1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/PointerIntPair.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
33 #include "llvm/BinaryFormat/ELF.h"
34 #include "llvm/BinaryFormat/MsgPackDocument.h"
35 #include "llvm/Demangle/Demangle.h"
36 #include "llvm/Object/Archive.h"
37 #include "llvm/Object/ELF.h"
38 #include "llvm/Object/ELFObjectFile.h"
39 #include "llvm/Object/ELFTypes.h"
40 #include "llvm/Object/Error.h"
41 #include "llvm/Object/ObjectFile.h"
42 #include "llvm/Object/RelocationResolver.h"
43 #include "llvm/Object/StackMapParser.h"
44 #include "llvm/Support/AMDGPUMetadata.h"
45 #include "llvm/Support/ARMAttributeParser.h"
46 #include "llvm/Support/ARMBuildAttributes.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Endian.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/Format.h"
52 #include "llvm/Support/FormatVariadic.h"
53 #include "llvm/Support/FormattedStream.h"
54 #include "llvm/Support/LEB128.h"
55 #include "llvm/Support/MSP430AttributeParser.h"
56 #include "llvm/Support/MSP430Attributes.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/MipsABIFlags.h"
59 #include "llvm/Support/RISCVAttributeParser.h"
60 #include "llvm/Support/RISCVAttributes.h"
61 #include "llvm/Support/ScopedPrinter.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include <algorithm>
64 #include <cinttypes>
65 #include <cstddef>
66 #include <cstdint>
67 #include <cstdlib>
68 #include <iterator>
69 #include <memory>
70 #include <string>
71 #include <system_error>
72 #include <vector>
73 
74 using namespace llvm;
75 using namespace llvm::object;
76 using namespace ELF;
77 
78 #define LLVM_READOBJ_ENUM_CASE(ns, enum)                                       \
79   case ns::enum:                                                               \
80     return #enum;
81 
82 #define ENUM_ENT(enum, altName)                                                \
83   { #enum, altName, ELF::enum }
84 
85 #define ENUM_ENT_1(enum)                                                       \
86   { #enum, #enum, ELF::enum }
87 
88 namespace {
89 
90 template <class ELFT> struct RelSymbol {
91   RelSymbol(const typename ELFT::Sym *S, StringRef N)
92       : Sym(S), Name(N.str()) {}
93   const typename ELFT::Sym *Sym;
94   std::string Name;
95 };
96 
97 /// Represents a contiguous uniform range in the file. We cannot just create a
98 /// range directly because when creating one of these from the .dynamic table
99 /// the size, entity size and virtual address are different entries in arbitrary
100 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
101 struct DynRegionInfo {
102   DynRegionInfo(const Binary &Owner, const ObjDumper &D)
103       : Obj(&Owner), Dumper(&D) {}
104   DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
105                 uint64_t S, uint64_t ES)
106       : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
107 
108   /// Address in current address space.
109   const uint8_t *Addr = nullptr;
110   /// Size in bytes of the region.
111   uint64_t Size = 0;
112   /// Size of each entity in the region.
113   uint64_t EntSize = 0;
114 
115   /// Owner object. Used for error reporting.
116   const Binary *Obj;
117   /// Dumper used for error reporting.
118   const ObjDumper *Dumper;
119   /// Error prefix. Used for error reporting to provide more information.
120   std::string Context;
121   /// Region size name. Used for error reporting.
122   StringRef SizePrintName = "size";
123   /// Entry size name. Used for error reporting. If this field is empty, errors
124   /// will not mention the entry size.
125   StringRef EntSizePrintName = "entry size";
126 
127   template <typename Type> ArrayRef<Type> getAsArrayRef() const {
128     const Type *Start = reinterpret_cast<const Type *>(Addr);
129     if (!Start)
130       return {Start, Start};
131 
132     const uint64_t Offset =
133         Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
134     const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
135 
136     if (Size > ObjSize - Offset) {
137       Dumper->reportUniqueWarning(
138           "unable to read data at 0x" + Twine::utohexstr(Offset) +
139           " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
140           "): it goes past the end of the file of size 0x" +
141           Twine::utohexstr(ObjSize));
142       return {Start, Start};
143     }
144 
145     if (EntSize == sizeof(Type) && (Size % EntSize == 0))
146       return {Start, Start + (Size / EntSize)};
147 
148     std::string Msg;
149     if (!Context.empty())
150       Msg += Context + " has ";
151 
152     Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
153                .str();
154     if (!EntSizePrintName.empty())
155       Msg +=
156           (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
157               .str();
158 
159     Dumper->reportUniqueWarning(Msg);
160     return {Start, Start};
161   }
162 };
163 
164 struct GroupMember {
165   StringRef Name;
166   uint64_t Index;
167 };
168 
169 struct GroupSection {
170   StringRef Name;
171   std::string Signature;
172   uint64_t ShName;
173   uint64_t Index;
174   uint32_t Link;
175   uint32_t Info;
176   uint32_t Type;
177   std::vector<GroupMember> Members;
178 };
179 
180 namespace {
181 
182 struct NoteType {
183   uint32_t ID;
184   StringRef Name;
185 };
186 
187 } // namespace
188 
189 template <class ELFT> class Relocation {
190 public:
191   Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
192       : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
193         Offset(R.r_offset), Info(R.r_info) {}
194 
195   Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
196       : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
197     Addend = R.r_addend;
198   }
199 
200   uint32_t Type;
201   uint32_t Symbol;
202   typename ELFT::uint Offset;
203   typename ELFT::uint Info;
204   Optional<int64_t> Addend;
205 };
206 
207 template <class ELFT> class MipsGOTParser;
208 
209 template <typename ELFT> class ELFDumper : public ObjDumper {
210   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
211 
212 public:
213   ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
214 
215   void printUnwindInfo() override;
216   void printNeededLibraries() override;
217   void printHashTable() override;
218   void printGnuHashTable() override;
219   void printLoadName() override;
220   void printVersionInfo() override;
221   void printArchSpecificInfo() override;
222   void printStackMap() const override;
223 
224   const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
225 
226   std::string describe(const Elf_Shdr &Sec) const;
227 
228   unsigned getHashTableEntSize() const {
229     // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
230     // sections. This violates the ELF specification.
231     if (Obj.getHeader().e_machine == ELF::EM_S390 ||
232         Obj.getHeader().e_machine == ELF::EM_ALPHA)
233       return 8;
234     return 4;
235   }
236 
237   Elf_Dyn_Range dynamic_table() const {
238     // A valid .dynamic section contains an array of entries terminated
239     // with a DT_NULL entry. However, sometimes the section content may
240     // continue past the DT_NULL entry, so to dump the section correctly,
241     // we first find the end of the entries by iterating over them.
242     Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
243 
244     size_t Size = 0;
245     while (Size < Table.size())
246       if (Table[Size++].getTag() == DT_NULL)
247         break;
248 
249     return Table.slice(0, Size);
250   }
251 
252   Elf_Sym_Range dynamic_symbols() const {
253     if (!DynSymRegion)
254       return Elf_Sym_Range();
255     return DynSymRegion->template getAsArrayRef<Elf_Sym>();
256   }
257 
258   const Elf_Shdr *findSectionByName(StringRef Name) const;
259 
260   StringRef getDynamicStringTable() const { return DynamicStringTable; }
261 
262 protected:
263   virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
264   virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
265   virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
266 
267   void
268   printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
269                            function_ref<void(StringRef, uint64_t)> OnLibEntry);
270 
271   virtual void printRelRelaReloc(const Relocation<ELFT> &R,
272                                  const RelSymbol<ELFT> &RelSym) = 0;
273   virtual void printRelrReloc(const Elf_Relr &R) = 0;
274   virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
275                                        const DynRegionInfo &Reg) {}
276   void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
277                   const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
278   void printDynamicReloc(const Relocation<ELFT> &R);
279   void printDynamicRelocationsHelper();
280   void printRelocationsHelper(const Elf_Shdr &Sec);
281   void forEachRelocationDo(
282       const Elf_Shdr &Sec, bool RawRelr,
283       llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
284                               const Elf_Shdr &, const Elf_Shdr *)>
285           RelRelaFn,
286       llvm::function_ref<void(const Elf_Relr &)> RelrFn);
287 
288   virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
289                                   bool NonVisibilityBitsUsed) const {};
290   virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
291                            DataRegion<Elf_Word> ShndxTable,
292                            Optional<StringRef> StrTable, bool IsDynamic,
293                            bool NonVisibilityBitsUsed) const = 0;
294 
295   virtual void printMipsABIFlags() = 0;
296   virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
297   virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
298 
299   Expected<ArrayRef<Elf_Versym>>
300   getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
301                   StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
302   StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
303 
304   std::vector<GroupSection> getGroups();
305 
306   // Returns the function symbol index for the given address. Matches the
307   // symbol's section with FunctionSec when specified.
308   // Returns None if no function symbol can be found for the address or in case
309   // it is not defined in the specified section.
310   SmallVector<uint32_t>
311   getSymbolIndexesForFunctionAddress(uint64_t SymValue,
312                                      Optional<const Elf_Shdr *> FunctionSec);
313   bool printFunctionStackSize(uint64_t SymValue,
314                               Optional<const Elf_Shdr *> FunctionSec,
315                               const Elf_Shdr &StackSizeSec, DataExtractor Data,
316                               uint64_t *Offset);
317   void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
318                       unsigned Ndx, const Elf_Shdr *SymTab,
319                       const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
320                       const RelocationResolver &Resolver, DataExtractor Data);
321   virtual void printStackSizeEntry(uint64_t Size,
322                                    ArrayRef<std::string> FuncNames) = 0;
323 
324   void printRelocatableStackSizes(std::function<void()> PrintHeader);
325   void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
326 
327   /// Retrieves sections with corresponding relocation sections based on
328   /// IsMatch.
329   void getSectionAndRelocations(
330       std::function<bool(const Elf_Shdr &)> IsMatch,
331       llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap);
332 
333   const object::ELFObjectFile<ELFT> &ObjF;
334   const ELFFile<ELFT> &Obj;
335   StringRef FileName;
336 
337   Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
338                                     uint64_t EntSize) {
339     if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
340       return createError("offset (0x" + Twine::utohexstr(Offset) +
341                          ") + size (0x" + Twine::utohexstr(Size) +
342                          ") is greater than the file size (0x" +
343                          Twine::utohexstr(Obj.getBufSize()) + ")");
344     return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
345   }
346 
347   void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>,
348                        support::endianness);
349   void printMipsReginfo();
350   void printMipsOptions();
351 
352   std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
353   void loadDynamicTable();
354   void parseDynamicTable();
355 
356   Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
357                                        bool &IsDefault) const;
358   Expected<SmallVector<Optional<VersionEntry>, 0> *> getVersionMap() const;
359 
360   DynRegionInfo DynRelRegion;
361   DynRegionInfo DynRelaRegion;
362   DynRegionInfo DynRelrRegion;
363   DynRegionInfo DynPLTRelRegion;
364   Optional<DynRegionInfo> DynSymRegion;
365   DynRegionInfo DynSymTabShndxRegion;
366   DynRegionInfo DynamicTable;
367   StringRef DynamicStringTable;
368   const Elf_Hash *HashTable = nullptr;
369   const Elf_GnuHash *GnuHashTable = nullptr;
370   const Elf_Shdr *DotSymtabSec = nullptr;
371   const Elf_Shdr *DotDynsymSec = nullptr;
372   const Elf_Shdr *DotAddrsigSec = nullptr;
373   DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
374   Optional<uint64_t> SONameOffset;
375   Optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap;
376 
377   const Elf_Shdr *SymbolVersionSection = nullptr;   // .gnu.version
378   const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
379   const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
380 
381   std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
382                                 DataRegion<Elf_Word> ShndxTable,
383                                 Optional<StringRef> StrTable,
384                                 bool IsDynamic) const;
385   Expected<unsigned>
386   getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
387                         DataRegion<Elf_Word> ShndxTable) const;
388   Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
389                                            unsigned SectionIndex) const;
390   std::string getStaticSymbolName(uint32_t Index) const;
391   StringRef getDynamicString(uint64_t Value) const;
392 
393   void printSymbolsHelper(bool IsDynamic) const;
394   std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
395 
396   Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
397                                                 const Elf_Shdr *SymTab) const;
398 
399   ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
400 
401 private:
402   mutable SmallVector<Optional<VersionEntry>, 0> VersionMap;
403 };
404 
405 template <class ELFT>
406 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
407   return ::describe(Obj, Sec);
408 }
409 
410 namespace {
411 
412 template <class ELFT> struct SymtabLink {
413   typename ELFT::SymRange Symbols;
414   StringRef StringTable;
415   const typename ELFT::Shdr *SymTab;
416 };
417 
418 // Returns the linked symbol table, symbols and associated string table for a
419 // given section.
420 template <class ELFT>
421 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
422                                            const typename ELFT::Shdr &Sec,
423                                            unsigned ExpectedType) {
424   Expected<const typename ELFT::Shdr *> SymtabOrErr =
425       Obj.getSection(Sec.sh_link);
426   if (!SymtabOrErr)
427     return createError("invalid section linked to " + describe(Obj, Sec) +
428                        ": " + toString(SymtabOrErr.takeError()));
429 
430   if ((*SymtabOrErr)->sh_type != ExpectedType)
431     return createError(
432         "invalid section linked to " + describe(Obj, Sec) + ": expected " +
433         object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
434         ", but got " +
435         object::getELFSectionTypeName(Obj.getHeader().e_machine,
436                                       (*SymtabOrErr)->sh_type));
437 
438   Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
439   if (!StrTabOrErr)
440     return createError(
441         "can't get a string table for the symbol table linked to " +
442         describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
443 
444   Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
445   if (!SymsOrErr)
446     return createError("unable to read symbols from the " + describe(Obj, Sec) +
447                        ": " + toString(SymsOrErr.takeError()));
448 
449   return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
450 }
451 
452 } // namespace
453 
454 template <class ELFT>
455 Expected<ArrayRef<typename ELFT::Versym>>
456 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
457                                  StringRef *StrTab,
458                                  const Elf_Shdr **SymTabSec) const {
459   assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec));
460   if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
461           sizeof(uint16_t) !=
462       0)
463     return createError("the " + describe(Sec) + " is misaligned");
464 
465   Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
466       Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
467   if (!VersionsOrErr)
468     return createError("cannot read content of " + describe(Sec) + ": " +
469                        toString(VersionsOrErr.takeError()));
470 
471   Expected<SymtabLink<ELFT>> SymTabOrErr =
472       getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
473   if (!SymTabOrErr) {
474     reportUniqueWarning(SymTabOrErr.takeError());
475     return *VersionsOrErr;
476   }
477 
478   if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
479     reportUniqueWarning(describe(Sec) + ": the number of entries (" +
480                         Twine(VersionsOrErr->size()) +
481                         ") does not match the number of symbols (" +
482                         Twine(SymTabOrErr->Symbols.size()) +
483                         ") in the symbol table with index " +
484                         Twine(Sec.sh_link));
485 
486   if (SymTab) {
487     *SymTab = SymTabOrErr->Symbols;
488     *StrTab = SymTabOrErr->StringTable;
489     *SymTabSec = SymTabOrErr->SymTab;
490   }
491   return *VersionsOrErr;
492 }
493 
494 template <class ELFT>
495 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
496   Optional<StringRef> StrTable;
497   size_t Entries = 0;
498   Elf_Sym_Range Syms(nullptr, nullptr);
499   const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
500 
501   if (IsDynamic) {
502     StrTable = DynamicStringTable;
503     Syms = dynamic_symbols();
504     Entries = Syms.size();
505   } else if (DotSymtabSec) {
506     if (Expected<StringRef> StrTableOrErr =
507             Obj.getStringTableForSymtab(*DotSymtabSec))
508       StrTable = *StrTableOrErr;
509     else
510       reportUniqueWarning(
511           "unable to get the string table for the SHT_SYMTAB section: " +
512           toString(StrTableOrErr.takeError()));
513 
514     if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
515       Syms = *SymsOrErr;
516     else
517       reportUniqueWarning(
518           "unable to read symbols from the SHT_SYMTAB section: " +
519           toString(SymsOrErr.takeError()));
520     Entries = DotSymtabSec->getEntityCount();
521   }
522   if (Syms.empty())
523     return;
524 
525   // The st_other field has 2 logical parts. The first two bits hold the symbol
526   // visibility (STV_*) and the remainder hold other platform-specific values.
527   bool NonVisibilityBitsUsed =
528       llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
529 
530   DataRegion<Elf_Word> ShndxTable =
531       IsDynamic ? DataRegion<Elf_Word>(
532                       (const Elf_Word *)this->DynSymTabShndxRegion.Addr,
533                       this->getElfObject().getELFFile().end())
534                 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
535 
536   printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed);
537   for (const Elf_Sym &Sym : Syms)
538     printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
539                 NonVisibilityBitsUsed);
540 }
541 
542 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
543   formatted_raw_ostream &OS;
544 
545 public:
546   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
547 
548   GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
549       : ELFDumper<ELFT>(ObjF, Writer),
550         OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
551     assert(&this->W.getOStream() == &llvm::fouts());
552   }
553 
554   void printFileSummary(StringRef FileStr, ObjectFile &Obj,
555                         ArrayRef<std::string> InputFilenames,
556                         const Archive *A) override;
557   void printFileHeaders() override;
558   void printGroupSections() override;
559   void printRelocations() override;
560   void printSectionHeaders() override;
561   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
562   void printHashSymbols() override;
563   void printSectionDetails() override;
564   void printDependentLibs() override;
565   void printDynamicTable() override;
566   void printDynamicRelocations() override;
567   void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
568                           bool NonVisibilityBitsUsed) const override;
569   void printProgramHeaders(bool PrintProgramHeaders,
570                            cl::boolOrDefault PrintSectionMapping) override;
571   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
572   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
573   void printVersionDependencySection(const Elf_Shdr *Sec) override;
574   void printHashHistograms() override;
575   void printCGProfile() override;
576   void printBBAddrMaps() override;
577   void printAddrsig() override;
578   void printNotes() override;
579   void printELFLinkerOptions() override;
580   void printStackSizes() override;
581 
582 private:
583   void printHashHistogram(const Elf_Hash &HashTable);
584   void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable);
585   void printHashTableSymbols(const Elf_Hash &HashTable);
586   void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
587 
588   struct Field {
589     std::string Str;
590     unsigned Column;
591 
592     Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
593     Field(unsigned Col) : Column(Col) {}
594   };
595 
596   template <typename T, typename TEnum>
597   std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
598                          TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
599                          TEnum EnumMask3 = {}) const {
600     std::string Str;
601     for (const EnumEntry<TEnum> &Flag : EnumValues) {
602       if (Flag.Value == 0)
603         continue;
604 
605       TEnum EnumMask{};
606       if (Flag.Value & EnumMask1)
607         EnumMask = EnumMask1;
608       else if (Flag.Value & EnumMask2)
609         EnumMask = EnumMask2;
610       else if (Flag.Value & EnumMask3)
611         EnumMask = EnumMask3;
612       bool IsEnum = (Flag.Value & EnumMask) != 0;
613       if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
614           (IsEnum && (Value & EnumMask) == Flag.Value)) {
615         if (!Str.empty())
616           Str += ", ";
617         Str += Flag.AltName;
618       }
619     }
620     return Str;
621   }
622 
623   formatted_raw_ostream &printField(struct Field F) const {
624     if (F.Column != 0)
625       OS.PadToColumn(F.Column);
626     OS << F.Str;
627     OS.flush();
628     return OS;
629   }
630   void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
631                          DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
632                          uint32_t Bucket);
633   void printRelrReloc(const Elf_Relr &R) override;
634   void printRelRelaReloc(const Relocation<ELFT> &R,
635                          const RelSymbol<ELFT> &RelSym) override;
636   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
637                    DataRegion<Elf_Word> ShndxTable,
638                    Optional<StringRef> StrTable, bool IsDynamic,
639                    bool NonVisibilityBitsUsed) const override;
640   void printDynamicRelocHeader(unsigned Type, StringRef Name,
641                                const DynRegionInfo &Reg) override;
642 
643   std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
644                                   DataRegion<Elf_Word> ShndxTable) const;
645   void printProgramHeaders() override;
646   void printSectionMapping() override;
647   void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
648                                     const Twine &Label, unsigned EntriesNum);
649 
650   void printStackSizeEntry(uint64_t Size,
651                            ArrayRef<std::string> FuncNames) override;
652 
653   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
654   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
655   void printMipsABIFlags() override;
656 };
657 
658 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
659 public:
660   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
661 
662   LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
663       : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
664 
665   void printFileHeaders() override;
666   void printGroupSections() override;
667   void printRelocations() override;
668   void printSectionHeaders() override;
669   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
670   void printDependentLibs() override;
671   void printDynamicTable() override;
672   void printDynamicRelocations() override;
673   void printProgramHeaders(bool PrintProgramHeaders,
674                            cl::boolOrDefault PrintSectionMapping) override;
675   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
676   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
677   void printVersionDependencySection(const Elf_Shdr *Sec) override;
678   void printHashHistograms() override;
679   void printCGProfile() override;
680   void printBBAddrMaps() override;
681   void printAddrsig() override;
682   void printNotes() override;
683   void printELFLinkerOptions() override;
684   void printStackSizes() override;
685 
686 private:
687   void printRelrReloc(const Elf_Relr &R) override;
688   void printRelRelaReloc(const Relocation<ELFT> &R,
689                          const RelSymbol<ELFT> &RelSym) override;
690 
691   void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
692                           DataRegion<Elf_Word> ShndxTable) const;
693   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
694                    DataRegion<Elf_Word> ShndxTable,
695                    Optional<StringRef> StrTable, bool IsDynamic,
696                    bool /*NonVisibilityBitsUsed*/) const override;
697   void printProgramHeaders() override;
698   void printSectionMapping() override {}
699   void printStackSizeEntry(uint64_t Size,
700                            ArrayRef<std::string> FuncNames) override;
701 
702   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
703   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
704   void printMipsABIFlags() override;
705 
706 protected:
707   ScopedPrinter &W;
708 };
709 
710 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except
711 // it uses a JSONScopedPrinter.
712 template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> {
713 public:
714   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
715 
716   JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
717       : LLVMELFDumper<ELFT>(ObjF, Writer) {}
718 
719   void printFileSummary(StringRef FileStr, ObjectFile &Obj,
720                         ArrayRef<std::string> InputFilenames,
721                         const Archive *A) override;
722 
723 private:
724   std::unique_ptr<DictScope> FileScope;
725 };
726 
727 } // end anonymous namespace
728 
729 namespace llvm {
730 
731 template <class ELFT>
732 static std::unique_ptr<ObjDumper>
733 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
734   if (opts::Output == opts::GNU)
735     return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
736   else if (opts::Output == opts::JSON)
737     return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer);
738   return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
739 }
740 
741 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
742                                            ScopedPrinter &Writer) {
743   // Little-endian 32-bit
744   if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
745     return createELFDumper(*ELFObj, Writer);
746 
747   // Big-endian 32-bit
748   if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
749     return createELFDumper(*ELFObj, Writer);
750 
751   // Little-endian 64-bit
752   if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
753     return createELFDumper(*ELFObj, Writer);
754 
755   // Big-endian 64-bit
756   return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
757 }
758 
759 } // end namespace llvm
760 
761 template <class ELFT>
762 Expected<SmallVector<Optional<VersionEntry>, 0> *>
763 ELFDumper<ELFT>::getVersionMap() const {
764   // If the VersionMap has already been loaded or if there is no dynamic symtab
765   // or version table, there is nothing to do.
766   if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
767     return &VersionMap;
768 
769   Expected<SmallVector<Optional<VersionEntry>, 0>> MapOrErr =
770       Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
771   if (MapOrErr)
772     VersionMap = *MapOrErr;
773   else
774     return MapOrErr.takeError();
775 
776   return &VersionMap;
777 }
778 
779 template <typename ELFT>
780 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
781                                                       bool &IsDefault) const {
782   // This is a dynamic symbol. Look in the GNU symbol version table.
783   if (!SymbolVersionSection) {
784     // No version table.
785     IsDefault = false;
786     return "";
787   }
788 
789   assert(DynSymRegion && "DynSymRegion has not been initialised");
790   // Determine the position in the symbol table of this entry.
791   size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
792                        reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
793                       sizeof(Elf_Sym);
794 
795   // Get the corresponding version index entry.
