1 //===- llvm/unittest/ADT/ArrayRefTest.cpp - ArrayRef unit tests -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/Support/Allocator.h"
12 #include "llvm/Support/raw_ostream.h"
13 #include "gtest/gtest.h"
14 #include <limits>
15 #include <vector>
16 using namespace llvm;
17 
18 // Check that the ArrayRef-of-pointer converting constructor only allows adding
19 // cv qualifiers (not removing them, or otherwise changing the type)
20 static_assert(
21     std::is_convertible<ArrayRef<int *>, ArrayRef<const int *>>::value,
22     "Adding const");
23 static_assert(
24     std::is_convertible<ArrayRef<int *>, ArrayRef<volatile int *>>::value,
25     "Adding volatile");
26 static_assert(!std::is_convertible<ArrayRef<int *>, ArrayRef<float *>>::value,
27               "Changing pointer of one type to a pointer of another");
28 static_assert(
29     !std::is_convertible<ArrayRef<const int *>, ArrayRef<int *>>::value,
30     "Removing const");
31 static_assert(
32     !std::is_convertible<ArrayRef<volatile int *>, ArrayRef<int *>>::value,
33     "Removing volatile");
34 
35 // Check that we can't accidentally assign a temporary location to an ArrayRef.
36 // (Unfortunately we can't make use of the same thing with constructors.)
37 //
38 // Disable this check under MSVC; even MSVC 2015 isn't inconsistent between
39 // std::is_assignable and actually writing such an assignment.
40 #if !defined(_MSC_VER)
41 static_assert(
42     !std::is_assignable<ArrayRef<int *>, int *>::value,
43     "Assigning from single prvalue element");
44 static_assert(
45     !std::is_assignable<ArrayRef<int *>, int * &&>::value,
46     "Assigning from single xvalue element");
47 static_assert(
48     std::is_assignable<ArrayRef<int *>, int * &>::value,
49     "Assigning from single lvalue element");
50 static_assert(
51     !std::is_assignable<ArrayRef<int *>, std::initializer_list<int *>>::value,
52     "Assigning from an initializer list");
53 #endif
54 
55 // Check Typedefs.
56 static_assert(
57     std::is_same<ArrayRef<int>::value_type, int>::value,
58     "erroneous value_type");
59 static_assert(
60     std::is_same<ArrayRef<const int>::value_type, int>::value,
61     "erroneous value_type");
62 
63 namespace {
64 
65 TEST(ArrayRefTest, AllocatorCopy) {
66   BumpPtrAllocator Alloc;
67   static const uint16_t Words1[] = { 1, 4, 200, 37 };
68   ArrayRef<uint16_t> Array1 = makeArrayRef(Words1, 4);
69   static const uint16_t Words2[] = { 11, 4003, 67, 64000, 13 };
70   ArrayRef<uint16_t> Array2 = makeArrayRef(Words2, 5);
71   ArrayRef<uint16_t> Array1c = Array1.copy(Alloc);
72   ArrayRef<uint16_t> Array2c = Array2.copy(Alloc);
73   EXPECT_TRUE(Array1.equals(Array1c));
74   EXPECT_NE(Array1.data(), Array1c.data());
75   EXPECT_TRUE(Array2.equals(Array2c));
76   EXPECT_NE(Array2.data(), Array2c.data());
77 
78   // Check that copy can cope with uninitialized memory.
79   struct NonAssignable {
80     const char *Ptr;
81 
82     NonAssignable(const char *Ptr) : Ptr(Ptr) {}
83     NonAssignable(const NonAssignable &RHS) = default;
84     void operator=(const NonAssignable &RHS) { assert(RHS.Ptr != nullptr); }
85     bool operator==(const NonAssignable &RHS) const { return Ptr == RHS.Ptr; }
86   } Array3Src[] = {"hello", "world"};
87   ArrayRef<NonAssignable> Array3Copy = makeArrayRef(Array3Src).copy(Alloc);
88   EXPECT_EQ(makeArrayRef(Array3Src), Array3Copy);
89   EXPECT_NE(makeArrayRef(Array3Src).data(), Array3Copy.data());
90 }
91 
92 TEST(ArrayRefTest, SizeTSizedOperations) {
93   ArrayRef<char> AR(nullptr, std::numeric_limits<ptrdiff_t>::max());
94 
95   // Check that drop_back accepts size_t-sized numbers.
