1 //===- llvm/unittest/ADT/ArrayRefTest.cpp - ArrayRef unit tests -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/Support/Allocator.h" 12 #include "llvm/Support/raw_ostream.h" 13 #include "gtest/gtest.h" 14 #include <limits> 15 #include <vector> 16 using namespace llvm; 17 18 // Check that the ArrayRef-of-pointer converting constructor only allows adding 19 // cv qualifiers (not removing them, or otherwise changing the type) 20 static_assert( 21 std::is_convertible<ArrayRef<int *>, ArrayRef<const int *>>::value, 22 "Adding const"); 23 static_assert( 24 std::is_convertible<ArrayRef<int *>, ArrayRef<volatile int *>>::value, 25 "Adding volatile"); 26 static_assert(!std::is_convertible<ArrayRef<int *>, ArrayRef<float *>>::value, 27 "Changing pointer of one type to a pointer of another"); 28 static_assert( 29 !std::is_convertible<ArrayRef<const int *>, ArrayRef<int *>>::value, 30 "Removing const"); 31 static_assert( 32 !std::is_convertible<ArrayRef<volatile int *>, ArrayRef<int *>>::value, 33 "Removing volatile"); 34 35 // Check that we can't accidentally assign a temporary location to an ArrayRef. 36 // (Unfortunately we can't make use of the same thing with constructors.) 37 // 38 // Disable this check under MSVC; even MSVC 2015 isn't inconsistent between 39 // std::is_assignable and actually writing such an assignment. 40 #if !defined(_MSC_VER) 41 static_assert( 42 !std::is_assignable<ArrayRef<int *>, int *>::value, 43 "Assigning from single prvalue element"); 44 static_assert( 45 !std::is_assignable<ArrayRef<int *>, int * &&>::value, 46 "Assigning from single xvalue element"); 47 static_assert( 48 std::is_assignable<ArrayRef<int *>, int * &>::value, 49 "Assigning from single lvalue element"); 50 static_assert( 51 !std::is_assignable<ArrayRef<int *>, std::initializer_list<int *>>::value, 52 "Assigning from an initializer list"); 53 #endif 54 55 // Check Typedefs. 56 static_assert( 57 std::is_same<ArrayRef<int>::value_type, int>::value, 58 "erroneous value_type"); 59 static_assert( 60 std::is_same<ArrayRef<const int>::value_type, int>::value, 61 "erroneous value_type"); 62 63 namespace { 64 65 TEST(ArrayRefTest, AllocatorCopy) { 66 BumpPtrAllocator Alloc; 67 static const uint16_t Words1[] = { 1, 4, 200, 37 }; 68 ArrayRef<uint16_t> Array1 = makeArrayRef(Words1, 4); 69 static const uint16_t Words2[] = { 11, 4003, 67, 64000, 13 }; 70 ArrayRef<uint16_t> Array2 = makeArrayRef(Words2, 5); 71 ArrayRef<uint16_t> Array1c = Array1.copy(Alloc); 72 ArrayRef<uint16_t> Array2c = Array2.copy(Alloc); 73 EXPECT_TRUE(Array1.equals(Array1c)); 74 EXPECT_NE(Array1.data(), Array1c.data()); 75 EXPECT_TRUE(Array2.equals(Array2c)); 76 EXPECT_NE(Array2.data(), Array2c.data()); 77 78 // Check that copy can cope with uninitialized memory. 