1 //===---- llvm/unittest/IR/PatternMatch.cpp - PatternMatch unit tests ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/IR/PatternMatch.h"
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/Analysis/ValueTracking.h"
12 #include "llvm/IR/BasicBlock.h"
13 #include "llvm/IR/Constants.h"
14 #include "llvm/IR/DataLayout.h"
15 #include "llvm/IR/DerivedTypes.h"
16 #include "llvm/IR/Function.h"
17 #include "llvm/IR/IRBuilder.h"
18 #include "llvm/IR/Instructions.h"
19 #include "llvm/IR/LLVMContext.h"
20 #include "llvm/IR/MDBuilder.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/NoFolder.h"
23 #include "llvm/IR/Operator.h"
24 #include "llvm/IR/Type.h"
25 #include "gtest/gtest.h"
26 
27 using namespace llvm;
28 using namespace llvm::PatternMatch;
29 
30 namespace {
31 
32 struct PatternMatchTest : ::testing::Test {
33   LLVMContext Ctx;
34   std::unique_ptr<Module> M;
35   Function *F;
36   BasicBlock *BB;
37   IRBuilder<NoFolder> IRB;
38 
39   PatternMatchTest()
40       : M(new Module("PatternMatchTestModule", Ctx)),
41         F(Function::Create(
42             FunctionType::get(Type::getVoidTy(Ctx), /* IsVarArg */ false),
43             Function::ExternalLinkage, "f", M.get())),
44         BB(BasicBlock::Create(Ctx, "entry", F)), IRB(BB) {}
45 };
46 
47 TEST_F(PatternMatchTest, OneUse) {
48   // Build up a little tree of values:
49   //
50   //   One  = (1 + 2) + 42
51   //   Two  = One + 42
52   //   Leaf = (Two + 8) + (Two + 13)
53   Value *One = IRB.CreateAdd(IRB.CreateAdd(IRB.getInt32(1), IRB.getInt32(2)),
54                              IRB.getInt32(42));
55   Value *Two = IRB.CreateAdd(One, IRB.getInt32(42));
56   Value *Leaf = IRB.CreateAdd(IRB.CreateAdd(Two, IRB.getInt32(8)),
57                               IRB.CreateAdd(Two, IRB.getInt32(13)));
58   Value *V;
59 
60   EXPECT_TRUE(m_OneUse(m_Value(V)).match(One));
61   EXPECT_EQ(One, V);
62 
63   EXPECT_FALSE(m_OneUse(m_Value()).match(Two));
64   EXPECT_FALSE(m_OneUse(m_Value()).match(Leaf));
65 }
66 
67 TEST_F(PatternMatchTest, CommutativeDeferredValue) {
68   Value *X = IRB.getInt32(1);
69   Value *Y = IRB.getInt32(2);
70 
71   {
72     Value *tX = X;
73     EXPECT_TRUE(match(X, m_Deferred(tX)));
74     EXPECT_FALSE(match(Y, m_Deferred(tX)));
75   }
76   {
77     const Value *tX = X;
78     EXPECT_TRUE(match(X, m_Deferred(tX)));
79     EXPECT_FALSE(match(Y, m_Deferred(tX)));
80   }
81   {
82     Value *const tX = X;
83     EXPECT_TRUE(match(X, m_Deferred(tX)));
84     EXPECT_FALSE(match(Y, m_Deferred(tX)));
85   }
86   {
87     const Value *const tX = X;
88     EXPECT_TRUE(match(X, m_Deferred(tX)));
89     EXPECT_FALSE(match(Y, m_Deferred(tX)));
90   }
91 
92   {
93     Value *tX = nullptr;
94     EXPECT_TRUE(match(IRB.CreateAnd(X, X), m_And(m_Value(tX), m_Deferred(tX))));
95     EXPECT_EQ(tX, X);
96   }
97   {
98     Value *tX = nullptr;
99     EXPECT_FALSE(
100         match(IRB.CreateAnd(X, Y), m_c_And(m_Value(tX), m_Deferred(tX))));
101   }
102 
103   auto checkMatch = [X, Y](Value *Pattern) {
104     Value *tX = nullptr, *tY = nullptr;
105     EXPECT_TRUE(match(
106         Pattern, m_c_And(m_Value(tX), m_c_And(m_Deferred(tX), m_Value(tY)))));
107     EXPECT_EQ(tX, X);
108     EXPECT_EQ(tY, Y);
109   };
110 
111   checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(X, Y)));
112   checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(Y, X)));
113   checkMatch(IRB.CreateAnd(IRB.CreateAnd(X, Y), X));
114   checkMatch(IRB.CreateAnd(IRB.CreateAnd(Y, X), X));
115 }
116 
117 TEST_F(PatternMatchTest, FloatingPointOrderedMin) {
118   Type *FltTy = IRB.getFloatTy();
119   Value *L = ConstantFP::get(FltTy, 1.0);
120   Value *R = ConstantFP::get(FltTy, 2.0);
121   Value *MatchL, *MatchR;
122 
123   // Test OLT.