96   EXPECT_EQ(1U, AR.drop_back(AR.size() - 1).size());
97 
98   // Check that drop_front accepts size_t-sized numbers.
99   EXPECT_EQ(1U, AR.drop_front(AR.size() - 1).size());
100 
101   // Check that slice accepts size_t-sized numbers.
102   EXPECT_EQ(1U, AR.slice(AR.size() - 1).size());
103   EXPECT_EQ(AR.size() - 1, AR.slice(1, AR.size() - 1).size());
104 }
105 
106 TEST(ArrayRefTest, DropBack) {
107   static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
108   ArrayRef<int> AR1(TheNumbers);
109   ArrayRef<int> AR2(TheNumbers, AR1.size() - 1);
110   EXPECT_TRUE(AR1.drop_back().equals(AR2));
111 }
112 
113 TEST(ArrayRefTest, DropFront) {
114   static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
115   ArrayRef<int> AR1(TheNumbers);
116   ArrayRef<int> AR2(&TheNumbers[2], AR1.size() - 2);
117   EXPECT_TRUE(AR1.drop_front(2).equals(AR2));
118 }
119 
120 TEST(ArrayRefTest, DropWhile) {
121   static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
122   ArrayRef<int> AR1(TheNumbers);
123   ArrayRef<int> Expected = AR1.drop_front(3);
124   EXPECT_EQ(Expected, AR1.drop_while([](const int &N) { return N % 2 == 1; }));
125 
126   EXPECT_EQ(AR1, AR1.drop_while([](const int &N) { return N < 0; }));
127   EXPECT_EQ(ArrayRef<int>(),
128             AR1.drop_while([](const int &N) { return N > 0; }));
129 }
130 
131 TEST(ArrayRefTest, DropUntil) {
132   static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
133   ArrayRef<int> AR1(TheNumbers);
134   ArrayRef<int> Expected = AR1.drop_front(3);
135   EXPECT_EQ(Expected, AR1.drop_until([](const int &N) { return N % 2 == 0; }));
136 
137   EXPECT_EQ(ArrayRef<int>(),
138             AR1.drop_until([](const int &N) { return N < 0; }));
139   EXPECT_EQ(AR1, AR1.drop_until([](const int &N) { return N > 0; }));
140 }
141 
142 TEST(ArrayRefTest, TakeBack) {
143   static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
144   ArrayRef<int> AR1(TheNumbers);
145   ArrayRef<int> AR2(AR1.end() - 1, 1);
146   EXPECT_TRUE(AR1.take_back().equals(AR2));
147 }
148 
149 TEST(ArrayRefTest, TakeFront) {
150   static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
151   ArrayRef<int> AR1(TheNumbers);
152   ArrayRef<int> AR2(AR1.data(), 2);
153   EXPECT_TRUE(AR1.take_front(2).equals(AR2));
154 }
155 
156 TEST(ArrayRefTest, TakeWhile) {
157   static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
158   ArrayRef<int> AR1(TheNumbers);
159   ArrayRef<int> Expected = AR1.take_front(3);
160   EXPECT_EQ(Expected, AR1.take_while([](const int &N) { return N % 2 == 1; }));
161 
162   EXPECT_EQ(ArrayRef<int>(),
163             AR1.take_while([](const int &N) { return N < 0; }));
164   EXPECT_EQ(AR1, AR1.take_while([](const int &N) { return N > 0; }));
165 }
166 
167 TEST(ArrayRefTest, TakeUntil) {
168   static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
169   ArrayRef<int> AR1(TheNumbers);
170   ArrayRef<int> Expected = AR1.take_front(3);
171   EXPECT_EQ(Expected, AR1.take_until([](const int &N) { return N % 2 == 0; }));
