1 //===---- llvm/unittest/IR/PatternMatch.cpp - PatternMatch unit tests ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/IR/PatternMatch.h"
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/Analysis/ValueTracking.h"
12 #include "llvm/IR/BasicBlock.h"
13 #include "llvm/IR/Constants.h"
14 #include "llvm/IR/DataLayout.h"
15 #include "llvm/IR/DerivedTypes.h"
16 #include "llvm/IR/Function.h"
17 #include "llvm/IR/IRBuilder.h"
18 #include "llvm/IR/Instructions.h"
19 #include "llvm/IR/LLVMContext.h"
20 #include "llvm/IR/MDBuilder.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/NoFolder.h"
23 #include "llvm/IR/Operator.h"
24 #include "llvm/IR/Type.h"
25 #include "gtest/gtest.h"
26 
27 using namespace llvm;
28 using namespace llvm::PatternMatch;
29 
30 namespace {
31 
32 struct PatternMatchTest : ::testing::Test {
33   LLVMContext Ctx;
34   std::unique_ptr<Module> M;
35   Function *F;
36   BasicBlock *BB;
37   IRBuilder<NoFolder> IRB;
38 
39   PatternMatchTest()
40       : M(new Module("PatternMatchTestModule", Ctx)),
41         F(Function::Create(
42             FunctionType::get(Type::getVoidTy(Ctx), /* IsVarArg */ false),
43             Function::ExternalLinkage, "f", M.get())),
44         BB(BasicBlock::Create(Ctx, "entry", F)), IRB(BB) {}
45 };
46 
47 TEST_F(PatternMatchTest, OneUse) {
48   // Build up a little tree of values:
49   //
50   //   One  = (1 + 2) + 42
51   //   Two  = One + 42
52   //   Leaf = (Two + 8) + (Two + 13)
53   Value *One = IRB.CreateAdd(IRB.CreateAdd(IRB.getInt32(1), IRB.getInt32(2)),
54                              IRB.getInt32(42));
55   Value *Two = IRB.CreateAdd(One, IRB.getInt32(42));
56   Value *Leaf = IRB.CreateAdd(IRB.CreateAdd(Two, IRB.getInt32(8)),
57                               IRB.CreateAdd(Two, IRB.getInt32(13)));
58   Value *V;
59 
60   EXPECT_TRUE(m_OneUse(m_Value(V)).match(One));
61   EXPECT_EQ(One, V);
62 
63   EXPECT_FALSE(m_OneUse(m_Value()).match(Two));
64   EXPECT_FALSE(m_OneUse(m_Value()).match(Leaf));
65 }
66 
67 TEST_F(PatternMatchTest, SpecificIntULT) {
68   Type *IntTy = IRB.getInt32Ty();
69   unsigned BitWidth = IntTy->getScalarSizeInBits();
70 
71   Value *Zero = ConstantInt::get(IntTy, 0);
72   Value *One = ConstantInt::get(IntTy, 1);
73   Value *NegOne = ConstantInt::get(IntTy, -1);
74 
75   EXPECT_FALSE(m_SpecificInt_ULT(APInt(BitWidth, 0)).match(Zero));
76   EXPECT_FALSE(m_SpecificInt_ULT(APInt(BitWidth, 0)).match(One));
77   EXPECT_FALSE(m_SpecificInt_ULT(APInt(BitWidth, 0)).match(NegOne));
78 
79   EXPECT_TRUE(m_SpecificInt_ULT(APInt(BitWidth, 1)).match(Zero));
80   EXPECT_FALSE(m_SpecificInt_ULT(APInt(BitWidth, 1)).match(One));
81   EXPECT_FALSE(m_SpecificInt_ULT(APInt(BitWidth, 1)).match(NegOne));
82 
83   EXPECT_TRUE(m_SpecificInt_ULT(APInt(BitWidth, -1)).match(Zero));
84   EXPECT_TRUE(m_SpecificInt_ULT(APInt(BitWidth, -1)).match(One));
85   EXPECT_FALSE(m_SpecificInt_ULT(APInt(BitWidth, -1)).match(NegOne));
86 }
87 
88 TEST_F(PatternMatchTest, CommutativeDeferredValue) {
89   Value *X = IRB.getInt32(1);
90   Value *Y = IRB.getInt32(2);
91 
92   {
93     Value *tX = X;
94     EXPECT_TRUE(match(X, m_Deferred(tX)));
95     EXPECT_FALSE(match(Y, m_Deferred(tX)));
96   }
97   {
98     const Value *tX = X;
99     EXPECT_TRUE(match(X, m_Deferred(tX)));
100     EXPECT_FALSE(match(Y, m_Deferred(tX)));
101   }
102   {
103     Value *const tX = X;
104     EXPECT_TRUE(match(X, m_Deferred(tX)));
105     EXPECT_FALSE(match(Y, m_Deferred(tX)));
106   }
107   {
108     const Value *const tX = X;
109     EXPECT_TRUE(match(X, m_Deferred(tX)));
110     EXPECT_FALSE(match(Y, m_Deferred(tX)));
111   }
112 
113   {
114     Value *tX = nullptr;
115     EXPECT_TRUE(match(IRB.CreateAnd(X, X), m_And(m_Value(tX), m_Deferred(tX))));
