1 //===- llvm/unittest/ADT/ArrayRefTest.cpp - ArrayRef unit tests -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/ADT/ArrayRef.h" 10 #include "llvm/Support/Allocator.h" 11 #include "llvm/Support/raw_ostream.h" 12 #include "gtest/gtest.h" 13 #include <limits> 14 #include <vector> 15 using namespace llvm; 16 17 // Check that the ArrayRef-of-pointer converting constructor only allows adding 18 // cv qualifiers (not removing them, or otherwise changing the type) 19 static_assert( 20 std::is_convertible<ArrayRef<int *>, ArrayRef<const int *>>::value, 21 "Adding const"); 22 static_assert( 23 std::is_convertible<ArrayRef<int *>, ArrayRef<volatile int *>>::value, 24 "Adding volatile"); 25 static_assert(!std::is_convertible<ArrayRef<int *>, ArrayRef<float *>>::value, 26 "Changing pointer of one type to a pointer of another"); 27 static_assert( 28 !std::is_convertible<ArrayRef<const int *>, ArrayRef<int *>>::value, 29 "Removing const"); 30 static_assert( 31 !std::is_convertible<ArrayRef<volatile int *>, ArrayRef<int *>>::value, 32 "Removing volatile"); 33 34 // Check that we can't accidentally assign a temporary location to an ArrayRef. 35 // (Unfortunately we can't make use of the same thing with constructors.) 36 static_assert( 37 !std::is_assignable<ArrayRef<int *>&, int *>::value, 38 "Assigning from single prvalue element"); 39 static_assert( 40 !std::is_assignable<ArrayRef<int *>&, int * &&>::value, 41 "Assigning from single xvalue element"); 42 static_assert( 43 std::is_assignable<ArrayRef<int *>&, int * &>::value, 44 "Assigning from single lvalue element"); 45 static_assert( 46 !std::is_assignable<ArrayRef<int *>&, std::initializer_list<int *>>::value, 47 "Assigning from an initializer list"); 48 49 namespace { 50 51 TEST(ArrayRefTest, AllocatorCopy) { 52 BumpPtrAllocator Alloc; 53 static const uint16_t Words1[] = { 1, 4, 200, 37 }; 54 ArrayRef<uint16_t> Array1 = makeArrayRef(Words1, 4); 55 static const uint16_t Words2[] = { 11, 4003, 67, 64000, 13 }; 56 ArrayRef<uint16_t> Array2 = makeArrayRef(Words2, 5); 57 ArrayRef<uint16_t> Array1c = Array1.copy(Alloc); 58 ArrayRef<uint16_t> Array2c = Array2.copy(Alloc); 59 EXPECT_TRUE(Array1.equals(Array1c)); 60 EXPECT_NE(Array1.data(), Array1c.data()); 61 EXPECT_TRUE(Array2.equals(Array2c)); 62 EXPECT_NE(Array2.data(), Array2c.data()); 63 64 // Check that copy can cope with uninitialized memory. 65 struct NonAssignable { 66 const char *Ptr; 67 68 NonAssignable(const char *Ptr) : Ptr(Ptr) {} 69 NonAssignable(const NonAssignable &RHS) = default; 70 void operator=(const NonAssignable &RHS) { assert(RHS.Ptr != nullptr); } 71 bool operator==(const NonAssignable &RHS) const { return Ptr == RHS.Ptr; } 72 } Array3Src[] = {"hello", "world"}; 73 ArrayRef<NonAssignable> Array3Copy = makeArrayRef(Array3Src).copy(Alloc); 74 EXPECT_EQ(makeArrayRef(Array3Src), Array3Copy); 75 EXPECT_NE(makeArrayRef(Array3Src).data(), Array3Copy.data()); 76 } 77 78 TEST(ArrayRefTest, SizeTSizedOperations) { 79 ArrayRef<char> AR(nullptr, std::numeric_limits<ptrdiff_t>::max()); 80 81 // Check that drop_back accepts size_t-sized numbers. 