1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "Error.h"
17 #include "ObjDumper.h"
18 #include "StackMapPrinter.h"
19 #include "llvm-readobj.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/PointerIntPair.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
33 #include "llvm/BinaryFormat/ELF.h"
34 #include "llvm/Demangle/Demangle.h"
35 #include "llvm/Object/ELF.h"
36 #include "llvm/Object/ELFObjectFile.h"
37 #include "llvm/Object/ELFTypes.h"
38 #include "llvm/Object/Error.h"
39 #include "llvm/Object/ObjectFile.h"
40 #include "llvm/Object/RelocationResolver.h"
41 #include "llvm/Object/StackMapParser.h"
42 #include "llvm/Support/AMDGPUMetadata.h"
43 #include "llvm/Support/ARMAttributeParser.h"
44 #include "llvm/Support/ARMBuildAttributes.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Endian.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/FormatVariadic.h"
51 #include "llvm/Support/FormattedStream.h"
52 #include "llvm/Support/LEB128.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/MipsABIFlags.h"
55 #include "llvm/Support/RISCVAttributeParser.h"
56 #include "llvm/Support/RISCVAttributes.h"
57 #include "llvm/Support/ScopedPrinter.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cinttypes>
61 #include <cstddef>
62 #include <cstdint>
63 #include <cstdlib>
64 #include <iterator>
65 #include <memory>
66 #include <string>
67 #include <system_error>
68 #include <unordered_set>
69 #include <vector>
70 
71 using namespace llvm;
72 using namespace llvm::object;
73 using namespace ELF;
74 
75 #define LLVM_READOBJ_ENUM_CASE(ns, enum)                                       \
76   case ns::enum:                                                               \
77     return #enum;
78 
79 #define ENUM_ENT(enum, altName)                                                \
80   { #enum, altName, ELF::enum }
81 
82 #define ENUM_ENT_1(enum)                                                       \
83   { #enum, #enum, ELF::enum }
84 
85 #define LLVM_READOBJ_PHDR_ENUM(ns, enum)                                       \
86   case ns::enum:                                                               \
87     return std::string(#enum).substr(3);
88 
89 #define TYPEDEF_ELF_TYPES(ELFT)                                                \
90   using ELFO = ELFFile<ELFT>;                                                  \
91   using Elf_Addr = typename ELFT::Addr;                                        \
92   using Elf_Shdr = typename ELFT::Shdr;                                        \
93   using Elf_Sym = typename ELFT::Sym;                                          \
94   using Elf_Dyn = typename ELFT::Dyn;                                          \
95   using Elf_Dyn_Range = typename ELFT::DynRange;                               \
96   using Elf_Rel = typename ELFT::Rel;                                          \
97   using Elf_Rela = typename ELFT::Rela;                                        \
98   using Elf_Relr = typename ELFT::Relr;                                        \
99   using Elf_Rel_Range = typename ELFT::RelRange;                               \
100   using Elf_Rela_Range = typename ELFT::RelaRange;                             \
101   using Elf_Relr_Range = typename ELFT::RelrRange;                             \
102   using Elf_Phdr = typename ELFT::Phdr;                                        \
103   using Elf_Half = typename ELFT::Half;                                        \
104   using Elf_Ehdr = typename ELFT::Ehdr;                                        \
105   using Elf_Word = typename ELFT::Word;                                        \
106   using Elf_Hash = typename ELFT::Hash;                                        \
107   using Elf_GnuHash = typename ELFT::GnuHash;                                  \
108   using Elf_Note  = typename ELFT::Note;                                       \
109   using Elf_Sym_Range = typename ELFT::SymRange;                               \
110   using Elf_Versym = typename ELFT::Versym;                                    \
111   using Elf_Verneed = typename ELFT::Verneed;                                  \
112   using Elf_Vernaux = typename ELFT::Vernaux;                                  \
113   using Elf_Verdef = typename ELFT::Verdef;                                    \
114   using Elf_Verdaux = typename ELFT::Verdaux;                                  \
115   using Elf_CGProfile = typename ELFT::CGProfile;                              \
116   using uintX_t = typename ELFT::uint;
117 
118 namespace {
119 
120 template <class ELFT> class DumpStyle;
121 
122 /// Represents a contiguous uniform range in the file. We cannot just create a
123 /// range directly because when creating one of these from the .dynamic table
124 /// the size, entity size and virtual address are different entries in arbitrary
125 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
126 struct DynRegionInfo {
127   DynRegionInfo(StringRef ObjName) : FileName(ObjName) {}
128   DynRegionInfo(const void *A, uint64_t S, uint64_t ES, StringRef ObjName)
129       : Addr(A), Size(S), EntSize(ES), FileName(ObjName) {}
130 
131   /// Address in current address space.
132   const void *Addr = nullptr;
133   /// Size in bytes of the region.
134   uint64_t Size = 0;
135   /// Size of each entity in the region.
136   uint64_t EntSize = 0;
137 
138   /// Name of the file. Used for error reporting.
139   StringRef FileName;
140   /// Error prefix. Used for error reporting to provide more information.
141   std::string Context;
142   /// Region size name. Used for error reporting.
143   StringRef SizePrintName = "size";
144   /// Entry size name. Used for error reporting. If this field is empty, errors
145   /// will not mention the entry size.
146   StringRef EntSizePrintName = "entry size";
147 
148   template <typename Type> ArrayRef<Type> getAsArrayRef() const {
149     const Type *Start = reinterpret_cast<const Type *>(Addr);
150     if (!Start)
151       return {Start, Start};
152     if (EntSize == sizeof(Type) && (Size % EntSize == 0))
153       return {Start, Start + (Size / EntSize)};
154 
155     std::string Msg;
156     if (!Context.empty())
157       Msg += Context + " has ";
158 
159     Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
160                .str();
161     if (!EntSizePrintName.empty())
162       Msg +=
163           (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
164               .str();
165 
166     reportWarning(createError(Msg.c_str()), FileName);
167     return {Start, Start};
168   }
169 };
170 
171 namespace {
172 struct VerdAux {
173   unsigned Offset;
174   std::string Name;
175 };
176 
177 struct VerDef {
178   unsigned Offset;
179   unsigned Version;
180   unsigned Flags;
181   unsigned Ndx;
182   unsigned Cnt;
183   unsigned Hash;
184   std::string Name;
185   std::vector<VerdAux> AuxV;
186 };
187 
188 struct VernAux {
189   unsigned Hash;
190   unsigned Flags;
191   unsigned Other;
192   unsigned Offset;
193   std::string Name;
194 };
195 
196 struct VerNeed {
197   unsigned Version;
198   unsigned Cnt;
199   unsigned Offset;
200   std::string File;
201   std::vector<VernAux> AuxV;
202 };
203 
204 } // namespace
205 
206 template <typename ELFT> class ELFDumper : public ObjDumper {
207 public:
208   ELFDumper(const object::ELFObjectFile<ELFT> *ObjF, ScopedPrinter &Writer);
209 
210   void printFileHeaders() override;
211   void printSectionHeaders() override;
212   void printRelocations() override;
213   void printDependentLibs() override;
214   void printDynamicRelocations() override;
215   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
216   void printHashSymbols() override;
217   void printUnwindInfo() override;
218 
219   void printDynamicTable() override;
220   void printNeededLibraries() override;
221   void printProgramHeaders(bool PrintProgramHeaders,
222                            cl::boolOrDefault PrintSectionMapping) override;
223   void printHashTable() override;
224   void printGnuHashTable(const object::ObjectFile *Obj) override;
225   void printLoadName() override;
226   void printVersionInfo() override;
227   void printGroupSections() override;
228 
229   void printArchSpecificInfo() override;
230 
231   void printStackMap() const override;
232 
233   void printHashHistograms() override;
234 
235   void printCGProfile() override;
236   void printAddrsig() override;
237 
238   void printNotes() override;
239 
240   void printELFLinkerOptions() override;
241   void printStackSizes() override;
242 
243   const object::ELFObjectFile<ELFT> *getElfObject() const { return ObjF; };
244 
245 private:
246   std::unique_ptr<DumpStyle<ELFT>> ELFDumperStyle;
247 
248   TYPEDEF_ELF_TYPES(ELFT)
249 
250   DynRegionInfo checkDRI(DynRegionInfo DRI) {
251     const ELFFile<ELFT> *Obj = ObjF->getELFFile();
252     if (DRI.Addr < Obj->base() ||
253         reinterpret_cast<const uint8_t *>(DRI.Addr) + DRI.Size >
254             Obj->base() + Obj->getBufSize())
255       reportError(errorCodeToError(llvm::object::object_error::parse_failed),
256                   ObjF->getFileName());
257     return DRI;
258   }
259 
260   DynRegionInfo createDRIFrom(const Elf_Phdr *P, uintX_t EntSize) {
261     return checkDRI({ObjF->getELFFile()->base() + P->p_offset, P->p_filesz,
262                      EntSize, ObjF->getFileName()});
263   }
264 
265   DynRegionInfo createDRIFrom(const Elf_Shdr *S) {
266     return checkDRI({ObjF->getELFFile()->base() + S->sh_offset, S->sh_size,
267                      S->sh_entsize, ObjF->getFileName()});
268   }
269 
270   void printAttributes();
271   void printMipsReginfo();
272   void printMipsOptions();
273 
274   std::pair<const Elf_Phdr *, const Elf_Shdr *>
275   findDynamic(const ELFFile<ELFT> *Obj);
276   void loadDynamicTable(const ELFFile<ELFT> *Obj);
277   void parseDynamicTable(const ELFFile<ELFT> *Obj);
278 
279   Expected<StringRef> getSymbolVersion(const Elf_Sym *symb,
280                                        bool &IsDefault) const;
281   Error LoadVersionMap() const;
282 
283   const object::ELFObjectFile<ELFT> *ObjF;
284   DynRegionInfo DynRelRegion;
285   DynRegionInfo DynRelaRegion;
286   DynRegionInfo DynRelrRegion;
287   DynRegionInfo DynPLTRelRegion;
288   Optional<DynRegionInfo> DynSymRegion;
289   DynRegionInfo DynamicTable;
290   StringRef DynamicStringTable;
291   StringRef SOName = "<Not found>";
292   const Elf_Hash *HashTable = nullptr;
293   const Elf_GnuHash *GnuHashTable = nullptr;
294   const Elf_Shdr *DotSymtabSec = nullptr;
295   const Elf_Shdr *DotCGProfileSec = nullptr;
296   const Elf_Shdr *DotAddrsigSec = nullptr;
297   StringRef DynSymtabName;
298   ArrayRef<Elf_Word> ShndxTable;
299 
300   const Elf_Shdr *SymbolVersionSection = nullptr;   // .gnu.version
301   const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
302   const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
303 
304   struct VersionEntry {
305     std::string Name;
306     bool IsVerDef;
307   };
308   mutable SmallVector<Optional<VersionEntry>, 16> VersionMap;
309 
310   std::unordered_set<std::string> Warnings;
311 
312 public:
313   Elf_Dyn_Range dynamic_table() const {
314     // A valid .dynamic section contains an array of entries terminated
315     // with a DT_NULL entry. However, sometimes the section content may
316     // continue past the DT_NULL entry, so to dump the section correctly,
317     // we first find the end of the entries by iterating over them.
318     Elf_Dyn_Range Table = DynamicTable.getAsArrayRef<Elf_Dyn>();
319 
320     size_t Size = 0;
321     while (Size < Table.size())
322       if (Table[Size++].getTag() == DT_NULL)
323         break;
324 
325     return Table.slice(0, Size);
326   }
327 
328   Elf_Sym_Range dynamic_symbols() const {
329     if (!DynSymRegion)
330       return Elf_Sym_Range();
331     return DynSymRegion->getAsArrayRef<Elf_Sym>();
332   }
333 
334   Elf_Rel_Range dyn_rels() const;
335   Elf_Rela_Range dyn_relas() const;
336   Elf_Relr_Range dyn_relrs() const;
337   std::string getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable,
338                                 bool IsDynamic) const;
339   Expected<unsigned> getSymbolSectionIndex(const Elf_Sym *Symbol,
340                                            const Elf_Sym *FirstSym) const;
341   Expected<StringRef> getSymbolSectionName(const Elf_Sym *Symbol,
342                                            unsigned SectionIndex) const;
343   Expected<std::string> getStaticSymbolName(uint32_t Index) const;
344   StringRef getDynamicString(uint64_t Value) const;
345   Expected<StringRef> getSymbolVersionByIndex(uint32_t VersionSymbolIndex,
346                                               bool &IsDefault) const;
347 
348   void printSymbolsHelper(bool IsDynamic) const;
349   std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
350 
351   const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; }
352   const Elf_Shdr *getDotCGProfileSec() const { return DotCGProfileSec; }
353   const Elf_Shdr *getDotAddrsigSec() const { return DotAddrsigSec; }
354   ArrayRef<Elf_Word> getShndxTable() const { return ShndxTable; }
355   StringRef getDynamicStringTable() const { return DynamicStringTable; }
356   const DynRegionInfo &getDynRelRegion() const { return DynRelRegion; }
357   const DynRegionInfo &getDynRelaRegion() const { return DynRelaRegion; }
358   const DynRegionInfo &getDynRelrRegion() const { return DynRelrRegion; }
359   const DynRegionInfo &getDynPLTRelRegion() const { return DynPLTRelRegion; }
360   const DynRegionInfo &getDynamicTableRegion() const { return DynamicTable; }
361   const Elf_Hash *getHashTable() const { return HashTable; }
362   const Elf_GnuHash *getGnuHashTable() const { return GnuHashTable; }
363 
364   Expected<ArrayRef<Elf_Versym>> getVersionTable(const Elf_Shdr *Sec,
365                                                  ArrayRef<Elf_Sym> *SymTab,
366                                                  StringRef *StrTab) const;
367   Expected<std::vector<VerDef>>
368   getVersionDefinitions(const Elf_Shdr *Sec) const;
369   Expected<std::vector<VerNeed>>
370   getVersionDependencies(const Elf_Shdr *Sec) const;
371 
372   Expected<std::pair<const Elf_Sym *, std::string>>
373   getRelocationTarget(const Elf_Shdr *SymTab, const Elf_Rela &R) const;
374 
375   std::function<Error(const Twine &Msg)> WarningHandler;
376   void reportUniqueWarning(Error Err) const;
377 };
378 
379 template <class ELFT>
380 static Expected<StringRef> getLinkAsStrtab(const ELFFile<ELFT> *Obj,
381                                            const typename ELFT::Shdr *Sec,
382                                            unsigned SecNdx) {
383   Expected<const typename ELFT::Shdr *> StrTabSecOrErr =
384       Obj->getSection(Sec->sh_link);
385   if (!StrTabSecOrErr)
386     return createError("invalid section linked to " +
387                        object::getELFSectionTypeName(
388                            Obj->getHeader()->e_machine, Sec->sh_type) +
389                        " section with index " + Twine(SecNdx) + ": " +
390                        toString(StrTabSecOrErr.takeError()));
391 
392   Expected<StringRef> StrTabOrErr = Obj->getStringTable(*StrTabSecOrErr);
393   if (!StrTabOrErr)
394     return createError("invalid string table linked to " +
395                        object::getELFSectionTypeName(
396                            Obj->getHeader()->e_machine, Sec->sh_type) +
397                        " section with index " + Twine(SecNdx) + ": " +
398                        toString(StrTabOrErr.takeError()));
399   return *StrTabOrErr;
400 }
401 
402 // Returns the linked symbol table and associated string table for a given section.
403 template <class ELFT>
404 static Expected<std::pair<typename ELFT::SymRange, StringRef>>
405 getLinkAsSymtab(const ELFFile<ELFT> *Obj, const typename ELFT::Shdr *Sec,
406                    unsigned SecNdx, unsigned ExpectedType) {
407   Expected<const typename ELFT::Shdr *> SymtabOrErr =
408       Obj->getSection(Sec->sh_link);
409   if (!SymtabOrErr)
410     return createError("invalid section linked to " +
411                        object::getELFSectionTypeName(
412                            Obj->getHeader()->e_machine, Sec->sh_type) +
413                        " section with index " + Twine(SecNdx) + ": " +
414                        toString(SymtabOrErr.takeError()));
415 
416   if ((*SymtabOrErr)->sh_type != ExpectedType)
417     return createError(
418         "invalid section linked to " +
419         object::getELFSectionTypeName(Obj->getHeader()->e_machine,
420                                       Sec->sh_type) +
421         " section with index " + Twine(SecNdx) + ": expected " +
422         object::getELFSectionTypeName(Obj->getHeader()->e_machine,
423                                       ExpectedType) +
424         ", but got " +
425         object::getELFSectionTypeName(Obj->getHeader()->e_machine,
426                                       (*SymtabOrErr)->sh_type));
427 
428   Expected<StringRef> StrTabOrErr =
429       getLinkAsStrtab(Obj, *SymtabOrErr, Sec->sh_link);
430   if (!StrTabOrErr)
431     return createError(
432         "can't get a string table for the symbol table linked to " +
433         object::getELFSectionTypeName(Obj->getHeader()->e_machine,
434                                       Sec->sh_type) +
435         " section with index " + Twine(SecNdx) + ": " +
436         toString(StrTabOrErr.takeError()));
437 
438   Expected<typename ELFT::SymRange> SymsOrErr = Obj->symbols(*SymtabOrErr);
439   if (!SymsOrErr)
440     return createError(
441         "unable to read symbols from the symbol table with index " +
442         Twine(Sec->sh_link) + ": " + toString(SymsOrErr.takeError()));
443 
444   return std::make_pair(*SymsOrErr, *StrTabOrErr);
445 }
446 
447 template <class ELFT>
448 Expected<ArrayRef<typename ELFT::Versym>>
449 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr *Sec, ArrayRef<Elf_Sym> *SymTab,
450                                  StringRef *StrTab) const {
451   assert((!SymTab && !StrTab) || (SymTab && StrTab));
452   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
453   unsigned SecNdx = Sec - &cantFail(Obj->sections()).front();
454 
455   if (uintptr_t(Obj->base() + Sec->sh_offset) % sizeof(uint16_t) != 0)
456     return createError("the SHT_GNU_versym section with index " +
457                        Twine(SecNdx) + " is misaligned");
458 
459   Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
460       Obj->template getSectionContentsAsArray<Elf_Versym>(Sec);
461   if (!VersionsOrErr)
462     return createError(
463         "cannot read content of SHT_GNU_versym section with index " +
464         Twine(SecNdx) + ": " + toString(VersionsOrErr.takeError()));
465 
466   Expected<std::pair<ArrayRef<Elf_Sym>, StringRef>> SymTabOrErr =
467       getLinkAsSymtab(Obj, Sec, SecNdx, SHT_DYNSYM);
468   if (!SymTabOrErr) {
469     reportUniqueWarning(SymTabOrErr.takeError());
470     return *VersionsOrErr;
471   }
472 
473   if (SymTabOrErr->first.size() != VersionsOrErr->size())
474     reportUniqueWarning(
475         createError("SHT_GNU_versym section with index " + Twine(SecNdx) +
476                     ": the number of entries (" + Twine(VersionsOrErr->size()) +
477                     ") does not match the number of symbols (" +
478                     Twine(SymTabOrErr->first.size()) +
479                     ") in the symbol table with index " + Twine(Sec->sh_link)));
480 
481   if (SymTab)
482     std::tie(*SymTab, *StrTab) = *SymTabOrErr;
483   return *VersionsOrErr;
484 }
485 
486 template <class ELFT>
487 Expected<std::vector<VerDef>>
488 ELFDumper<ELFT>::getVersionDefinitions(const Elf_Shdr *Sec) const {
489   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
490   unsigned SecNdx = Sec - &cantFail(Obj->sections()).front();
491 
492   Expected<StringRef> StrTabOrErr = getLinkAsStrtab(Obj, Sec, SecNdx);
493   if (!StrTabOrErr)
494     return StrTabOrErr.takeError();
495 
496   Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj->getSectionContents(Sec);
497   if (!ContentsOrErr)
498     return createError(
499         "cannot read content of SHT_GNU_verdef section with index " +
500         Twine(SecNdx) + ": " + toString(ContentsOrErr.takeError()));
501 
502   const uint8_t *Start = ContentsOrErr->data();
503   const uint8_t *End = Start + ContentsOrErr->size();
504 
505   auto ExtractNextAux = [&](const uint8_t *&VerdauxBuf,
506                             unsigned VerDefNdx) -> Expected<VerdAux> {
507     if (VerdauxBuf + sizeof(Elf_Verdaux) > End)
508       return createError("invalid SHT_GNU_verdef section with index " +
509                          Twine(SecNdx) + ": version definition " +
510                          Twine(VerDefNdx) +
511                          " refers to an auxiliary entry that goes past the end "
512                          "of the section");
513 
514     auto *Verdaux = reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf);
515     VerdauxBuf += Verdaux->vda_next;
516 
517     VerdAux Aux;
518     Aux.Offset = VerdauxBuf - Start;
519     if (Verdaux->vda_name <= StrTabOrErr->size())
520       Aux.Name = std::string(StrTabOrErr->drop_front(Verdaux->vda_name));
521     else
522       Aux.Name = "<invalid vda_name: " + to_string(Verdaux->vda_name) + ">";
523     return Aux;
524   };
525 
526   std::vector<VerDef> Ret;
527   const uint8_t *VerdefBuf = Start;
528   for (unsigned I = 1; I <= /*VerDefsNum=*/Sec->sh_info; ++I) {
529     if (VerdefBuf + sizeof(Elf_Verdef) > End)
530       return createError("invalid SHT_GNU_verdef section with index " +
531                          Twine(SecNdx) + ": version definition " + Twine(I) +
532                          " goes past the end of the section");
533 
534     if (uintptr_t(VerdefBuf) % sizeof(uint32_t) != 0)
535       return createError(
536           "invalid SHT_GNU_verdef section with index " + Twine(SecNdx) +
537           ": found a misaligned version definition entry at offset 0x" +
538           Twine::utohexstr(VerdefBuf - Start));
539 
540     unsigned Version = *reinterpret_cast<const Elf_Half *>(VerdefBuf);
541     if (Version != 1)
542       return createError("unable to dump SHT_GNU_verdef section with index " +
543                          Twine(SecNdx) + ": version " + Twine(Version) +
544                          " is not yet supported");
545 
546     const Elf_Verdef *D = reinterpret_cast<const Elf_Verdef *>(VerdefBuf);
547     VerDef &VD = *Ret.emplace(Ret.end());
548     VD.Offset = VerdefBuf - Start;
549     VD.Version = D->vd_version;
550     VD.Flags = D->vd_flags;
551     VD.Ndx = D->vd_ndx;
552     VD.Cnt = D->vd_cnt;
553     VD.Hash = D->vd_hash;
554 
555     const uint8_t *VerdauxBuf = VerdefBuf + D->vd_aux;
556     for (unsigned J = 0; J < D->vd_cnt; ++J) {
557       if (uintptr_t(VerdauxBuf) % sizeof(uint32_t) != 0)
558         return createError("invalid SHT_GNU_verdef section with index " +
559                            Twine(SecNdx) +
560                            ": found a misaligned auxiliary entry at offset 0x" +
561                            Twine::utohexstr(VerdauxBuf - Start));
562 
563       Expected<VerdAux> AuxOrErr = ExtractNextAux(VerdauxBuf, I);
564       if (!AuxOrErr)
565         return AuxOrErr.takeError();
566 
567       if (J == 0)
568         VD.Name = AuxOrErr->Name;
569       else
570         VD.AuxV.push_back(*AuxOrErr);
571     }
572 
573     VerdefBuf += D->vd_next;
574   }
575 
576   return Ret;
577 }
578 
579 template <class ELFT>
580 Expected<std::vector<VerNeed>>
581 ELFDumper<ELFT>::getVersionDependencies(const Elf_Shdr *Sec) const {
582   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
583   unsigned SecNdx = Sec - &cantFail(Obj->sections()).front();
584 
585   StringRef StrTab;
586   Expected<StringRef> StrTabOrErr = getLinkAsStrtab(Obj, Sec, SecNdx);
587   if (!StrTabOrErr)
588     reportUniqueWarning(StrTabOrErr.takeError());
589   else
590     StrTab = *StrTabOrErr;
591 
592   Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj->getSectionContents(Sec);
593   if (!ContentsOrErr)
594     return createError(
595         "cannot read content of SHT_GNU_verneed section with index " +
596         Twine(SecNdx) + ": " + toString(ContentsOrErr.takeError()));
597 
598   const uint8_t *Start = ContentsOrErr->data();
599   const uint8_t *End = Start + ContentsOrErr->size();
600   const uint8_t *VerneedBuf = Start;
601 
602   std::vector<VerNeed> Ret;
603   for (unsigned I = 1; I <= /*VerneedNum=*/Sec->sh_info; ++I) {
604     if (VerneedBuf + sizeof(Elf_Verdef) > End)
605       return createError("invalid SHT_GNU_verneed section with index " +
606                          Twine(SecNdx) + ": version dependency " + Twine(I) +
607                          " goes past the end of the section");
608 
609     if (uintptr_t(VerneedBuf) % sizeof(uint32_t) != 0)
610       return createError(
611           "invalid SHT_GNU_verneed section with index " + Twine(SecNdx) +
612           ": found a misaligned version dependency entry at offset 0x" +
613           Twine::utohexstr(VerneedBuf - Start));
614 
615     unsigned Version = *reinterpret_cast<const Elf_Half *>(VerneedBuf);
616     if (Version != 1)
617       return createError("unable to dump SHT_GNU_verneed section with index " +
618                          Twine(SecNdx) + ": version " + Twine(Version) +
619                          " is not yet supported");
620 
621     const Elf_Verneed *Verneed =
622         reinterpret_cast<const Elf_Verneed *>(VerneedBuf);
623 
624     VerNeed &VN = *Ret.emplace(Ret.end());
625     VN.Version = Verneed->vn_version;
626     VN.Cnt = Verneed->vn_cnt;
627     VN.Offset = VerneedBuf - Start;
628 
629     if (Verneed->vn_file < StrTab.size())
630       VN.File = std::string(StrTab.drop_front(Verneed->vn_file));
631     else
632       VN.File = "<corrupt vn_file: " + to_string(Verneed->vn_file) + ">";
633 
634     const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux;
635     for (unsigned J = 0; J < Verneed->vn_cnt; ++J) {
636       if (uintptr_t(VernauxBuf) % sizeof(uint32_t) != 0)
637         return createError("invalid SHT_GNU_verneed section with index " +
638                            Twine(SecNdx) +
639                            ": found a misaligned auxiliary entry at offset 0x" +
640                            Twine::utohexstr(VernauxBuf - Start));
641 
642       if (VernauxBuf + sizeof(Elf_Vernaux) > End)
643         return createError(
644             "invalid SHT_GNU_verneed section with index " + Twine(SecNdx) +
645             ": version dependency " + Twine(I) +
646             " refers to an auxiliary entry that goes past the end "
647             "of the section");
648 
649       const Elf_Vernaux *Vernaux =
650           reinterpret_cast<const Elf_Vernaux *>(VernauxBuf);
651 
652       VernAux &Aux = *VN.AuxV.emplace(VN.AuxV.end());
653       Aux.Hash = Vernaux->vna_hash;
654       Aux.Flags = Vernaux->vna_flags;
655       Aux.Other = Vernaux->vna_other;
656       Aux.Offset = VernauxBuf - Start;
657       if (StrTab.size() <= Vernaux->vna_name)
658         Aux.Name = "<corrupt>";
659       else
660         Aux.Name = std::string(StrTab.drop_front(Vernaux->vna_name));
661 
662       VernauxBuf += Vernaux->vna_next;
663     }
664     VerneedBuf += Verneed->vn_next;
665   }
666   return Ret;
667 }
668 
669 template <class ELFT>
670 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
671   StringRef StrTable, SymtabName;
672   size_t Entries = 0;
673   Elf_Sym_Range Syms(nullptr, nullptr);
674   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
675   if (IsDynamic) {
676     StrTable = DynamicStringTable;
677     Syms = dynamic_symbols();
678     SymtabName = DynSymtabName;
679     if (DynSymRegion)
680       Entries = DynSymRegion->Size / DynSymRegion->EntSize;
681   } else {
682     if (!DotSymtabSec)
683       return;
684     StrTable = unwrapOrError(ObjF->getFileName(),
685                              Obj->getStringTableForSymtab(*DotSymtabSec));
686     Syms = unwrapOrError(ObjF->getFileName(), Obj->symbols(DotSymtabSec));
687     SymtabName =
688         unwrapOrError(ObjF->getFileName(), Obj->getSectionName(DotSymtabSec));
689     Entries = DotSymtabSec->getEntityCount();
690   }
691   if (Syms.begin() == Syms.end())
692     return;
693 
694   // The st_other field has 2 logical parts. The first two bits hold the symbol
695   // visibility (STV_*) and the remainder hold other platform-specific values.