172 
173   EXPECT_EQ(AR1, AR1.take_until([](const int &N) { return N < 0; }));
174   EXPECT_EQ(ArrayRef<int>(),
175             AR1.take_until([](const int &N) { return N > 0; }));
176 }
177 
178 TEST(ArrayRefTest, Equals) {
179   static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8};
180   ArrayRef<int> AR1(A1);
181   EXPECT_TRUE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8}));
182   EXPECT_FALSE(AR1.equals({8, 1, 2, 4, 5, 6, 6, 7}));
183   EXPECT_FALSE(AR1.equals({2, 4, 5, 6, 6, 7, 8, 1}));
184   EXPECT_FALSE(AR1.equals({0, 1, 2, 4, 5, 6, 6, 7}));
185   EXPECT_FALSE(AR1.equals({1, 2, 42, 4, 5, 6, 7, 8}));
186   EXPECT_FALSE(AR1.equals({42, 2, 3, 4, 5, 6, 7, 8}));
187   EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 42}));
188   EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7}));
189   EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8, 9}));
190 
191   ArrayRef<int> AR1a = AR1.drop_back();
192   EXPECT_TRUE(AR1a.equals({1, 2, 3, 4, 5, 6, 7}));
193   EXPECT_FALSE(AR1a.equals({1, 2, 3, 4, 5, 6, 7, 8}));
194 
195   ArrayRef<int> AR1b = AR1a.slice(2, 4);
196   EXPECT_TRUE(AR1b.equals({3, 4, 5, 6}));
197   EXPECT_FALSE(AR1b.equals({2, 3, 4, 5, 6}));
198   EXPECT_FALSE(AR1b.equals({3, 4, 5, 6, 7}));
199 }
200 
201 TEST(ArrayRefTest, EmptyEquals) {
202   EXPECT_TRUE(ArrayRef<unsigned>() == ArrayRef<unsigned>());
203 }
204 
205 TEST(ArrayRefTest, ConstConvert) {
206   int buf[4];
207   for (int i = 0; i < 4; ++i)
208     buf[i] = i;
209 
210   static int *A[] = {&buf[0], &buf[1], &buf[2], &buf[3]};
211   ArrayRef<const int *> a((ArrayRef<int *>(A)));
212   a = ArrayRef<int *>(A);
213 }
214 
215 static std::vector<int> ReturnTest12() { return {1, 2}; }
216 static void ArgTest12(ArrayRef<int> A) {
217   EXPECT_EQ(2U, A.size());
218   EXPECT_EQ(1, A[0]);
219   EXPECT_EQ(2, A[1]);
220 }
221 
222 TEST(ArrayRefTest, InitializerList) {
223   std::initializer_list<int> init_list = { 0, 1, 2, 3, 4 };
224   ArrayRef<int> A = init_list;
225   for (int i = 0; i < 5; ++i)
226     EXPECT_EQ(i, A[i]);
227 
228   std::vector<int> B = ReturnTest12();
229   A = B;
230   EXPECT_EQ(1, A[0]);
231   EXPECT_EQ(2, A[1]);
232 
233   ArgTest12({1, 2});
234 }
235 
236 TEST(ArrayRefTest, EmptyInitializerList) {
237   ArrayRef<int> A = {};
238   EXPECT_TRUE(A.empty());
239 
240   A = {};
241   EXPECT_TRUE(A.empty());
242 }
243 
244 // Test that makeArrayRef works on ArrayRef (no-op)
245 TEST(ArrayRefTest, makeArrayRef) {
246   static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8};
247 
248   // No copy expected for non-const ArrayRef (true no-op)
249   ArrayRef<int> AR1(A1);
250   ArrayRef<int> &AR1Ref = makeArrayRef(AR1);
251   EXPECT_EQ(&AR1, &AR1Ref);
252 
253   // A copy is expected for non-const ArrayRef (thin copy)
254   const ArrayRef<int> AR2(A1);
255   const ArrayRef<int> &AR2Ref = makeArrayRef(AR2);
256   EXPECT_NE(&AR2Ref, &AR2);
257   EXPECT_TRUE(AR2.equals(AR2Ref));
258 }
259 
260 } // end anonymous namespace
261