116     EXPECT_EQ(tX, X);
117   }
118   {
119     Value *tX = nullptr;
120     EXPECT_FALSE(
121         match(IRB.CreateAnd(X, Y), m_c_And(m_Value(tX), m_Deferred(tX))));
122   }
123 
124   auto checkMatch = [X, Y](Value *Pattern) {
125     Value *tX = nullptr, *tY = nullptr;
126     EXPECT_TRUE(match(
127         Pattern, m_c_And(m_Value(tX), m_c_And(m_Deferred(tX), m_Value(tY)))));
128     EXPECT_EQ(tX, X);
129     EXPECT_EQ(tY, Y);
130   };
131 
132   checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(X, Y)));
133   checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(Y, X)));
134   checkMatch(IRB.CreateAnd(IRB.CreateAnd(X, Y), X));
135   checkMatch(IRB.CreateAnd(IRB.CreateAnd(Y, X), X));
136 }
137 
138 TEST_F(PatternMatchTest, FloatingPointOrderedMin) {
139   Type *FltTy = IRB.getFloatTy();
140   Value *L = ConstantFP::get(FltTy, 1.0);
141   Value *R = ConstantFP::get(FltTy, 2.0);
142   Value *MatchL, *MatchR;
143 
144   // Test OLT.
145   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
146                   .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R)));
147   EXPECT_EQ(L, MatchL);
148   EXPECT_EQ(R, MatchR);
149 
150   // Test OLE.
151   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
152                   .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R)));
153   EXPECT_EQ(L, MatchL);
154   EXPECT_EQ(R, MatchR);
155 
156   // Test no match on OGE.
157   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
158                    .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R)));
159 
160   // Test no match on OGT.
161   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
162                    .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R)));
163 
164   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
165   // %cmp = fcmp oge L, R
166   // %min = select %cmp R, L
167   // Given L == NaN
168   // the above is expanded to %cmp == false ==> %min = L
169   // which is true for UnordFMin, not OrdFMin, so test that:
170 
171   // [OU]GE with inverted select.
172   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
173                   .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L)));
174   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
175                   .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L)));
176   EXPECT_EQ(L, MatchL);
177   EXPECT_EQ(R, MatchR);
178 
179   // [OU]GT with inverted select.
180   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
181                   .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L)));
182   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
183                   .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L)));
184   EXPECT_EQ(L, MatchL);
185   EXPECT_EQ(R, MatchR);
186 }
187 
188 TEST_F(PatternMatchTest, FloatingPointOrderedMax) {
189   Type *FltTy = IRB.getFloatTy();
190   Value *L = ConstantFP::get(FltTy, 1.0);
191   Value *R = ConstantFP::get(FltTy, 2.0);
192   Value *MatchL, *MatchR;
193 
194   // Test OGT.
195   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
196                   .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R)));
197   EXPECT_EQ(L, MatchL);
198   EXPECT_EQ(R, MatchR);
199 
200   // Test OGE.
201   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
202                   .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R)));
203   EXPECT_EQ(L, MatchL);
204   EXPECT_EQ(R, MatchR);
205 
206   // Test no match on OLE.
207   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
208                    .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R)));
209 
210   // Test no match on OLT.