796   Expected<const Elf_Versym *> EntryOrErr =
797       Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
798   if (!EntryOrErr)
799     return EntryOrErr.takeError();
800 
801   unsigned Version = (*EntryOrErr)->vs_index;
802   if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
803     IsDefault = false;
804     return "";
805   }
806 
807   Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
808       getVersionMap();
809   if (!MapOrErr)
810     return MapOrErr.takeError();
811 
812   return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
813                                      Sym.st_shndx == ELF::SHN_UNDEF);
814 }
815 
816 template <typename ELFT>
817 Expected<RelSymbol<ELFT>>
818 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
819                                      const Elf_Shdr *SymTab) const {
820   if (R.Symbol == 0)
821     return RelSymbol<ELFT>(nullptr, "");
822 
823   Expected<const Elf_Sym *> SymOrErr =
824       Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
825   if (!SymOrErr)
826     return createError("unable to read an entry with index " + Twine(R.Symbol) +
827                        " from " + describe(*SymTab) + ": " +
828                        toString(SymOrErr.takeError()));
829   const Elf_Sym *Sym = *SymOrErr;
830   if (!Sym)
831     return RelSymbol<ELFT>(nullptr, "");
832 
833   Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
834   if (!StrTableOrErr)
835     return StrTableOrErr.takeError();
836 
837   const Elf_Sym *FirstSym =
838       cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
839   std::string SymbolName =
840       getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
841                         *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
842   return RelSymbol<ELFT>(Sym, SymbolName);
843 }
844 
845 template <typename ELFT>
846 ArrayRef<typename ELFT::Word>
847 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
848   if (Symtab) {
849     auto It = ShndxTables.find(Symtab);
850     if (It != ShndxTables.end())
851       return It->second;
852   }
853   return {};
854 }
855 
856 static std::string maybeDemangle(StringRef Name) {
857   return opts::Demangle ? demangle(std::string(Name)) : Name.str();
858 }
859 
860 template <typename ELFT>
861 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
862   auto Warn = [&](Error E) -> std::string {
863     reportUniqueWarning("unable to read the name of symbol with index " +
864                         Twine(Index) + ": " + toString(std::move(E)));
865     return "<?>";
866   };
867 
868   Expected<const typename ELFT::Sym *> SymOrErr =
869       Obj.getSymbol(DotSymtabSec, Index);
870   if (!SymOrErr)
871     return Warn(SymOrErr.takeError());
872 
873   Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
874   if (!StrTabOrErr)
875     return Warn(StrTabOrErr.takeError());
876 
877   Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
878   if (!NameOrErr)
879     return Warn(NameOrErr.takeError());
880   return maybeDemangle(*NameOrErr);
881 }
882 
883 template <typename ELFT>
884 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym &Symbol,
885                                                unsigned SymIndex,
886                                                DataRegion<Elf_Word> ShndxTable,
887                                                Optional<StringRef> StrTable,
888                                                bool IsDynamic) const {
889   if (!StrTable)
890     return "<?>";
891 
892   std::string SymbolName;
893   if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
894     SymbolName = maybeDemangle(*NameOrErr);
895   } else {
896     reportUniqueWarning(NameOrErr.takeError());
897     return "<?>";
898   }
899 
900   if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
901     Expected<unsigned> SectionIndex =
902         getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
903     if (!SectionIndex) {
904       reportUniqueWarning(SectionIndex.takeError());
905       return "<?>";
906     }
907     Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
908     if (!NameOrErr) {
909       reportUniqueWarning(NameOrErr.takeError());
910       return ("<section " + Twine(*SectionIndex) + ">").str();
911     }
912     return std::string(*NameOrErr);
913   }
914 
915   if (!IsDynamic)
916     return SymbolName;
917 
918   bool IsDefault;
919   Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
920   if (!VersionOrErr) {
921     reportUniqueWarning(VersionOrErr.takeError());
922     return SymbolName + "@<corrupt>";
923   }
924 
925   if (!VersionOrErr->empty()) {
926     SymbolName += (IsDefault ? "@@" : "@");
927     SymbolName += *VersionOrErr;
928   }
929   return SymbolName;
930 }
931 
932 template <typename ELFT>
933 Expected<unsigned>
934 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
935                                        DataRegion<Elf_Word> ShndxTable) const {
936   unsigned Ndx = Symbol.st_shndx;
937   if (Ndx == SHN_XINDEX)
938     return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
939                                                      ShndxTable);
940   if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
941     return Ndx;
942 
943   auto CreateErr = [&](const Twine &Name, Optional<unsigned> Offset = None) {
944     std::string Desc;
945     if (Offset)
946       Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
947     else
948       Desc = Name.str();
949     return createError(
950         "unable to get section index for symbol with st_shndx = 0x" +
951         Twine::utohexstr(Ndx) + " (" + Desc + ")");
952   };
953 
954   if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
955     return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
956   if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
957     return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
958   if (Ndx == ELF::SHN_UNDEF)
959     return CreateErr("SHN_UNDEF");
960   if (Ndx == ELF::SHN_ABS)
961     return CreateErr("SHN_ABS");
962   if (Ndx == ELF::SHN_COMMON)
963     return CreateErr("SHN_COMMON");
964   return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
965 }
966 
967 template <typename ELFT>
968 Expected<StringRef>
969 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
970                                       unsigned SectionIndex) const {
971   Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
972   if (!SecOrErr)
973     return SecOrErr.takeError();
974   return Obj.getSectionName(**SecOrErr);
975 }
976 
977 template <class ELFO>
978 static const typename ELFO::Elf_Shdr *
979 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
980                              uint64_t Addr) {
981   for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
982     if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
983       return &Shdr;
984   return nullptr;
985 }
986 
987 const EnumEntry<unsigned> ElfClass[] = {
988   {"None",   "none",   ELF::ELFCLASSNONE},
989   {"32-bit", "ELF32",  ELF::ELFCLASS32},
990   {"64-bit", "ELF64",  ELF::ELFCLASS64},
991 };
992 
993 const EnumEntry<unsigned> ElfDataEncoding[] = {
994   {"None",         "none",                          ELF::ELFDATANONE},
995   {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
996   {"BigEndian",    "2's complement, big endian",    ELF::ELFDATA2MSB},
997 };
998 
999 const EnumEntry<unsigned> ElfObjectFileType[] = {
1000   {"None",         "NONE (none)",              ELF::ET_NONE},
1001   {"Relocatable",  "REL (Relocatable file)",   ELF::ET_REL},
1002   {"Executable",   "EXEC (Executable file)",   ELF::ET_EXEC},
1003   {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1004   {"Core",         "CORE (Core file)",         ELF::ET_CORE},
1005 };
1006 
1007 const EnumEntry<unsigned> ElfOSABI[] = {
1008   {"SystemV",      "UNIX - System V",      ELF::ELFOSABI_NONE},
1009   {"HPUX",         "UNIX - HP-UX",         ELF::ELFOSABI_HPUX},
1010   {"NetBSD",       "UNIX - NetBSD",        ELF::ELFOSABI_NETBSD},
1011   {"GNU/Linux",    "UNIX - GNU",           ELF::ELFOSABI_LINUX},
1012   {"GNU/Hurd",     "GNU/Hurd",             ELF::ELFOSABI_HURD},
1013   {"Solaris",      "UNIX - Solaris",       ELF::ELFOSABI_SOLARIS},
1014   {"AIX",          "UNIX - AIX",           ELF::ELFOSABI_AIX},
1015   {"IRIX",         "UNIX - IRIX",          ELF::ELFOSABI_IRIX},
1016   {"FreeBSD",      "UNIX - FreeBSD",       ELF::ELFOSABI_FREEBSD},
1017   {"TRU64",        "UNIX - TRU64",         ELF::ELFOSABI_TRU64},
1018   {"Modesto",      "Novell - Modesto",     ELF::ELFOSABI_MODESTO},
1019   {"OpenBSD",      "UNIX - OpenBSD",       ELF::ELFOSABI_OPENBSD},
1020   {"OpenVMS",      "VMS - OpenVMS",        ELF::ELFOSABI_OPENVMS},
1021   {"NSK",          "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1022   {"AROS",         "AROS",                 ELF::ELFOSABI_AROS},
1023   {"FenixOS",      "FenixOS",              ELF::ELFOSABI_FENIXOS},
1024   {"CloudABI",     "CloudABI",             ELF::ELFOSABI_CLOUDABI},
1025   {"Standalone",   "Standalone App",       ELF::ELFOSABI_STANDALONE}
1026 };
1027 
1028 const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1029   {"AMDGPU_HSA",    "AMDGPU - HSA",    ELF::ELFOSABI_AMDGPU_HSA},
1030   {"AMDGPU_PAL",    "AMDGPU - PAL",    ELF::ELFOSABI_AMDGPU_PAL},
1031   {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1032 };
1033 
1034 const EnumEntry<unsigned> ARMElfOSABI[] = {
1035   {"ARM", "ARM", ELF::ELFOSABI_ARM}
1036 };
1037 
1038 const EnumEntry<unsigned> C6000ElfOSABI[] = {
1039   {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1040   {"C6000_LINUX",  "Linux C6000",      ELF::ELFOSABI_C6000_LINUX}
1041 };
1042 
1043 const EnumEntry<unsigned> ElfMachineType[] = {
1044   ENUM_ENT(EM_NONE,          "None"),
1045   ENUM_ENT(EM_M32,           "WE32100"),
1046   ENUM_ENT(EM_SPARC,         "Sparc"),
1047   ENUM_ENT(EM_386,           "Intel 80386"),
1048   ENUM_ENT(EM_68K,           "MC68000"),
1049   ENUM_ENT(EM_88K,           "MC88000"),
1050   ENUM_ENT(EM_IAMCU,         "EM_IAMCU"),
1051   ENUM_ENT(EM_860,           "Intel 80860"),
1052   ENUM_ENT(EM_MIPS,          "MIPS R3000"),
1053   ENUM_ENT(EM_S370,          "IBM System/370"),
1054   ENUM_ENT(EM_MIPS_RS3_LE,   "MIPS R3000 little-endian"),
1055   ENUM_ENT(EM_PARISC,        "HPPA"),
1056   ENUM_ENT(EM_VPP500,        "Fujitsu VPP500"),
1057   ENUM_ENT(EM_SPARC32PLUS,   "Sparc v8+"),
1058   ENUM_ENT(EM_960,           "Intel 80960"),
1059   ENUM_ENT(EM_PPC,           "PowerPC"),
1060   ENUM_ENT(EM_PPC64,         "PowerPC64"),
1061   ENUM_ENT(EM_S390,          "IBM S/390"),
1062   ENUM_ENT(EM_SPU,           "SPU"),
1063   ENUM_ENT(EM_V800,          "NEC V800 series"),
1064   ENUM_ENT(EM_FR20,          "Fujistsu FR20"),
1065   ENUM_ENT(EM_RH32,          "TRW RH-32"),
1066   ENUM_ENT(EM_RCE,           "Motorola RCE"),
1067   ENUM_ENT(EM_ARM,           "ARM"),
1068   ENUM_ENT(EM_ALPHA,         "EM_ALPHA"),
1069   ENUM_ENT(EM_SH,            "Hitachi SH"),
1070   ENUM_ENT(EM_SPARCV9,       "Sparc v9"),
1071   ENUM_ENT(EM_TRICORE,       "Siemens Tricore"),
1072   ENUM_ENT(EM_ARC,           "ARC"),
1073   ENUM_ENT(EM_H8_300,        "Hitachi H8/300"),
1074   ENUM_ENT(EM_H8_300H,       "Hitachi H8/300H"),
1075   ENUM_ENT(EM_H8S,           "Hitachi H8S"),
1076   ENUM_ENT(EM_H8_500,        "Hitachi H8/500"),
1077   ENUM_ENT(EM_IA_64,         "Intel IA-64"),
1078   ENUM_ENT(EM_MIPS_X,        "Stanford MIPS-X"),
1079   ENUM_ENT(EM_COLDFIRE,      "Motorola Coldfire"),
1080   ENUM_ENT(EM_68HC12,        "Motorola MC68HC12 Microcontroller"),
1081   ENUM_ENT(EM_MMA,           "Fujitsu Multimedia Accelerator"),
1082   ENUM_ENT(EM_PCP,           "Siemens PCP"),
1083   ENUM_ENT(EM_NCPU,          "Sony nCPU embedded RISC processor"),
1084   ENUM_ENT(EM_NDR1,          "Denso NDR1 microprocesspr"),
1085   ENUM_ENT(EM_STARCORE,      "Motorola Star*Core processor"),
1086   ENUM_ENT(EM_ME16,          "Toyota ME16 processor"),
1087   ENUM_ENT(EM_ST100,         "STMicroelectronics ST100 processor"),
1088   ENUM_ENT(EM_TINYJ,         "Advanced Logic Corp. TinyJ embedded processor"),
1089   ENUM_ENT(EM_X86_64,        "Advanced Micro Devices X86-64"),
1090   ENUM_ENT(EM_PDSP,          "Sony DSP processor"),
1091   ENUM_ENT(EM_PDP10,         "Digital Equipment Corp. PDP-10"),
1092   ENUM_ENT(EM_PDP11,         "Digital Equipment Corp. PDP-11"),
1093   ENUM_ENT(EM_FX66,          "Siemens FX66 microcontroller"),
1094   ENUM_ENT(EM_ST9PLUS,       "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1095   ENUM_ENT(EM_ST7,           "STMicroelectronics ST7 8-bit microcontroller"),
1096   ENUM_ENT(EM_68HC16,        "Motorola MC68HC16 Microcontroller"),
1097   ENUM_ENT(EM_68HC11,        "Motorola MC68HC11 Microcontroller"),
1098   ENUM_ENT(EM_68HC08,        "Motorola MC68HC08 Microcontroller"),
1099   ENUM_ENT(EM_68HC05,        "Motorola MC68HC05 Microcontroller"),
1100   ENUM_ENT(EM_SVX,           "Silicon Graphics SVx"),
1101   ENUM_ENT(EM_ST19,          "STMicroelectronics ST19 8-bit microcontroller"),
1102   ENUM_ENT(EM_VAX,           "Digital VAX"),
1103   ENUM_ENT(EM_CRIS,          "Axis Communications 32-bit embedded processor"),
1104   ENUM_ENT(EM_JAVELIN,       "Infineon Technologies 32-bit embedded cpu"),
1105   ENUM_ENT(EM_FIREPATH,      "Element 14 64-bit DSP processor"),
1106   ENUM_ENT(EM_ZSP,           "LSI Logic's 16-bit DSP processor"),
1107   ENUM_ENT(EM_MMIX,          "Donald Knuth's educational 64-bit processor"),
1108   ENUM_ENT(EM_HUANY,         "Harvard Universitys's machine-independent object format"),
1109   ENUM_ENT(EM_PRISM,         "Vitesse Prism"),
1110   ENUM_ENT(EM_AVR,           "Atmel AVR 8-bit microcontroller"),
1111   ENUM_ENT(EM_FR30,          "Fujitsu FR30"),
1112   ENUM_ENT(EM_D10V,          "Mitsubishi D10V"),
1113   ENUM_ENT(EM_D30V,          "Mitsubishi D30V"),
1114   ENUM_ENT(EM_V850,          "NEC v850"),
1115   ENUM_ENT(EM_M32R,          "Renesas M32R (formerly Mitsubishi M32r)"),
1116   ENUM_ENT(EM_MN10300,       "Matsushita MN10300"),
1117   ENUM_ENT(EM_MN10200,       "Matsushita MN10200"),
1118   ENUM_ENT(EM_PJ,            "picoJava"),
1119   ENUM_ENT(EM_OPENRISC,      "OpenRISC 32-bit embedded processor"),
1120   ENUM_ENT(EM_ARC_COMPACT,   "EM_ARC_COMPACT"),
1121   ENUM_ENT(EM_XTENSA,        "Tensilica Xtensa Processor"),
1122   ENUM_ENT(EM_VIDEOCORE,     "Alphamosaic VideoCore processor"),
1123   ENUM_ENT(EM_TMM_GPP,       "Thompson Multimedia General Purpose Processor"),
1124   ENUM_ENT(EM_NS32K,         "National Semiconductor 32000 series"),
1125   ENUM_ENT(EM_TPC,           "Tenor Network TPC processor"),
1126   ENUM_ENT(EM_SNP1K,         "EM_SNP1K"),
1127   ENUM_ENT(EM_ST200,         "STMicroelectronics ST200 microcontroller"),
1128   ENUM_ENT(EM_IP2K,          "Ubicom IP2xxx 8-bit microcontrollers"),
1129   ENUM_ENT(EM_MAX,           "MAX Processor"),
1130   ENUM_ENT(EM_CR,            "National Semiconductor CompactRISC"),
1131   ENUM_ENT(EM_F2MC16,        "Fujitsu F2MC16"),
1132   ENUM_ENT(EM_MSP430,        "Texas Instruments msp430 microcontroller"),
1133   ENUM_ENT(EM_BLACKFIN,      "Analog Devices Blackfin"),
1134   ENUM_ENT(EM_SE_C33,        "S1C33 Family of Seiko Epson processors"),
1135   ENUM_ENT(EM_SEP,           "Sharp embedded microprocessor"),
1136   ENUM_ENT(EM_ARCA,          "Arca RISC microprocessor"),
1137   ENUM_ENT(EM_UNICORE,       "Unicore"),
1138   ENUM_ENT(EM_EXCESS,        "eXcess 16/32/64-bit configurable embedded CPU"),
1139   ENUM_ENT(EM_DXP,           "Icera Semiconductor Inc. Deep Execution Processor"),
1140   ENUM_ENT(EM_ALTERA_NIOS2,  "Altera Nios"),
1141   ENUM_ENT(EM_CRX,           "National Semiconductor CRX microprocessor"),
1142   ENUM_ENT(EM_XGATE,         "Motorola XGATE embedded processor"),
1143   ENUM_ENT(EM_C166,          "Infineon Technologies xc16x"),
1144   ENUM_ENT(EM_M16C,          "Renesas M16C"),
1145   ENUM_ENT(EM_DSPIC30F,      "Microchip Technology dsPIC30F Digital Signal Controller"),
1146   ENUM_ENT(EM_CE,            "Freescale Communication Engine RISC core"),
1147   ENUM_ENT(EM_M32C,          "Renesas M32C"),
1148   ENUM_ENT(EM_TSK3000,       "Altium TSK3000 core"),
1149   ENUM_ENT(EM_RS08,          "Freescale RS08 embedded processor"),
1150   ENUM_ENT(EM_SHARC,         "EM_SHARC"),
1151   ENUM_ENT(EM_ECOG2,         "Cyan Technology eCOG2 microprocessor"),
1152   ENUM_ENT(EM_SCORE7,        "SUNPLUS S+Core"),
1153   ENUM_ENT(EM_DSP24,         "New Japan Radio (NJR) 24-bit DSP Processor"),
1154   ENUM_ENT(EM_VIDEOCORE3,    "Broadcom VideoCore III processor"),
1155   ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1156   ENUM_ENT(EM_SE_C17,        "Seiko Epson C17 family"),
1157   ENUM_ENT(EM_TI_C6000,      "Texas Instruments TMS320C6000 DSP family"),
1158   ENUM_ENT(EM_TI_C2000,      "Texas Instruments TMS320C2000 DSP family"),
1159   ENUM_ENT(EM_TI_C5500,      "Texas Instruments TMS320C55x DSP family"),
1160   ENUM_ENT(EM_MMDSP_PLUS,    "STMicroelectronics 64bit VLIW Data Signal Processor"),
1161   ENUM_ENT(EM_CYPRESS_M8C,   "Cypress M8C microprocessor"),
1162   ENUM_ENT(EM_R32C,          "Renesas R32C series microprocessors"),
1163   ENUM_ENT(EM_TRIMEDIA,      "NXP Semiconductors TriMedia architecture family"),
1164   ENUM_ENT(EM_HEXAGON,       "Qualcomm Hexagon"),
1165   ENUM_ENT(EM_8051,          "Intel 8051 and variants"),
1166   ENUM_ENT(EM_STXP7X,        "STMicroelectronics STxP7x family"),
1167   ENUM_ENT(EM_NDS32,         "Andes Technology compact code size embedded RISC processor family"),
1168   ENUM_ENT(EM_ECOG1,         "Cyan Technology eCOG1 microprocessor"),
1169   // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1170   //        an identical number to EM_ECOG1.
1171   ENUM_ENT(EM_ECOG1X,        "Cyan Technology eCOG1X family"),
1172   ENUM_ENT(EM_MAXQ30,        "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1173   ENUM_ENT(EM_XIMO16,        "New Japan Radio (NJR) 16-bit DSP Processor"),
1174   ENUM_ENT(EM_MANIK,         "M2000 Reconfigurable RISC Microprocessor"),
1175   ENUM_ENT(EM_CRAYNV2,       "Cray Inc. NV2 vector architecture"),
1176   ENUM_ENT(EM_RX,            "Renesas RX"),
1177   ENUM_ENT(EM_METAG,         "Imagination Technologies Meta processor architecture"),
1178   ENUM_ENT(EM_MCST_ELBRUS,   "MCST Elbrus general purpose hardware architecture"),
1179   ENUM_ENT(EM_ECOG16,        "Cyan Technology eCOG16 family"),
1180   ENUM_ENT(EM_CR16,          "National Semiconductor CompactRISC 16-bit processor"),
1181   ENUM_ENT(EM_ETPU,          "Freescale Extended Time Processing Unit"),
1182   ENUM_ENT(EM_SLE9X,         "Infineon Technologies SLE9X core"),
1183   ENUM_ENT(EM_L10M,          "EM_L10M"),
1184   ENUM_ENT(EM_K10M,          "EM_K10M"),
1185   ENUM_ENT(EM_AARCH64,       "AArch64"),
1186   ENUM_ENT(EM_AVR32,         "Atmel Corporation 32-bit microprocessor family"),
1187   ENUM_ENT(EM_STM8,          "STMicroeletronics STM8 8-bit microcontroller"),
1188   ENUM_ENT(EM_TILE64,        "Tilera TILE64 multicore architecture family"),
1189   ENUM_ENT(EM_TILEPRO,       "Tilera TILEPro multicore architecture family"),
1190   ENUM_ENT(EM_MICROBLAZE,    "Xilinx MicroBlaze 32-bit RISC soft processor core"),
1191   ENUM_ENT(EM_CUDA,          "NVIDIA CUDA architecture"),
1192   ENUM_ENT(EM_TILEGX,        "Tilera TILE-Gx multicore architecture family"),
1193   ENUM_ENT(EM_CLOUDSHIELD,   "EM_CLOUDSHIELD"),
1194   ENUM_ENT(EM_COREA_1ST,     "EM_COREA_1ST"),
1195   ENUM_ENT(EM_COREA_2ND,     "EM_COREA_2ND"),
1196   ENUM_ENT(EM_ARC_COMPACT2,  "EM_ARC_COMPACT2"),
1197   ENUM_ENT(EM_OPEN8,         "EM_OPEN8"),
1198   ENUM_ENT(EM_RL78,          "Renesas RL78"),
1199   ENUM_ENT(EM_VIDEOCORE5,    "Broadcom VideoCore V processor"),
1200   ENUM_ENT(EM_78KOR,         "EM_78KOR"),
1201   ENUM_ENT(EM_56800EX,       "EM_56800EX"),
1202   ENUM_ENT(EM_AMDGPU,        "EM_AMDGPU"),
1203   ENUM_ENT(EM_RISCV,         "RISC-V"),
1204   ENUM_ENT(EM_LANAI,         "EM_LANAI"),
1205   ENUM_ENT(EM_BPF,           "EM_BPF"),
1206   ENUM_ENT(EM_VE,            "NEC SX-Aurora Vector Engine"),
1207   ENUM_ENT(EM_LOONGARCH,     "LoongArch"),
1208 };
1209 
1210 const EnumEntry<unsigned> ElfSymbolBindings[] = {
1211     {"Local",  "LOCAL",  ELF::STB_LOCAL},
1212     {"Global", "GLOBAL", ELF::STB_GLOBAL},
1213     {"Weak",   "WEAK",   ELF::STB_WEAK},
1214     {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1215 
1216 const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1217     {"DEFAULT",   "DEFAULT",   ELF::STV_DEFAULT},
1218     {"INTERNAL",  "INTERNAL",  ELF::STV_INTERNAL},
1219     {"HIDDEN",    "HIDDEN",    ELF::STV_HIDDEN},
1220     {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1221 
1222 const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1223   { "AMDGPU_HSA_KERNEL",            ELF::STT_AMDGPU_HSA_KERNEL }
1224 };
1225 
1226 static const char *getGroupType(uint32_t Flag) {
1227   if (Flag & ELF::GRP_COMDAT)
1228     return "COMDAT";
1229   else
1230     return "(unknown)";
1231 }
1232 
1233 const EnumEntry<unsigned> ElfSectionFlags[] = {
1234   ENUM_ENT(SHF_WRITE,            "W"),
1235   ENUM_ENT(SHF_ALLOC,            "A"),
1236   ENUM_ENT(SHF_EXECINSTR,        "X"),
1237   ENUM_ENT(SHF_MERGE,            "M"),
1238   ENUM_ENT(SHF_STRINGS,          "S"),
1239   ENUM_ENT(SHF_INFO_LINK,        "I"),
1240   ENUM_ENT(SHF_LINK_ORDER,       "L"),
1241   ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
1242   ENUM_ENT(SHF_GROUP,            "G"),
1243   ENUM_ENT(SHF_TLS,              "T"),
1244   ENUM_ENT(SHF_COMPRESSED,       "C"),
1245   ENUM_ENT(SHF_EXCLUDE,          "E"),
1246 };
1247 
1248 const EnumEntry<unsigned> ElfGNUSectionFlags[] = {
1249   ENUM_ENT(SHF_GNU_RETAIN, "R")
1250 };
1251 
1252 const EnumEntry<unsigned> ElfSolarisSectionFlags[] = {
1253   ENUM_ENT(SHF_SUNW_NODISCARD, "R")
1254 };
1255 
1256 const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1257   ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
1258   ENUM_ENT(XCORE_SHF_DP_SECTION, "")
1259 };
1260 
1261 const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1262   ENUM_ENT(SHF_ARM_PURECODE, "y")
1263 };
1264 
1265 const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1266   ENUM_ENT(SHF_HEX_GPREL, "")
1267 };
1268 
1269 const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1270   ENUM_ENT(SHF_MIPS_NODUPES, ""),
1271   ENUM_ENT(SHF_MIPS_NAMES,   ""),
1272   ENUM_ENT(SHF_MIPS_LOCAL,   ""),
1273   ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
1274   ENUM_ENT(SHF_MIPS_GPREL,   ""),
1275   ENUM_ENT(SHF_MIPS_MERGE,   ""),
1276   ENUM_ENT(SHF_MIPS_ADDR,    ""),
1277   ENUM_ENT(SHF_MIPS_STRING,  "")
1278 };
1279 
1280 const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1281   ENUM_ENT(SHF_X86_64_LARGE, "l")
1282 };
1283 
1284 static std::vector<EnumEntry<unsigned>>
1285 getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) {
1286   std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1287                                        std::end(ElfSectionFlags));
1288   switch (EOSAbi) {
1289   case ELFOSABI_SOLARIS:
1290     Ret.insert(Ret.end(), std::begin(ElfSolarisSectionFlags),
1291                std::end(ElfSolarisSectionFlags));
1292     break;
1293   default:
1294     Ret.insert(Ret.end(), std::begin(ElfGNUSectionFlags),
1295                std::end(ElfGNUSectionFlags));
1296     break;
1297   }
1298   switch (EMachine) {
1299   case EM_ARM:
1300     Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1301                std::end(ElfARMSectionFlags));
1302     break;
1303   case EM_HEXAGON:
1304     Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1305                std::end(ElfHexagonSectionFlags));
1306     break;
1307   case EM_MIPS:
1308     Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1309                std::end(ElfMipsSectionFlags));
1310     break;
1311   case EM_X86_64:
1312     Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1313                std::end(ElfX86_64SectionFlags));
1314     break;
1315   case EM_XCORE:
1316     Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1317                std::end(ElfXCoreSectionFlags));
1318     break;
1319   default:
1320     break;
1321   }
1322   return Ret;
1323 }
1324 
1325 static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine,
1326                                uint64_t Flags) {
1327   // Here we are trying to build the flags string in the same way as GNU does.