696   bool NonVisibilityBitsUsed = llvm::find_if(Syms, [](const Elf_Sym &S) {
697                                  return S.st_other & ~0x3;
698                                }) != Syms.end();
699 
700   ELFDumperStyle->printSymtabMessage(Obj, SymtabName, Entries,
701                                      NonVisibilityBitsUsed);
702   for (const auto &Sym : Syms)
703     ELFDumperStyle->printSymbol(Obj, &Sym, Syms.begin(), StrTable, IsDynamic,
704                                 NonVisibilityBitsUsed);
705 }
706 
707 template <class ELFT> class MipsGOTParser;
708 
709 template <typename ELFT> class DumpStyle {
710 public:
711   using Elf_Shdr = typename ELFT::Shdr;
712   using Elf_Sym = typename ELFT::Sym;
713   using Elf_Addr = typename ELFT::Addr;
714 
715   DumpStyle(ELFDumper<ELFT> *Dumper) : Dumper(Dumper) {
716     FileName = this->Dumper->getElfObject()->getFileName();
717   }
718 
719   virtual ~DumpStyle() = default;
720 
721   virtual void printFileHeaders(const ELFFile<ELFT> *Obj) = 0;
722   virtual void printGroupSections(const ELFFile<ELFT> *Obj) = 0;
723   virtual void printRelocations(const ELFFile<ELFT> *Obj) = 0;
724   virtual void printSectionHeaders(const ELFFile<ELFT> *Obj) = 0;
725   virtual void printSymbols(const ELFFile<ELFT> *Obj, bool PrintSymbols,
726                             bool PrintDynamicSymbols) = 0;
727   virtual void printHashSymbols(const ELFFile<ELFT> *Obj) {}
728   virtual void printDependentLibs(const ELFFile<ELFT> *Obj) = 0;
729   virtual void printDynamic(const ELFFile<ELFT> *Obj) {}
730   virtual void printDynamicRelocations(const ELFFile<ELFT> *Obj) = 0;
731   virtual void printSymtabMessage(const ELFFile<ELFT> *Obj, StringRef Name,
732                                   size_t Offset, bool NonVisibilityBitsUsed) {}
733   virtual void printSymbol(const ELFFile<ELFT> *Obj, const Elf_Sym *Symbol,
734                            const Elf_Sym *FirstSym, StringRef StrTable,
735                            bool IsDynamic, bool NonVisibilityBitsUsed) = 0;
736   virtual void printProgramHeaders(const ELFFile<ELFT> *Obj,
737                                    bool PrintProgramHeaders,
738                                    cl::boolOrDefault PrintSectionMapping) = 0;
739   virtual void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
740                                          const Elf_Shdr *Sec) = 0;
741   virtual void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
742                                              const Elf_Shdr *Sec) = 0;
743   virtual void printVersionDependencySection(const ELFFile<ELFT> *Obj,
744                                              const Elf_Shdr *Sec) = 0;
745   virtual void printHashHistograms(const ELFFile<ELFT> *Obj) = 0;
746   virtual void printCGProfile(const ELFFile<ELFT> *Obj) = 0;
747   virtual void printAddrsig(const ELFFile<ELFT> *Obj) = 0;
748   virtual void printNotes(const ELFFile<ELFT> *Obj) = 0;
749   virtual void printELFLinkerOptions(const ELFFile<ELFT> *Obj) = 0;
750   virtual void printStackSizes(const ELFObjectFile<ELFT> *Obj) = 0;
751   void printNonRelocatableStackSizes(const ELFObjectFile<ELFT> *Obj,
752                                      std::function<void()> PrintHeader);
753   void printRelocatableStackSizes(const ELFObjectFile<ELFT> *Obj,
754                                   std::function<void()> PrintHeader);
755   void printFunctionStackSize(const ELFObjectFile<ELFT> *Obj, uint64_t SymValue,
756                               Optional<SectionRef> FunctionSec,
757                               const StringRef SectionName, DataExtractor Data,
758                               uint64_t *Offset);
759   void printStackSize(const ELFObjectFile<ELFT> *Obj, RelocationRef Rel,
760                       SectionRef FunctionSec,
761                       const StringRef &StackSizeSectionName,
762                       const RelocationResolver &Resolver, DataExtractor Data);
763   virtual void printStackSizeEntry(uint64_t Size, StringRef FuncName) = 0;
764   virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
765   virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
766   virtual void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) = 0;
767   const ELFDumper<ELFT> *dumper() const { return Dumper; }
768 
769 protected:
770   void printDependentLibsHelper(
771       const ELFFile<ELFT> *Obj,
772       function_ref<void(const Elf_Shdr &)> OnSectionStart,
773       function_ref<void(StringRef, uint64_t)> OnSectionEntry);
774 
775   void reportUniqueWarning(Error Err) const;
776   StringRef FileName;
777 
778 private:
779   const ELFDumper<ELFT> *Dumper;
780 };
781 
782 template <typename ELFT> class GNUStyle : public DumpStyle<ELFT> {
783   formatted_raw_ostream &OS;
784 
785 public:
786   TYPEDEF_ELF_TYPES(ELFT)
787 
788   GNUStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
789       : DumpStyle<ELFT>(Dumper),
790         OS(static_cast<formatted_raw_ostream&>(W.getOStream())) {
791     assert (&W.getOStream() == &llvm::fouts());
792   }
793 
794   void printFileHeaders(const ELFO *Obj) override;
795   void printGroupSections(const ELFFile<ELFT> *Obj) override;
796   void printRelocations(const ELFO *Obj) override;
797   void printSectionHeaders(const ELFO *Obj) override;
798   void printSymbols(const ELFO *Obj, bool PrintSymbols,
799                     bool PrintDynamicSymbols) override;
800   void printHashSymbols(const ELFO *Obj) override;
801   void printDependentLibs(const ELFFile<ELFT> *Obj) override;
802   void printDynamic(const ELFFile<ELFT> *Obj) override;
803   void printDynamicRelocations(const ELFO *Obj) override;
804   void printSymtabMessage(const ELFO *Obj, StringRef Name, size_t Offset,
805                           bool NonVisibilityBitsUsed) override;
806   void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders,
807                            cl::boolOrDefault PrintSectionMapping) override;
808   void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
809                                  const Elf_Shdr *Sec) override;
810   void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
811                                      const Elf_Shdr *Sec) override;
812   void printVersionDependencySection(const ELFFile<ELFT> *Obj,
813                                      const Elf_Shdr *Sec) override;
814   void printHashHistograms(const ELFFile<ELFT> *Obj) override;
815   void printCGProfile(const ELFFile<ELFT> *Obj) override;
816   void printAddrsig(const ELFFile<ELFT> *Obj) override;
817   void printNotes(const ELFFile<ELFT> *Obj) override;
818   void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
819   void printStackSizes(const ELFObjectFile<ELFT> *Obj) override;
820   void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
821   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
822   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
823   void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) override;
824 
825 private:
826   void printHashHistogram(const Elf_Hash &HashTable);
827   void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable);
828 
829   struct Field {
830     std::string Str;
831     unsigned Column;
832 
833     Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
834     Field(unsigned Col) : Column(Col) {}
835   };
836 
837   template <typename T, typename TEnum>
838   std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) {
839     for (const auto &EnumItem : EnumValues)
840       if (EnumItem.Value == Value)
841         return std::string(EnumItem.AltName);
842     return to_hexString(Value, false);
843   }
844 
845   template <typename T, typename TEnum>
846   std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
847                          TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
848                          TEnum EnumMask3 = {}) {
849     std::string Str;
850     for (const auto &Flag : EnumValues) {
851       if (Flag.Value == 0)
852         continue;
853 
854       TEnum EnumMask{};
855       if (Flag.Value & EnumMask1)
856         EnumMask = EnumMask1;
857       else if (Flag.Value & EnumMask2)
858         EnumMask = EnumMask2;
859       else if (Flag.Value & EnumMask3)
860         EnumMask = EnumMask3;
861       bool IsEnum = (Flag.Value & EnumMask) != 0;
862       if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
863           (IsEnum && (Value & EnumMask) == Flag.Value)) {
864         if (!Str.empty())
865           Str += ", ";
866         Str += Flag.AltName;
867       }
868     }
869     return Str;
870   }
871 
872   formatted_raw_ostream &printField(struct Field F) {
873     if (F.Column != 0)
874       OS.PadToColumn(F.Column);
875     OS << F.Str;
876     OS.flush();
877     return OS;
878   }
879   void printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym, uint32_t Sym,
880                          StringRef StrTable, uint32_t Bucket);
881   void printRelocHeader(unsigned SType);
882   void printRelocation(const ELFO *Obj, unsigned SecIndex,
883                        const Elf_Shdr *SymTab, const Elf_Rela &R,
884                        unsigned RelIndex, bool IsRela);
885   void printRelocation(const ELFO *Obj, const Elf_Sym *Sym,
886                        StringRef SymbolName, const Elf_Rela &R, bool IsRela);
887   void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
888                    StringRef StrTable, bool IsDynamic,
889                    bool NonVisibilityBitsUsed) override;
890   std::string getSymbolSectionNdx(const ELFO *Obj, const Elf_Sym *Symbol,
891                                   const Elf_Sym *FirstSym);
892   void printDynamicRelocation(const ELFO *Obj, Elf_Rela R, bool IsRela);
893   void printProgramHeaders(const ELFO *Obj);
894   void printSectionMapping(const ELFO *Obj);
895   void printGNUVersionSectionProlog(const ELFFile<ELFT> *Obj,
896                                     const typename ELFT::Shdr *Sec,
897                                     const Twine &Label, unsigned EntriesNum);
898 };
899 
900 template <class ELFT>
901 void ELFDumper<ELFT>::reportUniqueWarning(Error Err) const {
902   handleAllErrors(std::move(Err), [&](const ErrorInfoBase &EI) {
903     cantFail(WarningHandler(EI.message()),
904              "WarningHandler should always return ErrorSuccess");
905   });
906 }
907 
908 template <class ELFT>
909 void DumpStyle<ELFT>::reportUniqueWarning(Error Err) const {
910   this->dumper()->reportUniqueWarning(std::move(Err));
911 }
912 
913 template <typename ELFT> class LLVMStyle : public DumpStyle<ELFT> {
914 public:
915   TYPEDEF_ELF_TYPES(ELFT)
916 
917   LLVMStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
918       : DumpStyle<ELFT>(Dumper), W(W) {}
919 
920   void printFileHeaders(const ELFO *Obj) override;
921   void printGroupSections(const ELFFile<ELFT> *Obj) override;
922   void printRelocations(const ELFO *Obj) override;
923   void printRelocations(const Elf_Shdr *Sec, const ELFO *Obj);
924   void printSectionHeaders(const ELFO *Obj) override;
925   void printSymbols(const ELFO *Obj, bool PrintSymbols,
926                     bool PrintDynamicSymbols) override;
927   void printDependentLibs(const ELFFile<ELFT> *Obj) override;
928   void printDynamic(const ELFFile<ELFT> *Obj) override;
929   void printDynamicRelocations(const ELFO *Obj) override;
930   void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders,
931                            cl::boolOrDefault PrintSectionMapping) override;
932   void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
933                                  const Elf_Shdr *Sec) override;
934   void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
935                                      const Elf_Shdr *Sec) override;
936   void printVersionDependencySection(const ELFFile<ELFT> *Obj,
937                                      const Elf_Shdr *Sec) override;
938   void printHashHistograms(const ELFFile<ELFT> *Obj) override;
939   void printCGProfile(const ELFFile<ELFT> *Obj) override;
940   void printAddrsig(const ELFFile<ELFT> *Obj) override;
941   void printNotes(const ELFFile<ELFT> *Obj) override;
942   void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
943   void printStackSizes(const ELFObjectFile<ELFT> *Obj) override;
944   void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
945   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
946   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
947   void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) override;
948 
949 private:
950   void printRelocation(const ELFO *Obj, unsigned SecIndex, Elf_Rela Rel,
951                        unsigned RelIndex, const Elf_Shdr *SymTab);
952   void printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel);
953   void printSymbols(const ELFO *Obj);
954   void printDynamicSymbols(const ELFO *Obj);
955   void printSymbolSection(const Elf_Sym *Symbol, const Elf_Sym *First);
956   void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
957                    StringRef StrTable, bool IsDynamic,
958                    bool /*NonVisibilityBitsUsed*/) override;
959   void printProgramHeaders(const ELFO *Obj);
960   void printSectionMapping(const ELFO *Obj) {}
961 
962   ScopedPrinter &W;
963 };
964 
965 } // end anonymous namespace
966 
967 namespace llvm {
968 
969 template <class ELFT>
970 static std::error_code createELFDumper(const ELFObjectFile<ELFT> *Obj,
971                                        ScopedPrinter &Writer,
972                                        std::unique_ptr<ObjDumper> &Result) {
973   Result.reset(new ELFDumper<ELFT>(Obj, Writer));
974   return readobj_error::success;
975 }
976 
977 std::error_code createELFDumper(const object::ObjectFile *Obj,
978                                 ScopedPrinter &Writer,
979                                 std::unique_ptr<ObjDumper> &Result) {
980   // Little-endian 32-bit
981   if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
982     return createELFDumper(ELFObj, Writer, Result);
983 
984   // Big-endian 32-bit
985   if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
986     return createELFDumper(ELFObj, Writer, Result);
987 
988   // Little-endian 64-bit
989   if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
990     return createELFDumper(ELFObj, Writer, Result);
991 
992   // Big-endian 64-bit
993   if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj))
994     return createELFDumper(ELFObj, Writer, Result);
995 
996   return readobj_error::unsupported_obj_file_format;
997 }
998 
999 } // end namespace llvm
1000 
1001 template <class ELFT> Error ELFDumper<ELFT>::LoadVersionMap() const {
1002   // If there is no dynamic symtab or version table, there is nothing to do.
1003   if (!DynSymRegion || !SymbolVersionSection)
1004     return Error::success();
1005 
1006   // Has the VersionMap already been loaded?
1007   if (!VersionMap.empty())
1008     return Error::success();
1009 
1010   // The first two version indexes are reserved.
1011   // Index 0 is LOCAL, index 1 is GLOBAL.
1012   VersionMap.push_back(VersionEntry());
1013   VersionMap.push_back(VersionEntry());
1014 
1015   auto InsertEntry = [this](unsigned N, StringRef Version, bool IsVerdef) {
1016     if (N >= VersionMap.size())
1017       VersionMap.resize(N + 1);
1018     VersionMap[N] = {std::string(Version), IsVerdef};
1019   };
1020 
1021   if (SymbolVersionDefSection) {
1022     Expected<std::vector<VerDef>> Defs =
1023         this->getVersionDefinitions(SymbolVersionDefSection);
1024     if (!Defs)
1025       return Defs.takeError();
1026     for (const VerDef &Def : *Defs)
1027       InsertEntry(Def.Ndx & ELF::VERSYM_VERSION, Def.Name, true);
1028   }
1029 
1030   if (SymbolVersionNeedSection) {
1031     Expected<std::vector<VerNeed>> Deps =
1032         this->getVersionDependencies(SymbolVersionNeedSection);
1033     if (!Deps)
1034       return Deps.takeError();
1035     for (const VerNeed &Dep : *Deps)
1036       for (const VernAux &Aux : Dep.AuxV)
1037         InsertEntry(Aux.Other & ELF::VERSYM_VERSION, Aux.Name, false);
1038   }
1039 
1040   return Error::success();
1041 }
1042 
1043 template <typename ELFT>
1044 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym *Sym,
1045                                                       bool &IsDefault) const {
1046   // This is a dynamic symbol. Look in the GNU symbol version table.
1047   if (!SymbolVersionSection) {
1048     // No version table.
1049     IsDefault = false;
1050     return "";
1051   }
1052 
1053   assert(DynSymRegion && "DynSymRegion has not been initialised");
1054   // Determine the position in the symbol table of this entry.
1055   size_t EntryIndex = (reinterpret_cast<uintptr_t>(Sym) -
1056                        reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
1057                       sizeof(Elf_Sym);
1058 
1059   // Get the corresponding version index entry.
1060   const Elf_Versym *Versym = unwrapOrError(
1061       ObjF->getFileName(), ObjF->getELFFile()->template getEntry<Elf_Versym>(
1062                                SymbolVersionSection, EntryIndex));
1063   return this->getSymbolVersionByIndex(Versym->vs_index, IsDefault);
1064 }
1065 
1066 template <typename ELFT>
1067 Expected<std::pair<const typename ELFT::Sym *, std::string>>
1068 ELFDumper<ELFT>::getRelocationTarget(const Elf_Shdr *SymTab,
1069                                      const Elf_Rela &R) const {
1070   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
1071   Expected<const Elf_Sym *> SymOrErr = Obj->getRelocationSymbol(&R, SymTab);
1072   if (!SymOrErr)
1073     return SymOrErr.takeError();
1074   const Elf_Sym *Sym = *SymOrErr;
1075   if (!Sym)
1076     return std::make_pair(nullptr, "");
1077 
1078   // The st_name field of a STT_SECTION is usually 0 (empty string).
1079   // This code block returns the section name.
1080   if (Sym->getType() == ELF::STT_SECTION) {
1081     Expected<const Elf_Shdr *> SecOrErr =
1082         Obj->getSection(Sym, SymTab, ShndxTable);
1083     if (!SecOrErr)
1084       return SecOrErr.takeError();
1085 
1086     Expected<StringRef> NameOrErr = Obj->getSectionName(*SecOrErr);
1087     if (!NameOrErr)
1088       return NameOrErr.takeError();
1089     return std::make_pair(Sym, NameOrErr->str());
1090   }
1091 
1092   Expected<StringRef> StrTableOrErr = Obj->getStringTableForSymtab(*SymTab);
1093   if (!StrTableOrErr)
1094     return StrTableOrErr.takeError();
1095 
1096   std::string SymbolName =
1097       getFullSymbolName(Sym, *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
1098   return std::make_pair(Sym, SymbolName);
1099 }
1100 
1101 static std::string maybeDemangle(StringRef Name) {
1102   return opts::Demangle ? demangle(std::string(Name)) : Name.str();
1103 }
1104 
1105 template <typename ELFT>
1106 Expected<std::string>
1107 ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
1108   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
1109   Expected<const typename ELFT::Sym *> SymOrErr =
1110       Obj->getSymbol(DotSymtabSec, Index);
1111   if (!SymOrErr)
1112     return SymOrErr.takeError();
1113 
1114   Expected<StringRef> StrTabOrErr = Obj->getStringTableForSymtab(*DotSymtabSec);
1115   if (!StrTabOrErr)
1116     return StrTabOrErr.takeError();
1117 
1118   Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
1119   if (!NameOrErr)
1120     return NameOrErr.takeError();
1121   return maybeDemangle(*NameOrErr);
1122 }
1123 
1124 template <typename ELFT>
1125 Expected<StringRef>
1126 ELFDumper<ELFT>::getSymbolVersionByIndex(uint32_t SymbolVersionIndex,
1127                                          bool &IsDefault) const {
1128   size_t VersionIndex = SymbolVersionIndex & VERSYM_VERSION;
1129 
1130   // Special markers for unversioned symbols.
1131   if (VersionIndex == VER_NDX_LOCAL || VersionIndex == VER_NDX_GLOBAL) {
1132     IsDefault = false;
1133     return "";
1134   }
1135 
1136   // Lookup this symbol in the version table.
1137   if (Error E = LoadVersionMap())
1138     return std::move(E);
1139   if (VersionIndex >= VersionMap.size() || !VersionMap[VersionIndex])
1140     return createError("SHT_GNU_versym section refers to a version index " +
1141                        Twine(VersionIndex) + " which is missing");
1142 
1143   const VersionEntry &Entry = *VersionMap[VersionIndex];
1144   if (Entry.IsVerDef)
1145     IsDefault = !(SymbolVersionIndex & VERSYM_HIDDEN);
1146   else
1147     IsDefault = false;
1148   return Entry.Name.c_str();
1149 }
1150 
1151 template <typename ELFT>
1152 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym *Symbol,
1153                                                StringRef StrTable,
1154                                                bool IsDynamic) const {
1155   std::string SymbolName = maybeDemangle(
1156       unwrapOrError(ObjF->getFileName(), Symbol->getName(StrTable)));
1157 
1158   if (SymbolName.empty() && Symbol->getType() == ELF::STT_SECTION) {
1159     Elf_Sym_Range Syms = unwrapOrError(
1160         ObjF->getFileName(), ObjF->getELFFile()->symbols(DotSymtabSec));
1161     Expected<unsigned> SectionIndex =
1162         getSymbolSectionIndex(Symbol, Syms.begin());
1163     if (!SectionIndex) {
1164       reportUniqueWarning(SectionIndex.takeError());
1165       return "<?>";
1166     }
1167     Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
1168     if (!NameOrErr) {
1169       reportUniqueWarning(NameOrErr.takeError());
1170       return ("<section " + Twine(*SectionIndex) + ">").str();
1171     }
1172     return std::string(*NameOrErr);
1173   }
1174 
1175   if (!IsDynamic)
1176     return SymbolName;
1177 
1178   bool IsDefault;
1179   Expected<StringRef> VersionOrErr = getSymbolVersion(&*Symbol, IsDefault);
1180   if (!VersionOrErr) {
1181     reportUniqueWarning(VersionOrErr.takeError());
1182     return SymbolName + "@<corrupt>";
1183   }
1184 
1185   if (!VersionOrErr->empty()) {
1186     SymbolName += (IsDefault ? "@@" : "@");
1187     SymbolName += *VersionOrErr;
1188   }
1189   return SymbolName;
1190 }
1191 
1192 template <typename ELFT>
1193 Expected<unsigned>
1194 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym *Symbol,
1195                                        const Elf_Sym *FirstSym) const {
1196   return Symbol->st_shndx == SHN_XINDEX
1197              ? object::getExtendedSymbolTableIndex<ELFT>(Symbol, FirstSym,
1198                                                          ShndxTable)
1199              : Symbol->st_shndx;
1200 }
1201 
1202 // If the Symbol has a reserved st_shndx other than SHN_XINDEX, return a
1203 // descriptive interpretation of the st_shndx value. Otherwise, return the name
1204 // of the section with index SectionIndex. This function assumes that if the
1205 // Symbol has st_shndx == SHN_XINDEX the SectionIndex will be the value derived
1206 // from the SHT_SYMTAB_SHNDX section.
1207 template <typename ELFT>
1208 Expected<StringRef>
1209 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym *Symbol,
1210                                       unsigned SectionIndex) const {
1211   if (Symbol->isUndefined())
1212     return "Undefined";
1213   if (Symbol->isProcessorSpecific())
1214     return "Processor Specific";
1215   if (Symbol->isOSSpecific())
1216     return "Operating System Specific";
1217   if (Symbol->isAbsolute())
1218     return "Absolute";
1219   if (Symbol->isCommon())
1220     return "Common";
1221   if (Symbol->isReserved() && Symbol->st_shndx != SHN_XINDEX)
1222     return "Reserved";
1223 
1224   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
1225   Expected<const Elf_Shdr *> SecOrErr =
1226       Obj->getSection(SectionIndex);
1227   if (!SecOrErr)
1228     return SecOrErr.takeError();
1229   return Obj->getSectionName(*SecOrErr);
1230 }
1231 
1232 template <class ELFO>
1233 static const typename ELFO::Elf_Shdr *
1234 findNotEmptySectionByAddress(const ELFO *Obj, StringRef FileName,
1235                              uint64_t Addr) {
1236   for (const auto &Shdr : unwrapOrError(FileName, Obj->sections()))
1237     if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
1238       return &Shdr;
1239   return nullptr;
1240 }
1241 
1242 template <class ELFO>
1243 static const typename ELFO::Elf_Shdr *
1244 findSectionByName(const ELFO &Obj, StringRef FileName, StringRef Name) {
1245   for (const auto &Shdr : unwrapOrError(FileName, Obj.sections()))
1246     if (Name == unwrapOrError(FileName, Obj.getSectionName(&Shdr)))
1247       return &Shdr;
1248   return nullptr;
1249 }
1250 
1251 static const EnumEntry<unsigned> ElfClass[] = {
1252   {"None",   "none",   ELF::ELFCLASSNONE},
1253   {"32-bit", "ELF32",  ELF::ELFCLASS32},
1254   {"64-bit", "ELF64",  ELF::ELFCLASS64},
1255 };
1256 
1257 static const EnumEntry<unsigned> ElfDataEncoding[] = {
1258   {"None",         "none",                          ELF::ELFDATANONE},
1259   {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
1260   {"BigEndian",    "2's complement, big endian",    ELF::ELFDATA2MSB},
1261 };
1262 
1263 static const EnumEntry<unsigned> ElfObjectFileType[] = {
1264   {"None",         "NONE (none)",              ELF::ET_NONE},
1265   {"Relocatable",  "REL (Relocatable file)",   ELF::ET_REL},
1266   {"Executable",   "EXEC (Executable file)",   ELF::ET_EXEC},
1267   {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1268   {"Core",         "CORE (Core file)",         ELF::ET_CORE},
1269 };
1270 
1271 static const EnumEntry<unsigned> ElfOSABI[] = {
1272   {"SystemV",      "UNIX - System V",      ELF::ELFOSABI_NONE},
1273   {"HPUX",         "UNIX - HP-UX",         ELF::ELFOSABI_HPUX},
1274   {"NetBSD",       "UNIX - NetBSD",        ELF::ELFOSABI_NETBSD},
1275   {"GNU/Linux",    "UNIX - GNU",           ELF::ELFOSABI_LINUX},
1276   {"GNU/Hurd",     "GNU/Hurd",             ELF::ELFOSABI_HURD},
1277   {"Solaris",      "UNIX - Solaris",       ELF::ELFOSABI_SOLARIS},
1278   {"AIX",          "UNIX - AIX",           ELF::ELFOSABI_AIX},
1279   {"IRIX",         "UNIX - IRIX",          ELF::ELFOSABI_IRIX},
1280   {"FreeBSD",      "UNIX - FreeBSD",       ELF::ELFOSABI_FREEBSD},
1281   {"TRU64",        "UNIX - TRU64",         ELF::ELFOSABI_TRU64},
1282   {"Modesto",      "Novell - Modesto",     ELF::ELFOSABI_MODESTO},
1283   {"OpenBSD",      "UNIX - OpenBSD",       ELF::ELFOSABI_OPENBSD},
1284   {"OpenVMS",      "VMS - OpenVMS",        ELF::ELFOSABI_OPENVMS},
1285   {"NSK",          "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1286   {"AROS",         "AROS",                 ELF::ELFOSABI_AROS},
1287   {"FenixOS",      "FenixOS",              ELF::ELFOSABI_FENIXOS},
1288   {"CloudABI",     "CloudABI",             ELF::ELFOSABI_CLOUDABI},
1289   {"Standalone",   "Standalone App",       ELF::ELFOSABI_STANDALONE}
1290 };
1291 
1292 static const EnumEntry<unsigned> SymVersionFlags[] = {
1293     {"Base", "BASE", VER_FLG_BASE},
1294     {"Weak", "WEAK", VER_FLG_WEAK},
1295     {"Info", "INFO", VER_FLG_INFO}};
1296 
1297 static const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1298   {"AMDGPU_HSA",    "AMDGPU - HSA",    ELF::ELFOSABI_AMDGPU_HSA},
1299   {"AMDGPU_PAL",    "AMDGPU - PAL",    ELF::ELFOSABI_AMDGPU_PAL},
1300   {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1301 };
1302 
1303 static const EnumEntry<unsigned> ARMElfOSABI[] = {
1304   {"ARM", "ARM", ELF::ELFOSABI_ARM}
1305 };
1306 
1307 static const EnumEntry<unsigned> C6000ElfOSABI[] = {
1308   {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1309   {"C6000_LINUX",  "Linux C6000",      ELF::ELFOSABI_C6000_LINUX}
1310 };
1311 
1312 static const EnumEntry<unsigned> ElfMachineType[] = {
1313   ENUM_ENT(EM_NONE,          "None"),
1314   ENUM_ENT(EM_M32,           "WE32100"),
1315   ENUM_ENT(EM_SPARC,         "Sparc"),
1316   ENUM_ENT(EM_386,           "Intel 80386"),
1317   ENUM_ENT(EM_68K,           "MC68000"),
1318   ENUM_ENT(EM_88K,           "MC88000"),
1319   ENUM_ENT(EM_IAMCU,         "EM_IAMCU"),
1320   ENUM_ENT(EM_860,           "Intel 80860"),
1321   ENUM_ENT(EM_MIPS,          "MIPS R3000"),
1322   ENUM_ENT(EM_S370,          "IBM System/370"),
1323   ENUM_ENT(EM_MIPS_RS3_LE,   "MIPS R3000 little-endian"),
1324   ENUM_ENT(EM_PARISC,        "HPPA"),
1325   ENUM_ENT(EM_VPP500,        "Fujitsu VPP500"),
1326   ENUM_ENT(EM_SPARC32PLUS,   "Sparc v8+"),
1327   ENUM_ENT(EM_960,           "Intel 80960"),
1328   ENUM_ENT(EM_PPC,           "PowerPC"),
1329   ENUM_ENT(EM_PPC64,         "PowerPC64"),
1330   ENUM_ENT(EM_S390,          "IBM S/390"),
1331   ENUM_ENT(EM_SPU,           "SPU"),
1332   ENUM_ENT(EM_V800,          "NEC V800 series"),
1333   ENUM_ENT(EM_FR20,          "Fujistsu FR20"),
1334   ENUM_ENT(EM_RH32,          "TRW RH-32"),
1335   ENUM_ENT(EM_RCE,           "Motorola RCE"),
1336   ENUM_ENT(EM_ARM,           "ARM"),
1337   ENUM_ENT(EM_ALPHA,         "EM_ALPHA"),
1338   ENUM_ENT(EM_SH,            "Hitachi SH"),
1339   ENUM_ENT(EM_SPARCV9,       "Sparc v9"),
1340   ENUM_ENT(EM_TRICORE,       "Siemens Tricore"),
1341   ENUM_ENT(EM_ARC,           "ARC"),
1342   ENUM_ENT(EM_H8_300,        "Hitachi H8/300"),
1343   ENUM_ENT(EM_H8_300H,       "Hitachi H8/300H"),
1344   ENUM_ENT(EM_H8S,           "Hitachi H8S"),
1345   ENUM_ENT(EM_H8_500,        "Hitachi H8/500"),
1346   ENUM_ENT(EM_IA_64,         "Intel IA-64"),
1347   ENUM_ENT(EM_MIPS_X,        "Stanford MIPS-X"),
1348   ENUM_ENT(EM_COLDFIRE,      "Motorola Coldfire"),
1349   ENUM_ENT(EM_68HC12,        "Motorola MC68HC12 Microcontroller"),
1350   ENUM_ENT(EM_MMA,           "Fujitsu Multimedia Accelerator"),
1351   ENUM_ENT(EM_PCP,           "Siemens PCP"),
1352   ENUM_ENT(EM_NCPU,          "Sony nCPU embedded RISC processor"),
1353   ENUM_ENT(EM_NDR1,          "Denso NDR1 microprocesspr"),
1354   ENUM_ENT(EM_STARCORE,      "Motorola Star*Core processor"),
1355   ENUM_ENT(EM_ME16,          "Toyota ME16 processor"),
1356   ENUM_ENT(EM_ST100,         "STMicroelectronics ST100 processor"),
1357   ENUM_ENT(EM_TINYJ,         "Advanced Logic Corp. TinyJ embedded processor"),
1358   ENUM_ENT(EM_X86_64,        "Advanced Micro Devices X86-64"),
1359   ENUM_ENT(EM_PDSP,          "Sony DSP processor"),
1360   ENUM_ENT(EM_PDP10,         "Digital Equipment Corp. PDP-10"),
1361   ENUM_ENT(EM_PDP11,         "Digital Equipment Corp. PDP-11"),
1362   ENUM_ENT(EM_FX66,          "Siemens FX66 microcontroller"),
1363   ENUM_ENT(EM_ST9PLUS,       "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1364   ENUM_ENT(EM_ST7,           "STMicroelectronics ST7 8-bit microcontroller"),
1365   ENUM_ENT(EM_68HC16,        "Motorola MC68HC16 Microcontroller"),
1366   ENUM_ENT(EM_68HC11,        "Motorola MC68HC11 Microcontroller"),
1367   ENUM_ENT(EM_68HC08,        "Motorola MC68HC08 Microcontroller"),
1368   ENUM_ENT(EM_68HC05,        "Motorola MC68HC05 Microcontroller"),
1369   ENUM_ENT(EM_SVX,           "Silicon Graphics SVx"),
1370   ENUM_ENT(EM_ST19,          "STMicroelectronics ST19 8-bit microcontroller"),
1371   ENUM_ENT(EM_VAX,           "Digital VAX"),
1372   ENUM_ENT(EM_CRIS,          "Axis Communications 32-bit embedded processor"),
1373   ENUM_ENT(EM_JAVELIN,       "Infineon Technologies 32-bit embedded cpu"),
1374   ENUM_ENT(EM_FIREPATH,      "Element 14 64-bit DSP processor"),
1375   ENUM_ENT(EM_ZSP,           "LSI Logic's 16-bit DSP processor"),
1376   ENUM_ENT(EM_MMIX,          "Donald Knuth's educational 64-bit processor"),
1377   ENUM_ENT(EM_HUANY,         "Harvard Universitys's machine-independent object format"),
1378   ENUM_ENT(EM_PRISM,         "Vitesse Prism"),
1379   ENUM_ENT(EM_AVR,           "Atmel AVR 8-bit microcontroller"),
1380   ENUM_ENT(EM_FR30,          "Fujitsu FR30"),
1381   ENUM_ENT(EM_D10V,          "Mitsubishi D10V"),
1382   ENUM_ENT(EM_D30V,          "Mitsubishi D30V"),
1383   ENUM_ENT(EM_V850,          "NEC v850"),
1384   ENUM_ENT(EM_M32R,          "Renesas M32R (formerly Mitsubishi M32r)"),
1385   ENUM_ENT(EM_MN10300,       "Matsushita MN10300"),
1386   ENUM_ENT(EM_MN10200,       "Matsushita MN10200"),
1387   ENUM_ENT(EM_PJ,            "picoJava"),
1388   ENUM_ENT(EM_OPENRISC,      "OpenRISC 32-bit embedded processor"),
1389   ENUM_ENT(EM_ARC_COMPACT,   "EM_ARC_COMPACT"),
1390   ENUM_ENT(EM_XTENSA,        "Tensilica Xtensa Processor"),
1391   ENUM_ENT(EM_VIDEOCORE,     "Alphamosaic VideoCore processor"),
1392   ENUM_ENT(EM_TMM_GPP,       "Thompson Multimedia General Purpose Processor"),
1393   ENUM_ENT(EM_NS32K,         "National Semiconductor 32000 series"),
1394   ENUM_ENT(EM_TPC,           "Tenor Network TPC processor"),
1395   ENUM_ENT(EM_SNP1K,         "EM_SNP1K"),
1396   ENUM_ENT(EM_ST200,         "STMicroelectronics ST200 microcontroller"),
1397   ENUM_ENT(EM_IP2K,          "Ubicom IP2xxx 8-bit microcontrollers"),
1398   ENUM_ENT(EM_MAX,           "MAX Processor"),
1399   ENUM_ENT(EM_CR,            "National Semiconductor CompactRISC"),
1400   ENUM_ENT(EM_F2MC16,        "Fujitsu F2MC16"),
1401   ENUM_ENT(EM_MSP430,        "Texas Instruments msp430 microcontroller"),
1402   ENUM_ENT(EM_BLACKFIN,      "Analog Devices Blackfin"),
1403   ENUM_ENT(EM_SE_C33,        "S1C33 Family of Seiko Epson processors"),
1404   ENUM_ENT(EM_SEP,           "Sharp embedded microprocessor"),
1405   ENUM_ENT(EM_ARCA,          "Arca RISC microprocessor"),
1406   ENUM_ENT(EM_UNICORE,       "Unicore"),
1407   ENUM_ENT(EM_EXCESS,        "eXcess 16/32/64-bit configurable embedded CPU"),
1408   ENUM_ENT(EM_DXP,           "Icera Semiconductor Inc. Deep Execution Processor"),
1409   ENUM_ENT(EM_ALTERA_NIOS2,  "Altera Nios"),
1410   ENUM_ENT(EM_CRX,           "National Semiconductor CRX microprocessor"),
1411   ENUM_ENT(EM_XGATE,         "Motorola XGATE embedded processor"),
1412   ENUM_ENT(EM_C166,          "Infineon Technologies xc16x"),
1413   ENUM_ENT(EM_M16C,          "Renesas M16C"),
1414   ENUM_ENT(EM_DSPIC30F,      "Microchip Technology dsPIC30F Digital Signal Controller"),
1415   ENUM_ENT(EM_CE,            "Freescale Communication Engine RISC core"),
1416   ENUM_ENT(EM_M32C,          "Renesas M32C"),
1417   ENUM_ENT(EM_TSK3000,       "Altium TSK3000 core"),
1418   ENUM_ENT(EM_RS08,          "Freescale RS08 embedded processor"),
1419   ENUM_ENT(EM_SHARC,         "EM_SHARC"),
1420   ENUM_ENT(EM_ECOG2,         "Cyan Technology eCOG2 microprocessor"),
1421   ENUM_ENT(EM_SCORE7,        "SUNPLUS S+Core"),
1422   ENUM_ENT(EM_DSP24,         "New Japan Radio (NJR) 24-bit DSP Processor"),
1423   ENUM_ENT(EM_VIDEOCORE3,    "Broadcom VideoCore III processor"),
1424   ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1425   ENUM_ENT(EM_SE_C17,        "Seiko Epson C17 family"),
1426   ENUM_ENT(EM_TI_C6000,      "Texas Instruments TMS320C6000 DSP family"),
1427   ENUM_ENT(EM_TI_C2000,      "Texas Instruments TMS320C2000 DSP family"),
1428   ENUM_ENT(EM_TI_C5500,      "Texas Instruments TMS320C55x DSP family"),
1429   ENUM_ENT(EM_MMDSP_PLUS,    "STMicroelectronics 64bit VLIW Data Signal Processor"),
1430   ENUM_ENT(EM_CYPRESS_M8C,   "Cypress M8C microprocessor"),
1431   ENUM_ENT(EM_R32C,          "Renesas R32C series microprocessors"),
1432   ENUM_ENT(EM_TRIMEDIA,      "NXP Semiconductors TriMedia architecture family"),
1433   ENUM_ENT(EM_HEXAGON,       "Qualcomm Hexagon"),
1434   ENUM_ENT(EM_8051,          "Intel 8051 and variants"),
1435   ENUM_ENT(EM_STXP7X,        "STMicroelectronics STxP7x family"),
1436   ENUM_ENT(EM_NDS32,         "Andes Technology compact code size embedded RISC processor family"),
1437   ENUM_ENT(EM_ECOG1,         "Cyan Technology eCOG1 microprocessor"),
1438   // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1439   //        an identical number to EM_ECOG1.