82 EXPECT_EQ(1U, AR.drop_back(AR.size() - 1).size()); 83 84 // Check that drop_front accepts size_t-sized numbers. 85 EXPECT_EQ(1U, AR.drop_front(AR.size() - 1).size()); 86 87 // Check that slice accepts size_t-sized numbers. 88 EXPECT_EQ(1U, AR.slice(AR.size() - 1).size()); 89 EXPECT_EQ(AR.size() - 1, AR.slice(1, AR.size() - 1).size()); 90 } 91 92 TEST(ArrayRefTest, DropBack) { 93 static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; 94 ArrayRef<int> AR1(TheNumbers); 95 ArrayRef<int> AR2(TheNumbers, AR1.size() - 1); 96 EXPECT_TRUE(AR1.drop_back().equals(AR2)); 97 } 98 99 TEST(ArrayRefTest, DropFront) { 100 static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; 101 ArrayRef<int> AR1(TheNumbers); 102 ArrayRef<int> AR2(&TheNumbers[2], AR1.size() - 2); 103 EXPECT_TRUE(AR1.drop_front(2).equals(AR2)); 104 } 105 106 TEST(ArrayRefTest, DropWhile) { 107 static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; 108 ArrayRef<int> AR1(TheNumbers); 109 ArrayRef<int> Expected = AR1.drop_front(3); 110 EXPECT_EQ(Expected, AR1.drop_while([](const int &N) { return N % 2 == 1; })); 111 112 EXPECT_EQ(AR1, AR1.drop_while([](const int &N) { return N < 0; })); 113 EXPECT_EQ(ArrayRef<int>(), 114 AR1.drop_while([](const int &N) { return N > 0; })); 115 } 116 117 TEST(ArrayRefTest, DropUntil) { 118 static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; 119 ArrayRef<int> AR1(TheNumbers); 120 ArrayRef<int> Expected = AR1.drop_front(3); 121 EXPECT_EQ(Expected, AR1.drop_until([](const int &N) { return N % 2 == 0; })); 122 123 EXPECT_EQ(ArrayRef<int>(), 124 AR1.drop_until([](const int &N) { return N < 0; })); 125 EXPECT_EQ(AR1, AR1.drop_until([](const int &N) { return N > 0; })); 126 } 127 128 TEST(ArrayRefTest, TakeBack) { 129 static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; 130 ArrayRef<int> AR1(TheNumbers); 131 ArrayRef<int> AR2(AR1.end() - 1, 1); 132 EXPECT_TRUE(AR1.take_back().equals(AR2)); 133 } 134 135 TEST(ArrayRefTest, TakeFront) { 136 static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; 137 ArrayRef<int> AR1(TheNumbers); 138 ArrayRef<int> AR2(AR1.data(), 2); 139 EXPECT_TRUE(AR1.take_front(2).equals(AR2)); 140 } 141 142 TEST(ArrayRefTest, TakeWhile) { 143 static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; 144 ArrayRef<int> AR1(TheNumbers); 145 ArrayRef<int> Expected = AR1.take_front(3); 146 EXPECT_EQ(Expected, AR1.take_while([](const int &N) { return N % 2 == 1; })); 147 148 EXPECT_EQ(ArrayRef<int>(), 149 AR1.take_while([](const int &N) { return N < 0; })); 150 EXPECT_EQ(AR1, AR1.take_while([](const int &N) { return N > 0; })); 151 } 152 153 TEST(ArrayRefTest, TakeUntil) { 154 static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; 155 ArrayRef<int> AR1(TheNumbers); 156 ArrayRef<int> Expected = AR1.take_front(3); 157 EXPECT_EQ(Expected, AR1.take_until([](const int &N) { return N % 2 == 0; })); 158 159 EXPECT_EQ(AR1, AR1.take_until([](const int &N) { return N < 0; })); 160 EXPECT_EQ(ArrayRef<int>(), 