1328   // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1329   // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1330   // GNU readelf will not print "E" or "Ep" in this case, but will print just
1331   // "p". It only will print "E" when no other processor flag is set.
1332   std::string Str;
1333   bool HasUnknownFlag = false;
1334   bool HasOSFlag = false;
1335   bool HasProcFlag = false;
1336   std::vector<EnumEntry<unsigned>> FlagsList =
1337       getSectionFlagsForTarget(EOSAbi, EMachine);
1338   while (Flags) {
1339     // Take the least significant bit as a flag.
1340     uint64_t Flag = Flags & -Flags;
1341     Flags -= Flag;
1342 
1343     // Find the flag in the known flags list.
1344     auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1345       // Flags with empty names are not printed in GNU style output.
1346       return E.Value == Flag && !E.AltName.empty();
1347     });
1348     if (I != FlagsList.end()) {
1349       Str += I->AltName;
1350       continue;
1351     }
1352 
1353     // If we did not find a matching regular flag, then we deal with an OS
1354     // specific flag, processor specific flag or an unknown flag.
1355     if (Flag & ELF::SHF_MASKOS) {
1356       HasOSFlag = true;
1357       Flags &= ~ELF::SHF_MASKOS;
1358     } else if (Flag & ELF::SHF_MASKPROC) {
1359       HasProcFlag = true;
1360       // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1361       // bit if set so that it doesn't also get printed.
1362       Flags &= ~ELF::SHF_MASKPROC;
1363     } else {
1364       HasUnknownFlag = true;
1365     }
1366   }
1367 
1368   // "o", "p" and "x" are printed last.
1369   if (HasOSFlag)
1370     Str += "o";
1371   if (HasProcFlag)
1372     Str += "p";
1373   if (HasUnknownFlag)
1374     Str += "x";
1375   return Str;
1376 }
1377 
1378 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1379   // Check potentially overlapped processor-specific program header type.
1380   switch (Arch) {
1381   case ELF::EM_ARM:
1382     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1383     break;
1384   case ELF::EM_MIPS:
1385   case ELF::EM_MIPS_RS3_LE:
1386     switch (Type) {
1387       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1388       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1389       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1390       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1391     }
1392     break;
1393   }
1394 
1395   switch (Type) {
1396     LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL);
1397     LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD);
1398     LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1399     LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP);
1400     LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE);
1401     LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB);
1402     LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR);
1403     LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS);
1404 
1405     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1406     LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1407 
1408     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1409     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1410     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
1411 
1412     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1413     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1414     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1415   default:
1416     return "";
1417   }
1418 }
1419 
1420 static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1421   StringRef Seg = segmentTypeToString(Arch, Type);
1422   if (Seg.empty())
1423     return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1424 
1425   // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1426   if (Seg.startswith("PT_ARM_"))
1427     return Seg.drop_front(7).str();
1428 
1429   // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1430   if (Seg.startswith("PT_MIPS_"))
1431     return Seg.drop_front(8).str();
1432 
1433   // E.g. "PT_LOAD" -> "LOAD".
1434   assert(Seg.startswith("PT_"));
1435   return Seg.drop_front(3).str();
1436 }
1437 
1438 const EnumEntry<unsigned> ElfSegmentFlags[] = {
1439   LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1440   LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1441   LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1442 };
1443 
1444 const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1445   ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1446   ENUM_ENT(EF_MIPS_PIC, "pic"),
1447   ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1448   ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1449   ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1450   ENUM_ENT(EF_MIPS_FP64, "fp64"),
1451   ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1452   ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1453   ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1454   ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1455   ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1456   ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1457   ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1458   ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1459   ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1460   ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1461   ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1462   ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1463   ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1464   ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1465   ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1466   ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1467   ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1468   ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1469   ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1470   ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1471   ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1472   ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1473   ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1474   ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1475   ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1476   ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1477   ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1478   ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1479   ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1480   ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1481   ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1482   ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1483   ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1484   ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1485   ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1486   ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1487   ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1488 };
1489 
1490 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
1491   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1492   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1493   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1494   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1495   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1496   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1497   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1498   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1499   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1500   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1501   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1502   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1503   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1504   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1505   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1506   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1507   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1508   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1509   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1510   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1511   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1512   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1513   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1514   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1515   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1516   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1517   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1518   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1519   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1520   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1521   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1522   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1523   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1524   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1525   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1526   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1527   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1528   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1529   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1530   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940),
1531   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1532   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1533   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1534   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1535   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1536   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1537   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1538   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1539   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1540   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1541   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036),
1542   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100),
1543   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101),
1544   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102),
1545   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103),
1546   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3),
1547   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3)
1548 };
1549 
1550 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
1551   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1552   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1553   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1554   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1555   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1556   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1557   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1558   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1559   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1560   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1561   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1562   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1563   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1564   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1565   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1566   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1567   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1568   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1569   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1570   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1571   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1572   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1573   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1574   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1575   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1576   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1577   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1578   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1579   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1580   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1581   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1582   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1583   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1584   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1585   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1586   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1587   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1588   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1589   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1590   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940),
1591   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1592   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1593   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1594   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1595   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1596   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1597   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1598   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1599   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1600   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1601   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036),
1602   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100),
1603   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101),
1604   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102),
1605   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103),
1606   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4),
1607   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4),
1608   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4),
1609   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4),
1610   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4),
1611   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4)
1612 };
1613 
1614 const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1615   ENUM_ENT(EF_RISCV_RVC, "RVC"),
1616   ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1617   ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1618   ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1619   ENUM_ENT(EF_RISCV_RVE, "RVE"),
1620   ENUM_ENT(EF_RISCV_TSO, "TSO"),
1621 };
1622 
1623 const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
1624   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1),
1625   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2),
1626   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25),
1627   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3),
1628   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31),
1629   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35),
1630   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4),
1631   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5),
1632   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51),
1633   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6),
1634   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY),
1635   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1),
1636   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2),
1637   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3),
1638   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4),
1639   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5),
1640   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6),
1641   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7),
1642   ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"),
1643 };
1644 
1645 
1646 const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1647   LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1648   LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1649   LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1650 };
1651 
1652 const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1653   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1654   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1655   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1656   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1657 };
1658 
1659 const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1660   LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS)
1661 };
1662 
1663 const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1664   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1665   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1666   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1667 };
1668 
1669 const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = {
1670     LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)};
1671 
1672 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1673   switch (Odk) {
1674   LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1675   LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1676   LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1677   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1678   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1679   LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1680   LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1681   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1682   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1683   LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1684   LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1685   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1686   default:
1687     return "Unknown";
1688   }
1689 }
1690 
1691 template <typename ELFT>
1692 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1693 ELFDumper<ELFT>::findDynamic() {
1694   // Try to locate the PT_DYNAMIC header.
1695   const Elf_Phdr *DynamicPhdr = nullptr;
1696   if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1697     for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1698       if (Phdr.p_type != ELF::PT_DYNAMIC)
1699         continue;
1700       DynamicPhdr = &Phdr;
1701       break;
1702     }
1703   } else {
1704     reportUniqueWarning(
1705         "unable to read program headers to locate the PT_DYNAMIC segment: " +
1706         toString(PhdrsOrErr.takeError()));
1707   }
1708 
1709   // Try to locate the .dynamic section in the sections header table.
1710   const Elf_Shdr *DynamicSec = nullptr;
1711   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1712     if (Sec.sh_type != ELF::SHT_DYNAMIC)
1713       continue;
1714     DynamicSec = &Sec;
1715     break;
1716   }
1717 
1718   if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1719                        ObjF.getMemoryBufferRef().getBufferSize()) ||
1720                       (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1721                        DynamicPhdr->p_offset))) {
1722     reportUniqueWarning(
1723         "PT_DYNAMIC segment offset (0x" +
1724         Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1725         Twine::utohexstr(DynamicPhdr->p_filesz) +
1726         ") exceeds the size of the file (0x" +
1727         Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1728     // Don't use the broken dynamic header.
1729     DynamicPhdr = nullptr;
1730   }
1731 
1732   if (DynamicPhdr && DynamicSec) {
1733     if (DynamicSec->sh_addr + DynamicSec->sh_size >
1734             DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1735         DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1736       reportUniqueWarning(describe(*DynamicSec) +
1737                           " is not contained within the "
1738                           "PT_DYNAMIC segment");
1739 
1740     if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1741       reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1742                                                   "PT_DYNAMIC segment");
1743   }
1744 
1745   return std::make_pair(DynamicPhdr, DynamicSec);
1746 }
1747 
1748 template <typename ELFT>
1749 void ELFDumper<ELFT>::loadDynamicTable() {
1750   const Elf_Phdr *DynamicPhdr;
1751   const Elf_Shdr *DynamicSec;
1752   std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1753   if (!DynamicPhdr && !DynamicSec)
1754     return;
1755 
1756   DynRegionInfo FromPhdr(ObjF, *this);
1757   bool IsPhdrTableValid = false;
1758   if (DynamicPhdr) {
1759     // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1760     // validated in findDynamic() and so createDRI() is not expected to fail.
1761     FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1762                                   sizeof(Elf_Dyn)));
1763     FromPhdr.SizePrintName = "PT_DYNAMIC size";
1764     FromPhdr.EntSizePrintName = "";
1765     IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
1766   }
1767 
1768   // Locate the dynamic table described in a section header.
1769   // Ignore sh_entsize and use the expected value for entry size explicitly.
1770   // This allows us to dump dynamic sections with a broken sh_entsize
1771   // field.
1772   DynRegionInfo FromSec(ObjF, *this);
1773   bool IsSecTableValid = false;
1774   if (DynamicSec) {
1775     Expected<DynRegionInfo> RegOrErr =
1776         createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1777     if (RegOrErr) {
1778       FromSec = *RegOrErr;
1779       FromSec.Context = describe(*DynamicSec);
1780       FromSec.EntSizePrintName = "";
1781       IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
1782     } else {
1783       reportUniqueWarning("unable to read the dynamic table from " +
1784                           describe(*DynamicSec) + ": " +
1785                           toString(RegOrErr.takeError()));
1786     }
1787   }
1788 
1789   // When we only have information from one of the SHT_DYNAMIC section header or
1790   // PT_DYNAMIC program header, just use that.
1791   if (!DynamicPhdr || !DynamicSec) {
1792     if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1793       DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1794       parseDynamicTable();
1795     } else {
1796       reportUniqueWarning("no valid dynamic table was found");
1797     }
1798     return;
1799   }
1800 
1801   // At this point we have tables found from the section header and from the
1802   // dynamic segment. Usually they match, but we have to do sanity checks to
1803   // verify that.
1804 
1805   if (FromPhdr.Addr != FromSec.Addr)
1806     reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1807                         "program header disagree about "
1808                         "the location of the dynamic table");
1809 
1810   if (!IsPhdrTableValid && !IsSecTableValid) {
1811     reportUniqueWarning("no valid dynamic table was found");
1812     return;
1813   }
1814 
1815   // Information in the PT_DYNAMIC program header has priority over the
1816   // information in a section header.
1817   if (IsPhdrTableValid) {
1818     if (!IsSecTableValid)
1819       reportUniqueWarning(
1820           "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1821     DynamicTable = FromPhdr;
1822   } else {
1823     reportUniqueWarning(
1824         "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1825     DynamicTable = FromSec;
1826   }
1827 
1828   parseDynamicTable();
1829 }
1830 
1831 template <typename ELFT>
1832 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
1833                            ScopedPrinter &Writer)
1834     : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
1835       FileName(O.getFileName()), DynRelRegion(O, *this),
1836       DynRelaRegion(O, *this), DynRelrRegion(O, *this),
1837       DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
1838       DynamicTable(O, *this) {
1839   if (!O.IsContentValid())
1840     return;
1841 
1842   typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
1843   for (const Elf_Shdr &Sec : Sections) {
1844     switch (Sec.sh_type) {
1845     case ELF::SHT_SYMTAB:
1846       if (!DotSymtabSec)
1847         DotSymtabSec = &Sec;
1848       break;
1849     case ELF::SHT_DYNSYM:
1850       if (!DotDynsymSec)
1851         DotDynsymSec = &Sec;
1852 
1853       if (!DynSymRegion) {
1854         Expected<DynRegionInfo> RegOrErr =
1855             createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
1856         if (RegOrErr) {
1857           DynSymRegion = *RegOrErr;
1858           DynSymRegion->Context = describe(Sec);
1859 
1860           if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
1861             DynamicStringTable = *E;
1862           else
1863             reportUniqueWarning("unable to get the string table for the " +
1864                                 describe(Sec) + ": " + toString(E.takeError()));
1865         } else {
1866           reportUniqueWarning("unable to read dynamic symbols from " +
1867                               describe(Sec) + ": " +
1868                               toString(RegOrErr.takeError()));
1869         }
1870       }
1871       break;
1872     case ELF::SHT_SYMTAB_SHNDX: {
1873       uint32_t SymtabNdx = Sec.sh_link;
1874       if (SymtabNdx >= Sections.size()) {
1875         reportUniqueWarning(
1876             "unable to get the associated symbol table for " + describe(Sec) +
1877             ": sh_link (" + Twine(SymtabNdx) +
1878             ") is greater than or equal to the total number of sections (" +
1879             Twine(Sections.size()) + ")");
1880         continue;
1881       }
1882 
1883       if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
1884               Obj.getSHNDXTable(Sec)) {
1885         if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
1886                  .second)
1887           reportUniqueWarning(
1888               "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1889               describe(Sec));
1890       } else {
1891         reportUniqueWarning(ShndxTableOrErr.takeError());
1892       }
1893       break;
1894     }
1895     case ELF::SHT_GNU_versym:
1896       if (!SymbolVersionSection)
1897         SymbolVersionSection = &Sec;
1898       break;
1899     case ELF::SHT_GNU_verdef:
1900       if (!SymbolVersionDefSection)
1901         SymbolVersionDefSection = &Sec;
1902       break;
1903     case ELF::SHT_GNU_verneed:
1904       if (!SymbolVersionNeedSection)
1905         SymbolVersionNeedSection = &Sec;
1906       break;
1907     case ELF::SHT_LLVM_ADDRSIG:
1908       if (!DotAddrsigSec)
1909         DotAddrsigSec = &Sec;
1910       break;
1911     }
1912   }
1913 
1914   loadDynamicTable();
1915 }
1916 
1917 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
1918   auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
1919     auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
1920       this->reportUniqueWarning(Msg);
1921       return Error::success();
1922     });
1923     if (!MappedAddrOrError) {
1924       this->reportUniqueWarning("unable to parse DT_" +
1925                                 Obj.getDynamicTagAsString(Tag) + ": " +
1926                                 llvm::toString(MappedAddrOrError.takeError()));
1927       return nullptr;
1928     }
1929     return MappedAddrOrError.get();
1930   };
1931 
1932   const char *StringTableBegin = nullptr;
1933   uint64_t StringTableSize = 0;
1934   Optional<DynRegionInfo> DynSymFromTable;
1935   for (const Elf_Dyn &Dyn : dynamic_table()) {
1936     switch (Dyn.d_tag) {
1937     case ELF::DT_HASH:
1938       HashTable = reinterpret_cast<const Elf_Hash *>(
1939           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1940       break;
1941     case ELF::DT_GNU_HASH:
1942       GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
1943           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1944       break;
1945     case ELF::DT_STRTAB:
1946       StringTableBegin = reinterpret_cast<const char *>(
1947           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1948       break;
1949     case ELF::DT_STRSZ:
1950       StringTableSize = Dyn.getVal();
1951       break;
1952     case ELF::DT_SYMTAB: {
1953       // If we can't map the DT_SYMTAB value to an address (e.g. when there are
1954       // no program headers), we ignore its value.
1955       if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
1956         DynSymFromTable.emplace(ObjF, *this);
1957         DynSymFromTable->Addr = VA;
1958         DynSymFromTable->EntSize = sizeof(Elf_Sym);
1959         DynSymFromTable->EntSizePrintName = "";
1960       }
1961       break;
1962     }
1963     case ELF::DT_SYMENT: {
1964       uint64_t Val = Dyn.getVal();
1965       if (Val != sizeof(Elf_Sym))
1966         this->reportUniqueWarning("DT_SYMENT value of 0x" +
1967                                   Twine::utohexstr(Val) +
1968                                   " is not the size of a symbol (0x" +
1969                                   Twine::utohexstr(sizeof(Elf_Sym)) + ")");
1970       break;
1971     }
1972     case ELF::DT_RELA:
1973       DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1974       break;
1975     case ELF::DT_RELASZ:
1976       DynRelaRegion.Size = Dyn.getVal();
1977       DynRelaRegion.SizePrintName = "DT_RELASZ value";
1978       break;
1979     case ELF::DT_RELAENT:
1980       DynRelaRegion.EntSize = Dyn.getVal();
1981       DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
1982       break;
1983     case ELF::DT_SONAME:
1984       SONameOffset = Dyn.getVal();
1985       break;
1986     case ELF::DT_REL:
1987       DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1988       break;
1989     case ELF::DT_RELSZ:
1990       DynRelRegion.Size = Dyn.getVal();
1991       DynRelRegion.SizePrintName = "DT_RELSZ value";
1992       break;
1993     case ELF::DT_RELENT:
1994       DynRelRegion.EntSize = Dyn.getVal();
1995       DynRelRegion.EntSizePrintName = "DT_RELENT value";
1996       break;
1997     case ELF::DT_RELR:
1998     case ELF::DT_ANDROID_RELR:
1999       DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2000       break;
2001     case ELF::DT_RELRSZ:
2002     case ELF::DT_ANDROID_RELRSZ:
2003       DynRelrRegion.Size = Dyn.getVal();
2004       DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
2005                                         ? "DT_RELRSZ value"
2006                                         : "DT_ANDROID_RELRSZ value";
2007       break;
2008     case ELF::DT_RELRENT:
2009     case ELF::DT_ANDROID_RELRENT:
2010       DynRelrRegion.EntSize = Dyn.getVal();
2011       DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
2012                                            ? "DT_RELRENT value"
2013                                            : "DT_ANDROID_RELRENT value";
2014       break;
2015     case ELF::DT_PLTREL:
2016       if (Dyn.getVal() == DT_REL)
2017         DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
2018       else if (Dyn.getVal() == DT_RELA)
2019         DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
2020       else
2021         reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
2022                             Twine((uint64_t)Dyn.getVal()));
2023       DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
2024       break;
2025     case ELF::DT_JMPREL:
2026       DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2027       break;
2028     case ELF::DT_PLTRELSZ:
2029       DynPLTRelRegion.Size = Dyn.getVal();
2030       DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
2031       break;
2032     case ELF::DT_SYMTAB_SHNDX:
2033       DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2034       DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
2035       break;
2036     }
2037   }
2038 
2039   if (StringTableBegin) {
2040     const uint64_t FileSize = Obj.getBufSize();
2041     const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
2042     if (StringTableSize > FileSize - Offset)
2043       reportUniqueWarning(
2044           "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
2045           " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
2046           ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
2047     else
2048       DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2049   }
2050 
2051   const bool IsHashTableSupported = getHashTableEntSize() == 4;
2052   if (DynSymRegion) {
2053     // Often we find the information about the dynamic symbol table
2054     // location in the SHT_DYNSYM section header. However, the value in
2055     // DT_SYMTAB has priority, because it is used by dynamic loaders to
2056     // locate .dynsym at runtime. The location we find in the section header
2057     // and the location we find here should match.
2058     if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2059       reportUniqueWarning(
2060           createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2061                       "the location of the dynamic symbol table"));
2062 
2063     // According to the ELF gABI: "The number of symbol table entries should
2064     // equal nchain". Check to see if the DT_HASH hash table nchain value
2065     // conflicts with the number of symbols in the dynamic symbol table
2066     // according to the section header.
2067     if (HashTable && IsHashTableSupported) {
2068       if (DynSymRegion->EntSize == 0)
2069         reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2070       else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2071         reportUniqueWarning(
2072             "hash table nchain (" + Twine(HashTable->nchain) +
2073             ") differs from symbol count derived from SHT_DYNSYM section "
2074             "header (" +
2075             Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2076     }
2077   }
2078 
2079   // Delay the creation of the actual dynamic symbol table until now, so that
2080   // checks can always be made against the section header-based properties,
2081   // without worrying about tag order.
2082   if (DynSymFromTable) {
2083     if (!DynSymRegion) {
2084       DynSymRegion = DynSymFromTable;
2085     } else {
2086       DynSymRegion->Addr = DynSymFromTable->Addr;
2087       DynSymRegion->EntSize = DynSymFromTable->EntSize;
2088       DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2089     }
2090   }
2091 
2092   // Derive the dynamic symbol table size from the DT_HASH hash table, if
2093   // present.
2094   if (HashTable && IsHashTableSupported && DynSymRegion) {
2095     const uint64_t FileSize = Obj.getBufSize();
2096     const uint64_t DerivedSize =
2097         (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2098     const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2099     if (DerivedSize > FileSize - Offset)
2100       reportUniqueWarning(
2101           "the size (0x" + Twine::utohexstr(DerivedSize) +
2102           ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2103           ", derived from the hash table, goes past the end of the file (0x" +
2104           Twine::utohexstr(FileSize) + ") and will be ignored");
2105     else
2106       DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2107   }
2108 }
2109 
2110 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2111   // Dump version symbol section.
2112   printVersionSymbolSection(SymbolVersionSection);
2113 
2114   // Dump version definition section.
2115   printVersionDefinitionSection(SymbolVersionDefSection);
2116 
2117   // Dump version dependency section.
