1 //===- PatternMatchTest.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "GISelMITest.h" 10 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 11 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 12 #include "llvm/CodeGen/GlobalISel/Utils.h" 13 #include "llvm/CodeGen/MIRParser/MIRParser.h" 14 #include "llvm/CodeGen/MachineFunction.h" 15 #include "llvm/CodeGen/MachineModuleInfo.h" 16 #include "llvm/CodeGen/TargetFrameLowering.h" 17 #include "llvm/CodeGen/TargetInstrInfo.h" 18 #include "llvm/CodeGen/TargetLowering.h" 19 #include "llvm/CodeGen/TargetSubtargetInfo.h" 20 #include "llvm/MC/TargetRegistry.h" 21 #include "llvm/Support/SourceMgr.h" 22 #include "llvm/Support/TargetSelect.h" 23 #include "llvm/Target/TargetMachine.h" 24 #include "llvm/Target/TargetOptions.h" 25 #include "gtest/gtest.h" 26 27 using namespace llvm; 28 using namespace MIPatternMatch; 29 30 namespace { 31 32 TEST_F(AArch64GISelMITest, MatchIntConstant) { 33 setUp(); 34 if (!TM) 35 return; 36 auto MIBCst = B.buildConstant(LLT::scalar(64), 42); 37 int64_t Cst; 38 bool match = mi_match(MIBCst.getReg(0), *MRI, m_ICst(Cst)); 39 EXPECT_TRUE(match); 40 EXPECT_EQ(Cst, 42); 41 } 42 43 TEST_F(AArch64GISelMITest, MatchIntConstantRegister) { 44 setUp(); 45 if (!TM) 46 return; 47 auto MIBCst = B.buildConstant(LLT::scalar(64), 42); 48 Optional<ValueAndVReg> Src0; 49 bool match = mi_match(MIBCst.getReg(0), *MRI, m_GCst(Src0)); 50 EXPECT_TRUE(match); 51 EXPECT_EQ(Src0->VReg, MIBCst.getReg(0)); 52 } 53 54 TEST_F(AArch64GISelMITest, MachineInstrPtrBind) { 55 setUp(); 56 if (!TM) 57 return; 58 auto MIBAdd = B.buildAdd(LLT::scalar(64), Copies[0], Copies[1]); 59 // Test 'MachineInstr *' bind. 60 // Default mi_match. 61 MachineInstr *MIPtr = MIBAdd.getInstr(); 62 bool match = mi_match(MIPtr, *MRI, m_GAdd(m_Reg(), m_Reg())); 63 EXPECT_TRUE(match); 64 // Specialized mi_match for MachineInstr &. 65 MachineInstr &MI = *MIBAdd.getInstr(); 66 match = mi_match(MI, *MRI, m_GAdd(m_Reg(), m_Reg())); 67 EXPECT_TRUE(match); 68 // MachineInstrBuilder has automatic conversion to MachineInstr *. 69 match = mi_match(MIBAdd, *MRI, m_GAdd(m_Reg(), m_Reg())); 70 EXPECT_TRUE(match); 71 // Match instruction without def. 72 auto MIBBrcond = B.buildBrCond(Copies[0], B.getMBB()); 73 MachineInstr *MatchedMI; 74 match = mi_match(MIBBrcond, *MRI, m_MInstr(MatchedMI)); 75 EXPECT_TRUE(match); 76 EXPECT_TRUE(MIBBrcond.getInstr() == MatchedMI); 77 // Match instruction with two defs. 78 auto MIBUAddO = 79 B.buildUAddo(LLT::scalar(64), LLT::scalar(1), Copies[0], Copies[1]); 80 match = mi_match(MIBUAddO, *MRI, m_MInstr(MatchedMI)); 81 EXPECT_TRUE(match); 82 EXPECT_TRUE(MIBUAddO.getInstr() == MatchedMI); 83 } 84 85 TEST_F(AArch64GISelMITest, MatchBinaryOp) { 86 setUp(); 87 if (!TM) 88 return; 89 LLT s32 = LLT::scalar(32); 90 LLT s64 = LLT::scalar(64); 91 LLT p0 = LLT::pointer(0, 64); 92 auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]); 93 // Test case for no bind. 94 bool match = 95 mi_match(MIBAdd.getReg(0), *MRI, m_GAdd(m_Reg(), m_Reg())); 96 EXPECT_TRUE(match); 97 Register Src0, Src1, Src2; 98 match = mi_match(MIBAdd.getReg(0), *MRI, 99 m_GAdd(m_Reg(Src0), m_Reg(Src1))); 100 EXPECT_TRUE(match); 101 