1 //===- ValueTrackingTest.cpp - ValueTracking tests ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/ValueTracking.h"
10 #include "llvm/Analysis/AssumptionCache.h"
11 #include "llvm/AsmParser/Parser.h"
12 #include "llvm/IR/ConstantRange.h"
13 #include "llvm/IR/Dominators.h"
14 #include "llvm/IR/Function.h"
15 #include "llvm/IR/InstIterator.h"
16 #include "llvm/IR/Instructions.h"
17 #include "llvm/IR/LLVMContext.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/KnownBits.h"
21 #include "llvm/Support/SourceMgr.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include "gtest/gtest.h"
24 
25 using namespace llvm;
26 
27 namespace {
28 
29 static Instruction *findInstructionByNameOrNull(Function *F, StringRef Name) {
30   for (Instruction &I : instructions(F))
31     if (I.getName() == Name)
32       return &I;
33 
34   return nullptr;
35 }
36 
37 static Instruction &findInstructionByName(Function *F, StringRef Name) {
38   auto *I = findInstructionByNameOrNull(F, Name);
39   if (I)
40     return *I;
41 
42   llvm_unreachable("Expected value not found");
43 }
44 
45 class ValueTrackingTest : public testing::Test {
46 protected:
47   std::unique_ptr<Module> parseModule(StringRef Assembly) {
48     SMDiagnostic Error;
49     std::unique_ptr<Module> M = parseAssemblyString(Assembly, Error, Context);
50 
51     std::string errMsg;
52     raw_string_ostream os(errMsg);
53     Error.print("", os);
54     EXPECT_TRUE(M) << os.str();
55 
56     return M;
57   }
58 
59   void parseAssembly(StringRef Assembly) {
60     M = parseModule(Assembly);
61     ASSERT_TRUE(M);
62 
63     F = M->getFunction("test");
64     ASSERT_TRUE(F) << "Test must have a function @test";
65     if (!F)
66       return;
67 
68     A = findInstructionByNameOrNull(F, "A");
69     ASSERT_TRUE(A) << "@test must have an instruction %A";
70     A2 = findInstructionByNameOrNull(F, "A2");
71     A3 = findInstructionByNameOrNull(F, "A3");
72     A4 = findInstructionByNameOrNull(F, "A4");
73 
74     CxtI = findInstructionByNameOrNull(F, "CxtI");
75     CxtI2 = findInstructionByNameOrNull(F, "CxtI2");
76     CxtI3 = findInstructionByNameOrNull(F, "CxtI3");
77   }
78 
79   LLVMContext Context;
80   std::unique_ptr<Module> M;
81   Function *F = nullptr;
82   Instruction *A = nullptr;
83   // Instructions (optional)
84   Instruction *A2 = nullptr, *A3 = nullptr, *A4 = nullptr;
85 
86   // Context instructions (optional)
87   Instruction *CxtI = nullptr, *CxtI2 = nullptr, *CxtI3 = nullptr;
88 };
89 
90 class MatchSelectPatternTest : public ValueTrackingTest {
91 protected:
92   void expectPattern(const SelectPatternResult &P) {
93     Value *LHS, *RHS;
94     Instruction::CastOps CastOp;
95     SelectPatternResult R = matchSelectPattern(A, LHS, RHS, &CastOp);
96     EXPECT_EQ(P.Flavor, R.Flavor);
97     EXPECT_EQ(P.NaNBehavior, R.NaNBehavior);
98     EXPECT_EQ(P.Ordered, R.Ordered);
99   }
100 };
101 
102 class ComputeKnownBitsTest : public ValueTrackingTest {
103 protected:
104   void expectKnownBits(uint64_t Zero, uint64_t One) {
105     auto Known = computeKnownBits(A, M->getDataLayout());
106     ASSERT_FALSE(Known.hasConflict());
107     EXPECT_EQ(Known.One.getZExtValue(), One);
108     EXPECT_EQ(Known.Zero.getZExtValue(), Zero);
109   }
110 };
111 
112 }
113 
114 TEST_F(MatchSelectPatternTest, SimpleFMin) {
115   parseAssembly(
116       "define float @test(float %a) {\n"
117       "  %1 = fcmp ult float %a, 5.0\n"
118       "  %A = select i1 %1, float %a, float 5.0\n"
119       "  ret float %A\n"
120       "}\n");
121   expectPattern({SPF_FMINNUM, SPNB_RETURNS_NAN, false});
122 }
123 
124 TEST_F(MatchSelectPatternTest, SimpleFMax) {
125   parseAssembly(
126       "define float @test(float %a) {\n"
127       "  %1 = fcmp ogt float %a, 5.0\n"
128       "  %A = select i1 %1, float %a, float 5.0\n"
129       "  ret float %A\n"
130       "}\n");
131   expectPattern({SPF_FMAXNUM, SPNB_RETURNS_OTHER, true});
132 }
133 
134 TEST_F(MatchSelectPatternTest, SwappedFMax) {
135   parseAssembly(
136       "define float @test(float %a) {\n"
137       "  %1 = fcmp olt float 5.0, %a\n"
138       "  %A = select i1 %1, float %a, float 5.0\n"
139       "  ret float %A\n"
140       "}\n");
141   expectPattern({SPF_FMAXNUM, SPNB_RETURNS_OTHER, false});
142 }
143 
144 TEST_F(MatchSelectPatternTest, SwappedFMax2) {
145   parseAssembly(
146       "define float @test(float %a) {\n"
147       "  %1 = fcmp olt float %a, 5.0\n"
148       "  %A = select i1 %1, float 5.0, float %a\n"
149       "  ret float %A\n"
150       "}\n");
151   expectPattern({SPF_FMAXNUM, SPNB_RETURNS_NAN, false});
152 }
153 
154 TEST_F(MatchSelectPatternTest, SwappedFMax3) {
155   parseAssembly(
156       "define float @test(float %a) {\n"
157       "  %1 = fcmp ult float %a, 5.0\n"
158       "  %A = select i1 %1, float 5.0, float %a\n"
159       "  ret float %A\n"
160       "}\n");
161   expectPattern({SPF_FMAXNUM, SPNB_RETURNS_OTHER, true});
162 }
163 
164 TEST_F(MatchSelectPatternTest, FastFMin) {
165   parseAssembly(
166       "define float @test(float %a) {\n"
167       "  %1 = fcmp nnan olt float %a, 5.0\n"
168       "  %A = select i1 %1, float %a, float 5.0\n"
169       "  ret float %A\n"
170       "}\n");
171   expectPattern({SPF_FMINNUM, SPNB_RETURNS_ANY, false});
172 }
173 
174 TEST_F(MatchSelectPatternTest, FMinConstantZero) {
175   parseAssembly(
176       "define float @test(float %a) {\n"
177       "  %1 = fcmp ole float %a, 0.0\n"
178       "  %A = select i1 %1, float %a, float 0.0\n"
179       "  ret float %A\n"
180       "}\n");
181   // This shouldn't be matched, as %a could be -0.0.
182   expectPattern({SPF_UNKNOWN, SPNB_NA, false});
183 }
184 
185 TEST_F(MatchSelectPatternTest, FMinConstantZeroNsz) {
186   parseAssembly(
187       "define float @test(float %a) {\n"
188       "  %1 = fcmp nsz ole float %a, 0.0\n"
189       "  %A = select i1 %1, float %a, float 0.0\n"
190       "  ret float %A\n"
191       "}\n");
192   // But this should be, because we've ignored signed zeroes.
193   expectPattern({SPF_FMINNUM, SPNB_RETURNS_OTHER, true});
194 }
195 
196 TEST_F(MatchSelectPatternTest, FMinMismatchConstantZero1) {
197   parseAssembly(
198       "define float @test(float %a) {\n"
199       "  %1 = fcmp olt float -0.0, %a\n"
200       "  %A = select i1 %1, float 0.0, float %a\n"
201       "  ret float %A\n"
202       "}\n");
203   // The sign of zero doesn't matter in fcmp.
204   expectPattern({SPF_FMINNUM, SPNB_RETURNS_NAN, true});
205 }
206 
207 TEST_F(MatchSelectPatternTest, FMinMismatchConstantZero2) {
208   parseAssembly(
209       "define float @test(float %a) {\n"
210       "  %1 = fcmp ogt float %a, -0.0\n"
211       "  %A = select i1 %1, float 0.0, float %a\n"
212       "  ret float %A\n"
213       "}\n");
214   // The sign of zero doesn't matter in fcmp.
215   expectPattern({SPF_FMINNUM, SPNB_RETURNS_NAN, false});
216 }
217 
218 TEST_F(MatchSelectPatternTest, FMinMismatchConstantZero3) {
219   parseAssembly(
220       "define float @test(float %a) {\n"
221       "  %1 = fcmp olt float 0.0, %a\n"
222       "  %A = select i1 %1, float -0.0, float %a\n"
223       "  ret float %A\n"
224       "}\n");
225   // The sign of zero doesn't matter in fcmp.
226   expectPattern({SPF_FMINNUM, SPNB_RETURNS_NAN, true});
227 }
228 
229 TEST_F(MatchSelectPatternTest, FMinMismatchConstantZero4) {
230   parseAssembly(
231       "define float @test(float %a) {\n"
232       "  %1 = fcmp ogt float %a, 0.0\n"
233       "  %A = select i1 %1, float -0.0, float %a\n"
234       "  ret float %A\n"
235       "}\n");
236   // The sign of zero doesn't matter in fcmp.
237   expectPattern({SPF_FMINNUM, SPNB_RETURNS_NAN, false});
238 }
239 
240 TEST_F(MatchSelectPatternTest, FMinMismatchConstantZero5) {
241   parseAssembly(
242       "define float @test(float %a) {\n"
243       "  %1 = fcmp ogt float -0.0, %a\n"
244       "  %A = select i1 %1, float %a, float 0.0\n"
245       "  ret float %A\n"
246       "}\n");
247   // The sign of zero doesn't matter in fcmp.
248   expectPattern({SPF_FMINNUM, SPNB_RETURNS_OTHER, false});
249 }
250 
251 TEST_F(MatchSelectPatternTest, FMinMismatchConstantZero6) {
252   parseAssembly(
253       "define float @test(float %a) {\n"
254       "  %1 = fcmp olt float %a, -0.0\n"
255       "  %A = select i1 %1, float %a, float 0.0\n"
256       "  ret float %A\n"
257       "}\n");
258   // The sign of zero doesn't matter in fcmp.
259   expectPattern({SPF_FMINNUM, SPNB_RETURNS_OTHER, true});
260 }
261 
262 TEST_F(MatchSelectPatternTest, FMinMismatchConstantZero7) {
263   parseAssembly(
264       "define float @test(float %a) {\n"
265       "  %1 = fcmp ogt float 0.0, %a\n"
266       "  %A = select i1 %1, float %a, float -0.0\n"
267       "  ret float %A\n"
268       "}\n");
269   // The sign of zero doesn't matter in fcmp.
270   expectPattern({SPF_FMINNUM, SPNB_RETURNS_OTHER, false});
271 }
272 
273 TEST_F(MatchSelectPatternTest, FMinMismatchConstantZero8) {
274   parseAssembly(
275       "define float @test(float %a) {\n"
276       "  %1 = fcmp olt float %a, 0.0\n"
277       "  %A = select i1 %1, float %a, float -0.0\n"
278       "  ret float %A\n"
279       "}\n");
280   // The sign of zero doesn't matter in fcmp.
281   expectPattern({SPF_FMINNUM, SPNB_RETURNS_OTHER, true});
282 }
283 
284 TEST_F(MatchSelectPatternTest, FMaxMismatchConstantZero1) {
285   parseAssembly(
286       "define float @test(float %a) {\n"
287       "  %1 = fcmp ogt float -0.0, %a\n"
288       "  %A = select i1 %1, float 0.0, float %a\n"
289       "  ret float %A\n"
290       "}\n");
291   // The sign of zero doesn't matter in fcmp.
292   expectPattern({SPF_FMAXNUM, SPNB_RETURNS_NAN, true});
293 }
294 
295 TEST_F(MatchSelectPatternTest, FMaxMismatchConstantZero2) {
296   parseAssembly(
297       "define float @test(float %a) {\n"
298       "  %1 = fcmp olt float %a, -0.0\n"
299       "  %A = select i1 %1, float 0.0, float %a\n"
300       "  ret float %A\n"
301       "}\n");
302   // The sign of zero doesn't matter in fcmp.