2118   printVersionDependencySection(SymbolVersionNeedSection);
2119 }
2120 
2121 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum)                                 \
2122   { #enum, prefix##_##enum }
2123 
2124 const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2125   LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2126   LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2127   LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2128   LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2129   LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2130 };
2131 
2132 const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2133   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2134   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2135   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2136   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2137   LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2138   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2139   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2140   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2141   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2142   LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2143   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2144   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2145   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2146   LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2147   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2148   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2149   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2150   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2151   LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2152   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2153   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2154   LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2155   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2156   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2157   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2158   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2159   LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2160 };
2161 
2162 const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2163   LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2164   LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2165   LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2166   LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2167   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2168   LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2169   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2170   LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2171   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2172   LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2173   LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2174   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2175   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2176   LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2177   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2178   LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2179 };
2180 
2181 #undef LLVM_READOBJ_DT_FLAG_ENT
2182 
2183 template <typename T, typename TFlag>
2184 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2185   SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2186   for (const EnumEntry<TFlag> &Flag : Flags)
2187     if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2188       SetFlags.push_back(Flag);
2189 
2190   for (const EnumEntry<TFlag> &Flag : SetFlags)
2191     OS << Flag.Name << " ";
2192 }
2193 
2194 template <class ELFT>
2195 const typename ELFT::Shdr *
2196 ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2197   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2198     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2199       if (*NameOrErr == Name)
2200         return &Shdr;
2201     } else {
2202       reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2203                           ": " + toString(NameOrErr.takeError()));
2204     }
2205   }
2206   return nullptr;
2207 }
2208 
2209 template <class ELFT>
2210 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2211                                              uint64_t Value) const {
2212   auto FormatHexValue = [](uint64_t V) {
2213     std::string Str;
2214     raw_string_ostream OS(Str);
2215     const char *ConvChar =
2216         (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
2217     OS << format(ConvChar, V);
2218     return OS.str();
2219   };
2220 
2221   auto FormatFlags = [](uint64_t V,
2222                         llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2223     std::string Str;
2224     raw_string_ostream OS(Str);
2225     printFlags(V, Array, OS);
2226     return OS.str();
2227   };
2228 
2229   // Handle custom printing of architecture specific tags
2230   switch (Obj.getHeader().e_machine) {
2231   case EM_AARCH64:
2232     switch (Type) {
2233     case DT_AARCH64_BTI_PLT:
2234     case DT_AARCH64_PAC_PLT:
2235     case DT_AARCH64_VARIANT_PCS:
2236       return std::to_string(Value);
2237     default:
2238       break;
2239     }
2240     break;
2241   case EM_HEXAGON:
2242     switch (Type) {
2243     case DT_HEXAGON_VER:
2244       return std::to_string(Value);
2245     case DT_HEXAGON_SYMSZ:
2246     case DT_HEXAGON_PLT:
2247       return FormatHexValue(Value);
2248     default:
2249       break;
2250     }
2251     break;
2252   case EM_MIPS:
2253     switch (Type) {
2254     case DT_MIPS_RLD_VERSION:
2255     case DT_MIPS_LOCAL_GOTNO:
2256     case DT_MIPS_SYMTABNO:
2257     case DT_MIPS_UNREFEXTNO:
2258       return std::to_string(Value);
2259     case DT_MIPS_TIME_STAMP:
2260     case DT_MIPS_ICHECKSUM:
2261     case DT_MIPS_IVERSION:
2262     case DT_MIPS_BASE_ADDRESS:
2263     case DT_MIPS_MSYM:
2264     case DT_MIPS_CONFLICT:
2265     case DT_MIPS_LIBLIST:
2266     case DT_MIPS_CONFLICTNO:
2267     case DT_MIPS_LIBLISTNO:
2268     case DT_MIPS_GOTSYM:
2269     case DT_MIPS_HIPAGENO:
2270     case DT_MIPS_RLD_MAP:
2271     case DT_MIPS_DELTA_CLASS:
2272     case DT_MIPS_DELTA_CLASS_NO:
2273     case DT_MIPS_DELTA_INSTANCE:
2274     case DT_MIPS_DELTA_RELOC:
2275     case DT_MIPS_DELTA_RELOC_NO:
2276     case DT_MIPS_DELTA_SYM:
2277     case DT_MIPS_DELTA_SYM_NO:
2278     case DT_MIPS_DELTA_CLASSSYM:
2279     case DT_MIPS_DELTA_CLASSSYM_NO:
2280     case DT_MIPS_CXX_FLAGS:
2281     case DT_MIPS_PIXIE_INIT:
2282     case DT_MIPS_SYMBOL_LIB:
2283     case DT_MIPS_LOCALPAGE_GOTIDX:
2284     case DT_MIPS_LOCAL_GOTIDX:
2285     case DT_MIPS_HIDDEN_GOTIDX:
2286     case DT_MIPS_PROTECTED_GOTIDX:
2287     case DT_MIPS_OPTIONS:
2288     case DT_MIPS_INTERFACE:
2289     case DT_MIPS_DYNSTR_ALIGN:
2290     case DT_MIPS_INTERFACE_SIZE:
2291     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2292     case DT_MIPS_PERF_SUFFIX:
2293     case DT_MIPS_COMPACT_SIZE:
2294     case DT_MIPS_GP_VALUE:
2295     case DT_MIPS_AUX_DYNAMIC:
2296     case DT_MIPS_PLTGOT:
2297     case DT_MIPS_RWPLT:
2298     case DT_MIPS_RLD_MAP_REL:
2299     case DT_MIPS_XHASH:
2300       return FormatHexValue(Value);
2301     case DT_MIPS_FLAGS:
2302       return FormatFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags));
2303     default:
2304       break;
2305     }
2306     break;
2307   default:
2308     break;
2309   }
2310 
2311   switch (Type) {
2312   case DT_PLTREL:
2313     if (Value == DT_REL)
2314       return "REL";
2315     if (Value == DT_RELA)
2316       return "RELA";
2317     LLVM_FALLTHROUGH;
2318   case DT_PLTGOT:
2319   case DT_HASH:
2320   case DT_STRTAB:
2321   case DT_SYMTAB:
2322   case DT_RELA:
2323   case DT_INIT:
2324   case DT_FINI:
2325   case DT_REL:
2326   case DT_JMPREL:
2327   case DT_INIT_ARRAY:
2328   case DT_FINI_ARRAY:
2329   case DT_PREINIT_ARRAY:
2330   case DT_DEBUG:
2331   case DT_VERDEF:
2332   case DT_VERNEED:
2333   case DT_VERSYM:
2334   case DT_GNU_HASH:
2335   case DT_NULL:
2336     return FormatHexValue(Value);
2337   case DT_RELACOUNT:
2338   case DT_RELCOUNT:
2339   case DT_VERDEFNUM:
2340   case DT_VERNEEDNUM:
2341     return std::to_string(Value);
2342   case DT_PLTRELSZ:
2343   case DT_RELASZ:
2344   case DT_RELAENT:
2345   case DT_STRSZ:
2346   case DT_SYMENT:
2347   case DT_RELSZ:
2348   case DT_RELENT:
2349   case DT_INIT_ARRAYSZ:
2350   case DT_FINI_ARRAYSZ:
2351   case DT_PREINIT_ARRAYSZ:
2352   case DT_RELRSZ:
2353   case DT_RELRENT:
2354   case DT_ANDROID_RELSZ:
2355   case DT_ANDROID_RELASZ:
2356     return std::to_string(Value) + " (bytes)";
2357   case DT_NEEDED:
2358   case DT_SONAME:
2359   case DT_AUXILIARY:
2360   case DT_USED:
2361   case DT_FILTER:
2362   case DT_RPATH:
2363   case DT_RUNPATH: {
2364     const std::map<uint64_t, const char *> TagNames = {
2365         {DT_NEEDED, "Shared library"},       {DT_SONAME, "Library soname"},
2366         {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2367         {DT_FILTER, "Filter library"},       {DT_RPATH, "Library rpath"},
2368         {DT_RUNPATH, "Library runpath"},
2369     };
2370 
2371     return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2372         .str();
2373   }
2374   case DT_FLAGS:
2375     return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags));
2376   case DT_FLAGS_1:
2377     return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags1));
2378   default:
2379     return FormatHexValue(Value);
2380   }
2381 }
2382 
2383 template <class ELFT>
2384 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2385   if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2386     reportUniqueWarning("string table was not found");
2387     return "<?>";
2388   }
2389 
2390   auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2391     reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2392                         Msg);
2393     return "<?>";
2394   };
2395 
2396   const uint64_t FileSize = Obj.getBufSize();
2397   const uint64_t Offset =
2398       (const uint8_t *)DynamicStringTable.data() - Obj.base();
2399   if (DynamicStringTable.size() > FileSize - Offset)
2400     return WarnAndReturn(" with size 0x" +
2401                              Twine::utohexstr(DynamicStringTable.size()) +
2402                              " goes past the end of the file (0x" +
2403                              Twine::utohexstr(FileSize) + ")",
2404                          Offset);
2405 
2406   if (Value >= DynamicStringTable.size())
2407     return WarnAndReturn(
2408         ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2409             ": it goes past the end of the table (0x" +
2410             Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2411         Offset);
2412 
2413   if (DynamicStringTable.back() != '\0')
2414     return WarnAndReturn(": unable to read the string at 0x" +
2415                              Twine::utohexstr(Offset + Value) +
2416                              ": the string table is not null-terminated",
2417                          Offset);
2418 
2419   return DynamicStringTable.data() + Value;
2420 }
2421 
2422 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2423   DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2424   Ctx.printUnwindInformation();
2425 }
2426 
2427 // The namespace is needed to fix the compilation with GCC older than 7.0+.
2428 namespace {
2429 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2430   if (Obj.getHeader().e_machine == EM_ARM) {
2431     ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2432                                             DotSymtabSec);
2433     Ctx.PrintUnwindInformation();
2434   }
2435   DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2436   Ctx.printUnwindInformation();
2437 }
2438 } // namespace
2439 
2440 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2441   ListScope D(W, "NeededLibraries");
2442 
2443   std::vector<StringRef> Libs;
2444   for (const auto &Entry : dynamic_table())
2445     if (Entry.d_tag == ELF::DT_NEEDED)
2446       Libs.push_back(getDynamicString(Entry.d_un.d_val));
2447 
2448   llvm::sort(Libs);
2449 
2450   for (StringRef L : Libs)
2451     W.startLine() << L << "\n";
2452 }
2453 
2454 template <class ELFT>
2455 static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2456                             const typename ELFT::Hash *H,
2457                             bool *IsHeaderValid = nullptr) {
2458   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2459   const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2460   if (Dumper.getHashTableEntSize() == 8) {
2461     auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2462       return E.Value == Obj.getHeader().e_machine;
2463     });
2464     if (IsHeaderValid)
2465       *IsHeaderValid = false;
2466     return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2467                        " is not supported: it contains non-standard 8 "
2468                        "byte entries on " +
2469                        It->AltName + " platform");
2470   }
2471 
2472   auto MakeError = [&](const Twine &Msg = "") {
2473     return createError("the hash table at offset 0x" +
2474                        Twine::utohexstr(SecOffset) +
2475                        " goes past the end of the file (0x" +
2476                        Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2477   };
2478 
2479   // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2480   const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2481 
2482   if (IsHeaderValid)
2483     *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2484 
2485   if (Obj.getBufSize() - SecOffset < HeaderSize)
2486     return MakeError();
2487 
2488   if (Obj.getBufSize() - SecOffset - HeaderSize <
2489       ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2490     return MakeError(", nbucket = " + Twine(H->nbucket) +
2491                      ", nchain = " + Twine(H->nchain));
2492   return Error::success();
2493 }
2494 
2495 template <class ELFT>
2496 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2497                                const typename ELFT::GnuHash *GnuHashTable,
2498                                bool *IsHeaderValid = nullptr) {
2499   const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2500   assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&
2501          "GnuHashTable must always point to a location inside the file");
2502 
2503   uint64_t TableOffset = TableData - Obj.base();
2504   if (IsHeaderValid)
2505     *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2506   if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2507           (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2508       Obj.getBufSize())
2509     return createError("unable to dump the SHT_GNU_HASH "
2510                        "section at 0x" +
2511                        Twine::utohexstr(TableOffset) +
2512                        ": it goes past the end of the file");
2513   return Error::success();
2514 }
2515 
2516 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2517   DictScope D(W, "HashTable");
2518   if (!HashTable)
2519     return;
2520 
2521   bool IsHeaderValid;
2522   Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2523   if (IsHeaderValid) {
2524     W.printNumber("Num Buckets", HashTable->nbucket);
2525     W.printNumber("Num Chains", HashTable->nchain);
2526   }
2527 
2528   if (Err) {
2529     reportUniqueWarning(std::move(Err));
2530     return;
2531   }
2532 
2533   W.printList("Buckets", HashTable->buckets());
2534   W.printList("Chains", HashTable->chains());
2535 }
2536 
2537 template <class ELFT>
2538 static Expected<ArrayRef<typename ELFT::Word>>
2539 getGnuHashTableChains(Optional<DynRegionInfo> DynSymRegion,
2540                       const typename ELFT::GnuHash *GnuHashTable) {
2541   if (!DynSymRegion)
2542     return createError("no dynamic symbol table found");
2543 
2544   ArrayRef<typename ELFT::Sym> DynSymTable =
2545       DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
2546   size_t NumSyms = DynSymTable.size();
2547   if (!NumSyms)
2548     return createError("the dynamic symbol table is empty");
2549 
2550   if (GnuHashTable->symndx < NumSyms)
2551     return GnuHashTable->values(NumSyms);
2552 
2553   // A normal empty GNU hash table section produced by linker might have
2554   // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2555   // and have dummy null values in the Bloom filter and in the buckets
2556   // vector (or no values at all). It happens because the value of symndx is not
2557   // important for dynamic loaders when the GNU hash table is empty. They just
2558   // skip the whole object during symbol lookup. In such cases, the symndx value
2559   // is irrelevant and we should not report a warning.
2560   ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2561   if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2562     return createError(
2563         "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2564         ") is greater than or equal to the number of dynamic symbols (" +
2565         Twine(NumSyms) + ")");
2566   // There is no way to represent an array of (dynamic symbols count - symndx)
2567   // length.
2568   return ArrayRef<typename ELFT::Word>();
2569 }
2570 
2571 template <typename ELFT>
2572 void ELFDumper<ELFT>::printGnuHashTable() {
2573   DictScope D(W, "GnuHashTable");
2574   if (!GnuHashTable)
2575     return;
2576 
2577   bool IsHeaderValid;
2578   Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2579   if (IsHeaderValid) {
2580     W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2581     W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2582     W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2583     W.printNumber("Shift Count", GnuHashTable->shift2);
2584   }
2585 
2586   if (Err) {
2587     reportUniqueWarning(std::move(Err));
2588     return;
2589   }
2590 
2591   ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2592   W.printHexList("Bloom Filter", BloomFilter);
2593 
2594   ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2595   W.printList("Buckets", Buckets);
2596 
2597   Expected<ArrayRef<Elf_Word>> Chains =
2598       getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2599   if (!Chains) {
2600     reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2601                         "section: " +
2602                         toString(Chains.takeError()));
2603     return;
2604   }
2605 
2606   W.printHexList("Values", *Chains);
2607 }
2608 
2609 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2610   StringRef SOName = "<Not found>";
2611   if (SONameOffset)
2612     SOName = getDynamicString(*SONameOffset);
2613   W.printString("LoadName", SOName);
2614 }
2615 
2616 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2617   switch (Obj.getHeader().e_machine) {
2618   case EM_ARM:
2619     if (Obj.isLE())
2620       printAttributes(ELF::SHT_ARM_ATTRIBUTES,
2621                       std::make_unique<ARMAttributeParser>(&W),
2622                       support::little);
2623     else
2624       reportUniqueWarning("attribute printing not implemented for big-endian "
2625                           "ARM objects");
2626     break;
2627   case EM_RISCV:
2628     if (Obj.isLE())
2629       printAttributes(ELF::SHT_RISCV_ATTRIBUTES,
2630                       std::make_unique<RISCVAttributeParser>(&W),
2631                       support::little);
2632     else
2633       reportUniqueWarning("attribute printing not implemented for big-endian "
2634                           "RISC-V objects");
2635     break;
2636   case EM_MSP430:
2637     printAttributes(ELF::SHT_MSP430_ATTRIBUTES,
2638                     std::make_unique<MSP430AttributeParser>(&W),
2639                     support::little);
2640     break;
2641   case EM_MIPS: {
2642     printMipsABIFlags();
2643     printMipsOptions();
2644     printMipsReginfo();
2645     MipsGOTParser<ELFT> Parser(*this);
2646     if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2647       reportUniqueWarning(std::move(E));
2648     else if (!Parser.isGotEmpty())
2649       printMipsGOT(Parser);
2650 
2651     if (Error E = Parser.findPLT(dynamic_table()))
2652       reportUniqueWarning(std::move(E));
2653     else if (!Parser.isPltEmpty())
2654       printMipsPLT(Parser);
2655     break;
2656   }
2657   default:
2658     break;
2659   }
2660 }
2661 
2662 template <class ELFT>
2663 void ELFDumper<ELFT>::printAttributes(
2664     unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser,
2665     support::endianness Endianness) {
2666   assert((AttrShType != ELF::SHT_NULL) && AttrParser &&
2667          "Incomplete ELF attribute implementation");
2668   DictScope BA(W, "BuildAttributes");
2669   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2670     if (Sec.sh_type != AttrShType)
2671       continue;
2672 
2673     ArrayRef<uint8_t> Contents;
2674     if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2675             Obj.getSectionContents(Sec)) {
2676       Contents = *ContentOrErr;
2677       if (Contents.empty()) {
2678         reportUniqueWarning("the " + describe(Sec) + " is empty");
2679         continue;
2680       }
2681     } else {
2682       reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2683                           ": " + toString(ContentOrErr.takeError()));
2684       continue;
2685     }
2686 
2687     W.printHex("FormatVersion", Contents[0]);
2688 
2689     if (Error E = AttrParser->parse(Contents, Endianness))
2690       reportUniqueWarning("unable to dump attributes from the " +
2691                           describe(Sec) + ": " + toString(std::move(E)));
2692   }
2693 }
2694 
2695 namespace {
2696 
2697 template <class ELFT> class MipsGOTParser {
2698 public:
2699   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
2700   using Entry = typename ELFT::Addr;
2701   using Entries = ArrayRef<Entry>;
2702 
2703   const bool IsStatic;
2704   const ELFFile<ELFT> &Obj;
2705   const ELFDumper<ELFT> &Dumper;
2706 
2707   MipsGOTParser(const ELFDumper<ELFT> &D);
2708   Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2709   Error findPLT(Elf_Dyn_Range DynTable);
2710 
2711   bool isGotEmpty() const { return GotEntries.empty(); }
2712   bool isPltEmpty() const { return PltEntries.empty(); }
2713 
2714   uint64_t getGp() const;
2715 
2716   const Entry *getGotLazyResolver() const;
2717   const Entry *getGotModulePointer() const;
2718   const Entry *getPltLazyResolver() const;
2719   const Entry *getPltModulePointer() const;
2720 
2721   Entries getLocalEntries() const;
2722   Entries getGlobalEntries() const;
2723   Entries getOtherEntries() const;
2724   Entries getPltEntries() const;
2725 
2726   uint64_t getGotAddress(const Entry * E) const;
2727   int64_t getGotOffset(const Entry * E) const;
2728   const Elf_Sym *getGotSym(const Entry *E) const;
2729 
2730   uint64_t getPltAddress(const Entry * E) const;
2731   const Elf_Sym *getPltSym(const Entry *E) const;
2732 
2733   StringRef getPltStrTable() const { return PltStrTable; }
2734   const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2735 
2736 private:
2737   const Elf_Shdr *GotSec;
2738   size_t LocalNum;
2739   size_t GlobalNum;
2740 
2741   const Elf_Shdr *PltSec;
2742   const Elf_Shdr *PltRelSec;
2743   const Elf_Shdr *PltSymTable;
2744   StringRef FileName;
2745 
2746   Elf_Sym_Range GotDynSyms;
2747   StringRef PltStrTable;
2748 
2749   Entries GotEntries;
2750   Entries PltEntries;
2751 };
2752 
2753 } // end anonymous namespace
2754 
2755 template <class ELFT>
2756 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
2757     : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
2758       Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2759       PltRelSec(nullptr), PltSymTable(nullptr),
2760       FileName(D.getElfObject().getFileName()) {}
2761 
2762 template <class ELFT>
2763 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
2764                                    Elf_Sym_Range DynSyms) {
2765   // See "Global Offset Table" in Chapter 5 in the following document
2766   // for detailed GOT description.
2767   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2768 
2769   // Find static GOT secton.
2770   if (IsStatic) {
2771     GotSec = Dumper.findSectionByName(".got");
2772     if (!GotSec)
2773       return Error::success();
2774 
2775     ArrayRef<uint8_t> Content =
2776         unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2777     GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2778                          Content.size() / sizeof(Entry));
2779     LocalNum = GotEntries.size();
2780     return Error::success();
2781   }
2782 
2783   // Lookup dynamic table tags which define the GOT layout.
2784   Optional<uint64_t> DtPltGot;
2785   Optional<uint64_t> DtLocalGotNum;
2786   Optional<uint64_t> DtGotSym;
2787   for (const auto &Entry : DynTable) {
2788     switch (Entry.getTag()) {
2789     case ELF::DT_PLTGOT:
2790       DtPltGot = Entry.getVal();
2791       break;
2792     case ELF::DT_MIPS_LOCAL_GOTNO:
2793       DtLocalGotNum = Entry.getVal();
2794       break;
2795     case ELF::DT_MIPS_GOTSYM:
2796       DtGotSym = Entry.getVal();
2797       break;
2798     }
2799   }
2800 
2801   if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
2802     return Error::success();
2803 
2804   if (!DtPltGot)
2805     return createError("cannot find PLTGOT dynamic tag");
2806   if (!DtLocalGotNum)
2807     return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
2808   if (!DtGotSym)
2809     return createError("cannot find MIPS_GOTSYM dynamic tag");
2810 
2811   size_t DynSymTotal = DynSyms.size();
2812   if (*DtGotSym > DynSymTotal)
2813     return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
2814                        ") exceeds the number of dynamic symbols (" +
2815                        Twine(DynSymTotal) + ")");
2816 
2817   GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
2818   if (!GotSec)
2819     return createError("there is no non-empty GOT section at 0x" +
2820                        Twine::utohexstr(*DtPltGot));
2821 
2822   LocalNum = *DtLocalGotNum;
2823   GlobalNum = DynSymTotal - *DtGotSym;
2824 
2825   ArrayRef<uint8_t> Content =
2826       unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2827   GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2828                        Content.size() / sizeof(Entry));
2829   GotDynSyms = DynSyms.drop_front(*DtGotSym);
2830 
2831   return Error::success();
2832 }
2833 
2834 template <class ELFT>
2835 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
2836   // Lookup dynamic table tags which define the PLT layout.
2837   Optional<uint64_t> DtMipsPltGot;
2838   Optional<uint64_t> DtJmpRel;
2839   for (const auto &Entry : DynTable) {
2840     switch (Entry.getTag()) {
2841     case ELF::DT_MIPS_PLTGOT:
2842       DtMipsPltGot = Entry.getVal();
2843       break;
2844     case ELF::DT_JMPREL:
2845       DtJmpRel = Entry.getVal();
2846       break;
2847     }
2848   }
2849 
2850   if (!DtMipsPltGot && !DtJmpRel)
2851     return Error::success();
2852 
2853   // Find PLT section.