EXPECT_EQ(Src0, Copies[0]); 102 EXPECT_EQ(Src1, Copies[1]); 103 104 // Build MUL(ADD %0, %1), %2 105 auto MIBMul = B.buildMul(s64, MIBAdd, Copies[2]); 106 107 // Try to match MUL. 108 match = mi_match(MIBMul.getReg(0), *MRI, 109 m_GMul(m_Reg(Src0), m_Reg(Src1))); 110 EXPECT_TRUE(match); 111 EXPECT_EQ(Src0, MIBAdd.getReg(0)); 112 EXPECT_EQ(Src1, Copies[2]); 113 114 // Try to match MUL(ADD) 115 match = mi_match(MIBMul.getReg(0), *MRI, 116 m_GMul(m_GAdd(m_Reg(Src0), m_Reg(Src1)), m_Reg(Src2))); 117 EXPECT_TRUE(match); 118 EXPECT_EQ(Src0, Copies[0]); 119 EXPECT_EQ(Src1, Copies[1]); 120 EXPECT_EQ(Src2, Copies[2]); 121 122 // Test Commutativity. 123 auto MIBMul2 = B.buildMul(s64, Copies[0], B.buildConstant(s64, 42)); 124 // Try to match MUL(Cst, Reg) on src of MUL(Reg, Cst) to validate 125 // commutativity. 126 int64_t Cst; 127 match = mi_match(MIBMul2.getReg(0), *MRI, 128 m_GMul(m_ICst(Cst), m_Reg(Src0))); 129 EXPECT_TRUE(match); 130 EXPECT_EQ(Cst, 42); 131 EXPECT_EQ(Src0, Copies[0]); 132 133 // Make sure commutative doesn't work with something like SUB. 134 auto MIBSub = B.buildSub(s64, Copies[0], B.buildConstant(s64, 42)); 135 match = mi_match(MIBSub.getReg(0), *MRI, 136 m_GSub(m_ICst(Cst), m_Reg(Src0))); 137 EXPECT_FALSE(match); 138 139 auto MIBFMul = B.buildInstr(TargetOpcode::G_FMUL, {s64}, 140 {Copies[0], B.buildConstant(s64, 42)}); 141 // Match and test commutativity for FMUL. 142 match = mi_match(MIBFMul.getReg(0), *MRI, 143 m_GFMul(m_ICst(Cst), m_Reg(Src0))); 144 EXPECT_TRUE(match); 145 EXPECT_EQ(Cst, 42); 146 EXPECT_EQ(Src0, Copies[0]); 147 148 // FSUB 149 auto MIBFSub = B.buildInstr(TargetOpcode::G_FSUB, {s64}, 150 {Copies[0], B.buildConstant(s64, 42)}); 151 match = mi_match(MIBFSub.getReg(0), *MRI, 152 m_GFSub(m_Reg(Src0), m_Reg())); 153 EXPECT_TRUE(match); 154 EXPECT_EQ(Src0, Copies[0]); 155 156 // Build AND %0, %1 157 auto MIBAnd = B.buildAnd(s64, Copies[0], Copies[1]); 158 // Try to match AND. 159 match = mi_match(MIBAnd.getReg(0), *MRI, 160 m_GAnd(m_Reg(Src0), m_Reg(Src1))); 161 EXPECT_TRUE(match); 162 EXPECT_EQ(Src0, Copies[0]); 163 EXPECT_EQ(Src1, Copies[1]); 164 165 // Build OR %0, %1 166 auto MIBOr = B.buildOr(s64, Copies[0], Copies[1]); 167 // Try to match OR. 168 match = mi_match(MIBOr.getReg(0), *MRI, 169 m_GOr(m_Reg(Src0), m_Reg(Src1))); 170 EXPECT_TRUE(match); 171 EXPECT_EQ(Src0, Copies[0]); 172 EXPECT_EQ(Src1, Copies[1]); 173 174 // Match lshr, and make sure a different shift amount type works. 175 auto TruncCopy1 = B.buildTrunc(s32, Copies[1]); 176 auto LShr = B.buildLShr(s64, Copies[0], TruncCopy1); 177 match = mi_match(LShr.getReg(0), *MRI, 178 m_GLShr(m_Reg(Src0), m_Reg(Src1))); 179 EXPECT_TRUE(match); 180 EXPECT_EQ(Src0, Copies[0]); 181 EXPECT_EQ(Src1, TruncCopy1.getReg(0)); 182 183 // Match shl, and make sure a different shift amount type works. 