124   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
125                   .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R)));
126   EXPECT_EQ(L, MatchL);
127   EXPECT_EQ(R, MatchR);
128 
129   // Test OLE.
130   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
131                   .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R)));
132   EXPECT_EQ(L, MatchL);
133   EXPECT_EQ(R, MatchR);
134 
135   // Test no match on OGE.
136   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
137                    .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R)));
138 
139   // Test no match on OGT.
140   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
141                    .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R)));
142 
143   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
144   // %cmp = fcmp oge L, R
145   // %min = select %cmp R, L
146   // Given L == NaN
147   // the above is expanded to %cmp == false ==> %min = L
148   // which is true for UnordFMin, not OrdFMin, so test that:
149 
150   // [OU]GE with inverted select.
151   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
152                   .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L)));
153   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
154                   .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L)));
155   EXPECT_EQ(L, MatchL);
156   EXPECT_EQ(R, MatchR);
157 
158   // [OU]GT with inverted select.
159   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
160                   .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L)));
161   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
162                   .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L)));
163   EXPECT_EQ(L, MatchL);
164   EXPECT_EQ(R, MatchR);
165 }
166 
167 TEST_F(PatternMatchTest, FloatingPointOrderedMax) {
168   Type *FltTy = IRB.getFloatTy();
169   Value *L = ConstantFP::get(FltTy, 1.0);
170   Value *R = ConstantFP::get(FltTy, 2.0);
171   Value *MatchL, *MatchR;
172 
173   // Test OGT.
174   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
175                   .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R)));
176   EXPECT_EQ(L, MatchL);
177   EXPECT_EQ(R, MatchR);
178 
179   // Test OGE.
180   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
181                   .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R)));
182   EXPECT_EQ(L, MatchL);
183   EXPECT_EQ(R, MatchR);
184 
185   // Test no match on OLE.
186   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
187                    .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R)));
188 
189   // Test no match on OLT.
190   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
191                    .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R)));
192 
193 
194   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
195   // %cmp = fcmp ole L, R
196   // %max = select %cmp, R, L
197   // Given L == NaN,
198   // the above is expanded to %cmp == false ==> %max == L
199   // which is true for UnordFMax, not OrdFMax, so test that:
200 
201   // [OU]LE with inverted select.
202   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
203                    .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L)));
204   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
205                   .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L)));
206   EXPECT_EQ(L, MatchL);
207   EXPECT_EQ(R, MatchR);
208 
209   // [OUT]LT with inverted select.
210   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
211                    .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L)));
212   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
213                   .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L)));
214   EXPECT_EQ(L, MatchL);
215   EXPECT_EQ(R, MatchR);
216 }
217 
218 TEST_F(PatternMatchTest, FloatingPointUnorderedMin) {
219   Type *FltTy = IRB.getFloatTy();
220   Value *L = ConstantFP::get(FltTy, 1.0);
221   Value *R = ConstantFP::get(FltTy, 2.0);
222   Value *MatchL, *MatchR;
223 
224   // Test ULT.