2854   if (!DtMipsPltGot)
2855     return createError("cannot find MIPS_PLTGOT dynamic tag");
2856   if (!DtJmpRel)
2857     return createError("cannot find JMPREL dynamic tag");
2858 
2859   PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
2860   if (!PltSec)
2861     return createError("there is no non-empty PLTGOT section at 0x" +
2862                        Twine::utohexstr(*DtMipsPltGot));
2863 
2864   PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
2865   if (!PltRelSec)
2866     return createError("there is no non-empty RELPLT section at 0x" +
2867                        Twine::utohexstr(*DtJmpRel));
2868 
2869   if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
2870           Obj.getSectionContents(*PltSec))
2871     PltEntries =
2872         Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
2873                 PltContentOrErr->size() / sizeof(Entry));
2874   else
2875     return createError("unable to read PLTGOT section content: " +
2876                        toString(PltContentOrErr.takeError()));
2877 
2878   if (Expected<const Elf_Shdr *> PltSymTableOrErr =
2879           Obj.getSection(PltRelSec->sh_link))
2880     PltSymTable = *PltSymTableOrErr;
2881   else
2882     return createError("unable to get a symbol table linked to the " +
2883                        describe(Obj, *PltRelSec) + ": " +
2884                        toString(PltSymTableOrErr.takeError()));
2885 
2886   if (Expected<StringRef> StrTabOrErr =
2887           Obj.getStringTableForSymtab(*PltSymTable))
2888     PltStrTable = *StrTabOrErr;
2889   else
2890     return createError("unable to get a string table for the " +
2891                        describe(Obj, *PltSymTable) + ": " +
2892                        toString(StrTabOrErr.takeError()));
2893 
2894   return Error::success();
2895 }
2896 
2897 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
2898   return GotSec->sh_addr + 0x7ff0;
2899 }
2900 
2901 template <class ELFT>
2902 const typename MipsGOTParser<ELFT>::Entry *
2903 MipsGOTParser<ELFT>::getGotLazyResolver() const {
2904   return LocalNum > 0 ? &GotEntries[0] : nullptr;
2905 }
2906 
2907 template <class ELFT>
2908 const typename MipsGOTParser<ELFT>::Entry *
2909 MipsGOTParser<ELFT>::getGotModulePointer() const {
2910   if (LocalNum < 2)
2911     return nullptr;
2912   const Entry &E = GotEntries[1];
2913   if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
2914     return nullptr;
2915   return &E;
2916 }
2917 
2918 template <class ELFT>
2919 typename MipsGOTParser<ELFT>::Entries
2920 MipsGOTParser<ELFT>::getLocalEntries() const {
2921   size_t Skip = getGotModulePointer() ? 2 : 1;
2922   if (LocalNum - Skip <= 0)
2923     return Entries();
2924   return GotEntries.slice(Skip, LocalNum - Skip);
2925 }
2926 
2927 template <class ELFT>
2928 typename MipsGOTParser<ELFT>::Entries
2929 MipsGOTParser<ELFT>::getGlobalEntries() const {
2930   if (GlobalNum == 0)
2931     return Entries();
2932   return GotEntries.slice(LocalNum, GlobalNum);
2933 }
2934 
2935 template <class ELFT>
2936 typename MipsGOTParser<ELFT>::Entries
2937 MipsGOTParser<ELFT>::getOtherEntries() const {
2938   size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
2939   if (OtherNum == 0)
2940     return Entries();
2941   return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
2942 }
2943 
2944 template <class ELFT>
2945 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
2946   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2947   return GotSec->sh_addr + Offset;
2948 }
2949 
2950 template <class ELFT>
2951 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
2952   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2953   return Offset - 0x7ff0;
2954 }
2955 
2956 template <class ELFT>
2957 const typename MipsGOTParser<ELFT>::Elf_Sym *
2958 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
2959   int64_t Offset = std::distance(GotEntries.data(), E);
2960   return &GotDynSyms[Offset - LocalNum];
2961 }
2962 
2963 template <class ELFT>
2964 const typename MipsGOTParser<ELFT>::Entry *
2965 MipsGOTParser<ELFT>::getPltLazyResolver() const {
2966   return PltEntries.empty() ? nullptr : &PltEntries[0];
2967 }
2968 
2969 template <class ELFT>
2970 const typename MipsGOTParser<ELFT>::Entry *
2971 MipsGOTParser<ELFT>::getPltModulePointer() const {
2972   return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
2973 }
2974 
2975 template <class ELFT>
2976 typename MipsGOTParser<ELFT>::Entries
2977 MipsGOTParser<ELFT>::getPltEntries() const {
2978   if (PltEntries.size() <= 2)
2979     return Entries();
2980   return PltEntries.slice(2, PltEntries.size() - 2);
2981 }
2982 
2983 template <class ELFT>
2984 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
2985   int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
2986   return PltSec->sh_addr + Offset;
2987 }
2988 
2989 template <class ELFT>
2990 const typename MipsGOTParser<ELFT>::Elf_Sym *
2991 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
2992   int64_t Offset = std::distance(getPltEntries().data(), E);
2993   if (PltRelSec->sh_type == ELF::SHT_REL) {
2994     Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
2995     return unwrapOrError(FileName,
2996                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
2997   } else {
2998     Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
2999     return unwrapOrError(FileName,
3000                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3001   }
3002 }
3003 
3004 const EnumEntry<unsigned> ElfMipsISAExtType[] = {
3005   {"None",                    Mips::AFL_EXT_NONE},
3006   {"Broadcom SB-1",           Mips::AFL_EXT_SB1},
3007   {"Cavium Networks Octeon",  Mips::AFL_EXT_OCTEON},
3008   {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
3009   {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
3010   {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
3011   {"LSI R4010",               Mips::AFL_EXT_4010},
3012   {"Loongson 2E",             Mips::AFL_EXT_LOONGSON_2E},
3013   {"Loongson 2F",             Mips::AFL_EXT_LOONGSON_2F},
3014   {"Loongson 3A",             Mips::AFL_EXT_LOONGSON_3A},
3015   {"MIPS R4650",              Mips::AFL_EXT_4650},
3016   {"MIPS R5900",              Mips::AFL_EXT_5900},
3017   {"MIPS R10000",             Mips::AFL_EXT_10000},
3018   {"NEC VR4100",              Mips::AFL_EXT_4100},
3019   {"NEC VR4111/VR4181",       Mips::AFL_EXT_4111},
3020   {"NEC VR4120",              Mips::AFL_EXT_4120},
3021   {"NEC VR5400",              Mips::AFL_EXT_5400},
3022   {"NEC VR5500",              Mips::AFL_EXT_5500},
3023   {"RMI Xlr",                 Mips::AFL_EXT_XLR},
3024   {"Toshiba R3900",           Mips::AFL_EXT_3900}
3025 };
3026 
3027 const EnumEntry<unsigned> ElfMipsASEFlags[] = {
3028   {"DSP",                Mips::AFL_ASE_DSP},
3029   {"DSPR2",              Mips::AFL_ASE_DSPR2},
3030   {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
3031   {"MCU",                Mips::AFL_ASE_MCU},
3032   {"MDMX",               Mips::AFL_ASE_MDMX},
3033   {"MIPS-3D",            Mips::AFL_ASE_MIPS3D},
3034   {"MT",                 Mips::AFL_ASE_MT},
3035   {"SmartMIPS",          Mips::AFL_ASE_SMARTMIPS},
3036   {"VZ",                 Mips::AFL_ASE_VIRT},
3037   {"MSA",                Mips::AFL_ASE_MSA},
3038   {"MIPS16",             Mips::AFL_ASE_MIPS16},
3039   {"microMIPS",          Mips::AFL_ASE_MICROMIPS},
3040   {"XPA",                Mips::AFL_ASE_XPA},
3041   {"CRC",                Mips::AFL_ASE_CRC},
3042   {"GINV",               Mips::AFL_ASE_GINV},
3043 };
3044 
3045 const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3046   {"Hard or soft float",                  Mips::Val_GNU_MIPS_ABI_FP_ANY},
3047   {"Hard float (double precision)",       Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3048   {"Hard float (single precision)",       Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3049   {"Soft float",                          Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3050   {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3051    Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3052   {"Hard float (32-bit CPU, Any FPU)",    Mips::Val_GNU_MIPS_ABI_FP_XX},
3053   {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3054   {"Hard float compat (32-bit CPU, 64-bit FPU)",
3055    Mips::Val_GNU_MIPS_ABI_FP_64A}
3056 };
3057 
3058 static const EnumEntry<unsigned> ElfMipsFlags1[] {
3059   {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3060 };
3061 
3062 static int getMipsRegisterSize(uint8_t Flag) {
3063   switch (Flag) {
3064   case Mips::AFL_REG_NONE:
3065     return 0;
3066   case Mips::AFL_REG_32:
3067     return 32;
3068   case Mips::AFL_REG_64:
3069     return 64;
3070   case Mips::AFL_REG_128:
3071     return 128;
3072   default:
3073     return -1;
3074   }
3075 }
3076 
3077 template <class ELFT>
3078 static void printMipsReginfoData(ScopedPrinter &W,
3079                                  const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3080   W.printHex("GP", Reginfo.ri_gp_value);
3081   W.printHex("General Mask", Reginfo.ri_gprmask);
3082   W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3083   W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3084   W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3085   W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3086 }
3087 
3088 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3089   const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3090   if (!RegInfoSec) {
3091     W.startLine() << "There is no .reginfo section in the file.\n";
3092     return;
3093   }
3094 
3095   Expected<ArrayRef<uint8_t>> ContentsOrErr =
3096       Obj.getSectionContents(*RegInfoSec);
3097   if (!ContentsOrErr) {
3098     this->reportUniqueWarning(
3099         "unable to read the content of the .reginfo section (" +
3100         describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3101     return;
3102   }
3103 
3104   if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3105     this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3106                               Twine::utohexstr(ContentsOrErr->size()) + ")");
3107     return;
3108   }
3109 
3110   DictScope GS(W, "MIPS RegInfo");
3111   printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3112                               ContentsOrErr->data()));
3113 }
3114 
3115 template <class ELFT>
3116 static Expected<const Elf_Mips_Options<ELFT> *>
3117 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3118                 bool &IsSupported) {
3119   if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3120     return createError("the .MIPS.options section has an invalid size (0x" +
3121                        Twine::utohexstr(SecData.size()) + ")");
3122 
3123   const Elf_Mips_Options<ELFT> *O =
3124       reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3125   const uint8_t Size = O->size;
3126   if (Size > SecData.size()) {
3127     const uint64_t Offset = SecData.data() - SecBegin;
3128     const uint64_t SecSize = Offset + SecData.size();
3129     return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3130                        " at offset 0x" + Twine::utohexstr(Offset) +
3131                        " goes past the end of the .MIPS.options "
3132                        "section of size 0x" +
3133                        Twine::utohexstr(SecSize));
3134   }
3135 
3136   IsSupported = O->kind == ODK_REGINFO;
3137   const size_t ExpectedSize =
3138       sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3139 
3140   if (IsSupported)
3141     if (Size < ExpectedSize)
3142       return createError(
3143           "a .MIPS.options entry of kind " +
3144           Twine(getElfMipsOptionsOdkType(O->kind)) +
3145           " has an invalid size (0x" + Twine::utohexstr(Size) +
3146           "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3147 
3148   SecData = SecData.drop_front(Size);
3149   return O;
3150 }
3151 
3152 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3153   const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3154   if (!MipsOpts) {
3155     W.startLine() << "There is no .MIPS.options section in the file.\n";
3156     return;
3157   }
3158 
3159   DictScope GS(W, "MIPS Options");
3160 
3161   ArrayRef<uint8_t> Data =
3162       unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3163   const uint8_t *const SecBegin = Data.begin();
3164   while (!Data.empty()) {
3165     bool IsSupported;
3166     Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3167         readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3168     if (!OptsOrErr) {
3169       reportUniqueWarning(OptsOrErr.takeError());
3170       break;
3171     }
3172 
3173     unsigned Kind = (*OptsOrErr)->kind;
3174     const char *Type = getElfMipsOptionsOdkType(Kind);
3175     if (!IsSupported) {
3176       W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3177                     << ")\n";
3178       continue;
3179     }
3180 
3181     DictScope GS(W, Type);
3182     if (Kind == ODK_REGINFO)
3183       printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3184     else
3185       llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3186   }
3187 }
3188 
3189 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3190   const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3191   if (!StackMapSection)
3192     return;
3193 
3194   auto Warn = [&](Error &&E) {
3195     this->reportUniqueWarning("unable to read the stack map from " +
3196                               describe(*StackMapSection) + ": " +
3197                               toString(std::move(E)));
3198   };
3199 
3200   Expected<ArrayRef<uint8_t>> ContentOrErr =
3201       Obj.getSectionContents(*StackMapSection);
3202   if (!ContentOrErr) {
3203     Warn(ContentOrErr.takeError());
3204     return;
3205   }
3206 
3207   if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
3208           *ContentOrErr)) {
3209     Warn(std::move(E));
3210     return;
3211   }
3212 
3213   prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
3214 }
3215 
3216 template <class ELFT>
3217 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3218                                  const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3219   Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
3220   if (!Target)
3221     reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3222                         " in " + describe(Sec) + ": " +
3223                         toString(Target.takeError()));
3224   else
3225     printRelRelaReloc(R, *Target);
3226 }
3227 
3228 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3229                                StringRef Str2) {
3230   OS.PadToColumn(2u);
3231   OS << Str1;
3232   OS.PadToColumn(37u);
3233   OS << Str2 << "\n";
3234   OS.flush();
3235 }
3236 
3237 template <class ELFT>
3238 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3239                                               StringRef FileName) {
3240   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3241   if (ElfHeader.e_shnum != 0)
3242     return to_string(ElfHeader.e_shnum);
3243 
3244   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3245   if (!ArrOrErr) {
3246     // In this case we can ignore an error, because we have already reported a
3247     // warning about the broken section header table earlier.
3248     consumeError(ArrOrErr.takeError());
3249     return "<?>";
3250   }
3251 
3252   if (ArrOrErr->empty())
3253     return "0";
3254   return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3255 }
3256 
3257 template <class ELFT>
3258 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3259                                                     StringRef FileName) {
3260   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3261   if (ElfHeader.e_shstrndx != SHN_XINDEX)
3262     return to_string(ElfHeader.e_shstrndx);
3263 
3264   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3265   if (!ArrOrErr) {
3266     // In this case we can ignore an error, because we have already reported a
3267     // warning about the broken section header table earlier.
3268     consumeError(ArrOrErr.takeError());
3269     return "<?>";
3270   }
3271 
3272   if (ArrOrErr->empty())
3273     return "65535 (corrupt: out of range)";
3274   return to_string(ElfHeader.e_shstrndx) + " (" +
3275          to_string((*ArrOrErr)[0].sh_link) + ")";
3276 }
3277 
3278 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
3279   auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3280     return E.Value == Type;
3281   });
3282   if (It != makeArrayRef(ElfObjectFileType).end())
3283     return It;
3284   return nullptr;
3285 }
3286 
3287 template <class ELFT>
3288 void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
3289                                           ArrayRef<std::string> InputFilenames,
3290                                           const Archive *A) {
3291   if (InputFilenames.size() > 1 || A) {
3292     this->W.startLine() << "\n";
3293     this->W.printString("File", FileStr);
3294   }
3295 }
3296 
3297 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
3298   const Elf_Ehdr &e = this->Obj.getHeader();
3299   OS << "ELF Header:\n";
3300   OS << "  Magic:  ";
3301   std::string Str;
3302   for (int i = 0; i < ELF::EI_NIDENT; i++)
3303     OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3304   OS << "\n";
3305   Str = enumToString(e.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
3306   printFields(OS, "Class:", Str);
3307   Str = enumToString(e.e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
3308   printFields(OS, "Data:", Str);
3309   OS.PadToColumn(2u);
3310   OS << "Version:";
3311   OS.PadToColumn(37u);
3312   OS << to_hexString(e.e_ident[ELF::EI_VERSION]);
3313   if (e.e_version == ELF::EV_CURRENT)
3314     OS << " (current)";
3315   OS << "\n";
3316   Str = enumToString(e.e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
3317   printFields(OS, "OS/ABI:", Str);
3318   printFields(OS,
3319               "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3320 
3321   if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
3322     Str = E->AltName.str();
3323   } else {
3324     if (e.e_type >= ET_LOPROC)
3325       Str = "Processor Specific: (" + to_hexString(e.e_type, false) + ")";
3326     else if (e.e_type >= ET_LOOS)
3327       Str = "OS Specific: (" + to_hexString(e.e_type, false) + ")";
3328     else
3329       Str = "<unknown>: " + to_hexString(e.e_type, false);
3330   }
3331   printFields(OS, "Type:", Str);
3332 
3333   Str = enumToString(e.e_machine, makeArrayRef(ElfMachineType));
3334   printFields(OS, "Machine:", Str);
3335   Str = "0x" + to_hexString(e.e_version);
3336   printFields(OS, "Version:", Str);
3337   Str = "0x" + to_hexString(e.e_entry);
3338   printFields(OS, "Entry point address:", Str);
3339   Str = to_string(e.e_phoff) + " (bytes into file)";
3340   printFields(OS, "Start of program headers:", Str);
3341   Str = to_string(e.e_shoff) + " (bytes into file)";
3342   printFields(OS, "Start of section headers:", Str);
3343   std::string ElfFlags;
3344   if (e.e_machine == EM_MIPS)
3345     ElfFlags =
3346         printFlags(e.e_flags, makeArrayRef(ElfHeaderMipsFlags),
3347                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
3348                    unsigned(ELF::EF_MIPS_MACH));
3349   else if (e.e_machine == EM_RISCV)
3350     ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
3351   else if (e.e_machine == EM_AVR)
3352     ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderAVRFlags),
3353                           unsigned(ELF::EF_AVR_ARCH_MASK));
3354   Str = "0x" + to_hexString(e.e_flags);
3355   if (!ElfFlags.empty())
3356     Str = Str + ", " + ElfFlags;
3357   printFields(OS, "Flags:", Str);
3358   Str = to_string(e.e_ehsize) + " (bytes)";
3359   printFields(OS, "Size of this header:", Str);
3360   Str = to_string(e.e_phentsize) + " (bytes)";
3361   printFields(OS, "Size of program headers:", Str);
3362   Str = to_string(e.e_phnum);
3363   printFields(OS, "Number of program headers:", Str);
3364   Str = to_string(e.e_shentsize) + " (bytes)";
3365   printFields(OS, "Size of section headers:", Str);
3366   Str = getSectionHeadersNumString(this->Obj, this->FileName);
3367   printFields(OS, "Number of section headers:", Str);
3368   Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3369   printFields(OS, "Section header string table index:", Str);
3370 }
3371 
3372 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
3373   auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3374                           const Elf_Shdr &Symtab) -> StringRef {
3375     Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3376     if (!StrTableOrErr) {
3377       reportUniqueWarning("unable to get the string table for " +
3378                           describe(Symtab) + ": " +
3379                           toString(StrTableOrErr.takeError()));
3380       return "<?>";
3381     }
3382 
3383     StringRef Strings = *StrTableOrErr;
3384     if (Sym.st_name >= Strings.size()) {
3385       reportUniqueWarning("unable to get the name of the symbol with index " +
3386                           Twine(SymNdx) + ": st_name (0x" +
3387                           Twine::utohexstr(Sym.st_name) +
3388                           ") is past the end of the string table of size 0x" +
3389                           Twine::utohexstr(Strings.size()));
3390       return "<?>";
3391     }
3392 
3393     return StrTableOrErr->data() + Sym.st_name;
3394   };
3395 
3396   std::vector<GroupSection> Ret;
3397   uint64_t I = 0;
3398   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3399     ++I;
3400     if (Sec.sh_type != ELF::SHT_GROUP)
3401       continue;
3402 
3403     StringRef Signature = "<?>";
3404     if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3405       if (Expected<const Elf_Sym *> SymOrErr =
3406               Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3407         Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3408       else
3409         reportUniqueWarning("unable to get the signature symbol for " +
3410                             describe(Sec) + ": " +
3411                             toString(SymOrErr.takeError()));
3412     } else {
3413       reportUniqueWarning("unable to get the symbol table for " +
3414                           describe(Sec) + ": " +
3415                           toString(SymtabOrErr.takeError()));
3416     }
3417 
3418     ArrayRef<Elf_Word> Data;
3419     if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3420             Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3421       if (ContentsOrErr->empty())
3422         reportUniqueWarning("unable to read the section group flag from the " +
3423                             describe(Sec) + ": the section is empty");
3424       else
3425         Data = *ContentsOrErr;
3426     } else {
3427       reportUniqueWarning("unable to get the content of the " + describe(Sec) +
3428                           ": " + toString(ContentsOrErr.takeError()));
3429     }
3430 
3431     Ret.push_back({getPrintableSectionName(Sec),
3432                    maybeDemangle(Signature),
3433                    Sec.sh_name,
3434                    I - 1,
3435                    Sec.sh_link,
3436                    Sec.sh_info,
3437                    Data.empty() ? Elf_Word(0) : Data[0],
3438                    {}});
3439 
3440     if (Data.empty())
3441       continue;
3442 
3443     std::vector<GroupMember> &GM = Ret.back().Members;
3444     for (uint32_t Ndx : Data.slice(1)) {
3445       if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3446         GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3447       } else {
3448         reportUniqueWarning("unable to get the section with index " +
3449                             Twine(Ndx) + " when dumping the " + describe(Sec) +
3450                             ": " + toString(SecOrErr.takeError()));
3451         GM.push_back({"<?>", Ndx});
3452       }
3453     }
3454   }
3455   return Ret;
3456 }
3457 
3458 static DenseMap<uint64_t, const GroupSection *>
3459 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3460   DenseMap<uint64_t, const GroupSection *> Ret;
3461   for (const GroupSection &G : Groups)
3462     for (const GroupMember &GM : G.Members)
3463       Ret.insert({GM.Index, &G});
3464   return Ret;
3465 }
3466 
3467 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
3468   std::vector<GroupSection> V = this->getGroups();
3469   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3470   for (const GroupSection &G : V) {
3471     OS << "\n"
3472        << getGroupType(G.Type) << " group section ["
3473        << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3474        << "] contains " << G.Members.size() << " sections:\n"
3475        << "   [Index]    Name\n";
3476     for (const GroupMember &GM : G.Members) {
3477       const GroupSection *MainGroup = Map[GM.Index];
3478       if (MainGroup != &G)
3479         this->reportUniqueWarning(
3480             "section with index " + Twine(GM.Index) +
3481             ", included in the group section with index " +
3482             Twine(MainGroup->Index) +
3483             ", was also found in the group section with index " +
3484             Twine(G.Index));
3485       OS << "   [" << format_decimal(GM.Index, 5) << "]   " << GM.Name << "\n";
3486     }
3487   }
3488 
3489   if (V.empty())
3490     OS << "There are no section groups in this file.\n";
3491 }
3492 
3493 template <class ELFT>
3494 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
3495   OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
3496 }
3497 
3498 template <class ELFT>
3499 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3500                                            const RelSymbol<ELFT> &RelSym) {
3501   // First two fields are bit width dependent. The rest of them are fixed width.
3502   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3503   Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3504   unsigned Width = ELFT::Is64Bits ? 16 : 8;
3505 
3506   Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3507   Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3508 
3509   SmallString<32> RelocName;
3510   this->Obj.getRelocationTypeName(R.Type, RelocName);
3511   Fields[2].Str = RelocName.c_str();
3512 
3513   if (RelSym.Sym)
3514     Fields[3].Str =
3515         to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3516 
3517   Fields[4].Str = std::string(RelSym.Name);
3518   for (const Field &F : Fields)
3519     printField(F);
3520 
3521   std::string Addend;
3522   if (Optional<int64_t> A = R.Addend) {
3523     int64_t RelAddend = *A;
3524     if (!RelSym.Name.empty()) {
3525       if (RelAddend < 0) {
3526         Addend = " - ";
3527         RelAddend = std::abs(RelAddend);
3528       } else {
3529         Addend = " + ";
3530       }
3531     }
3532     Addend += to_hexString(RelAddend, false);
3533   }
3534   OS << Addend << "\n";
3535 }
3536 
3537 template <class ELFT>
3538 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) {
3539   bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3540   bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
3541   if (ELFT::Is64Bits)
3542     OS << "    ";
3543   else
3544     OS << " ";
3545   if (IsRelr && opts::RawRelr)
3546     OS << "Data  ";
3547   else
3548     OS << "Offset";
3549   if (ELFT::Is64Bits)
3550     OS << "             Info             Type"
3551        << "               Symbol's Value  Symbol's Name";
3552   else
3553     OS << "     Info    Type                Sym. Value  Symbol's Name";
3554   if (IsRela)
3555     OS << " + Addend";
3556   OS << "\n";
3557 }
3558 
3559 template <class ELFT>
3560 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3561                                                  const DynRegionInfo &Reg) {
3562   uint64_t Offset = Reg.Addr - this->Obj.base();
3563   OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3564      << to_hexString(Offset, false) << " contains " << Reg.Size << " bytes:\n";
3565   printRelocHeaderFields<ELFT>(OS, Type);
3566 }
3567 
3568 template <class ELFT>
3569 static bool isRelocationSec(const typename ELFT::Shdr &Sec) {
3570   return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3571          Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
3572          Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3573          Sec.sh_type == ELF::SHT_ANDROID_RELR;
3574 }
3575 
3576 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
3577   auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3578     // Android's packed relocation section needs to be unpacked first
3579     // to get the actual number of entries.