184 auto Shl = B.buildShl(s64, Copies[0], TruncCopy1); 185 match = mi_match(Shl.getReg(0), *MRI, 186 m_GShl(m_Reg(Src0), m_Reg(Src1))); 187 EXPECT_TRUE(match); 188 EXPECT_EQ(Src0, Copies[0]); 189 EXPECT_EQ(Src1, TruncCopy1.getReg(0)); 190 191 // Build a G_PTR_ADD and check that we can match it. 192 auto PtrAdd = B.buildPtrAdd(p0, {B.buildUndef(p0)}, Copies[0]); 193 match = mi_match(PtrAdd.getReg(0), *MRI, m_GPtrAdd(m_Reg(Src0), m_Reg(Src1))); 194 EXPECT_TRUE(match); 195 EXPECT_EQ(Src0, PtrAdd->getOperand(1).getReg()); 196 EXPECT_EQ(Src1, Copies[0]); 197 198 auto MIBCst = B.buildConstant(s64, 42); 199 auto MIBAddCst = B.buildAdd(s64, MIBCst, Copies[0]); 200 auto MIBUnmerge = B.buildUnmerge({s32, s32}, B.buildConstant(s64, 42)); 201 202 // m_BinOp with opcode. 203 // Match binary instruction, opcode and its non-commutative operands. 204 match = mi_match(MIBAddCst, *MRI, 205 m_BinOp(TargetOpcode::G_ADD, m_ICst(Cst), m_Reg(Src0))); 206 EXPECT_TRUE(match); 207 EXPECT_EQ(Src0, Copies[0]); 208 EXPECT_EQ(Cst, 42); 209 210 // Opcode doesn't match. 211 match = mi_match(MIBAddCst, *MRI, 212 m_BinOp(TargetOpcode::G_MUL, m_ICst(Cst), m_Reg(Src0))); 213 EXPECT_FALSE(match); 214 215 match = mi_match(MIBAddCst, *MRI, 216 m_BinOp(TargetOpcode::G_ADD, m_Reg(Src0), m_ICst(Cst))); 217 EXPECT_FALSE(match); 218 219 // Instruction is not binary. 220 match = mi_match(MIBCst, *MRI, 221 m_BinOp(TargetOpcode::G_MUL, m_Reg(Src0), m_Reg(Src1))); 222 EXPECT_FALSE(match); 223 match = mi_match(MIBUnmerge, *MRI, 224 m_BinOp(TargetOpcode::G_MUL, m_Reg(Src0), m_Reg(Src1))); 225 EXPECT_FALSE(match); 226 227 // m_CommutativeBinOp with opcode. 228 match = mi_match( 229 MIBAddCst, *MRI, 230 m_CommutativeBinOp(TargetOpcode::G_ADD, m_ICst(Cst), m_Reg(Src0))); 231 EXPECT_TRUE(match); 232 EXPECT_EQ(Src0, Copies[0]); 233 EXPECT_EQ(Cst, 42); 234 235 match = mi_match( 236 MIBAddCst, *MRI, 237 m_CommutativeBinOp(TargetOpcode::G_MUL, m_ICst(Cst), m_Reg(Src0))); 238 EXPECT_FALSE(match); 239 240 match = mi_match( 241 MIBAddCst, *MRI, 242 m_CommutativeBinOp(TargetOpcode::G_ADD, m_Reg(Src0), m_ICst(Cst))); 243 EXPECT_TRUE(match); 244 EXPECT_EQ(Src0, Copies[0]); 245 EXPECT_EQ(Cst, 42); 246 247 match = mi_match( 248 MIBCst, *MRI, 249 m_CommutativeBinOp(TargetOpcode::G_MUL, m_Reg(Src0), m_Reg(Src1))); 250 EXPECT_FALSE(match); 251 match = mi_match( 252 MIBUnmerge, *MRI, 253 m_CommutativeBinOp(TargetOpcode::G_MUL, m_Reg(Src0), m_Reg(Src1))); 254 EXPECT_FALSE(match); 255 } 256 257 TEST_F(AArch64GISelMITest, MatchICmp) { 258 setUp(); 259 if (!TM) 260 return; 261 262 const LLT s1 = LLT::scalar(1); 263 auto CmpEq = B.buildICmp(CmpInst::ICMP_EQ, s1, Copies[0], Copies[1]); 264 265 // Check match any predicate. 266 bool match = 267 mi_match(CmpEq.getReg(0), *MRI, m_GICmp(m_Pred(), m_Reg(), m_Reg())); 268 EXPECT_TRUE(match); 269 270 // Check we get the predicate and registers. 271 CmpInst::Predicate Pred; 272 Register Reg0; 273 Register Reg1; 274 match = mi_match(CmpEq.getReg(0), *MRI, 275 m_GICmp(m_Pred(Pred), m_Reg(Reg0), m_Reg(Reg1))); 276 EXPECT_TRUE(match); 277 EXPECT_EQ(CmpInst::ICMP_EQ, Pred); 278 EXPECT_EQ(Copies[0], Reg0); 279 EXPECT_EQ(Copies[1], Reg1); 280 } 281 282 TEST_F(AArch64GISelMITest, MatchFCmp) { 283 setUp(); 284 if (!TM) 285 return; 286 287 const LLT s1 = LLT::scalar(1); 288 auto CmpEq = B.buildFCmp(CmpInst::FCMP_OEQ, s1, Copies[0], Copies[1]); 289 290 // Check match any predicate. 291 bool match = 292 mi_match(CmpEq.getReg(0), *MRI, m_GFCmp(m_Pred(), m_Reg(), m_Reg())); 293 EXPECT_TRUE(match); 294 295 // Check we get the predicate and registers. 