1 //===---- llvm/unittest/IR/PatternMatch.cpp - PatternMatch unit tests ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/IR/PatternMatch.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/Analysis/ValueTracking.h" 13 #include "llvm/IR/BasicBlock.h" 14 #include "llvm/IR/Constants.h" 15 #include "llvm/IR/DataLayout.h" 16 #include "llvm/IR/DerivedTypes.h" 17 #include "llvm/IR/Function.h" 18 #include "llvm/IR/IRBuilder.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/MDBuilder.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/IR/NoFolder.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/Type.h" 26 #include "gtest/gtest.h" 27 28 using namespace llvm; 29 using namespace llvm::PatternMatch; 30 31 namespace { 32 33 struct PatternMatchTest : ::testing::Test { 34 LLVMContext Ctx; 35 std::unique_ptr<Module> M; 36 Function *F; 37 BasicBlock *BB; 38 IRBuilder<NoFolder> IRB; 39 40 PatternMatchTest() 41 : M(new Module("PatternMatchTestModule", Ctx)), 42 F(Function::Create( 43 FunctionType::get(Type::getVoidTy(Ctx), /* IsVarArg */ false), 44 Function::ExternalLinkage, "f", M.get())), 45 BB(BasicBlock::Create(Ctx, "entry", F)), IRB(BB) {} 46 }; 47 48 TEST_F(PatternMatchTest, OneUse) { 49 // Build up a little tree of values: 50 // 51 // One = (1 + 2) + 42 52 // Two = One + 42 53 // Leaf = (Two + 8) + (Two + 13) 54 Value *One = IRB.CreateAdd(IRB.CreateAdd(IRB.getInt32(1), IRB.getInt32(2)), 55 IRB.getInt32(42)); 56 Value *Two = IRB.CreateAdd(One, IRB.getInt32(42)); 57 Value *Leaf = IRB.CreateAdd(IRB.CreateAdd(Two, IRB.getInt32(8)), 58 IRB.CreateAdd(Two, IRB.getInt32(13))); 59 Value *V; 60 61 EXPECT_TRUE(m_OneUse(m_Value(V)).match(One)); 62 EXPECT_EQ(One, V); 63 64 EXPECT_FALSE(m_OneUse(m_Value()).match(Two)); 65 EXPECT_FALSE(m_OneUse(m_Value()).match(Leaf)); 66 } 67 68 TEST_F(PatternMatchTest, FloatingPointOrderedMin) { 69 Type *FltTy = IRB.getFloatTy(); 70 Value *L = ConstantFP::get(FltTy, 1.0); 71 Value *R = ConstantFP::get(FltTy, 2.0); 72 Value *MatchL, *MatchR; 73 74 // Test OLT. 75 EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) 76 .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R))); 77 EXPECT_EQ(L, MatchL); 78 EXPECT_EQ(R, MatchR); 79 80 // Test OLE. 81 EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) 82 .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R))); 83 EXPECT_EQ(L, MatchL); 84 EXPECT_EQ(R, MatchR); 85 86 // Test no match on OGE. 87 EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) 88 .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R))); 89 90 // Test no match on OGT. 91 EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) 92 .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R))); 93 94 // Test inverted selects. Note, that this "inverts" the ordering, e.g.: 95 // %cmp = fcmp oge L, R 96 // %min = select %cmp R, L 97 // Given L == NaN 98 // the above is expanded to %cmp == false ==> %min = L 99 // which is true for UnordFMin, not OrdFMin, so test that: 100 101 // [OU]GE with inverted select. 102 EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) 103 .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L))); 104 EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) 105 .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L))); 106 EXPECT_EQ(L, MatchL); 107 EXPECT_EQ(R, MatchR); 108 109 // [OU]GT with inverted select. 110 EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) 111 .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L))); 112 EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) 113 .