303   expectPattern({SPF_FMAXNUM, SPNB_RETURNS_NAN, false});
304 }
305 
306 TEST_F(MatchSelectPatternTest, FMaxMismatchConstantZero3) {
307   parseAssembly(
308       "define float @test(float %a) {\n"
309       "  %1 = fcmp ogt float 0.0, %a\n"
310       "  %A = select i1 %1, float -0.0, float %a\n"
311       "  ret float %A\n"
312       "}\n");
313   // The sign of zero doesn't matter in fcmp.
314   expectPattern({SPF_FMAXNUM, SPNB_RETURNS_NAN, true});
315 }
316 
317 TEST_F(MatchSelectPatternTest, FMaxMismatchConstantZero4) {
318   parseAssembly(
319       "define float @test(float %a) {\n"
320       "  %1 = fcmp olt float %a, 0.0\n"
321       "  %A = select i1 %1, float -0.0, float %a\n"
322       "  ret float %A\n"
323       "}\n");
324   // The sign of zero doesn't matter in fcmp.
325   expectPattern({SPF_FMAXNUM, SPNB_RETURNS_NAN, false});
326 }
327 
328 TEST_F(MatchSelectPatternTest, FMaxMismatchConstantZero5) {
329   parseAssembly(
330       "define float @test(float %a) {\n"
331       "  %1 = fcmp olt float -0.0, %a\n"
332       "  %A = select i1 %1, float %a, float 0.0\n"
333       "  ret float %A\n"
334       "}\n");
335   // The sign of zero doesn't matter in fcmp.
336   expectPattern({SPF_FMAXNUM, SPNB_RETURNS_OTHER, false});
337 }
338 
339 TEST_F(MatchSelectPatternTest, FMaxMismatchConstantZero6) {
340   parseAssembly(
341       "define float @test(float %a) {\n"
342       "  %1 = fcmp ogt float %a, -0.0\n"
343       "  %A = select i1 %1, float %a, float 0.0\n"
344       "  ret float %A\n"
345       "}\n");
346   // The sign of zero doesn't matter in fcmp.
347   expectPattern({SPF_FMAXNUM, SPNB_RETURNS_OTHER, true});
348 }
349 
350 TEST_F(MatchSelectPatternTest, FMaxMismatchConstantZero7) {
351   parseAssembly(
352       "define float @test(float %a) {\n"
353       "  %1 = fcmp olt float 0.0, %a\n"
354       "  %A = select i1 %1, float %a, float -0.0\n"
355       "  ret float %A\n"
356       "}\n");
357   // The sign of zero doesn't matter in fcmp.
358   expectPattern({SPF_FMAXNUM, SPNB_RETURNS_OTHER, false});
359 }
360 
361 TEST_F(MatchSelectPatternTest, FMaxMismatchConstantZero8) {
362   parseAssembly(
363       "define float @test(float %a) {\n"
364       "  %1 = fcmp ogt float %a, 0.0\n"
365       "  %A = select i1 %1, float %a, float -0.0\n"
366       "  ret float %A\n"
367       "}\n");
368   // The sign of zero doesn't matter in fcmp.
369   expectPattern({SPF_FMAXNUM, SPNB_RETURNS_OTHER, true});
370 }
371 
372 TEST_F(MatchSelectPatternTest, FMinMismatchConstantZeroVecUndef) {
373   parseAssembly(
374       "define <2 x float> @test(<2 x float> %a) {\n"
375       "  %1 = fcmp ogt <2 x float> %a, <float -0.0, float -0.0>\n"
376       "  %A = select <2 x i1> %1, <2 x float> <float undef, float 0.0>, <2 x float> %a\n"
377       "  ret <2 x float> %A\n"
378       "}\n");
379   // An undef in a vector constant can not be back-propagated for this analysis.
380   expectPattern({SPF_UNKNOWN, SPNB_NA, false});
381 }
382 
383 TEST_F(MatchSelectPatternTest, FMaxMismatchConstantZeroVecUndef) {
384   parseAssembly(
385       "define <2 x float> @test(<2 x float> %a) {\n"
386       "  %1 = fcmp ogt <2 x float> %a, zeroinitializer\n"
387       "  %A = select <2 x i1> %1, <2 x float> %a, <2 x float> <float -0.0, float undef>\n"
388       "  ret <2 x float> %A\n"
389       "}\n");
390   // An undef in a vector constant can not be back-propagated for this analysis.
391   expectPattern({SPF_UNKNOWN, SPNB_NA, false});
392 }
393 
394 TEST_F(MatchSelectPatternTest, VectorFMinimum) {
395   parseAssembly(
396       "define <4 x float> @test(<4 x float> %a) {\n"
397       "  %1 = fcmp ule <4 x float> %a, \n"
398       "    <float 5.0, float 5.0, float 5.0, float 5.0>\n"
399       "  %A = select <4 x i1> %1, <4 x float> %a,\n"
400       "     <4 x float> <float 5.0, float 5.0, float 5.0, float 5.0>\n"
401       "  ret <4 x float> %A\n"
402       "}\n");
403   // Check that pattern matching works on vectors where each lane has the same
404   // unordered pattern.
405   expectPattern({SPF_FMINNUM, SPNB_RETURNS_NAN, false});
406 }
407 
408 TEST_F(MatchSelectPatternTest, VectorFMinOtherOrdered) {
409   parseAssembly(
410       "define <4 x float> @test(<4 x float> %a) {\n"
411       "  %1 = fcmp ole <4 x float> %a, \n"
412       "    <float 5.0, float 5.0, float 5.0, float 5.0>\n"
413       "  %A = select <4 x i1> %1, <4 x float> %a,\n"
414       "     <4 x float> <float 5.0, float 5.0, float 5.0, float 5.0>\n"
415       "  ret <4 x float> %A\n"
416       "}\n");
417   // Check that pattern matching works on vectors where each lane has the same
418   // ordered pattern.
419   expectPattern({SPF_FMINNUM, SPNB_RETURNS_OTHER, true});
420 }
421 
422 TEST_F(MatchSelectPatternTest, VectorNotFMinimum) {
423   parseAssembly(
424       "define <4 x float> @test(<4 x float> %a) {\n"
425       "  %1 = fcmp ule <4 x float> %a, \n"
426       "    <float 5.0, float 0x7ff8000000000000, float 5.0, float 5.0>\n"
427       "  %A = select <4 x i1> %1, <4 x float> %a,\n"
428       "     <4 x float> <float 5.0, float 0x7ff8000000000000, float 5.0, float "
429       "5.0>\n"
430       "  ret <4 x float> %A\n"
431       "}\n");
432   // The lane that contains a NaN (0x7ff80...) behaves like a
433   // non-NaN-propagating min and the other lines behave like a NaN-propagating
434   // min, so check that neither is returned.
435   expectPattern({SPF_UNKNOWN, SPNB_NA, false});
436 }
437 
438 TEST_F(MatchSelectPatternTest, VectorNotFMinZero) {
439   parseAssembly(
440       "define <4 x float> @test(<4 x float> %a) {\n"
441       "  %1 = fcmp ule <4 x float> %a, \n"
442       "    <float 5.0, float -0.0, float 5.0, float 5.0>\n"
443       "  %A = select <4 x i1> %1, <4 x float> %a,\n"
444       "     <4 x float> <float 5.0, float 0.0, float 5.0, float 5.0>\n"
445       "  ret <4 x float> %A\n"
446       "}\n");
447   // Always selects the second lane of %a if it is positive or negative zero, so
448   // this is stricter than a min.
449   expectPattern({SPF_UNKNOWN, SPNB_NA, false});
450 }
451 
452 TEST_F(MatchSelectPatternTest, DoubleCastU) {
453   parseAssembly(
454       "define i32 @test(i8 %a, i8 %b) {\n"
455       "  %1 = icmp ult i8 %a, %b\n"
456       "  %2 = zext i8 %a to i32\n"
457       "  %3 = zext i8 %b to i32\n"
458       "  %A = select i1 %1, i32 %2, i32 %3\n"
459       "  ret i32 %A\n"
460       "}\n");
461   // We should be able to look through the situation where we cast both operands
462   // to the select.
463   expectPattern({SPF_UMIN, SPNB_NA, false});
464 }
465 
466 TEST_F(MatchSelectPatternTest, DoubleCastS) {
467   parseAssembly(
468       "define i32 @test(i8 %a, i8 %b) {\n"
469       "  %1 = icmp slt i8 %a, %b\n"
470       "  %2 = sext i8 %a to i32\n"
471       "  %3 = sext i8 %b to i32\n"
472       "  %A = select i1 %1, i32 %2, i32 %3\n"
473       "  ret i32 %A\n"
474       "}\n");
475   // We should be able to look through the situation where we cast both operands
476   // to the select.
477   expectPattern({SPF_SMIN, SPNB_NA, false});
478 }
479 
480 TEST_F(MatchSelectPatternTest, DoubleCastBad) {
481   parseAssembly(
482       "define i32 @test(i8 %a, i8 %b) {\n"
483       "  %1 = icmp ult i8 %a, %b\n"
484       "  %2 = zext i8 %a to i32\n"
485       "  %3 = sext i8 %b to i32\n"
486       "  %A = select i1 %1, i32 %2, i32 %3\n"
487       "  ret i32 %A\n"
488       "}\n");
489   // The cast types here aren't the same, so we cannot match an UMIN.