1440   ENUM_ENT(EM_ECOG1X,        "Cyan Technology eCOG1X family"),
1441   ENUM_ENT(EM_MAXQ30,        "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1442   ENUM_ENT(EM_XIMO16,        "New Japan Radio (NJR) 16-bit DSP Processor"),
1443   ENUM_ENT(EM_MANIK,         "M2000 Reconfigurable RISC Microprocessor"),
1444   ENUM_ENT(EM_CRAYNV2,       "Cray Inc. NV2 vector architecture"),
1445   ENUM_ENT(EM_RX,            "Renesas RX"),
1446   ENUM_ENT(EM_METAG,         "Imagination Technologies Meta processor architecture"),
1447   ENUM_ENT(EM_MCST_ELBRUS,   "MCST Elbrus general purpose hardware architecture"),
1448   ENUM_ENT(EM_ECOG16,        "Cyan Technology eCOG16 family"),
1449   ENUM_ENT(EM_CR16,          "Xilinx MicroBlaze"),
1450   ENUM_ENT(EM_ETPU,          "Freescale Extended Time Processing Unit"),
1451   ENUM_ENT(EM_SLE9X,         "Infineon Technologies SLE9X core"),
1452   ENUM_ENT(EM_L10M,          "EM_L10M"),
1453   ENUM_ENT(EM_K10M,          "EM_K10M"),
1454   ENUM_ENT(EM_AARCH64,       "AArch64"),
1455   ENUM_ENT(EM_AVR32,         "Atmel Corporation 32-bit microprocessor family"),
1456   ENUM_ENT(EM_STM8,          "STMicroeletronics STM8 8-bit microcontroller"),
1457   ENUM_ENT(EM_TILE64,        "Tilera TILE64 multicore architecture family"),
1458   ENUM_ENT(EM_TILEPRO,       "Tilera TILEPro multicore architecture family"),
1459   ENUM_ENT(EM_CUDA,          "NVIDIA CUDA architecture"),
1460   ENUM_ENT(EM_TILEGX,        "Tilera TILE-Gx multicore architecture family"),
1461   ENUM_ENT(EM_CLOUDSHIELD,   "EM_CLOUDSHIELD"),
1462   ENUM_ENT(EM_COREA_1ST,     "EM_COREA_1ST"),
1463   ENUM_ENT(EM_COREA_2ND,     "EM_COREA_2ND"),
1464   ENUM_ENT(EM_ARC_COMPACT2,  "EM_ARC_COMPACT2"),
1465   ENUM_ENT(EM_OPEN8,         "EM_OPEN8"),
1466   ENUM_ENT(EM_RL78,          "Renesas RL78"),
1467   ENUM_ENT(EM_VIDEOCORE5,    "Broadcom VideoCore V processor"),
1468   ENUM_ENT(EM_78KOR,         "EM_78KOR"),
1469   ENUM_ENT(EM_56800EX,       "EM_56800EX"),
1470   ENUM_ENT(EM_AMDGPU,        "EM_AMDGPU"),
1471   ENUM_ENT(EM_RISCV,         "RISC-V"),
1472   ENUM_ENT(EM_LANAI,         "EM_LANAI"),
1473   ENUM_ENT(EM_BPF,           "EM_BPF"),
1474   ENUM_ENT(EM_VE,            "NEC SX-Aurora Vector Engine"),
1475 };
1476 
1477 static const EnumEntry<unsigned> ElfSymbolBindings[] = {
1478     {"Local",  "LOCAL",  ELF::STB_LOCAL},
1479     {"Global", "GLOBAL", ELF::STB_GLOBAL},
1480     {"Weak",   "WEAK",   ELF::STB_WEAK},
1481     {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1482 
1483 static const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1484     {"DEFAULT",   "DEFAULT",   ELF::STV_DEFAULT},
1485     {"INTERNAL",  "INTERNAL",  ELF::STV_INTERNAL},
1486     {"HIDDEN",    "HIDDEN",    ELF::STV_HIDDEN},
1487     {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1488 
1489 static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1490   { "AMDGPU_HSA_KERNEL",            ELF::STT_AMDGPU_HSA_KERNEL }
1491 };
1492 
1493 static const char *getGroupType(uint32_t Flag) {
1494   if (Flag & ELF::GRP_COMDAT)
1495     return "COMDAT";
1496   else
1497     return "(unknown)";
1498 }
1499 
1500 static const EnumEntry<unsigned> ElfSectionFlags[] = {
1501   ENUM_ENT(SHF_WRITE,            "W"),
1502   ENUM_ENT(SHF_ALLOC,            "A"),
1503   ENUM_ENT(SHF_EXECINSTR,        "X"),
1504   ENUM_ENT(SHF_MERGE,            "M"),
1505   ENUM_ENT(SHF_STRINGS,          "S"),
1506   ENUM_ENT(SHF_INFO_LINK,        "I"),
1507   ENUM_ENT(SHF_LINK_ORDER,       "L"),
1508   ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
1509   ENUM_ENT(SHF_GROUP,            "G"),
1510   ENUM_ENT(SHF_TLS,              "T"),
1511   ENUM_ENT(SHF_COMPRESSED,       "C"),
1512   ENUM_ENT(SHF_EXCLUDE,          "E"),
1513 };
1514 
1515 static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1516   ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
1517   ENUM_ENT(XCORE_SHF_DP_SECTION, "")
1518 };
1519 
1520 static const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1521   ENUM_ENT(SHF_ARM_PURECODE, "y")
1522 };
1523 
1524 static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1525   ENUM_ENT(SHF_HEX_GPREL, "")
1526 };
1527 
1528 static const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1529   ENUM_ENT(SHF_MIPS_NODUPES, ""),
1530   ENUM_ENT(SHF_MIPS_NAMES,   ""),
1531   ENUM_ENT(SHF_MIPS_LOCAL,   ""),
1532   ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
1533   ENUM_ENT(SHF_MIPS_GPREL,   ""),
1534   ENUM_ENT(SHF_MIPS_MERGE,   ""),
1535   ENUM_ENT(SHF_MIPS_ADDR,    ""),
1536   ENUM_ENT(SHF_MIPS_STRING,  "")
1537 };
1538 
1539 static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1540   ENUM_ENT(SHF_X86_64_LARGE, "l")
1541 };
1542 
1543 static std::vector<EnumEntry<unsigned>>
1544 getSectionFlagsForTarget(unsigned EMachine) {
1545   std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1546                                        std::end(ElfSectionFlags));
1547   switch (EMachine) {
1548   case EM_ARM:
1549     Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1550                std::end(ElfARMSectionFlags));
1551     break;
1552   case EM_HEXAGON:
1553     Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1554                std::end(ElfHexagonSectionFlags));
1555     break;
1556   case EM_MIPS:
1557     Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1558                std::end(ElfMipsSectionFlags));
1559     break;
1560   case EM_X86_64:
1561     Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1562                std::end(ElfX86_64SectionFlags));
1563     break;
1564   case EM_XCORE:
1565     Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1566                std::end(ElfXCoreSectionFlags));
1567     break;
1568   default:
1569     break;
1570   }
1571   return Ret;
1572 }
1573 
1574 static std::string getGNUFlags(unsigned EMachine, uint64_t Flags) {
1575   // Here we are trying to build the flags string in the same way as GNU does.
1576   // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1577   // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1578   // GNU readelf will not print "E" or "Ep" in this case, but will print just
1579   // "p". It only will print "E" when no other processor flag is set.
1580   std::string Str;
1581   bool HasUnknownFlag = false;
1582   bool HasOSFlag = false;
1583   bool HasProcFlag = false;
1584   std::vector<EnumEntry<unsigned>> FlagsList =
1585       getSectionFlagsForTarget(EMachine);
1586   while (Flags) {
1587     // Take the least significant bit as a flag.
1588     uint64_t Flag = Flags & -Flags;
1589     Flags -= Flag;
1590 
1591     // Find the flag in the known flags list.
1592     auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1593       // Flags with empty names are not printed in GNU style output.
1594       return E.Value == Flag && !E.AltName.empty();
1595     });
1596     if (I != FlagsList.end()) {
1597       Str += I->AltName;
1598       continue;
1599     }
1600 
1601     // If we did not find a matching regular flag, then we deal with an OS
1602     // specific flag, processor specific flag or an unknown flag.
1603     if (Flag & ELF::SHF_MASKOS) {
1604       HasOSFlag = true;
1605       Flags &= ~ELF::SHF_MASKOS;
1606     } else if (Flag & ELF::SHF_MASKPROC) {
1607       HasProcFlag = true;
1608       // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1609       // bit if set so that it doesn't also get printed.
1610       Flags &= ~ELF::SHF_MASKPROC;
1611     } else {
1612       HasUnknownFlag = true;
1613     }
1614   }
1615 
1616   // "o", "p" and "x" are printed last.
1617   if (HasOSFlag)
1618     Str += "o";
1619   if (HasProcFlag)
1620     Str += "p";
1621   if (HasUnknownFlag)
1622     Str += "x";
1623   return Str;
1624 }
1625 
1626 static const char *getElfSegmentType(unsigned Arch, unsigned Type) {
1627   // Check potentially overlapped processor-specific
1628   // program header type.
1629   switch (Arch) {
1630   case ELF::EM_ARM:
1631     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1632     break;
1633   case ELF::EM_MIPS:
1634   case ELF::EM_MIPS_RS3_LE:
1635     switch (Type) {
1636       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1637     LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1638     LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1639     LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1640     }
1641     break;
1642   }
1643 
1644   switch (Type) {
1645   LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL   );
1646   LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD   );
1647   LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1648   LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP );
1649   LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE   );
1650   LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB  );
1651   LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR   );
1652   LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS    );
1653 
1654   LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1655   LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1656 
1657     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1658     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1659     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
1660 
1661     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1662     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1663     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1664 
1665   default:
1666     return "";
1667   }
1668 }
1669 
1670 static std::string getElfPtType(unsigned Arch, unsigned Type) {
1671   switch (Type) {
1672     LLVM_READOBJ_PHDR_ENUM(ELF, PT_NULL)
1673     LLVM_READOBJ_PHDR_ENUM(ELF, PT_LOAD)
1674     LLVM_READOBJ_PHDR_ENUM(ELF, PT_DYNAMIC)
1675     LLVM_READOBJ_PHDR_ENUM(ELF, PT_INTERP)
1676     LLVM_READOBJ_PHDR_ENUM(ELF, PT_NOTE)
1677     LLVM_READOBJ_PHDR_ENUM(ELF, PT_SHLIB)
1678     LLVM_READOBJ_PHDR_ENUM(ELF, PT_PHDR)
1679     LLVM_READOBJ_PHDR_ENUM(ELF, PT_TLS)
1680     LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_EH_FRAME)
1681     LLVM_READOBJ_PHDR_ENUM(ELF, PT_SUNW_UNWIND)
1682     LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_STACK)
1683     LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_RELRO)
1684     LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_PROPERTY)
1685   default:
1686     // All machine specific PT_* types
1687     switch (Arch) {
1688     case ELF::EM_ARM:
1689       if (Type == ELF::PT_ARM_EXIDX)
1690         return "EXIDX";
1691       break;
1692     case ELF::EM_MIPS:
1693     case ELF::EM_MIPS_RS3_LE:
1694       switch (Type) {
1695       case PT_MIPS_REGINFO:
1696         return "REGINFO";
1697       case PT_MIPS_RTPROC:
1698         return "RTPROC";
1699       case PT_MIPS_OPTIONS:
1700         return "OPTIONS";
1701       case PT_MIPS_ABIFLAGS:
1702         return "ABIFLAGS";
1703       }
1704       break;
1705     }
1706   }
1707   return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1708 }
1709 
1710 static const EnumEntry<unsigned> ElfSegmentFlags[] = {
1711   LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1712   LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1713   LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1714 };
1715 
1716 static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1717   ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1718   ENUM_ENT(EF_MIPS_PIC, "pic"),
1719   ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1720   ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1721   ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1722   ENUM_ENT(EF_MIPS_FP64, "fp64"),
1723   ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1724   ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1725   ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1726   ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1727   ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1728   ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1729   ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1730   ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1731   ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1732   ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1733   ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1734   ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1735   ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1736   ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1737   ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1738   ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1739   ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1740   ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1741   ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1742   ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1743   ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1744   ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1745   ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1746   ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1747   ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1748   ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1749   ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1750   ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1751   ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1752   ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1753   ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1754   ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1755   ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1756   ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1757   ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1758   ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1759   ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1760 };
1761 
1762 static const EnumEntry<unsigned> ElfHeaderAMDGPUFlags[] = {
1763   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1764   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1765   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1766   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1767   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1768   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1769   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1770   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1771   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1772   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1773   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1774   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1775   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1776   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1777   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1778   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1779   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1780   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1781   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1782   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1783   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1784   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1785   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1786   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1787   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1788   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1789   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1790   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1791   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1792   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1793   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1794   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1795   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1796   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1797   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1798   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1799   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1800   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_XNACK),
1801   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_SRAM_ECC)
1802 };
1803 
1804 static const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1805   ENUM_ENT(EF_RISCV_RVC, "RVC"),
1806   ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1807   ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1808   ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1809   ENUM_ENT(EF_RISCV_RVE, "RVE")
1810 };
1811 
1812 static const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1813   LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1814   LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1815   LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1816 };
1817 
1818 static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1819   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1820   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1821   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1822   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1823 };
1824 
1825 static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1826   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1827   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1828   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1829 };
1830 
1831 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1832   switch (Odk) {
1833   LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1834   LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1835   LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1836   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1837   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1838   LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1839   LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1840   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1841   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1842   LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1843   LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1844   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1845   default:
1846     return "Unknown";
1847   }
1848 }
1849 
1850 template <typename ELFT>
1851 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1852 ELFDumper<ELFT>::findDynamic(const ELFFile<ELFT> *Obj) {
1853   // Try to locate the PT_DYNAMIC header.
1854   const Elf_Phdr *DynamicPhdr = nullptr;
1855   for (const Elf_Phdr &Phdr :
1856        unwrapOrError(ObjF->getFileName(), Obj->program_headers())) {
1857     if (Phdr.p_type != ELF::PT_DYNAMIC)
1858       continue;
1859     DynamicPhdr = &Phdr;
1860     break;
1861   }
1862 
1863   // Try to locate the .dynamic section in the sections header table.
1864   const Elf_Shdr *DynamicSec = nullptr;
1865   for (const Elf_Shdr &Sec :
1866        unwrapOrError(ObjF->getFileName(), Obj->sections())) {
1867     if (Sec.sh_type != ELF::SHT_DYNAMIC)
1868       continue;
1869     DynamicSec = &Sec;
1870     break;
1871   }
1872 
1873   if (DynamicPhdr && DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1874                          ObjF->getMemoryBufferRef().getBufferSize()) {
1875     reportWarning(
1876         createError(
1877             "PT_DYNAMIC segment offset + size exceeds the size of the file"),
1878         ObjF->getFileName());
1879     // Don't use the broken dynamic header.
1880     DynamicPhdr = nullptr;
1881   }
1882 
1883   if (DynamicPhdr && DynamicSec) {
1884     StringRef Name =
1885         unwrapOrError(ObjF->getFileName(), Obj->getSectionName(DynamicSec));
1886     if (DynamicSec->sh_addr + DynamicSec->sh_size >
1887             DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1888         DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1889       reportWarning(createError("The SHT_DYNAMIC section '" + Name +
1890                                 "' is not contained within the "
1891                                 "PT_DYNAMIC segment"),
1892                     ObjF->getFileName());
1893 
1894     if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1895       reportWarning(createError("The SHT_DYNAMIC section '" + Name +
1896                                 "' is not at the start of "
1897                                 "PT_DYNAMIC segment"),
1898                     ObjF->getFileName());
1899   }
1900 
1901   return std::make_pair(DynamicPhdr, DynamicSec);
1902 }
1903 
1904 template <typename ELFT>
1905 void ELFDumper<ELFT>::loadDynamicTable(const ELFFile<ELFT> *Obj) {
1906   const Elf_Phdr *DynamicPhdr;
1907   const Elf_Shdr *DynamicSec;
1908   std::tie(DynamicPhdr, DynamicSec) = findDynamic(Obj);
1909   if (!DynamicPhdr && !DynamicSec)
1910     return;
1911 
1912   DynRegionInfo FromPhdr(ObjF->getFileName());
1913   bool IsPhdrTableValid = false;
1914   if (DynamicPhdr) {
1915     FromPhdr = createDRIFrom(DynamicPhdr, sizeof(Elf_Dyn));
1916     FromPhdr.SizePrintName = "PT_DYNAMIC size";
1917     FromPhdr.EntSizePrintName = "";
1918 
1919     IsPhdrTableValid = !FromPhdr.getAsArrayRef<Elf_Dyn>().empty();
1920   }
1921 
1922   // Locate the dynamic table described in a section header.
1923   // Ignore sh_entsize and use the expected value for entry size explicitly.
1924   // This allows us to dump dynamic sections with a broken sh_entsize
1925   // field.
1926   DynRegionInfo FromSec(ObjF->getFileName());
1927   bool IsSecTableValid = false;
1928   if (DynamicSec) {
1929     FromSec =
1930         checkDRI({ObjF->getELFFile()->base() + DynamicSec->sh_offset,
1931                   DynamicSec->sh_size, sizeof(Elf_Dyn), ObjF->getFileName()});
1932     FromSec.Context = ("section with index " +
1933                        Twine(DynamicSec - &cantFail(Obj->sections()).front()))
1934                           .str();
1935     FromSec.EntSizePrintName = "";
1936 
1937     IsSecTableValid = !FromSec.getAsArrayRef<Elf_Dyn>().empty();
1938   }
1939 
1940   // When we only have information from one of the SHT_DYNAMIC section header or
1941   // PT_DYNAMIC program header, just use that.
1942   if (!DynamicPhdr || !DynamicSec) {
1943     if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1944       DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1945       parseDynamicTable(Obj);
1946     } else {
1947       reportWarning(createError("no valid dynamic table was found"),
1948                     ObjF->getFileName());
1949     }
1950     return;
1951   }
1952 
1953   // At this point we have tables found from the section header and from the
1954   // dynamic segment. Usually they match, but we have to do sanity checks to
1955   // verify that.
1956 
1957   if (FromPhdr.Addr != FromSec.Addr)
1958     reportWarning(createError("SHT_DYNAMIC section header and PT_DYNAMIC "
1959                               "program header disagree about "
1960                               "the location of the dynamic table"),
1961                   ObjF->getFileName());
1962 
1963   if (!IsPhdrTableValid && !IsSecTableValid) {
1964     reportWarning(createError("no valid dynamic table was found"),
1965                   ObjF->getFileName());
1966     return;
1967   }
1968 
1969   // Information in the PT_DYNAMIC program header has priority over the information
1970   // in a section header.
1971   if (IsPhdrTableValid) {
1972     if (!IsSecTableValid)
1973       reportWarning(
1974           createError(
1975               "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used"),
1976           ObjF->getFileName());
1977     DynamicTable = FromPhdr;
1978   } else {
1979     reportWarning(
1980         createError(
1981             "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used"),
1982         ObjF->getFileName());
1983     DynamicTable = FromSec;
1984   }
1985 
1986   parseDynamicTable(Obj);
1987 }
1988 
1989 template <typename ELFT>
1990 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> *ObjF,
1991                            ScopedPrinter &Writer)
1992     : ObjDumper(Writer), ObjF(ObjF), DynRelRegion(ObjF->getFileName()),
1993       DynRelaRegion(ObjF->getFileName()), DynRelrRegion(ObjF->getFileName()),
1994       DynPLTRelRegion(ObjF->getFileName()), DynamicTable(ObjF->getFileName()) {
1995   // Dumper reports all non-critical errors as warnings.
1996   // It does not print the same warning more than once.
1997   WarningHandler = [this](const Twine &Msg) {
1998     if (Warnings.insert(Msg.str()).second)
1999       reportWarning(createError(Msg), this->ObjF->getFileName());
2000     return Error::success();
2001   };
2002 
2003   if (opts::Output == opts::GNU)
2004     ELFDumperStyle.reset(new GNUStyle<ELFT>(Writer, this));
2005   else
2006     ELFDumperStyle.reset(new LLVMStyle<ELFT>(Writer, this));
2007 
2008   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
2009   typename ELFT::ShdrRange Sections =
2010       unwrapOrError(ObjF->getFileName(), Obj->sections());
2011   for (const Elf_Shdr &Sec : Sections) {
2012     switch (Sec.sh_type) {
2013     case ELF::SHT_SYMTAB:
2014       if (!DotSymtabSec)
2015         DotSymtabSec = &Sec;
2016       break;
2017     case ELF::SHT_DYNSYM:
2018       if (!DynSymRegion) {
2019         DynSymRegion = createDRIFrom(&Sec);
2020         DynSymRegion->Context =
2021             ("section with index " + Twine(&Sec - &Sections.front())).str();
2022         // This is only used (if Elf_Shdr present)for naming section in GNU
2023         // style
2024         DynSymtabName =
2025             unwrapOrError(ObjF->getFileName(), Obj->getSectionName(&Sec));
2026 
2027         if (Expected<StringRef> E = Obj->getStringTableForSymtab(Sec))
2028           DynamicStringTable = *E;
2029         else
2030           reportWarning(E.takeError(), ObjF->getFileName());
2031       }
2032       break;
2033     case ELF::SHT_SYMTAB_SHNDX:
2034       ShndxTable = unwrapOrError(ObjF->getFileName(), Obj->getSHNDXTable(Sec));
2035       break;
2036     case ELF::SHT_GNU_versym:
2037       if (!SymbolVersionSection)
2038         SymbolVersionSection = &Sec;
2039       break;
2040     case ELF::SHT_GNU_verdef:
2041       if (!SymbolVersionDefSection)
2042         SymbolVersionDefSection = &Sec;
2043       break;
2044     case ELF::SHT_GNU_verneed:
2045       if (!SymbolVersionNeedSection)
2046         SymbolVersionNeedSection = &Sec;
2047       break;
2048     case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
2049       if (!DotCGProfileSec)
2050         DotCGProfileSec = &Sec;
2051       break;
2052     case ELF::SHT_LLVM_ADDRSIG:
2053       if (!DotAddrsigSec)
2054         DotAddrsigSec = &Sec;
2055       break;
2056     }
2057   }
2058 
2059   loadDynamicTable(Obj);
2060 }
2061 
2062 template <typename ELFT>
2063 void ELFDumper<ELFT>::parseDynamicTable(const ELFFile<ELFT> *Obj) {
2064   auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
2065     auto MappedAddrOrError = ObjF->getELFFile()->toMappedAddr(VAddr);
2066     if (!MappedAddrOrError) {
2067       Error Err =
2068           createError("Unable to parse DT_" + Obj->getDynamicTagAsString(Tag) +
2069                       ": " + llvm::toString(MappedAddrOrError.takeError()));
2070 
2071       reportWarning(std::move(Err), ObjF->getFileName());
2072       return nullptr;
2073     }
2074     return MappedAddrOrError.get();
2075   };
2076 
2077   uint64_t SONameOffset = 0;
2078   const char *StringTableBegin = nullptr;
2079   uint64_t StringTableSize = 0;
2080   Optional<DynRegionInfo> DynSymFromTable;
2081   for (const Elf_Dyn &Dyn : dynamic_table()) {
2082     switch (Dyn.d_tag) {
2083     case ELF::DT_HASH:
2084       HashTable = reinterpret_cast<const Elf_Hash *>(
2085           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2086       break;
2087     case ELF::DT_GNU_HASH:
2088       GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
2089           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2090       break;
2091     case ELF::DT_STRTAB:
2092       StringTableBegin = reinterpret_cast<const char *>(
2093           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2094       break;
2095     case ELF::DT_STRSZ:
2096       StringTableSize = Dyn.getVal();
2097       break;
2098     case ELF::DT_SYMTAB: {
2099       // If we can't map the DT_SYMTAB value to an address (e.g. when there are
2100       // no program headers), we ignore its value.
2101       if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
2102         DynSymFromTable.emplace(ObjF->getFileName());
2103         DynSymFromTable->Addr = VA;
2104         DynSymFromTable->EntSize = sizeof(Elf_Sym);
2105         DynSymFromTable->EntSizePrintName = "";
2106       }
2107       break;
2108     }
2109     case ELF::DT_SYMENT: {
2110       uint64_t Val = Dyn.getVal();
2111       if (Val != sizeof(Elf_Sym))
2112         reportWarning(createError("DT_SYMENT value of 0x" +
2113                                   Twine::utohexstr(Val) +
2114                                   " is not the size of a symbol (0x" +
2115                                   Twine::utohexstr(sizeof(Elf_Sym)) + ")"),
2116                       ObjF->getFileName());
2117       break;
2118     }
2119     case ELF::DT_RELA:
2120       DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2121       break;
2122     case ELF::DT_RELASZ:
2123       DynRelaRegion.Size = Dyn.getVal();
2124       DynRelaRegion.SizePrintName = "DT_RELASZ value";
2125       break;
2126     case ELF::DT_RELAENT:
2127       DynRelaRegion.EntSize = Dyn.getVal();
2128       DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
2129       break;
2130     case ELF::DT_SONAME:
2131       SONameOffset = Dyn.getVal();
2132       break;
2133     case ELF::DT_REL:
2134       DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2135       break;
2136     case ELF::DT_RELSZ:
2137       DynRelRegion.Size = Dyn.getVal();
2138       DynRelRegion.SizePrintName = "DT_RELSZ value";
2139       break;
2140     case ELF::DT_RELENT:
2141       DynRelRegion.EntSize = Dyn.getVal();
2142       DynRelRegion.EntSizePrintName = "DT_RELENT value";
2143       break;
2144     case ELF::DT_RELR:
2145     case ELF::DT_ANDROID_RELR:
2146       DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2147       break;
2148     case ELF::DT_RELRSZ:
2149     case ELF::DT_ANDROID_RELRSZ:
2150       DynRelrRegion.Size = Dyn.getVal();
2151       DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
2152                                         ? "DT_RELRSZ value"
2153                                         : "DT_ANDROID_RELRSZ value";
2154       break;
2155     case ELF::DT_RELRENT:
2156     case ELF::DT_ANDROID_RELRENT:
2157       DynRelrRegion.EntSize = Dyn.getVal();
2158       DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
2159                                            ? "DT_RELRENT value"
2160                                            : "DT_ANDROID_RELRENT value";
2161       break;
2162     case ELF::DT_PLTREL:
2163       if (Dyn.getVal() == DT_REL)
2164         DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
2165       else if (Dyn.getVal() == DT_RELA)
2166         DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
2167       else
2168         reportError(createError(Twine("unknown DT_PLTREL value of ") +
2169                                 Twine((uint64_t)Dyn.getVal())),
2170                     ObjF->getFileName());
2171       DynPLTRelRegion.EntSizePrintName = "";
2172       break;
2173     case ELF::DT_JMPREL:
2174       DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2175       break;
2176     case ELF::DT_PLTRELSZ:
2177       DynPLTRelRegion.Size = Dyn.getVal();
2178       DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
2179       break;
2180     }
2181   }
2182   if (StringTableBegin)
2183     DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2184   SOName = getDynamicString(SONameOffset);
2185 
2186   if (DynSymRegion) {
2187     // Often we find the information about the dynamic symbol table
2188     // location in the SHT_DYNSYM section header. However, the value in
2189     // DT_SYMTAB has priority, because it is used by dynamic loaders to
2190     // locate .dynsym at runtime. The location we find in the section header
2191     // and the location we find here should match.
2192     if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2193       reportUniqueWarning(
2194           createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2195                       "the location of the dynamic symbol table"));
2196 
2197     // According to the ELF gABI: "The number of symbol table entries should
2198     // equal nchain". Check to see if the DT_HASH hash table nchain value
2199     // conflicts with the number of symbols in the dynamic symbol table
2200     // according to the section header.
2201     if (HashTable &&
2202         HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2203       reportUniqueWarning(createError(
2204           "hash table nchain (" + Twine(HashTable->nchain) +
2205           ") differs from symbol count derived from SHT_DYNSYM section "
2206           "header (" +
2207           Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")"));
2208   }
2209 
2210   // Delay the creation of the actual dynamic symbol table until now, so that
2211   // checks can always be made against the section header-based properties,
2212   // without worrying about tag order.
2213   if (DynSymFromTable) {
2214     if (!DynSymRegion) {
2215       DynSymRegion = DynSymFromTable;
2216     } else {
2217       DynSymRegion->Addr = DynSymFromTable->Addr;
2218       DynSymRegion->EntSize = DynSymFromTable->EntSize;
2219       DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2220     }
2221   }
2222 
2223   // Derive the dynamic symbol table size from the DT_HASH hash table, if
2224   // present.
2225   if (HashTable && DynSymRegion)
2226     DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2227 }
2228 
2229 template <typename ELFT>
2230 typename ELFDumper<ELFT>::Elf_Rel_Range ELFDumper<ELFT>::dyn_rels() const {
2231   return DynRelRegion.getAsArrayRef<Elf_Rel>();
2232 }
2233 
2234 template <typename ELFT>
2235 typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const {
2236   return DynRelaRegion.getAsArrayRef<Elf_Rela>();
2237 }
2238 
2239 template <typename ELFT>
2240 typename ELFDumper<ELFT>::Elf_Relr_Range ELFDumper<ELFT>::dyn_relrs() const {
2241   return DynRelrRegion.getAsArrayRef<Elf_Relr>();
2242 }
2243 
2244 template <class ELFT> void ELFDumper<ELFT>::printFileHeaders() {
2245   ELFDumperStyle->printFileHeaders(ObjF->getELFFile());
2246 }
2247 
2248 template <class ELFT> void ELFDumper<ELFT>::printSectionHeaders() {
2249   ELFDumperStyle->printSectionHeaders(ObjF->getELFFile());
2250 }
2251 
2252 template <class ELFT> void ELFDumper<ELFT>::printRelocations() {
2253   ELFDumperStyle->printRelocations(ObjF->getELFFile());
2254 }
2255 
2256 template <class ELFT>
2257 void ELFDumper<ELFT>::printProgramHeaders(
2258     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
2259   ELFDumperStyle->printProgramHeaders(ObjF->getELFFile(), PrintProgramHeaders,
2260                                       PrintSectionMapping);
2261 }
2262 
2263 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2264   // Dump version symbol section.
2265   ELFDumperStyle->printVersionSymbolSection(ObjF->getELFFile(),
2266                                             SymbolVersionSection);
2267 
2268   // Dump version definition section.
2269   ELFDumperStyle->printVersionDefinitionSection(ObjF->getELFFile(),
2270                                                 SymbolVersionDefSection);
2271 
2272   // Dump version dependency section.