3580     if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3581         Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3582       Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3583           this->Obj.android_relas(Sec);
3584       if (!RelasOrErr)
3585         return RelasOrErr.takeError();
3586       return RelasOrErr->size();
3587     }
3588 
3589     if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3590                            Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3591       Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3592       if (!RelrsOrErr)
3593         return RelrsOrErr.takeError();
3594       return this->Obj.decode_relrs(*RelrsOrErr).size();
3595     }
3596 
3597     return Sec.getEntityCount();
3598   };
3599 
3600   bool HasRelocSections = false;
3601   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3602     if (!isRelocationSec<ELFT>(Sec))
3603       continue;
3604     HasRelocSections = true;
3605 
3606     std::string EntriesNum = "<?>";
3607     if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3608       EntriesNum = std::to_string(*NumOrErr);
3609     else
3610       this->reportUniqueWarning("unable to get the number of relocations in " +
3611                                 this->describe(Sec) + ": " +
3612                                 toString(NumOrErr.takeError()));
3613 
3614     uintX_t Offset = Sec.sh_offset;
3615     StringRef Name = this->getPrintableSectionName(Sec);
3616     OS << "\nRelocation section '" << Name << "' at offset 0x"
3617        << to_hexString(Offset, false) << " contains " << EntriesNum
3618        << " entries:\n";
3619     printRelocHeaderFields<ELFT>(OS, Sec.sh_type);
3620     this->printRelocationsHelper(Sec);
3621   }
3622   if (!HasRelocSections)
3623     OS << "\nThere are no relocations in this file.\n";
3624 }
3625 
3626 // Print the offset of a particular section from anyone of the ranges:
3627 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3628 // If 'Type' does not fall within any of those ranges, then a string is
3629 // returned as '<unknown>' followed by the type value.
3630 static std::string getSectionTypeOffsetString(unsigned Type) {
3631   if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3632     return "LOOS+0x" + to_hexString(Type - SHT_LOOS);
3633   else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3634     return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC);
3635   else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3636     return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER);
3637   return "0x" + to_hexString(Type) + ": <unknown>";
3638 }
3639 
3640 static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
3641   StringRef Name = getELFSectionTypeName(Machine, Type);
3642 
3643   // Handle SHT_GNU_* type names.
3644   if (Name.startswith("SHT_GNU_")) {
3645     if (Name == "SHT_GNU_HASH")
3646       return "GNU_HASH";
3647     // E.g. SHT_GNU_verneed -> VERNEED.
3648     return Name.drop_front(8).upper();
3649   }
3650 
3651   if (Name == "SHT_SYMTAB_SHNDX")
3652     return "SYMTAB SECTION INDICES";
3653 
3654   if (Name.startswith("SHT_"))
3655     return Name.drop_front(4).str();
3656   return getSectionTypeOffsetString(Type);
3657 }
3658 
3659 static void printSectionDescription(formatted_raw_ostream &OS,
3660                                     unsigned EMachine) {
3661   OS << "Key to Flags:\n";
3662   OS << "  W (write), A (alloc), X (execute), M (merge), S (strings), I "
3663         "(info),\n";
3664   OS << "  L (link order), O (extra OS processing required), G (group), T "
3665         "(TLS),\n";
3666   OS << "  C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3667   OS << "  R (retain)";
3668 
3669   if (EMachine == EM_X86_64)
3670     OS << ", l (large)";
3671   else if (EMachine == EM_ARM)
3672     OS << ", y (purecode)";
3673 
3674   OS << ", p (processor specific)\n";
3675 }
3676 
3677 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
3678   unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3679   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
3680   OS << "There are " << to_string(Sections.size())
3681      << " section headers, starting at offset "
3682      << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n";
3683   OS << "Section Headers:\n";
3684   Field Fields[11] = {
3685       {"[Nr]", 2},        {"Name", 7},        {"Type", 25},
3686       {"Address", 41},    {"Off", 58 - Bias}, {"Size", 65 - Bias},
3687       {"ES", 72 - Bias},  {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3688       {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3689   for (const Field &F : Fields)
3690     printField(F);
3691   OS << "\n";
3692 
3693   StringRef SecStrTable;
3694   if (Expected<StringRef> SecStrTableOrErr =
3695           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
3696     SecStrTable = *SecStrTableOrErr;
3697   else
3698     this->reportUniqueWarning(SecStrTableOrErr.takeError());
3699 
3700   size_t SectionIndex = 0;
3701   for (const Elf_Shdr &Sec : Sections) {
3702     Fields[0].Str = to_string(SectionIndex);
3703     if (SecStrTable.empty())
3704       Fields[1].Str = "<no-strings>";
3705     else
3706       Fields[1].Str = std::string(unwrapOrError<StringRef>(
3707           this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
3708     Fields[2].Str =
3709         getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
3710     Fields[3].Str =
3711         to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3712     Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3713     Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3714     Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3715     Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
3716                                 this->Obj.getHeader().e_machine, Sec.sh_flags);
3717     Fields[8].Str = to_string(Sec.sh_link);
3718     Fields[9].Str = to_string(Sec.sh_info);
3719     Fields[10].Str = to_string(Sec.sh_addralign);
3720 
3721     OS.PadToColumn(Fields[0].Column);
3722     OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3723     for (int i = 1; i < 7; i++)
3724       printField(Fields[i]);
3725     OS.PadToColumn(Fields[7].Column);
3726     OS << right_justify(Fields[7].Str, 3);
3727     OS.PadToColumn(Fields[8].Column);
3728     OS << right_justify(Fields[8].Str, 2);
3729     OS.PadToColumn(Fields[9].Column);
3730     OS << right_justify(Fields[9].Str, 3);
3731     OS.PadToColumn(Fields[10].Column);
3732     OS << right_justify(Fields[10].Str, 2);
3733     OS << "\n";
3734     ++SectionIndex;
3735   }
3736   printSectionDescription(OS, this->Obj.getHeader().e_machine);
3737 }
3738 
3739 template <class ELFT>
3740 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
3741                                             size_t Entries,
3742                                             bool NonVisibilityBitsUsed) const {
3743   StringRef Name;
3744   if (Symtab)
3745     Name = this->getPrintableSectionName(*Symtab);
3746   if (!Name.empty())
3747     OS << "\nSymbol table '" << Name << "'";
3748   else
3749     OS << "\nSymbol table for image";
3750   OS << " contains " << Entries << " entries:\n";
3751 
3752   if (ELFT::Is64Bits)
3753     OS << "   Num:    Value          Size Type    Bind   Vis";
3754   else
3755     OS << "   Num:    Value  Size Type    Bind   Vis";
3756 
3757   if (NonVisibilityBitsUsed)
3758     OS << "             ";
3759   OS << "       Ndx Name\n";
3760 }
3761 
3762 template <class ELFT>
3763 std::string
3764 GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol,
3765                                         unsigned SymIndex,
3766                                         DataRegion<Elf_Word> ShndxTable) const {
3767   unsigned SectionIndex = Symbol.st_shndx;
3768   switch (SectionIndex) {
3769   case ELF::SHN_UNDEF:
3770     return "UND";
3771   case ELF::SHN_ABS:
3772     return "ABS";
3773   case ELF::SHN_COMMON:
3774     return "COM";
3775   case ELF::SHN_XINDEX: {
3776     Expected<uint32_t> IndexOrErr =
3777         object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
3778     if (!IndexOrErr) {
3779       assert(Symbol.st_shndx == SHN_XINDEX &&
3780              "getExtendedSymbolTableIndex should only fail due to an invalid "
3781              "SHT_SYMTAB_SHNDX table/reference");
3782       this->reportUniqueWarning(IndexOrErr.takeError());
3783       return "RSV[0xffff]";
3784     }
3785     return to_string(format_decimal(*IndexOrErr, 3));
3786   }
3787   default:
3788     // Find if:
3789     // Processor specific
3790     if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
3791       return std::string("PRC[0x") +
3792              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3793     // OS specific
3794     if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
3795       return std::string("OS[0x") +
3796              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3797     // Architecture reserved:
3798     if (SectionIndex >= ELF::SHN_LORESERVE &&
3799         SectionIndex <= ELF::SHN_HIRESERVE)
3800       return std::string("RSV[0x") +
3801              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3802     // A normal section with an index
3803     return to_string(format_decimal(SectionIndex, 3));
3804   }
3805 }
3806 
3807 template <class ELFT>
3808 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
3809                                      DataRegion<Elf_Word> ShndxTable,
3810                                      Optional<StringRef> StrTable,
3811                                      bool IsDynamic,
3812                                      bool NonVisibilityBitsUsed) const {
3813   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3814   Field Fields[8] = {0,         8,         17 + Bias, 23 + Bias,
3815                      31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
3816   Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
3817   Fields[1].Str =
3818       to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
3819   Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
3820 
3821   unsigned char SymbolType = Symbol.getType();
3822   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3823       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3824     Fields[3].Str = enumToString(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3825   else
3826     Fields[3].Str = enumToString(SymbolType, makeArrayRef(ElfSymbolTypes));
3827 
3828   Fields[4].Str =
3829       enumToString(Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
3830   Fields[5].Str =
3831       enumToString(Symbol.getVisibility(), makeArrayRef(ElfSymbolVisibilities));
3832 
3833   if (Symbol.st_other & ~0x3) {
3834     if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
3835       uint8_t Other = Symbol.st_other & ~0x3;
3836       if (Other & STO_AARCH64_VARIANT_PCS) {
3837         Other &= ~STO_AARCH64_VARIANT_PCS;
3838         Fields[5].Str += " [VARIANT_PCS";
3839         if (Other != 0)
3840           Fields[5].Str.append(" | " + to_hexString(Other, false));
3841         Fields[5].Str.append("]");
3842       }
3843     } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) {
3844       uint8_t Other = Symbol.st_other & ~0x3;
3845       if (Other & STO_RISCV_VARIANT_CC) {
3846         Other &= ~STO_RISCV_VARIANT_CC;
3847         Fields[5].Str += " [VARIANT_CC";
3848         if (Other != 0)
3849           Fields[5].Str.append(" | " + to_hexString(Other, false));
3850         Fields[5].Str.append("]");
3851       }
3852     } else {
3853       Fields[5].Str +=
3854           " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
3855     }
3856   }
3857 
3858   Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
3859   Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable);
3860 
3861   Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
3862                                           StrTable, IsDynamic);
3863   for (const Field &Entry : Fields)
3864     printField(Entry);
3865   OS << "\n";
3866 }
3867 
3868 template <class ELFT>
3869 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
3870                                            unsigned SymIndex,
3871                                            DataRegion<Elf_Word> ShndxTable,
3872                                            StringRef StrTable,
3873                                            uint32_t Bucket) {
3874   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3875   Field Fields[9] = {0,         6,         11,        20 + Bias, 25 + Bias,
3876                      34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
3877   Fields[0].Str = to_string(format_decimal(SymIndex, 5));
3878   Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
3879 
3880   Fields[2].Str = to_string(
3881       format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
3882   Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
3883 
3884   unsigned char SymbolType = Symbol->getType();
3885   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3886       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3887     Fields[4].Str = enumToString(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3888   else
3889     Fields[4].Str = enumToString(SymbolType, makeArrayRef(ElfSymbolTypes));
3890 
3891   Fields[5].Str =
3892       enumToString(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3893   Fields[6].Str = enumToString(Symbol->getVisibility(),
3894                                makeArrayRef(ElfSymbolVisibilities));
3895   Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
3896   Fields[8].Str =
3897       this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
3898 
3899   for (const Field &Entry : Fields)
3900     printField(Entry);
3901   OS << "\n";
3902 }
3903 
3904 template <class ELFT>
3905 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
3906                                       bool PrintDynamicSymbols) {
3907   if (!PrintSymbols && !PrintDynamicSymbols)
3908     return;
3909   // GNU readelf prints both the .dynsym and .symtab with --symbols.
3910   this->printSymbolsHelper(true);
3911   if (PrintSymbols)
3912     this->printSymbolsHelper(false);
3913 }
3914 
3915 template <class ELFT>
3916 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
3917   if (this->DynamicStringTable.empty())
3918     return;
3919 
3920   if (ELFT::Is64Bits)
3921     OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
3922   else
3923     OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
3924   OS << "\n";
3925 
3926   Elf_Sym_Range DynSyms = this->dynamic_symbols();
3927   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3928   if (!FirstSym) {
3929     this->reportUniqueWarning(
3930         Twine("unable to print symbols for the .hash table: the "
3931               "dynamic symbol table ") +
3932         (this->DynSymRegion ? "is empty" : "was not found"));
3933     return;
3934   }
3935 
3936   DataRegion<Elf_Word> ShndxTable(
3937       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
3938   auto Buckets = SysVHash.buckets();
3939   auto Chains = SysVHash.chains();
3940   for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
3941     if (Buckets[Buc] == ELF::STN_UNDEF)
3942       continue;
3943     BitVector Visited(SysVHash.nchain);
3944     for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
3945       if (Ch == ELF::STN_UNDEF)
3946         break;
3947 
3948       if (Visited[Ch]) {
3949         this->reportUniqueWarning(".hash section is invalid: bucket " +
3950                                   Twine(Ch) +
3951                                   ": a cycle was detected in the linked chain");
3952         break;
3953       }
3954 
3955       printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
3956                         Buc);
3957       Visited[Ch] = true;
3958     }
3959   }
3960 }
3961 
3962 template <class ELFT>
3963 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
3964   if (this->DynamicStringTable.empty())
3965     return;
3966 
3967   Elf_Sym_Range DynSyms = this->dynamic_symbols();
3968   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3969   if (!FirstSym) {
3970     this->reportUniqueWarning(
3971         Twine("unable to print symbols for the .gnu.hash table: the "
3972               "dynamic symbol table ") +
3973         (this->DynSymRegion ? "is empty" : "was not found"));
3974     return;
3975   }
3976 
3977   auto GetSymbol = [&](uint64_t SymIndex,
3978                        uint64_t SymsTotal) -> const Elf_Sym * {
3979     if (SymIndex >= SymsTotal) {
3980       this->reportUniqueWarning(
3981           "unable to print hashed symbol with index " + Twine(SymIndex) +
3982           ", which is greater than or equal to the number of dynamic symbols "
3983           "(" +
3984           Twine::utohexstr(SymsTotal) + ")");
3985       return nullptr;
3986     }
3987     return FirstSym + SymIndex;
3988   };
3989 
3990   Expected<ArrayRef<Elf_Word>> ValuesOrErr =
3991       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
3992   ArrayRef<Elf_Word> Values;
3993   if (!ValuesOrErr)
3994     this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
3995                               "section: " +
3996                               toString(ValuesOrErr.takeError()));
3997   else
3998     Values = *ValuesOrErr;
3999 
4000   DataRegion<Elf_Word> ShndxTable(
4001       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4002   ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
4003   for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
4004     if (Buckets[Buc] == ELF::STN_UNDEF)
4005       continue;
4006     uint32_t Index = Buckets[Buc];
4007     // Print whole chain.
4008     while (true) {
4009       uint32_t SymIndex = Index++;
4010       if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
4011         printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
4012                           Buc);
4013       else
4014         break;
4015 
4016       if (SymIndex < GnuHash.symndx) {
4017         this->reportUniqueWarning(
4018             "unable to read the hash value for symbol with index " +
4019             Twine(SymIndex) +
4020             ", which is less than the index of the first hashed symbol (" +
4021             Twine(GnuHash.symndx) + ")");
4022         break;
4023       }
4024 
4025        // Chain ends at symbol with stopper bit.
4026       if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
4027         break;
4028     }
4029   }
4030 }
4031 
4032 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
4033   if (this->HashTable) {
4034     OS << "\n Symbol table of .hash for image:\n";
4035     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4036       this->reportUniqueWarning(std::move(E));
4037     else
4038       printHashTableSymbols(*this->HashTable);
4039   }
4040 
4041   // Try printing the .gnu.hash table.
4042   if (this->GnuHashTable) {
4043     OS << "\n Symbol table of .gnu.hash for image:\n";
4044     if (ELFT::Is64Bits)
4045       OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
4046     else
4047       OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
4048     OS << "\n";
4049 
4050     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4051       this->reportUniqueWarning(std::move(E));
4052     else
4053       printGnuHashTableSymbols(*this->GnuHashTable);
4054   }
4055 }
4056 
4057 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
4058   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4059   OS << "There are " << to_string(Sections.size())
4060      << " section headers, starting at offset "
4061      << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n";
4062 
4063   OS << "Section Headers:\n";
4064 
4065   auto PrintFields = [&](ArrayRef<Field> V) {
4066     for (const Field &F : V)
4067       printField(F);
4068     OS << "\n";
4069   };
4070 
4071   PrintFields({{"[Nr]", 2}, {"Name", 7}});
4072 
4073   constexpr bool Is64 = ELFT::Is64Bits;
4074   PrintFields({{"Type", 7},
4075                {Is64 ? "Address" : "Addr", 23},
4076                {"Off", Is64 ? 40 : 32},
4077                {"Size", Is64 ? 47 : 39},
4078                {"ES", Is64 ? 54 : 46},
4079                {"Lk", Is64 ? 59 : 51},
4080                {"Inf", Is64 ? 62 : 54},
4081                {"Al", Is64 ? 66 : 57}});
4082   PrintFields({{"Flags", 7}});
4083 
4084   StringRef SecStrTable;
4085   if (Expected<StringRef> SecStrTableOrErr =
4086           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4087     SecStrTable = *SecStrTableOrErr;
4088   else
4089     this->reportUniqueWarning(SecStrTableOrErr.takeError());
4090 
4091   size_t SectionIndex = 0;
4092   const unsigned AddrSize = Is64 ? 16 : 8;
4093   for (const Elf_Shdr &S : Sections) {
4094     StringRef Name = "<?>";
4095     if (Expected<StringRef> NameOrErr =
4096             this->Obj.getSectionName(S, SecStrTable))
4097       Name = *NameOrErr;
4098     else
4099       this->reportUniqueWarning(NameOrErr.takeError());
4100 
4101     OS.PadToColumn(2);
4102     OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4103     PrintFields({{Name, 7}});
4104     PrintFields(
4105         {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4106          {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4107          {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4108          {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4109          {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4110          {to_string(S.sh_link), Is64 ? 59 : 51},
4111          {to_string(S.sh_info), Is64 ? 63 : 55},
4112          {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4113 
4114     OS.PadToColumn(7);
4115     OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4116 
4117     DenseMap<unsigned, StringRef> FlagToName = {
4118         {SHF_WRITE, "WRITE"},           {SHF_ALLOC, "ALLOC"},
4119         {SHF_EXECINSTR, "EXEC"},        {SHF_MERGE, "MERGE"},
4120         {SHF_STRINGS, "STRINGS"},       {SHF_INFO_LINK, "INFO LINK"},
4121         {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4122         {SHF_GROUP, "GROUP"},           {SHF_TLS, "TLS"},
4123         {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4124 
4125     uint64_t Flags = S.sh_flags;
4126     uint64_t UnknownFlags = 0;
4127     ListSeparator LS;
4128     while (Flags) {
4129       // Take the least significant bit as a flag.
4130       uint64_t Flag = Flags & -Flags;
4131       Flags -= Flag;
4132 
4133       auto It = FlagToName.find(Flag);
4134       if (It != FlagToName.end())
4135         OS << LS << It->second;
4136       else
4137         UnknownFlags |= Flag;
4138     }
4139 
4140     auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4141       uint64_t FlagsToPrint = UnknownFlags & Mask;
4142       if (!FlagsToPrint)
4143         return;
4144 
4145       OS << LS << Name << " ("
4146          << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4147       UnknownFlags &= ~Mask;
4148     };
4149 
4150     PrintUnknownFlags(SHF_MASKOS, "OS");
4151     PrintUnknownFlags(SHF_MASKPROC, "PROC");
4152     PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4153 
4154     OS << "\n";
4155     ++SectionIndex;
4156   }
4157 }
4158 
4159 static inline std::string printPhdrFlags(unsigned Flag) {
4160   std::string Str;
4161   Str = (Flag & PF_R) ? "R" : " ";
4162   Str += (Flag & PF_W) ? "W" : " ";
4163   Str += (Flag & PF_X) ? "E" : " ";
4164   return Str;
4165 }
4166 
4167 template <class ELFT>
4168 static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4169                              const typename ELFT::Shdr &Sec) {
4170   if (Sec.sh_flags & ELF::SHF_TLS) {
4171     // .tbss must only be shown in the PT_TLS segment.
4172     if (Sec.sh_type == ELF::SHT_NOBITS)
4173       return Phdr.p_type == ELF::PT_TLS;
4174 
4175     // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4176     // segments.
4177     return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4178            (Phdr.p_type == ELF::PT_GNU_RELRO);
4179   }
4180 
4181   // PT_TLS must only have SHF_TLS sections.
4182   return Phdr.p_type != ELF::PT_TLS;
4183 }
4184 
4185 template <class ELFT>
4186 static bool checkOffsets(const typename ELFT::Phdr &Phdr,
4187                          const typename ELFT::Shdr &Sec) {
4188   // SHT_NOBITS sections don't need to have an offset inside the segment.
4189   if (Sec.sh_type == ELF::SHT_NOBITS)
4190     return true;
4191 
4192   if (Sec.sh_offset < Phdr.p_offset)
4193     return false;
4194 
4195   // Only non-empty sections can be at the end of a segment.
4196   if (Sec.sh_size == 0)
4197     return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
4198   return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
4199 }
4200 
4201 // Check that an allocatable section belongs to a virtual address
4202 // space of a segment.
4203 template <class ELFT>
4204 static bool checkVMA(const typename ELFT::Phdr &Phdr,
4205                      const typename ELFT::Shdr &Sec) {
4206   if (!(Sec.sh_flags & ELF::SHF_ALLOC))
4207     return true;
4208 
4209   if (Sec.sh_addr < Phdr.p_vaddr)
4210     return false;
4211 
4212   bool IsTbss =
4213       (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
4214   // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4215   bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
4216   // Only non-empty sections can be at the end of a segment.
4217   if (Sec.sh_size == 0 || IsTbssInNonTLS)
4218     return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
4219   return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
4220 }
4221 
4222 template <class ELFT>
4223 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4224                            const typename ELFT::Shdr &Sec) {
4225   if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4226     return true;
4227 
4228   // We get here when we have an empty section. Only non-empty sections can be
4229   // at the start or at the end of PT_DYNAMIC.
4230   // Is section within the phdr both based on offset and VMA?
4231   bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4232                      (Sec.sh_offset > Phdr.p_offset &&
4233                       Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4234   bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4235                  (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4236   return CheckOffset && CheckVA;
4237 }
4238 
4239 template <class ELFT>
4240 void GNUELFDumper<ELFT>::printProgramHeaders(
4241     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4242   if (PrintProgramHeaders)
4243     printProgramHeaders();
4244 
4245   // Display the section mapping along with the program headers, unless
4246   // -section-mapping is explicitly set to false.
4247   if (PrintSectionMapping != cl::BOU_FALSE)
4248     printSectionMapping();
4249 }
4250 
4251 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
4252   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4253   const Elf_Ehdr &Header = this->Obj.getHeader();
4254   Field Fields[8] = {2,         17,        26,        37 + Bias,
4255                      48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4256   OS << "\nElf file type is "
4257      << enumToString(Header.e_type, makeArrayRef(ElfObjectFileType)) << "\n"
4258      << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4259      << "There are " << Header.e_phnum << " program headers,"
4260      << " starting at offset " << Header.e_phoff << "\n\n"
4261      << "Program Headers:\n";
4262   if (ELFT::Is64Bits)
4263     OS << "  Type           Offset   VirtAddr           PhysAddr         "
4264        << "  FileSiz  MemSiz   Flg Align\n";
4265   else
4266     OS << "  Type           Offset   VirtAddr   PhysAddr   FileSiz "
4267        << "MemSiz  Flg Align\n";
4268 
4269   unsigned Width = ELFT::Is64Bits ? 18 : 10;
4270   unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4271 
4272   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4273   if (!PhdrsOrErr) {
4274     this->reportUniqueWarning("unable to dump program headers: " +
4275                               toString(PhdrsOrErr.takeError()));
4276     return;
4277   }
4278 
4279   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4280     Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4281     Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4282     Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4283     Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4284     Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4285     Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4286     Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4287     Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4288     for (const Field &F : Fields)
4289       printField(F);
4290     if (Phdr.p_type == ELF::PT_INTERP) {
4291       OS << "\n";
4292       auto ReportBadInterp = [&](const Twine &Msg) {
4293         this->reportUniqueWarning(
4294             "unable to read program interpreter name at offset 0x" +
4295             Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4296       };
4297 
4298       if (Phdr.p_offset >= this->Obj.getBufSize()) {
4299         ReportBadInterp("it goes past the end of the file (0x" +
4300                         Twine::utohexstr(this->Obj.getBufSize()) + ")");
4301         continue;
4302       }
4303 
4304       const char *Data =
4305           reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4306       size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4307       size_t Len = strnlen(Data, MaxSize);
4308       if (Len == MaxSize) {
4309         ReportBadInterp("it is not null-terminated");
4310         continue;
4311       }
4312 
4313       OS << "      [Requesting program interpreter: ";
4314       OS << StringRef(Data, Len) << "]";
4315     }
4316     OS << "\n";
4317   }
4318 }
4319 
4320 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
4321   OS << "\n Section to Segment mapping:\n  Segment Sections...\n";
4322   DenseSet<const Elf_Shdr *> BelongsToSegment;
4323   int Phnum = 0;
4324 
4325   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4326   if (!PhdrsOrErr) {
4327     this->reportUniqueWarning(
4328         "can't read program headers to build section to segment mapping: " +
4329         toString(PhdrsOrErr.takeError()));
4330     return;
4331   }
4332 
4333   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4334     std::string Sections;
4335     OS << format("   %2.2d     ", Phnum++);
4336     // Check if each section is in a segment and then print mapping.