296 CmpInst::Predicate Pred; 297 Register Reg0; 298 Register Reg1; 299 match = mi_match(CmpEq.getReg(0), *MRI, 300 m_GFCmp(m_Pred(Pred), m_Reg(Reg0), m_Reg(Reg1))); 301 EXPECT_TRUE(match); 302 EXPECT_EQ(CmpInst::FCMP_OEQ, Pred); 303 EXPECT_EQ(Copies[0], Reg0); 304 EXPECT_EQ(Copies[1], Reg1); 305 } 306 307 TEST_F(AArch64GISelMITest, MatchFPUnaryOp) { 308 setUp(); 309 if (!TM) 310 return; 311 312 // Truncate s64 to s32. 313 LLT s32 = LLT::scalar(32); 314 auto Copy0s32 = B.buildFPTrunc(s32, Copies[0]); 315 316 // Match G_FABS. 317 auto MIBFabs = B.buildInstr(TargetOpcode::G_FABS, {s32}, {Copy0s32}); 318 bool match = 319 mi_match(MIBFabs.getReg(0), *MRI, m_GFabs(m_Reg())); 320 EXPECT_TRUE(match); 321 322 Register Src; 323 auto MIBFNeg = B.buildInstr(TargetOpcode::G_FNEG, {s32}, {Copy0s32}); 324 match = mi_match(MIBFNeg.getReg(0), *MRI, m_GFNeg(m_Reg(Src))); 325 EXPECT_TRUE(match); 326 EXPECT_EQ(Src, Copy0s32.getReg(0)); 327 328 match = mi_match(MIBFabs.getReg(0), *MRI, m_GFabs(m_Reg(Src))); 329 EXPECT_TRUE(match); 330 EXPECT_EQ(Src, Copy0s32.getReg(0)); 331 332 // Build and match FConstant. 333 auto MIBFCst = B.buildFConstant(s32, .5); 334 const ConstantFP *TmpFP{}; 335 match = mi_match(MIBFCst.getReg(0), *MRI, m_GFCst(TmpFP)); 336 EXPECT_TRUE(match); 337 EXPECT_TRUE(TmpFP); 338 APFloat APF((float).5); 339 auto *CFP = ConstantFP::get(Context, APF); 340 EXPECT_EQ(CFP, TmpFP); 341 342 // Build double float. 343 LLT s64 = LLT::scalar(64); 344 auto MIBFCst64 = B.buildFConstant(s64, .5); 345 const ConstantFP *TmpFP64{}; 346 match = mi_match(MIBFCst64.getReg(0), *MRI, m_GFCst(TmpFP64)); 347 EXPECT_TRUE(match); 348 EXPECT_TRUE(TmpFP64); 349 APFloat APF64(.5); 350 auto CFP64 = ConstantFP::get(Context, APF64); 351 EXPECT_EQ(CFP64, TmpFP64); 352 EXPECT_NE(TmpFP64, TmpFP); 353 354 // Build half float. 355 LLT s16 = LLT::scalar(16); 356 auto MIBFCst16 = B.buildFConstant(s16, .5); 357 const ConstantFP *TmpFP16{}; 358 match = mi_match(MIBFCst16.getReg(0), *MRI, m_GFCst(TmpFP16)); 359 EXPECT_TRUE(match); 360 EXPECT_TRUE(TmpFP16); 361 bool Ignored; 362 APFloat APF16(.5); 363 APF16.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); 364 auto CFP16 = ConstantFP::get(Context, APF16); 365 EXPECT_EQ(TmpFP16, CFP16); 366 EXPECT_NE(TmpFP16, TmpFP); 367 } 368 369 TEST_F(AArch64GISelMITest, MatchExtendsTrunc) { 370 setUp(); 371 if (!TM) 372 return; 373 374 LLT s64 = LLT::scalar(64); 375 LLT s32 = LLT::scalar(32); 376 377 auto MIBTrunc = B.buildTrunc(s32, Copies[0]); 378 auto MIBAExt = B.buildAnyExt(s64, MIBTrunc); 379 auto MIBZExt = B.buildZExt(s64, MIBTrunc); 380 auto MIBSExt = B.buildSExt(s64, MIBTrunc); 381 Register Src0; 382 bool match = 383 mi_match(MIBTrunc.getReg(0), *MRI, m_GTrunc(m_Reg(Src0))); 384 EXPECT_TRUE(match); 385 EXPECT_EQ(Src0, Copies[0]); 386 match = 387 mi_match(MIBAExt.getReg(0), *MRI, m_GAnyExt(m_Reg(Src0))); 388 EXPECT_TRUE(match); 389 EXPECT_EQ(Src0, MIBTrunc.getReg(0)); 390 391 match = mi_match(MIBSExt.getReg(0), *MRI, m_GSExt(m_Reg(Src0))); 392 EXPECT_TRUE(match); 393 EXPECT_EQ(Src0, MIBTrunc.getReg(0)); 394 395 match = mi_match(MIBZExt.getReg(0), *MRI, m_GZExt(m_Reg(Src0))); 396 EXPECT_TRUE(match); 397 EXPECT_EQ(Src0, MIBTrunc.getReg(0)); 