79 struct NonAssignable { 80 const char *Ptr; 81 82 NonAssignable(const char *Ptr) : Ptr(Ptr) {} 83 NonAssignable(const NonAssignable &RHS) = default; 84 void operator=(const NonAssignable &RHS) { assert(RHS.Ptr != nullptr); } 85 bool operator==(const NonAssignable &RHS) const { return Ptr == RHS.Ptr; } 86 } Array3Src[] = {"hello", "world"}; 87 ArrayRef<NonAssignable> Array3Copy = makeArrayRef(Array3Src).copy(Alloc); 88 EXPECT_EQ(makeArrayRef(Array3Src), Array3Copy); 89 EXPECT_NE(makeArrayRef(Array3Src).data(), Array3Copy.data()); 90 } 91 92 TEST(ArrayRefTest, SizeTSizedOperations) { 93 ArrayRef<char> AR(nullptr, std::numeric_limits<ptrdiff_t>::max()); 94 95 // Check that drop_back accepts size_t-sized numbers. 96 EXPECT_EQ(1U, AR.drop_back(AR.size() - 1).size()); 97 98 // Check that drop_front accepts size_t-sized numbers. 99 EXPECT_EQ(1U, AR.drop_front(AR.size() - 1).size()); 100 101 // Check that slice accepts size_t-sized numbers. 102 EXPECT_EQ(1U, AR.slice(AR.size() - 1).size()); 103 EXPECT_EQ(AR.size() - 1, AR.slice(1, AR.size() - 1).size()); 104 } 105 106 TEST(ArrayRefTest, DropBack) { 107 static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; 108 ArrayRef<int> AR1(TheNumbers); 109 ArrayRef<int> AR2(TheNumbers, AR1.size() - 1); 110 EXPECT_TRUE(AR1.drop_back().equals(AR2)); 111 } 112 113 TEST(ArrayRefTest, DropFront) { 114 static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; 115 ArrayRef<int> AR1(TheNumbers); 116 ArrayRef<int> AR2(&TheNumbers[2], AR1.size() - 2); 117 EXPECT_TRUE(AR1.drop_front(2).equals(AR2)); 118 } 119 120 TEST(ArrayRefTest, DropWhile) { 121 static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; 122 ArrayRef<int> AR1(TheNumbers); 123 ArrayRef<int> Expected = AR1.drop_front(3); 124 EXPECT_EQ(Expected, AR1.drop_while([](const int &N) { return N % 2 == 1; })); 125 126 EXPECT_EQ(AR1, AR1.drop_while([](const int &N) { return N < 0; })); 127 EXPECT_EQ(ArrayRef<int>(), 128 AR1.drop_while([](const int &N) { return N > 0; })); 129 } 130 131 TEST(ArrayRefTest, DropUntil) { 132 static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; 133 ArrayRef<int> AR1(TheNumbers); 134 ArrayRef<int> Expected = AR1.drop_front(3); 135 EXPECT_EQ(Expected, AR1.drop_until([](const int &N) { return N % 2 == 0; })); 136 137 EXPECT_EQ(ArrayRef<int>(), 138 AR1.drop_until([](const int &N) { return N < 0; })); 139 EXPECT_EQ(AR1, AR1.drop_until([](const int &N) { return N > 0; })); 140 } 141 142 TEST(ArrayRefTest, TakeBack) { 143 static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; 144 ArrayRef<int> AR1(TheNumbers); 145 ArrayRef<int> AR2(AR1.end() - 1, 1); 146 EXPECT_TRUE(AR1.take_back().equals(AR2)); 147 } 148 149 TEST(ArrayRefTest, TakeFront) { 150 static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; 151 ArrayRef<int> AR1(TheNumbers); 152 ArrayRef<int> AR2(AR1.data(), 2); 153 EXPECT_TRUE(AR1.take_front(2).equals(AR2)); 154 } 155 156 TEST(ArrayRefTest, TakeWhile) { 157 static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; 158 ArrayRef<int> AR1(TheNumbers); 159 ArrayRef<int> Expected = AR1.take_front(3); 160 EXPECT_EQ(Expected, AR1.take_while([](const int &N) { return N % 2 == 1; })); 161 162 EXPECT_EQ(ArrayRef<int>(), 163 AR1.take_while([](const int &N) { return N < 0; })); 164 EXPECT_EQ(AR1, AR1.take_while([](const int &N) { return N > 0; })); 165 } 166 167 TEST(ArrayRefTest, TakeUntil) { 168 