1 //===- llvm/unittest/ADT/ArrayRefTest.cpp - ArrayRef unit tests -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/ArrayRef.h"
10 #include "llvm/Support/Allocator.h"
11 #include "llvm/Support/raw_ostream.h"
12 #include "gtest/gtest.h"
13 #include <limits>
14 #include <vector>
15 using namespace llvm;
16 
17 // Check that the ArrayRef-of-pointer converting constructor only allows adding
18 // cv qualifiers (not removing them, or otherwise changing the type)
19 static_assert(
20     std::is_convertible<ArrayRef<int *>, ArrayRef<const int *>>::value,
21     "Adding const");
22 static_assert(
23     std::is_convertible<ArrayRef<int *>, ArrayRef<volatile int *>>::value,
24     "Adding volatile");
25 static_assert(!std::is_convertible<ArrayRef<int *>, ArrayRef<float *>>::value,
26               "Changing pointer of one type to a pointer of another");
27 static_assert(
28     !std::is_convertible<ArrayRef<const int *>, ArrayRef<int *>>::value,
29     "Removing const");
30 static_assert(
31     !std::is_convertible<ArrayRef<volatile int *>, ArrayRef<int *>>::value,
32     "Removing volatile");
33 
34 // Check that we can't accidentally assign a temporary location to an ArrayRef.
35 // (Unfortunately we can't make use of the same thing with constructors.)
36 static_assert(
37     !std::is_assignable<ArrayRef<int *>&, int *>::value,
38     "Assigning from single prvalue element");
39 static_assert(
40     !std::is_assignable<ArrayRef<int *>&, int * &&>::value,
41     "Assigning from single xvalue element");
42 static_assert(
43     std::is_assignable<ArrayRef<int *>&, int * &>::value,
44     "Assigning from single lvalue element");
45 static_assert(
46     !std::is_assignable<ArrayRef<int *>&, std::initializer_list<int *>>::value,
47     "Assigning from an initializer list");
48 
49 namespace {
50 
51 TEST(ArrayRefTest, AllocatorCopy) {
52   BumpPtrAllocator Alloc;
53   static const uint16_t Words1[] = { 1, 4, 200, 37 };
54   ArrayRef<uint16_t> Array1 = makeArrayRef(Words1, 4);
55   static const uint16_t Words2[] = { 11, 4003, 67, 64000, 13 };
56   ArrayRef<uint16_t> Array2 = makeArrayRef(Words2, 5);
57   ArrayRef<uint16_t> Array1c = Array1.copy(Alloc);
58   ArrayRef<uint16_t> Array2c = Array2.copy(Alloc);
59   EXPECT_TRUE(Array1.equals(Array1c));
60   EXPECT_NE(Array1.data(), Array1c.data());
61   EXPECT_TRUE(Array2.equals(Array2c));
62   EXPECT_NE(Array2.data(), Array2c.data());
63 
64   // Check that copy can cope with uninitialized memory.
65   struct NonAssignable {
66     const char *Ptr;
67 
68     NonAssignable(const char *Ptr) : Ptr(Ptr) {}
69     NonAssignable(const NonAssignable &RHS) = default;
70     void operator=(const NonAssignable &RHS) { assert(RHS.Ptr != nullptr); }
71     bool operator==(const NonAssignable &RHS) const { return Ptr == RHS.Ptr; }
72   } Array3Src[] = {"hello", "world"};
73   ArrayRef<NonAssignable> Array3Copy = makeArrayRef(Array3Src).copy(Alloc);
74   EXPECT_EQ(makeArrayRef(Array3Src), Array3Copy);
75   EXPECT_NE(makeArrayRef(Array3Src).data(), Array3Copy.data());
76 }
77 
78 TEST(ArrayRefTest, SizeTSizedOperations) {
79   ArrayRef<char> AR(nullptr, std::numeric_limits<ptrdiff_t>::max());
80 
81   // Check that drop_back accepts size_t-sized numbers.
82   EXPECT_EQ(1U, AR.drop_back(AR.size() - 1).size());
83 
84   // Check that drop_front accepts size_t-sized numbers.