398 399 // Match ext(trunc src) 400 match = mi_match(MIBAExt.getReg(0), *MRI, 401 m_GAnyExt(m_GTrunc(m_Reg(Src0)))); 402 EXPECT_TRUE(match); 403 EXPECT_EQ(Src0, Copies[0]); 404 405 match = mi_match(MIBSExt.getReg(0), *MRI, 406 m_GSExt(m_GTrunc(m_Reg(Src0)))); 407 EXPECT_TRUE(match); 408 EXPECT_EQ(Src0, Copies[0]); 409 410 match = mi_match(MIBZExt.getReg(0), *MRI, 411 m_GZExt(m_GTrunc(m_Reg(Src0)))); 412 EXPECT_TRUE(match); 413 EXPECT_EQ(Src0, Copies[0]); 414 } 415 416 TEST_F(AArch64GISelMITest, MatchSpecificType) { 417 setUp(); 418 if (!TM) 419 return; 420 421 // Try to match a 64bit add. 422 LLT s64 = LLT::scalar(64); 423 LLT s32 = LLT::scalar(32); 424 auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]); 425 EXPECT_FALSE(mi_match(MIBAdd.getReg(0), *MRI, 426 m_GAdd(m_SpecificType(s32), m_Reg()))); 427 EXPECT_TRUE(mi_match(MIBAdd.getReg(0), *MRI, 428 m_GAdd(m_SpecificType(s64), m_Reg()))); 429 430 // Try to match the destination type of a bitcast. 431 LLT v2s32 = LLT::fixed_vector(2, 32); 432 auto MIBCast = B.buildCast(v2s32, Copies[0]); 433 EXPECT_TRUE( 434 mi_match(MIBCast.getReg(0), *MRI, m_GBitcast(m_Reg()))); 435 EXPECT_TRUE( 436 mi_match(MIBCast.getReg(0), *MRI, m_SpecificType(v2s32))); 437 EXPECT_TRUE( 438 mi_match(MIBCast.getReg(1), *MRI, m_SpecificType(s64))); 439 440 // Build a PTRToInt and INTTOPTR and match and test them. 441 LLT PtrTy = LLT::pointer(0, 64); 442 auto MIBIntToPtr = B.buildCast(PtrTy, Copies[0]); 443 auto MIBPtrToInt = B.buildCast(s64, MIBIntToPtr); 444 Register Src0; 445 446 // match the ptrtoint(inttoptr reg) 447 bool match = mi_match(MIBPtrToInt.getReg(0), *MRI, 448 m_GPtrToInt(m_GIntToPtr(m_Reg(Src0)))); 449 EXPECT_TRUE(match); 450 EXPECT_EQ(Src0, Copies[0]); 451 } 452 453 TEST_F(AArch64GISelMITest, MatchCombinators) { 454 setUp(); 455 if (!TM) 456 return; 457 458 LLT s64 = LLT::scalar(64); 459 LLT s32 = LLT::scalar(32); 460 auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]); 461 Register Src0, Src1; 462 bool match = 463 mi_match(MIBAdd.getReg(0), *MRI, 464 m_all_of(m_SpecificType(s64), m_GAdd(m_Reg(Src0), m_Reg(Src1)))); 465 EXPECT_TRUE(match); 466 EXPECT_EQ(Src0, Copies[0]); 467 EXPECT_EQ(Src1, Copies[1]); 468 // Check for s32 (which should fail). 469 match = 470 mi_match(MIBAdd.getReg(0), *MRI, 471 m_all_of(m_SpecificType(s32), m_GAdd(m_Reg(Src0), m_Reg(Src1)))); 472 EXPECT_FALSE(match); 473 match = 474 mi_match(MIBAdd.getReg(0), *MRI, 475 m_any_of(m_SpecificType(s32), m_GAdd(m_Reg(Src0), m_Reg(Src1)))); 476 EXPECT_TRUE(match); 477 EXPECT_EQ(Src0, Copies[0]); 478 EXPECT_EQ(Src1, Copies[1]); 479 480 // Match a case where none of the predicates hold true. 481 match = mi_match( 482 MIBAdd.getReg(0), *MRI, 483 m_any_of(m_SpecificType(LLT::scalar(16)), m_GSub(m_Reg(), m_Reg()))); 484 EXPECT_FALSE(match); 485 } 486 487 TEST_F(AArch64GISelMITest, MatchMiscellaneous) { 488 setUp(); 489 if (!TM) 490 return; 491 492 LLT s64 = LLT::scalar(64); 493 auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]); 494 Register Reg = MIBAdd.getReg(0); 495 496 // Only one use of Reg. 497 B.buildCast(LLT::pointer(0, 32), MIBAdd); 498 EXPECT_TRUE(mi_match(Reg, *MRI, m_OneUse(m_GAdd(m_Reg(), m_Reg())))); 499 