225   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
226                   .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R)));
227   EXPECT_EQ(L, MatchL);
228   EXPECT_EQ(R, MatchR);
229 
230   // Test ULE.
231   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
232                   .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R)));
233   EXPECT_EQ(L, MatchL);
234   EXPECT_EQ(R, MatchR);
235 
236   // Test no match on UGE.
237   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
238                    .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R)));
239 
240   // Test no match on UGT.
241   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
242                    .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R)));
243 
244   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
245   // %cmp = fcmp uge L, R
246   // %min = select %cmp R, L
247   // Given L == NaN
248   // the above is expanded to %cmp == true ==> %min = R
249   // which is true for OrdFMin, not UnordFMin, so test that:
250 
251   // [UO]GE with inverted select.
252   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
253                   .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L)));
254   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
255                   .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L)));
256   EXPECT_EQ(L, MatchL);
257   EXPECT_EQ(R, MatchR);
258 
259   // [UO]GT with inverted select.
260   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
261                   .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L)));
262   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
263                   .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L)));
264   EXPECT_EQ(L, MatchL);
265   EXPECT_EQ(R, MatchR);
266 }
267 
268 TEST_F(PatternMatchTest, FloatingPointUnorderedMax) {
269   Type *FltTy = IRB.getFloatTy();
270   Value *L = ConstantFP::get(FltTy, 1.0);
271   Value *R = ConstantFP::get(FltTy, 2.0);
272   Value *MatchL, *MatchR;
273 
274   // Test UGT.
275   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
276                   .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R)));
277   EXPECT_EQ(L, MatchL);
278   EXPECT_EQ(R, MatchR);
279 
280   // Test UGE.
281   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
282                   .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R)));
283   EXPECT_EQ(L, MatchL);
284   EXPECT_EQ(R, MatchR);
285 
286   // Test no match on ULE.
287   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
288                    .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R)));
289 
290   // Test no match on ULT.
291   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
292                    .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R)));
293 
294   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
295   // %cmp = fcmp ule L, R
296   // %max = select %cmp R, L
297   // Given L == NaN
298   // the above is expanded to %cmp == true ==> %max = R
299   // which is true for OrdFMax, not UnordFMax, so test that:
300 
301   // [UO]LE with inverted select.
302   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
303                   .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L)));
304   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
305                   .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L)));
306   EXPECT_EQ(L, MatchL);
307   EXPECT_EQ(R, MatchR);
308 
309   // [UO]LT with inverted select.
310   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