2273   ELFDumperStyle->printVersionDependencySection(ObjF->getELFFile(),
2274                                                 SymbolVersionNeedSection);
2275 }
2276 
2277 template <class ELFT> void ELFDumper<ELFT>::printDependentLibs() {
2278   ELFDumperStyle->printDependentLibs(ObjF->getELFFile());
2279 }
2280 
2281 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocations() {
2282   ELFDumperStyle->printDynamicRelocations(ObjF->getELFFile());
2283 }
2284 
2285 template <class ELFT>
2286 void ELFDumper<ELFT>::printSymbols(bool PrintSymbols,
2287                                    bool PrintDynamicSymbols) {
2288   ELFDumperStyle->printSymbols(ObjF->getELFFile(), PrintSymbols,
2289                                PrintDynamicSymbols);
2290 }
2291 
2292 template <class ELFT> void ELFDumper<ELFT>::printHashSymbols() {
2293   ELFDumperStyle->printHashSymbols(ObjF->getELFFile());
2294 }
2295 
2296 template <class ELFT> void ELFDumper<ELFT>::printHashHistograms() {
2297   ELFDumperStyle->printHashHistograms(ObjF->getELFFile());
2298 }
2299 
2300 template <class ELFT> void ELFDumper<ELFT>::printCGProfile() {
2301   ELFDumperStyle->printCGProfile(ObjF->getELFFile());
2302 }
2303 
2304 template <class ELFT> void ELFDumper<ELFT>::printNotes() {
2305   ELFDumperStyle->printNotes(ObjF->getELFFile());
2306 }
2307 
2308 template <class ELFT> void ELFDumper<ELFT>::printELFLinkerOptions() {
2309   ELFDumperStyle->printELFLinkerOptions(ObjF->getELFFile());
2310 }
2311 
2312 template <class ELFT> void ELFDumper<ELFT>::printStackSizes() {
2313   ELFDumperStyle->printStackSizes(ObjF);
2314 }
2315 
2316 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum)                                 \
2317   { #enum, prefix##_##enum }
2318 
2319 static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2320   LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2321   LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2322   LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2323   LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2324   LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2325 };
2326 
2327 static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2328   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2329   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2330   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2331   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2332   LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2333   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2334   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2335   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2336   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2337   LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2338   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2339   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2340   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2341   LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2342   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2343   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2344   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2345   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2346   LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2347   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2348   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2349   LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2350   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2351   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2352   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2353   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2354   LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2355 };
2356 
2357 static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2358   LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2359   LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2360   LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2361   LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2362   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2363   LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2364   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2365   LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2366   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2367   LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2368   LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2369   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2370   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2371   LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2372   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2373   LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2374 };
2375 
2376 #undef LLVM_READOBJ_DT_FLAG_ENT
2377 
2378 template <typename T, typename TFlag>
2379 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2380   using FlagEntry = EnumEntry<TFlag>;
2381   using FlagVector = SmallVector<FlagEntry, 10>;
2382   FlagVector SetFlags;
2383 
2384   for (const auto &Flag : Flags) {
2385     if (Flag.Value == 0)
2386       continue;
2387 
2388     if ((Value & Flag.Value) == Flag.Value)
2389       SetFlags.push_back(Flag);
2390   }
2391 
2392   for (const auto &Flag : SetFlags) {
2393     OS << Flag.Name << " ";
2394   }
2395 }
2396 
2397 template <class ELFT>
2398 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2399                                              uint64_t Value) const {
2400   auto FormatHexValue = [](uint64_t V) {
2401     std::string Str;
2402     raw_string_ostream OS(Str);
2403     const char *ConvChar =
2404         (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
2405     OS << format(ConvChar, V);
2406     return OS.str();
2407   };
2408 
2409   auto FormatFlags = [](uint64_t V,
2410                         llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2411     std::string Str;
2412     raw_string_ostream OS(Str);
2413     printFlags(V, Array, OS);
2414     return OS.str();
2415   };
2416 
2417   // Handle custom printing of architecture specific tags
2418   switch (ObjF->getELFFile()->getHeader()->e_machine) {
2419   case EM_AARCH64:
2420     switch (Type) {
2421     case DT_AARCH64_BTI_PLT:
2422     case DT_AARCH64_PAC_PLT:
2423       return std::to_string(Value);
2424     default:
2425       break;
2426     }
2427     break;
2428   case EM_HEXAGON:
2429     switch (Type) {
2430     case DT_HEXAGON_VER:
2431       return std::to_string(Value);
2432     case DT_HEXAGON_SYMSZ:
2433     case DT_HEXAGON_PLT:
2434       return FormatHexValue(Value);
2435     default:
2436       break;
2437     }
2438     break;
2439   case EM_MIPS:
2440     switch (Type) {
2441     case DT_MIPS_RLD_VERSION:
2442     case DT_MIPS_LOCAL_GOTNO:
2443     case DT_MIPS_SYMTABNO:
2444     case DT_MIPS_UNREFEXTNO:
2445       return std::to_string(Value);
2446     case DT_MIPS_TIME_STAMP:
2447     case DT_MIPS_ICHECKSUM:
2448     case DT_MIPS_IVERSION:
2449     case DT_MIPS_BASE_ADDRESS:
2450     case DT_MIPS_MSYM:
2451     case DT_MIPS_CONFLICT:
2452     case DT_MIPS_LIBLIST:
2453     case DT_MIPS_CONFLICTNO:
2454     case DT_MIPS_LIBLISTNO:
2455     case DT_MIPS_GOTSYM:
2456     case DT_MIPS_HIPAGENO:
2457     case DT_MIPS_RLD_MAP:
2458     case DT_MIPS_DELTA_CLASS:
2459     case DT_MIPS_DELTA_CLASS_NO:
2460     case DT_MIPS_DELTA_INSTANCE:
2461     case DT_MIPS_DELTA_RELOC:
2462     case DT_MIPS_DELTA_RELOC_NO:
2463     case DT_MIPS_DELTA_SYM:
2464     case DT_MIPS_DELTA_SYM_NO:
2465     case DT_MIPS_DELTA_CLASSSYM:
2466     case DT_MIPS_DELTA_CLASSSYM_NO:
2467     case DT_MIPS_CXX_FLAGS:
2468     case DT_MIPS_PIXIE_INIT:
2469     case DT_MIPS_SYMBOL_LIB:
2470     case DT_MIPS_LOCALPAGE_GOTIDX:
2471     case DT_MIPS_LOCAL_GOTIDX:
2472     case DT_MIPS_HIDDEN_GOTIDX:
2473     case DT_MIPS_PROTECTED_GOTIDX:
2474     case DT_MIPS_OPTIONS:
2475     case DT_MIPS_INTERFACE:
2476     case DT_MIPS_DYNSTR_ALIGN:
2477     case DT_MIPS_INTERFACE_SIZE:
2478     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2479     case DT_MIPS_PERF_SUFFIX:
2480     case DT_MIPS_COMPACT_SIZE:
2481     case DT_MIPS_GP_VALUE:
2482     case DT_MIPS_AUX_DYNAMIC:
2483     case DT_MIPS_PLTGOT:
2484     case DT_MIPS_RWPLT:
2485     case DT_MIPS_RLD_MAP_REL:
2486       return FormatHexValue(Value);
2487     case DT_MIPS_FLAGS:
2488       return FormatFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags));
2489     default:
2490       break;
2491     }
2492     break;
2493   default:
2494     break;
2495   }
2496 
2497   switch (Type) {
2498   case DT_PLTREL:
2499     if (Value == DT_REL)
2500       return "REL";
2501     if (Value == DT_RELA)
2502       return "RELA";
2503     LLVM_FALLTHROUGH;
2504   case DT_PLTGOT:
2505   case DT_HASH:
2506   case DT_STRTAB:
2507   case DT_SYMTAB:
2508   case DT_RELA:
2509   case DT_INIT:
2510   case DT_FINI:
2511   case DT_REL:
2512   case DT_JMPREL:
2513   case DT_INIT_ARRAY:
2514   case DT_FINI_ARRAY:
2515   case DT_PREINIT_ARRAY:
2516   case DT_DEBUG:
2517   case DT_VERDEF:
2518   case DT_VERNEED:
2519   case DT_VERSYM:
2520   case DT_GNU_HASH:
2521   case DT_NULL:
2522     return FormatHexValue(Value);
2523   case DT_RELACOUNT:
2524   case DT_RELCOUNT:
2525   case DT_VERDEFNUM:
2526   case DT_VERNEEDNUM:
2527     return std::to_string(Value);
2528   case DT_PLTRELSZ:
2529   case DT_RELASZ:
2530   case DT_RELAENT:
2531   case DT_STRSZ:
2532   case DT_SYMENT:
2533   case DT_RELSZ:
2534   case DT_RELENT:
2535   case DT_INIT_ARRAYSZ:
2536   case DT_FINI_ARRAYSZ:
2537   case DT_PREINIT_ARRAYSZ:
2538   case DT_ANDROID_RELSZ:
2539   case DT_ANDROID_RELASZ:
2540     return std::to_string(Value) + " (bytes)";
2541   case DT_NEEDED:
2542   case DT_SONAME:
2543   case DT_AUXILIARY:
2544   case DT_USED:
2545   case DT_FILTER:
2546   case DT_RPATH:
2547   case DT_RUNPATH: {
2548     const std::map<uint64_t, const char *> TagNames = {
2549         {DT_NEEDED, "Shared library"},       {DT_SONAME, "Library soname"},
2550         {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2551         {DT_FILTER, "Filter library"},       {DT_RPATH, "Library rpath"},
2552         {DT_RUNPATH, "Library runpath"},
2553     };
2554 
2555     return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2556         .str();
2557   }
2558   case DT_FLAGS:
2559     return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags));
2560   case DT_FLAGS_1:
2561     return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags1));
2562   default:
2563     return FormatHexValue(Value);
2564   }
2565 }
2566 
2567 template <class ELFT>
2568 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2569   if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2570     reportUniqueWarning(createError("string table was not found"));
2571     return "<?>";
2572   }
2573 
2574   auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2575     reportUniqueWarning(createError("string table at offset 0x" +
2576                                     Twine::utohexstr(Offset) + Msg));
2577     return "<?>";
2578   };
2579 
2580   const uint64_t FileSize = ObjF->getELFFile()->getBufSize();
2581   const uint64_t Offset =
2582       (const uint8_t *)DynamicStringTable.data() - ObjF->getELFFile()->base();
2583   if (DynamicStringTable.size() > FileSize - Offset)
2584     return WarnAndReturn(" with size 0x" +
2585                              Twine::utohexstr(DynamicStringTable.size()) +
2586                              " goes past the end of the file (0x" +
2587                              Twine::utohexstr(FileSize) + ")",
2588                          Offset);
2589 
2590   if (Value >= DynamicStringTable.size())
2591     return WarnAndReturn(
2592         ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2593             ": it goes past the end of the table (0x" +
2594             Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2595         Offset);
2596 
2597   if (DynamicStringTable.back() != '\0')
2598     return WarnAndReturn(": unable to read the string at 0x" +
2599                              Twine::utohexstr(Offset + Value) +
2600                              ": the string table is not null-terminated",
2601                          Offset);
2602 
2603   return DynamicStringTable.data() + Value;
2604 }
2605 
2606 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2607   DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2608   Ctx.printUnwindInformation();
2609 }
2610 
2611 namespace {
2612 
2613 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2614   const ELFFile<ELF32LE> *Obj = ObjF->getELFFile();
2615   const unsigned Machine = Obj->getHeader()->e_machine;
2616   if (Machine == EM_ARM) {
2617     ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF->getFileName(),
2618                                             DotSymtabSec);
2619     Ctx.PrintUnwindInformation();
2620   }
2621   DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2622   Ctx.printUnwindInformation();
2623 }
2624 
2625 } // end anonymous namespace
2626 
2627 template <class ELFT> void ELFDumper<ELFT>::printDynamicTable() {
2628   ELFDumperStyle->printDynamic(ObjF->getELFFile());
2629 }
2630 
2631 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2632   ListScope D(W, "NeededLibraries");
2633 
2634   std::vector<StringRef> Libs;
2635   for (const auto &Entry : dynamic_table())
2636     if (Entry.d_tag == ELF::DT_NEEDED)
2637       Libs.push_back(getDynamicString(Entry.d_un.d_val));
2638 
2639   llvm::sort(Libs);
2640 
2641   for (StringRef L : Libs)
2642     W.startLine() << L << "\n";
2643 }
2644 
2645 template <class ELFT>
2646 static Error checkHashTable(const ELFFile<ELFT> *Obj,
2647                             const typename ELFT::Hash *H,
2648                             bool *IsHeaderValid = nullptr) {
2649   auto MakeError = [&](uint64_t Off, const Twine &Msg = "") {
2650     return createError("the hash table at offset 0x" + Twine::utohexstr(Off) +
2651                        " goes past the end of the file (0x" +
2652                        Twine::utohexstr(Obj->getBufSize()) + ")" + Msg);
2653   };
2654 
2655   // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2656   const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2657   const uint64_t SecOffset = (const uint8_t *)H - Obj->base();
2658 
2659   if (IsHeaderValid)
2660     *IsHeaderValid = Obj->getBufSize() - SecOffset >= HeaderSize;
2661 
2662   if (Obj->getBufSize() - SecOffset < HeaderSize)
2663     return MakeError(SecOffset);
2664 
2665   if (Obj->getBufSize() - SecOffset - HeaderSize <
2666       ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2667     return MakeError(SecOffset, ", nbucket = " + Twine(H->nbucket) +
2668                                     ", nchain = " + Twine(H->nchain));
2669   return Error::success();
2670 }
2671 
2672 template <class ELFT>
2673 static Error checkGNUHashTable(const ELFFile<ELFT> *Obj,
2674                                const typename ELFT::GnuHash *GnuHashTable,
2675                                bool *IsHeaderValid = nullptr) {
2676   const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2677   assert(TableData >= Obj->base() &&
2678          TableData < Obj->base() + Obj->getBufSize() &&
2679          "GnuHashTable must always point to a location inside the file");
2680 
2681   uint64_t TableOffset = TableData - Obj->base();
2682   if (IsHeaderValid)
2683     *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj->getBufSize();
2684   if (TableOffset + 16 + GnuHashTable->nbuckets * 4 +
2685           GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2686       Obj->getBufSize())
2687     return createError("unable to dump the SHT_GNU_HASH "
2688                        "section at 0x" +
2689                        Twine::utohexstr(TableOffset) +
2690                        ": it goes past the end of the file");
2691   return Error::success();
2692 }
2693 
2694 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2695   DictScope D(W, "HashTable");
2696   if (!HashTable)
2697     return;
2698 
2699   bool IsHeaderValid;
2700   Error Err = checkHashTable(ObjF->getELFFile(), HashTable, &IsHeaderValid);
2701   if (IsHeaderValid) {
2702     W.printNumber("Num Buckets", HashTable->nbucket);
2703     W.printNumber("Num Chains", HashTable->nchain);
2704   }
2705 
2706   if (Err) {
2707     reportUniqueWarning(std::move(Err));
2708     return;
2709   }
2710 
2711   W.printList("Buckets", HashTable->buckets());
2712   W.printList("Chains", HashTable->chains());
2713 }
2714 
2715 template <typename ELFT>
2716 void ELFDumper<ELFT>::printGnuHashTable(const object::ObjectFile *Obj) {
2717   DictScope D(W, "GnuHashTable");
2718   if (!GnuHashTable)
2719     return;
2720 
2721   bool IsHeaderValid;
2722   Error Err =
2723       checkGNUHashTable<ELFT>(ObjF->getELFFile(), GnuHashTable, &IsHeaderValid);
2724   if (IsHeaderValid) {
2725     W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2726     W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2727     W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2728     W.printNumber("Shift Count", GnuHashTable->shift2);
2729   }
2730 
2731   if (Err) {
2732     reportUniqueWarning(std::move(Err));
2733     return;
2734   }
2735 
2736   ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2737   W.printHexList("Bloom Filter", BloomFilter);
2738 
2739   ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2740   W.printList("Buckets", Buckets);
2741 
2742   if (!DynSymRegion) {
2743     reportWarning(createError("unable to dump 'Values' for the SHT_GNU_HASH "
2744                               "section: no dynamic symbol table found"),
2745                   ObjF->getFileName());
2746     return;
2747   }
2748 
2749   size_t NumSyms = dynamic_symbols().size();
2750   if (!NumSyms) {
2751     reportWarning(createError("unable to dump 'Values' for the SHT_GNU_HASH "
2752                               "section: the dynamic symbol table is empty"),
2753                   ObjF->getFileName());
2754     return;
2755   }
2756 
2757   if (GnuHashTable->symndx >= NumSyms) {
2758     // A normal empty GNU hash table section produced by linker might have
2759     // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2760     // and have dummy null values in the Bloom filter and in the buckets
2761     // vector. It happens because the value of symndx is not important for
2762     // dynamic loaders when the GNU hash table is empty. They just skip the
2763     // whole object during symbol lookup. In such cases, the symndx value is
2764     // irrelevant and we should not report a warning.
2765     bool IsEmptyHashTable =
2766         llvm::all_of(Buckets, [](Elf_Word V) { return V == 0; });
2767 
2768     if (!IsEmptyHashTable) {
2769       reportWarning(
2770           createError("the first hashed symbol index (" +
2771                       Twine(GnuHashTable->symndx) +
2772                       ") is larger than the number of dynamic symbols (" +
2773                       Twine(NumSyms) + ")"),
2774           ObjF->getFileName());
2775       return;
2776     }
2777   }
2778 
2779   W.printHexList("Values", GnuHashTable->values(NumSyms));
2780 }
2781 
2782 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2783   W.printString("LoadName", SOName);
2784 }
2785 
2786 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2787   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
2788   switch (Obj->getHeader()->e_machine) {
2789   case EM_ARM:
2790   case EM_RISCV:
2791     printAttributes();
2792     break;
2793   case EM_MIPS: {
2794     ELFDumperStyle->printMipsABIFlags(ObjF);
2795     printMipsOptions();
2796     printMipsReginfo();
2797 
2798     MipsGOTParser<ELFT> Parser(Obj, ObjF->getFileName(), dynamic_table(),
2799                                dynamic_symbols());
2800     if (Parser.hasGot())
2801       ELFDumperStyle->printMipsGOT(Parser);
2802     if (Parser.hasPlt())
2803       ELFDumperStyle->printMipsPLT(Parser);
2804     break;
2805   }
2806   default:
2807     break;
2808   }
2809 }
2810 
2811 namespace {
2812 
2813 template <class ELFT> void ELFDumper<ELFT>::printAttributes() {
2814   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
2815   if (!Obj->isLE()) {
2816     W.startLine() << "Attributes not implemented.\n";
2817     return;
2818   }
2819 
2820   const unsigned Machine = Obj->getHeader()->e_machine;
2821   assert((Machine == EM_ARM || Machine == EM_RISCV) &&
2822          "Attributes not implemented.");
2823 
2824   DictScope BA(W, "BuildAttributes");
2825   for (const auto &Sec : unwrapOrError(ObjF->getFileName(), Obj->sections())) {
2826     if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES &&
2827         Sec.sh_type != ELF::SHT_RISCV_ATTRIBUTES)
2828       continue;
2829 
2830     ArrayRef<uint8_t> Contents =
2831         unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(&Sec));
2832     if (Contents[0] != ELFAttrs::Format_Version) {
2833       reportWarning(createError(Twine("unrecognised FormatVersion: 0x") +
2834                                 Twine::utohexstr(Contents[0])),
2835                     ObjF->getFileName());
2836       continue;
2837     }
2838     W.printHex("FormatVersion", Contents[0]);
2839     if (Contents.size() == 1)
2840       continue;
2841 
2842     // TODO: Delete the redundant FormatVersion check above.
2843     if (Machine == EM_ARM) {
2844       if (Error E = ARMAttributeParser(&W).parse(Contents, support::little))
2845         reportWarning(std::move(E), ObjF->getFileName());
2846     } else if (Machine == EM_RISCV) {
2847       if (Error E = RISCVAttributeParser(&W).parse(Contents, support::little))
2848         reportWarning(std::move(E), ObjF->getFileName());
2849     }
2850   }
2851 }
2852 
2853 template <class ELFT> class MipsGOTParser {
2854 public:
2855   TYPEDEF_ELF_TYPES(ELFT)
2856   using Entry = typename ELFO::Elf_Addr;
2857   using Entries = ArrayRef<Entry>;
2858 
2859   const bool IsStatic;
2860   const ELFO * const Obj;
2861 
2862   MipsGOTParser(const ELFO *Obj, StringRef FileName, Elf_Dyn_Range DynTable,
2863                 Elf_Sym_Range DynSyms);
2864 
2865   bool hasGot() const { return !GotEntries.empty(); }
2866   bool hasPlt() const { return !PltEntries.empty(); }
2867 
2868   uint64_t getGp() const;
2869 
2870   const Entry *getGotLazyResolver() const;
2871   const Entry *getGotModulePointer() const;
2872   const Entry *getPltLazyResolver() const;
2873   const Entry *getPltModulePointer() const;
2874 
2875   Entries getLocalEntries() const;
2876   Entries getGlobalEntries() const;
2877   Entries getOtherEntries() const;
2878   Entries getPltEntries() const;
2879 
2880   uint64_t getGotAddress(const Entry * E) const;
2881   int64_t getGotOffset(const Entry * E) const;
2882   const Elf_Sym *getGotSym(const Entry *E) const;
2883 
2884   uint64_t getPltAddress(const Entry * E) const;
2885   const Elf_Sym *getPltSym(const Entry *E) const;
2886 
2887   StringRef getPltStrTable() const { return PltStrTable; }
2888 
2889 private:
2890   const Elf_Shdr *GotSec;
2891   size_t LocalNum;
2892   size_t GlobalNum;
2893 
2894   const Elf_Shdr *PltSec;
2895   const Elf_Shdr *PltRelSec;
2896   const Elf_Shdr *PltSymTable;
2897   StringRef FileName;
2898 
2899   Elf_Sym_Range GotDynSyms;
2900   StringRef PltStrTable;
2901 
2902   Entries GotEntries;
2903   Entries PltEntries;
2904 };
2905 
2906 } // end anonymous namespace
2907 
2908 template <class ELFT>
2909 MipsGOTParser<ELFT>::MipsGOTParser(const ELFO *Obj, StringRef FileName,
2910                                    Elf_Dyn_Range DynTable,
2911                                    Elf_Sym_Range DynSyms)
2912     : IsStatic(DynTable.empty()), Obj(Obj), GotSec(nullptr), LocalNum(0),
2913       GlobalNum(0), PltSec(nullptr), PltRelSec(nullptr), PltSymTable(nullptr),
2914       FileName(FileName) {
2915   // See "Global Offset Table" in Chapter 5 in the following document
2916   // for detailed GOT description.
2917   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2918 
2919   // Find static GOT secton.
2920   if (IsStatic) {
2921     GotSec = findSectionByName(*Obj, FileName, ".got");
2922     if (!GotSec)
2923       return;
2924 
2925     ArrayRef<uint8_t> Content =
2926         unwrapOrError(FileName, Obj->getSectionContents(GotSec));
2927     GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2928                          Content.size() / sizeof(Entry));
2929     LocalNum = GotEntries.size();
2930     return;
2931   }
2932 
2933   // Lookup dynamic table tags which define GOT/PLT layouts.
2934   Optional<uint64_t> DtPltGot;
2935   Optional<uint64_t> DtLocalGotNum;
2936   Optional<uint64_t> DtGotSym;
2937   Optional<uint64_t> DtMipsPltGot;
2938   Optional<uint64_t> DtJmpRel;
2939   for (const auto &Entry : DynTable) {
2940     switch (Entry.getTag()) {
2941     case ELF::DT_PLTGOT:
2942       DtPltGot = Entry.getVal();
2943       break;
2944     case ELF::DT_MIPS_LOCAL_GOTNO:
2945       DtLocalGotNum = Entry.getVal();
2946       break;
2947     case ELF::DT_MIPS_GOTSYM:
2948       DtGotSym = Entry.getVal();
2949       break;
2950     case ELF::DT_MIPS_PLTGOT:
2951       DtMipsPltGot = Entry.getVal();
2952       break;
2953     case ELF::DT_JMPREL:
2954       DtJmpRel = Entry.getVal();
2955       break;
2956     }
2957   }
2958 
2959   // Find dynamic GOT section.
2960   if (DtPltGot || DtLocalGotNum || DtGotSym) {
2961     if (!DtPltGot)
2962       report_fatal_error("Cannot find PLTGOT dynamic table tag.");
2963     if (!DtLocalGotNum)
2964       report_fatal_error("Cannot find MIPS_LOCAL_GOTNO dynamic table tag.");
2965     if (!DtGotSym)
2966       report_fatal_error("Cannot find MIPS_GOTSYM dynamic table tag.");
2967 
2968     size_t DynSymTotal = DynSyms.size();
2969     if (*DtGotSym > DynSymTotal)
2970       reportError(
2971           createError("MIPS_GOTSYM exceeds a number of dynamic symbols"),
2972           FileName);
2973 
2974     GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
2975     if (!GotSec)
2976       reportError(createError("There is no not empty GOT section at 0x" +
2977                               Twine::utohexstr(*DtPltGot)),
2978                   FileName);
2979 
2980     LocalNum = *DtLocalGotNum;
2981     GlobalNum = DynSymTotal - *DtGotSym;
2982 
2983     ArrayRef<uint8_t> Content =
2984         unwrapOrError(FileName, Obj->getSectionContents(GotSec));
2985     GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2986                          Content.size() / sizeof(Entry));
2987     GotDynSyms = DynSyms.drop_front(*DtGotSym);
2988   }
2989 
2990   // Find PLT section.
2991   if (DtMipsPltGot || DtJmpRel) {
2992     if (!DtMipsPltGot)
2993       report_fatal_error("Cannot find MIPS_PLTGOT dynamic table tag.");
2994     if (!DtJmpRel)
2995       report_fatal_error("Cannot find JMPREL dynamic table tag.");
2996 
2997     PltSec = findNotEmptySectionByAddress(Obj, FileName, * DtMipsPltGot);
2998     if (!PltSec)
2999       report_fatal_error("There is no not empty PLTGOT section at 0x " +
3000                          Twine::utohexstr(*DtMipsPltGot));
3001 
3002     PltRelSec = findNotEmptySectionByAddress(Obj, FileName, * DtJmpRel);
3003     if (!PltRelSec)
3004       report_fatal_error("There is no not empty RELPLT section at 0x" +
3005                          Twine::utohexstr(*DtJmpRel));
3006 
3007     ArrayRef<uint8_t> PltContent =
3008         unwrapOrError(FileName, Obj->getSectionContents(PltSec));
3009     PltEntries = Entries(reinterpret_cast<const Entry *>(PltContent.data()),
3010                          PltContent.size() / sizeof(Entry));
3011 
3012     PltSymTable = unwrapOrError(FileName, Obj->getSection(PltRelSec->sh_link));
3013     PltStrTable =
3014         unwrapOrError(FileName, Obj->getStringTableForSymtab(*PltSymTable));
3015   }
3016 }
3017 
3018 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
3019   return GotSec->sh_addr + 0x7ff0;
3020 }
3021 
3022 template <class ELFT>
3023 const typename MipsGOTParser<ELFT>::Entry *
3024 MipsGOTParser<ELFT>::getGotLazyResolver() const {
3025   return LocalNum > 0 ? &GotEntries[0] : nullptr;
3026 }
3027 
3028 template <class ELFT>
3029 const typename MipsGOTParser<ELFT>::Entry *
3030 MipsGOTParser<ELFT>::getGotModulePointer() const {
3031   if (LocalNum < 2)
3032     return nullptr;
3033   const Entry &E = GotEntries[1];
3034   if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
3035     return nullptr;
3036   return &E;
3037 }
3038 
3039 template <class ELFT>
3040 typename MipsGOTParser<ELFT>::Entries
3041 MipsGOTParser<ELFT>::getLocalEntries() const {
3042   size_t Skip = getGotModulePointer() ? 2 : 1;
3043   if (LocalNum - Skip <= 0)
3044     return Entries();
3045   return GotEntries.slice(Skip, LocalNum - Skip);
3046 }
3047 
3048 template <class ELFT>
3049 typename MipsGOTParser<ELFT>::Entries
3050 MipsGOTParser<ELFT>::getGlobalEntries() const {
3051   if (GlobalNum == 0)
3052     return Entries();
3053   return GotEntries.slice(LocalNum, GlobalNum);
3054 }
3055 
3056 template <class ELFT>
3057 typename MipsGOTParser<ELFT>::Entries
3058 MipsGOTParser<ELFT>::getOtherEntries() const {
3059   size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
3060   if (OtherNum == 0)
3061     return Entries();
3062   return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
3063 }
3064 
3065 template <class ELFT>
3066 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
3067   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
3068   return GotSec->sh_addr + Offset;
3069 }
3070 
3071 template <class ELFT>
3072 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
3073   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
3074   return Offset - 0x7ff0;
3075 }
3076 
3077 template <class ELFT>
3078 const typename MipsGOTParser<ELFT>::Elf_Sym *
3079 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
3080   int64_t Offset = std::distance(GotEntries.data(), E);
3081   return &GotDynSyms[Offset - LocalNum];
3082 }
3083 
3084 template <class ELFT>
3085 const typename MipsGOTParser<ELFT>::Entry *
3086 MipsGOTParser<ELFT>::getPltLazyResolver() const {
3087   return PltEntries.empty() ? nullptr : &PltEntries[0];
3088 }
3089 
3090 template <class ELFT>
3091 const typename MipsGOTParser<ELFT>::Entry *
3092 MipsGOTParser<ELFT>::getPltModulePointer() const {
3093   return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
3094 }
3095 
3096 template <class ELFT>
3097 typename MipsGOTParser<ELFT>::Entries
3098 MipsGOTParser<ELFT>::getPltEntries() const {
3099   if (PltEntries.size() <= 2)
3100     return Entries();
3101   return PltEntries.slice(2, PltEntries.size() - 2);
3102 }
3103 
3104 template <class ELFT>
3105 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
3106   int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
3107   return PltSec->sh_addr + Offset;
3108 }
3109 
3110 template <class ELFT>
3111 const typename MipsGOTParser<ELFT>::Elf_Sym *
3112 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
3113   int64_t Offset = std::distance(getPltEntries().data(), E);
3114   if (PltRelSec->sh_type == ELF::SHT_REL) {
3115     Elf_Rel_Range Rels = unwrapOrError(FileName, Obj->rels(PltRelSec));
3116     return unwrapOrError(FileName,
3117                          Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
3118   } else {
3119     Elf_Rela_Range Rels = unwrapOrError(FileName, Obj->relas(PltRelSec));
3120     return unwrapOrError(FileName,
3121                          Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
3122   }
3123 }
3124 
3125 static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
3126   {"None",                    Mips::AFL_EXT_NONE},
3127   {"Broadcom SB-1",           Mips::AFL_EXT_SB1},
3128   {"Cavium Networks Octeon",  Mips::AFL_EXT_OCTEON},
3129   {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
3130   {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
3131   {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
3132   {"LSI R4010",               Mips::AFL_EXT_4010},
3133   {"Loongson 2E",             Mips::AFL_EXT_LOONGSON_2E},
3134   {"Loongson 2F",             Mips::AFL_EXT_LOONGSON_2F},
3135   {"Loongson 3A",             Mips::AFL_EXT_LOONGSON_3A},
3136   {"MIPS R4650",              Mips::AFL_EXT_4650},
3137   {"MIPS R5900",              Mips::AFL_EXT_5900},
3138   {"MIPS R10000",             Mips::AFL_EXT_10000},
3139   {"NEC VR4100",              Mips::AFL_EXT_4100},
3140   {"NEC VR4111/VR4181",       Mips::AFL_EXT_4111},
3141   {"NEC VR4120",              Mips::AFL_EXT_4120},
3142   {"NEC VR5400",              Mips::AFL_EXT_5400},
3143   {"NEC VR5500",              Mips::AFL_EXT_5500},
3144   {"RMI Xlr",                 Mips::AFL_EXT_XLR},
3145   {"Toshiba R3900",           Mips::AFL_EXT_3900}
3146 };
3147 
3148 static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
3149   {"DSP",                Mips::AFL_ASE_DSP},
3150   {"DSPR2",              Mips::AFL_ASE_DSPR2},
3151   {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
3152   {"MCU",                Mips::AFL_ASE_MCU},
3153   {"MDMX",               Mips::AFL_ASE_MDMX},
3154   {"MIPS-3D",            Mips::AFL_ASE_MIPS3D},
3155   {"MT",                 Mips::AFL_ASE_MT},
3156   {"SmartMIPS",          Mips::AFL_ASE_SMARTMIPS},
3157   {"VZ",                 Mips::AFL_ASE_VIRT},
3158   {"MSA",                Mips::AFL_ASE_MSA},
3159   {"MIPS16",             Mips::AFL_ASE_MIPS16},
3160   {"microMIPS",          Mips::AFL_ASE_MICROMIPS},
3161   {"XPA",                Mips::AFL_ASE_XPA},
3162   {"CRC",                Mips::AFL_ASE_CRC},
3163   {"GINV",               Mips::AFL_ASE_GINV},
3164 };
3165 
3166 static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3167   {"Hard or soft float",                  Mips::Val_GNU_MIPS_ABI_FP_ANY},
3168   {"Hard float (double precision)",       Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3169   {"Hard float (single precision)",       Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3170   {"Soft float",                          Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3171   {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3172    Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3173   {"Hard float (32-bit CPU, Any FPU)",    Mips::Val_GNU_MIPS_ABI_FP_XX},
3174   {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3175   {"Hard float compat (32-bit CPU, 64-bit FPU)",
3176    Mips::Val_GNU_MIPS_ABI_FP_64A}
3177 };
3178 
3179 static const EnumEntry<unsigned> ElfMipsFlags1[] {
3180   {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3181 };
3182 
3183 static int getMipsRegisterSize(uint8_t Flag) {
3184   switch (Flag) {
3185   case Mips::AFL_REG_NONE:
3186     return 0;
3187   case Mips::AFL_REG_32:
3188     return 32;
3189   case Mips::AFL_REG_64:
3190     return 64;
3191   case Mips::AFL_REG_128:
3192     return 128;
3193   default:
3194     return -1;
3195   }
3196 }
3197 
3198 template <class ELFT>
3199 static void printMipsReginfoData(ScopedPrinter &W,
3200                                  const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3201   W.printHex("GP", Reginfo.ri_gp_value);
3202   W.printHex("General Mask", Reginfo.ri_gprmask);
3203   W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3204   W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3205   W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3206   W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3207 }
3208 
3209 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3210   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
3211   const Elf_Shdr *Shdr = findSectionByName(*Obj, ObjF->getFileName(), ".reginfo");
3212   if (!Shdr) {
3213     W.startLine() << "There is no .reginfo section in the file.\n";
3214     return;
3215   }
3216   ArrayRef<uint8_t> Sec =
3217       unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
3218   if (Sec.size() != sizeof(Elf_Mips_RegInfo<ELFT>)) {
3219     W.startLine() << "The .reginfo section has a wrong size.\n";
3220     return;
3221   }
3222 
3223   DictScope GS(W, "MIPS RegInfo");
3224   auto *Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(Sec.data());
3225   printMipsReginfoData(W, *Reginfo);
3226 }
3227 
3228 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3229   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
3230   const Elf_Shdr *Shdr =
3231       findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.options");
3232   if (!Shdr) {
3233     W.startLine() << "There is no .MIPS.options section in the file.\n";
3234     return;
3235   }
3236 
3237   DictScope GS(W, "MIPS Options");
3238 
3239   ArrayRef<uint8_t> Sec =
3240       unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
3241   while (!Sec.empty()) {
3242     if (Sec.size() < sizeof(Elf_Mips_Options<ELFT>)) {
3243       W.startLine() << "The .MIPS.options section has a wrong size.\n";
3244       return;
3245     }
3246     auto *O = reinterpret_cast<const Elf_Mips_Options<ELFT> *>(Sec.data());
3247     DictScope GS(W, getElfMipsOptionsOdkType(O->kind));
3248     switch (O->kind) {
3249     case ODK_REGINFO:
3250       printMipsReginfoData(W, O->getRegInfo());
3251       break;
3252     default:
3253       W.startLine() << "Unsupported MIPS options tag.\n";
3254       break;
3255     }
3256     Sec = Sec.slice(O->size);
3257   }
3258 }
3259 
3260 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3261   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
3262   const Elf_Shdr *StackMapSection = nullptr;
3263   for (const auto &Sec : unwrapOrError(ObjF->getFileName(), Obj->sections())) {
3264     StringRef Name =
3265         unwrapOrError(ObjF->getFileName(), Obj->getSectionName(&Sec));
3266     if (Name == ".llvm_stackmaps") {
3267       StackMapSection = &Sec;
3268       break;
3269     }
3270   }
3271 
3272   if (!StackMapSection)
3273     return;
3274 
3275   ArrayRef<uint8_t> StackMapContentsArray = unwrapOrError(
3276       ObjF->getFileName(), Obj->getSectionContents(StackMapSection));
3277 
3278   prettyPrintStackMap(
3279       W, StackMapParser<ELFT::TargetEndianness>(StackMapContentsArray));
3280 }
3281 
3282 template <class ELFT> void ELFDumper<ELFT>::printGroupSections() {
3283   ELFDumperStyle->printGroupSections(ObjF->getELFFile());
3284 }
3285 
3286 template <class ELFT> void ELFDumper<ELFT>::printAddrsig() {
3287   ELFDumperStyle->printAddrsig(ObjF->getELFFile());
3288 }
3289 
3290 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3291                                StringRef Str2) {
3292   OS.PadToColumn(2u);
3293   OS << Str1;
3294   OS.PadToColumn(37u);
3295   OS << Str2 << "\n";
3296   OS.flush();
3297 }
3298 
3299 template <class ELFT>
3300 static std::string getSectionHeadersNumString(const ELFFile<ELFT> *Obj,
3301                                               StringRef FileName) {
3302   const typename ELFT::Ehdr *ElfHeader = Obj->getHeader();
3303   if (ElfHeader->e_shnum != 0)
3304     return to_string(ElfHeader->e_shnum);
3305 
3306   ArrayRef<typename ELFT::Shdr> Arr = unwrapOrError(FileName, Obj->sections());
3307   if (Arr.empty())
3308     return "0";
3309   return "0 (" + to_string(Arr[0].sh_size) + ")";
3310 }
3311 
3312 template <class ELFT>
3313 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> *Obj,
3314                                                     StringRef FileName) {
3315   const typename ELFT::Ehdr *ElfHeader = Obj->getHeader();
3316   if (ElfHeader->e_shstrndx != SHN_XINDEX)
3317     return to_string(ElfHeader->e_shstrndx);
3318 
3319   ArrayRef<typename ELFT::Shdr> Arr = unwrapOrError(FileName, Obj->sections());
3320   if (Arr.empty())
3321     return "65535 (corrupt: out of range)";
3322   return to_string(ElfHeader->e_shstrndx) + " (" + to_string(Arr[0].sh_link) +
3323          ")";
3324 }
3325 
3326 template <class ELFT> void GNUStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
3327   const Elf_Ehdr *e = Obj->getHeader();
3328   OS << "ELF Header:\n";
3329   OS << "  Magic:  ";
3330   std::string Str;
3331   for (int i = 0; i < ELF::EI_NIDENT; i++)
3332     OS << format(" %02x", static_cast<int>(e->e_ident[i]));
3333   OS << "\n";
3334   Str = printEnum(e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
3335   printFields(OS, "Class:", Str);
3336   Str = printEnum(e->e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
3337   printFields(OS, "Data:", Str);
3338   OS.PadToColumn(2u);
3339   OS << "Version:";
3340   OS.PadToColumn(37u);
3341   OS << to_hexString(e->e_ident[ELF::EI_VERSION]);
3342   if (e->e_version == ELF::EV_CURRENT)
3343     OS << " (current)";
3344   OS << "\n";
3345   Str = printEnum(e->e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
3346   printFields(OS, "OS/ABI:", Str);
3347   printFields(OS,
3348               "ABI Version:", std::to_string(e->e_ident[ELF::EI_ABIVERSION]));
3349   Str = printEnum(e->e_type, makeArrayRef(ElfObjectFileType));
3350   printFields(OS, "Type:", Str);
3351   Str = printEnum(e->e_machine, makeArrayRef(ElfMachineType));
3352   printFields(OS, "Machine:", Str);
3353   Str = "0x" + to_hexString(e->e_version);
3354   printFields(OS, "Version:", Str);
3355   Str = "0x" + to_hexString(e->e_entry);
3356   printFields(OS, "Entry point address:", Str);
3357   Str = to_string(e->e_phoff) + " (bytes into file)";
3358   printFields(OS, "Start of program headers:", Str);
3359   Str = to_string(e->e_shoff) + " (bytes into file)";
3360   printFields(OS, "Start of section headers:", Str);
3361   std::string ElfFlags;
3362   if (e->e_machine == EM_MIPS)
3363     ElfFlags =
3364         printFlags(e->e_flags, makeArrayRef(ElfHeaderMipsFlags),
3365                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
3366                    unsigned(ELF::EF_MIPS_MACH));
3367   else if (e->e_machine == EM_RISCV)
3368     ElfFlags = printFlags(e->e_flags, makeArrayRef(ElfHeaderRISCVFlags));
3369   Str = "0x" + to_hexString(e->e_flags);
3370   if (!ElfFlags.empty())
3371     Str = Str + ", " + ElfFlags;
3372   printFields(OS, "Flags:", Str);
3373   Str = to_string(e->e_ehsize) + " (bytes)";
3374   printFields(OS, "Size of this header:", Str);
3375   Str = to_string(e->e_phentsize) + " (bytes)";
3376   printFields(OS, "Size of program headers:", Str);
3377   Str = to_string(e->e_phnum);
3378   printFields(OS, "Number of program headers:", Str);
3379   Str = to_string(e->e_shentsize) + " (bytes)";
3380   printFields(OS, "Size of section headers:", Str);
3381   Str = getSectionHeadersNumString(Obj, this->FileName);
3382   printFields(OS, "Number of section headers:", Str);
3383   Str = getSectionHeaderTableIndexString(Obj, this->FileName);
3384   printFields(OS, "Section header string table index:", Str);
3385 }
3386 
3387 namespace {
3388 struct GroupMember {
3389   StringRef Name;
3390   uint64_t Index;
3391 };
3392 
3393 struct GroupSection {
3394   StringRef Name;
3395   std::string Signature;
3396   uint64_t ShName;
3397   uint64_t Index;
3398   uint32_t Link;
3399   uint32_t Info;
3400   uint32_t Type;
3401   std::vector<GroupMember> Members;
3402 };
3403 
3404 template <class ELFT>
3405 std::vector<GroupSection> getGroups(const ELFFile<ELFT> *Obj,
3406                                     StringRef FileName) {
3407   using Elf_Shdr = typename ELFT::Shdr;
3408   using Elf_Sym = typename ELFT::Sym;
3409   using Elf_Word = typename ELFT::Word;
3410 
3411   std::vector<GroupSection> Ret;
3412   uint64_t I = 0;
3413   for (const Elf_Shdr &Sec : unwrapOrError(FileName, Obj->sections())) {
3414     ++I;
3415     if (Sec.sh_type != ELF::SHT_GROUP)
3416       continue;
3417 
3418     const Elf_Shdr *Symtab =
3419         unwrapOrError(FileName, Obj->getSection(Sec.sh_link));
3420     StringRef StrTable =
3421         unwrapOrError(FileName, Obj->getStringTableForSymtab(*Symtab));
3422     const Elf_Sym *Sym = unwrapOrError(
3423         FileName, Obj->template getEntry<Elf_Sym>(Symtab, Sec.sh_info));
3424     auto Data = unwrapOrError(
3425         FileName, Obj->template getSectionContentsAsArray<Elf_Word>(&Sec));
3426 
3427     StringRef Name = unwrapOrError(FileName, Obj->getSectionName(&Sec));
3428     StringRef Signature = StrTable.data() + Sym->st_name;
3429     Ret.push_back({Name,
3430                    maybeDemangle(Signature),
3431                    Sec.sh_name,
3432                    I - 1,
3433                    Sec.sh_link,
3434                    Sec.sh_info,
3435                    Data[0],
3436                    {}});
3437 
3438     std::vector<GroupMember> &GM = Ret.back().Members;
3439     for (uint32_t Ndx : Data.slice(1)) {
3440       auto Sec = unwrapOrError(FileName, Obj->getSection(Ndx));
3441       const StringRef Name = unwrapOrError(FileName, Obj->getSectionName(Sec));
3442       GM.push_back({Name, Ndx});
3443     }
3444   }
3445   return Ret;
3446 }
3447 
3448 DenseMap<uint64_t, const GroupSection *>
3449 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3450   DenseMap<uint64_t, const GroupSection *> Ret;
3451   for (const GroupSection &G : Groups)
3452     for (const GroupMember &GM : G.Members)
3453       Ret.insert({GM.Index, &G});
3454   return Ret;
3455 }
3456 
3457 } // namespace
3458 
3459 template <class ELFT> void GNUStyle<ELFT>::printGroupSections(const ELFO *Obj) {
3460   std::vector<GroupSection> V = getGroups<ELFT>(Obj, this->FileName);
3461   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3462   for (const GroupSection &G : V) {
3463     OS << "\n"
3464        << getGroupType(G.Type) << " group section ["
3465        << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3466        << "] contains " << G.Members.size() << " sections:\n"
3467        << "   [Index]    Name\n";
3468     for (const GroupMember &GM : G.Members) {
3469       const GroupSection *MainGroup = Map[GM.Index];
3470       if (MainGroup != &G) {
3471         OS.flush();
3472         errs() << "Error: section [" << format_decimal(GM.Index, 5)
3473                << "] in group section [" << format_decimal(G.Index, 5)
3474                << "] already in group section ["
3475                << format_decimal(MainGroup->Index, 5) << "]";
3476         errs().flush();
3477         continue;
3478       }
3479       OS << "   [" << format_decimal(GM.Index, 5) << "]   " << GM.Name << "\n";
3480     }
3481   }
3482 
3483   if (V.empty())
3484     OS << "There are no section groups in this file.\n";
3485 }
3486 
3487 template <class ELFT>
3488 void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, unsigned SecIndex,
3489                                      const Elf_Shdr *SymTab, const Elf_Rela &R,
3490                                      unsigned RelIndex, bool IsRela) {
3491   Expected<std::pair<const typename ELFT::Sym *, std::string>> Target =
3492       this->dumper()->getRelocationTarget(SymTab, R);
3493   if (!Target)
3494     this->reportUniqueWarning(createError(
3495         "unable to print relocation " + Twine(RelIndex) + " in section " +
3496         Twine(SecIndex) + ": " + toString(Target.takeError())));
3497   else
3498     printRelocation(Obj, /*Sym=*/Target->first, /*Name=*/Target->second, R,
3499                     IsRela);
3500 }
3501 
3502 template <class ELFT>
3503 void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Sym *Sym,
3504                                      StringRef SymbolName, const Elf_Rela &R,
3505                                      bool IsRela) {
3506   // First two fields are bit width dependent. The rest of them are fixed width.