EXPECT_TRUE(mi_match(Reg, *MRI, m_OneNonDBGUse(m_GAdd(m_Reg(), m_Reg())))); 500 501 // Add multiple debug uses of Reg. 502 B.buildInstr(TargetOpcode::DBG_VALUE, {}, {Reg}); 503 B.buildInstr(TargetOpcode::DBG_VALUE, {}, {Reg}); 504 505 EXPECT_FALSE(mi_match(Reg, *MRI, m_OneUse(m_GAdd(m_Reg(), m_Reg())))); 506 EXPECT_TRUE(mi_match(Reg, *MRI, m_OneNonDBGUse(m_GAdd(m_Reg(), m_Reg())))); 507 508 // Multiple non-debug uses of Reg. 509 B.buildCast(LLT::pointer(1, 32), MIBAdd); 510 EXPECT_FALSE(mi_match(Reg, *MRI, m_OneUse(m_GAdd(m_Reg(), m_Reg())))); 511 EXPECT_FALSE(mi_match(Reg, *MRI, m_OneNonDBGUse(m_GAdd(m_Reg(), m_Reg())))); 512 } 513 514 TEST_F(AArch64GISelMITest, MatchSpecificConstant) { 515 setUp(); 516 if (!TM) 517 return; 518 519 // Basic case: Can we match a G_CONSTANT with a specific value? 520 auto FortyTwo = B.buildConstant(LLT::scalar(64), 42); 521 EXPECT_TRUE(mi_match(FortyTwo.getReg(0), *MRI, m_SpecificICst(42))); 522 EXPECT_FALSE(mi_match(FortyTwo.getReg(0), *MRI, m_SpecificICst(123))); 523 524 // Test that this works inside of a more complex pattern. 525 LLT s64 = LLT::scalar(64); 526 auto MIBAdd = B.buildAdd(s64, Copies[0], FortyTwo); 527 EXPECT_TRUE(mi_match(MIBAdd.getReg(2), *MRI, m_SpecificICst(42))); 528 529 // Wrong constant. 530 EXPECT_FALSE(mi_match(MIBAdd.getReg(2), *MRI, m_SpecificICst(123))); 531 532 // No constant on the LHS. 533 EXPECT_FALSE(mi_match(MIBAdd.getReg(1), *MRI, m_SpecificICst(42))); 534 } 535 536 TEST_F(AArch64GISelMITest, MatchSpecificConstantSplat) { 537 setUp(); 538 if (!TM) 539 return; 540 541 LLT s64 = LLT::scalar(64); 542 LLT v4s64 = LLT::fixed_vector(4, s64); 543 544 MachineInstrBuilder FortyTwoSplat = 545 B.buildSplatVector(v4s64, B.buildConstant(s64, 42)); 546 MachineInstrBuilder FortyTwo = B.buildConstant(s64, 42); 547 548 EXPECT_TRUE(mi_match(FortyTwoSplat.getReg(0), *MRI, m_SpecificICstSplat(42))); 549 EXPECT_FALSE( 550 mi_match(FortyTwoSplat.getReg(0), *MRI, m_SpecificICstSplat(43))); 551 EXPECT_FALSE(mi_match(FortyTwo.getReg(0), *MRI, m_SpecificICstSplat(42))); 552 553 MachineInstrBuilder NonConstantSplat = 554 B.buildBuildVector(v4s64, {Copies[0], Copies[0], Copies[0], Copies[0]}); 555 556 MachineInstrBuilder AddSplat = 557 B.buildAdd(v4s64, NonConstantSplat, FortyTwoSplat); 558 EXPECT_TRUE(mi_match(AddSplat.getReg(2), *MRI, m_SpecificICstSplat(42))); 559 EXPECT_FALSE(mi_match(AddSplat.getReg(2), *MRI, m_SpecificICstSplat(43))); 560 EXPECT_FALSE(mi_match(AddSplat.getReg(1), *MRI, m_SpecificICstSplat(42))); 561 562 MachineInstrBuilder Add = B.buildAdd(s64, Copies[0], FortyTwo); 563 EXPECT_FALSE(mi_match(Add.getReg(2), *MRI, m_SpecificICstSplat(42))); 564 } 565 566 TEST_F(AArch64GISelMITest, MatchSpecificConstantOrSplat) { 567 setUp(); 568 if (!TM) 569 return; 570 571 LLT s64 = LLT::scalar(64); 572 LLT v4s64 = LLT::fixed_vector(4, s64); 573 574 MachineInstrBuilder FortyTwoSplat = 575 B.buildSplatVector(v4s64, B.buildConstant(s64, 42)); 576 MachineInstrBuilder FortyTwo = B.buildConstant(s64, 42); 577 578 EXPECT_TRUE( 579 mi_match(FortyTwoSplat.getReg(0), *MRI, m_SpecificICstOrSplat(42))); 580 EXPECT_FALSE( 581 mi_match(FortyTwoSplat.getReg(0), *MRI, m_SpecificICstOrSplat(43))); 582 