static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; 169 ArrayRef<int> AR1(TheNumbers); 170 ArrayRef<int> Expected = AR1.take_front(3); 171 EXPECT_EQ(Expected, AR1.take_until([](const int &N) { return N % 2 == 0; })); 172 173 EXPECT_EQ(AR1, AR1.take_until([](const int &N) { return N < 0; })); 174 EXPECT_EQ(ArrayRef<int>(), 175 AR1.take_until([](const int &N) { return N > 0; })); 176 } 177 178 TEST(ArrayRefTest, Equals) { 179 static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8}; 180 ArrayRef<int> AR1(A1); 181 EXPECT_TRUE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8})); 182 EXPECT_FALSE(AR1.equals({8, 1, 2, 4, 5, 6, 6, 7})); 183 EXPECT_FALSE(AR1.equals({2, 4, 5, 6, 6, 7, 8, 1})); 184 EXPECT_FALSE(AR1.equals({0, 1, 2, 4, 5, 6, 6, 7})); 185 EXPECT_FALSE(AR1.equals({1, 2, 42, 4, 5, 6, 7, 8})); 186 EXPECT_FALSE(AR1.equals({42, 2, 3, 4, 5, 6, 7, 8})); 187 EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 42})); 188 EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7})); 189 EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8, 9})); 190 191 ArrayRef<int> AR1a = AR1.drop_back(); 192 EXPECT_TRUE(AR1a.equals({1, 2, 3, 4, 5, 6, 7})); 193 EXPECT_FALSE(AR1a.equals({1, 2, 3, 4, 5, 6, 7, 8})); 194 195 ArrayRef<int> AR1b = AR1a.slice(2, 4); 196 EXPECT_TRUE(AR1b.equals({3, 4, 5, 6})); 197 EXPECT_FALSE(AR1b.equals({2, 3, 4, 5, 6})); 198 EXPECT_FALSE(AR1b.equals({3, 4, 5, 6, 7})); 199 } 200 201 TEST(ArrayRefTest, EmptyEquals) { 202 EXPECT_TRUE(ArrayRef<unsigned>() == ArrayRef<unsigned>()); 203 } 204 205 TEST(ArrayRefTest, ConstConvert) { 206 int buf[4]; 207 for (int i = 0; i < 4; ++i) 208 buf[i] = i; 209 210 static int *A[] = {&buf[0], &buf[1], &buf[2], &buf[3]}; 211 ArrayRef<const int *> a((ArrayRef<int *>(A))); 212 a = ArrayRef<int *>(A); 213 } 214 215 static std::vector<int> ReturnTest12() { return {1, 2}; } 216 static void ArgTest12(ArrayRef<int> A) { 217 EXPECT_EQ(2U, A.size()); 218 EXPECT_EQ(1, A[0]); 219 EXPECT_EQ(2, A[1]); 220 } 221 222 TEST(ArrayRefTest, InitializerList) { 223 std::initializer_list<int> init_list = { 0, 1, 2, 3, 4 }; 224 ArrayRef<int> A = init_list; 225 for (int i = 0; i < 5; ++i) 226 EXPECT_EQ(i, A[i]); 227 228 std::vector<int> B = ReturnTest12(); 229 A = B; 230 EXPECT_EQ(1, A[0]); 231 EXPECT_EQ(2, A[1]); 232 233 ArgTest12({1, 2}); 234 } 235 236 TEST(ArrayRefTest, EmptyInitializerList) { 237 ArrayRef<int> A = {}; 238 EXPECT_TRUE(A.empty()); 239 240 A = {}; 241 EXPECT_TRUE(A.empty()); 242 } 243 244 // Test that makeArrayRef works on ArrayRef (no-op) 245 TEST(ArrayRefTest, makeArrayRef) { 246 static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8}; 247 248 // No copy expected for non-const ArrayRef (true no-op) 249 ArrayRef<int> AR1(A1); 250 ArrayRef<int> &AR1Ref = makeArrayRef(AR1); 251 EXPECT_EQ(&AR1, &AR1Ref); 252 253 // A copy is expected for non-const ArrayRef (thin copy) 254 const ArrayRef<int> AR2(A1); 255 const ArrayRef<int> &AR2Ref = makeArrayRef(AR2); 256 EXPECT_NE(&AR2Ref, &AR2); 257 EXPECT_TRUE(AR2.equals(AR2Ref)); 258 } 259 260 } // end anonymous namespace 261