4337     for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4338       if (Sec.sh_type == ELF::SHT_NULL)
4339         continue;
4340 
4341       // readelf additionally makes sure it does not print zero sized sections
4342       // at end of segments and for PT_DYNAMIC both start and end of section
4343       // .tbss must only be shown in PT_TLS section.
4344       if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
4345           checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
4346         Sections +=
4347             unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4348             " ";
4349         BelongsToSegment.insert(&Sec);
4350       }
4351     }
4352     OS << Sections << "\n";
4353     OS.flush();
4354   }
4355 
4356   // Display sections that do not belong to a segment.
4357   std::string Sections;
4358   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4359     if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4360       Sections +=
4361           unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4362           ' ';
4363   }
4364   if (!Sections.empty()) {
4365     OS << "   None  " << Sections << '\n';
4366     OS.flush();
4367   }
4368 }
4369 
4370 namespace {
4371 
4372 template <class ELFT>
4373 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4374                                   const Relocation<ELFT> &Reloc) {
4375   using Elf_Sym = typename ELFT::Sym;
4376   auto WarnAndReturn = [&](const Elf_Sym *Sym,
4377                            const Twine &Reason) -> RelSymbol<ELFT> {
4378     Dumper.reportUniqueWarning(
4379         "unable to get name of the dynamic symbol with index " +
4380         Twine(Reloc.Symbol) + ": " + Reason);
4381     return {Sym, "<corrupt>"};
4382   };
4383 
4384   ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4385   const Elf_Sym *FirstSym = Symbols.begin();
4386   if (!FirstSym)
4387     return WarnAndReturn(nullptr, "no dynamic symbol table found");
4388 
4389   // We might have an object without a section header. In this case the size of
4390   // Symbols is zero, because there is no way to know the size of the dynamic
4391   // table. We should allow this case and not print a warning.
4392   if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4393     return WarnAndReturn(
4394         nullptr,
4395         "index is greater than or equal to the number of dynamic symbols (" +
4396             Twine(Symbols.size()) + ")");
4397 
4398   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4399   const uint64_t FileSize = Obj.getBufSize();
4400   const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4401                              (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4402   if (SymOffset + sizeof(Elf_Sym) > FileSize)
4403     return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4404                                       " goes past the end of the file (0x" +
4405                                       Twine::utohexstr(FileSize) + ")");
4406 
4407   const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4408   Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4409   if (!ErrOrName)
4410     return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4411 
4412   return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4413 }
4414 } // namespace
4415 
4416 template <class ELFT>
4417 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4418                                    typename ELFT::DynRange Tags) {
4419   size_t Max = 0;
4420   for (const typename ELFT::Dyn &Dyn : Tags)
4421     Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4422   return Max;
4423 }
4424 
4425 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
4426   Elf_Dyn_Range Table = this->dynamic_table();
4427   if (Table.empty())
4428     return;
4429 
4430   OS << "Dynamic section at offset "
4431      << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
4432                        this->Obj.base(),
4433                    1)
4434      << " contains " << Table.size() << " entries:\n";
4435 
4436   // The type name is surrounded with round brackets, hence add 2.
4437   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4438   // The "Name/Value" column should be indented from the "Type" column by N
4439   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4440   // space (1) = 3.
4441   OS << "  Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4442      << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4443 
4444   std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4445   for (auto Entry : Table) {
4446     uintX_t Tag = Entry.getTag();
4447     std::string Type =
4448         std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")";
4449     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
4450     OS << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4451        << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4452   }
4453 }
4454 
4455 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
4456   this->printDynamicRelocationsHelper();
4457 }
4458 
4459 template <class ELFT>
4460 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4461   printRelRelaReloc(R, getSymbolForReloc(*this, R));
4462 }
4463 
4464 template <class ELFT>
4465 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4466   this->forEachRelocationDo(
4467       Sec, opts::RawRelr,
4468       [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4469           const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
4470       [&](const Elf_Relr &R) { printRelrReloc(R); });
4471 }
4472 
4473 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
4474   const bool IsMips64EL = this->Obj.isMips64EL();
4475   if (this->DynRelaRegion.Size > 0) {
4476     printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
4477     for (const Elf_Rela &Rela :
4478          this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
4479       printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4480   }
4481 
4482   if (this->DynRelRegion.Size > 0) {
4483     printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
4484     for (const Elf_Rel &Rel :
4485          this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
4486       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4487   }
4488 
4489   if (this->DynRelrRegion.Size > 0) {
4490     printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
4491     Elf_Relr_Range Relrs =
4492         this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
4493     for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4494       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4495   }
4496 
4497   if (this->DynPLTRelRegion.Size) {
4498     if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4499       printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
4500       for (const Elf_Rela &Rela :
4501            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
4502         printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4503     } else {
4504       printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
4505       for (const Elf_Rel &Rel :
4506            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
4507         printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4508     }
4509   }
4510 }
4511 
4512 template <class ELFT>
4513 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
4514     const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
4515   // Don't inline the SecName, because it might report a warning to stderr and
4516   // corrupt the output.
4517   StringRef SecName = this->getPrintableSectionName(Sec);
4518   OS << Label << " section '" << SecName << "' "
4519      << "contains " << EntriesNum << " entries:\n";
4520 
4521   StringRef LinkedSecName = "<corrupt>";
4522   if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
4523           this->Obj.getSection(Sec.sh_link))
4524     LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
4525   else
4526     this->reportUniqueWarning("invalid section linked to " +
4527                               this->describe(Sec) + ": " +
4528                               toString(LinkedSecOrErr.takeError()));
4529 
4530   OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
4531      << "  Offset: " << format_hex(Sec.sh_offset, 8)
4532      << "  Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
4533 }
4534 
4535 template <class ELFT>
4536 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
4537   if (!Sec)
4538     return;
4539 
4540   printGNUVersionSectionProlog(*Sec, "Version symbols",
4541                                Sec->sh_size / sizeof(Elf_Versym));
4542   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4543       this->getVersionTable(*Sec, /*SymTab=*/nullptr,
4544                             /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4545   if (!VerTableOrErr) {
4546     this->reportUniqueWarning(VerTableOrErr.takeError());
4547     return;
4548   }
4549 
4550   SmallVector<Optional<VersionEntry>, 0> *VersionMap = nullptr;
4551   if (Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
4552           this->getVersionMap())
4553     VersionMap = *MapOrErr;
4554   else
4555     this->reportUniqueWarning(MapOrErr.takeError());
4556 
4557   ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4558   std::vector<StringRef> Versions;
4559   for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4560     unsigned Ndx = VerTable[I].vs_index;
4561     if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4562       Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4563       continue;
4564     }
4565 
4566     if (!VersionMap) {
4567       Versions.emplace_back("<corrupt>");
4568       continue;
4569     }
4570 
4571     bool IsDefault;
4572     Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
4573         Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/None);
4574     if (!NameOrErr) {
4575       this->reportUniqueWarning("unable to get a version for entry " +
4576                                 Twine(I) + " of " + this->describe(*Sec) +
4577                                 ": " + toString(NameOrErr.takeError()));
4578       Versions.emplace_back("<corrupt>");
4579       continue;
4580     }
4581     Versions.emplace_back(*NameOrErr);
4582   }
4583 
4584   // readelf prints 4 entries per line.
4585   uint64_t Entries = VerTable.size();
4586   for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4587     OS << "  " << format_hex_no_prefix(VersymRow, 3) << ":";
4588     for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4589       unsigned Ndx = VerTable[VersymRow + I].vs_index;
4590       OS << format("%4x%c", Ndx & VERSYM_VERSION,
4591                    Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4592       OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4593     }
4594     OS << '\n';
4595   }
4596   OS << '\n';
4597 }
4598 
4599 static std::string versionFlagToString(unsigned Flags) {
4600   if (Flags == 0)
4601     return "none";
4602 
4603   std::string Ret;
4604   auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4605     if (!(Flags & Flag))
4606       return;
4607     if (!Ret.empty())
4608       Ret += " | ";
4609     Ret += Name;
4610     Flags &= ~Flag;
4611   };
4612 
4613   AddFlag(VER_FLG_BASE, "BASE");
4614   AddFlag(VER_FLG_WEAK, "WEAK");
4615   AddFlag(VER_FLG_INFO, "INFO");
4616   AddFlag(~0, "<unknown>");
4617   return Ret;
4618 }
4619 
4620 template <class ELFT>
4621 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
4622   if (!Sec)
4623     return;
4624 
4625   printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
4626 
4627   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
4628   if (!V) {
4629     this->reportUniqueWarning(V.takeError());
4630     return;
4631   }
4632 
4633   for (const VerDef &Def : *V) {
4634     OS << format("  0x%04x: Rev: %u  Flags: %s  Index: %u  Cnt: %u  Name: %s\n",
4635                  Def.Offset, Def.Version,
4636                  versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4637                  Def.Name.data());
4638     unsigned I = 0;
4639     for (const VerdAux &Aux : Def.AuxV)
4640       OS << format("  0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4641                    Aux.Name.data());
4642   }
4643 
4644   OS << '\n';
4645 }
4646 
4647 template <class ELFT>
4648 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
4649   if (!Sec)
4650     return;
4651 
4652   unsigned VerneedNum = Sec->sh_info;
4653   printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
4654 
4655   Expected<std::vector<VerNeed>> V =
4656       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
4657   if (!V) {
4658     this->reportUniqueWarning(V.takeError());
4659     return;
4660   }
4661 
4662   for (const VerNeed &VN : *V) {
4663     OS << format("  0x%04x: Version: %u  File: %s  Cnt: %u\n", VN.Offset,
4664                  VN.Version, VN.File.data(), VN.Cnt);
4665     for (const VernAux &Aux : VN.AuxV)
4666       OS << format("  0x%04x:   Name: %s  Flags: %s  Version: %u\n", Aux.Offset,
4667                    Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
4668                    Aux.Other);
4669   }
4670   OS << '\n';
4671 }
4672 
4673 template <class ELFT>
4674 void GNUELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) {
4675   size_t NBucket = HashTable.nbucket;
4676   size_t NChain = HashTable.nchain;
4677   ArrayRef<Elf_Word> Buckets = HashTable.buckets();
4678   ArrayRef<Elf_Word> Chains = HashTable.chains();
4679   size_t TotalSyms = 0;
4680   // If hash table is correct, we have at least chains with 0 length
4681   size_t MaxChain = 1;
4682   size_t CumulativeNonZero = 0;
4683 
4684   if (NChain == 0 || NBucket == 0)
4685     return;
4686 
4687   std::vector<size_t> ChainLen(NBucket, 0);
4688   // Go over all buckets and and note chain lengths of each bucket (total
4689   // unique chain lengths).
4690   for (size_t B = 0; B < NBucket; B++) {
4691     BitVector Visited(NChain);
4692     for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
4693       if (C == ELF::STN_UNDEF)
4694         break;
4695       if (Visited[C]) {
4696         this->reportUniqueWarning(".hash section is invalid: bucket " +
4697                                   Twine(C) +
4698                                   ": a cycle was detected in the linked chain");
4699         break;
4700       }
4701       Visited[C] = true;
4702       if (MaxChain <= ++ChainLen[B])
4703         MaxChain++;
4704     }
4705     TotalSyms += ChainLen[B];
4706   }
4707 
4708   if (!TotalSyms)
4709     return;
4710 
4711   std::vector<size_t> Count(MaxChain, 0);
4712   // Count how long is the chain for each bucket
4713   for (size_t B = 0; B < NBucket; B++)
4714     ++Count[ChainLen[B]];
4715   // Print Number of buckets with each chain lengths and their cumulative
4716   // coverage of the symbols
4717   OS << "Histogram for bucket list length (total of " << NBucket
4718      << " buckets)\n"
4719      << " Length  Number     % of total  Coverage\n";
4720   for (size_t I = 0; I < MaxChain; I++) {
4721     CumulativeNonZero += Count[I] * I;
4722     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4723                  (Count[I] * 100.0) / NBucket,
4724                  (CumulativeNonZero * 100.0) / TotalSyms);
4725   }
4726 }
4727 
4728 template <class ELFT>
4729 void GNUELFDumper<ELFT>::printGnuHashHistogram(
4730     const Elf_GnuHash &GnuHashTable) {
4731   Expected<ArrayRef<Elf_Word>> ChainsOrErr =
4732       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
4733   if (!ChainsOrErr) {
4734     this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
4735                               toString(ChainsOrErr.takeError()));
4736     return;
4737   }
4738 
4739   ArrayRef<Elf_Word> Chains = *ChainsOrErr;
4740   size_t Symndx = GnuHashTable.symndx;
4741   size_t TotalSyms = 0;
4742   size_t MaxChain = 1;
4743   size_t CumulativeNonZero = 0;
4744 
4745   size_t NBucket = GnuHashTable.nbuckets;
4746   if (Chains.empty() || NBucket == 0)
4747     return;
4748 
4749   ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
4750   std::vector<size_t> ChainLen(NBucket, 0);
4751   for (size_t B = 0; B < NBucket; B++) {
4752     if (!Buckets[B])
4753       continue;
4754     size_t Len = 1;
4755     for (size_t C = Buckets[B] - Symndx;
4756          C < Chains.size() && (Chains[C] & 1) == 0; C++)
4757       if (MaxChain < ++Len)
4758         MaxChain++;
4759     ChainLen[B] = Len;
4760     TotalSyms += Len;
4761   }
4762   MaxChain++;
4763 
4764   if (!TotalSyms)
4765     return;
4766 
4767   std::vector<size_t> Count(MaxChain, 0);
4768   for (size_t B = 0; B < NBucket; B++)
4769     ++Count[ChainLen[B]];
4770   // Print Number of buckets with each chain lengths and their cumulative
4771   // coverage of the symbols
4772   OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4773      << " buckets)\n"
4774      << " Length  Number     % of total  Coverage\n";
4775   for (size_t I = 0; I < MaxChain; I++) {
4776     CumulativeNonZero += Count[I] * I;
4777     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4778                  (Count[I] * 100.0) / NBucket,
4779                  (CumulativeNonZero * 100.0) / TotalSyms);
4780   }
4781 }
4782 
4783 // Hash histogram shows statistics of how efficient the hash was for the
4784 // dynamic symbol table. The table shows the number of hash buckets for
4785 // different lengths of chains as an absolute number and percentage of the total
4786 // buckets, and the cumulative coverage of symbols for each set of buckets.
4787 template <class ELFT> void GNUELFDumper<ELFT>::printHashHistograms() {
4788   // Print histogram for the .hash section.
4789   if (this->HashTable) {
4790     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4791       this->reportUniqueWarning(std::move(E));
4792     else
4793       printHashHistogram(*this->HashTable);
4794   }
4795 
4796   // Print histogram for the .gnu.hash section.
4797   if (this->GnuHashTable) {
4798     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4799       this->reportUniqueWarning(std::move(E));
4800     else
4801       printGnuHashHistogram(*this->GnuHashTable);
4802   }
4803 }
4804 
4805 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
4806   OS << "GNUStyle::printCGProfile not implemented\n";
4807 }
4808 
4809 template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
4810   OS << "GNUStyle::printBBAddrMaps not implemented\n";
4811 }
4812 
4813 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
4814   std::vector<uint64_t> Ret;
4815   const uint8_t *Cur = Data.begin();
4816   const uint8_t *End = Data.end();
4817   while (Cur != End) {
4818     unsigned Size;
4819     const char *Err;
4820     Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
4821     if (Err)
4822       return createError(Err);
4823     Cur += Size;
4824   }
4825   return Ret;
4826 }
4827 
4828 template <class ELFT>
4829 static Expected<std::vector<uint64_t>>
4830 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
4831   Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
4832   if (!ContentsOrErr)
4833     return ContentsOrErr.takeError();
4834 
4835   if (Expected<std::vector<uint64_t>> SymsOrErr =
4836           toULEB128Array(*ContentsOrErr))
4837     return *SymsOrErr;
4838   else
4839     return createError("unable to decode " + describe(Obj, Sec) + ": " +
4840                        toString(SymsOrErr.takeError()));
4841 }
4842 
4843 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
4844   if (!this->DotAddrsigSec)
4845     return;
4846 
4847   Expected<std::vector<uint64_t>> SymsOrErr =
4848       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
4849   if (!SymsOrErr) {
4850     this->reportUniqueWarning(SymsOrErr.takeError());
4851     return;
4852   }
4853 
4854   StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
4855   OS << "\nAddress-significant symbols section '" << Name << "'"
4856      << " contains " << SymsOrErr->size() << " entries:\n";
4857   OS << "   Num: Name\n";
4858 
4859   Field Fields[2] = {0, 8};
4860   size_t SymIndex = 0;
4861   for (uint64_t Sym : *SymsOrErr) {
4862     Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
4863     Fields[1].Str = this->getStaticSymbolName(Sym);
4864     for (const Field &Entry : Fields)
4865       printField(Entry);
4866     OS << "\n";
4867   }
4868 }
4869 
4870 template <typename ELFT>
4871 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
4872                                   ArrayRef<uint8_t> Data) {
4873   std::string str;
4874   raw_string_ostream OS(str);
4875   uint32_t PrData;
4876   auto DumpBit = [&](uint32_t Flag, StringRef Name) {
4877     if (PrData & Flag) {
4878       PrData &= ~Flag;
4879       OS << Name;
4880       if (PrData)
4881         OS << ", ";
4882     }
4883   };
4884 
4885   switch (Type) {
4886   default:
4887     OS << format("<application-specific type 0x%x>", Type);
4888     return OS.str();
4889   case GNU_PROPERTY_STACK_SIZE: {
4890     OS << "stack size: ";
4891     if (DataSize == sizeof(typename ELFT::uint))
4892       OS << formatv("{0:x}",
4893                     (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
4894     else
4895       OS << format("<corrupt length: 0x%x>", DataSize);
4896     return OS.str();
4897   }
4898   case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
4899     OS << "no copy on protected";
4900     if (DataSize)
4901       OS << format(" <corrupt length: 0x%x>", DataSize);
4902     return OS.str();
4903   case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
4904   case GNU_PROPERTY_X86_FEATURE_1_AND:
4905     OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
4906                                                         : "x86 feature: ");
4907     if (DataSize != 4) {
4908       OS << format("<corrupt length: 0x%x>", DataSize);
4909       return OS.str();
4910     }
4911     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4912     if (PrData == 0) {
4913       OS << "<None>";
4914       return OS.str();
4915     }
4916     if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
4917       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
4918       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
4919     } else {
4920       DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
4921       DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
4922     }
4923     if (PrData)
4924       OS << format("<unknown flags: 0x%x>", PrData);
4925     return OS.str();
4926   case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
4927   case GNU_PROPERTY_X86_FEATURE_2_USED:
4928     OS << "x86 feature "
4929        << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
4930     if (DataSize != 4) {
4931       OS << format("<corrupt length: 0x%x>", DataSize);
4932       return OS.str();
4933     }
4934     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4935     if (PrData == 0) {
4936       OS << "<None>";
4937       return OS.str();
4938     }
4939     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
4940     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
4941     DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
4942     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
4943     DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
4944     DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
4945     DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
4946     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
4947     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
4948     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
4949     if (PrData)
4950       OS << format("<unknown flags: 0x%x>", PrData);
4951     return OS.str();
4952   case GNU_PROPERTY_X86_ISA_1_NEEDED:
4953   case GNU_PROPERTY_X86_ISA_1_USED:
4954     OS << "x86 ISA "
4955        << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
4956     if (DataSize != 4) {
4957       OS << format("<corrupt length: 0x%x>", DataSize);
4958       return OS.str();
4959     }
4960     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4961     if (PrData == 0) {
4962       OS << "<None>";
4963       return OS.str();
4964     }
4965     DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
4966     DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
4967     DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
4968     DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
4969     if (PrData)
4970       OS << format("<unknown flags: 0x%x>", PrData);
4971     return OS.str();
4972   }
4973 }
4974 
4975 template <typename ELFT>
4976 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
4977   using Elf_Word = typename ELFT::Word;
4978 
4979   SmallVector<std::string, 4> Properties;
4980   while (Arr.size() >= 8) {
4981     uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
4982     uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
4983     Arr = Arr.drop_front(8);
4984 
4985     // Take padding size into account if present.
4986     uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
4987     std::string str;
4988     raw_string_ostream OS(str);
4989     if (Arr.size() < PaddedSize) {
4990       OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
4991       Properties.push_back(OS.str());
4992       break;
4993     }
4994     Properties.push_back(
4995         getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
4996     Arr = Arr.drop_front(PaddedSize);
4997   }
4998 
4999   if (!Arr.empty())
5000     Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5001 
5002   return Properties;
5003 }
5004 
5005 struct GNUAbiTag {
5006   std::string OSName;
5007   std::string ABI;
5008   bool IsValid;
5009 };
5010 
5011 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
5012   typedef typename ELFT::Word Elf_Word;
5013 
5014   ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
5015                            reinterpret_cast<const Elf_Word *>(Desc.end()));
5016 
5017   if (Words.size() < 4)
5018     return {"", "", /*IsValid=*/false};
5019 
5020   static const char *OSNames[] = {
5021       "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5022   };
5023   StringRef OSName = "Unknown";
5024   if (Words[0] < array_lengthof(OSNames))
5025     OSName = OSNames[Words[0]];
5026   uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
5027   std::string str;
5028   raw_string_ostream ABI(str);
5029   ABI << Major << "." << Minor << "." << Patch;
5030   return {std::string(OSName), ABI.str(), /*IsValid=*/true};
5031 }
5032 
5033 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5034   std::string str;
5035   raw_string_ostream OS(str);
5036   for (uint8_t B : Desc)
5037     OS << format_hex_no_prefix(B, 2);
5038   return OS.str();
5039 }
5040 
5041 static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) {
5042   return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5043 }
5044 
5045 template <typename ELFT>
5046 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
5047                          ArrayRef<uint8_t> Desc) {
5048   // Return true if we were able to pretty-print the note, false otherwise.
5049   switch (NoteType) {
5050   default:
5051     return false;
5052   case ELF::NT_GNU_ABI_TAG: {
5053     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5054     if (!AbiTag.IsValid)
5055       OS << "    <corrupt GNU_ABI_TAG>";
5056     else
5057       OS << "    OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5058     break;
5059   }
5060   case ELF::NT_GNU_BUILD_ID: {
5061     OS << "    Build ID: " << getGNUBuildId(Desc);
5062     break;
5063   }
5064   case ELF::NT_GNU_GOLD_VERSION:
5065     OS << "    Version: " << getDescAsStringRef(Desc);
5066     break;
5067   case ELF::NT_GNU_PROPERTY_TYPE_0:
5068     OS << "    Properties:";
5069     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
5070       OS << "    " << Property << "\n";
5071     break;
5072   }
5073   OS << '\n';
5074   return true;
5075 }
5076 
5077 using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>;
5078 static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType,
5079                                                       ArrayRef<uint8_t> Desc) {
5080   AndroidNoteProperties Props;
5081   switch (NoteType) {
5082   case ELF::NT_ANDROID_TYPE_MEMTAG:
5083     if (Desc.empty()) {
5084       Props.emplace_back("Invalid .note.android.memtag", "");
5085       return Props;
5086     }
5087 
5088     switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) {
5089     case NT_MEMTAG_LEVEL_NONE:
5090       Props.emplace_back("Tagging Mode", "NONE");
5091       break;
5092     case NT_MEMTAG_LEVEL_ASYNC:
5093       Props.emplace_back("Tagging Mode", "ASYNC");
5094       break;
5095     case NT_MEMTAG_LEVEL_SYNC:
5096       Props.emplace_back("Tagging Mode", "SYNC");
5097       break;
5098     default:
5099       Props.emplace_back(
5100           "Tagging Mode",
5101           ("Unknown (" + Twine::utohexstr(Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")")
5102               .str());
5103       break;
5104     }
5105     Props.emplace_back("Heap",
5106                        (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled");
5107     Props.emplace_back("Stack",
5108                        (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled");
5109     break;
5110   default:
5111     return Props;
5112   }
5113   return Props;
5114 }
5115 
5116 static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType,
5117                              ArrayRef<uint8_t> Desc) {
5118   // Return true if we were able to pretty-print the note, false otherwise.