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L))); 114 EXPECT_EQ(L, MatchL); 115 EXPECT_EQ(R, MatchR); 116 } 117 118 TEST_F(PatternMatchTest, FloatingPointOrderedMax) { 119 Type *FltTy = IRB.getFloatTy(); 120 Value *L = ConstantFP::get(FltTy, 1.0); 121 Value *R = ConstantFP::get(FltTy, 2.0); 122 Value *MatchL, *MatchR; 123 124 // Test OGT. 125 EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) 126 .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R))); 127 EXPECT_EQ(L, MatchL); 128 EXPECT_EQ(R, MatchR); 129 130 // Test OGE. 131 EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) 132 .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R))); 133 EXPECT_EQ(L, MatchL); 134 EXPECT_EQ(R, MatchR); 135 136 // Test no match on OLE. 137 EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) 138 .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R))); 139 140 // Test no match on OLT. 141 EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) 142 .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R))); 143 144 145 // Test inverted selects. Note, that this "inverts" the ordering, e.g.: 146 // %cmp = fcmp ole L, R 147 // %max = select %cmp, R, L 148 // Given L == NaN, 149 // the above is expanded to %cmp == false ==> %max == L 150 // which is true for UnordFMax, not OrdFMax, so test that: 151 152 // [OU]LE with inverted select. 153 EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) 154 .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L))); 155 EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) 156 .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L))); 157 EXPECT_EQ(L, MatchL); 158 EXPECT_EQ(R, MatchR); 159 160 // [OUT]LT with inverted select. 161 EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) 162 .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L))); 163 EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) 164 .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L))); 165 EXPECT_EQ(L, MatchL); 166 EXPECT_EQ(R, MatchR); 167 } 168 169 TEST_F(PatternMatchTest, FloatingPointUnorderedMin) { 170 Type *FltTy = IRB.getFloatTy(); 171 Value *L = ConstantFP::get(FltTy, 1.0); 172 Value *R = ConstantFP::get(FltTy, 2.0); 173 Value *MatchL, *MatchR; 174 175 // Test ULT. 176 EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) 177 .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R))); 178 EXPECT_EQ(L, MatchL); 179 EXPECT_EQ(R, MatchR); 180 181 // Test ULE. 182 EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) 183 .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R))); 184 EXPECT_EQ(L, MatchL); 185 EXPECT_EQ(R, MatchR); 186 187 // Test no match on UGE. 188 EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) 189 .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R))); 190 191 // Test no match on UGT. 192 EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) 193 .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R))); 194 195 // Test inverted selects. Note, that this "inverts" the ordering, e.g.: 196 // %cmp = fcmp uge L, R 197 // %min = select %cmp R, L 198 // Given L == NaN 199 // the above is expanded to %cmp == true ==> %min = R 200 // which is true for OrdFMin, not UnordFMin, so test that: 201 202 // [UO]GE with inverted select. 203 EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) 204 .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L))); 205 EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) 206 .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L))); 207 EXPECT_EQ(L, MatchL); 208 EXPECT_EQ(R, MatchR); 209 210 // [UO]GT with inverted select. 211 EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) 212 .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L))); 213 EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) 214 .