EXPECT_TRUE(mi_match(FortyTwo.getReg(0), *MRI, m_SpecificICstOrSplat(42))); 583 584 MachineInstrBuilder NonConstantSplat = 585 B.buildBuildVector(v4s64, {Copies[0], Copies[0], Copies[0], Copies[0]}); 586 587 MachineInstrBuilder AddSplat = 588 B.buildAdd(v4s64, NonConstantSplat, FortyTwoSplat); 589 EXPECT_TRUE(mi_match(AddSplat.getReg(2), *MRI, m_SpecificICstOrSplat(42))); 590 EXPECT_FALSE(mi_match(AddSplat.getReg(2), *MRI, m_SpecificICstOrSplat(43))); 591 EXPECT_FALSE(mi_match(AddSplat.getReg(1), *MRI, m_SpecificICstOrSplat(42))); 592 593 MachineInstrBuilder Add = B.buildAdd(s64, Copies[0], FortyTwo); 594 EXPECT_TRUE(mi_match(Add.getReg(2), *MRI, m_SpecificICstOrSplat(42))); 595 } 596 597 TEST_F(AArch64GISelMITest, MatchZeroInt) { 598 setUp(); 599 if (!TM) 600 return; 601 auto Zero = B.buildConstant(LLT::scalar(64), 0); 602 EXPECT_TRUE(mi_match(Zero.getReg(0), *MRI, m_ZeroInt())); 603 604 auto FortyTwo = B.buildConstant(LLT::scalar(64), 42); 605 EXPECT_FALSE(mi_match(FortyTwo.getReg(0), *MRI, m_ZeroInt())); 606 } 607 608 TEST_F(AArch64GISelMITest, MatchAllOnesInt) { 609 setUp(); 610 if (!TM) 611 return; 612 auto AllOnes = B.buildConstant(LLT::scalar(64), -1); 613 EXPECT_TRUE(mi_match(AllOnes.getReg(0), *MRI, m_AllOnesInt())); 614 615 auto FortyTwo = B.buildConstant(LLT::scalar(64), 42); 616 EXPECT_FALSE(mi_match(FortyTwo.getReg(0), *MRI, m_AllOnesInt())); 617 } 618 619 TEST_F(AArch64GISelMITest, MatchFPOrIntConst) { 620 setUp(); 621 if (!TM) 622 return; 623 624 Register IntOne = B.buildConstant(LLT::scalar(64), 1).getReg(0); 625 Register FPOne = B.buildFConstant(LLT::scalar(64), 1.0).getReg(0); 626 Optional<ValueAndVReg> ValReg; 627 Optional<FPValueAndVReg> FValReg; 628 629 EXPECT_TRUE(mi_match(IntOne, *MRI, m_GCst(ValReg))); 630 EXPECT_EQ(IntOne, ValReg->VReg); 631 EXPECT_FALSE(mi_match(IntOne, *MRI, m_GFCst(FValReg))); 632 633 EXPECT_FALSE(mi_match(FPOne, *MRI, m_GCst(ValReg))); 634 EXPECT_TRUE(mi_match(FPOne, *MRI, m_GFCst(FValReg))); 635 EXPECT_EQ(FPOne, FValReg->VReg); 636 } 637 638 TEST_F(AArch64GISelMITest, MatchConstantSplat) { 639 setUp(); 640 if (!TM) 641 return; 642 643 LLT s64 = LLT::scalar(64); 644 LLT v4s64 = LLT::fixed_vector(4, 64); 645 646 Register FPOne = B.buildFConstant(s64, 1.0).getReg(0); 647 Register FPZero = B.buildFConstant(s64, 0.0).getReg(0); 648 Register Undef = B.buildUndef(s64).getReg(0); 649 Optional<FPValueAndVReg> FValReg; 650 651 // GFCstOrSplatGFCstMatch allows undef as part of splat. Undef often comes 652 // from padding to legalize into available operation and then ignore added 653 // elements e.g. v3s64 to v4s64. 654 655 EXPECT_TRUE(mi_match(FPZero, *MRI, GFCstOrSplatGFCstMatch(FValReg))); 656 EXPECT_EQ(FPZero, FValReg->VReg); 657 658 EXPECT_FALSE(mi_match(Undef, *MRI, GFCstOrSplatGFCstMatch(FValReg))); 659 660 auto ZeroSplat = B.buildBuildVector(v4s64, {FPZero, FPZero, FPZero, FPZero}); 661 EXPECT_TRUE( 662 mi_match(ZeroSplat.getReg(0), *MRI, GFCstOrSplatGFCstMatch(FValReg))); 663 EXPECT_EQ(FPZero, FValReg->VReg); 664 665 auto ZeroUndef = B.buildBuildVector(v4s64, {FPZero, FPZero, FPZero, Undef}); 666 EXPECT_TRUE( 667 mi_match(ZeroUndef.getReg(0), *MRI, GFCstOrSplatGFCstMatch(FValReg))); 668 EXPECT_EQ(FPZero, FValReg->VReg); 669 670 // All undefs are not constant splat. 