3507   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3508   Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3509   unsigned Width = ELFT::Is64Bits ? 16 : 8;
3510 
3511   Fields[0].Str = to_string(format_hex_no_prefix(R.r_offset, Width));
3512   Fields[1].Str = to_string(format_hex_no_prefix(R.r_info, Width));
3513 
3514   SmallString<32> RelocName;
3515   Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName);
3516   Fields[2].Str = RelocName.c_str();
3517 
3518   if (Sym && (!SymbolName.empty() || Sym->getValue() != 0))
3519     Fields[3].Str = to_string(format_hex_no_prefix(Sym->getValue(), Width));
3520 
3521   Fields[4].Str = std::string(SymbolName);
3522   for (const Field &F : Fields)
3523     printField(F);
3524 
3525   std::string Addend;
3526   if (IsRela) {
3527     int64_t RelAddend = R.r_addend;
3528     if (!SymbolName.empty()) {
3529       if (R.r_addend < 0) {
3530         Addend = " - ";
3531         RelAddend = std::abs(RelAddend);
3532       } else
3533         Addend = " + ";
3534     }
3535 
3536     Addend += to_hexString(RelAddend, false);
3537   }
3538   OS << Addend << "\n";
3539 }
3540 
3541 template <class ELFT> void GNUStyle<ELFT>::printRelocHeader(unsigned SType) {
3542   bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3543   bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
3544   if (ELFT::Is64Bits)
3545     OS << "    ";
3546   else
3547     OS << " ";
3548   if (IsRelr && opts::RawRelr)
3549     OS << "Data  ";
3550   else
3551     OS << "Offset";
3552   if (ELFT::Is64Bits)
3553     OS << "             Info             Type"
3554        << "               Symbol's Value  Symbol's Name";
3555   else
3556     OS << "     Info    Type                Sym. Value  Symbol's Name";
3557   if (IsRela)
3558     OS << " + Addend";
3559   OS << "\n";
3560 }
3561 
3562 template <class ELFT> void GNUStyle<ELFT>::printRelocations(const ELFO *Obj) {
3563   bool HasRelocSections = false;
3564   for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
3565     if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA &&
3566         Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL &&
3567         Sec.sh_type != ELF::SHT_ANDROID_RELA &&
3568         Sec.sh_type != ELF::SHT_ANDROID_RELR)
3569       continue;
3570     HasRelocSections = true;
3571     StringRef Name = unwrapOrError(this->FileName, Obj->getSectionName(&Sec));
3572     unsigned Entries = Sec.getEntityCount();
3573     std::vector<Elf_Rela> AndroidRelas;
3574     if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3575         Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3576       // Android's packed relocation section needs to be unpacked first
3577       // to get the actual number of entries.
3578       AndroidRelas = unwrapOrError(this->FileName, Obj->android_relas(&Sec));
3579       Entries = AndroidRelas.size();
3580     }
3581     std::vector<Elf_Rela> RelrRelas;
3582     if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3583                            Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3584       // .relr.dyn relative relocation section needs to be unpacked first
3585       // to get the actual number of entries.
3586       Elf_Relr_Range Relrs = unwrapOrError(this->FileName, Obj->relrs(&Sec));
3587       RelrRelas = unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
3588       Entries = RelrRelas.size();
3589     }
3590     uintX_t Offset = Sec.sh_offset;
3591     OS << "\nRelocation section '" << Name << "' at offset 0x"
3592        << to_hexString(Offset, false) << " contains " << Entries
3593        << " entries:\n";
3594     printRelocHeader(Sec.sh_type);
3595     const Elf_Shdr *SymTab =
3596         unwrapOrError(this->FileName, Obj->getSection(Sec.sh_link));
3597     unsigned SecNdx = &Sec - &cantFail(Obj->sections()).front();
3598     unsigned RelNdx = 0;
3599 
3600     switch (Sec.sh_type) {
3601     case ELF::SHT_REL:
3602       for (const auto &R : unwrapOrError(this->FileName, Obj->rels(&Sec))) {
3603         Elf_Rela Rela;
3604         Rela.r_offset = R.r_offset;
3605         Rela.r_info = R.r_info;
3606         Rela.r_addend = 0;
3607         printRelocation(Obj, SecNdx, SymTab, Rela, ++RelNdx, false);
3608       }
3609       break;
3610     case ELF::SHT_RELA:
3611       for (const auto &R : unwrapOrError(this->FileName, Obj->relas(&Sec)))
3612         printRelocation(Obj, SecNdx, SymTab, R, ++RelNdx, true);
3613       break;
3614     case ELF::SHT_RELR:
3615     case ELF::SHT_ANDROID_RELR:
3616       if (opts::RawRelr)
3617         for (const auto &R : unwrapOrError(this->FileName, Obj->relrs(&Sec)))
3618           OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8))
3619              << "\n";
3620       else
3621         for (const auto &R : RelrRelas)
3622           printRelocation(Obj, SecNdx, SymTab, R, ++RelNdx, false);
3623       break;
3624     case ELF::SHT_ANDROID_REL:
3625     case ELF::SHT_ANDROID_RELA:
3626       for (const auto &R : AndroidRelas)
3627         printRelocation(Obj, SecNdx, SymTab, R, ++RelNdx,
3628                         Sec.sh_type == ELF::SHT_ANDROID_RELA);
3629       break;
3630     }
3631   }
3632   if (!HasRelocSections)
3633     OS << "\nThere are no relocations in this file.\n";
3634 }
3635 
3636 // Print the offset of a particular section from anyone of the ranges:
3637 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3638 // If 'Type' does not fall within any of those ranges, then a string is
3639 // returned as '<unknown>' followed by the type value.
3640 static std::string getSectionTypeOffsetString(unsigned Type) {
3641   if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3642     return "LOOS+0x" + to_hexString(Type - SHT_LOOS);
3643   else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3644     return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC);
3645   else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3646     return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER);
3647   return "0x" + to_hexString(Type) + ": <unknown>";
3648 }
3649 
3650 static std::string getSectionTypeString(unsigned Arch, unsigned Type) {
3651   using namespace ELF;
3652 
3653   switch (Arch) {
3654   case EM_ARM:
3655     switch (Type) {
3656     case SHT_ARM_EXIDX:
3657       return "ARM_EXIDX";
3658     case SHT_ARM_PREEMPTMAP:
3659       return "ARM_PREEMPTMAP";
3660     case SHT_ARM_ATTRIBUTES:
3661       return "ARM_ATTRIBUTES";
3662     case SHT_ARM_DEBUGOVERLAY:
3663       return "ARM_DEBUGOVERLAY";
3664     case SHT_ARM_OVERLAYSECTION:
3665       return "ARM_OVERLAYSECTION";
3666     }
3667     break;
3668   case EM_X86_64:
3669     switch (Type) {
3670     case SHT_X86_64_UNWIND:
3671       return "X86_64_UNWIND";
3672     }
3673     break;
3674   case EM_MIPS:
3675   case EM_MIPS_RS3_LE:
3676     switch (Type) {
3677     case SHT_MIPS_REGINFO:
3678       return "MIPS_REGINFO";
3679     case SHT_MIPS_OPTIONS:
3680       return "MIPS_OPTIONS";
3681     case SHT_MIPS_DWARF:
3682       return "MIPS_DWARF";
3683     case SHT_MIPS_ABIFLAGS:
3684       return "MIPS_ABIFLAGS";
3685     }
3686     break;
3687   case EM_RISCV:
3688     switch (Type) {
3689     case SHT_RISCV_ATTRIBUTES:
3690       return "RISCV_ATTRIBUTES";
3691     }
3692   }
3693   switch (Type) {
3694   case SHT_NULL:
3695     return "NULL";
3696   case SHT_PROGBITS:
3697     return "PROGBITS";
3698   case SHT_SYMTAB:
3699     return "SYMTAB";
3700   case SHT_STRTAB:
3701     return "STRTAB";
3702   case SHT_RELA:
3703     return "RELA";
3704   case SHT_HASH:
3705     return "HASH";
3706   case SHT_DYNAMIC:
3707     return "DYNAMIC";
3708   case SHT_NOTE:
3709     return "NOTE";
3710   case SHT_NOBITS:
3711     return "NOBITS";
3712   case SHT_REL:
3713     return "REL";
3714   case SHT_SHLIB:
3715     return "SHLIB";
3716   case SHT_DYNSYM:
3717     return "DYNSYM";
3718   case SHT_INIT_ARRAY:
3719     return "INIT_ARRAY";
3720   case SHT_FINI_ARRAY:
3721     return "FINI_ARRAY";
3722   case SHT_PREINIT_ARRAY:
3723     return "PREINIT_ARRAY";
3724   case SHT_GROUP:
3725     return "GROUP";
3726   case SHT_SYMTAB_SHNDX:
3727     return "SYMTAB SECTION INDICES";
3728   case SHT_ANDROID_REL:
3729     return "ANDROID_REL";
3730   case SHT_ANDROID_RELA:
3731     return "ANDROID_RELA";
3732   case SHT_RELR:
3733   case SHT_ANDROID_RELR:
3734     return "RELR";
3735   case SHT_LLVM_ODRTAB:
3736     return "LLVM_ODRTAB";
3737   case SHT_LLVM_LINKER_OPTIONS:
3738     return "LLVM_LINKER_OPTIONS";
3739   case SHT_LLVM_CALL_GRAPH_PROFILE:
3740     return "LLVM_CALL_GRAPH_PROFILE";
3741   case SHT_LLVM_ADDRSIG:
3742     return "LLVM_ADDRSIG";
3743   case SHT_LLVM_DEPENDENT_LIBRARIES:
3744     return "LLVM_DEPENDENT_LIBRARIES";
3745   case SHT_LLVM_SYMPART:
3746     return "LLVM_SYMPART";
3747   case SHT_LLVM_PART_EHDR:
3748     return "LLVM_PART_EHDR";
3749   case SHT_LLVM_PART_PHDR:
3750     return "LLVM_PART_PHDR";
3751   // FIXME: Parse processor specific GNU attributes
3752   case SHT_GNU_ATTRIBUTES:
3753     return "ATTRIBUTES";
3754   case SHT_GNU_HASH:
3755     return "GNU_HASH";
3756   case SHT_GNU_verdef:
3757     return "VERDEF";
3758   case SHT_GNU_verneed:
3759     return "VERNEED";
3760   case SHT_GNU_versym:
3761     return "VERSYM";
3762   default:
3763     return getSectionTypeOffsetString(Type);
3764   }
3765   return "";
3766 }
3767 
3768 static void printSectionDescription(formatted_raw_ostream &OS,
3769                                     unsigned EMachine) {
3770   OS << "Key to Flags:\n";
3771   OS << "  W (write), A (alloc), X (execute), M (merge), S (strings), I "
3772         "(info),\n";
3773   OS << "  L (link order), O (extra OS processing required), G (group), T "
3774         "(TLS),\n";
3775   OS << "  C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3776 
3777   if (EMachine == EM_X86_64)
3778     OS << "  l (large), ";
3779   else if (EMachine == EM_ARM)
3780     OS << "  y (purecode), ";
3781   else
3782     OS << "  ";
3783 
3784   OS << "p (processor specific)\n";
3785 }
3786 
3787 template <class ELFT>
3788 void GNUStyle<ELFT>::printSectionHeaders(const ELFO *Obj) {
3789   unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3790   ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
3791   OS << "There are " << to_string(Sections.size())
3792      << " section headers, starting at offset "
3793      << "0x" << to_hexString(Obj->getHeader()->e_shoff, false) << ":\n\n";
3794   OS << "Section Headers:\n";
3795   Field Fields[11] = {
3796       {"[Nr]", 2},        {"Name", 7},        {"Type", 25},
3797       {"Address", 41},    {"Off", 58 - Bias}, {"Size", 65 - Bias},
3798       {"ES", 72 - Bias},  {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3799       {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3800   for (auto &F : Fields)
3801     printField(F);
3802   OS << "\n";
3803 
3804   const ELFObjectFile<ELFT> *ElfObj = this->dumper()->getElfObject();
3805   StringRef SecStrTable = unwrapOrError<StringRef>(
3806       ElfObj->getFileName(),
3807       Obj->getSectionStringTable(Sections, this->dumper()->WarningHandler));
3808   size_t SectionIndex = 0;
3809   for (const Elf_Shdr &Sec : Sections) {
3810     Fields[0].Str = to_string(SectionIndex);
3811     if (SecStrTable.empty())
3812       Fields[1].Str = "<no-strings>";
3813     else
3814       Fields[1].Str = std::string(unwrapOrError<StringRef>(
3815           ElfObj->getFileName(), Obj->getSectionName(&Sec, SecStrTable)));
3816     Fields[2].Str =
3817         getSectionTypeString(Obj->getHeader()->e_machine, Sec.sh_type);
3818     Fields[3].Str =
3819         to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3820     Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3821     Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3822     Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3823     Fields[7].Str = getGNUFlags(Obj->getHeader()->e_machine, Sec.sh_flags);
3824     Fields[8].Str = to_string(Sec.sh_link);
3825     Fields[9].Str = to_string(Sec.sh_info);
3826     Fields[10].Str = to_string(Sec.sh_addralign);
3827 
3828     OS.PadToColumn(Fields[0].Column);
3829     OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3830     for (int i = 1; i < 7; i++)
3831       printField(Fields[i]);
3832     OS.PadToColumn(Fields[7].Column);
3833     OS << right_justify(Fields[7].Str, 3);
3834     OS.PadToColumn(Fields[8].Column);
3835     OS << right_justify(Fields[8].Str, 2);
3836     OS.PadToColumn(Fields[9].Column);
3837     OS << right_justify(Fields[9].Str, 3);
3838     OS.PadToColumn(Fields[10].Column);
3839     OS << right_justify(Fields[10].Str, 2);
3840     OS << "\n";
3841     ++SectionIndex;
3842   }
3843   printSectionDescription(OS, Obj->getHeader()->e_machine);
3844 }
3845 
3846 template <class ELFT>
3847 void GNUStyle<ELFT>::printSymtabMessage(const ELFO *Obj, StringRef Name,
3848                                         size_t Entries,
3849                                         bool NonVisibilityBitsUsed) {
3850   if (!Name.empty())
3851     OS << "\nSymbol table '" << Name << "'";
3852   else
3853     OS << "\nSymbol table for image";
3854   OS << " contains " << Entries << " entries:\n";
3855 
3856   if (ELFT::Is64Bits)
3857     OS << "   Num:    Value          Size Type    Bind   Vis";
3858   else
3859     OS << "   Num:    Value  Size Type    Bind   Vis";
3860 
3861   if (NonVisibilityBitsUsed)
3862     OS << "             ";
3863   OS << "       Ndx Name\n";
3864 }
3865 
3866 template <class ELFT>
3867 std::string GNUStyle<ELFT>::getSymbolSectionNdx(const ELFO *Obj,
3868                                                 const Elf_Sym *Symbol,
3869                                                 const Elf_Sym *FirstSym) {
3870   unsigned SectionIndex = Symbol->st_shndx;
3871   switch (SectionIndex) {
3872   case ELF::SHN_UNDEF:
3873     return "UND";
3874   case ELF::SHN_ABS:
3875     return "ABS";
3876   case ELF::SHN_COMMON:
3877     return "COM";
3878   case ELF::SHN_XINDEX: {
3879     Expected<uint32_t> IndexOrErr = object::getExtendedSymbolTableIndex<ELFT>(
3880         Symbol, FirstSym, this->dumper()->getShndxTable());
3881     if (!IndexOrErr) {
3882       assert(Symbol->st_shndx == SHN_XINDEX &&
3883              "getSymbolSectionIndex should only fail due to an invalid "
3884              "SHT_SYMTAB_SHNDX table/reference");
3885       this->reportUniqueWarning(IndexOrErr.takeError());
3886       return "RSV[0xffff]";
3887     }
3888     return to_string(format_decimal(*IndexOrErr, 3));
3889   }
3890   default:
3891     // Find if:
3892     // Processor specific
3893     if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
3894       return std::string("PRC[0x") +
3895              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3896     // OS specific
3897     if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
3898       return std::string("OS[0x") +
3899              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3900     // Architecture reserved:
3901     if (SectionIndex >= ELF::SHN_LORESERVE &&
3902         SectionIndex <= ELF::SHN_HIRESERVE)
3903       return std::string("RSV[0x") +
3904              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3905     // A normal section with an index
3906     return to_string(format_decimal(SectionIndex, 3));
3907   }
3908 }
3909 
3910 template <class ELFT>
3911 void GNUStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
3912                                  const Elf_Sym *FirstSym, StringRef StrTable,
3913                                  bool IsDynamic, bool NonVisibilityBitsUsed) {
3914   static int Idx = 0;
3915   static bool Dynamic = true;
3916 
3917   // If this function was called with a different value from IsDynamic
3918   // from last call, happens when we move from dynamic to static symbol
3919   // table, "Num" field should be reset.
3920   if (!Dynamic != !IsDynamic) {
3921     Idx = 0;
3922     Dynamic = false;
3923   }
3924 
3925   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3926   Field Fields[8] = {0,         8,         17 + Bias, 23 + Bias,
3927                      31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
3928   Fields[0].Str = to_string(format_decimal(Idx++, 6)) + ":";
3929   Fields[1].Str = to_string(
3930       format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
3931   Fields[2].Str = to_string(format_decimal(Symbol->st_size, 5));
3932 
3933   unsigned char SymbolType = Symbol->getType();
3934   if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
3935       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3936     Fields[3].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3937   else
3938     Fields[3].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
3939 
3940   Fields[4].Str =
3941       printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3942   Fields[5].Str =
3943       printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities));
3944   if (Symbol->st_other & ~0x3)
3945     Fields[5].Str +=
3946         " [<other: " + to_string(format_hex(Symbol->st_other, 2)) + ">]";
3947 
3948   Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
3949   Fields[6].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym);
3950 
3951   Fields[7].Str =
3952       this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
3953   for (auto &Entry : Fields)
3954     printField(Entry);
3955   OS << "\n";
3956 }
3957 
3958 template <class ELFT>
3959 void GNUStyle<ELFT>::printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym,
3960                                        uint32_t Sym, StringRef StrTable,
3961                                        uint32_t Bucket) {
3962   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3963   Field Fields[9] = {0,         6,         11,        20 + Bias, 25 + Bias,
3964                      34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
3965   Fields[0].Str = to_string(format_decimal(Sym, 5));
3966   Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
3967 
3968   const auto Symbol = FirstSym + Sym;
3969   Fields[2].Str = to_string(
3970       format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
3971   Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
3972 
3973   unsigned char SymbolType = Symbol->getType();
3974   if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
3975       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3976     Fields[4].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3977   else
3978     Fields[4].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
3979 
3980   Fields[5].Str =
3981       printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3982   Fields[6].Str =
3983       printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities));
3984   Fields[7].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym);
3985   Fields[8].Str = this->dumper()->getFullSymbolName(Symbol, StrTable, true);
3986 
3987   for (auto &Entry : Fields)
3988     printField(Entry);
3989   OS << "\n";
3990 }
3991 
3992 template <class ELFT>
3993 void GNUStyle<ELFT>::printSymbols(const ELFO *Obj, bool PrintSymbols,
3994                                   bool PrintDynamicSymbols) {
3995   if (!PrintSymbols && !PrintDynamicSymbols)
3996     return;
3997   // GNU readelf prints both the .dynsym and .symtab with --symbols.
3998   this->dumper()->printSymbolsHelper(true);
3999   if (PrintSymbols)
4000     this->dumper()->printSymbolsHelper(false);
4001 }
4002 
4003 template <class ELFT> void GNUStyle<ELFT>::printHashSymbols(const ELFO *Obj) {
4004   if (this->dumper()->getDynamicStringTable().empty())
4005     return;
4006   auto StringTable = this->dumper()->getDynamicStringTable();
4007   auto DynSyms = this->dumper()->dynamic_symbols();
4008 
4009   auto PrintHashTable = [&](const Elf_Hash *SysVHash) {
4010     if (ELFT::Is64Bits)
4011       OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
4012     else
4013       OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
4014     OS << "\n";
4015 
4016     auto Buckets = SysVHash->buckets();
4017     auto Chains = SysVHash->chains();
4018     for (uint32_t Buc = 0; Buc < SysVHash->nbucket; Buc++) {
4019       if (Buckets[Buc] == ELF::STN_UNDEF)
4020         continue;
4021       std::vector<bool> Visited(SysVHash->nchain);
4022       for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash->nchain; Ch = Chains[Ch]) {
4023         if (Ch == ELF::STN_UNDEF)
4024           break;
4025 
4026         if (Visited[Ch]) {
4027           reportWarning(
4028               createError(".hash section is invalid: bucket " + Twine(Ch) +
4029                           ": a cycle was detected in the linked chain"),
4030               this->FileName);
4031           break;
4032         }
4033 
4034         printHashedSymbol(Obj, &DynSyms[0], Ch, StringTable, Buc);
4035         Visited[Ch] = true;
4036       }
4037     }
4038   };
4039 
4040   if (const Elf_Hash *SysVHash = this->dumper()->getHashTable()) {
4041     OS << "\n Symbol table of .hash for image:\n";
4042     if (Error E = checkHashTable<ELFT>(Obj, SysVHash))
4043       this->reportUniqueWarning(std::move(E));
4044     else
4045       PrintHashTable(SysVHash);
4046   }
4047 
4048   // Try printing .gnu.hash
4049   if (auto GnuHash = this->dumper()->getGnuHashTable()) {
4050     OS << "\n Symbol table of .gnu.hash for image:\n";
4051     if (ELFT::Is64Bits)
4052       OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
4053     else
4054       OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
4055     OS << "\n";
4056     auto Buckets = GnuHash->buckets();
4057     for (uint32_t Buc = 0; Buc < GnuHash->nbuckets; Buc++) {
4058       if (Buckets[Buc] == ELF::STN_UNDEF)
4059         continue;
4060       uint32_t Index = Buckets[Buc];
4061       uint32_t GnuHashable = Index - GnuHash->symndx;
4062       // Print whole chain
4063       while (true) {
4064         printHashedSymbol(Obj, &DynSyms[0], Index++, StringTable, Buc);
4065         // Chain ends at symbol with stopper bit
4066         if ((GnuHash->values(DynSyms.size())[GnuHashable++] & 1) == 1)
4067           break;
4068       }
4069     }
4070   }
4071 }
4072 
4073 static inline std::string printPhdrFlags(unsigned Flag) {
4074   std::string Str;
4075   Str = (Flag & PF_R) ? "R" : " ";
4076   Str += (Flag & PF_W) ? "W" : " ";
4077   Str += (Flag & PF_X) ? "E" : " ";
4078   return Str;
4079 }
4080 
4081 template <class ELFT>
4082 static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4083                              const typename ELFT::Shdr &Sec) {
4084   if (Sec.sh_flags & ELF::SHF_TLS) {
4085     // .tbss must only be shown in the PT_TLS segment.
4086     if (Sec.sh_type == ELF::SHT_NOBITS)
4087       return Phdr.p_type == ELF::PT_TLS;
4088 
4089     // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4090     // segments.
4091     return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4092            (Phdr.p_type == ELF::PT_GNU_RELRO);
4093   }
4094 
4095   // PT_TLS must only have SHF_TLS sections.
4096   return Phdr.p_type != ELF::PT_TLS;
4097 }
4098 
4099 template <class ELFT>
4100 static bool checkOffsets(const typename ELFT::Phdr &Phdr,
4101                          const typename ELFT::Shdr &Sec) {
4102   // SHT_NOBITS sections don't need to have an offset inside the segment.
4103   if (Sec.sh_type == ELF::SHT_NOBITS)
4104     return true;
4105 
4106   if (Sec.sh_offset < Phdr.p_offset)
4107     return false;
4108 
4109   // Only non-empty sections can be at the end of a segment.
4110   if (Sec.sh_size == 0)
4111     return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
4112   return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
4113 }
4114 
4115 // Check that an allocatable section belongs to a virtual address
4116 // space of a segment.
4117 template <class ELFT>
4118 static bool checkVMA(const typename ELFT::Phdr &Phdr,
4119                      const typename ELFT::Shdr &Sec) {
4120   if (!(Sec.sh_flags & ELF::SHF_ALLOC))
4121     return true;
4122 
4123   if (Sec.sh_addr < Phdr.p_vaddr)
4124     return false;
4125 
4126   bool IsTbss =
4127       (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
4128   // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4129   bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
4130   // Only non-empty sections can be at the end of a segment.
4131   if (Sec.sh_size == 0 || IsTbssInNonTLS)
4132     return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
4133   return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
4134 }
4135 
4136 template <class ELFT>
4137 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4138                            const typename ELFT::Shdr &Sec) {
4139   if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4140     return true;
4141 
4142   // We get here when we have an empty section. Only non-empty sections can be
4143   // at the start or at the end of PT_DYNAMIC.
4144   // Is section within the phdr both based on offset and VMA?
4145   bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4146                      (Sec.sh_offset > Phdr.p_offset &&
4147                       Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4148   bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4149                  (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4150   return CheckOffset && CheckVA;
4151 }
4152 
4153 template <class ELFT>
4154 void GNUStyle<ELFT>::printProgramHeaders(
4155     const ELFO *Obj, bool PrintProgramHeaders,
4156     cl::boolOrDefault PrintSectionMapping) {
4157   if (PrintProgramHeaders)
4158     printProgramHeaders(Obj);
4159 
4160   // Display the section mapping along with the program headers, unless
4161   // -section-mapping is explicitly set to false.