490   expectPattern({SPF_UNKNOWN, SPNB_NA, false});
491 }
492 
493 TEST_F(MatchSelectPatternTest, NotNotSMin) {
494   parseAssembly(
495       "define i8 @test(i8 %a, i8 %b) {\n"
496       "  %cmp = icmp sgt i8 %a, %b\n"
497       "  %an = xor i8 %a, -1\n"
498       "  %bn = xor i8 %b, -1\n"
499       "  %A = select i1 %cmp, i8 %an, i8 %bn\n"
500       "  ret i8 %A\n"
501       "}\n");
502   expectPattern({SPF_SMIN, SPNB_NA, false});
503 }
504 
505 TEST_F(MatchSelectPatternTest, NotNotSMinSwap) {
506   parseAssembly(
507       "define <2 x i8> @test(<2 x i8> %a, <2 x i8> %b) {\n"
508       "  %cmp = icmp slt <2 x i8> %a, %b\n"
509       "  %an = xor <2 x i8> %a, <i8 -1, i8-1>\n"
510       "  %bn = xor <2 x i8> %b, <i8 -1, i8-1>\n"
511       "  %A = select <2 x i1> %cmp, <2 x i8> %bn, <2 x i8> %an\n"
512       "  ret <2 x i8> %A\n"
513       "}\n");
514   expectPattern({SPF_SMIN, SPNB_NA, false});
515 }
516 
517 TEST_F(MatchSelectPatternTest, NotNotSMax) {
518   parseAssembly(
519       "define i8 @test(i8 %a, i8 %b) {\n"
520       "  %cmp = icmp slt i8 %a, %b\n"
521       "  %an = xor i8 %a, -1\n"
522       "  %bn = xor i8 %b, -1\n"
523       "  %A = select i1 %cmp, i8 %an, i8 %bn\n"
524       "  ret i8 %A\n"
525       "}\n");
526   expectPattern({SPF_SMAX, SPNB_NA, false});
527 }
528 
529 TEST_F(MatchSelectPatternTest, NotNotSMaxSwap) {
530   parseAssembly(
531       "define <2 x i8> @test(<2 x i8> %a, <2 x i8> %b) {\n"
532       "  %cmp = icmp sgt <2 x i8> %a, %b\n"
533       "  %an = xor <2 x i8> %a, <i8 -1, i8-1>\n"
534       "  %bn = xor <2 x i8> %b, <i8 -1, i8-1>\n"
535       "  %A = select <2 x i1> %cmp, <2 x i8> %bn, <2 x i8> %an\n"
536       "  ret <2 x i8> %A\n"
537       "}\n");
538   expectPattern({SPF_SMAX, SPNB_NA, false});
539 }
540 
541 TEST_F(MatchSelectPatternTest, NotNotUMin) {
542   parseAssembly(
543       "define <2 x i8> @test(<2 x i8> %a, <2 x i8> %b) {\n"
544       "  %cmp = icmp ugt <2 x i8> %a, %b\n"
545       "  %an = xor <2 x i8> %a, <i8 -1, i8-1>\n"
546       "  %bn = xor <2 x i8> %b, <i8 -1, i8-1>\n"
547       "  %A = select <2 x i1> %cmp, <2 x i8> %an, <2 x i8> %bn\n"
548       "  ret <2 x i8> %A\n"
549       "}\n");
550   expectPattern({SPF_UMIN, SPNB_NA, false});
551 }
552 
553 TEST_F(MatchSelectPatternTest, NotNotUMinSwap) {
554   parseAssembly(
555       "define i8 @test(i8 %a, i8 %b) {\n"
556       "  %cmp = icmp ult i8 %a, %b\n"
557       "  %an = xor i8 %a, -1\n"
558       "  %bn = xor i8 %b, -1\n"
559       "  %A = select i1 %cmp, i8 %bn, i8 %an\n"
560       "  ret i8 %A\n"
561       "}\n");
562   expectPattern({SPF_UMIN, SPNB_NA, false});
563 }
564 
565 TEST_F(MatchSelectPatternTest, NotNotUMax) {
566   parseAssembly(
567       "define <2 x i8> @test(<2 x i8> %a, <2 x i8> %b) {\n"
568       "  %cmp = icmp ult <2 x i8> %a, %b\n"
569       "  %an = xor <2 x i8> %a, <i8 -1, i8-1>\n"
570       "  %bn = xor <2 x i8> %b, <i8 -1, i8-1>\n"
571       "  %A = select <2 x i1> %cmp, <2 x i8> %an, <2 x i8> %bn\n"
572       "  ret <2 x i8> %A\n"
573       "}\n");
574   expectPattern({SPF_UMAX, SPNB_NA, false});
575 }
576 
577 TEST_F(MatchSelectPatternTest, NotNotUMaxSwap) {
578   parseAssembly(
579       "define i8 @test(i8 %a, i8 %b) {\n"
580       "  %cmp = icmp ugt i8 %a, %b\n"
581       "  %an = xor i8 %a, -1\n"
582       "  %bn = xor i8 %b, -1\n"
583       "  %A = select i1 %cmp, i8 %bn, i8 %an\n"
584       "  ret i8 %A\n"
585       "}\n");
586   expectPattern({SPF_UMAX, SPNB_NA, false});
587 }
588 
589 TEST_F(MatchSelectPatternTest, NotNotEq) {
590   parseAssembly(
591       "define i8 @test(i8 %a, i8 %b) {\n"
592       "  %cmp = icmp eq i8 %a, %b\n"
593       "  %an = xor i8 %a, -1\n"
594       "  %bn = xor i8 %b, -1\n"
595       "  %A = select i1 %cmp, i8 %bn, i8 %an\n"
596       "  ret i8 %A\n"
597       "}\n");
598   expectPattern({SPF_UNKNOWN, SPNB_NA, false});
599 }
600 
601 TEST_F(MatchSelectPatternTest, NotNotNe) {
602   parseAssembly(
603       "define i8 @test(i8 %a, i8 %b) {\n"
604       "  %cmp = icmp ne i8 %a, %b\n"
605       "  %an = xor i8 %a, -1\n"
606       "  %bn = xor i8 %b, -1\n"
607       "  %A = select i1 %cmp, i8 %bn, i8 %an\n"
608       "  ret i8 %A\n"
609       "}\n");
610   expectPattern({SPF_UNKNOWN, SPNB_NA, false});
611 }
612 
613 TEST(ValueTracking, GuaranteedToTransferExecutionToSuccessor) {
614   StringRef Assembly =
615       "declare void @nounwind_readonly(i32*) nounwind readonly "
616       "declare void @nounwind_argmemonly(i32*) nounwind argmemonly "
617       "declare void @nounwind_willreturn(i32*) nounwind willreturn "
618       "declare void @throws_but_readonly(i32*) readonly "
619       "declare void @throws_but_argmemonly(i32*) argmemonly "
620       "declare void @throws_but_willreturn(i32*) willreturn "
621       " "
622       "declare void @unknown(i32*) "
623       " "
624       "define void @f(i32* %p) { "
625       "  call void @nounwind_readonly(i32* %p) "
626       "  call void @nounwind_argmemonly(i32* %p) "
627       "  call void @nounwind_willreturn(i32* %p)"
628       "  call void @throws_but_readonly(i32* %p) "
629       "  call void @throws_but_argmemonly(i32* %p) "
630       "  call void @throws_but_willreturn(i32* %p) "
631       "  call void @unknown(i32* %p) nounwind readonly "
632       "  call void @unknown(i32* %p) nounwind argmemonly "
633       "  call void @unknown(i32* %p) nounwind willreturn "
634       "  call void @unknown(i32* %p) readonly "
635       "  call void @unknown(i32* %p) argmemonly "
636       "  call void @unknown(i32* %p) willreturn "
637       "  ret void "
638       "} ";
639 
640   LLVMContext Context;
641   SMDiagnostic Error;
642   auto M = parseAssemblyString(Assembly, Error, Context);
643   assert(M && "Bad assembly?");
644 
645   auto *F = M->getFunction("f");
646   assert(F && "Bad assembly?");
647 
648   auto &BB = F->getEntryBlock();
649   bool ExpectedAnswers[] = {
650       false, // call void @nounwind_readonly(i32* %p)
651       false, // call void @nounwind_argmemonly(i32* %p)
652       true,  // call void @nounwind_willreturn(i32* %p)
653       false, // call void @throws_but_readonly(i32* %p)
654       false, // call void @throws_but_argmemonly(i32* %p)
655       false, // call void @throws_but_willreturn(i32* %p)
656       false, // call void @unknown(i32* %p) nounwind readonly
657       false, // call void @unknown(i32* %p) nounwind argmemonly
658       true,  // call void @unknown(i32* %p) nounwind willreturn
659       false, // call void @unknown(i32* %p) readonly
660       false, // call void @unknown(i32* %p) argmemonly
661       false, // call void @unknown(i32* %p) willreturn
662       false, // ret void
663   };
664 
665   int Index = 0;
666   for (auto &I : BB) {
667     EXPECT_EQ(isGuaranteedToTransferExecutionToSuccessor(&I),
668               ExpectedAnswers[Index])
669         << "Incorrect answer at instruction " << Index << " = " << I;
670     Index++;
671   }
672 }
673 
674 TEST_F(ValueTrackingTest, ComputeNumSignBits_PR32045) {
675   parseAssembly(
676       "define i32 @test(i32 %a) {\n"
677       "  %A = ashr i32 %a, -1\n"
678       "  ret i32 %A\n"
679       "}\n");
680   EXPECT_EQ(ComputeNumSignBits(A, M->getDataLayout()), 1u);
681 }
682 
683 // No guarantees for canonical IR in this analysis, so this just bails out.
684 TEST_F(ValueTrackingTest, ComputeNumSignBits_Shuffle) {
685   parseAssembly(
686       "define <2 x i32> @test() {\n"
687       "  %A = shufflevector <2 x i32> undef, <2 x i32> undef, <2 x i32> <i32 0, i32 0>\n"
688       "  ret <2 x i32> %A\n"
689       "}\n");
690   EXPECT_EQ(ComputeNumSignBits(A, M->getDataLayout()), 1u);
691 }
692 
693 // No guarantees for canonical IR in this analysis, so a shuffle element that
694 // references an undef value means this can't return any extra information.
695 TEST_F(ValueTrackingTest, ComputeNumSignBits_Shuffle2) {
696   parseAssembly(
697       "define <2 x i32> @test(<2 x i1> %x) {\n"
698       "  %sext = sext <2 x i1> %x to <2 x i32>\n"
699       "  %A = shufflevector <2 x i32> %sext, <2 x i32> undef, <2 x i32> <i32 0, i32 2>\n"
700       "  ret <2 x i32> %A\n"
701       "}\n");
702   EXPECT_EQ(ComputeNumSignBits(A, M->getDataLayout()), 1u);
703 }
704 
705 TEST_F(ValueTrackingTest, impliesPoisonTest_Identity) {
706   parseAssembly("define void @test(i32 %x, i32 %y) {\n"
707                 "  %A = add i32 %x, %y\n"
708                 "  ret void\n"
709                 "}");
710   EXPECT_TRUE(impliesPoison(A, A));
711 }
712 
713 TEST_F(ValueTrackingTest, impliesPoisonTest_ICmp) {
714   parseAssembly("define void @test(i32 %x) {\n"
715                 "  %A2 = icmp eq i32 %x, 0\n"
716                 "  %A = icmp eq i32 %x, 1\n"
717                 "  ret void\n"
718                 "}");
719   EXPECT_TRUE(impliesPoison(A2, A));
720 }
721 
722 TEST_F(ValueTrackingTest, impliesPoisonTest_ICmpUnknown) {
723   parseAssembly("define void @test(i32 %x, i32 %y) {\n"
724                 "  %A2 = icmp eq i32 %x, %y\n"
725                 "  %A = icmp eq i32 %x, 1\n"
726                 "  ret void\n"
727                 "}");
728   EXPECT_FALSE(impliesPoison(A2, A));
729 }
730 
731 TEST_F(ValueTrackingTest, impliesPoisonTest_AddNswOkay) {
732   parseAssembly("define void @test(i32 %x) {\n"
733                 "  %A2 = add nsw i32 %x, 1\n"
734                 "  %A = add i32 %A2, 1\n"
735                 "  ret void\n"
736                 "}");
737   EXPECT_TRUE(impliesPoison(A2, A));
738 }
739 
740 TEST_F(ValueTrackingTest, impliesPoisonTest_AddNswOkay2) {
741   parseAssembly("define void @test(i32 %x) {\n"
742                 "  %A2 = add i32 %x, 1\n"
743                 "  %A = add nsw i32 %A2, 1\n"
744                 "  ret void\n"
745                 "}");
746   EXPECT_TRUE(impliesPoison(A2, A));
747 }
748 
749 TEST_F(ValueTrackingTest, impliesPoisonTest_AddNsw) {
750   parseAssembly("define void @test(i32 %x) {\n"
751                 "  %A2 = add nsw i32 %x, 1\n"
752                 "  %A = add i32 %x, 1\n"
753                 "  ret void\n"
754                 "}");
755   EXPECT_FALSE(impliesPoison(A2, A));
756 }
757 
758 TEST_F(ValueTrackingTest, impliesPoisonTest_Cmp) {
759   parseAssembly("define void @test(i32 %x, i32 %y, i1 %c) {\n"
760                 "  %A2 = icmp eq i32 %x, %y\n"
761                 "  %A0 = icmp ult i32 %x, %y\n"
762                 "  %A = or i1 %A0, %c\n"
763                 "  ret void\n"
764                 "}");
765   EXPECT_TRUE(impliesPoison(A2, A));
766 }
767 
768 TEST_F(ValueTrackingTest, impliesPoisonTest_FCmpFMF) {
769   parseAssembly("define void @test(float %x, float %y, i1 %c) {\n"
770                 "  %A2 = fcmp nnan oeq float %x, %y\n"
771                 "  %A0 = fcmp olt float %x, %y\n"
772                 "  %A = or i1 %A0, %c\n"
773                 "  ret void\n"
774                 "}");
775   EXPECT_FALSE(impliesPoison(A2, A));
776 }
777 