161 AR1.take_until([](const int &N) { return N > 0; })); 162 } 163 164 TEST(ArrayRefTest, Equals) { 165 static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8}; 166 ArrayRef<int> AR1(A1); 167 EXPECT_TRUE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8})); 168 EXPECT_FALSE(AR1.equals({8, 1, 2, 4, 5, 6, 6, 7})); 169 EXPECT_FALSE(AR1.equals({2, 4, 5, 6, 6, 7, 8, 1})); 170 EXPECT_FALSE(AR1.equals({0, 1, 2, 4, 5, 6, 6, 7})); 171 EXPECT_FALSE(AR1.equals({1, 2, 42, 4, 5, 6, 7, 8})); 172 EXPECT_FALSE(AR1.equals({42, 2, 3, 4, 5, 6, 7, 8})); 173 EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 42})); 174 EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7})); 175 EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8, 9})); 176 177 ArrayRef<int> AR1a = AR1.drop_back(); 178 EXPECT_TRUE(AR1a.equals({1, 2, 3, 4, 5, 6, 7})); 179 EXPECT_FALSE(AR1a.equals({1, 2, 3, 4, 5, 6, 7, 8})); 180 181 ArrayRef<int> AR1b = AR1a.slice(2, 4); 182 EXPECT_TRUE(AR1b.equals({3, 4, 5, 6})); 183 EXPECT_FALSE(AR1b.equals({2, 3, 4, 5, 6})); 184 EXPECT_FALSE(AR1b.equals({3, 4, 5, 6, 7})); 185 } 186 187 TEST(ArrayRefTest, EmptyEquals) { 188 EXPECT_TRUE(ArrayRef<unsigned>() == ArrayRef<unsigned>()); 189 } 190 191 TEST(ArrayRefTest, ConstConvert) { 192 int buf[4]; 193 for (int i = 0; i < 4; ++i) 194 buf[i] = i; 195 196 static int *A[] = {&buf[0], &buf[1], &buf[2], &buf[3]}; 197 ArrayRef<const int *> a((ArrayRef<int *>(A))); 198 a = ArrayRef<int *>(A); 199 } 200 201 static std::vector<int> ReturnTest12() { return {1, 2}; } 202 static void ArgTest12(ArrayRef<int> A) { 203 EXPECT_EQ(2U, A.size()); 204 EXPECT_EQ(1, A[0]); 205 EXPECT_EQ(2, A[1]); 206 } 207 208 TEST(ArrayRefTest, InitializerList) { 209 std::initializer_list<int> init_list = { 0, 1, 2, 3, 4 }; 210 ArrayRef<int> A = init_list; 211 for (int i = 0; i < 5; ++i) 212 EXPECT_EQ(i, A[i]); 213 214 std::vector<int> B = ReturnTest12(); 215 A = B; 216 EXPECT_EQ(1, A[0]); 217 EXPECT_EQ(2, A[1]); 218 219 ArgTest12({1, 2}); 220 } 221 222 TEST(ArrayRefTest, EmptyInitializerList) { 223 ArrayRef<int> A = {}; 224 EXPECT_TRUE(A.empty()); 225 226 A = {}; 227 EXPECT_TRUE(A.empty()); 228 } 229 230 // Test that makeArrayRef works on ArrayRef (no-op) 231 TEST(ArrayRefTest, makeArrayRef) { 232 static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8}; 233 234 // No copy expected for non-const ArrayRef (true no-op) 235 ArrayRef<int> AR1(A1); 236 ArrayRef<int> &AR1Ref = makeArrayRef(AR1); 237 EXPECT_EQ(&AR1, &AR1Ref); 238 239 // A copy is expected for non-const ArrayRef (thin copy) 240 const ArrayRef<int> AR2(A1); 241 const ArrayRef<int> &AR2Ref = makeArrayRef(AR2); 242 EXPECT_NE(&AR2Ref, &AR2); 243 EXPECT_TRUE(AR2.equals(AR2Ref)); 244 } 245 246 TEST(ArrayRefTest, OwningArrayRef) { 247 static const int A1[] = {0, 1}; 248 OwningArrayRef<int> A(makeArrayRef(A1)); 249 OwningArrayRef<int> B(std::move(A)); 250 EXPECT_EQ(A.data(), nullptr); 251 } 252 253 static_assert(is_trivially_copyable<ArrayRef<int>>::value, 254 "trivially copyable"); 255 256 } // end anonymous namespace 257