4162   if (PrintSectionMapping != cl::BOU_FALSE)
4163     printSectionMapping(Obj);
4164 }
4165 
4166 template <class ELFT>
4167 void GNUStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
4168   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4169   const Elf_Ehdr *Header = Obj->getHeader();
4170   Field Fields[8] = {2,         17,        26,        37 + Bias,
4171                      48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4172   OS << "\nElf file type is "
4173      << printEnum(Header->e_type, makeArrayRef(ElfObjectFileType)) << "\n"
4174      << "Entry point " << format_hex(Header->e_entry, 3) << "\n"
4175      << "There are " << Header->e_phnum << " program headers,"
4176      << " starting at offset " << Header->e_phoff << "\n\n"
4177      << "Program Headers:\n";
4178   if (ELFT::Is64Bits)
4179     OS << "  Type           Offset   VirtAddr           PhysAddr         "
4180        << "  FileSiz  MemSiz   Flg Align\n";
4181   else
4182     OS << "  Type           Offset   VirtAddr   PhysAddr   FileSiz "
4183        << "MemSiz  Flg Align\n";
4184 
4185   unsigned Width = ELFT::Is64Bits ? 18 : 10;
4186   unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4187   for (const auto &Phdr :
4188        unwrapOrError(this->FileName, Obj->program_headers())) {
4189     Fields[0].Str = getElfPtType(Header->e_machine, Phdr.p_type);
4190     Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4191     Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4192     Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4193     Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4194     Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4195     Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4196     Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4197     for (auto Field : Fields)
4198       printField(Field);
4199     if (Phdr.p_type == ELF::PT_INTERP) {
4200       OS << "\n";
4201       auto ReportBadInterp = [&](const Twine &Msg) {
4202         reportWarning(
4203             createError("unable to read program interpreter name at offset 0x" +
4204                         Twine::utohexstr(Phdr.p_offset) + ": " + Msg),
4205             this->FileName);
4206       };
4207 
4208       if (Phdr.p_offset >= Obj->getBufSize()) {
4209         ReportBadInterp("it goes past the end of the file (0x" +
4210                         Twine::utohexstr(Obj->getBufSize()) + ")");
4211         continue;
4212       }
4213 
4214       const char *Data =
4215           reinterpret_cast<const char *>(Obj->base()) + Phdr.p_offset;
4216       size_t MaxSize = Obj->getBufSize() - Phdr.p_offset;
4217       size_t Len = strnlen(Data, MaxSize);
4218       if (Len == MaxSize) {
4219         ReportBadInterp("it is not null-terminated");
4220         continue;
4221       }
4222 
4223       OS << "      [Requesting program interpreter: ";
4224       OS << StringRef(Data, Len) << "]";
4225     }
4226     OS << "\n";
4227   }
4228 }
4229 
4230 template <class ELFT>
4231 void GNUStyle<ELFT>::printSectionMapping(const ELFO *Obj) {
4232   OS << "\n Section to Segment mapping:\n  Segment Sections...\n";
4233   DenseSet<const Elf_Shdr *> BelongsToSegment;
4234   int Phnum = 0;
4235   for (const Elf_Phdr &Phdr :
4236        unwrapOrError(this->FileName, Obj->program_headers())) {
4237     std::string Sections;
4238     OS << format("   %2.2d     ", Phnum++);
4239     // Check if each section is in a segment and then print mapping.
4240     for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
4241       if (Sec.sh_type == ELF::SHT_NULL)
4242         continue;
4243 
4244       // readelf additionally makes sure it does not print zero sized sections
4245       // at end of segments and for PT_DYNAMIC both start and end of section
4246       // .tbss must only be shown in PT_TLS section.
4247       if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
4248           checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
4249         Sections +=
4250             unwrapOrError(this->FileName, Obj->getSectionName(&Sec)).str() +
4251             " ";
4252         BelongsToSegment.insert(&Sec);
4253       }
4254     }
4255     OS << Sections << "\n";
4256     OS.flush();
4257   }
4258 
4259   // Display sections that do not belong to a segment.
4260   std::string Sections;
4261   for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
4262     if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4263       Sections +=
4264           unwrapOrError(this->FileName, Obj->getSectionName(&Sec)).str() + ' ';
4265   }
4266   if (!Sections.empty()) {
4267     OS << "   None  " << Sections << '\n';
4268     OS.flush();
4269   }
4270 }
4271 
4272 namespace {
4273 template <class ELFT> struct RelSymbol {
4274   const typename ELFT::Sym *Sym;
4275   std::string Name;
4276 };
4277 
4278 template <class ELFT>
4279 RelSymbol<ELFT> getSymbolForReloc(const ELFFile<ELFT> *Obj, StringRef FileName,
4280                                   const ELFDumper<ELFT> *Dumper,
4281                                   const typename ELFT::Rela &Reloc) {
4282   uint32_t SymIndex = Reloc.getSymbol(Obj->isMips64EL());
4283   auto WarnAndReturn = [&](const typename ELFT::Sym *Sym,
4284                            const Twine &Reason) -> RelSymbol<ELFT> {
4285     reportWarning(
4286         createError("unable to get name of the dynamic symbol with index " +
4287                     Twine(SymIndex) + ": " + Reason),
4288         FileName);
4289     return {Sym, "<corrupt>"};
4290   };
4291 
4292   ArrayRef<typename ELFT::Sym> Symbols = Dumper->dynamic_symbols();
4293   const typename ELFT::Sym *FirstSym = Symbols.begin();
4294   if (!FirstSym)
4295     return WarnAndReturn(nullptr, "no dynamic symbol table found");
4296 
4297   // We might have an object without a section header. In this case the size of
4298   // Symbols is zero, because there is no way to know the size of the dynamic
4299   // table. We should allow this case and not print a warning.
4300   if (!Symbols.empty() && SymIndex >= Symbols.size())
4301     return WarnAndReturn(
4302         nullptr,
4303         "index is greater than or equal to the number of dynamic symbols (" +
4304             Twine(Symbols.size()) + ")");
4305 
4306   const typename ELFT::Sym *Sym = FirstSym + SymIndex;
4307   Expected<StringRef> ErrOrName = Sym->getName(Dumper->getDynamicStringTable());
4308   if (!ErrOrName)
4309     return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4310 
4311   return {Sym, maybeDemangle(*ErrOrName)};
4312 }
4313 } // namespace
4314 
4315 template <class ELFT>
4316 void GNUStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela R,
4317                                             bool IsRela) {
4318   RelSymbol<ELFT> S = getSymbolForReloc(Obj, this->FileName, this->dumper(), R);
4319   printRelocation(Obj, S.Sym, S.Name, R, IsRela);
4320 }
4321 
4322 template <class ELFT>
4323 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> *Obj,
4324                                    typename ELFT::DynRange Tags) {
4325   size_t Max = 0;
4326   for (const typename ELFT::Dyn &Dyn : Tags)
4327     Max = std::max(Max, Obj->getDynamicTagAsString(Dyn.d_tag).size());
4328   return Max;
4329 }
4330 
4331 template <class ELFT> void GNUStyle<ELFT>::printDynamic(const ELFO *Obj) {
4332   Elf_Dyn_Range Table = this->dumper()->dynamic_table();
4333   if (Table.empty())
4334     return;
4335 
4336   const DynRegionInfo &DynamicTableRegion =
4337       this->dumper()->getDynamicTableRegion();
4338 
4339   OS << "Dynamic section at offset "
4340      << format_hex(reinterpret_cast<const uint8_t *>(DynamicTableRegion.Addr) -
4341                        Obj->base(),
4342                    1)
4343      << " contains " << Table.size() << " entries:\n";
4344 
4345   // The type name is surrounded with round brackets, hence add 2.
4346   size_t MaxTagSize = getMaxDynamicTagSize(Obj, Table) + 2;
4347   // The "Name/Value" column should be indented from the "Type" column by N
4348   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4349   // space (1) = 3.
4350   OS << "  Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4351      << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4352 
4353   std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4354   for (auto Entry : Table) {
4355     uintX_t Tag = Entry.getTag();
4356     std::string Type =
4357         std::string("(") + Obj->getDynamicTagAsString(Tag).c_str() + ")";
4358     std::string Value = this->dumper()->getDynamicEntry(Tag, Entry.getVal());
4359     OS << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4360        << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4361   }
4362 }
4363 
4364 template <class ELFT>
4365 void GNUStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
4366   const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
4367   const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
4368   const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion();
4369   const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
4370   if (DynRelaRegion.Size > 0) {
4371     OS << "\n'RELA' relocation section at offset "
4372        << format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion.Addr) -
4373                          Obj->base(),
4374                      1)
4375        << " contains " << DynRelaRegion.Size << " bytes:\n";
4376     printRelocHeader(ELF::SHT_RELA);
4377     for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
4378       printDynamicRelocation(Obj, Rela, true);
4379   }
4380   if (DynRelRegion.Size > 0) {
4381     OS << "\n'REL' relocation section at offset "
4382        << format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion.Addr) -
4383                          Obj->base(),
4384                      1)
4385        << " contains " << DynRelRegion.Size << " bytes:\n";
4386     printRelocHeader(ELF::SHT_REL);
4387     for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
4388       Elf_Rela Rela;
4389       Rela.r_offset = Rel.r_offset;
4390       Rela.r_info = Rel.r_info;
4391       Rela.r_addend = 0;
4392       printDynamicRelocation(Obj, Rela, false);
4393     }
4394   }
4395   if (DynRelrRegion.Size > 0) {
4396     OS << "\n'RELR' relocation section at offset "
4397        << format_hex(reinterpret_cast<const uint8_t *>(DynRelrRegion.Addr) -
4398                          Obj->base(),
4399                      1)
4400        << " contains " << DynRelrRegion.Size << " bytes:\n";
4401     printRelocHeader(ELF::SHT_REL);
4402     Elf_Relr_Range Relrs = this->dumper()->dyn_relrs();
4403     std::vector<Elf_Rela> RelrRelas =
4404         unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
4405     for (const Elf_Rela &Rela : RelrRelas) {
4406       printDynamicRelocation(Obj, Rela, false);
4407     }
4408   }
4409   if (DynPLTRelRegion.Size) {
4410     OS << "\n'PLT' relocation section at offset "
4411        << format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion.Addr) -
4412                          Obj->base(),
4413                      1)
4414        << " contains " << DynPLTRelRegion.Size << " bytes:\n";
4415   }
4416   if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4417     printRelocHeader(ELF::SHT_RELA);
4418     for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
4419       printDynamicRelocation(Obj, Rela, true);
4420   } else {
4421     printRelocHeader(ELF::SHT_REL);
4422     for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
4423       Elf_Rela Rela;
4424       Rela.r_offset = Rel.r_offset;
4425       Rela.r_info = Rel.r_info;
4426       Rela.r_addend = 0;
4427       printDynamicRelocation(Obj, Rela, false);
4428     }
4429   }
4430 }
4431 
4432 template <class ELFT>
4433 void GNUStyle<ELFT>::printGNUVersionSectionProlog(
4434     const ELFFile<ELFT> *Obj, const typename ELFT::Shdr *Sec,
4435     const Twine &Label, unsigned EntriesNum) {
4436   StringRef SecName = unwrapOrError(this->FileName, Obj->getSectionName(Sec));
4437   OS << Label << " section '" << SecName << "' "
4438      << "contains " << EntriesNum << " entries:\n";
4439 
4440   unsigned SecNdx = Sec - &cantFail(Obj->sections()).front();
4441   StringRef SymTabName = "<corrupt>";
4442 
4443   Expected<const typename ELFT::Shdr *> SymTabOrErr =
4444       Obj->getSection(Sec->sh_link);
4445   if (SymTabOrErr)
4446     SymTabName =
4447         unwrapOrError(this->FileName, Obj->getSectionName(*SymTabOrErr));
4448   else
4449     this->reportUniqueWarning(
4450         createError("invalid section linked to " +
4451                     object::getELFSectionTypeName(Obj->getHeader()->e_machine,
4452                                                   Sec->sh_type) +
4453                     " section with index " + Twine(SecNdx) + ": " +
4454                     toString(SymTabOrErr.takeError())));
4455 
4456   OS << " Addr: " << format_hex_no_prefix(Sec->sh_addr, 16)
4457      << "  Offset: " << format_hex(Sec->sh_offset, 8)
4458      << "  Link: " << Sec->sh_link << " (" << SymTabName << ")\n";
4459 }
4460 
4461 template <class ELFT>
4462 void GNUStyle<ELFT>::printVersionSymbolSection(const ELFFile<ELFT> *Obj,
4463                                                const Elf_Shdr *Sec) {
4464   if (!Sec)
4465     return;
4466 
4467   printGNUVersionSectionProlog(Obj, Sec, "Version symbols",
4468                                Sec->sh_size / sizeof(Elf_Versym));
4469   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4470       this->dumper()->getVersionTable(Sec, /*SymTab=*/nullptr,
4471                                       /*StrTab=*/nullptr);
4472   if (!VerTableOrErr) {
4473     this->reportUniqueWarning(VerTableOrErr.takeError());
4474     return;
4475   }
4476 
4477   ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4478   std::vector<StringRef> Versions;
4479   for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4480     unsigned Ndx = VerTable[I].vs_index;
4481     if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4482       Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4483       continue;
4484     }
4485 
4486     bool IsDefault;
4487     Expected<StringRef> NameOrErr =
4488         this->dumper()->getSymbolVersionByIndex(Ndx, IsDefault);
4489     if (!NameOrErr) {
4490       if (!NameOrErr) {
4491         unsigned SecNdx = Sec - &cantFail(Obj->sections()).front();
4492         this->reportUniqueWarning(createError(
4493             "unable to get a version for entry " + Twine(I) +
4494             " of SHT_GNU_versym section with index " + Twine(SecNdx) + ": " +
4495             toString(NameOrErr.takeError())));
4496       }
4497       Versions.emplace_back("<corrupt>");
4498       continue;
4499     }
4500     Versions.emplace_back(*NameOrErr);
4501   }
4502 
4503   // readelf prints 4 entries per line.
4504   uint64_t Entries = VerTable.size();
4505   for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4506     OS << "  " << format_hex_no_prefix(VersymRow, 3) << ":";
4507     for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4508       unsigned Ndx = VerTable[VersymRow + I].vs_index;
4509       OS << format("%4x%c", Ndx & VERSYM_VERSION,
4510                    Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4511       OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4512     }
4513     OS << '\n';
4514   }
4515   OS << '\n';
4516 }
4517 
4518 static std::string versionFlagToString(unsigned Flags) {
4519   if (Flags == 0)
4520     return "none";
4521 
4522   std::string Ret;
4523   auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4524     if (!(Flags & Flag))
4525       return;
4526     if (!Ret.empty())
4527       Ret += " | ";
4528     Ret += Name;
4529     Flags &= ~Flag;
4530   };
4531 
4532   AddFlag(VER_FLG_BASE, "BASE");
4533   AddFlag(VER_FLG_WEAK, "WEAK");
4534   AddFlag(VER_FLG_INFO, "INFO");
4535   AddFlag(~0, "<unknown>");
4536   return Ret;
4537 }
4538 
4539 template <class ELFT>
4540 void GNUStyle<ELFT>::printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
4541                                                    const Elf_Shdr *Sec) {
4542   if (!Sec)
4543     return;
4544 
4545   printGNUVersionSectionProlog(Obj, Sec, "Version definition", Sec->sh_info);
4546 
4547   Expected<std::vector<VerDef>> V = this->dumper()->getVersionDefinitions(Sec);
4548   if (!V) {
4549     this->reportUniqueWarning(V.takeError());
4550     return;
4551   }
4552 
4553   for (const VerDef &Def : *V) {
4554     OS << format("  0x%04x: Rev: %u  Flags: %s  Index: %u  Cnt: %u  Name: %s\n",
4555                  Def.Offset, Def.Version,
4556                  versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4557                  Def.Name.data());
4558     unsigned I = 0;
4559     for (const VerdAux &Aux : Def.AuxV)
4560       OS << format("  0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4561                    Aux.Name.data());
4562   }
4563 
4564   OS << '\n';
4565 }
4566 
4567 template <class ELFT>
4568 void GNUStyle<ELFT>::printVersionDependencySection(const ELFFile<ELFT> *Obj,
4569                                                    const Elf_Shdr *Sec) {
4570   if (!Sec)
4571     return;
4572 
4573   unsigned VerneedNum = Sec->sh_info;
4574   printGNUVersionSectionProlog(Obj, Sec, "Version needs", VerneedNum);
4575 
4576   Expected<std::vector<VerNeed>> V =
4577       this->dumper()->getVersionDependencies(Sec);
4578   if (!V) {
4579     this->reportUniqueWarning(V.takeError());
4580     return;
4581   }
4582 
4583   for (const VerNeed &VN : *V) {
4584     OS << format("  0x%04x: Version: %u  File: %s  Cnt: %u\n", VN.Offset,
4585                  VN.Version, VN.File.data(), VN.Cnt);
4586     for (const VernAux &Aux : VN.AuxV)
4587       OS << format("  0x%04x:   Name: %s  Flags: %s  Version: %u\n", Aux.Offset,
4588                    Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
4589                    Aux.Other);
4590   }
4591   OS << '\n';
4592 }
4593 
4594 template <class ELFT>
4595 void GNUStyle<ELFT>::printHashHistogram(const Elf_Hash &HashTable) {
4596   size_t NBucket = HashTable.nbucket;
4597   size_t NChain = HashTable.nchain;
4598   ArrayRef<Elf_Word> Buckets = HashTable.buckets();
4599   ArrayRef<Elf_Word> Chains = HashTable.chains();
4600   size_t TotalSyms = 0;
4601   // If hash table is correct, we have at least chains with 0 length
4602   size_t MaxChain = 1;
4603   size_t CumulativeNonZero = 0;
4604 
4605   if (NChain == 0 || NBucket == 0)
4606     return;
4607 
4608   std::vector<size_t> ChainLen(NBucket, 0);
4609   // Go over all buckets and and note chain lengths of each bucket (total
4610   // unique chain lengths).
4611   for (size_t B = 0; B < NBucket; B++) {
4612     std::vector<bool> Visited(NChain);
4613     for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
4614       if (C == ELF::STN_UNDEF)
4615         break;
4616       if (Visited[C]) {
4617         reportWarning(createError(".hash section is invalid: bucket " +
4618                                   Twine(C) +
4619                                   ": a cycle was detected in the linked chain"),
4620                       this->FileName);
4621         break;
4622       }
4623       Visited[C] = true;
4624       if (MaxChain <= ++ChainLen[B])
4625         MaxChain++;
4626     }
4627     TotalSyms += ChainLen[B];
4628   }
4629 
4630   if (!TotalSyms)
4631     return;
4632 
4633   std::vector<size_t> Count(MaxChain, 0);
4634   // Count how long is the chain for each bucket
4635   for (size_t B = 0; B < NBucket; B++)
4636     ++Count[ChainLen[B]];
4637   // Print Number of buckets with each chain lengths and their cumulative
4638   // coverage of the symbols
4639   OS << "Histogram for bucket list length (total of " << NBucket
4640      << " buckets)\n"
4641      << " Length  Number     % of total  Coverage\n";
4642   for (size_t I = 0; I < MaxChain; I++) {
4643     CumulativeNonZero += Count[I] * I;
4644     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4645                  (Count[I] * 100.0) / NBucket,
4646                  (CumulativeNonZero * 100.0) / TotalSyms);
4647   }
4648 }
4649 
4650 template <class ELFT>
4651 void GNUStyle<ELFT>::printGnuHashHistogram(const Elf_GnuHash &GnuHashTable) {
4652   size_t NBucket = GnuHashTable.nbuckets;
4653   ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
4654   unsigned NumSyms = this->dumper()->dynamic_symbols().size();
4655   if (!NumSyms)
4656     return;
4657   ArrayRef<Elf_Word> Chains = GnuHashTable.values(NumSyms);
4658   size_t Symndx = GnuHashTable.symndx;
4659   size_t TotalSyms = 0;
4660   size_t MaxChain = 1;
4661   size_t CumulativeNonZero = 0;
4662 
4663   if (Chains.empty() || NBucket == 0)
4664     return;
4665 
4666   std::vector<size_t> ChainLen(NBucket, 0);
4667   for (size_t B = 0; B < NBucket; B++) {
4668     if (!Buckets[B])
4669       continue;
4670     size_t Len = 1;
4671     for (size_t C = Buckets[B] - Symndx;
4672          C < Chains.size() && (Chains[C] & 1) == 0; C++)
4673       if (MaxChain < ++Len)
4674         MaxChain++;
4675     ChainLen[B] = Len;
4676     TotalSyms += Len;
4677   }
4678   MaxChain++;
4679 
4680   if (!TotalSyms)
4681     return;
4682 
4683   std::vector<size_t> Count(MaxChain, 0);
4684   for (size_t B = 0; B < NBucket; B++)
4685     ++Count[ChainLen[B]];
4686   // Print Number of buckets with each chain lengths and their cumulative
4687   // coverage of the symbols
4688   OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4689      << " buckets)\n"
4690      << " Length  Number     % of total  Coverage\n";
4691   for (size_t I = 0; I < MaxChain; I++) {
4692     CumulativeNonZero += Count[I] * I;
4693     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4694                  (Count[I] * 100.0) / NBucket,
4695                  (CumulativeNonZero * 100.0) / TotalSyms);
4696   }
4697 }
4698 
4699 // Hash histogram shows statistics of how efficient the hash was for the
4700 // dynamic symbol table. The table shows the number of hash buckets for
4701 // different lengths of chains as an absolute number and percentage of the total
4702 // buckets, and the cumulative coverage of symbols for each set of buckets.
4703 template <class ELFT>
4704 void GNUStyle<ELFT>::printHashHistograms(const ELFFile<ELFT> *Obj) {
4705   // Print histogram for the .hash section.
4706   if (const Elf_Hash *HashTable = this->dumper()->getHashTable()) {
4707     if (Error E = checkHashTable<ELFT>(Obj, HashTable))
4708       this->reportUniqueWarning(std::move(E));
4709     else
4710       printHashHistogram(*HashTable);
4711   }
4712 
4713   // Print histogram for the .gnu.hash section.
4714   if (const Elf_GnuHash *GnuHashTable = this->dumper()->getGnuHashTable()) {
4715     if (Error E = checkGNUHashTable<ELFT>(Obj, GnuHashTable))
4716       this->reportUniqueWarning(std::move(E));
4717     else
4718       printGnuHashHistogram(*GnuHashTable);
4719   }
4720 }
4721 
4722 template <class ELFT>
4723 void GNUStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) {
4724   OS << "GNUStyle::printCGProfile not implemented\n";
4725 }
4726 
4727 template <class ELFT>
4728 void GNUStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) {
4729   reportError(createError("--addrsig: not implemented"), this->FileName);
4730 }
4731 
4732 static StringRef getGenericNoteTypeName(const uint32_t NT) {
4733   static const struct {
4734     uint32_t ID;
4735     const char *Name;
4736   } Notes[] = {
4737       {ELF::NT_VERSION, "NT_VERSION (version)"},
4738       {ELF::NT_ARCH, "NT_ARCH (architecture)"},
4739       {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
4740       {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
4741   };
4742 
4743   for (const auto &Note : Notes)
4744     if (Note.ID == NT)
4745       return Note.Name;
4746 
4747   return "";
4748 }
4749 
4750 static StringRef getCoreNoteTypeName(const uint32_t NT) {
4751   static const struct {
4752     uint32_t ID;
4753     const char *Name;
4754   } Notes[] = {
4755       {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
4756       {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
4757       {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
4758       {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
4759       {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
4760       {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
4761       {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
4762       {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
4763       {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
4764       {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
4765       {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
4766 
4767       {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
4768       {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
4769       {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
4770       {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
4771       {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
4772       {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
4773       {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
4774       {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
4775       {ELF::NT_PPC_TM_CFPR,
4776        "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
4777       {ELF::NT_PPC_TM_CVMX,
4778        "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
4779       {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
4780       {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
4781       {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
4782       {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
4783       {ELF::NT_PPC_TM_CDSCR,
4784        "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
4785 
4786       {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
4787       {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
4788       {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
4789 
4790       {ELF::NT_S390_HIGH_GPRS,
4791        "NT_S390_HIGH_GPRS (s390 upper register halves)"},
4792       {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
4793       {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
4794       {ELF::NT_S390_TODPREG,
4795        "NT_S390_TODPREG (s390 TOD programmable register)"},
4796       {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
4797       {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
4798       {ELF::NT_S390_LAST_BREAK,
4799        "NT_S390_LAST_BREAK (s390 last breaking event address)"},
4800       {ELF::NT_S390_SYSTEM_CALL,
4801        "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
4802       {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
4803       {ELF::NT_S390_VXRS_LOW,
4804        "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
4805       {ELF::NT_S390_VXRS_HIGH,
4806        "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
4807       {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
4808       {ELF::NT_S390_GS_BC,
4809        "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
4810 
4811       {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
4812       {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
4813       {ELF::NT_ARM_HW_BREAK,
4814        "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
4815       {ELF::NT_ARM_HW_WATCH,
4816        "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
4817 
4818       {ELF::NT_FILE, "NT_FILE (mapped files)"},
4819       {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
4820       {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
4821   };
4822 
4823   for (const auto &Note : Notes)
4824     if (Note.ID == NT)
4825       return Note.Name;
4826 
4827   return "";
4828 }
4829 
4830 static std::string getGNUNoteTypeName(const uint32_t NT) {
4831   static const struct {
4832     uint32_t ID;
4833     const char *Name;
4834   } Notes[] = {
4835       {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
4836       {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
4837       {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
4838       {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
4839       {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
4840   };
4841 
4842   for (const auto &Note : Notes)
4843     if (Note.ID == NT)
4844       return std::string(Note.Name);
4845 
4846   std::string string;
4847   raw_string_ostream OS(string);
4848   OS << format("Unknown note type (0x%08x)", NT);
4849   return OS.str();
4850 }
4851 
4852 static std::string getFreeBSDNoteTypeName(const uint32_t NT) {
4853   static const struct {
4854     uint32_t ID;
4855     const char *Name;
4856   } Notes[] = {
4857       {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
4858       {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
4859       {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
4860       {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
4861       {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
4862       {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
4863       {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
4864       {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
4865       {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
4866        "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
4867       {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
4868   };
4869 
4870   for (const auto &Note : Notes)
4871     if (Note.ID == NT)
4872       return std::string(Note.Name);
4873 
4874   std::string string;
4875   raw_string_ostream OS(string);
4876   OS << format("Unknown note type (0x%08x)", NT);
4877   return OS.str();
4878 }
4879 
4880 static std::string getAMDNoteTypeName(const uint32_t NT) {
4881   static const struct {
4882     uint32_t ID;
4883     const char *Name;
4884   } Notes[] = {{ELF::NT_AMD_AMDGPU_HSA_METADATA,
4885                 "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"},
4886                {ELF::NT_AMD_AMDGPU_ISA, "NT_AMD_AMDGPU_ISA (ISA Version)"},
4887                {ELF::NT_AMD_AMDGPU_PAL_METADATA,
4888                 "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"}};
4889 
4890   for (const auto &Note : Notes)
4891     if (Note.ID == NT)
4892       return std::string(Note.Name);
4893 
4894   std::string string;
4895   raw_string_ostream OS(string);
4896   OS << format("Unknown note type (0x%08x)", NT);
4897   return OS.str();
4898 }
4899 
4900 static std::string getAMDGPUNoteTypeName(const uint32_t NT) {
4901   if (NT == ELF::NT_AMDGPU_METADATA)
4902     return std::string("NT_AMDGPU_METADATA (AMDGPU Metadata)");
4903 
4904   std::string string;
4905   raw_string_ostream OS(string);
4906   OS << format("Unknown note type (0x%08x)", NT);
4907   return OS.str();
4908 }
4909 
4910 template <typename ELFT>
4911 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
4912                                   ArrayRef<uint8_t> Data) {
4913   std::string str;
4914   raw_string_ostream OS(str);
4915   uint32_t PrData;
4916   auto DumpBit = [&](uint32_t Flag, StringRef Name) {
4917     if (PrData & Flag) {
4918       PrData &= ~Flag;
4919       OS << Name;
4920       if (PrData)
4921         OS << ", ";
4922     }
4923   };
4924 
4925   switch (Type) {
4926   default:
4927     OS << format("<application-specific type 0x%x>", Type);
4928     return OS.str();
4929   case GNU_PROPERTY_STACK_SIZE: {
4930     OS << "stack size: ";
4931     if (DataSize == sizeof(typename ELFT::uint))
4932       OS << formatv("{0:x}",
4933                     (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
4934     else
4935       OS << format("<corrupt length: 0x%x>", DataSize);
4936     return OS.str();
4937   }
4938   case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
4939     OS << "no copy on protected";
4940     if (DataSize)
4941       OS << format(" <corrupt length: 0x%x>", DataSize);
4942     return OS.str();
4943   case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
4944   case GNU_PROPERTY_X86_FEATURE_1_AND:
4945     OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
4946                                                         : "x86 feature: ");
4947     if (DataSize != 4) {
4948       OS << format("<corrupt length: 0x%x>", DataSize);
4949       return OS.str();
4950     }
4951     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4952     if (PrData == 0) {
4953       OS << "<None>";
4954       return OS.str();
4955     }
4956     if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
4957       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
4958       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
4959     } else {
4960       DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
4961       DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
4962     }
4963     if (PrData)
4964       OS << format("<unknown flags: 0x%x>", PrData);
4965     return OS.str();
4966   case GNU_PROPERTY_X86_ISA_1_NEEDED:
4967   case GNU_PROPERTY_X86_ISA_1_USED:
4968     OS << "x86 ISA "
4969        << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
4970     if (DataSize != 4) {
4971       OS << format("<corrupt length: 0x%x>", DataSize);
4972       return OS.str();
4973     }
4974     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4975     if (PrData == 0) {
4976       OS << "<None>";
4977       return OS.str();
4978     }
4979     DumpBit(GNU_PROPERTY_X86_ISA_1_CMOV, "CMOV");
4980     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE, "SSE");
4981     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE2, "SSE2");
4982     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE3, "SSE3");
4983     DumpBit(GNU_PROPERTY_X86_ISA_1_SSSE3, "SSSE3");
4984     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_1, "SSE4_1");
4985     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_2, "SSE4_2");
4986     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX, "AVX");
4987     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX2, "AVX2");
4988     DumpBit(GNU_PROPERTY_X86_ISA_1_FMA, "FMA");
4989     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512F, "AVX512F");
4990     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512CD, "AVX512CD");
4991     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512ER, "AVX512ER");
4992     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512PF, "AVX512PF");
4993     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512VL, "AVX512VL");
4994     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512DQ, "AVX512DQ");
4995     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512BW, "AVX512BW");
4996     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS, "AVX512_4FMAPS");
4997     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW, "AVX512_4VNNIW");
4998     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_BITALG, "AVX512_BITALG");
4999     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_IFMA, "AVX512_IFMA");
5000     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI, "AVX512_VBMI");
5001     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2, "AVX512_VBMI2");
5002     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VNNI, "AVX512_VNNI");
5003     if (PrData)
5004       OS << format("<unknown flags: 0x%x>", PrData);
5005     return OS.str();
5006     break;
5007   case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
5008   case GNU_PROPERTY_X86_FEATURE_2_USED:
5009     OS << "x86 feature "
5010        << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
5011     if (DataSize != 4) {
5012       OS << format("<corrupt length: 0x%x>", DataSize);
5013       return OS.str();
5014     }
5015     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5016     if (PrData == 0) {
5017       OS << "<None>";
5018       return OS.str();
5019     }
5020     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
5021     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
5022     DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
5023     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
5024     DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
5025     DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
5026     DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
5027     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
5028     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
5029     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
5030     if (PrData)
5031       OS << format("<unknown flags: 0x%x>", PrData);
5032     return OS.str();
5033   }
5034 }
5035 
5036 template <typename ELFT>
5037 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
5038   using Elf_Word = typename ELFT::Word;
5039 
5040   SmallVector<std::string, 4> Properties;
5041   while (Arr.size() >= 8) {
5042     uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
5043     uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
5044     Arr = Arr.drop_front(8);
5045 
5046     // Take padding size into account if present.