311                   .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L)));
312   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
313                   .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L)));
314   EXPECT_EQ(L, MatchL);
315   EXPECT_EQ(R, MatchR);
316 }
317 
318 TEST_F(PatternMatchTest, OverflowingBinOps) {
319   Value *L = IRB.getInt32(1);
320   Value *R = IRB.getInt32(2);
321   Value *MatchL, *MatchR;
322 
323   EXPECT_TRUE(
324       m_NSWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWAdd(L, R)));
325   EXPECT_EQ(L, MatchL);
326   EXPECT_EQ(R, MatchR);
327   MatchL = MatchR = nullptr;
328   EXPECT_TRUE(
329       m_NSWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWSub(L, R)));
330   EXPECT_EQ(L, MatchL);
331   EXPECT_EQ(R, MatchR);
332   MatchL = MatchR = nullptr;
333   EXPECT_TRUE(
334       m_NSWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWMul(L, R)));
335   EXPECT_EQ(L, MatchL);
336   EXPECT_EQ(R, MatchR);
337   MatchL = MatchR = nullptr;
338   EXPECT_TRUE(m_NSWShl(m_Value(MatchL), m_Value(MatchR)).match(
339       IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true)));
340   EXPECT_EQ(L, MatchL);
341   EXPECT_EQ(R, MatchR);
342 
343   EXPECT_TRUE(
344       m_NUWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWAdd(L, R)));
345   EXPECT_EQ(L, MatchL);
346   EXPECT_EQ(R, MatchR);
347   MatchL = MatchR = nullptr;
348   EXPECT_TRUE(
349       m_NUWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWSub(L, R)));
350   EXPECT_EQ(L, MatchL);
351   EXPECT_EQ(R, MatchR);
352   MatchL = MatchR = nullptr;
353   EXPECT_TRUE(
354       m_NUWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWMul(L, R)));
355   EXPECT_EQ(L, MatchL);
356   EXPECT_EQ(R, MatchR);
357   MatchL = MatchR = nullptr;
358   EXPECT_TRUE(m_NUWShl(m_Value(MatchL), m_Value(MatchR)).match(
359       IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false)));
360   EXPECT_EQ(L, MatchL);
361   EXPECT_EQ(R, MatchR);
362 
363   EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R)));
364   EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
365   EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R)));
366   EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R)));
367   EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R)));
368   EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
369   EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R)));
370   EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNUWMul(L, R)));
371   EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
372   EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R)));
373   EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(
374       IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false)));
375   EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
376 
377   EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R)));
378   EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
379   EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R)));
380   EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R)));
381   EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R)));
382   EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
383   EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R)));
384   EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNSWMul(L, R)));
385   EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
386   EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R)));
387   EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(
388       IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true)));
