlignmentTest, Max) { 276 // We introduce std::max here to test ADL. 277 using std::max; 278 279 // Uses llvm::max. 280 EXPECT_EQ(max(MaybeAlign(), Align(2)), Align(2)); 281 EXPECT_EQ(max(Align(2), MaybeAlign()), Align(2)); 282 283 EXPECT_EQ(max(MaybeAlign(1), Align(2)), Align(2)); 284 EXPECT_EQ(max(Align(2), MaybeAlign(1)), Align(2)); 285 286 EXPECT_EQ(max(MaybeAlign(2), Align(2)), Align(2)); 287 EXPECT_EQ(max(Align(2), MaybeAlign(2)), Align(2)); 288 289 EXPECT_EQ(max(MaybeAlign(4), Align(2)), Align(4)); 290 EXPECT_EQ(max(Align(2), MaybeAlign(4)), Align(4)); 291 292 // Uses std::max. 293 EXPECT_EQ(max(Align(2), Align(4)), Align(4)); 294 } 295 296 TEST(AlignmentTest, AssumeAligned) { 297 EXPECT_EQ(assumeAligned(0), Align(1)); 298 EXPECT_EQ(assumeAligned(0), Align()); 299 EXPECT_EQ(assumeAligned(1), Align(1)); 300 EXPECT_EQ(assumeAligned(1), Align()); 301 } 302 303 // Death tests reply on assert which is disabled in release mode. 304 #ifndef NDEBUG 305 306 // We use a subset of valid alignments for DEATH_TESTs as they are particularly 307 // slow. 308 std::vector<uint64_t> getValidAlignmentsForDeathTest() { 309 return {1, 1ULL << 31, 1ULL << 63}; 310 } 311 312 std::vector<uint64_t> getNonPowerOfTwo() { return {3, 10, 15}; } 313 314 TEST(AlignmentDeathTest, CantConvertUnsetMaybe) { 315 EXPECT_DEATH((MaybeAlign(0).getValue()), ".*"); 316 } 317 318 TEST(AlignmentDeathTest, Division) { 319 EXPECT_DEATH(Align(1) / 2, "Can't halve byte alignment"); 320 EXPECT_DEATH(MaybeAlign(1) / 2, "Can't halve byte alignment"); 321 322 EXPECT_DEATH(Align(8) / 0, "Divisor must be positive and a power of 2"); 323 EXPECT_DEATH(Align(8) / 3, "Divisor must be positive and a power of 2"); 324 } 325 326 TEST(AlignmentDeathTest, InvalidCTors) { 327 EXPECT_DEATH((Align(0)), "Value must not be 0"); 328 for (uint64_t Value : getNonPowerOfTwo()) { 329 EXPECT_DEATH((Align(Value)), "Alignment is not a power of 2"); 330 EXPECT_DEATH((MaybeAlign(Value)), 331 "Alignment is neither 0 nor a power of 2"); 332 } 333 } 334 335 TEST(AlignmentDeathTest, ComparisonsWithZero) { 336 for (uint64_t Value : getValidAlignmentsForDeathTest()) { 337 EXPECT_DEATH((void)(Align(Value) == 0), ".* should be defined"); 338 EXPECT_DEATH((void)(Align(Value) != 0), ".* should be defined"); 339 EXPECT_DEATH((void)(Align(Value) >= 0), ".* should be defined"); 340 EXPECT_DEATH((void)(Align(Value) <= 0), ".* should be defined"); 341 EXPECT_DEATH((void)(Align(Value) > 0), ".* should be defined"); 342 EXPECT_DEATH((void)(Align(Value) < 0), ".* should be defined"); 343 } 344 } 345 346 TEST(AlignmentDeathTest, CompareMaybeAlignToZero) { 347 for (uint64_t Value : getValidAlignmentsForDeathTest()) { 348 // MaybeAlign is allowed to be == or != 0 349 (void)(MaybeAlign(Value) == 0); 350 (void)(MaybeAlign(Value) != 0); 351 } 352 } 353 354 TEST(AlignmentDeathTest, AlignAddr) { 355 const void *const unaligned_high_ptr = 356 reinterpret_cast<const void *>(std::numeric_limits<uintptr_t>::max() - 1); 357 EXPECT_DEATH(alignAddr(unaligned_high_ptr, Align(16)), "Overflow"); 358 } 359 360 #endif // NDEBUG 361 362 } // end anonymous namespace 363 364 #ifdef _MSC_VER 365 #pragma warning(pop) 366 #endif 367