211   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
212                    .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R)));
213 
214 
215   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
216   // %cmp = fcmp ole L, R
217   // %max = select %cmp, R, L
218   // Given L == NaN,
219   // the above is expanded to %cmp == false ==> %max == L
220   // which is true for UnordFMax, not OrdFMax, so test that:
221 
222   // [OU]LE with inverted select.
223   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
224                    .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L)));
225   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
226                   .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L)));
227   EXPECT_EQ(L, MatchL);
228   EXPECT_EQ(R, MatchR);
229 
230   // [OUT]LT with inverted select.
231   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
232                    .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L)));
233   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
234                   .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L)));
235   EXPECT_EQ(L, MatchL);
236   EXPECT_EQ(R, MatchR);
237 }
238 
239 TEST_F(PatternMatchTest, FloatingPointUnorderedMin) {
240   Type *FltTy = IRB.getFloatTy();
241   Value *L = ConstantFP::get(FltTy, 1.0);
242   Value *R = ConstantFP::get(FltTy, 2.0);
243   Value *MatchL, *MatchR;
244 
245   // Test ULT.
246   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
247                   .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R)));
248   EXPECT_EQ(L, MatchL);
249   EXPECT_EQ(R, MatchR);
250 
251   // Test ULE.
252   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
253                   .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R)));
254   EXPECT_EQ(L, MatchL);
255   EXPECT_EQ(R, MatchR);
256 
257   // Test no match on UGE.
258   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
259                    .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R)));
260 
261   // Test no match on UGT.
262   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
263                    .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R)));
264 
265   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
266   // %cmp = fcmp uge L, R
267   // %min = select %cmp R, L
268   // Given L == NaN
269   // the above is expanded to %cmp == true ==> %min = R
270   // which is true for OrdFMin, not UnordFMin, so test that:
271 
272   // [UO]GE with inverted select.
273   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
274                   .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L)));
275   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
276                   .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L)));
277   EXPECT_EQ(L, MatchL);
278   EXPECT_EQ(R, MatchR);
279 
280   // [UO]GT with inverted select.
281   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
282                   .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L)));
283   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
284                   .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L)));
285   EXPECT_EQ(L, MatchL);
286   EXPECT_EQ(R, MatchR);
287 }
288 
289 TEST_F(PatternMatchTest, FloatingPointUnorderedMax) {
290   Type *FltTy = IRB.getFloatTy();
291   Value *L = ConstantFP::get(FltTy, 1.0);
292   Value *R = ConstantFP::get(FltTy, 2.0);
293   Value *MatchL, *MatchR;
294 
295   // Test UGT.
296   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
297                   .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R)));
298   EXPECT_EQ(L, MatchL);
299   EXPECT_EQ(R, MatchR);
300 
301   // Test UGE.
302   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
303                   .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R)));
304   EXPECT_EQ(L, MatchL);
305   EXPECT_EQ(R, MatchR);
306 
307   // Test no match on ULE.
308   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
309                    .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R)));
310 
311   // Test no match on ULT.
312   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
313                    .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R)));
314 
315   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
316   // %cmp = fcmp ule L, R
317   // %max = select %cmp R, L
318   // Given L == NaN
319   // the above is expanded to %cmp == true ==> %max = R
320   // which is true for OrdFMax, not UnordFMax, so test that:
321 
322   // [UO]LE with inverted select.
323   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
324                   .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L)));
325   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
326                   .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L)));
327   EXPECT_EQ(L, MatchL);
328   EXPECT_EQ(R, MatchR);
329 
330   // [UO]LT with inverted select.