778 TEST_F(ValueTrackingTest, impliesPoisonTest_AddSubSameOps) {
779   parseAssembly("define void @test(i32 %x, i32 %y, i1 %c) {\n"
780                 "  %A2 = add i32 %x, %y\n"
781                 "  %A = sub i32 %x, %y\n"
782                 "  ret void\n"
783                 "}");
784   EXPECT_TRUE(impliesPoison(A2, A));
785 }
786 
787 TEST_F(ValueTrackingTest, impliesPoisonTest_MaskCmp) {
788   parseAssembly("define void @test(i32 %x, i32 %y, i1 %c) {\n"
789                 "  %M2 = and i32 %x, 7\n"
790                 "  %A2 = icmp eq i32 %M2, 1\n"
791                 "  %M = and i32 %x, 15\n"
792                 "  %A = icmp eq i32 %M, 3\n"
793                 "  ret void\n"
794                 "}");
795   EXPECT_TRUE(impliesPoison(A2, A));
796 }
797 
798 TEST_F(ValueTrackingTest, ComputeNumSignBits_Shuffle_Pointers) {
799   parseAssembly(
800       "define <2 x i32*> @test(<2 x i32*> %x) {\n"
801       "  %A = shufflevector <2 x i32*> zeroinitializer, <2 x i32*> undef, <2 x i32> zeroinitializer\n"
802       "  ret <2 x i32*> %A\n"
803       "}\n");
804   EXPECT_EQ(ComputeNumSignBits(A, M->getDataLayout()), 64u);
805 }
806 
807 TEST(ValueTracking, propagatesPoison) {
808   std::string AsmHead =
809       "declare i32 @g(i32)\n"
810       "declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)\n"
811       "declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)\n"
812       "declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)\n"
813       "declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)\n"
814       "declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)\n"
815       "declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)\n"
816       "define void @f(i32 %x, i32 %y, float %fx, float %fy, "
817       "i1 %cond, i8* %p) {\n";
818   std::string AsmTail = "  ret void\n}";
819   // (propagates poison?, IR instruction)
820   SmallVector<std::pair<bool, std::string>, 32> Data = {
821       {true, "add i32 %x, %y"},
822       {true, "add nsw nuw i32 %x, %y"},
823       {true, "ashr i32 %x, %y"},
824       {true, "lshr exact i32 %x, 31"},
825       {true, "fcmp oeq float %fx, %fy"},
826       {true, "icmp eq i32 %x, %y"},
827       {true, "getelementptr i8, i8* %p, i32 %x"},
828       {true, "getelementptr inbounds i8, i8* %p, i32 %x"},
829       {true, "bitcast float %fx to i32"},
830       {false, "select i1 %cond, i32 %x, i32 %y"},
831       {false, "freeze i32 %x"},
832       {true, "udiv i32 %x, %y"},
833       {true, "urem i32 %x, %y"},
834       {true, "sdiv exact i32 %x, %y"},
835       {true, "srem i32 %x, %y"},
836       {false, "call i32 @g(i32 %x)"},
837       {true, "call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %x, i32 %y)"},
838       {true, "call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %x, i32 %y)"},
839       {true, "call {i32, i1} @llvm.smul.with.overflow.i32(i32 %x, i32 %y)"},
840       {true, "call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)"},
841       {true, "call {i32, i1} @llvm.usub.with.overflow.i32(i32 %x, i32 %y)"},
842       {true, "call {i32, i1} @llvm.umul.with.overflow.i32(i32 %x, i32 %y)"}};
843 
844   std::string AssemblyStr = AsmHead;
845   for (auto &Itm : Data)
846     AssemblyStr += Itm.second + "\n";
847   AssemblyStr += AsmTail;
848 
849   LLVMContext Context;
850   SMDiagnostic Error;
851   auto M = parseAssemblyString(AssemblyStr, Error, Context);
852   assert(M && "Bad assembly?");
853 
854   auto *F = M->getFunction("f");
855   assert(F && "Bad assembly?");
856 
857   auto &BB = F->getEntryBlock();
858 
859   int Index = 0;
860   for (auto &I : BB) {
861     if (isa<ReturnInst>(&I))
862       break;
863     EXPECT_EQ(propagatesPoison(cast<Operator>(&I)), Data[Index].first)
864         << "Incorrect answer at instruction " << Index << " = " << I;
865     Index++;
866   }
867 }
868 
869 TEST_F(ValueTrackingTest, programUndefinedIfPoison) {
870   parseAssembly("declare i32 @any_num()"
871                 "define void @test(i32 %mask) {\n"
872                 "  %A = call i32 @any_num()\n"
873                 "  %B = or i32 %A, %mask\n"
874                 "  udiv i32 1, %B"
875                 "  ret void\n"
876                 "}\n");
877   // If %A was poison, udiv raises UB regardless of %mask's value
878   EXPECT_EQ(programUndefinedIfPoison(A), true);
879 }
880 
881 TEST_F(ValueTrackingTest, programUndefinedIfUndefOrPoison) {
882   parseAssembly("declare i32 @any_num()"
883                 "define void @test(i32 %mask) {\n"
884                 "  %A = call i32 @any_num()\n"
885                 "  %B = or i32 %A, %mask\n"
886                 "  udiv i32 1, %B"
887                 "  ret void\n"
888                 "}\n");
889   // If %A was undef and %mask was 1, udiv does not raise UB
890   EXPECT_EQ(programUndefinedIfUndefOrPoison(A), false);
891 }
892 
893 TEST_F(ValueTrackingTest, isGuaranteedNotToBePoison_exploitBranchCond) {
894   parseAssembly("declare i1 @any_bool()"
895                 "define void @test(i1 %y) {\n"
896                 "  %A = call i1 @any_bool()\n"
897                 "  %cond = and i1 %A, %y\n"
898                 "  br i1 %cond, label %BB1, label %BB2\n"
899                 "BB1:\n"
900                 "  ret void\n"
901                 "BB2:\n"
902                 "  ret void\n"
903                 "}\n");
904   DominatorTree DT(*F);
905   for (auto &BB : *F) {
906     if (&BB == &F->getEntryBlock())
907       continue;
908 
909     EXPECT_EQ(isGuaranteedNotToBePoison(A, nullptr, BB.getTerminator(), &DT),
910               true)
911         << "isGuaranteedNotToBePoison does not hold at " << *BB.getTerminator();
912   }
913 }
914 
915 TEST_F(ValueTrackingTest, isGuaranteedNotToBePoison_phi) {
916   parseAssembly("declare i32 @any_i32(i32)"
917                 "define void @test() {\n"
918                 "ENTRY:\n"
919                 "  br label %LOOP\n"
920                 "LOOP:\n"
921                 "  %A = phi i32 [0, %ENTRY], [%A.next, %NEXT]\n"
922                 "  %A.next = call i32 @any_i32(i32 %A)\n"
923                 "  %cond = icmp eq i32 %A.next, 0\n"
924                 "  br i1 %cond, label %NEXT, label %EXIT\n"
925                 "NEXT:\n"
926                 "  br label %LOOP\n"
927                 "EXIT:\n"
928                 "  ret void\n"
929                 "}\n");
930   DominatorTree DT(*F);
931   for (auto &BB : *F) {
932     if (BB.getName() == "LOOP") {
933       EXPECT_EQ(isGuaranteedNotToBePoison(A, nullptr, A, &DT), true)
934           << "isGuaranteedNotToBePoison does not hold";
935     }
936   }
937 }
938 
939 TEST_F(ValueTrackingTest, isGuaranteedNotToBeUndefOrPoison) {
940   parseAssembly("declare void @f(i32 noundef)"
941                 "define void @test(i32 %x) {\n"
942                 "  %A = bitcast i32 %x to i32\n"
943                 "  call void @f(i32 noundef %x)\n"
944                 "  ret void\n"
945                 "}\n");
946   EXPECT_EQ(isGuaranteedNotToBeUndefOrPoison(A), true);
947   EXPECT_EQ(isGuaranteedNotToBeUndefOrPoison(UndefValue::get(IntegerType::get(Context, 8))), false);
948   EXPECT_EQ(isGuaranteedNotToBeUndefOrPoison(PoisonValue::get(IntegerType::get(Context, 8))), false);
949   EXPECT_EQ(isGuaranteedNotToBePoison(UndefValue::get(IntegerType::get(Context, 8))), true);
950   EXPECT_EQ(isGuaranteedNotToBePoison(PoisonValue::get(IntegerType::get(Context, 8))), false);
951 
952   Type *Int32Ty = Type::getInt32Ty(Context);
953   Constant *CU = UndefValue::get(Int32Ty);
954   Constant *CP = PoisonValue::get(Int32Ty);
955   Constant *C1 = ConstantInt::get(Int32Ty, 1);
956   Constant *C2 = ConstantInt::get(Int32Ty, 2);
957 
958   {
959     Constant *V1 = ConstantVector::get({C1, C2});
960     EXPECT_TRUE(isGuaranteedNotToBeUndefOrPoison(V1));
961     EXPECT_TRUE(isGuaranteedNotToBePoison(V1));
962   }
963 
964   {
965     Constant *V2 = ConstantVector::get({C1, CU});
966     EXPECT_FALSE(isGuaranteedNotToBeUndefOrPoison(V2));
967     EXPECT_TRUE(isGuaranteedNotToBePoison(V2));
968   }
969 
970   {
971     Constant *V3 = ConstantVector::get({C1, CP});
972     EXPECT_FALSE(isGuaranteedNotToBeUndefOrPoison(V3));
973     EXPECT_FALSE(isGuaranteedNotToBePoison(V3));
974   }
975 }
976 
977 TEST_F(ValueTrackingTest, isGuaranteedNotToBeUndefOrPoison_assume) {
978   parseAssembly("declare i1 @f_i1()\n"
979                 "declare i32 @f_i32()\n"
980                 "declare void @llvm.assume(i1)\n"
981                 "define void @test() {\n"
982                 "  %A = call i32 @f_i32()\n"
983                 "  %cond = call i1 @f_i1()\n"
984                 "  %CxtI = add i32 0, 0\n"
985                 "  br i1 %cond, label %BB1, label %EXIT\n"
986                 "BB1:\n"
987                 "  %CxtI2 = add i32 0, 0\n"
988                 "  %cond2 = call i1 @f_i1()\n"
989                 "  call void @llvm.assume(i1 true) [ \"noundef\"(i32 %A) ]\n"
990                 "  br i1 %cond2, label %BB2, label %EXIT\n"
991                 "BB2:\n"
992                 "  %CxtI3 = add i32 0, 0\n"
993                 "  ret void\n"
994                 "EXIT:\n"
995                 "  ret void\n"
996                 "}");
997   AssumptionCache AC(*F);
998   DominatorTree DT(*F);
999   EXPECT_FALSE(isGuaranteedNotToBeUndefOrPoison(A, &AC, CxtI, &DT));
1000   EXPECT_FALSE(isGuaranteedNotToBeUndefOrPoison(A, &AC, CxtI2, &DT));
1001   EXPECT_TRUE(isGuaranteedNotToBeUndefOrPoison(A, &AC, CxtI3, &DT));
1002 }
1003 
1004 TEST(ValueTracking, canCreatePoisonOrUndef) {
1005   std::string AsmHead =
1006       "@s = external dso_local global i32, align 1\n"
1007       "declare i32 @g(i32)\n"
1008       "declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)\n"
1009       "declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)\n"
1010       "declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)\n"
1011       "declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)\n"
1012       "declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)\n"
1013       "declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)\n"
1014       "define void @f(i32 %x, i32 %y, float %fx, float %fy, i1 %cond, "
1015       "<4 x i32> %vx, <4 x i32> %vx2, <vscale x 4 x i32> %svx, i8* %p) {\n";
1016   std::string AsmTail = "  ret void\n}";
1017   // (can create poison?, can create undef?, IR instruction)
1018   SmallVector<std::pair<std::pair<bool, bool>, std::string>, 32> Data = {
1019       {{false, false}, "add i32 %x, %y"},
1020       {{true, false}, "add nsw nuw i32 %x, %y"},
1021       {{true, false}, "shl i32 %x, %y"},
1022       {{true, false}, "shl <4 x i32> %vx, %vx2"},
1023       {{true, false}, "shl nsw i32 %x, %y"},
1024       {{true, false}, "shl nsw <4 x i32> %vx, <i32 0, i32 1, i32 2, i32 3>"},
1025       {{false, false}, "shl i32 %x, 31"},
1026       {{true, false}, "shl i32 %x, 32"},
1027       {{false, false}, "shl <4 x i32> %vx, <i32 0, i32 1, i32 2, i32 3>"},