5047     uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
5048     std::string str;
5049     raw_string_ostream OS(str);
5050     if (Arr.size() < PaddedSize) {
5051       OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
5052       Properties.push_back(OS.str());
5053       break;
5054     }
5055     Properties.push_back(
5056         getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
5057     Arr = Arr.drop_front(PaddedSize);
5058   }
5059 
5060   if (!Arr.empty())
5061     Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5062 
5063   return Properties;
5064 }
5065 
5066 struct GNUAbiTag {
5067   std::string OSName;
5068   std::string ABI;
5069   bool IsValid;
5070 };
5071 
5072 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
5073   typedef typename ELFT::Word Elf_Word;
5074 
5075   ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
5076                            reinterpret_cast<const Elf_Word *>(Desc.end()));
5077 
5078   if (Words.size() < 4)
5079     return {"", "", /*IsValid=*/false};
5080 
5081   static const char *OSNames[] = {
5082       "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5083   };
5084   StringRef OSName = "Unknown";
5085   if (Words[0] < array_lengthof(OSNames))
5086     OSName = OSNames[Words[0]];
5087   uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
5088   std::string str;
5089   raw_string_ostream ABI(str);
5090   ABI << Major << "." << Minor << "." << Patch;
5091   return {std::string(OSName), ABI.str(), /*IsValid=*/true};
5092 }
5093 
5094 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5095   std::string str;
5096   raw_string_ostream OS(str);
5097   for (const auto &B : Desc)
5098     OS << format_hex_no_prefix(B, 2);
5099   return OS.str();
5100 }
5101 
5102 static StringRef getGNUGoldVersion(ArrayRef<uint8_t> Desc) {
5103   return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5104 }
5105 
5106 template <typename ELFT>
5107 static void printGNUNote(raw_ostream &OS, uint32_t NoteType,
5108                          ArrayRef<uint8_t> Desc) {
5109   switch (NoteType) {
5110   default:
5111     return;
5112   case ELF::NT_GNU_ABI_TAG: {
5113     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5114     if (!AbiTag.IsValid)
5115       OS << "    <corrupt GNU_ABI_TAG>";
5116     else
5117       OS << "    OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5118     break;
5119   }
5120   case ELF::NT_GNU_BUILD_ID: {
5121     OS << "    Build ID: " << getGNUBuildId(Desc);
5122     break;
5123   }
5124   case ELF::NT_GNU_GOLD_VERSION:
5125     OS << "    Version: " << getGNUGoldVersion(Desc);
5126     break;
5127   case ELF::NT_GNU_PROPERTY_TYPE_0:
5128     OS << "    Properties:";
5129     for (const auto &Property : getGNUPropertyList<ELFT>(Desc))
5130       OS << "    " << Property << "\n";
5131     break;
5132   }
5133   OS << '\n';
5134 }
5135 
5136 struct AMDNote {
5137   std::string Type;
5138   std::string Value;
5139 };
5140 
5141 template <typename ELFT>
5142 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5143   switch (NoteType) {
5144   default:
5145     return {"", ""};
5146   case ELF::NT_AMD_AMDGPU_HSA_METADATA:
5147     return {
5148         "HSA Metadata",
5149         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5150   case ELF::NT_AMD_AMDGPU_ISA:
5151     return {
5152         "ISA Version",
5153         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5154   }
5155 }
5156 
5157 struct AMDGPUNote {
5158   std::string Type;
5159   std::string Value;
5160 };
5161 
5162 template <typename ELFT>
5163 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5164   switch (NoteType) {
5165   default:
5166     return {"", ""};
5167   case ELF::NT_AMDGPU_METADATA: {
5168     auto MsgPackString =
5169         StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5170     msgpack::Document MsgPackDoc;
5171     if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5172       return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
5173 
5174     AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5175     if (!Verifier.verify(MsgPackDoc.getRoot()))
5176       return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
5177 
5178     std::string HSAMetadataString;
5179     raw_string_ostream StrOS(HSAMetadataString);
5180     MsgPackDoc.toYAML(StrOS);
5181 
5182     return {"AMDGPU Metadata", StrOS.str()};
5183   }
5184   }
5185 }
5186 
5187 struct CoreFileMapping {
5188   uint64_t Start, End, Offset;
5189   StringRef Filename;
5190 };
5191 
5192 struct CoreNote {
5193   uint64_t PageSize;
5194   std::vector<CoreFileMapping> Mappings;
5195 };
5196 
5197 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5198   // Expected format of the NT_FILE note description:
5199   // 1. # of file mappings (call it N)
5200   // 2. Page size
5201   // 3. N (start, end, offset) triples
5202   // 4. N packed filenames (null delimited)
5203   // Each field is an Elf_Addr, except for filenames which are char* strings.
5204 
5205   CoreNote Ret;
5206   const int Bytes = Desc.getAddressSize();
5207 
5208   if (!Desc.isValidOffsetForAddress(2))
5209     return createStringError(object_error::parse_failed,
5210                              "malformed note: header too short");
5211   if (Desc.getData().back() != 0)
5212     return createStringError(object_error::parse_failed,
5213                              "malformed note: not NUL terminated");
5214 
5215   uint64_t DescOffset = 0;
5216   uint64_t FileCount = Desc.getAddress(&DescOffset);
5217   Ret.PageSize = Desc.getAddress(&DescOffset);
5218 
5219   if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5220     return createStringError(object_error::parse_failed,
5221                              "malformed note: too short for number of files");
5222 
5223   uint64_t FilenamesOffset = 0;
5224   DataExtractor Filenames(
5225       Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5226       Desc.isLittleEndian(), Desc.getAddressSize());
5227 
5228   Ret.Mappings.resize(FileCount);
5229   for (CoreFileMapping &Mapping : Ret.Mappings) {
5230     if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5231       return createStringError(object_error::parse_failed,
5232                                "malformed note: too few filenames");
5233     Mapping.Start = Desc.getAddress(&DescOffset);
5234     Mapping.End = Desc.getAddress(&DescOffset);
5235     Mapping.Offset = Desc.getAddress(&DescOffset);
5236     Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5237   }
5238 
5239   return Ret;
5240 }
5241 
5242 template <typename ELFT>
5243 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5244   // Length of "0x<address>" string.
5245   const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5246 
5247   OS << "    Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5248   OS << "    " << right_justify("Start", FieldWidth) << "  "
5249      << right_justify("End", FieldWidth) << "  "
5250      << right_justify("Page Offset", FieldWidth) << '\n';
5251   for (const CoreFileMapping &Mapping : Note.Mappings) {
5252     OS << "    " << format_hex(Mapping.Start, FieldWidth) << "  "
5253        << format_hex(Mapping.End, FieldWidth) << "  "
5254        << format_hex(Mapping.Offset, FieldWidth) << "\n        "
5255        << Mapping.Filename << '\n';
5256   }
5257 }
5258 
5259 template <class ELFT>
5260 void GNUStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
5261   auto PrintHeader = [&](Optional<StringRef> SecName,
5262                          const typename ELFT::Off Offset,
5263                          const typename ELFT::Addr Size) {
5264     OS << "Displaying notes found ";
5265 
5266     if (SecName)
5267       OS << "in: " << *SecName << "\n";
5268     else
5269       OS << "at file offset " << format_hex(Offset, 10) << " with length "
5270          << format_hex(Size, 10) << ":\n";
5271 
5272     OS << "  Owner                Data size \tDescription\n";
5273   };
5274 
5275   auto ProcessNote = [&](const Elf_Note &Note) {
5276     StringRef Name = Note.getName();
5277     ArrayRef<uint8_t> Descriptor = Note.getDesc();
5278     Elf_Word Type = Note.getType();
5279 
5280     // Print the note owner/type.
5281     OS << "  " << left_justify(Name, 20) << ' '
5282        << format_hex(Descriptor.size(), 10) << '\t';
5283     if (Name == "GNU") {
5284       OS << getGNUNoteTypeName(Type) << '\n';
5285     } else if (Name == "FreeBSD") {
5286       OS << getFreeBSDNoteTypeName(Type) << '\n';
5287     } else if (Name == "AMD") {
5288       OS << getAMDNoteTypeName(Type) << '\n';
5289     } else if (Name == "AMDGPU") {
5290       OS << getAMDGPUNoteTypeName(Type) << '\n';
5291     } else {
5292       StringRef NoteType = Obj->getHeader()->e_type == ELF::ET_CORE
5293                                ? getCoreNoteTypeName(Type)
5294                                : getGenericNoteTypeName(Type);
5295       if (!NoteType.empty())
5296         OS << NoteType << '\n';
5297       else
5298         OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
5299     }
5300 
5301     // Print the description, or fallback to printing raw bytes for unknown
5302     // owners.
5303     if (Name == "GNU") {
5304       printGNUNote<ELFT>(OS, Type, Descriptor);
5305     } else if (Name == "AMD") {
5306       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5307       if (!N.Type.empty())
5308         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
5309     } else if (Name == "AMDGPU") {
5310       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5311       if (!N.Type.empty())
5312         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
5313     } else if (Name == "CORE") {
5314       if (Type == ELF::NT_FILE) {
5315         DataExtractor DescExtractor(Descriptor,
5316                                     ELFT::TargetEndianness == support::little,
5317                                     sizeof(Elf_Addr));
5318         Expected<CoreNote> Note = readCoreNote(DescExtractor);
5319         if (Note)
5320           printCoreNote<ELFT>(OS, *Note);
5321         else
5322           reportWarning(Note.takeError(), this->FileName);
5323       }
5324     } else if (!Descriptor.empty()) {
5325       OS << "   description data:";
5326       for (uint8_t B : Descriptor)
5327         OS << " " << format("%02x", B);
5328       OS << '\n';
5329     }
5330   };
5331 
5332   ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
5333   if (Obj->getHeader()->e_type != ELF::ET_CORE && !Sections.empty()) {
5334     for (const auto &S : Sections) {
5335       if (S.sh_type != SHT_NOTE)
5336         continue;
5337       PrintHeader(expectedToOptional(Obj->getSectionName(&S)), S.sh_offset,
5338                   S.sh_size);
5339       Error Err = Error::success();
5340       for (auto Note : Obj->notes(S, Err))
5341         ProcessNote(Note);
5342       if (Err)
5343         reportError(std::move(Err), this->FileName);
5344     }
5345   } else {
5346     for (const auto &P :
5347          unwrapOrError(this->FileName, Obj->program_headers())) {
5348       if (P.p_type != PT_NOTE)
5349         continue;
5350       PrintHeader(/*SecName=*/None, P.p_offset, P.p_filesz);
5351       Error Err = Error::success();
5352       for (auto Note : Obj->notes(P, Err))
5353         ProcessNote(Note);
5354       if (Err)
5355         reportError(std::move(Err), this->FileName);
5356     }
5357   }
5358 }
5359 
5360 template <class ELFT>
5361 void GNUStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
5362   OS << "printELFLinkerOptions not implemented!\n";
5363 }
5364 
5365 template <class ELFT>
5366 void DumpStyle<ELFT>::printDependentLibsHelper(
5367     const ELFFile<ELFT> *Obj,
5368     function_ref<void(const Elf_Shdr &)> OnSectionStart,
5369     function_ref<void(StringRef, uint64_t)> OnLibEntry) {
5370   auto Warn = [this](unsigned SecNdx, StringRef Msg) {
5371     this->reportUniqueWarning(
5372         createError("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
5373                     Twine(SecNdx) + " is broken: " + Msg));
5374   };
5375 
5376   unsigned I = -1;
5377   for (const Elf_Shdr &Shdr : unwrapOrError(this->FileName, Obj->sections())) {
5378     ++I;
5379     if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
5380       continue;
5381 
5382     OnSectionStart(Shdr);
5383 
5384     Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj->getSectionContents(&Shdr);
5385     if (!ContentsOrErr) {
5386       Warn(I, toString(ContentsOrErr.takeError()));
5387       continue;
5388     }
5389 
5390     ArrayRef<uint8_t> Contents = *ContentsOrErr;
5391     if (!Contents.empty() && Contents.back() != 0) {
5392       Warn(I, "the content is not null-terminated");
5393       continue;
5394     }
5395 
5396     for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
5397       StringRef Lib((const char *)I);
5398       OnLibEntry(Lib, I - Contents.begin());
5399       I += Lib.size() + 1;
5400     }
5401   }
5402 }
5403 
5404 template <class ELFT>
5405 void GNUStyle<ELFT>::printDependentLibs(const ELFFile<ELFT> *Obj) {
5406   bool SectionStarted = false;
5407   struct NameOffset {
5408     StringRef Name;
5409     uint64_t Offset;
5410   };
5411   std::vector<NameOffset> SecEntries;
5412   NameOffset Current;
5413   auto PrintSection = [&]() {
5414     OS << "Dependent libraries section " << Current.Name << " at offset "
5415        << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
5416        << " entries:\n";
5417     for (NameOffset Entry : SecEntries)
5418       OS << "  [" << format("%6tx", Entry.Offset) << "]  " << Entry.Name
5419          << "\n";
5420     OS << "\n";
5421     SecEntries.clear();
5422   };
5423 
5424   auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
5425     if (SectionStarted)
5426       PrintSection();
5427     SectionStarted = true;
5428     Current.Offset = Shdr.sh_offset;
5429     Expected<StringRef> Name = Obj->getSectionName(&Shdr);
5430     if (!Name) {
5431       Current.Name = "<?>";
5432       this->reportUniqueWarning(
5433           createError("cannot get section name of "
5434                       "SHT_LLVM_DEPENDENT_LIBRARIES section: " +
5435                       toString(Name.takeError())));
5436     } else {
5437       Current.Name = *Name;
5438     }
5439   };
5440   auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
5441     SecEntries.push_back(NameOffset{Lib, Offset});
5442   };
5443 
5444   this->printDependentLibsHelper(Obj, OnSectionStart, OnLibEntry);
5445   if (SectionStarted)
5446     PrintSection();
5447 }
5448 
5449 // Used for printing section names in places where possible errors can be
5450 // ignored.
5451 static StringRef getSectionName(const SectionRef &Sec) {
5452   Expected<StringRef> NameOrErr = Sec.getName();
5453   if (NameOrErr)
5454     return *NameOrErr;
5455   consumeError(NameOrErr.takeError());
5456   return "<?>";
5457 }
5458 
5459 // Used for printing symbol names in places where possible errors can be
5460 // ignored.
5461 static std::string getSymbolName(const ELFSymbolRef &Sym) {
5462   Expected<StringRef> NameOrErr = Sym.getName();
5463   if (NameOrErr)
5464     return maybeDemangle(*NameOrErr);
5465   consumeError(NameOrErr.takeError());
5466   return "<?>";
5467 }
5468 
5469 template <class ELFT>
5470 void DumpStyle<ELFT>::printFunctionStackSize(const ELFObjectFile<ELFT> *Obj,
5471                                              uint64_t SymValue,
5472                                              Optional<SectionRef> FunctionSec,
5473                                              const StringRef SectionName,
5474                                              DataExtractor Data,
5475                                              uint64_t *Offset) {
5476   // This function ignores potentially erroneous input, unless it is directly
5477   // related to stack size reporting.
5478   SymbolRef FuncSym;
5479   for (const ELFSymbolRef &Symbol : Obj->symbols()) {
5480     Expected<uint64_t> SymAddrOrErr = Symbol.getAddress();
5481     if (!SymAddrOrErr) {
5482       consumeError(SymAddrOrErr.takeError());
5483       continue;
5484     }
5485     if (Expected<uint32_t> SymFlags = Symbol.getFlags()) {
5486       if (*SymFlags & SymbolRef::SF_Undefined)
5487         continue;
5488     } else
5489       consumeError(SymFlags.takeError());
5490     if (Symbol.getELFType() == ELF::STT_FUNC && *SymAddrOrErr == SymValue) {
5491       // Check if the symbol is in the right section. FunctionSec == None means
5492       // "any section".
5493       if (!FunctionSec || FunctionSec->containsSymbol(Symbol)) {
5494         FuncSym = Symbol;
5495         break;
5496       }
5497     }
5498   }
5499 
5500   std::string FuncName = "?";
5501   // A valid SymbolRef has a non-null object file pointer.
5502   if (FuncSym.BasicSymbolRef::getObject())
5503     FuncName = getSymbolName(FuncSym);
5504   else
5505     reportWarning(
5506         createError("could not identify function symbol for stack size entry"),
5507         Obj->getFileName());
5508 
5509   // Extract the size. The expectation is that Offset is pointing to the right
5510   // place, i.e. past the function address.
5511   uint64_t PrevOffset = *Offset;
5512   uint64_t StackSize = Data.getULEB128(Offset);
5513   // getULEB128() does not advance Offset if it is not able to extract a valid
5514   // integer.
5515   if (*Offset == PrevOffset)
5516     reportError(
5517         createStringError(object_error::parse_failed,
5518                           "could not extract a valid stack size in section %s",
5519                           SectionName.data()),
5520         Obj->getFileName());
5521 
5522   printStackSizeEntry(StackSize, FuncName);
5523 }
5524 
5525 template <class ELFT>
5526 void GNUStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) {
5527   OS.PadToColumn(2);
5528   OS << format_decimal(Size, 11);
5529   OS.PadToColumn(18);
5530   OS << FuncName << "\n";
5531 }
5532 
5533 template <class ELFT>
5534 void DumpStyle<ELFT>::printStackSize(const ELFObjectFile<ELFT> *Obj,
5535                                      RelocationRef Reloc,
5536                                      SectionRef FunctionSec,
5537                                      const StringRef &StackSizeSectionName,
5538                                      const RelocationResolver &Resolver,
5539                                      DataExtractor Data) {
5540   // This function ignores potentially erroneous input, unless it is directly
5541   // related to stack size reporting.
5542   object::symbol_iterator RelocSym = Reloc.getSymbol();
5543   uint64_t RelocSymValue = 0;
5544   StringRef FileStr = Obj->getFileName();
5545   if (RelocSym != Obj->symbol_end()) {
5546     // Ensure that the relocation symbol is in the function section, i.e. the
5547     // section where the functions whose stack sizes we are reporting are
5548     // located.
5549     auto SectionOrErr = RelocSym->getSection();
5550     if (!SectionOrErr) {
5551       reportWarning(
5552           createError("cannot identify the section for relocation symbol '" +
5553                       getSymbolName(*RelocSym) + "'"),
5554           FileStr);
5555       consumeError(SectionOrErr.takeError());
5556     } else if (*SectionOrErr != FunctionSec) {
5557       reportWarning(createError("relocation symbol '" +
5558                                 getSymbolName(*RelocSym) +
5559                                 "' is not in the expected section"),
5560                     FileStr);
5561       // Pretend that the symbol is in the correct section and report its
5562       // stack size anyway.
5563       FunctionSec = **SectionOrErr;
5564     }
5565 
5566     Expected<uint64_t> RelocSymValueOrErr = RelocSym->getValue();
5567     if (RelocSymValueOrErr)
5568       RelocSymValue = *RelocSymValueOrErr;
5569     else
5570       consumeError(RelocSymValueOrErr.takeError());
5571   }
5572 
5573   uint64_t Offset = Reloc.getOffset();
5574   if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1))
5575     reportError(
5576         createStringError(object_error::parse_failed,
5577                           "found invalid relocation offset into section %s "
5578                           "while trying to extract a stack size entry",
5579                           StackSizeSectionName.data()),
5580         FileStr);
5581 
5582   uint64_t Addend = Data.getAddress(&Offset);
5583   uint64_t SymValue = Resolver(Reloc, RelocSymValue, Addend);
5584   this->printFunctionStackSize(Obj, SymValue, FunctionSec, StackSizeSectionName,
5585                                Data, &Offset);
5586 }
5587 
5588 template <class ELFT>
5589 void DumpStyle<ELFT>::printNonRelocatableStackSizes(
5590     const ELFObjectFile<ELFT> *Obj, std::function<void()> PrintHeader) {
5591   // This function ignores potentially erroneous input, unless it is directly
5592   // related to stack size reporting.
5593   const ELFFile<ELFT> *EF = Obj->getELFFile();
5594   StringRef FileStr = Obj->getFileName();
5595   for (const SectionRef &Sec : Obj->sections()) {
5596     StringRef SectionName = getSectionName(Sec);
5597     if (SectionName != ".stack_sizes")
5598       continue;
5599     PrintHeader();
5600     const Elf_Shdr *ElfSec = Obj->getSection(Sec.getRawDataRefImpl());
5601     ArrayRef<uint8_t> Contents =
5602         unwrapOrError(this->FileName, EF->getSectionContents(ElfSec));
5603     DataExtractor Data(Contents, Obj->isLittleEndian(), sizeof(Elf_Addr));
5604     uint64_t Offset = 0;
5605     while (Offset < Contents.size()) {
5606       // The function address is followed by a ULEB representing the stack
5607       // size. Check for an extra byte before we try to process the entry.
5608       if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
5609         reportError(
5610             createStringError(
5611                 object_error::parse_failed,
5612                 "section %s ended while trying to extract a stack size entry",
5613                 SectionName.data()),
5614             FileStr);
5615       }
5616       uint64_t SymValue = Data.getAddress(&Offset);
5617       printFunctionStackSize(Obj, SymValue, /*FunctionSec=*/None, SectionName,
5618                              Data, &Offset);
5619     }
5620   }
5621 }
5622 
5623 template <class ELFT>
5624 void DumpStyle<ELFT>::printRelocatableStackSizes(
5625     const ELFObjectFile<ELFT> *Obj, std::function<void()> PrintHeader) {
5626   const ELFFile<ELFT> *EF = Obj->getELFFile();
5627 
5628   // Build a map between stack size sections and their corresponding relocation
5629   // sections.
5630   llvm::MapVector<SectionRef, SectionRef> StackSizeRelocMap;
5631   const SectionRef NullSection{};
5632 
5633   for (const SectionRef &Sec : Obj->sections()) {
5634     StringRef SectionName;
5635     if (Expected<StringRef> NameOrErr = Sec.getName())
5636       SectionName = *NameOrErr;
5637     else
5638       consumeError(NameOrErr.takeError());
5639 
5640     // A stack size section that we haven't encountered yet is mapped to the
5641     // null section until we find its corresponding relocation section.
5642     if (SectionName == ".stack_sizes")
5643       if (StackSizeRelocMap.count(Sec) == 0) {
5644         StackSizeRelocMap[Sec] = NullSection;
5645         continue;
5646       }
5647 
5648     // Check relocation sections if they are relocating contents of a
5649     // stack sizes section.
5650     const Elf_Shdr *ElfSec = Obj->getSection(Sec.getRawDataRefImpl());
5651     uint32_t SectionType = ElfSec->sh_type;
5652     if (SectionType != ELF::SHT_RELA && SectionType != ELF::SHT_REL)
5653       continue;
5654 
5655     Expected<section_iterator> RelSecOrErr = Sec.getRelocatedSection();
5656     if (!RelSecOrErr)
5657       reportError(createStringError(object_error::parse_failed,
5658                                     "%s: failed to get a relocated section: %s",
5659                                     SectionName.data(),
5660                                     toString(RelSecOrErr.takeError()).c_str()),
5661                   Obj->getFileName());
5662 
5663     const Elf_Shdr *ContentsSec =
5664         Obj->getSection((*RelSecOrErr)->getRawDataRefImpl());
5665     Expected<StringRef> ContentsSectionNameOrErr =
5666         EF->getSectionName(ContentsSec);
5667     if (!ContentsSectionNameOrErr) {
5668       consumeError(ContentsSectionNameOrErr.takeError());
5669       continue;
5670     }
5671     if (*ContentsSectionNameOrErr != ".stack_sizes")
5672       continue;
5673     // Insert a mapping from the stack sizes section to its relocation section.
5674     StackSizeRelocMap[Obj->toSectionRef(ContentsSec)] = Sec;
5675   }
5676 
5677   for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
5678     PrintHeader();
5679     const SectionRef &StackSizesSec = StackSizeMapEntry.first;
5680     const SectionRef &RelocSec = StackSizeMapEntry.second;
5681 
5682     // Warn about stack size sections without a relocation section.
5683     StringRef StackSizeSectionName = getSectionName(StackSizesSec);
5684     if (RelocSec == NullSection) {
5685       reportWarning(createError("section " + StackSizeSectionName +
5686                                 " does not have a corresponding "
5687                                 "relocation section"),
5688                     Obj->getFileName());
5689       continue;
5690     }
5691 
5692     // A .stack_sizes section header's sh_link field is supposed to point
5693     // to the section that contains the functions whose stack sizes are
5694     // described in it.
5695     const Elf_Shdr *StackSizesELFSec =
5696         Obj->getSection(StackSizesSec.getRawDataRefImpl());
5697     const SectionRef FunctionSec = Obj->toSectionRef(unwrapOrError(
5698         this->FileName, EF->getSection(StackSizesELFSec->sh_link)));
5699 
5700     bool (*IsSupportedFn)(uint64_t);
5701     RelocationResolver Resolver;
5702     std::tie(IsSupportedFn, Resolver) = getRelocationResolver(*Obj);
5703     auto Contents = unwrapOrError(this->FileName, StackSizesSec.getContents());
5704     DataExtractor Data(Contents, Obj->isLittleEndian(), sizeof(Elf_Addr));
5705     for (const RelocationRef &Reloc : RelocSec.relocations()) {
5706       if (!IsSupportedFn || !IsSupportedFn(Reloc.getType()))
5707         reportError(createStringError(
5708                         object_error::parse_failed,
5709                         "unsupported relocation type in section %s: %s",
5710                         getSectionName(RelocSec).data(),
5711                         EF->getRelocationTypeName(Reloc.getType()).data()),
5712                     Obj->getFileName());
5713       this->printStackSize(Obj, Reloc, FunctionSec, StackSizeSectionName,
5714                            Resolver, Data);
5715     }
5716   }
5717 }
5718 
5719 template <class ELFT>
5720 void GNUStyle<ELFT>::printStackSizes(const ELFObjectFile<ELFT> *Obj) {
5721   bool HeaderHasBeenPrinted = false;
5722   auto PrintHeader = [&]() {
5723     if (HeaderHasBeenPrinted)
5724       return;
5725     OS << "\nStack Sizes:\n";
5726     OS.PadToColumn(9);
5727     OS << "Size";
5728     OS.PadToColumn(18);
5729     OS << "Function\n";
5730     HeaderHasBeenPrinted = true;
5731   };
5732 
5733   // For non-relocatable objects, look directly for sections whose name starts
5734   // with .stack_sizes and process the contents.
5735   if (Obj->isRelocatableObject())
5736     this->printRelocatableStackSizes(Obj, PrintHeader);
5737   else
5738     this->printNonRelocatableStackSizes(Obj, PrintHeader);
5739 }
5740 
5741 template <class ELFT>
5742 void GNUStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
5743   size_t Bias = ELFT::Is64Bits ? 8 : 0;
5744   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
5745     OS.PadToColumn(2);
5746     OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
5747     OS.PadToColumn(11 + Bias);
5748     OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
5749     OS.PadToColumn(22 + Bias);
5750     OS << format_hex_no_prefix(*E, 8 + Bias);
5751     OS.PadToColumn(31 + 2 * Bias);
5752     OS << Purpose << "\n";
5753   };
5754 
5755   OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
5756   OS << " Canonical gp value: "
5757      << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
5758 
5759   OS << " Reserved entries:\n";
5760   if (ELFT::Is64Bits)
5761     OS << "           Address     Access          Initial Purpose\n";
5762   else
5763     OS << "   Address     Access  Initial Purpose\n";
5764   PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
5765   if (Parser.getGotModulePointer())
5766     PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
5767 
5768   if (!Parser.getLocalEntries().empty()) {
5769     OS << "\n";
5770     OS << " Local entries:\n";
5771     if (ELFT::Is64Bits)
5772       OS << "           Address     Access          Initial\n";
5773     else
5774       OS << "   Address     Access  Initial\n";
5775     for (auto &E : Parser.getLocalEntries())
5776       PrintEntry(&E, "");
5777   }
5778 
5779   if (Parser.IsStatic)
5780     return;
5781 
5782   if (!Parser.getGlobalEntries().empty()) {
5783     OS << "\n";
5784     OS << " Global entries:\n";
5785     if (ELFT::Is64Bits)
5786       OS << "           Address     Access          Initial         Sym.Val."
5787          << " Type    Ndx Name\n";
5788     else
5789       OS << "   Address     Access  Initial Sym.Val. Type    Ndx Name\n";
5790     for (auto &E : Parser.getGlobalEntries()) {
5791       const Elf_Sym *Sym = Parser.getGotSym(&E);
5792       std::string SymName = this->dumper()->getFullSymbolName(
5793           Sym, this->dumper()->getDynamicStringTable(), false);
5794 
5795       OS.PadToColumn(2);
5796       OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
5797       OS.PadToColumn(11 + Bias);
5798       OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
5799       OS.PadToColumn(22 + Bias);
5800       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
5801       OS.PadToColumn(31 + 2 * Bias);
5802       OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
5803       OS.PadToColumn(40 + 3 * Bias);
5804       OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
5805       OS.PadToColumn(48 + 3 * Bias);
5806       OS << getSymbolSectionNdx(Parser.Obj, Sym,
5807                                 this->dumper()->dynamic_symbols().begin());
5808       OS.PadToColumn(52 + 3 * Bias);
5809       OS << SymName << "\n";
5810     }
5811   }
5812 
5813   if (!Parser.getOtherEntries().empty())
5814     OS << "\n Number of TLS and multi-GOT entries "
5815        << Parser.getOtherEntries().size() << "\n";
5816 }
5817 
5818 template <class ELFT>
5819 void GNUStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
5820   size_t Bias = ELFT::Is64Bits ? 8 : 0;
5821   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
5822     OS.PadToColumn(2);
5823     OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
5824     OS.PadToColumn(11 + Bias);
5825     OS << format_hex_no_prefix(*E, 8 + Bias);
5826     OS.PadToColumn(20 + 2 * Bias);
5827     OS << Purpose << "\n";
5828   };
5829 
5830   OS << "PLT GOT:\n\n";
5831 
5832   OS << " Reserved entries:\n";
5833   OS << "   Address  Initial Purpose\n";
5834   PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
5835   if (Parser.getPltModulePointer())
5836     PrintEntry(Parser.getPltModulePointer(), "Module pointer");
5837 
5838   if (!Parser.getPltEntries().empty()) {
5839     OS << "\n";
5840     OS << " Entries:\n";
5841     OS << "   Address  Initial Sym.Val. Type    Ndx Name\n";
5842     for (auto &E : Parser.getPltEntries()) {
5843       const Elf_Sym *Sym = Parser.getPltSym(&E);
5844       std::string SymName = this->dumper()->getFullSymbolName(
5845           Sym, this->dumper()->getDynamicStringTable(), false);
5846 
5847       OS.PadToColumn(2);
5848       OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
5849       OS.PadToColumn(11 + Bias);
5850       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
5851       OS.PadToColumn(20 + 2 * Bias);
5852       OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
5853       OS.PadToColumn(29 + 3 * Bias);
5854       OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
5855       OS.PadToColumn(37 + 3 * Bias);
5856       OS << getSymbolSectionNdx(Parser.Obj, Sym,
5857                                 this->dumper()->dynamic_symbols().begin());
5858       OS.PadToColumn(41 + 3 * Bias);
5859       OS << SymName << "\n";
5860     }
5861   }
5862 }
5863 
5864 template <class ELFT>
5865 void GNUStyle<ELFT>::printMipsABIFlags(const ELFObjectFile<ELFT> *ObjF) {
5866   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
5867   const Elf_Shdr *Shdr =
5868       findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.abiflags");
5869   if (!Shdr)
5870     return;
5871 
5872   ArrayRef<uint8_t> Sec =
5873       unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
5874   if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
5875     reportError(createError(".MIPS.abiflags section has a wrong size"),
5876                 ObjF->getFileName());
5877 
5878   auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data());
5879 
5880   OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
5881   OS << "ISA: MIPS" << int(Flags->isa_level);
5882   if (Flags->isa_rev > 1)
5883     OS << "r" << int(Flags->isa_rev);
5884   OS << "\n";
5885   OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
5886   OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
5887   OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
5888   OS << "FP ABI: " << printEnum(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType))
5889      << "\n";
5890   OS << "ISA Extension: "
5891      << printEnum(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n";
5892   if (Flags->ases == 0)
5893     OS << "ASEs: None\n";
5894   else
5895     // FIXME: Print each flag on a separate line.