331   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
332                   .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L)));
333   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
334                   .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L)));
335   EXPECT_EQ(L, MatchL);
336   EXPECT_EQ(R, MatchR);
337 }
338 
339 TEST_F(PatternMatchTest, OverflowingBinOps) {
340   Value *L = IRB.getInt32(1);
341   Value *R = IRB.getInt32(2);
342   Value *MatchL, *MatchR;
343 
344   EXPECT_TRUE(
345       m_NSWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWAdd(L, R)));
346   EXPECT_EQ(L, MatchL);
347   EXPECT_EQ(R, MatchR);
348   MatchL = MatchR = nullptr;
349   EXPECT_TRUE(
350       m_NSWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWSub(L, R)));
351   EXPECT_EQ(L, MatchL);
352   EXPECT_EQ(R, MatchR);
353   MatchL = MatchR = nullptr;
354   EXPECT_TRUE(
355       m_NSWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWMul(L, R)));
356   EXPECT_EQ(L, MatchL);
357   EXPECT_EQ(R, MatchR);
358   MatchL = MatchR = nullptr;
359   EXPECT_TRUE(m_NSWShl(m_Value(MatchL), m_Value(MatchR)).match(
360       IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true)));
361   EXPECT_EQ(L, MatchL);
362   EXPECT_EQ(R, MatchR);
363 
364   EXPECT_TRUE(
365       m_NUWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWAdd(L, R)));
366   EXPECT_EQ(L, MatchL);
367   EXPECT_EQ(R, MatchR);
368   MatchL = MatchR = nullptr;
369   EXPECT_TRUE(
370       m_NUWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWSub(L, R)));
371   EXPECT_EQ(L, MatchL);
372   EXPECT_EQ(R, MatchR);
373   MatchL = MatchR = nullptr;
374   EXPECT_TRUE(
375       m_NUWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWMul(L, R)));
376   EXPECT_EQ(L, MatchL);
377   EXPECT_EQ(R, MatchR);
378   MatchL = MatchR = nullptr;
379   EXPECT_TRUE(m_NUWShl(m_Value(MatchL), m_Value(MatchR)).match(
380       IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false)));
381   EXPECT_EQ(L, MatchL);
382   EXPECT_EQ(R, MatchR);
383 
384   EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R)));
385   EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
386   EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R)));
387   EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R)));
388   EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R)));
389   EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
390   EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R)));
391   EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNUWMul(L, R)));
392   EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
393   EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R)));
394   EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(
395       IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false)));
396   EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
397 
398   EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R)));
399   EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
400   EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R)));
401   EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R)));
402   EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R)));
403   EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
404   EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R)));
405   EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNSWMul(L, R)));
406   EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
407   EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R)));
408   EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(