1028       {{true, false}, "shl <4 x i32> %vx, <i32 0, i32 1, i32 2, i32 32>"},
1029       {{true, false}, "ashr i32 %x, %y"},
1030       {{true, false}, "ashr exact i32 %x, %y"},
1031       {{false, false}, "ashr i32 %x, 31"},
1032       {{true, false}, "ashr exact i32 %x, 31"},
1033       {{false, false}, "ashr <4 x i32> %vx, <i32 0, i32 1, i32 2, i32 3>"},
1034       {{true, false}, "ashr <4 x i32> %vx, <i32 0, i32 1, i32 2, i32 32>"},
1035       {{true, false}, "ashr exact <4 x i32> %vx, <i32 0, i32 1, i32 2, i32 3>"},
1036       {{true, false}, "lshr i32 %x, %y"},
1037       {{true, false}, "lshr exact i32 %x, 31"},
1038       {{false, false}, "udiv i32 %x, %y"},
1039       {{true, false}, "udiv exact i32 %x, %y"},
1040       {{false, false}, "getelementptr i8, i8* %p, i32 %x"},
1041       {{true, false}, "getelementptr inbounds i8, i8* %p, i32 %x"},
1042       {{true, false}, "fneg nnan float %fx"},
1043       {{false, false}, "fneg float %fx"},
1044       {{false, false}, "fadd float %fx, %fy"},
1045       {{true, false}, "fadd nnan float %fx, %fy"},
1046       {{false, false}, "urem i32 %x, %y"},
1047       {{true, false}, "fptoui float %fx to i32"},
1048       {{true, false}, "fptosi float %fx to i32"},
1049       {{false, false}, "bitcast float %fx to i32"},
1050       {{false, false}, "select i1 %cond, i32 %x, i32 %y"},
1051       {{true, false}, "select nnan i1 %cond, float %fx, float %fy"},
1052       {{true, false}, "extractelement <4 x i32> %vx, i32 %x"},
1053       {{false, false}, "extractelement <4 x i32> %vx, i32 3"},
1054       {{true, false}, "extractelement <vscale x 4 x i32> %svx, i32 4"},
1055       {{true, false}, "insertelement <4 x i32> %vx, i32 %x, i32 %y"},
1056       {{false, false}, "insertelement <4 x i32> %vx, i32 %x, i32 3"},
1057       {{true, false}, "insertelement <vscale x 4 x i32> %svx, i32 %x, i32 4"},
1058       {{false, false}, "freeze i32 %x"},
1059       {{false, false},
1060        "shufflevector <4 x i32> %vx, <4 x i32> %vx2, "
1061        "<4 x i32> <i32 0, i32 1, i32 2, i32 3>"},
1062       {{false, true},
1063        "shufflevector <4 x i32> %vx, <4 x i32> %vx2, "
1064        "<4 x i32> <i32 0, i32 1, i32 2, i32 undef>"},
1065       {{false, true},
1066        "shufflevector <vscale x 4 x i32> %svx, "
1067        "<vscale x 4 x i32> %svx, <vscale x 4 x i32> undef"},
1068       {{true, false}, "call i32 @g(i32 %x)"},
1069       {{false, false}, "call noundef i32 @g(i32 %x)"},
1070       {{true, false}, "fcmp nnan oeq float %fx, %fy"},
1071       {{false, false}, "fcmp oeq float %fx, %fy"},
1072       {{true, false},
1073        "ashr <4 x i32> %vx, select (i1 icmp sgt (i32 ptrtoint (i32* @s to "
1074        "i32), i32 1), <4 x i32> zeroinitializer, <4 x i32> <i32 0, i32 1, i32 "
1075        "2, i32 3>)"},
1076       {{false, false},
1077        "call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %x, i32 %y)"},
1078       {{false, false},
1079        "call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %x, i32 %y)"},
1080       {{false, false},
1081        "call {i32, i1} @llvm.smul.with.overflow.i32(i32 %x, i32 %y)"},
1082       {{false, false},
1083        "call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)"},
1084       {{false, false},
1085        "call {i32, i1} @llvm.usub.with.overflow.i32(i32 %x, i32 %y)"},
1086       {{false, false},
1087        "call {i32, i1} @llvm.umul.with.overflow.i32(i32 %x, i32 %y)"}};
1088 
1089   std::string AssemblyStr = AsmHead;
1090   for (auto &Itm : Data)
1091     AssemblyStr += Itm.second + "\n";
1092   AssemblyStr += AsmTail;
1093 
1094   LLVMContext Context;
1095   SMDiagnostic Error;
1096   auto M = parseAssemblyString(AssemblyStr, Error, Context);
1097   assert(M && "Bad assembly?");
1098 
1099   auto *F = M->getFunction("f");
1100   assert(F && "Bad assembly?");
1101 
1102   auto &BB = F->getEntryBlock();
1103 
1104   int Index = 0;
1105   for (auto &I : BB) {
1106     if (isa<ReturnInst>(&I))
1107       break;
1108     bool Poison = Data[Index].first.first;
1109     bool Undef = Data[Index].first.second;
1110     EXPECT_EQ(canCreatePoison(cast<Operator>(&I)), Poison)
1111         << "Incorrect answer of canCreatePoison at instruction " << Index
1112         << " = " << I;
1113     EXPECT_EQ(canCreateUndefOrPoison(cast<Operator>(&I)), Undef || Poison)
1114         << "Incorrect answer of canCreateUndef at instruction " << Index
1115         << " = " << I;
1116     Index++;
1117   }
1118 }
1119 
1120 TEST_F(ValueTrackingTest, computePtrAlignment) {
1121   parseAssembly("declare i1 @f_i1()\n"
1122                 "declare i8* @f_i8p()\n"
1123                 "declare void @llvm.assume(i1)\n"
1124                 "define void @test() {\n"
1125                 "  %A = call i8* @f_i8p()\n"
1126                 "  %cond = call i1 @f_i1()\n"
1127                 "  %CxtI = add i32 0, 0\n"
1128                 "  br i1 %cond, label %BB1, label %EXIT\n"
1129                 "BB1:\n"
1130                 "  %CxtI2 = add i32 0, 0\n"
1131                 "  %cond2 = call i1 @f_i1()\n"
1132                 "  call void @llvm.assume(i1 true) [ \"align\"(i8* %A, i64 16) ]\n"
1133                 "  br i1 %cond2, label %BB2, label %EXIT\n"
1134                 "BB2:\n"
1135                 "  %CxtI3 = add i32 0, 0\n"
1136                 "  ret void\n"
1137                 "EXIT:\n"
1138                 "  ret void\n"
1139                 "}");
1140   AssumptionCache AC(*F);
1141   DominatorTree DT(*F);
1142   DataLayout DL = M->getDataLayout();
1143   EXPECT_EQ(getKnownAlignment(A, DL, CxtI, &AC, &DT), Align(1));
1144   EXPECT_EQ(getKnownAlignment(A, DL, CxtI2, &AC, &DT), Align(1));
1145   EXPECT_EQ(getKnownAlignment(A, DL, CxtI3, &AC, &DT), Align(16));
1146 }
1147 
1148 TEST_F(ComputeKnownBitsTest, ComputeKnownBits) {
1149   parseAssembly(
1150       "define i32 @test(i32 %a, i32 %b) {\n"
1151       "  %ash = mul i32 %a, 8\n"
1152       "  %aad = add i32 %ash, 7\n"
1153       "  %aan = and i32 %aad, 4095\n"
1154       "  %bsh = shl i32 %b, 4\n"
1155       "  %bad = or i32 %bsh, 6\n"
1156       "  %ban = and i32 %bad, 4095\n"
1157       "  %A = mul i32 %aan, %ban\n"
1158       "  ret i32 %A\n"
1159       "}\n");
1160   expectKnownBits(/*zero*/ 4278190085u, /*one*/ 10u);
1161 }
1162 
1163 TEST_F(ComputeKnownBitsTest, ComputeKnownMulBits) {
1164   parseAssembly(
1165       "define i32 @test(i32 %a, i32 %b) {\n"
1166       "  %aa = shl i32 %a, 5\n"
1167       "  %bb = shl i32 %b, 5\n"
1168       "  %aaa = or i32 %aa, 24\n"
1169       "  %bbb = or i32 %bb, 28\n"
1170       "  %A = mul i32 %aaa, %bbb\n"
1171       "  ret i32 %A\n"
1172       "}\n");
1173   expectKnownBits(/*zero*/ 95u, /*one*/ 32u);
1174 }
1175 
1176 TEST_F(ValueTrackingTest, KnownNonZeroFromDomCond) {
1177   parseAssembly(R"(
1178     declare i8* @f_i8()
1179     define void @test(i1 %c) {
1180       %A = call i8* @f_i8()
1181       %B = call i8* @f_i8()
1182       %c1 = icmp ne i8* %A, null
1183       %cond = and i1 %c1, %c
1184       br i1 %cond, label %T, label %Q
1185     T:
1186       %CxtI = add i32 0, 0
1187       ret void
1188     Q:
1189       %CxtI2 = add i32 0, 0
1190       ret void
1191     }
1192   )");
1193   AssumptionCache AC(*F);
1194   DominatorTree DT(*F);
1195   DataLayout DL = M->getDataLayout();
1196   EXPECT_EQ(isKnownNonZero(A, DL, 0, &AC, CxtI, &DT), true);
1197   EXPECT_EQ(isKnownNonZero(A, DL, 0, &AC, CxtI2, &DT), false);
1198 }
1199 
1200 TEST_F(ValueTrackingTest, KnownNonZeroFromDomCond2) {
1201   parseAssembly(R"(
1202     declare i8* @f_i8()
1203     define void @test(i1 %c) {
1204       %A = call i8* @f_i8()
1205       %B = call i8* @f_i8()
1206       %c1 = icmp ne i8* %A, null
1207       %cond = select i1 %c, i1 %c1, i1 false
1208       br i1 %cond, label %T, label %Q
1209     T:
1210       %CxtI = add i32 0, 0
1211       ret void
1212     Q:
1213       %CxtI2 = add i32 0, 0
1214       ret void
1215     }
1216   )");
1217   AssumptionCache AC(*F);
1218   DominatorTree DT(*F);
1219   DataLayout DL = M->getDataLayout();
1220   EXPECT_EQ(isKnownNonZero(A, DL, 0, &AC, CxtI, &DT), true);
1221   EXPECT_EQ(isKnownNonZero(A, DL, 0, &AC, CxtI2, &DT), false);
1222 }
1223 
1224 TEST_F(ValueTrackingTest, IsImpliedConditionAnd) {
1225   parseAssembly(R"(
1226     define void @test(i32 %x, i32 %y) {
1227       %c1 = icmp ult i32 %x, 10
1228       %c2 = icmp ult i32 %y, 15
1229       %A = and i1 %c1, %c2
1230       ; x < 10 /\ y < 15
1231       %A2 = icmp ult i32 %x, 20
1232       %A3 = icmp uge i32 %y, 20
1233       %A4 = icmp ult i32 %x, 5
1234       ret void
1235     }
1236   )");
1237   DataLayout DL = M->getDataLayout();
1238   EXPECT_EQ(isImpliedCondition(A, A2, DL), true);
1239   EXPECT_EQ(isImpliedCondition(A, A3, DL), false);
1240   EXPECT_EQ(isImpliedCondition(A, A4, DL), None);
1241 }
1242 
1243 TEST_F(ValueTrackingTest, IsImpliedConditionAnd2) {
1244   parseAssembly(R"(
1245     define void @test(i32 %x, i32 %y) {
1246       %c1 = icmp ult i32 %x, 10
1247       %c2 = icmp ult i32 %y, 15
1248       %A = select i1 %c1, i1 %c2, i1 false
1249       ; x < 10 /\ y < 15
1250       %A2 = icmp ult i32 %x, 20
1251       %A3 = icmp uge i32 %y, 20
1252       %A4 = icmp ult i32 %x, 5
1253       ret void
1254     }
1255   )");
1256   DataLayout DL = M->getDataLayout();
1257   EXPECT_EQ(isImpliedCondition(A, A2, DL), true);
1258   EXPECT_EQ(isImpliedCondition(A, A3, DL), false);
1259   EXPECT_EQ(isImpliedCondition(A, A4, DL), None);
1260 }
1261 
1262 TEST_F(ValueTrackingTest, IsImpliedConditionOr) {
1263   parseAssembly(R"(
1264     define void @test(i32 %x, i32 %y) {
1265       %c1 = icmp ult i32 %x, 10
1266       %c2 = icmp ult i32 %y, 15
1267       %A = or i1 %c1, %c2 ; negated
1268       ; x >= 10 /\ y >= 15
1269       %A2 = icmp ult i32 %x, 5
1270       %A3 = icmp uge i32 %y, 10
1271       %A4 = icmp ult i32 %x, 15
1272       ret void
1273     }
1274   )");
1275   DataLayout DL = M->getDataLayout();
1276   EXPECT_EQ(isImpliedCondition(A, A2, DL, false), false);
1277   EXPECT_EQ(isImpliedCondition(A, A3, DL, false), true);
1278   EXPECT_EQ(isImpliedCondition(A, A4, DL, false), None);
1279 }
1280 
1281 TEST_F(ValueTrackingTest, IsImpliedConditionOr2) {
1282   parseAssembly(R"(
1283     define void @test(i32 %x, i32 %y) {
1284       %c1 = icmp ult i32 %x, 10
1285       %c2 = icmp ult i32 %y, 15
1286       %A = select i1 %c1, i1 true, i1 %c2 ; negated
1287       ; x >= 10 /\ y >= 15
1288       %A2 = icmp ult i32 %x, 5
1289       %A3 = icmp uge i32 %y, 10
1290       %A4 = icmp ult i32 %x, 15
1291       ret void
1292     }
1293   )");
1294   DataLayout DL = M->getDataLayout();
1295   EXPECT_EQ(isImpliedCondition(A, A2, DL, false), false);
1296   EXPECT_EQ(isImpliedCondition(A, A3, DL, false), true);
1297   EXPECT_EQ(isImpliedCondition(A, A4, DL, false), None);
1298 }
1299 
1300 TEST_F(ComputeKnownBitsTest, KnownNonZeroShift) {
1301   // %q is known nonzero without known bits.