5896     OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags))
5897        << "\n";
5898   OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
5899   OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
5900   OS << "\n";
5901 }
5902 
5903 template <class ELFT> void LLVMStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
5904   const Elf_Ehdr *E = Obj->getHeader();
5905   {
5906     DictScope D(W, "ElfHeader");
5907     {
5908       DictScope D(W, "Ident");
5909       W.printBinary("Magic", makeArrayRef(E->e_ident).slice(ELF::EI_MAG0, 4));
5910       W.printEnum("Class", E->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
5911       W.printEnum("DataEncoding", E->e_ident[ELF::EI_DATA],
5912                   makeArrayRef(ElfDataEncoding));
5913       W.printNumber("FileVersion", E->e_ident[ELF::EI_VERSION]);
5914 
5915       auto OSABI = makeArrayRef(ElfOSABI);
5916       if (E->e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
5917           E->e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
5918         switch (E->e_machine) {
5919         case ELF::EM_AMDGPU:
5920           OSABI = makeArrayRef(AMDGPUElfOSABI);
5921           break;
5922         case ELF::EM_ARM:
5923           OSABI = makeArrayRef(ARMElfOSABI);
5924           break;
5925         case ELF::EM_TI_C6000:
5926           OSABI = makeArrayRef(C6000ElfOSABI);
5927           break;
5928         }
5929       }
5930       W.printEnum("OS/ABI", E->e_ident[ELF::EI_OSABI], OSABI);
5931       W.printNumber("ABIVersion", E->e_ident[ELF::EI_ABIVERSION]);
5932       W.printBinary("Unused", makeArrayRef(E->e_ident).slice(ELF::EI_PAD));
5933     }
5934 
5935     W.printEnum("Type", E->e_type, makeArrayRef(ElfObjectFileType));
5936     W.printEnum("Machine", E->e_machine, makeArrayRef(ElfMachineType));
5937     W.printNumber("Version", E->e_version);
5938     W.printHex("Entry", E->e_entry);
5939     W.printHex("ProgramHeaderOffset", E->e_phoff);
5940     W.printHex("SectionHeaderOffset", E->e_shoff);
5941     if (E->e_machine == EM_MIPS)
5942       W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderMipsFlags),
5943                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
5944                    unsigned(ELF::EF_MIPS_MACH));
5945     else if (E->e_machine == EM_AMDGPU)
5946       W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderAMDGPUFlags),
5947                    unsigned(ELF::EF_AMDGPU_MACH));
5948     else if (E->e_machine == EM_RISCV)
5949       W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderRISCVFlags));
5950     else
5951       W.printFlags("Flags", E->e_flags);
5952     W.printNumber("HeaderSize", E->e_ehsize);
5953     W.printNumber("ProgramHeaderEntrySize", E->e_phentsize);
5954     W.printNumber("ProgramHeaderCount", E->e_phnum);
5955     W.printNumber("SectionHeaderEntrySize", E->e_shentsize);
5956     W.printString("SectionHeaderCount",
5957                   getSectionHeadersNumString(Obj, this->FileName));
5958     W.printString("StringTableSectionIndex",
5959                   getSectionHeaderTableIndexString(Obj, this->FileName));
5960   }
5961 }
5962 
5963 template <class ELFT>
5964 void LLVMStyle<ELFT>::printGroupSections(const ELFO *Obj) {
5965   DictScope Lists(W, "Groups");
5966   std::vector<GroupSection> V = getGroups<ELFT>(Obj, this->FileName);
5967   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
5968   for (const GroupSection &G : V) {
5969     DictScope D(W, "Group");
5970     W.printNumber("Name", G.Name, G.ShName);
5971     W.printNumber("Index", G.Index);
5972     W.printNumber("Link", G.Link);
5973     W.printNumber("Info", G.Info);
5974     W.printHex("Type", getGroupType(G.Type), G.Type);
5975     W.startLine() << "Signature: " << G.Signature << "\n";
5976 
5977     ListScope L(W, "Section(s) in group");
5978     for (const GroupMember &GM : G.Members) {
5979       const GroupSection *MainGroup = Map[GM.Index];
5980       if (MainGroup != &G) {
5981         W.flush();
5982         errs() << "Error: " << GM.Name << " (" << GM.Index
5983                << ") in a group " + G.Name + " (" << G.Index
5984                << ") is already in a group " + MainGroup->Name + " ("
5985                << MainGroup->Index << ")\n";
5986         errs().flush();
5987         continue;
5988       }
5989       W.startLine() << GM.Name << " (" << GM.Index << ")\n";
5990     }
5991   }
5992 
5993   if (V.empty())
5994     W.startLine() << "There are no group sections in the file.\n";
5995 }
5996 
5997 template <class ELFT> void LLVMStyle<ELFT>::printRelocations(const ELFO *Obj) {
5998   ListScope D(W, "Relocations");
5999 
6000   int SectionNumber = -1;
6001   for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) {
6002     ++SectionNumber;
6003 
6004     if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA &&
6005         Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL &&
6006         Sec.sh_type != ELF::SHT_ANDROID_RELA &&
6007         Sec.sh_type != ELF::SHT_ANDROID_RELR)
6008       continue;
6009 
6010     StringRef Name = unwrapOrError(this->FileName, Obj->getSectionName(&Sec));
6011 
6012     W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
6013     W.indent();
6014 
6015     printRelocations(&Sec, Obj);
6016 
6017     W.unindent();
6018     W.startLine() << "}\n";
6019   }
6020 }
6021 
6022 template <class ELFT>
6023 void LLVMStyle<ELFT>::printRelocations(const Elf_Shdr *Sec, const ELFO *Obj) {
6024   const Elf_Shdr *SymTab =
6025       unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link));
6026   unsigned SecNdx = Sec - &cantFail(Obj->sections()).front();
6027   unsigned RelNdx = 0;
6028 
6029   switch (Sec->sh_type) {
6030   case ELF::SHT_REL:
6031     for (const Elf_Rel &R : unwrapOrError(this->FileName, Obj->rels(Sec))) {
6032       Elf_Rela Rela;
6033       Rela.r_offset = R.r_offset;
6034       Rela.r_info = R.r_info;
6035       Rela.r_addend = 0;
6036       printRelocation(Obj, SecNdx, Rela, ++RelNdx, SymTab);
6037     }
6038     break;
6039   case ELF::SHT_RELA:
6040     for (const Elf_Rela &R : unwrapOrError(this->FileName, Obj->relas(Sec)))
6041       printRelocation(Obj, SecNdx, R, ++RelNdx, SymTab);
6042     break;
6043   case ELF::SHT_RELR:
6044   case ELF::SHT_ANDROID_RELR: {
6045     Elf_Relr_Range Relrs = unwrapOrError(this->FileName, Obj->relrs(Sec));
6046     if (opts::RawRelr) {
6047       for (const Elf_Relr &R : Relrs)
6048         W.startLine() << W.hex(R) << "\n";
6049     } else {
6050       std::vector<Elf_Rela> RelrRelas =
6051           unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
6052       for (const Elf_Rela &R : RelrRelas)
6053         printRelocation(Obj, SecNdx, R, ++RelNdx, SymTab);
6054     }
6055     break;
6056   }
6057   case ELF::SHT_ANDROID_REL:
6058   case ELF::SHT_ANDROID_RELA:
6059     for (const Elf_Rela &R :
6060          unwrapOrError(this->FileName, Obj->android_relas(Sec)))
6061       printRelocation(Obj, SecNdx, R, ++RelNdx, SymTab);
6062     break;
6063   }
6064 }
6065 
6066 template <class ELFT>
6067 void LLVMStyle<ELFT>::printRelocation(const ELFO *Obj, unsigned SecIndex,
6068                                       Elf_Rela Rel, unsigned RelIndex,
6069                                       const Elf_Shdr *SymTab) {
6070   Expected<std::pair<const typename ELFT::Sym *, std::string>> Target =
6071       this->dumper()->getRelocationTarget(SymTab, Rel);
6072   if (!Target) {
6073     this->reportUniqueWarning(createError(
6074         "unable to print relocation " + Twine(RelIndex) + " in section " +
6075         Twine(SecIndex) + ": " + toString(Target.takeError())));
6076     return;
6077   }
6078 
6079   std::string TargetName = Target->second;
6080   SmallString<32> RelocName;
6081   Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
6082 
6083   if (opts::ExpandRelocs) {
6084     DictScope Group(W, "Relocation");
6085     W.printHex("Offset", Rel.r_offset);
6086     W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
6087     W.printNumber("Symbol", !TargetName.empty() ? TargetName : "-",
6088                   Rel.getSymbol(Obj->isMips64EL()));
6089     W.printHex("Addend", Rel.r_addend);
6090   } else {
6091     raw_ostream &OS = W.startLine();
6092     OS << W.hex(Rel.r_offset) << " " << RelocName << " "
6093        << (!TargetName.empty() ? TargetName : "-") << " " << W.hex(Rel.r_addend)
6094        << "\n";
6095   }
6096 }
6097 
6098 template <class ELFT>
6099 void LLVMStyle<ELFT>::printSectionHeaders(const ELFO *Obj) {
6100   ListScope SectionsD(W, "Sections");
6101 
6102   int SectionIndex = -1;
6103   ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
6104   std::vector<EnumEntry<unsigned>> FlagsList =
6105       getSectionFlagsForTarget(Obj->getHeader()->e_machine);
6106   for (const Elf_Shdr &Sec : Sections) {
6107     StringRef Name = "<?>";
6108     if (Expected<StringRef> SecNameOrErr =
6109             Obj->getSectionName(&Sec, this->dumper()->WarningHandler))
6110       Name = *SecNameOrErr;
6111     else
6112       this->reportUniqueWarning(SecNameOrErr.takeError());
6113 
6114     DictScope SectionD(W, "Section");
6115     W.printNumber("Index", ++SectionIndex);
6116     W.printNumber("Name", Name, Sec.sh_name);
6117     W.printHex(
6118         "Type",
6119         object::getELFSectionTypeName(Obj->getHeader()->e_machine, Sec.sh_type),
6120         Sec.sh_type);
6121     W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList));
6122     W.printHex("Address", Sec.sh_addr);
6123     W.printHex("Offset", Sec.sh_offset);
6124     W.printNumber("Size", Sec.sh_size);
6125     W.printNumber("Link", Sec.sh_link);
6126     W.printNumber("Info", Sec.sh_info);
6127     W.printNumber("AddressAlignment", Sec.sh_addralign);
6128     W.printNumber("EntrySize", Sec.sh_entsize);
6129 
6130     if (opts::SectionRelocations) {
6131       ListScope D(W, "Relocations");
6132       printRelocations(&Sec, Obj);
6133     }
6134 
6135     if (opts::SectionSymbols) {
6136       ListScope D(W, "Symbols");
6137       const Elf_Shdr *Symtab = this->dumper()->getDotSymtabSec();
6138       StringRef StrTable =
6139           unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*Symtab));
6140 
6141       for (const Elf_Sym &Sym :
6142            unwrapOrError(this->FileName, Obj->symbols(Symtab))) {
6143         const Elf_Shdr *SymSec = unwrapOrError(
6144             this->FileName,
6145             Obj->getSection(&Sym, Symtab, this->dumper()->getShndxTable()));
6146         if (SymSec == &Sec)
6147           printSymbol(
6148               Obj, &Sym,
6149               unwrapOrError(this->FileName, Obj->symbols(Symtab)).begin(),
6150               StrTable, false, false);
6151       }
6152     }
6153 
6154     if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
6155       ArrayRef<uint8_t> Data =
6156           unwrapOrError(this->FileName, Obj->getSectionContents(&Sec));
6157       W.printBinaryBlock(
6158           "SectionData",
6159           StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
6160     }
6161   }
6162 }
6163 
6164 template <class ELFT>
6165 void LLVMStyle<ELFT>::printSymbolSection(const Elf_Sym *Symbol,
6166                                          const Elf_Sym *First) {
6167   Expected<unsigned> SectionIndex =
6168       this->dumper()->getSymbolSectionIndex(Symbol, First);
6169   if (!SectionIndex) {
6170     assert(Symbol->st_shndx == SHN_XINDEX &&
6171            "getSymbolSectionIndex should only fail due to an invalid "
6172            "SHT_SYMTAB_SHNDX table/reference");
6173     this->reportUniqueWarning(SectionIndex.takeError());
6174     W.printHex("Section", "Reserved", SHN_XINDEX);
6175     return;
6176   }
6177 
6178   Expected<StringRef> SectionName =
6179       this->dumper()->getSymbolSectionName(Symbol, *SectionIndex);
6180   if (!SectionName) {
6181     // Don't report an invalid section name if the section headers are missing.
6182     // In such situations, all sections will be "invalid".
6183     if (!this->dumper()->getElfObject()->sections().empty())
6184       this->reportUniqueWarning(SectionName.takeError());
6185     else
6186       consumeError(SectionName.takeError());
6187     W.printHex("Section", "<?>", *SectionIndex);
6188   } else {
6189     W.printHex("Section", *SectionName, *SectionIndex);
6190   }
6191 }
6192 
6193 template <class ELFT>
6194 void LLVMStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
6195                                   const Elf_Sym *First, StringRef StrTable,
6196                                   bool IsDynamic,
6197                                   bool /*NonVisibilityBitsUsed*/) {
6198   std::string FullSymbolName =
6199       this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
6200   unsigned char SymbolType = Symbol->getType();
6201 
6202   DictScope D(W, "Symbol");
6203   W.printNumber("Name", FullSymbolName, Symbol->st_name);
6204   W.printHex("Value", Symbol->st_value);
6205   W.printNumber("Size", Symbol->st_size);
6206   W.printEnum("Binding", Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
6207   if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
6208       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
6209     W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
6210   else
6211     W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
6212   if (Symbol->st_other == 0)
6213     // Usually st_other flag is zero. Do not pollute the output
6214     // by flags enumeration in that case.
6215     W.printNumber("Other", 0);
6216   else {
6217     std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
6218                                                    std::end(ElfSymOtherFlags));
6219     if (Obj->getHeader()->e_machine == EM_MIPS) {
6220       // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
6221       // flag overlapped with other ST_MIPS_xxx flags. So consider both
6222       // cases separately.
6223       if ((Symbol->st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
6224         SymOtherFlags.insert(SymOtherFlags.end(),
6225                              std::begin(ElfMips16SymOtherFlags),
6226                              std::end(ElfMips16SymOtherFlags));
6227       else
6228         SymOtherFlags.insert(SymOtherFlags.end(),
6229                              std::begin(ElfMipsSymOtherFlags),
6230                              std::end(ElfMipsSymOtherFlags));
6231     }
6232     W.printFlags("Other", Symbol->st_other, makeArrayRef(SymOtherFlags), 0x3u);
6233   }
6234   printSymbolSection(Symbol, First);
6235 }
6236 
6237 template <class ELFT>
6238 void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj, bool PrintSymbols,
6239                                    bool PrintDynamicSymbols) {
6240   if (PrintSymbols)
6241     printSymbols(Obj);
6242   if (PrintDynamicSymbols)
6243     printDynamicSymbols(Obj);
6244 }
6245 
6246 template <class ELFT> void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj) {
6247   ListScope Group(W, "Symbols");
6248   this->dumper()->printSymbolsHelper(false);
6249 }
6250 
6251 template <class ELFT>
6252 void LLVMStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) {
6253   ListScope Group(W, "DynamicSymbols");
6254   this->dumper()->printSymbolsHelper(true);
6255 }
6256 
6257 template <class ELFT> void LLVMStyle<ELFT>::printDynamic(const ELFFile<ELFT> *Obj) {
6258   Elf_Dyn_Range Table = this->dumper()->dynamic_table();
6259   if (Table.empty())
6260     return;
6261 
6262   W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
6263 
6264   size_t MaxTagSize = getMaxDynamicTagSize(Obj, Table);
6265   // The "Name/Value" column should be indented from the "Type" column by N
6266   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
6267   // space (1) = -3.
6268   W.startLine() << "  Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
6269                 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
6270 
6271   std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
6272   for (auto Entry : Table) {
6273     uintX_t Tag = Entry.getTag();
6274     std::string Value = this->dumper()->getDynamicEntry(Tag, Entry.getVal());
6275     W.startLine() << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
6276                   << " "
6277                   << format(ValueFmt.c_str(),
6278                             Obj->getDynamicTagAsString(Tag).c_str())
6279                   << Value << "\n";
6280   }
6281   W.startLine() << "]\n";
6282 }
6283 
6284 template <class ELFT>
6285 void LLVMStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
6286   const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
6287   const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
6288   const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion();
6289   const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
6290   if (DynRelRegion.Size && DynRelaRegion.Size)
6291     report_fatal_error("There are both REL and RELA dynamic relocations");
6292   W.startLine() << "Dynamic Relocations {\n";
6293   W.indent();
6294   if (DynRelaRegion.Size > 0)
6295     for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
6296       printDynamicRelocation(Obj, Rela);
6297   else
6298     for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
6299       Elf_Rela Rela;
6300       Rela.r_offset = Rel.r_offset;
6301       Rela.r_info = Rel.r_info;
6302       Rela.r_addend = 0;
6303       printDynamicRelocation(Obj, Rela);
6304     }
6305   if (DynRelrRegion.Size > 0) {
6306     Elf_Relr_Range Relrs = this->dumper()->dyn_relrs();
6307     std::vector<Elf_Rela> RelrRelas =
6308         unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
6309     for (const Elf_Rela &Rela : RelrRelas)
6310       printDynamicRelocation(Obj, Rela);
6311   }
6312   if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela))
6313     for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
6314       printDynamicRelocation(Obj, Rela);
6315   else
6316     for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
6317       Elf_Rela Rela;
6318       Rela.r_offset = Rel.r_offset;
6319       Rela.r_info = Rel.r_info;
6320       Rela.r_addend = 0;
6321       printDynamicRelocation(Obj, Rela);
6322     }
6323   W.unindent();
6324   W.startLine() << "}\n";
6325 }
6326 
6327 template <class ELFT>
6328 void LLVMStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel) {
6329   SmallString<32> RelocName;
6330   Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
6331   std::string SymbolName =
6332       getSymbolForReloc(Obj, this->FileName, this->dumper(), Rel).Name;
6333 
6334   if (opts::ExpandRelocs) {
6335     DictScope Group(W, "Relocation");
6336     W.printHex("Offset", Rel.r_offset);
6337     W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
6338     W.printString("Symbol", !SymbolName.empty() ? SymbolName : "-");
6339     W.printHex("Addend", Rel.r_addend);
6340   } else {
6341     raw_ostream &OS = W.startLine();
6342     OS << W.hex(Rel.r_offset) << " " << RelocName << " "
6343        << (!SymbolName.empty() ? SymbolName : "-") << " " << W.hex(Rel.r_addend)
6344        << "\n";
6345   }
6346 }
6347 
6348 template <class ELFT>
6349 void LLVMStyle<ELFT>::printProgramHeaders(
6350     const ELFO *Obj, bool PrintProgramHeaders,
6351     cl::boolOrDefault PrintSectionMapping) {
6352   if (PrintProgramHeaders)
6353     printProgramHeaders(Obj);
6354   if (PrintSectionMapping == cl::BOU_TRUE)
6355     printSectionMapping(Obj);
6356 }
6357 
6358 template <class ELFT>
6359 void LLVMStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
6360   ListScope L(W, "ProgramHeaders");
6361 
6362   for (const Elf_Phdr &Phdr :
6363        unwrapOrError(this->FileName, Obj->program_headers())) {
6364     DictScope P(W, "ProgramHeader");
6365     W.printHex("Type",
6366                getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type),
6367                Phdr.p_type);
6368     W.printHex("Offset", Phdr.p_offset);
6369     W.printHex("VirtualAddress", Phdr.p_vaddr);
6370     W.printHex("PhysicalAddress", Phdr.p_paddr);
6371     W.printNumber("FileSize", Phdr.p_filesz);
6372     W.printNumber("MemSize", Phdr.p_memsz);
6373     W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
6374     W.printNumber("Alignment", Phdr.p_align);
6375   }
6376 }
6377 
6378 template <class ELFT>
6379 void LLVMStyle<ELFT>::printVersionSymbolSection(const ELFFile<ELFT> *Obj,
6380                                                 const Elf_Shdr *Sec) {
6381   ListScope SS(W, "VersionSymbols");
6382   if (!Sec)
6383     return;
6384 
6385   StringRef StrTable;
6386   ArrayRef<Elf_Sym> Syms;
6387   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
6388       this->dumper()->getVersionTable(Sec, &Syms, &StrTable);
6389   if (!VerTableOrErr) {
6390     this->reportUniqueWarning(VerTableOrErr.takeError());
6391     return;
6392   }
6393 
6394   if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
6395     return;
6396 
6397   for (size_t I = 0, E = Syms.size(); I < E; ++I) {
6398     DictScope S(W, "Symbol");
6399     W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
6400     W.printString("Name", this->dumper()->getFullSymbolName(
6401                               &Syms[I], StrTable, /*IsDynamic=*/true));
6402   }
6403 }
6404 
6405 template <class ELFT>
6406 void LLVMStyle<ELFT>::printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
6407                                                     const Elf_Shdr *Sec) {
6408   ListScope SD(W, "VersionDefinitions");
6409   if (!Sec)
6410     return;
6411 
6412   Expected<std::vector<VerDef>> V = this->dumper()->getVersionDefinitions(Sec);
6413   if (!V) {
6414     this->reportUniqueWarning(V.takeError());
6415     return;
6416   }
6417 
6418   for (const VerDef &D : *V) {
6419     DictScope Def(W, "Definition");
6420     W.printNumber("Version", D.Version);
6421     W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags));
6422     W.printNumber("Index", D.Ndx);
6423     W.printNumber("Hash", D.Hash);
6424     W.printString("Name", D.Name.c_str());
6425     W.printList(
6426         "Predecessors", D.AuxV,
6427         [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
6428   }
6429 }
6430 
6431 template <class ELFT>
6432 void LLVMStyle<ELFT>::printVersionDependencySection(const ELFFile<ELFT> *Obj,
6433                                                     const Elf_Shdr *Sec) {
6434   ListScope SD(W, "VersionRequirements");
6435   if (!Sec)
6436     return;
6437 
6438   Expected<std::vector<VerNeed>> V =
6439       this->dumper()->getVersionDependencies(Sec);
6440   if (!V) {
6441     this->reportUniqueWarning(V.takeError());
6442     return;
6443   }
6444 
6445   for (const VerNeed &VN : *V) {
6446     DictScope Entry(W, "Dependency");
6447     W.printNumber("Version", VN.Version);
6448     W.printNumber("Count", VN.Cnt);
6449     W.printString("FileName", VN.File.c_str());
6450 
6451     ListScope L(W, "Entries");
6452     for (const VernAux &Aux : VN.AuxV) {
6453       DictScope Entry(W, "Entry");
6454       W.printNumber("Hash", Aux.Hash);
6455       W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags));
6456       W.printNumber("Index", Aux.Other);
6457       W.printString("Name", Aux.Name.c_str());
6458     }
6459   }
6460 }
6461 
6462 template <class ELFT>
6463 void LLVMStyle<ELFT>::printHashHistograms(const ELFFile<ELFT> *Obj) {
6464   W.startLine() << "Hash Histogram not implemented!\n";
6465 }
6466 
6467 template <class ELFT>
6468 void LLVMStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) {
6469   ListScope L(W, "CGProfile");
6470   if (!this->dumper()->getDotCGProfileSec())
6471     return;
6472   auto CGProfile = unwrapOrError(
6473       this->FileName, Obj->template getSectionContentsAsArray<Elf_CGProfile>(
6474                           this->dumper()->getDotCGProfileSec()));
6475   for (const Elf_CGProfile &CGPE : CGProfile) {
6476     DictScope D(W, "CGProfileEntry");
6477     W.printNumber(
6478         "From",
6479         unwrapOrError(this->FileName,
6480                       this->dumper()->getStaticSymbolName(CGPE.cgp_from)),
6481         CGPE.cgp_from);
6482     W.printNumber(
6483         "To",
6484         unwrapOrError(this->FileName,
6485                       this->dumper()->getStaticSymbolName(CGPE.cgp_to)),
6486         CGPE.cgp_to);
6487     W.printNumber("Weight", CGPE.cgp_weight);
6488   }
6489 }
6490 
6491 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
6492   std::vector<uint64_t> Ret;
6493   const uint8_t *Cur = Data.begin();
6494   const uint8_t *End = Data.end();
6495   while (Cur != End) {
6496     unsigned Size;
6497     const char *Err;
6498     Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
6499     if (Err)
6500       return createError(Err);
6501     Cur += Size;
6502   }
6503   return Ret;
6504 }
6505 
6506 template <class ELFT>
6507 void LLVMStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) {
6508   ListScope L(W, "Addrsig");
6509   if (!this->dumper()->getDotAddrsigSec())
6510     return;
6511   ArrayRef<uint8_t> Contents = unwrapOrError(
6512       this->FileName,
6513       Obj->getSectionContents(this->dumper()->getDotAddrsigSec()));
6514   Expected<std::vector<uint64_t>> V = toULEB128Array(Contents);
6515   if (!V) {
6516     reportWarning(V.takeError(), this->FileName);
6517     return;
6518   }
6519 
6520   for (uint64_t Sym : *V) {
6521     Expected<std::string> NameOrErr = this->dumper()->getStaticSymbolName(Sym);
6522     if (NameOrErr) {
6523       W.printNumber("Sym", *NameOrErr, Sym);
6524       continue;
6525     }
6526     reportWarning(NameOrErr.takeError(), this->FileName);
6527     W.printNumber("Sym", "<?>", Sym);
6528   }
6529 }
6530 
6531 template <typename ELFT>
6532 static void printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
6533                                   ScopedPrinter &W) {
6534   switch (NoteType) {
6535   default:
6536     return;
6537   case ELF::NT_GNU_ABI_TAG: {
6538     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
6539     if (!AbiTag.IsValid) {
6540       W.printString("ABI", "<corrupt GNU_ABI_TAG>");
6541     } else {
6542       W.printString("OS", AbiTag.OSName);
6543       W.printString("ABI", AbiTag.ABI);
6544     }
6545     break;
6546   }
6547   case ELF::NT_GNU_BUILD_ID: {
6548     W.printString("Build ID", getGNUBuildId(Desc));
6549     break;
6550   }
6551   case ELF::NT_GNU_GOLD_VERSION:
6552     W.printString("Version", getGNUGoldVersion(Desc));
6553     break;
6554   case ELF::NT_GNU_PROPERTY_TYPE_0:
6555     ListScope D(W, "Property");
6556     for (const auto &Property : getGNUPropertyList<ELFT>(Desc))
6557       W.printString(Property);
6558     break;
6559   }
6560 }
6561 
6562 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
6563   W.printNumber("Page Size", Note.PageSize);
6564   for (const CoreFileMapping &Mapping : Note.Mappings) {
6565     ListScope D(W, "Mapping");
6566     W.printHex("Start", Mapping.Start);
6567     W.printHex("End", Mapping.End);
6568     W.printHex("Offset", Mapping.Offset);
6569     W.printString("Filename", Mapping.Filename);
6570   }
6571 }
6572 
6573 template <class ELFT>
6574 void LLVMStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
6575   ListScope L(W, "Notes");
6576 
6577   auto PrintHeader = [&](Optional<StringRef> SecName,
6578                          const typename ELFT::Off Offset,
6579                          const typename ELFT::Addr Size) {
6580     W.printString("Name", SecName ? *SecName : "<?>");
6581     W.printHex("Offset", Offset);
6582     W.printHex("Size", Size);
6583   };
6584 
6585   auto ProcessNote = [&](const Elf_Note &Note) {
6586     DictScope D2(W, "Note");
6587     StringRef Name = Note.getName();
6588     ArrayRef<uint8_t> Descriptor = Note.getDesc();
6589     Elf_Word Type = Note.getType();
6590 
6591     // Print the note owner/type.
6592     W.printString("Owner", Name);
6593     W.printHex("Data size", Descriptor.size());
6594     if (Name == "GNU") {
6595       W.printString("Type", getGNUNoteTypeName(Type));
6596     } else if (Name == "FreeBSD") {
6597       W.printString("Type", getFreeBSDNoteTypeName(Type));
6598     } else if (Name == "AMD") {
6599       W.printString("Type", getAMDNoteTypeName(Type));
6600     } else if (Name == "AMDGPU") {
6601       W.printString("Type", getAMDGPUNoteTypeName(Type));
6602     } else {
6603       StringRef NoteType = Obj->getHeader()->e_type == ELF::ET_CORE
6604                                ? getCoreNoteTypeName(Type)
6605                                : getGenericNoteTypeName(Type);
6606       if (!NoteType.empty())
6607         W.printString("Type", NoteType);
6608       else
6609         W.printString("Type",
6610                       "Unknown (" + to_string(format_hex(Type, 10)) + ")");
6611     }
6612 
6613     // Print the description, or fallback to printing raw bytes for unknown
6614     // owners.
6615     if (Name == "GNU") {
6616       printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W);
6617     } else if (Name == "AMD") {
6618       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
6619       if (!N.Type.empty())
6620         W.printString(N.Type, N.Value);
6621     } else if (Name == "AMDGPU") {
6622       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
6623       if (!N.Type.empty())
6624         W.printString(N.Type, N.Value);
6625     } else if (Name == "CORE") {
6626       if (Type == ELF::NT_FILE) {
6627         DataExtractor DescExtractor(Descriptor,
6628                                     ELFT::TargetEndianness == support::little,
6629                                     sizeof(Elf_Addr));
6630         Expected<CoreNote> Note = readCoreNote(DescExtractor);
6631         if (Note)
6632           printCoreNoteLLVMStyle(*Note, W);
6633         else
6634           reportWarning(Note.takeError(), this->FileName);
6635       }
6636     } else if (!Descriptor.empty()) {
6637       W.printBinaryBlock("Description data", Descriptor);
6638     }
6639   };
6640 
6641   ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections());
6642   if (Obj->getHeader()->e_type != ELF::ET_CORE && !Sections.empty()) {
6643     for (const auto &S : Sections) {
6644       if (S.sh_type != SHT_NOTE)
6645         continue;
6646       DictScope D(W, "NoteSection");
6647       PrintHeader(expectedToOptional(Obj->getSectionName(&S)), S.sh_offset,
6648                   S.sh_size);
6649       Error Err = Error::success();
6650       for (auto Note : Obj->notes(S, Err))
6651         ProcessNote(Note);
6652       if (Err)
6653         reportError(std::move(Err), this->FileName);
6654     }
6655   } else {
6656     for (const auto &P :
6657          unwrapOrError(this->FileName, Obj->program_headers())) {
6658       if (P.p_type != PT_NOTE)
6659         continue;
6660       DictScope D(W, "NoteSection");
6661       PrintHeader(/*SecName=*/None, P.p_offset, P.p_filesz);
6662       Error Err = Error::success();
6663       for (auto Note : Obj->notes(P, Err))
6664         ProcessNote(Note);
6665       if (Err)
6666         reportError(std::move(Err), this->FileName);
6667     }
6668   }
6669 }
6670 
6671 template <class ELFT>
6672 void LLVMStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
6673   ListScope L(W, "LinkerOptions");
6674 
6675   unsigned I = -1;
6676   for (const Elf_Shdr &Shdr : unwrapOrError(this->FileName, Obj->sections())) {
6677     ++I;
6678     if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
6679       continue;
6680 
6681     ArrayRef<uint8_t> Contents =
6682         unwrapOrError(this->FileName, Obj->getSectionContents(&Shdr));
6683     if (Contents.empty())
6684       continue;
6685 
6686     if (Contents.back() != 0) {
6687       reportWarning(createError("SHT_LLVM_LINKER_OPTIONS section at index " +
6688                                 Twine(I) +
6689                                 " is broken: the "
6690                                 "content is not null-terminated"),
6691                     this->FileName);
6692       continue;
6693     }
6694 
6695     SmallVector<StringRef, 16> Strings;
6696     toStringRef(Contents.drop_back()).split(Strings, '\0');
6697     if (Strings.size() % 2 != 0) {
6698       reportWarning(
6699           createError(
6700               "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
6701               " is broken: an incomplete "
6702               "key-value pair was found. The last possible key was: \"" +
6703               Strings.back() + "\""),
6704           this->FileName);
6705       continue;
6706     }
6707 
6708     for (size_t I = 0; I < Strings.size(); I += 2)
6709       W.printString(Strings[I], Strings[I + 1]);
6710   }
6711 }
6712 
6713 template <class ELFT>
6714 void LLVMStyle<ELFT>::printDependentLibs(const ELFFile<ELFT> *Obj) {
6715   ListScope L(W, "DependentLibs");
6716   this->printDependentLibsHelper(
6717       Obj, [](const Elf_Shdr &) {},
6718       [this](StringRef Lib, uint64_t) { W.printString(Lib); });
6719 }
6720 
6721 template <class ELFT>
6722 void LLVMStyle<ELFT>::printStackSizes(const ELFObjectFile<ELFT> *Obj) {
6723   ListScope L(W, "StackSizes");
6724   if (Obj->isRelocatableObject())
6725     this->printRelocatableStackSizes(Obj, []() {});
6726   else
6727     this->printNonRelocatableStackSizes(Obj, []() {});
6728 }
6729 
6730 template <class ELFT>
6731 void LLVMStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) {
6732   DictScope D(W, "Entry");
6733   W.printString("Function", FuncName);
6734   W.printHex("Size", Size);
6735 }
6736 
6737 template <class ELFT>
6738 void LLVMStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6739   auto PrintEntry = [&](const Elf_Addr *E) {
6740     W.printHex("Address", Parser.getGotAddress(E));
6741     W.printNumber("Access", Parser.getGotOffset(E));
6742     W.printHex("Initial", *E);
6743   };
6744 
6745   DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
6746 
6747   W.printHex("Canonical gp value", Parser.getGp());
6748   {
6749     ListScope RS(W, "Reserved entries");
6750     {
6751       DictScope D(W, "Entry");
6752       PrintEntry(Parser.getGotLazyResolver());
6753       W.printString("Purpose", StringRef("Lazy resolver"));
6754     }
6755 
6756     if (Parser.getGotModulePointer()) {
6757       DictScope D(W, "Entry");
6758       PrintEntry(Parser.getGotModulePointer());
6759       W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
6760     }
6761   }
6762   {
6763     ListScope LS(W, "Local entries");
6764     for (auto &E : Parser.getLocalEntries()) {
6765       DictScope D(W, "Entry");
6766       PrintEntry(&E);
6767     }
6768   }
6769 
6770   if (Parser.IsStatic)
6771     return;
6772 
6773   {
6774     ListScope GS(W, "Global entries");
6775     for (auto &E : Parser.getGlobalEntries()) {
6776       DictScope D(W, "Entry");
6777 
6778       PrintEntry(&E);
6779 
6780       const Elf_Sym *Sym = Parser.getGotSym(&E);
6781       W.printHex("Value", Sym->st_value);
6782       W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
6783       printSymbolSection(Sym, this->dumper()->dynamic_symbols().begin());
6784 
6785       std::string SymName = this->dumper()->getFullSymbolName(
6786           Sym, this->dumper()->getDynamicStringTable(), true);
6787       W.printNumber("Name", SymName, Sym->st_name);
6788     }
6789   }
6790 
6791   W.printNumber("Number of TLS and multi-GOT entries",
6792                 uint64_t(Parser.getOtherEntries().size()));
6793 }
6794 
6795 template <class ELFT>
6796 void LLVMStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6797   auto PrintEntry = [&](const Elf_Addr *E) {
6798     W.printHex("Address", Parser.getPltAddress(E));
6799     W.printHex("Initial", *E);
6800   };
6801 
6802   DictScope GS(W, "PLT GOT");
6803 
6804   {
6805     ListScope RS(W, "Reserved entries");
6806     {
6807       DictScope D(W, "Entry");
6808       PrintEntry(Parser.getPltLazyResolver());
6809       W.printString("Purpose", StringRef("PLT lazy resolver"));
6810     }
6811 
6812     if (auto E = Parser.getPltModulePointer()) {
6813       DictScope D(W, "Entry");
6814       PrintEntry(E);
6815       W.printString("Purpose", StringRef("Module pointer"));
6816     }
6817   }
6818   {
6819     ListScope LS(W, "Entries");
6820     for (auto &E : Parser.getPltEntries()) {
6821       DictScope D(W, "Entry");
6822       PrintEntry(&E);
6823 
6824       const Elf_Sym *Sym = Parser.getPltSym(&E);
6825       W.printHex("Value", Sym->st_value);
6826       W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
6827       printSymbolSection(Sym, this->dumper()->dynamic_symbols().begin());
6828 
6829       std::string SymName =
6830           this->dumper()->getFullSymbolName(Sym, Parser.getPltStrTable(), true);
6831       W.printNumber("Name", SymName, Sym->st_name);
6832     }
6833   }
6834 }
6835 
6836 template <class ELFT>
6837 void LLVMStyle<ELFT>::printMipsABIFlags(const ELFObjectFile<ELFT> *ObjF) {
6838   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
6839   const Elf_Shdr *Shdr =
6840       findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.abiflags");
6841   if (!Shdr) {
6842     W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
6843     return;
6844   }
6845   ArrayRef<uint8_t> Sec =
6846       unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
6847   if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) {
6848     W.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
6849     return;
6850   }
6851 
6852   auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data());
6853 
6854   raw_ostream &OS = W.getOStream();
6855   DictScope GS(W, "MIPS ABI Flags");
6856 
6857   W.printNumber("Version", Flags->version);
6858   W.startLine() << "ISA: ";
6859   if (Flags->isa_rev <= 1)
6860     OS << format("MIPS%u", Flags->isa_level);
6861   else
6862     OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
6863   OS << "\n";
6864   W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
6865   W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
6866   W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
6867   W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
6868   W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
6869   W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
6870   W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
6871   W.printHex("Flags 2", Flags->flags2);
6872 }
6873