409       IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true)));
410   EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
411 }
412 
413 TEST_F(PatternMatchTest, LoadStoreOps) {
414   // Create this load/store sequence:
415   //
416   //  %p = alloca i32*
417   //  %0 = load i32*, i32** %p
418   //  store i32 42, i32* %0
419 
420   Value *Alloca = IRB.CreateAlloca(IRB.getInt32Ty());
421   Value *LoadInst = IRB.CreateLoad(IRB.getInt32Ty(), Alloca);
422   Value *FourtyTwo = IRB.getInt32(42);
423   Value *StoreInst = IRB.CreateStore(FourtyTwo, Alloca);
424   Value *MatchLoad, *MatchStoreVal, *MatchStorePointer;
425 
426   EXPECT_TRUE(m_Load(m_Value(MatchLoad)).match(LoadInst));
427   EXPECT_EQ(Alloca, MatchLoad);
428 
429   EXPECT_TRUE(m_Load(m_Specific(Alloca)).match(LoadInst));
430 
431   EXPECT_FALSE(m_Load(m_Value(MatchLoad)).match(Alloca));
432 
433   EXPECT_TRUE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer))
434                 .match(StoreInst));
435   EXPECT_EQ(FourtyTwo, MatchStoreVal);
436   EXPECT_EQ(Alloca, MatchStorePointer);
437 
438   EXPECT_FALSE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer))
439                 .match(Alloca));
440 
441   EXPECT_TRUE(m_Store(m_SpecificInt(42), m_Specific(Alloca))
442                 .match(StoreInst));
443   EXPECT_FALSE(m_Store(m_SpecificInt(42), m_Specific(FourtyTwo))
444                 .match(StoreInst));
445   EXPECT_FALSE(m_Store(m_SpecificInt(43), m_Specific(Alloca))
446                 .match(StoreInst));
447 }
448 
449 TEST_F(PatternMatchTest, VectorOps) {
450   // Build up small tree of vector operations
451   //
452   //   Val = 0 + 1
453   //   Val2 = Val + 3
454   //   VI1 = insertelement <2 x i8> undef, i8 1, i32 0 = <1, undef>
455   //   VI2 = insertelement <2 x i8> %VI1, i8 %Val2, i8 %Val = <1, 4>
456   //   VI3 = insertelement <2 x i8> %VI1, i8 %Val2, i32 1 = <1, 4>
457   //   VI4 = insertelement <2 x i8> %VI1, i8 2, i8 %Val = <1, 2>
458   //
459   //   SI1 = shufflevector <2 x i8> %VI1, <2 x i8> undef, zeroinitializer
460   //   SI2 = shufflevector <2 x i8> %VI3, <2 x i8> %VI4, <2 x i8> <i8 0, i8 2>
461   //   SI3 = shufflevector <2 x i8> %VI3, <2 x i8> undef, zeroinitializer
462   //   SI4 = shufflevector <2 x i8> %VI4, <2 x i8> undef, zeroinitializer
463   //
464   //   SP1 = VectorSplat(2, i8 2)
465   //   SP2 = VectorSplat(2, i8 %Val)
466   Type *VecTy = VectorType::get(IRB.getInt8Ty(), 2);
467   Type *i32 = IRB.getInt32Ty();
468   Type *i32VecTy = VectorType::get(i32, 2);
469 
470   Value *Val = IRB.CreateAdd(IRB.getInt8(0), IRB.getInt8(1));
471   Value *Val2 = IRB.CreateAdd(Val, IRB.getInt8(3));
472 
473   SmallVector<Constant *, 2> VecElemIdxs;
474   VecElemIdxs.push_back(ConstantInt::get(i32, 0));
475   VecElemIdxs.push_back(ConstantInt::get(i32, 2));
476   auto *IdxVec = ConstantVector::get(VecElemIdxs);
477 
478   Value *UndefVec = UndefValue::get(VecTy);
479   Value *VI1 = IRB.CreateInsertElement(UndefVec, IRB.getInt8(1), (uint64_t)0);
480   Value *VI2 = IRB.CreateInsertElement(VI1, Val2, Val);
481   Value *VI3 = IRB.CreateInsertElement(VI1, Val2, (uint64_t)1);
482   Value *VI4 = IRB.CreateInsertElement(VI1, IRB.getInt8(2), Val);
483 
484   Value *EX1 = IRB.CreateExtractElement(VI4, Val);
485   Value *EX2 = IRB.CreateExtractElement(VI4, (uint64_t)0);
486   Value *EX3 = IRB.CreateExtractElement(IdxVec, (uint64_t)1);
487 
488   Value *Zero = ConstantAggregateZero::get(i32VecTy);
489   Value *SI1 = IRB.CreateShuffleVector(VI1, UndefVec, Zero);
490   Value *SI2 = IRB.CreateShuffleVector(VI3, VI4, IdxVec);
491   Value *SI3 = IRB.CreateShuffleVector(VI3, UndefVec, Zero);