671 auto UndefSplat = B.buildBuildVector(v4s64, {Undef, Undef, Undef, Undef}); 672 EXPECT_FALSE( 673 mi_match(UndefSplat.getReg(0), *MRI, GFCstOrSplatGFCstMatch(FValReg))); 674 675 auto ZeroOne = B.buildBuildVector(v4s64, {FPZero, FPZero, FPZero, FPOne}); 676 EXPECT_FALSE( 677 mi_match(ZeroOne.getReg(0), *MRI, GFCstOrSplatGFCstMatch(FValReg))); 678 679 auto NonConstantSplat = 680 B.buildBuildVector(v4s64, {Copies[0], Copies[0], Copies[0], Copies[0]}); 681 EXPECT_FALSE(mi_match(NonConstantSplat.getReg(0), *MRI, 682 GFCstOrSplatGFCstMatch(FValReg))); 683 684 auto Mixed = B.buildBuildVector(v4s64, {FPZero, FPZero, FPZero, Copies[0]}); 685 EXPECT_FALSE( 686 mi_match(Mixed.getReg(0), *MRI, GFCstOrSplatGFCstMatch(FValReg))); 687 } 688 689 TEST_F(AArch64GISelMITest, MatchNeg) { 690 setUp(); 691 if (!TM) 692 return; 693 694 LLT s64 = LLT::scalar(64); 695 auto Zero = B.buildConstant(LLT::scalar(64), 0); 696 auto NegInst = B.buildSub(s64, Zero, Copies[0]); 697 Register NegatedReg; 698 699 // Match: G_SUB = 0, %Reg 700 EXPECT_TRUE(mi_match(NegInst.getReg(0), *MRI, m_Neg(m_Reg(NegatedReg)))); 701 EXPECT_EQ(NegatedReg, Copies[0]); 702 703 // Don't match: G_SUB = %Reg, 0 704 auto NotNegInst1 = B.buildSub(s64, Copies[0], Zero); 705 EXPECT_FALSE(mi_match(NotNegInst1.getReg(0), *MRI, m_Neg(m_Reg(NegatedReg)))); 706 707 // Don't match: G_SUB = 42, %Reg 708 auto FortyTwo = B.buildConstant(LLT::scalar(64), 42); 709 auto NotNegInst2 = B.buildSub(s64, FortyTwo, Copies[0]); 710 EXPECT_FALSE(mi_match(NotNegInst2.getReg(0), *MRI, m_Neg(m_Reg(NegatedReg)))); 711 712 // Complex testcase. 713 // %sub = G_SUB = 0, %negated_reg 714 // %add = G_ADD = %x, %sub 715 auto AddInst = B.buildAdd(s64, Copies[1], NegInst); 716 NegatedReg = Register(); 717 EXPECT_TRUE(mi_match(AddInst.getReg(2), *MRI, m_Neg(m_Reg(NegatedReg)))); 718 EXPECT_EQ(NegatedReg, Copies[0]); 719 } 720 721 TEST_F(AArch64GISelMITest, MatchNot) { 722 setUp(); 723 if (!TM) 724 return; 725 726 LLT s64 = LLT::scalar(64); 727 auto AllOnes = B.buildConstant(LLT::scalar(64), -1); 728 auto NotInst1 = B.buildXor(s64, Copies[0], AllOnes); 729 Register NotReg; 730 731 // Match: G_XOR %NotReg, -1 732 EXPECT_TRUE(mi_match(NotInst1.getReg(0), *MRI, m_Not(m_Reg(NotReg)))); 733 EXPECT_EQ(NotReg, Copies[0]); 734 735 // Match: G_XOR -1, %NotReg 736 auto NotInst2 = B.buildXor(s64, AllOnes, Copies[1]); 737 EXPECT_TRUE(mi_match(NotInst2.getReg(0), *MRI, m_Not(m_Reg(NotReg)))); 738 EXPECT_EQ(NotReg, Copies[1]); 739 740 // Don't match: G_XOR %NotReg, 42 741 auto FortyTwo = B.buildConstant(LLT::scalar(64), 42); 742 auto WrongCst = B.buildXor(s64, Copies[0], FortyTwo); 743 EXPECT_FALSE(mi_match(WrongCst.getReg(0), *MRI, m_Not(m_Reg(NotReg)))); 744 745 // Complex testcase. 746 // %xor = G_XOR %NotReg, -1 747 // %add = G_ADD %x, %xor 748 auto AddInst = B.buildAdd(s64, Copies[1], NotInst1); 749 NotReg = Register(); 750 EXPECT_TRUE(mi_match(AddInst.getReg(2), *MRI, m_Not(m_Reg(NotReg)))); 751 EXPECT_EQ(NotReg, Copies[0]); 752 } 753 } // namespace 754 755 int main(int argc, char **argv) { 756 ::testing::InitGoogleTest(&argc, argv); 757 initLLVM(); 758 return RUN_ALL_TESTS(); 759 } 760