1302   // Because %q is nonzero, %A[0] is known to be zero.
1303   parseAssembly(
1304       "define i8 @test(i8 %p, i8* %pq) {\n"
1305       "  %q = load i8, i8* %pq, !range !0\n"
1306       "  %A = shl i8 %p, %q\n"
1307       "  ret i8 %A\n"
1308       "}\n"
1309       "!0 = !{ i8 1, i8 5 }\n");
1310   expectKnownBits(/*zero*/ 1u, /*one*/ 0u);
1311 }
1312 
1313 TEST_F(ComputeKnownBitsTest, ComputeKnownFshl) {
1314   // fshl(....1111....0000, 00..1111........, 6)
1315   // = 11....000000..11
1316   parseAssembly(
1317       "define i16 @test(i16 %a, i16 %b) {\n"
1318       "  %aa = shl i16 %a, 4\n"
1319       "  %bb = lshr i16 %b, 2\n"
1320       "  %aaa = or i16 %aa, 3840\n"
1321       "  %bbb = or i16 %bb, 3840\n"
1322       "  %A = call i16 @llvm.fshl.i16(i16 %aaa, i16 %bbb, i16 6)\n"
1323       "  ret i16 %A\n"
1324       "}\n"
1325       "declare i16 @llvm.fshl.i16(i16, i16, i16)\n");
1326   expectKnownBits(/*zero*/ 1008u, /*one*/ 49155u);
1327 }
1328 
1329 TEST_F(ComputeKnownBitsTest, ComputeKnownFshr) {
1330   // fshr(....1111....0000, 00..1111........, 26)
1331   // = 11....000000..11
1332   parseAssembly(
1333       "define i16 @test(i16 %a, i16 %b) {\n"
1334       "  %aa = shl i16 %a, 4\n"
1335       "  %bb = lshr i16 %b, 2\n"
1336       "  %aaa = or i16 %aa, 3840\n"
1337       "  %bbb = or i16 %bb, 3840\n"
1338       "  %A = call i16 @llvm.fshr.i16(i16 %aaa, i16 %bbb, i16 26)\n"
1339       "  ret i16 %A\n"
1340       "}\n"
1341       "declare i16 @llvm.fshr.i16(i16, i16, i16)\n");
1342   expectKnownBits(/*zero*/ 1008u, /*one*/ 49155u);
1343 }
1344 
1345 TEST_F(ComputeKnownBitsTest, ComputeKnownFshlZero) {
1346   // fshl(....1111....0000, 00..1111........, 0)
1347   // = ....1111....0000
1348   parseAssembly(
1349       "define i16 @test(i16 %a, i16 %b) {\n"
1350       "  %aa = shl i16 %a, 4\n"
1351       "  %bb = lshr i16 %b, 2\n"
1352       "  %aaa = or i16 %aa, 3840\n"
1353       "  %bbb = or i16 %bb, 3840\n"
1354       "  %A = call i16 @llvm.fshl.i16(i16 %aaa, i16 %bbb, i16 0)\n"
1355       "  ret i16 %A\n"
1356       "}\n"
1357       "declare i16 @llvm.fshl.i16(i16, i16, i16)\n");
1358   expectKnownBits(/*zero*/ 15u, /*one*/ 3840u);
1359 }
1360 
1361 TEST_F(ComputeKnownBitsTest, ComputeKnownUAddSatLeadingOnes) {
1362   // uadd.sat(1111...1, ........)
1363   // = 1111....
1364   parseAssembly(
1365       "define i8 @test(i8 %a, i8 %b) {\n"
1366       "  %aa = or i8 %a, 241\n"
1367       "  %A = call i8 @llvm.uadd.sat.i8(i8 %aa, i8 %b)\n"
1368       "  ret i8 %A\n"
1369       "}\n"
1370       "declare i8 @llvm.uadd.sat.i8(i8, i8)\n");
1371   expectKnownBits(/*zero*/ 0u, /*one*/ 240u);
1372 }
1373 
1374 TEST_F(ComputeKnownBitsTest, ComputeKnownUAddSatOnesPreserved) {
1375   // uadd.sat(00...011, .1...110)
1376   // = .......1
1377   parseAssembly(
1378       "define i8 @test(i8 %a, i8 %b) {\n"
1379       "  %aa = or i8 %a, 3\n"
1380       "  %aaa = and i8 %aa, 59\n"
1381       "  %bb = or i8 %b, 70\n"
1382       "  %bbb = and i8 %bb, 254\n"
1383       "  %A = call i8 @llvm.uadd.sat.i8(i8 %aaa, i8 %bbb)\n"
1384       "  ret i8 %A\n"
1385       "}\n"
1386       "declare i8 @llvm.uadd.sat.i8(i8, i8)\n");
1387   expectKnownBits(/*zero*/ 0u, /*one*/ 1u);
1388 }
1389 
1390 TEST_F(ComputeKnownBitsTest, ComputeKnownUSubSatLHSLeadingZeros) {
1391   // usub.sat(0000...0, ........)
1392   // = 0000....
1393   parseAssembly(
1394       "define i8 @test(i8 %a, i8 %b) {\n"
1395       "  %aa = and i8 %a, 14\n"
1396       "  %A = call i8 @llvm.usub.sat.i8(i8 %aa, i8 %b)\n"
1397       "  ret i8 %A\n"
1398       "}\n"
1399       "declare i8 @llvm.usub.sat.i8(i8, i8)\n");
1400   expectKnownBits(/*zero*/ 240u, /*one*/ 0u);
1401 }
1402 
1403 TEST_F(ComputeKnownBitsTest, ComputeKnownUSubSatRHSLeadingOnes) {
1404   // usub.sat(........, 1111...1)
1405   // = 0000....
1406   parseAssembly(
1407       "define i8 @test(i8 %a, i8 %b) {\n"
1408       "  %bb = or i8 %a, 241\n"
1409       "  %A = call i8 @llvm.usub.sat.i8(i8 %a, i8 %bb)\n"
1410       "  ret i8 %A\n"
1411       "}\n"
1412       "declare i8 @llvm.usub.sat.i8(i8, i8)\n");
1413   expectKnownBits(/*zero*/ 240u, /*one*/ 0u);
1414 }
1415 
1416 TEST_F(ComputeKnownBitsTest, ComputeKnownUSubSatZerosPreserved) {
1417   // usub.sat(11...011, .1...110)
1418   // = ......0.
1419   parseAssembly(
1420       "define i8 @test(i8 %a, i8 %b) {\n"
1421       "  %aa = or i8 %a, 195\n"
1422       "  %aaa = and i8 %aa, 251\n"
1423       "  %bb = or i8 %b, 70\n"
1424       "  %bbb = and i8 %bb, 254\n"
1425       "  %A = call i8 @llvm.usub.sat.i8(i8 %aaa, i8 %bbb)\n"
1426       "  ret i8 %A\n"
1427       "}\n"
1428       "declare i8 @llvm.usub.sat.i8(i8, i8)\n");
1429   expectKnownBits(/*zero*/ 2u, /*one*/ 0u);
1430 }
1431 
1432 TEST_F(ComputeKnownBitsTest, ComputeKnownBitsPtrToIntTrunc) {
1433   // ptrtoint truncates the pointer type.
1434   parseAssembly(
1435       "define void @test(i8** %p) {\n"
1436       "  %A = load i8*, i8** %p\n"
1437       "  %i = ptrtoint i8* %A to i32\n"
1438       "  %m = and i32 %i, 31\n"
1439       "  %c = icmp eq i32 %m, 0\n"
1440       "  call void @llvm.assume(i1 %c)\n"
1441       "  ret void\n"
1442       "}\n"
1443       "declare void @llvm.assume(i1)\n");
1444   AssumptionCache AC(*F);
1445   KnownBits Known = computeKnownBits(
1446       A, M->getDataLayout(), /* Depth */ 0, &AC, F->front().getTerminator());
1447   EXPECT_EQ(Known.Zero.getZExtValue(), 31u);
1448   EXPECT_EQ(Known.One.getZExtValue(), 0u);
1449 }
1450 
1451 TEST_F(ComputeKnownBitsTest, ComputeKnownBitsPtrToIntZext) {
1452   // ptrtoint zero extends the pointer type.
1453   parseAssembly(
1454       "define void @test(i8** %p) {\n"
1455       "  %A = load i8*, i8** %p\n"
1456       "  %i = ptrtoint i8* %A to i128\n"
1457       "  %m = and i128 %i, 31\n"
1458       "  %c = icmp eq i128 %m, 0\n"
1459       "  call void @llvm.assume(i1 %c)\n"
1460       "  ret void\n"
1461       "}\n"
1462       "declare void @llvm.assume(i1)\n");
1463   AssumptionCache AC(*F);
1464   KnownBits Known = computeKnownBits(
1465       A, M->getDataLayout(), /* Depth */ 0, &AC, F->front().getTerminator());
1466   EXPECT_EQ(Known.Zero.getZExtValue(), 31u);
1467   EXPECT_EQ(Known.One.getZExtValue(), 0u);
1468 }
1469 
1470 TEST_F(ComputeKnownBitsTest, ComputeKnownBitsFreeze) {
1471   parseAssembly("define void @test() {\n"
1472                 "  %m = call i32 @any_num()\n"
1473                 "  %A = freeze i32 %m\n"
1474                 "  %n = and i32 %m, 31\n"
1475                 "  %c = icmp eq i32 %n, 0\n"
1476                 "  call void @llvm.assume(i1 %c)\n"
1477                 "  ret void\n"
1478                 "}\n"
1479                 "declare void @llvm.assume(i1)\n"
1480                 "declare i32 @any_num()\n");
1481   AssumptionCache AC(*F);
1482   KnownBits Known = computeKnownBits(A, M->getDataLayout(), /* Depth */ 0, &AC,
1483                                      F->front().getTerminator());
1484   EXPECT_EQ(Known.Zero.getZExtValue(), 31u);
1485   EXPECT_EQ(Known.One.getZExtValue(), 0u);
1486 }
1487 
1488 TEST_F(ComputeKnownBitsTest, ComputeKnownBitsAddWithRange) {
1489   parseAssembly("define void @test(i64* %p) {\n"
1490                 "  %A = load i64, i64* %p, !range !{i64 64, i64 65536}\n"
1491                 "  %APlus512 = add i64 %A, 512\n"
1492                 "  %c = icmp ugt i64 %APlus512, 523\n"
1493                 "  call void @llvm.assume(i1 %c)\n"
1494                 "  ret void\n"
1495                 "}\n"
1496                 "declare void @llvm.assume(i1)\n");
1497   AssumptionCache AC(*F);
1498   KnownBits Known = computeKnownBits(A, M->getDataLayout(), /* Depth */ 0, &AC,
1499                                      F->front().getTerminator());
1500   EXPECT_EQ(Known.Zero.getZExtValue(), ~(65536llu - 1));
1501   EXPECT_EQ(Known.One.getZExtValue(), 0u);
1502   Instruction &APlus512 = findInstructionByName(F, "APlus512");
1503   Known = computeKnownBits(&APlus512, M->getDataLayout(), /* Depth */ 0, &AC,
1504                            F->front().getTerminator());
1505   // We know of one less zero because 512 may have produced a 1 that
1506   // got carried all the way to the first trailing zero.