85   EXPECT_EQ(1U, AR.drop_front(AR.size() - 1).size());
86 
87   // Check that slice accepts size_t-sized numbers.
88   EXPECT_EQ(1U, AR.slice(AR.size() - 1).size());
89   EXPECT_EQ(AR.size() - 1, AR.slice(1, AR.size() - 1).size());
90 }
91 
92 TEST(ArrayRefTest, DropBack) {
93   static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
94   ArrayRef<int> AR1(TheNumbers);
95   ArrayRef<int> AR2(TheNumbers, AR1.size() - 1);
96   EXPECT_TRUE(AR1.drop_back().equals(AR2));
97 }
98 
99 TEST(ArrayRefTest, DropFront) {
100   static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
101   ArrayRef<int> AR1(TheNumbers);
102   ArrayRef<int> AR2(&TheNumbers[2], AR1.size() - 2);
103   EXPECT_TRUE(AR1.drop_front(2).equals(AR2));
104 }
105 
106 TEST(ArrayRefTest, DropWhile) {
107   static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
108   ArrayRef<int> AR1(TheNumbers);
109   ArrayRef<int> Expected = AR1.drop_front(3);
110   EXPECT_EQ(Expected, AR1.drop_while([](const int &N) { return N % 2 == 1; }));
111 
112   EXPECT_EQ(AR1, AR1.drop_while([](const int &N) { return N < 0; }));
113   EXPECT_EQ(ArrayRef<int>(),
114             AR1.drop_while([](const int &N) { return N > 0; }));
115 }
116 
117 TEST(ArrayRefTest, DropUntil) {
118   static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
119   ArrayRef<int> AR1(TheNumbers);
120   ArrayRef<int> Expected = AR1.drop_front(3);
121   EXPECT_EQ(Expected, AR1.drop_until([](const int &N) { return N % 2 == 0; }));
122 
123   EXPECT_EQ(ArrayRef<int>(),
124             AR1.drop_until([](const int &N) { return N < 0; }));
125   EXPECT_EQ(AR1, AR1.drop_until([](const int &N) { return N > 0; }));
126 }
127 
128 TEST(ArrayRefTest, TakeBack) {
129   static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
130   ArrayRef<int> AR1(TheNumbers);
131   ArrayRef<int> AR2(AR1.end() - 1, 1);
132   EXPECT_TRUE(AR1.take_back().equals(AR2));
133 }
134 
135 TEST(ArrayRefTest, TakeFront) {
136   static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
137   ArrayRef<int> AR1(TheNumbers);
138   ArrayRef<int> AR2(AR1.data(), 2);
139   EXPECT_TRUE(AR1.take_front(2).equals(AR2));
140 }
141 
142 TEST(ArrayRefTest, TakeWhile) {
143   static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
144   ArrayRef<int> AR1(TheNumbers);
145   ArrayRef<int> Expected = AR1.take_front(3);
146   EXPECT_EQ(Expected, AR1.take_while([](const int &N) { return N % 2 == 1; }));
147 
148   EXPECT_EQ(ArrayRef<int>(),
149             AR1.take_while([](const int &N) { return N < 0; }));
150   EXPECT_EQ(AR1, AR1.take_while([](const int &N) { return N > 0; }));
151 }
152 
153 TEST(ArrayRefTest, TakeUntil) {
154   static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
155   ArrayRef<int> AR1(TheNumbers);
156   ArrayRef<int> Expected = AR1.take_front(3);
157   EXPECT_EQ(Expected, AR1.take_until([](const int &N) { return N % 2 == 0; }));
158 
159   EXPECT_EQ(AR1, AR1.take_until([](const int &N) { return N < 0; }));
160   EXPECT_EQ(ArrayRef<int>(),
161             AR1.take_until([](const int &N) { return N > 0; }));
162 }
163 
164 TEST(ArrayRefTest, Equals) {