492   Value *SI4 = IRB.CreateShuffleVector(VI4, UndefVec, Zero);
493 
494   Value *SP1 = IRB.CreateVectorSplat(2, IRB.getInt8(2));
495   Value *SP2 = IRB.CreateVectorSplat(2, Val);
496 
497   Value *A = nullptr, *B = nullptr, *C = nullptr;
498 
499   // Test matching insertelement
500   EXPECT_TRUE(match(VI1, m_InsertElement(m_Value(), m_Value(), m_Value())));
501   EXPECT_TRUE(
502       match(VI1, m_InsertElement(m_Undef(), m_ConstantInt(), m_ConstantInt())));
503   EXPECT_TRUE(
504       match(VI1, m_InsertElement(m_Undef(), m_ConstantInt(), m_Zero())));
505   EXPECT_TRUE(
506       match(VI1, m_InsertElement(m_Undef(), m_SpecificInt(1), m_Zero())));
507   EXPECT_TRUE(match(VI2, m_InsertElement(m_Value(), m_Value(), m_Value())));
508   EXPECT_FALSE(
509       match(VI2, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())));
510   EXPECT_FALSE(
511       match(VI2, m_InsertElement(m_Value(), m_ConstantInt(), m_Value())));
512   EXPECT_FALSE(match(VI2, m_InsertElement(m_Constant(), m_Value(), m_Value())));
513   EXPECT_TRUE(match(VI3, m_InsertElement(m_Value(A), m_Value(B), m_Value(C))));
514   EXPECT_TRUE(A == VI1);
515   EXPECT_TRUE(B == Val2);
516   EXPECT_TRUE(isa<ConstantInt>(C));
517   A = B = C = nullptr; // reset
518 
519   // Test matching extractelement
520   EXPECT_TRUE(match(EX1, m_ExtractElement(m_Value(A), m_Value(B))));
521   EXPECT_TRUE(A == VI4);
522   EXPECT_TRUE(B == Val);
523   A = B = C = nullptr; // reset
524   EXPECT_FALSE(match(EX1, m_ExtractElement(m_Value(), m_ConstantInt())));
525   EXPECT_TRUE(match(EX2, m_ExtractElement(m_Value(), m_ConstantInt())));
526   EXPECT_TRUE(match(EX3, m_ExtractElement(m_Constant(), m_ConstantInt())));
527 
528   // Test matching shufflevector
529   EXPECT_TRUE(match(SI1, m_ShuffleVector(m_Value(), m_Undef(), m_Zero())));
530   EXPECT_TRUE(match(SI2, m_ShuffleVector(m_Value(A), m_Value(B), m_Value(C))));
531   EXPECT_TRUE(A == VI3);
532   EXPECT_TRUE(B == VI4);
533   EXPECT_TRUE(C == IdxVec);
534   A = B = C = nullptr; // reset
535 
536   // Test matching the vector splat pattern
537   EXPECT_TRUE(match(
538       SI1,
539       m_ShuffleVector(m_InsertElement(m_Undef(), m_SpecificInt(1), m_Zero()),
540                       m_Undef(), m_Zero())));
541   EXPECT_FALSE(match(
542       SI3, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_Zero()),
543                            m_Undef(), m_Zero())));
544   EXPECT_FALSE(match(
545       SI4, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_Zero()),
546                            m_Undef(), m_Zero())));
547   EXPECT_TRUE(match(
548       SP1,
549       m_ShuffleVector(m_InsertElement(m_Undef(), m_SpecificInt(2), m_Zero()),
550                       m_Undef(), m_Zero())));
551   EXPECT_TRUE(match(
552       SP2, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(A), m_Zero()),
553                            m_Undef(), m_Zero())));
554   EXPECT_TRUE(A == Val);
555 }
556 
557 TEST_F(PatternMatchTest, VectorUndefInt) {
558   Type *ScalarTy = IRB.getInt8Ty();
559   Type *VectorTy = VectorType::get(ScalarTy, 4);
560   Constant *ScalarUndef = UndefValue::get(ScalarTy);
561   Constant *VectorUndef = UndefValue::get(VectorTy);
562   Constant *ScalarZero = Constant::getNullValue(ScalarTy);
563   Constant *VectorZero = Constant::getNullValue(VectorTy);
564 
565   SmallVector<Constant *, 4> Elems;
566   Elems.push_back(ScalarUndef);
567   Elems.push_back(ScalarZero);
568   Elems.push_back(ScalarUndef);
569   Elems.push_back(ScalarZero);
570   Constant *VectorZeroUndef = ConstantVector::get(Elems);
571 
572   EXPECT_TRUE(match(ScalarUndef, m_Undef()));