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L))); 215 EXPECT_EQ(L, MatchL); 216 EXPECT_EQ(R, MatchR); 217 } 218 219 TEST_F(PatternMatchTest, FloatingPointUnorderedMax) { 220 Type *FltTy = IRB.getFloatTy(); 221 Value *L = ConstantFP::get(FltTy, 1.0); 222 Value *R = ConstantFP::get(FltTy, 2.0); 223 Value *MatchL, *MatchR; 224 225 // Test UGT. 226 EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) 227 .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R))); 228 EXPECT_EQ(L, MatchL); 229 EXPECT_EQ(R, MatchR); 230 231 // Test UGE. 232 EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) 233 .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R))); 234 EXPECT_EQ(L, MatchL); 235 EXPECT_EQ(R, MatchR); 236 237 // Test no match on ULE. 238 EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) 239 .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R))); 240 241 // Test no match on ULT. 242 EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) 243 .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R))); 244 245 // Test inverted selects. Note, that this "inverts" the ordering, e.g.: 246 // %cmp = fcmp ule L, R 247 // %max = select %cmp R, L 248 // Given L == NaN 249 // the above is expanded to %cmp == true ==> %max = R 250 // which is true for OrdFMax, not UnordFMax, so test that: 251 252 // [UO]LE with inverted select. 253 EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) 254 .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L))); 255 EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) 256 .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L))); 257 EXPECT_EQ(L, MatchL); 258 EXPECT_EQ(R, MatchR); 259 260 // [UO]LT with inverted select. 261 EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) 262 .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L))); 263 EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) 264 .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L))); 265 EXPECT_EQ(L, MatchL); 266 EXPECT_EQ(R, MatchR); 267 } 268 269 TEST_F(PatternMatchTest, OverflowingBinOps) { 270 Value *L = IRB.getInt32(1); 271 Value *R = IRB.getInt32(2); 272 Value *MatchL, *MatchR; 273 274 EXPECT_TRUE( 275 m_NSWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWAdd(L, R))); 276 EXPECT_EQ(L, MatchL); 277 EXPECT_EQ(R, MatchR); 278 MatchL = MatchR = nullptr; 279 EXPECT_TRUE( 280 m_NSWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWSub(L, R))); 281 EXPECT_EQ(L, MatchL); 282 EXPECT_EQ(R, MatchR); 283 MatchL = MatchR = nullptr; 284 EXPECT_TRUE( 285 m_NSWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWMul(L, R))); 286 EXPECT_EQ(L, MatchL); 287 EXPECT_EQ(R, MatchR); 288 MatchL = MatchR = nullptr; 289 EXPECT_TRUE(m_NSWShl(m_Value(MatchL), m_Value(MatchR)).match( 290 IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true))); 291 EXPECT_EQ(L, MatchL); 292 EXPECT_EQ(R, MatchR); 293 294 EXPECT_TRUE( 295 m_NUWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWAdd(L, R))); 296 EXPECT_EQ(L, MatchL); 297 EXPECT_EQ(R, MatchR); 298 MatchL = MatchR = nullptr; 299 EXPECT_TRUE( 300 m_NUWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWSub(L, R))); 301 EXPECT_EQ(L, MatchL); 302 EXPECT_EQ(R, MatchR); 303 MatchL = MatchR = nullptr; 304 EXPECT_TRUE( 305 m_NUWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWMul(L, R))); 306 EXPECT_EQ(L, MatchL); 307 EXPECT_EQ(R, MatchR); 308 MatchL = MatchR = nullptr; 309 EXPECT_TRUE(m_NUWShl(m_Value(MatchL), m_Value(MatchR)).match( 310 IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false))); 311 EXPECT_EQ(L, MatchL); 312 EXPECT_EQ(R, MatchR); 313 314 EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R))); 315 EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); 316 EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R))); 317 EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R))); 318 EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R))); 319 EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); 320 EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R))); 321 EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNUWMul(L, R))); 322 EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); 323 EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R))); 324 EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match( 325 IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false))); 326 EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); 327 328 EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R))); 329 EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); 330 EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R))); 331 EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R))); 332 EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R))); 333 EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); 334 EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R))); 335 EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNSWMul(L, R))); 336 EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); 337 EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R))); 338 EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match( 339 IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true))); 340 EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); 341 } 342 343 TEST_F(PatternMatchTest, VectorOps) { 344 // Build up small tree of vector operations 345 // 346 // Val = 0 + 1 347 // Val2 = Val + 3 348 // VI1 = insertelement <2 x i8> undef, i8 1, i32 0 = <1, undef> 349 // VI2 = insertelement <2 x i8> %VI1, i8 %Val2, i8 %Val = <1, 4> 350 // VI3 = insertelement <2 x i8> %VI1, i8 %Val2, i32 1 = <1, 4> 351 // VI4 = insertelement <2 x i8> %VI1, i8 2, i8 %Val = <1, 2> 352 // 353 // SI1 = shufflevector <2 x i8> %VI1, <2 x i8> undef, zeroinitializer 354 // SI2 = shufflevector <2 x i8> %VI3, <2 x i8> %VI4, <2 x i8> <i8 0, i8 2> 355 // SI3 = shufflevector <2 x i8> %VI3, <2 x i8> undef, zeroinitializer 356 // SI4 = shufflevector <2 x i8> %VI4, <2 x i8> undef, zeroinitializer 357 // 358 // SP1 = VectorSplat(2, i8 2) 359 // SP2 = VectorSplat(2, i8 %Val) 360 Type *VecTy = VectorType::get(IRB.getInt8Ty(), 2); 361 Type *i32 = IRB.getInt32Ty(); 362 Type *i32VecTy = VectorType::get(i32, 2); 363 364 Value *Val = IRB.CreateAdd(IRB.getInt8(0), IRB.getInt8(1)); 365 Value *Val2 = IRB.CreateAdd(Val, IRB.getInt8(3)); 366 367 SmallVector<Constant *, 2> VecElemIdxs; 368 VecElemIdxs.push_back(ConstantInt::get(i32, 0)); 369 VecElemIdxs.push_back(ConstantInt::get(i32, 2)); 370 auto *IdxVec = ConstantVector::get(VecElemIdxs); 371 372 Value *UndefVec = UndefValue::get(VecTy); 373 Value *VI1 = IRB.CreateInsertElement(UndefVec, IRB.getInt8(1), (uint64_t)0); 374 Value *VI2 = IRB.CreateInsertElement(VI1, Val2, Val); 375 Value *VI3 = IRB.CreateInsertElement(VI1, Val2, (uint64_t)1); 376 Value *VI4 = IRB.CreateInsertElement(VI1, IRB.getInt8(2), Val); 377 378 Value *EX1 = IRB.CreateExtractElement(VI4, Val); 379 Value *EX2 = IRB.CreateExtractElement(VI4, (uint64_t)0); 380 Value *EX3 = IRB.CreateExtractElement(IdxVec, (uint64_t)1); 381 382 Value *Zero = ConstantAggregateZero::get(i32VecTy); 383 Value *SI1 = IRB.CreateShuffleVector(VI1, UndefVec, Zero); 384 Value *SI2 = IRB.CreateShuffleVector(VI3, VI4, IdxVec); 385 Value *SI3 = IRB.CreateShuffleVector(VI3, UndefVec, Zero); 386 Value *SI4 = IRB.CreateShuffleVector(VI4, UndefVec, Zero); 387 388 Value *SP1 = IRB.CreateVectorSplat(2, IRB.getInt8(2)); 389 Value *SP2 = IRB.CreateVectorSplat(2, Val); 390 391 Value *A = nullptr, *B = nullptr, *C = nullptr; 392 393 // Test matching insertelement 394 EXPECT_TRUE(match(VI1, m_InsertElement(m_Value(), m_Value(), m_Value()))); 395 EXPECT_TRUE( 396 match(VI1, m_InsertElement(m_Undef(), m_ConstantInt(), m_ConstantInt()))); 397 EXPECT_TRUE( 398 match(VI1, m_InsertElement(m_Undef(), m_ConstantInt(), m_Zero()))); 399 EXPECT_TRUE( 400 match(VI1, m_InsertElement(m_Undef(), m_SpecificInt(1), m_Zero()))); 401 EXPECT_TRUE(match(VI2, m_InsertElement(m_Value(), m_Value(), m_Value()))); 402 EXPECT_FALSE( 403 match(VI2, m_InsertElement(m_Value(), m_Value(), m_ConstantInt()))); 404 EXPECT_FALSE( 405 match(VI2, m_InsertElement(m_Value(), m_ConstantInt(), m_Value()))); 406 EXPECT_FALSE(match(VI2, m_InsertElement(m_Constant(), m_Value(), m_Value()))); 407 EXPECT_TRUE(match(VI3, m_InsertElement(m_Value(A), m_Value(B), m_Value(C)))); 408 EXPECT_TRUE(A == VI1); 409 EXPECT_TRUE(B == Val2); 410 EXPECT_TRUE(isa<ConstantInt>(C)); 411 A = B = C = nullptr; // reset 412 413 // Test matching extractelement 414 EXPECT_TRUE(match(EX1, m_ExtractElement(m_Value(A), m_Value(B)))); 415 EXPECT_TRUE(A == VI4); 416 EXPECT_TRUE(B == Val); 417 A = B = C = nullptr; // reset 418 EXPECT_FALSE(match(EX1, m_ExtractElement(m_Value(), m_ConstantInt()))); 419 EXPECT_TRUE(match(EX2, m_ExtractElement(m_Value(), m_ConstantInt()))); 420 EXPECT_TRUE(match(EX3, m_ExtractElement(m_Constant(), m_ConstantInt()))); 421 422 // Test matching shufflevector 423 EXPECT_TRUE(match(SI1, m_ShuffleVector(m_Value(), m_Undef(), m_Zero()))); 424 EXPECT_TRUE(match(SI2, m_ShuffleVector(m_Value(A), m_Value(B), m_Value(C)))); 425 EXPECT_TRUE(A == VI3); 426 EXPECT_TRUE(B == VI4); 427 EXPECT_TRUE(C == IdxVec); 428 A = B = C = nullptr; // reset 429 430 // Test matching the vector splat pattern 431 EXPECT_TRUE(match( 432 SI1, 433 m_ShuffleVector(m_InsertElement(m_Undef(), m_SpecificInt(1), m_Zero()), 434 m_Undef(), m_Zero()))); 435 EXPECT_FALSE(match( 436 SI3, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_Zero()), 437 m_Undef(), m_Zero()))); 438 EXPECT_FALSE(match( 439 SI4, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_Zero()), 440 m_Undef(), m_Zero()))); 441 EXPECT_TRUE(match( 442 SP1, 443 m_ShuffleVector(m_InsertElement(m_Undef(), m_SpecificInt(2), m_Zero()), 444 m_Undef(), m_Zero()))); 445 EXPECT_TRUE(match( 446 SP2, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(A), m_Zero()), 447 m_Undef(), m_Zero()))); 448 EXPECT_TRUE(A == Val); 449 } 450 451 template <typename T> struct MutableConstTest : PatternMatchTest { }; 452 453 typedef ::testing::Types<std::tuple<Value*, Instruction*>, 454 std::tuple<const Value*, const Instruction *>> 455 MutableConstTestTypes; 456 TYPED_TEST_CASE(MutableConstTest, MutableConstTestTypes); 457 458 TYPED_TEST(MutableConstTest, ICmp) { 459 auto &IRB = PatternMatchTest::IRB; 460 461 typedef typename std::tuple_element<0, TypeParam>::type ValueType; 462 typedef typename std::tuple_element<1, TypeParam>::type InstructionType; 463 464 Value *L = IRB.getInt32(1); 465 Value *R = IRB.getInt32(2); 466 ICmpInst::Predicate Pred = ICmpInst::ICMP_UGT; 467 468 ValueType MatchL; 469 ValueType MatchR; 470 ICmpInst::Predicate MatchPred; 471 472 EXPECT_TRUE(m_ICmp(MatchPred, m_Value(MatchL), m_Value(MatchR)) 473 .match((InstructionType)IRB.CreateICmp(Pred, L, R))); 474 EXPECT_EQ(L, MatchL); 475 EXPECT_EQ(R, MatchR); 476 } 477 478 } // anonymous namespace. 479