389   EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
390 }
391 
392 TEST_F(PatternMatchTest, LoadStoreOps) {
393   // Create this load/store sequence:
394   //
395   //  %p = alloca i32*
396   //  %0 = load i32*, i32** %p
397   //  store i32 42, i32* %0
398 
399   Value *Alloca = IRB.CreateAlloca(IRB.getInt32Ty());
400   Value *LoadInst = IRB.CreateLoad(IRB.getInt32Ty(), Alloca);
401   Value *FourtyTwo = IRB.getInt32(42);
402   Value *StoreInst = IRB.CreateStore(FourtyTwo, Alloca);
403   Value *MatchLoad, *MatchStoreVal, *MatchStorePointer;
404 
405   EXPECT_TRUE(m_Load(m_Value(MatchLoad)).match(LoadInst));
406   EXPECT_EQ(Alloca, MatchLoad);
407 
408   EXPECT_TRUE(m_Load(m_Specific(Alloca)).match(LoadInst));
409 
410   EXPECT_FALSE(m_Load(m_Value(MatchLoad)).match(Alloca));
411 
412   EXPECT_TRUE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer))
413                 .match(StoreInst));
414   EXPECT_EQ(FourtyTwo, MatchStoreVal);
415   EXPECT_EQ(Alloca, MatchStorePointer);
416 
417   EXPECT_FALSE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer))
418                 .match(Alloca));
419 
420   EXPECT_TRUE(m_Store(m_SpecificInt(42), m_Specific(Alloca))
421                 .match(StoreInst));
422   EXPECT_FALSE(m_Store(m_SpecificInt(42), m_Specific(FourtyTwo))
423                 .match(StoreInst));
424   EXPECT_FALSE(m_Store(m_SpecificInt(43), m_Specific(Alloca))
425                 .match(StoreInst));
426 }
427 
428 TEST_F(PatternMatchTest, VectorOps) {
429   // Build up small tree of vector operations
430   //
431   //   Val = 0 + 1
432   //   Val2 = Val + 3
433   //   VI1 = insertelement <2 x i8> undef, i8 1, i32 0 = <1, undef>
434   //   VI2 = insertelement <2 x i8> %VI1, i8 %Val2, i8 %Val = <1, 4>
435   //   VI3 = insertelement <2 x i8> %VI1, i8 %Val2, i32 1 = <1, 4>
436   //   VI4 = insertelement <2 x i8> %VI1, i8 2, i8 %Val = <1, 2>
437   //
438   //   SI1 = shufflevector <2 x i8> %VI1, <2 x i8> undef, zeroinitializer
439   //   SI2 = shufflevector <2 x i8> %VI3, <2 x i8> %VI4, <2 x i8> <i8 0, i8 2>
440   //   SI3 = shufflevector <2 x i8> %VI3, <2 x i8> undef, zeroinitializer
441   //   SI4 = shufflevector <2 x i8> %VI4, <2 x i8> undef, zeroinitializer
442   //
443   //   SP1 = VectorSplat(2, i8 2)
444   //   SP2 = VectorSplat(2, i8 %Val)
445   Type *VecTy = VectorType::get(IRB.getInt8Ty(), 2);
446   Type *i32 = IRB.getInt32Ty();
447   Type *i32VecTy = VectorType::get(i32, 2);
448 
449   Value *Val = IRB.CreateAdd(IRB.getInt8(0), IRB.getInt8(1));
450   Value *Val2 = IRB.CreateAdd(Val, IRB.getInt8(3));
451 
452   SmallVector<Constant *, 2> VecElemIdxs;
453   VecElemIdxs.push_back(ConstantInt::get(i32, 0));
454   VecElemIdxs.push_back(ConstantInt::get(i32, 2));
455   auto *IdxVec = ConstantVector::get(VecElemIdxs);
456 
457   Value *UndefVec = UndefValue::get(VecTy);
458   Value *VI1 = IRB.CreateInsertElement(UndefVec, IRB.getInt8(1), (uint64_t)0);
459   Value *VI2 = IRB.CreateInsertElement(VI1, Val2, Val);
460   Value *VI3 = IRB.CreateInsertElement(VI1, Val2, (uint64_t)1);
461   Value *VI4 = IRB.CreateInsertElement(VI1, IRB.getInt8(2), Val);
462 
463   Value *EX1 = IRB.CreateExtractElement(VI4, Val);
464   Value *EX2 = IRB.CreateExtractElement(VI4, (uint64_t)0);
465   Value *EX3 = IRB.CreateExtractElement(IdxVec, (uint64_t)1);
466 
467   Value *Zero = ConstantAggregateZero::get(i32VecTy);
468   Value *SI1 = IRB.CreateShuffleVector(VI1, UndefVec, Zero);
469   Value *SI2 = IRB.CreateShuffleVector(VI3, VI4, IdxVec);
470   Value *SI3 = IRB.CreateShuffleVector(VI3, UndefVec, Zero);
471   Value *SI4 = IRB.CreateShuffleVector(VI4, UndefVec, Zero);