573   EXPECT_TRUE(match(VectorUndef, m_Undef()));
574   EXPECT_FALSE(match(ScalarZero, m_Undef()));
575   EXPECT_FALSE(match(VectorZero, m_Undef()));
576   EXPECT_FALSE(match(VectorZeroUndef, m_Undef()));
577 
578   EXPECT_FALSE(match(ScalarUndef, m_Zero()));
579   EXPECT_FALSE(match(VectorUndef, m_Zero()));
580   EXPECT_TRUE(match(ScalarZero, m_Zero()));
581   EXPECT_TRUE(match(VectorZero, m_Zero()));
582   EXPECT_TRUE(match(VectorZeroUndef, m_Zero()));
583 }
584 
585 TEST_F(PatternMatchTest, VectorUndefFloat) {
586   Type *ScalarTy = IRB.getFloatTy();
587   Type *VectorTy = VectorType::get(ScalarTy, 4);
588   Constant *ScalarUndef = UndefValue::get(ScalarTy);
589   Constant *VectorUndef = UndefValue::get(VectorTy);
590   Constant *ScalarZero = Constant::getNullValue(ScalarTy);
591   Constant *VectorZero = Constant::getNullValue(VectorTy);
592 
593   SmallVector<Constant *, 4> Elems;
594   Elems.push_back(ScalarUndef);
595   Elems.push_back(ScalarZero);
596   Elems.push_back(ScalarUndef);
597   Elems.push_back(ScalarZero);
598   Constant *VectorZeroUndef = ConstantVector::get(Elems);
599 
600   EXPECT_TRUE(match(ScalarUndef, m_Undef()));
601   EXPECT_TRUE(match(VectorUndef, m_Undef()));
602   EXPECT_FALSE(match(ScalarZero, m_Undef()));
603   EXPECT_FALSE(match(VectorZero, m_Undef()));
604   EXPECT_FALSE(match(VectorZeroUndef, m_Undef()));
605 
606   EXPECT_FALSE(match(ScalarUndef, m_AnyZeroFP()));
607   EXPECT_FALSE(match(VectorUndef, m_AnyZeroFP()));
608   EXPECT_TRUE(match(ScalarZero, m_AnyZeroFP()));
609   EXPECT_TRUE(match(VectorZero, m_AnyZeroFP()));
610   EXPECT_TRUE(match(VectorZeroUndef, m_AnyZeroFP()));
611 }
612 
613 TEST_F(PatternMatchTest, FloatingPointFNeg) {
614   Type *FltTy = IRB.getFloatTy();
615   Value *One = ConstantFP::get(FltTy, 1.0);
616   Value *Z = ConstantFP::get(FltTy, 0.0);
617   Value *NZ = ConstantFP::get(FltTy, -0.0);
618   Value *V = IRB.CreateFNeg(One);
619   Value *V1 = IRB.CreateFSub(NZ, One);
620   Value *V2 = IRB.CreateFSub(Z, One);
621   Value *V3 = IRB.CreateFAdd(NZ, One);
622   Value *Match;
623 
624   // Test FNeg(1.0)
625   EXPECT_TRUE(match(V, m_FNeg(m_Value(Match))));
626   EXPECT_EQ(One, Match);
627 
628   // Test FSub(-0.0, 1.0)
629   EXPECT_TRUE(match(V1, m_FNeg(m_Value(Match))));
630   EXPECT_EQ(One, Match);
631 
632   // Test FSub(0.0, 1.0)
633   EXPECT_FALSE(match(V2, m_FNeg(m_Value(Match))));
634   cast<Instruction>(V2)->setHasNoSignedZeros(true);
635   EXPECT_TRUE(match(V2, m_FNeg(m_Value(Match))));
636   EXPECT_EQ(One, Match);
637 
638   // Test FAdd(-0.0, 1.0)
639   EXPECT_FALSE(match(V3, m_FNeg(m_Value(Match))));
640 }
641 
642 template <typename T> struct MutableConstTest : PatternMatchTest { };
643 
644 typedef ::testing::Types<std::tuple<Value*, Instruction*>,
645                          std::tuple<const Value*, const Instruction *>>
646     MutableConstTestTypes;
647 TYPED_TEST_CASE(MutableConstTest, MutableConstTestTypes);
648 
649 TYPED_TEST(MutableConstTest, ICmp) {
650   auto &IRB = PatternMatchTest::IRB;
651 
652   typedef typename std::tuple_element<0, TypeParam>::type ValueType;
653   typedef typename std::tuple_element<1, TypeParam>::type InstructionType;
654 
655   Value *L = IRB.getInt32(1);
656   Value *R = IRB.getInt32(2);
657   ICmpInst::Predicate Pred = ICmpInst::ICMP_UGT;
658 
659   ValueType MatchL;
660   ValueType MatchR;
661   ICmpInst::Predicate MatchPred;
662 
663   EXPECT_TRUE(m_ICmp(MatchPred, m_Value(MatchL), m_Value(MatchR))
664               .match((InstructionType)IRB.CreateICmp(Pred, L, R)));
665   EXPECT_EQ(L, MatchL);
666   EXPECT_EQ(R, MatchR);
667 }
668 
669 } // anonymous namespace.
670