1507   EXPECT_EQ(Known.Zero.getZExtValue(), (~(65536llu - 1)) << 1);
1508   EXPECT_EQ(Known.One.getZExtValue(), 0u);
1509   // The known range is not precise given computeKnownBits works
1510   // with the masks of zeros and ones, not the ranges.
1511   EXPECT_EQ(Known.getMinValue(), 0u);
1512   EXPECT_EQ(Known.getMaxValue(), 131071);
1513 }
1514 
1515 // 512 + [32, 64) doesn't produce overlapping bits.
1516 // Make sure we get all the individual bits properly.
1517 TEST_F(ComputeKnownBitsTest, ComputeKnownBitsAddWithRangeNoOverlap) {
1518   parseAssembly("define void @test(i64* %p) {\n"
1519                 "  %A = load i64, i64* %p, !range !{i64 32, i64 64}\n"
1520                 "  %APlus512 = add i64 %A, 512\n"
1521                 "  %c = icmp ugt i64 %APlus512, 523\n"
1522                 "  call void @llvm.assume(i1 %c)\n"
1523                 "  ret void\n"
1524                 "}\n"
1525                 "declare void @llvm.assume(i1)\n");
1526   AssumptionCache AC(*F);
1527   KnownBits Known = computeKnownBits(A, M->getDataLayout(), /* Depth */ 0, &AC,
1528                                      F->front().getTerminator());
1529   EXPECT_EQ(Known.Zero.getZExtValue(), ~(64llu - 1));
1530   EXPECT_EQ(Known.One.getZExtValue(), 32u);
1531   Instruction &APlus512 = findInstructionByName(F, "APlus512");
1532   Known = computeKnownBits(&APlus512, M->getDataLayout(), /* Depth */ 0, &AC,
1533                            F->front().getTerminator());
1534   EXPECT_EQ(Known.Zero.getZExtValue(), ~512llu & ~(64llu - 1));
1535   EXPECT_EQ(Known.One.getZExtValue(), 512u | 32u);
1536   // The known range is not precise given computeKnownBits works
1537   // with the masks of zeros and ones, not the ranges.
1538   EXPECT_EQ(Known.getMinValue(), 544);
1539   EXPECT_EQ(Known.getMaxValue(), 575);
1540 }
1541 
1542 TEST_F(ComputeKnownBitsTest, ComputeKnownBitsGEPWithRange) {
1543   parseAssembly(
1544       "define void @test(i64* %p) {\n"
1545       "  %A = load i64, i64* %p, !range !{i64 64, i64 65536}\n"
1546       "  %APtr = inttoptr i64 %A to float*"
1547       "  %APtrPlus512 = getelementptr float, float* %APtr, i32 128\n"
1548       "  %c = icmp ugt float* %APtrPlus512, inttoptr (i32 523 to float*)\n"
1549       "  call void @llvm.assume(i1 %c)\n"
1550       "  ret void\n"
1551       "}\n"
1552       "declare void @llvm.assume(i1)\n");
1553   AssumptionCache AC(*F);
1554   KnownBits Known = computeKnownBits(A, M->getDataLayout(), /* Depth */ 0, &AC,
1555                                      F->front().getTerminator());
1556   EXPECT_EQ(Known.Zero.getZExtValue(), ~(65536llu - 1));
1557   EXPECT_EQ(Known.One.getZExtValue(), 0u);
1558   Instruction &APtrPlus512 = findInstructionByName(F, "APtrPlus512");
1559   Known = computeKnownBits(&APtrPlus512, M->getDataLayout(), /* Depth */ 0, &AC,
1560                            F->front().getTerminator());
1561   // We know of one less zero because 512 may have produced a 1 that
1562   // got carried all the way to the first trailing zero.
1563   EXPECT_EQ(Known.Zero.getZExtValue(), ~(65536llu - 1) << 1);
1564   EXPECT_EQ(Known.One.getZExtValue(), 0u);
1565   // The known range is not precise given computeKnownBits works
1566   // with the masks of zeros and ones, not the ranges.
1567   EXPECT_EQ(Known.getMinValue(), 0u);
1568   EXPECT_EQ(Known.getMaxValue(), 131071);
1569 }
1570 
1571 // 4*128 + [32, 64) doesn't produce overlapping bits.
1572 // Make sure we get all the individual bits properly.
1573 // This test is useful to check that we account for the scaling factor
1574 // in the gep. Indeed, gep float, [32,64), 128 is not 128 + [32,64).
1575 TEST_F(ComputeKnownBitsTest, ComputeKnownBitsGEPWithRangeNoOverlap) {
1576   parseAssembly(
1577       "define void @test(i64* %p) {\n"
1578       "  %A = load i64, i64* %p, !range !{i64 32, i64 64}\n"
1579       "  %APtr = inttoptr i64 %A to float*"
1580       "  %APtrPlus512 = getelementptr float, float* %APtr, i32 128\n"
1581       "  %c = icmp ugt float* %APtrPlus512, inttoptr (i32 523 to float*)\n"
1582       "  call void @llvm.assume(i1 %c)\n"
1583       "  ret void\n"
1584       "}\n"
1585       "declare void @llvm.assume(i1)\n");
1586   AssumptionCache AC(*F);
1587   KnownBits Known = computeKnownBits(A, M->getDataLayout(), /* Depth */ 0, &AC,
1588                                      F->front().getTerminator());
1589   EXPECT_EQ(Known.Zero.getZExtValue(), ~(64llu - 1));
1590   EXPECT_EQ(Known.One.getZExtValue(), 32u);
1591   Instruction &APtrPlus512 = findInstructionByName(F, "APtrPlus512");
1592   Known = computeKnownBits(&APtrPlus512, M->getDataLayout(), /* Depth */ 0, &AC,
1593                            F->front().getTerminator());
1594   EXPECT_EQ(Known.Zero.getZExtValue(), ~512llu & ~(64llu - 1));
1595   EXPECT_EQ(Known.One.getZExtValue(), 512u | 32u);
1596   // The known range is not precise given computeKnownBits works
1597   // with the masks of zeros and ones, not the ranges.
1598   EXPECT_EQ(Known.getMinValue(), 544);
1599   EXPECT_EQ(Known.getMaxValue(), 575);
1600 }
1601 
1602 class IsBytewiseValueTest : public ValueTrackingTest,
1603                             public ::testing::WithParamInterface<
1604                                 std::pair<const char *, const char *>> {
1605 protected:
1606 };
1607 
1608 const std::pair<const char *, const char *> IsBytewiseValueTests[] = {
1609     {
1610         "i8 0",
1611         "i48* null",
1612     },
1613     {
1614         "i8 undef",
1615         "i48* undef",
1616     },
1617     {
1618         "i8 0",
1619         "i8 zeroinitializer",
1620     },
1621     {
1622         "i8 0",
1623         "i8 0",
1624     },
1625     {
1626         "i8 -86",
1627         "i8 -86",
1628     },
1629     {
1630         "i8 -1",
1631         "i8 -1",
1632     },
1633     {
1634         "i8 undef",
1635         "i16 undef",
1636     },
1637     {
1638         "i8 0",
1639         "i16 0",
1640     },
1641     {
1642         "",
1643         "i16 7",
1644     },
1645     {
1646         "i8 -86",
1647         "i16 -21846",
1648     },
1649     {
1650         "i8 -1",
1651         "i16 -1",
1652     },
1653     {
1654         "i8 0",
1655         "i48 0",
1656     },
1657     {
1658         "i8 -1",
1659         "i48 -1",
1660     },
1661     {
1662         "i8 0",
1663         "i49 0",
1664     },
1665     {
1666         "",
1667         "i49 -1",
1668     },
1669     {
1670         "i8 0",
1671         "half 0xH0000",
1672     },
1673     {
1674         "i8 -85",
1675         "half 0xHABAB",
1676     },
1677     {
1678         "i8 0",
1679         "float 0.0",
1680     },
1681     {
1682         "i8 -1",
1683         "float 0xFFFFFFFFE0000000",
1684     },
1685     {
1686         "i8 0",
1687         "double 0.0",
1688     },
1689     {
1690         "i8 -15",
1691         "double 0xF1F1F1F1F1F1F1F1",
1692     },
1693     {
1694         "i8 undef",
1695         "i16* undef",
1696     },
1697     {
1698         "i8 0",
1699         "i16* inttoptr (i64 0 to i16*)",
1700     },
1701     {
1702         "i8 -1",
1703         "i16* inttoptr (i64 -1 to i16*)",
1704     },
1705     {
1706         "i8 -86",
1707         "i16* inttoptr (i64 -6148914691236517206 to i16*)",
1708     },
1709     {
1710         "",
1711         "i16* inttoptr (i48 -1 to i16*)",
1712     },
1713     {
1714         "i8 -1",
1715         "i16* inttoptr (i96 -1 to i16*)",
1716     },
1717     {
1718         "i8 undef",
1719         "[0 x i8] zeroinitializer",
1720     },
1721     {
1722         "i8 undef",
1723         "[0 x i8] undef",
1724     },
1725     {
1726         "i8 undef",
1727         "[5 x [0 x i8]] zeroinitializer",
1728     },
1729     {
1730         "i8 undef",
1731         "[5 x [0 x i8]] undef",
1732     },
1733     {
1734         "i8 0",
1735         "[6 x i8] zeroinitializer",
1736     },
1737     {
1738         "i8 undef",
1739         "[6 x i8] undef",
1740     },
1741     {
1742         "i8 1",
1743         "[5 x i8] [i8 1, i8 1, i8 1, i8 1, i8 1]",
1744     },
1745     {
1746         "",
1747         "[5 x i64] [i64 1, i64 1, i64 1, i64 1, i64 1]",
1748     },
1749     {
1750         "i8 -1",
1751         "[5 x i64] [i64 -1, i64 -1, i64 -1, i64 -1, i64 -1]",
1752     },
1753     {
1754         "",
1755         "[4 x i8] [i8 1, i8 2, i8 1, i8 1]",
1756     },
1757     {
1758         "i8 1",
1759         "[4 x i8] [i8 1, i8 undef, i8 1, i8 1]",
1760     },
1761     {
1762         "i8 0",
1763         "<6 x i8> zeroinitializer",
1764     },
1765     {
1766         "i8 undef",
1767         "<6 x i8> undef",
1768     },
1769     {
1770         "i8 1",
1771         "<5 x i8> <i8 1, i8 1, i8 1, i8 1, i8 1>",
1772     },
1773     {
1774         "",
1775         "<5 x i64> <i64 1, i64 1, i64 1, i64 1, i64 1>",
1776     },
1777     {
1778         "i8 -1",
1779         "<5 x i64> <i64 -1, i64 -1, i64 -1, i64 -1, i64 -1>",
1780     },
1781     {
1782         "",
1783         "<4 x i8> <i8 1, i8 1, i8 2, i8 1>",
1784     },
1785     {
1786         "i8 5",
1787         "<2 x i8> < i8 5, i8 undef >",
1788     },
1789     {
1790         "i8 0",
1791         "[2 x [2 x i16]] zeroinitializer",
1792     },
1793     {
1794         "i8 undef",
1795         "[2 x [2 x i16]] undef",
1796     },
1797     {
1798         "i8 -86",
1799         "[2 x [2 x i16]] [[2 x i16] [i16 -21846, i16 -21846], "
1800         "[2 x i16] [i16 -21846, i16 -21846]]",
1801     },
1802     {
1803         "",
1804         "[2 x [2 x i16]] [[2 x i16] [i16 -21846, i16 -21846], "
1805         "[2 x i16] [i16 -21836, i16 -21846]]",
1806     },
1807     {
1808         "i8 undef",
1809         "{ } zeroinitializer",
1810     },
1811     {
1812         "i8 undef",
1813         "{ } undef",
1814     },
1815     {
1816         "i8 undef",
1817         "{ {}, {} } zeroinitializer",
1818     },
1819     {
1820         "i8 undef",
1821         "{ {}, {} } undef",
1822     },
1823     {
1824         "i8 0",
1825         "{i8, i64, i16*} zeroinitializer",
1826     },
1827     {
1828         "i8 undef",
1829         "{i8, i64, i16*} undef",
1830     },
1831     {
1832         "i8 -86",
1833         "{i8, i64, i16*} {i8 -86, i64 -6148914691236517206, i16* undef}",
1834     },
1835     {