472 
473   Value *SP1 = IRB.CreateVectorSplat(2, IRB.getInt8(2));
474   Value *SP2 = IRB.CreateVectorSplat(2, Val);
475 
476   Value *A = nullptr, *B = nullptr, *C = nullptr;
477 
478   // Test matching insertelement
479   EXPECT_TRUE(match(VI1, m_InsertElement(m_Value(), m_Value(), m_Value())));
480   EXPECT_TRUE(
481       match(VI1, m_InsertElement(m_Undef(), m_ConstantInt(), m_ConstantInt())));
482   EXPECT_TRUE(
483       match(VI1, m_InsertElement(m_Undef(), m_ConstantInt(), m_Zero())));
484   EXPECT_TRUE(
485       match(VI1, m_InsertElement(m_Undef(), m_SpecificInt(1), m_Zero())));
486   EXPECT_TRUE(match(VI2, m_InsertElement(m_Value(), m_Value(), m_Value())));
487   EXPECT_FALSE(
488       match(VI2, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())));
489   EXPECT_FALSE(
490       match(VI2, m_InsertElement(m_Value(), m_ConstantInt(), m_Value())));
491   EXPECT_FALSE(match(VI2, m_InsertElement(m_Constant(), m_Value(), m_Value())));
492   EXPECT_TRUE(match(VI3, m_InsertElement(m_Value(A), m_Value(B), m_Value(C))));
493   EXPECT_TRUE(A == VI1);
494   EXPECT_TRUE(B == Val2);
495   EXPECT_TRUE(isa<ConstantInt>(C));
496   A = B = C = nullptr; // reset
497 
498   // Test matching extractelement
499   EXPECT_TRUE(match(EX1, m_ExtractElement(m_Value(A), m_Value(B))));
500   EXPECT_TRUE(A == VI4);
501   EXPECT_TRUE(B == Val);
502   A = B = C = nullptr; // reset
503   EXPECT_FALSE(match(EX1, m_ExtractElement(m_Value(), m_ConstantInt())));
504   EXPECT_TRUE(match(EX2, m_ExtractElement(m_Value(), m_ConstantInt())));
505   EXPECT_TRUE(match(EX3, m_ExtractElement(m_Constant(), m_ConstantInt())));
506 
507   // Test matching shufflevector
508   EXPECT_TRUE(match(SI1, m_ShuffleVector(m_Value(), m_Undef(), m_Zero())));
509   EXPECT_TRUE(match(SI2, m_ShuffleVector(m_Value(A), m_Value(B), m_Value(C))));
510   EXPECT_TRUE(A == VI3);
511   EXPECT_TRUE(B == VI4);
512   EXPECT_TRUE(C == IdxVec);
513   A = B = C = nullptr; // reset
514 
515   // Test matching the vector splat pattern
516   EXPECT_TRUE(match(
517       SI1,
518       m_ShuffleVector(m_InsertElement(m_Undef(), m_SpecificInt(1), m_Zero()),
519                       m_Undef(), m_Zero())));
520   EXPECT_FALSE(match(
521       SI3, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_Zero()),
522                            m_Undef(), m_Zero())));
523   EXPECT_FALSE(match(
524       SI4, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_Zero()),
525                            m_Undef(), m_Zero())));
526   EXPECT_TRUE(match(
527       SP1,
528       m_ShuffleVector(m_InsertElement(m_Undef(), m_SpecificInt(2), m_Zero()),
529                       m_Undef(), m_Zero())));
530   EXPECT_TRUE(match(
531       SP2, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(A), m_Zero()),
532                            m_Undef(), m_Zero())));
533   EXPECT_TRUE(A == Val);
534 }
535 
536 TEST_F(PatternMatchTest, VectorUndefInt) {
537   Type *ScalarTy = IRB.getInt8Ty();
538   Type *VectorTy = VectorType::get(ScalarTy, 4);
539   Constant *ScalarUndef = UndefValue::get(ScalarTy);
540   Constant *VectorUndef = UndefValue::get(VectorTy);
541   Constant *ScalarZero = Constant::getNullValue(ScalarTy);
542   Constant *VectorZero = Constant::getNullValue(VectorTy);
543 
544   SmallVector<Constant *, 4> Elems;
545   Elems.push_back(ScalarUndef);
546   Elems.push_back(ScalarZero);
547   Elems.push_back(ScalarUndef);
548   Elems.push_back(ScalarZero);
549   Constant *VectorZeroUndef = ConstantVector::get(Elems);
550 
551   EXPECT_TRUE(match(ScalarUndef, m_Undef()));
552   EXPECT_TRUE(match(VectorUndef, m_Undef()));