165   static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8};
166   ArrayRef<int> AR1(A1);
167   EXPECT_TRUE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8}));
168   EXPECT_FALSE(AR1.equals({8, 1, 2, 4, 5, 6, 6, 7}));
169   EXPECT_FALSE(AR1.equals({2, 4, 5, 6, 6, 7, 8, 1}));
170   EXPECT_FALSE(AR1.equals({0, 1, 2, 4, 5, 6, 6, 7}));
171   EXPECT_FALSE(AR1.equals({1, 2, 42, 4, 5, 6, 7, 8}));
172   EXPECT_FALSE(AR1.equals({42, 2, 3, 4, 5, 6, 7, 8}));
173   EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 42}));
174   EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7}));
175   EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8, 9}));
176 
177   ArrayRef<int> AR1a = AR1.drop_back();
178   EXPECT_TRUE(AR1a.equals({1, 2, 3, 4, 5, 6, 7}));
179   EXPECT_FALSE(AR1a.equals({1, 2, 3, 4, 5, 6, 7, 8}));
180 
181   ArrayRef<int> AR1b = AR1a.slice(2, 4);
182   EXPECT_TRUE(AR1b.equals({3, 4, 5, 6}));
183   EXPECT_FALSE(AR1b.equals({2, 3, 4, 5, 6}));
184   EXPECT_FALSE(AR1b.equals({3, 4, 5, 6, 7}));
185 }
186 
187 TEST(ArrayRefTest, EmptyEquals) {
188   EXPECT_TRUE(ArrayRef<unsigned>() == ArrayRef<unsigned>());
189 }
190 
191 TEST(ArrayRefTest, ConstConvert) {
192   int buf[4];
193   for (int i = 0; i < 4; ++i)
194     buf[i] = i;
195 
196   static int *A[] = {&buf[0], &buf[1], &buf[2], &buf[3]};
197   ArrayRef<const int *> a((ArrayRef<int *>(A)));
198   a = ArrayRef<int *>(A);
199 }
200 
201 static std::vector<int> ReturnTest12() { return {1, 2}; }
202 static void ArgTest12(ArrayRef<int> A) {
203   EXPECT_EQ(2U, A.size());
204   EXPECT_EQ(1, A[0]);
205   EXPECT_EQ(2, A[1]);
206 }
207 
208 TEST(ArrayRefTest, InitializerList) {
209   std::initializer_list<int> init_list = { 0, 1, 2, 3, 4 };
210   ArrayRef<int> A = init_list;
211   for (int i = 0; i < 5; ++i)
212     EXPECT_EQ(i, A[i]);
213 
214   std::vector<int> B = ReturnTest12();
215   A = B;
216   EXPECT_EQ(1, A[0]);
217   EXPECT_EQ(2, A[1]);
218 
219   ArgTest12({1, 2});
220 }
221 
222 TEST(ArrayRefTest, EmptyInitializerList) {
223   ArrayRef<int> A = {};
224   EXPECT_TRUE(A.empty());
225 
226   A = {};
227   EXPECT_TRUE(A.empty());
228 }
229 
230 // Test that makeArrayRef works on ArrayRef (no-op)
231 TEST(ArrayRefTest, makeArrayRef) {
232   static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8};
233 
234   // No copy expected for non-const ArrayRef (true no-op)
235   ArrayRef<int> AR1(A1);
236   ArrayRef<int> &AR1Ref = makeArrayRef(AR1);
237   EXPECT_EQ(&AR1, &AR1Ref);
238 
239   // A copy is expected for non-const ArrayRef (thin copy)
240   const ArrayRef<int> AR2(A1);
241   const ArrayRef<int> &AR2Ref = makeArrayRef(AR2);
242   EXPECT_NE(&AR2Ref, &AR2);
243   EXPECT_TRUE(AR2.equals(AR2Ref));
244 }
245 
246 TEST(ArrayRefTest, OwningArrayRef) {
247   static const int A1[] = {0, 1};
248   OwningArrayRef<int> A(makeArrayRef(A1));
249   OwningArrayRef<int> B(std::move(A));
250   EXPECT_EQ(A.data(), nullptr);
251 }
252 
253 static_assert(is_trivially_copyable<ArrayRef<int>>::value,
254               "trivially copyable");
255 
256 } // end anonymous namespace
257