1836         "",
1837         "{i8, i64, i16*} {i8 86, i64 -6148914691236517206, i16* undef}",
1838     },
1839 };
1840 
1841 INSTANTIATE_TEST_CASE_P(IsBytewiseValueParamTests, IsBytewiseValueTest,
1842                         ::testing::ValuesIn(IsBytewiseValueTests),);
1843 
1844 TEST_P(IsBytewiseValueTest, IsBytewiseValue) {
1845   auto M = parseModule(std::string("@test = global ") + GetParam().second);
1846   GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getNamedValue("test"));
1847   Value *Actual = isBytewiseValue(GV->getInitializer(), M->getDataLayout());
1848   std::string Buff;
1849   raw_string_ostream S(Buff);
1850   if (Actual)
1851     S << *Actual;
1852   EXPECT_EQ(GetParam().first, S.str());
1853 }
1854 
1855 TEST_F(ValueTrackingTest, ComputeConstantRange) {
1856   {
1857     // Assumptions:
1858     //  * stride >= 5
1859     //  * stride < 10
1860     //
1861     // stride = [5, 10)
1862     auto M = parseModule(R"(
1863   declare void @llvm.assume(i1)
1864 
1865   define i32 @test(i32 %stride) {
1866     %gt = icmp uge i32 %stride, 5
1867     call void @llvm.assume(i1 %gt)
1868     %lt = icmp ult i32 %stride, 10
1869     call void @llvm.assume(i1 %lt)
1870     %stride.plus.one = add nsw nuw i32 %stride, 1
1871     ret i32 %stride.plus.one
1872   })");
1873     Function *F = M->getFunction("test");
1874 
1875     AssumptionCache AC(*F);
1876     Value *Stride = &*F->arg_begin();
1877     ConstantRange CR1 = computeConstantRange(Stride, true, &AC, nullptr);
1878     EXPECT_TRUE(CR1.isFullSet());
1879 
1880     Instruction *I = &findInstructionByName(F, "stride.plus.one");
1881     ConstantRange CR2 = computeConstantRange(Stride, true, &AC, I);
1882     EXPECT_EQ(5, CR2.getLower());
1883     EXPECT_EQ(10, CR2.getUpper());
1884   }
1885 
1886   {
1887     // Assumptions:
1888     //  * stride >= 5
1889     //  * stride < 200
1890     //  * stride == 99
1891     //
1892     // stride = [99, 100)
1893     auto M = parseModule(R"(
1894   declare void @llvm.assume(i1)
1895 
1896   define i32 @test(i32 %stride) {
1897     %gt = icmp uge i32 %stride, 5
1898     call void @llvm.assume(i1 %gt)
1899     %lt = icmp ult i32 %stride, 200
1900     call void @llvm.assume(i1 %lt)
1901     %eq = icmp eq i32 %stride, 99
1902     call void @llvm.assume(i1 %eq)
1903     %stride.plus.one = add nsw nuw i32 %stride, 1
1904     ret i32 %stride.plus.one
1905   })");
1906     Function *F = M->getFunction("test");
1907 
1908     AssumptionCache AC(*F);
1909     Value *Stride = &*F->arg_begin();
1910     Instruction *I = &findInstructionByName(F, "stride.plus.one");
1911     ConstantRange CR = computeConstantRange(Stride, true, &AC, I);
1912     EXPECT_EQ(99, *CR.getSingleElement());
1913   }
1914 
1915   {
1916     // Assumptions:
1917     //  * stride >= 5
1918     //  * stride >= 50
1919     //  * stride < 100
1920     //  * stride < 200
1921     //
1922     // stride = [50, 100)
1923     auto M = parseModule(R"(
1924   declare void @llvm.assume(i1)
1925 
1926   define i32 @test(i32 %stride, i1 %cond) {
1927     %gt = icmp uge i32 %stride, 5
1928     call void @llvm.assume(i1 %gt)
1929     %gt.2 = icmp uge i32 %stride, 50
1930     call void @llvm.assume(i1 %gt.2)
1931     br i1 %cond, label %bb1, label %bb2
1932 
1933   bb1:
1934     %lt = icmp ult i32 %stride, 200
1935     call void @llvm.assume(i1 %lt)
1936     %lt.2 = icmp ult i32 %stride, 100
1937     call void @llvm.assume(i1 %lt.2)
1938     %stride.plus.one = add nsw nuw i32 %stride, 1
1939     ret i32 %stride.plus.one
1940 
1941   bb2:
1942     ret i32 0
1943   })");
1944     Function *F = M->getFunction("test");
1945 
1946     AssumptionCache AC(*F);
1947     Value *Stride = &*F->arg_begin();
1948     Instruction *GT2 = &findInstructionByName(F, "gt.2");
1949     ConstantRange CR = computeConstantRange(Stride, true, &AC, GT2);
1950     EXPECT_EQ(5, CR.getLower());
1951     EXPECT_EQ(0, CR.getUpper());
1952 
1953     Instruction *I = &findInstructionByName(F, "stride.plus.one");
1954     ConstantRange CR2 = computeConstantRange(Stride, true, &AC, I);
1955     EXPECT_EQ(50, CR2.getLower());
1956     EXPECT_EQ(100, CR2.getUpper());
1957   }
1958 
1959   {
1960     // Assumptions:
1961     //  * stride > 5
1962     //  * stride < 5
1963     //
1964     // stride = empty range, as the assumptions contradict each other.
1965     auto M = parseModule(R"(
1966   declare void @llvm.assume(i1)
1967 
1968   define i32 @test(i32 %stride, i1 %cond) {
1969     %gt = icmp ugt i32 %stride, 5
1970     call void @llvm.assume(i1 %gt)
1971     %lt = icmp ult i32 %stride, 5
1972     call void @llvm.assume(i1 %lt)
1973     %stride.plus.one = add nsw nuw i32 %stride, 1
1974     ret i32 %stride.plus.one
1975   })");
1976     Function *F = M->getFunction("test");
1977 
1978     AssumptionCache AC(*F);
1979     Value *Stride = &*F->arg_begin();
1980 
1981     Instruction *I = &findInstructionByName(F, "stride.plus.one");
1982     ConstantRange CR = computeConstantRange(Stride, true, &AC, I);
1983     EXPECT_TRUE(CR.isEmptySet());
1984   }
1985 
1986   {
1987     // Assumptions:
1988     //  * x.1 >= 5
1989     //  * x.2 < x.1
1990     //
1991     // stride = [0, 5)
1992     auto M = parseModule(R"(
1993   declare void @llvm.assume(i1)
1994 
1995   define i32 @test(i32 %x.1, i32 %x.2) {
1996     %gt = icmp uge i32 %x.1, 5
1997     call void @llvm.assume(i1 %gt)
1998     %lt = icmp ult i32 %x.2, %x.1
1999     call void @llvm.assume(i1 %lt)
2000     %stride.plus.one = add nsw nuw i32 %x.1, 1
2001     ret i32 %stride.plus.one
2002   })");
2003     Function *F = M->getFunction("test");
2004 
2005     AssumptionCache AC(*F);
2006     Value *X2 = &*std::next(F->arg_begin());
2007 
2008     Instruction *I = &findInstructionByName(F, "stride.plus.one");
2009     ConstantRange CR1 = computeConstantRange(X2, true, &AC, I);
2010     EXPECT_EQ(0, CR1.getLower());
2011     EXPECT_EQ(5, CR1.getUpper());
2012 
2013     // Check the depth cutoff results in a conservative result (full set) by
2014     // passing Depth == MaxDepth == 6.
2015     ConstantRange CR2 = computeConstantRange(X2, true, &AC, I, 6);
2016     EXPECT_TRUE(CR2.isFullSet());
2017   }
2018 }
2019 
2020 struct FindAllocaForValueTestParams {
2021   const char *IR;
2022   bool AnyOffsetResult;
2023   bool ZeroOffsetResult;
2024 };
2025 
2026 class FindAllocaForValueTest
2027     : public ValueTrackingTest,
2028       public ::testing::WithParamInterface<FindAllocaForValueTestParams> {
2029 protected:
2030 };
2031 
2032 const FindAllocaForValueTestParams FindAllocaForValueTests[] = {
2033     {R"(
2034       define void @test() {
2035         %a = alloca i64
2036         %r = bitcast i64* %a to i32*
2037         ret void
2038       })",
2039      true, true},
2040 
2041     {R"(
2042       define void @test() {
2043         %a = alloca i32
2044         %r = getelementptr i32, i32* %a, i32 1
2045         ret void
2046       })",
2047      true, false},
2048 
2049     {R"(
2050       define void @test() {
2051         %a = alloca i32
2052         %r = getelementptr i32, i32* %a, i32 0
2053         ret void
2054       })",
2055      true, true},
2056 
2057     {R"(
2058       define void @test(i1 %cond) {
2059       entry:
2060         %a = alloca i32
2061         br label %bb1
2062 
2063       bb1:
2064         %r = phi i32* [ %a, %entry ], [ %r, %bb1 ]
2065         br i1 %cond, label %bb1, label %exit
2066 
2067       exit:
2068         ret void
2069       })",
2070      true, true},
2071 
2072     {R"(
2073       define void @test(i1 %cond) {
2074         %a = alloca i32
2075         %r = select i1 %cond, i32* %a, i32* %a
2076         ret void
2077       })",
2078      true, true},
2079 
2080     {R"(
2081       define void @test(i1 %cond) {
2082         %a = alloca i32
2083         %b = alloca i32
2084         %r = select i1 %cond, i32* %a, i32* %b
2085         ret void
2086       })",
2087      false, false},
2088 
2089     {R"(
2090       define void @test(i1 %cond) {
2091       entry:
2092         %a = alloca i64
2093         %a32 = bitcast i64* %a to i32*
2094         br label %bb1
2095 
2096       bb1:
2097         %x = phi i32* [ %a32, %entry ], [ %x, %bb1 ]
2098         %r = getelementptr i32, i32* %x, i32 1
2099         br i1 %cond, label %bb1, label %exit
2100 
2101       exit:
2102         ret void
2103       })",
2104      true, false},
2105 
2106     {R"(
2107       define void @test(i1 %cond) {
2108       entry:
2109         %a = alloca i64
2110         %a32 = bitcast i64* %a to i32*
2111         br label %bb1
2112 
2113       bb1:
2114         %x = phi i32* [ %a32, %entry ], [ %r, %bb1 ]
2115         %r = getelementptr i32, i32* %x, i32 1
2116         br i1 %cond, label %bb1, label %exit
2117 
2118       exit:
2119         ret void
2120       })",
2121      true, false},
2122 
2123     {R"(
2124       define void @test(i1 %cond, i64* %a) {
2125       entry:
2126         %r = bitcast i64* %a to i32*
2127         ret void
2128       })",
2129      false, false},
2130 
2131     {R"(
2132       define void @test(i1 %cond) {
2133       entry:
2134         %a = alloca i32
2135         %b = alloca i32
2136         br label %bb1
2137 
2138       bb1:
2139         %r = phi i32* [ %a, %entry ], [ %b, %bb1 ]
2140         br i1 %cond, label %bb1, label %exit
2141 
2142       exit:
2143         ret void
2144       })",
2145      false, false},
2146 };
2147 
2148 TEST_P(FindAllocaForValueTest, findAllocaForValue) {
2149   auto M = parseModule(GetParam().IR);
2150   Function *F = M->getFunction("test");
2151   Instruction *I = &findInstructionByName(F, "r");
2152   const AllocaInst *AI = findAllocaForValue(I);
2153   EXPECT_EQ(!!AI, GetParam().AnyOffsetResult);
2154 }
2155 
2156 TEST_P(FindAllocaForValueTest, findAllocaForValueZeroOffset) {
2157   auto M = parseModule(GetParam().IR);
2158   Function *F = M->getFunction("test");
2159   Instruction *I = &findInstructionByName(F, "r");
2160   const AllocaInst *AI = findAllocaForValue(I, true);
2161   EXPECT_EQ(!!AI, GetParam().ZeroOffsetResult);
2162 }
2163 
2164 INSTANTIATE_TEST_CASE_P(FindAllocaForValueTest, FindAllocaForValueTest,
2165                         ::testing::ValuesIn(FindAllocaForValueTests), );
2166