553   EXPECT_FALSE(match(ScalarZero, m_Undef()));
554   EXPECT_FALSE(match(VectorZero, m_Undef()));
555   EXPECT_FALSE(match(VectorZeroUndef, m_Undef()));
556 
557   EXPECT_FALSE(match(ScalarUndef, m_Zero()));
558   EXPECT_FALSE(match(VectorUndef, m_Zero()));
559   EXPECT_TRUE(match(ScalarZero, m_Zero()));
560   EXPECT_TRUE(match(VectorZero, m_Zero()));
561   EXPECT_TRUE(match(VectorZeroUndef, m_Zero()));
562 }
563 
564 TEST_F(PatternMatchTest, VectorUndefFloat) {
565   Type *ScalarTy = IRB.getFloatTy();
566   Type *VectorTy = VectorType::get(ScalarTy, 4);
567   Constant *ScalarUndef = UndefValue::get(ScalarTy);
568   Constant *VectorUndef = UndefValue::get(VectorTy);
569   Constant *ScalarZero = Constant::getNullValue(ScalarTy);
570   Constant *VectorZero = Constant::getNullValue(VectorTy);
571 
572   SmallVector<Constant *, 4> Elems;
573   Elems.push_back(ScalarUndef);
574   Elems.push_back(ScalarZero);
575   Elems.push_back(ScalarUndef);
576   Elems.push_back(ScalarZero);
577   Constant *VectorZeroUndef = ConstantVector::get(Elems);
578 
579   EXPECT_TRUE(match(ScalarUndef, m_Undef()));
580   EXPECT_TRUE(match(VectorUndef, m_Undef()));
581   EXPECT_FALSE(match(ScalarZero, m_Undef()));
582   EXPECT_FALSE(match(VectorZero, m_Undef()));
583   EXPECT_FALSE(match(VectorZeroUndef, m_Undef()));
584 
585   EXPECT_FALSE(match(ScalarUndef, m_AnyZeroFP()));
586   EXPECT_FALSE(match(VectorUndef, m_AnyZeroFP()));
587   EXPECT_TRUE(match(ScalarZero, m_AnyZeroFP()));
588   EXPECT_TRUE(match(VectorZero, m_AnyZeroFP()));
589   EXPECT_TRUE(match(VectorZeroUndef, m_AnyZeroFP()));
590 }
591 
592 TEST_F(PatternMatchTest, FloatingPointFNeg) {
593   Type *FltTy = IRB.getFloatTy();
594   Value *One = ConstantFP::get(FltTy, 1.0);
595   Value *Z = ConstantFP::get(FltTy, 0.0);
596   Value *NZ = ConstantFP::get(FltTy, -0.0);
597   Value *V = IRB.CreateFNeg(One);
598   Value *V1 = IRB.CreateFSub(NZ, One);
599   Value *V2 = IRB.CreateFSub(Z, One);
600   Value *V3 = IRB.CreateFAdd(NZ, One);
601   Value *Match;
602 
603   // Test FNeg(1.0)
604   EXPECT_TRUE(match(V, m_FNeg(m_Value(Match))));
605   EXPECT_EQ(One, Match);
606 
607   // Test FSub(-0.0, 1.0)
608   EXPECT_TRUE(match(V1, m_FNeg(m_Value(Match))));
609   EXPECT_EQ(One, Match);
610 
611   // Test FSub(0.0, 1.0)
612   EXPECT_FALSE(match(V2, m_FNeg(m_Value(Match))));
613   cast<Instruction>(V2)->setHasNoSignedZeros(true);
614   EXPECT_TRUE(match(V2, m_FNeg(m_Value(Match))));
615   EXPECT_EQ(One, Match);
616 
617   // Test FAdd(-0.0, 1.0)
618   EXPECT_FALSE(match(V3, m_FNeg(m_Value(Match))));
619 }
620 
621 template <typename T> struct MutableConstTest : PatternMatchTest { };
622 
623 typedef ::testing::Types<std::tuple<Value*, Instruction*>,
624                          std::tuple<const Value*, const Instruction *>>
625     MutableConstTestTypes;
626 TYPED_TEST_CASE(MutableConstTest, MutableConstTestTypes);
627 
628 TYPED_TEST(MutableConstTest, ICmp) {
629   auto &IRB = PatternMatchTest::IRB;
630 
631   typedef typename std::tuple_element<0, TypeParam>::type ValueType;
632   typedef typename std::tuple_element<1, TypeParam>::type InstructionType;
633 
634   Value *L = IRB.getInt32(1);
635   Value *R = IRB.getInt32(2);
636   ICmpInst::Predicate Pred = ICmpInst::ICMP_UGT;
637 
638   ValueType MatchL;
639   ValueType MatchR;
640   ICmpInst::Predicate MatchPred;
641 
642   EXPECT_TRUE(m_ICmp(MatchPred, m_Value(MatchL), m_Value(MatchR))
643               .match((InstructionType)IRB.CreateICmp(Pred, L, R)));
644   EXPECT_EQ(L, MatchL);
645   EXPECT_EQ(R, MatchR);
646 }
647 
648 } // anonymous namespace.
649