5119   AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
5120   if (Props.empty())
5121     return false;
5122   for (const auto &KV : Props)
5123     OS << "    " << KV.first << ": " << KV.second << '\n';
5124   OS << '\n';
5125   return true;
5126 }
5127 
5128 template <typename ELFT>
5129 static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType,
5130                                     ArrayRef<uint8_t> Desc) {
5131   switch (NoteType) {
5132   default:
5133     return false;
5134   case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
5135     OS << "    Version: " << getDescAsStringRef(Desc);
5136     break;
5137   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
5138     OS << "    Producer: " << getDescAsStringRef(Desc);
5139     break;
5140   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
5141     OS << "    Producer version: " << getDescAsStringRef(Desc);
5142     break;
5143   }
5144   OS << '\n';
5145   return true;
5146 }
5147 
5148 const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
5149     {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
5150     {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
5151     {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
5152     {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
5153     {"LA48", NT_FREEBSD_FCTL_LA48},
5154     {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
5155 };
5156 
5157 struct FreeBSDNote {
5158   std::string Type;
5159   std::string Value;
5160 };
5161 
5162 template <typename ELFT>
5163 static Optional<FreeBSDNote>
5164 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
5165   if (IsCore)
5166     return None; // No pretty-printing yet.
5167   switch (NoteType) {
5168   case ELF::NT_FREEBSD_ABI_TAG:
5169     if (Desc.size() != 4)
5170       return None;
5171     return FreeBSDNote{
5172         "ABI tag",
5173         utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
5174   case ELF::NT_FREEBSD_ARCH_TAG:
5175     return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
5176   case ELF::NT_FREEBSD_FEATURE_CTL: {
5177     if (Desc.size() != 4)
5178       return None;
5179     unsigned Value =
5180         support::endian::read32<ELFT::TargetEndianness>(Desc.data());
5181     std::string FlagsStr;
5182     raw_string_ostream OS(FlagsStr);
5183     printFlags(Value, makeArrayRef(FreeBSDFeatureCtlFlags), OS);
5184     if (OS.str().empty())
5185       OS << "0x" << utohexstr(Value);
5186     else
5187       OS << "(0x" << utohexstr(Value) << ")";
5188     return FreeBSDNote{"Feature flags", OS.str()};
5189   }
5190   default:
5191     return None;
5192   }
5193 }
5194 
5195 struct AMDNote {
5196   std::string Type;
5197   std::string Value;
5198 };
5199 
5200 template <typename ELFT>
5201 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5202   switch (NoteType) {
5203   default:
5204     return {"", ""};
5205   case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
5206     struct CodeObjectVersion {
5207       uint32_t MajorVersion;
5208       uint32_t MinorVersion;
5209     };
5210     if (Desc.size() != sizeof(CodeObjectVersion))
5211       return {"AMD HSA Code Object Version",
5212               "Invalid AMD HSA Code Object Version"};
5213     std::string VersionString;
5214     raw_string_ostream StrOS(VersionString);
5215     auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
5216     StrOS << "[Major: " << Version->MajorVersion
5217           << ", Minor: " << Version->MinorVersion << "]";
5218     return {"AMD HSA Code Object Version", VersionString};
5219   }
5220   case ELF::NT_AMD_HSA_HSAIL: {
5221     struct HSAILProperties {
5222       uint32_t HSAILMajorVersion;
5223       uint32_t HSAILMinorVersion;
5224       uint8_t Profile;
5225       uint8_t MachineModel;
5226       uint8_t DefaultFloatRound;
5227     };
5228     if (Desc.size() != sizeof(HSAILProperties))
5229       return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5230     auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
5231     std::string HSAILPropetiesString;
5232     raw_string_ostream StrOS(HSAILPropetiesString);
5233     StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
5234           << ", HSAIL Minor: " << Properties->HSAILMinorVersion
5235           << ", Profile: " << uint32_t(Properties->Profile)
5236           << ", Machine Model: " << uint32_t(Properties->MachineModel)
5237           << ", Default Float Round: "
5238           << uint32_t(Properties->DefaultFloatRound) << "]";
5239     return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
5240   }
5241   case ELF::NT_AMD_HSA_ISA_VERSION: {
5242     struct IsaVersion {
5243       uint16_t VendorNameSize;
5244       uint16_t ArchitectureNameSize;
5245       uint32_t Major;
5246       uint32_t Minor;
5247       uint32_t Stepping;
5248     };
5249     if (Desc.size() < sizeof(IsaVersion))
5250       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5251     auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
5252     if (Desc.size() < sizeof(IsaVersion) +
5253                           Isa->VendorNameSize + Isa->ArchitectureNameSize ||
5254         Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
5255       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5256     std::string IsaString;
5257     raw_string_ostream StrOS(IsaString);
5258     StrOS << "[Vendor: "
5259           << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
5260           << ", Architecture: "
5261           << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
5262                        Isa->ArchitectureNameSize - 1)
5263           << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
5264           << ", Stepping: " << Isa->Stepping << "]";
5265     return {"AMD HSA ISA Version", IsaString};
5266   }
5267   case ELF::NT_AMD_HSA_METADATA: {
5268     if (Desc.size() == 0)
5269       return {"AMD HSA Metadata", ""};
5270     return {
5271         "AMD HSA Metadata",
5272         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
5273   }
5274   case ELF::NT_AMD_HSA_ISA_NAME: {
5275     if (Desc.size() == 0)
5276       return {"AMD HSA ISA Name", ""};
5277     return {
5278         "AMD HSA ISA Name",
5279         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5280   }
5281   case ELF::NT_AMD_PAL_METADATA: {
5282     struct PALMetadata {
5283       uint32_t Key;
5284       uint32_t Value;
5285     };
5286     if (Desc.size() % sizeof(PALMetadata) != 0)
5287       return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5288     auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
5289     std::string MetadataString;
5290     raw_string_ostream StrOS(MetadataString);
5291     for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
5292       StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
5293     }
5294     return {"AMD PAL Metadata", MetadataString};
5295   }
5296   }
5297 }
5298 
5299 struct AMDGPUNote {
5300   std::string Type;
5301   std::string Value;
5302 };
5303 
5304 template <typename ELFT>
5305 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5306   switch (NoteType) {
5307   default:
5308     return {"", ""};
5309   case ELF::NT_AMDGPU_METADATA: {
5310     StringRef MsgPackString =
5311         StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5312     msgpack::Document MsgPackDoc;
5313     if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5314       return {"", ""};
5315 
5316     AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5317     std::string MetadataString;
5318     if (!Verifier.verify(MsgPackDoc.getRoot()))
5319       MetadataString = "Invalid AMDGPU Metadata\n";
5320 
5321     raw_string_ostream StrOS(MetadataString);
5322     if (MsgPackDoc.getRoot().isScalar()) {
5323       // TODO: passing a scalar root to toYAML() asserts:
5324       // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5325       //    "plain scalar documents are not supported")
5326       // To avoid this crash we print the raw data instead.
5327       return {"", ""};
5328     }
5329     MsgPackDoc.toYAML(StrOS);
5330     return {"AMDGPU Metadata", StrOS.str()};
5331   }
5332   }
5333 }
5334 
5335 struct CoreFileMapping {
5336   uint64_t Start, End, Offset;
5337   StringRef Filename;
5338 };
5339 
5340 struct CoreNote {
5341   uint64_t PageSize;
5342   std::vector<CoreFileMapping> Mappings;
5343 };
5344 
5345 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5346   // Expected format of the NT_FILE note description:
5347   // 1. # of file mappings (call it N)
5348   // 2. Page size
5349   // 3. N (start, end, offset) triples
5350   // 4. N packed filenames (null delimited)
5351   // Each field is an Elf_Addr, except for filenames which are char* strings.
5352 
5353   CoreNote Ret;
5354   const int Bytes = Desc.getAddressSize();
5355 
5356   if (!Desc.isValidOffsetForAddress(2))
5357     return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5358                        " is too short, expected at least 0x" +
5359                        Twine::utohexstr(Bytes * 2));
5360   if (Desc.getData().back() != 0)
5361     return createError("the note is not NUL terminated");
5362 
5363   uint64_t DescOffset = 0;
5364   uint64_t FileCount = Desc.getAddress(&DescOffset);
5365   Ret.PageSize = Desc.getAddress(&DescOffset);
5366 
5367   if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5368     return createError("unable to read file mappings (found " +
5369                        Twine(FileCount) + "): the note of size 0x" +
5370                        Twine::utohexstr(Desc.size()) + " is too short");
5371 
5372   uint64_t FilenamesOffset = 0;
5373   DataExtractor Filenames(
5374       Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5375       Desc.isLittleEndian(), Desc.getAddressSize());
5376 
5377   Ret.Mappings.resize(FileCount);
5378   size_t I = 0;
5379   for (CoreFileMapping &Mapping : Ret.Mappings) {
5380     ++I;
5381     if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5382       return createError(
5383           "unable to read the file name for the mapping with index " +
5384           Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5385           " is truncated");
5386     Mapping.Start = Desc.getAddress(&DescOffset);
5387     Mapping.End = Desc.getAddress(&DescOffset);
5388     Mapping.Offset = Desc.getAddress(&DescOffset);
5389     Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5390   }
5391 
5392   return Ret;
5393 }
5394 
5395 template <typename ELFT>
5396 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5397   // Length of "0x<address>" string.
5398   const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5399 
5400   OS << "    Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5401   OS << "    " << right_justify("Start", FieldWidth) << "  "
5402      << right_justify("End", FieldWidth) << "  "
5403      << right_justify("Page Offset", FieldWidth) << '\n';
5404   for (const CoreFileMapping &Mapping : Note.Mappings) {
5405     OS << "    " << format_hex(Mapping.Start, FieldWidth) << "  "
5406        << format_hex(Mapping.End, FieldWidth) << "  "
5407        << format_hex(Mapping.Offset, FieldWidth) << "\n        "
5408        << Mapping.Filename << '\n';
5409   }
5410 }
5411 
5412 const NoteType GenericNoteTypes[] = {
5413     {ELF::NT_VERSION, "NT_VERSION (version)"},
5414     {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5415     {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5416     {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5417 };
5418 
5419 const NoteType GNUNoteTypes[] = {
5420     {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5421     {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5422     {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5423     {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5424     {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5425 };
5426 
5427 const NoteType FreeBSDCoreNoteTypes[] = {
5428     {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5429     {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5430     {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5431     {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5432     {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5433     {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5434     {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5435     {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5436     {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5437      "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5438     {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5439 };
5440 
5441 const NoteType FreeBSDNoteTypes[] = {
5442     {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5443     {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5444     {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5445     {ELF::NT_FREEBSD_FEATURE_CTL,
5446      "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5447 };
5448 
5449 const NoteType NetBSDCoreNoteTypes[] = {
5450     {ELF::NT_NETBSDCORE_PROCINFO,
5451      "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5452     {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5453     {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5454 };
5455 
5456 const NoteType OpenBSDCoreNoteTypes[] = {
5457     {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5458     {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5459     {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"},
5460     {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"},
5461     {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"},
5462 };
5463 
5464 const NoteType AMDNoteTypes[] = {
5465     {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
5466      "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5467     {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5468     {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5469     {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5470     {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5471     {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5472 };
5473 
5474 const NoteType AMDGPUNoteTypes[] = {
5475     {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5476 };
5477 
5478 const NoteType LLVMOMPOFFLOADNoteTypes[] = {
5479     {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION,
5480      "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5481     {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER,
5482      "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5483     {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION,
5484      "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5485 };
5486 
5487 const NoteType AndroidNoteTypes[] = {
5488     {ELF::NT_ANDROID_TYPE_IDENT, "NT_ANDROID_TYPE_IDENT"},
5489     {ELF::NT_ANDROID_TYPE_KUSER, "NT_ANDROID_TYPE_KUSER"},
5490     {ELF::NT_ANDROID_TYPE_MEMTAG,
5491      "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"},
5492 };
5493 
5494 const NoteType CoreNoteTypes[] = {
5495     {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5496     {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5497     {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5498     {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5499     {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5500     {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5501     {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5502     {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5503     {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5504     {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5505     {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5506 
5507     {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5508     {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5509     {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5510     {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5511     {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5512     {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5513     {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5514     {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5515     {ELF::NT_PPC_TM_CFPR,
5516      "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5517     {ELF::NT_PPC_TM_CVMX,
5518      "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5519     {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5520     {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5521     {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5522     {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5523     {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5524 
5525     {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
5526     {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
5527     {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5528 
5529     {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5530     {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
5531     {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
5532     {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
5533     {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
5534     {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
5535     {ELF::NT_S390_LAST_BREAK,
5536      "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5537     {ELF::NT_S390_SYSTEM_CALL,
5538      "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5539     {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
5540     {ELF::NT_S390_VXRS_LOW,
5541      "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5542     {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5543     {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5544     {ELF::NT_S390_GS_BC,
5545      "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5546 
5547     {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
5548     {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
5549     {ELF::NT_ARM_HW_BREAK,
5550      "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5551     {ELF::NT_ARM_HW_WATCH,
5552      "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5553 
5554     {ELF::NT_FILE, "NT_FILE (mapped files)"},
5555     {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5556     {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5557 };
5558 
5559 template <class ELFT>
5560 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
5561   uint32_t Type = Note.getType();
5562   auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
5563     for (const NoteType &N : V)
5564       if (N.ID == Type)
5565         return N.Name;
5566     return "";
5567   };
5568 
5569   StringRef Name = Note.getName();
5570   if (Name == "GNU")
5571     return FindNote(GNUNoteTypes);
5572   if (Name == "FreeBSD") {
5573     if (ELFType == ELF::ET_CORE) {
5574       // FreeBSD also places the generic core notes in the FreeBSD namespace.
5575       StringRef Result = FindNote(FreeBSDCoreNoteTypes);
5576       if (!Result.empty())
5577         return Result;
5578       return FindNote(CoreNoteTypes);
5579     } else {
5580       return FindNote(FreeBSDNoteTypes);
5581     }
5582   }
5583   if (ELFType == ELF::ET_CORE && Name.startswith("NetBSD-CORE")) {
5584     StringRef Result = FindNote(NetBSDCoreNoteTypes);
5585     if (!Result.empty())
5586       return Result;
5587     return FindNote(CoreNoteTypes);
5588   }
5589   if (ELFType == ELF::ET_CORE && Name.startswith("OpenBSD")) {
5590     // OpenBSD also places the generic core notes in the OpenBSD namespace.
5591     StringRef Result = FindNote(OpenBSDCoreNoteTypes);
5592     if (!Result.empty())
5593       return Result;
5594     return FindNote(CoreNoteTypes);
5595   }
5596   if (Name == "AMD")
5597     return FindNote(AMDNoteTypes);
5598   if (Name == "AMDGPU")
5599     return FindNote(AMDGPUNoteTypes);
5600   if (Name == "LLVMOMPOFFLOAD")
5601     return FindNote(LLVMOMPOFFLOADNoteTypes);
5602   if (Name == "Android")
5603     return FindNote(AndroidNoteTypes);
5604 
5605   if (ELFType == ELF::ET_CORE)
5606     return FindNote(CoreNoteTypes);
5607   return FindNote(GenericNoteTypes);
5608 }
5609 
5610 template <class ELFT>
5611 static void printNotesHelper(
5612     const ELFDumper<ELFT> &Dumper,
5613     llvm::function_ref<void(Optional<StringRef>, typename ELFT::Off,
5614                             typename ELFT::Addr)>
5615         StartNotesFn,
5616     llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
5617     llvm::function_ref<void()> FinishNotesFn) {
5618   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
5619   bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
5620 
5621   ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
5622   if (!IsCoreFile && !Sections.empty()) {
5623     for (const typename ELFT::Shdr &S : Sections) {
5624       if (S.sh_type != SHT_NOTE)
5625         continue;
5626       StartNotesFn(expectedToOptional(Obj.getSectionName(S)), S.sh_offset,
5627                    S.sh_size);
5628       Error Err = Error::success();
5629       size_t I = 0;
5630       for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
5631         if (Error E = ProcessNoteFn(Note, IsCoreFile))
5632           Dumper.reportUniqueWarning(
5633               "unable to read note with index " + Twine(I) + " from the " +
5634               describe(Obj, S) + ": " + toString(std::move(E)));
5635         ++I;
5636       }
5637       if (Err)
5638         Dumper.reportUniqueWarning("unable to read notes from the " +
5639                                    describe(Obj, S) + ": " +
5640                                    toString(std::move(Err)));
5641       FinishNotesFn();
5642     }
5643     return;
5644   }
5645 
5646   Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
5647   if (!PhdrsOrErr) {
5648     Dumper.reportUniqueWarning(
5649         "unable to read program headers to locate the PT_NOTE segment: " +
5650         toString(PhdrsOrErr.takeError()));
5651     return;
5652   }
5653 
5654   for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
5655     const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
5656     if (P.p_type != PT_NOTE)
5657       continue;
5658     StartNotesFn(/*SecName=*/None, P.p_offset, P.p_filesz);
5659     Error Err = Error::success();
5660     size_t Index = 0;
5661     for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
5662       if (Error E = ProcessNoteFn(Note, IsCoreFile))
5663         Dumper.reportUniqueWarning("unable to read note with index " +
5664                                    Twine(Index) +
5665                                    " from the PT_NOTE segment with index " +
5666                                    Twine(I) + ": " + toString(std::move(E)));
5667       ++Index;
5668     }
5669     if (Err)
5670       Dumper.reportUniqueWarning(
5671           "unable to read notes from the PT_NOTE segment with index " +
5672           Twine(I) + ": " + toString(std::move(Err)));
5673     FinishNotesFn();
5674   }
5675 }
5676 
5677 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
5678   bool IsFirstHeader = true;
5679   auto PrintHeader = [&](Optional<StringRef> SecName,
5680                          const typename ELFT::Off Offset,
5681                          const typename ELFT::Addr Size) {
5682     // Print a newline between notes sections to match GNU readelf.
5683     if (!IsFirstHeader) {
5684       OS << '\n';
5685     } else {
5686       IsFirstHeader = false;
5687     }
5688 
5689     OS << "Displaying notes found ";
5690 
5691     if (SecName)
5692       OS << "in: " << *SecName << "\n";
5693     else
5694       OS << "at file offset " << format_hex(Offset, 10) << " with length "
5695          << format_hex(Size, 10) << ":\n";
5696 
5697     OS << "  Owner                Data size \tDescription\n";
5698   };
5699 
5700   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
5701     StringRef Name = Note.getName();
5702     ArrayRef<uint8_t> Descriptor = Note.getDesc();
5703     Elf_Word Type = Note.getType();
5704 
5705     // Print the note owner/type.
5706     OS << "  " << left_justify(Name, 20) << ' '
5707        << format_hex(Descriptor.size(), 10) << '\t';
5708 
5709     StringRef NoteType =
5710         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
5711     if (!NoteType.empty())
5712       OS << NoteType << '\n';
5713     else
5714       OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
5715 
5716     // Print the description, or fallback to printing raw bytes for unknown
5717     // owners/if we fail to pretty-print the contents.
5718     if (Name == "GNU") {
5719       if (printGNUNote<ELFT>(OS, Type, Descriptor))
5720         return Error::success();
5721     } else if (Name == "FreeBSD") {
5722       if (Optional<FreeBSDNote> N =
5723               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
5724         OS << "    " << N->Type << ": " << N->Value << '\n';
5725         return Error::success();
5726       }
5727     } else if (Name == "AMD") {
5728       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5729       if (!N.Type.empty()) {
5730         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
5731         return Error::success();
5732       }
5733     } else if (Name == "AMDGPU") {
5734       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5735       if (!N.Type.empty()) {
5736         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
5737         return Error::success();
5738       }
5739     } else if (Name == "LLVMOMPOFFLOAD") {
5740       if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor))
5741         return Error::success();
5742     } else if (Name == "CORE") {
5743       if (Type == ELF::NT_FILE) {
5744         DataExtractor DescExtractor(Descriptor,
5745                                     ELFT::TargetEndianness == support::little,
5746                                     sizeof(Elf_Addr));
5747         if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
5748           printCoreNote<ELFT>(OS, *NoteOrErr);
5749           return Error::success();
5750         } else {
5751           return NoteOrErr.takeError();
5752         }
5753       }
5754     } else if (Name == "Android") {
5755       if (printAndroidNote(OS, Type, Descriptor))
5756         return Error::success();
5757     }
5758     if (!Descriptor.empty()) {
5759       OS << "   description data:";
5760       for (uint8_t B : Descriptor)
5761         OS << " " << format("%02x", B);
5762       OS << '\n';
5763     }
5764     return Error::success();
5765   };
5766 
5767   printNotesHelper(*this, PrintHeader, ProcessNote, []() {});
5768 }
5769 
5770 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
5771   OS << "printELFLinkerOptions not implemented!\n";
5772 }
5773 
5774 template <class ELFT>
5775 void ELFDumper<ELFT>::printDependentLibsHelper(
5776     function_ref<void(const Elf_Shdr &)> OnSectionStart,
5777     function_ref<void(StringRef, uint64_t)> OnLibEntry) {
5778   auto Warn = [this](unsigned SecNdx, StringRef Msg) {
5779     this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
5780                               Twine(SecNdx) + " is broken: " + Msg);
5781   };
5782 
5783   unsigned I = -1;
5784   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
5785     ++I;
5786     if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
5787       continue;
5788 
5789     OnSectionStart(Shdr);
5790 
5791     Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
5792     if (!ContentsOrErr) {
5793       Warn(I, toString(ContentsOrErr.takeError()));
5794       continue;
5795     }
5796 
5797     ArrayRef<uint8_t> Contents = *ContentsOrErr;
5798     if (!Contents.empty() && Contents.back() != 0) {
5799       Warn(I, "the content is not null-terminated");
5800       continue;
5801     }
5802 
5803     for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
5804       StringRef Lib((const char *)I);
5805       OnLibEntry(Lib, I - Contents.begin());
5806       I += Lib.size() + 1;
5807     }
5808   }
5809 }
5810 
5811 template <class ELFT>
5812 void ELFDumper<ELFT>::forEachRelocationDo(
5813     const Elf_Shdr &Sec, bool RawRelr,
5814     llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
5815                             const Elf_Shdr &, const Elf_Shdr *)>
5816         RelRelaFn,
5817     llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
5818   auto Warn = [&](Error &&E,
5819                   const Twine &Prefix = "unable to read relocations from") {
5820     this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
5821                               toString(std::move(E)));
5822   };
5823 
5824   // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
5825   // For them we should not treat the value of the sh_link field as an index of
5826   // a symbol table.
5827   const Elf_Shdr *SymTab;
5828   if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) {
5829     Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
5830     if (!SymTabOrErr) {
5831       Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
5832       return;
5833     }
5834     SymTab = *SymTabOrErr;
5835   }
5836 
5837   unsigned RelNdx = 0;
5838   const bool IsMips64EL = this->Obj.isMips64EL();
5839   switch (Sec.sh_type) {
5840   case ELF::SHT_REL:
5841     if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
5842       for (const Elf_Rel &R : *RangeOrErr)
5843         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5844     } else {
5845       Warn(RangeOrErr.takeError());
5846     }
5847     break;
5848   case ELF::SHT_RELA:
5849     if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
5850       for (const Elf_Rela &R : *RangeOrErr)
5851         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5852     } else {
5853       Warn(RangeOrErr.takeError());
5854     }
5855     break;
5856   case ELF::SHT_RELR:
5857   case ELF::SHT_ANDROID_RELR: {
5858     Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
5859     if (!RangeOrErr) {
5860       Warn(RangeOrErr.takeError());
5861       break;
5862     }
5863     if (RawRelr) {
5864       for (const Elf_Relr &R : *RangeOrErr)
5865         RelrFn(R);
5866       break;
5867     }
5868 
5869     for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
5870       RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
5871                 /*SymTab=*/nullptr);
5872     break;
5873   }
5874   case ELF::SHT_ANDROID_REL:
5875   case ELF::SHT_ANDROID_RELA:
5876     if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
5877       for (const Elf_Rela &R : *RelasOrErr)
5878         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5879     } else {
5880       Warn(RelasOrErr.takeError());
5881     }
5882     break;
5883   }
5884 }
5885 
5886 template <class ELFT>
5887 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
5888   StringRef Name = "<?>";
5889   if (Expected<StringRef> SecNameOrErr =
5890           Obj.getSectionName(Sec, this->WarningHandler))
5891     Name = *SecNameOrErr;
5892   else
5893     this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
5894                               ": " + toString(SecNameOrErr.takeError()));
5895   return Name;
5896 }
5897 
5898 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
5899   bool SectionStarted = false;
5900   struct NameOffset {
5901     StringRef Name;
5902     uint64_t Offset;
5903   };
5904   std::vector<NameOffset> SecEntries;
5905   NameOffset Current;
5906   auto PrintSection = [&]() {
5907     OS << "Dependent libraries section " << Current.Name << " at offset "
5908        << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
5909        << " entries:\n";
5910     for (NameOffset Entry : SecEntries)
5911       OS << "  [" << format("%6" PRIx64, Entry.Offset) << "]  " << Entry.Name
5912          << "\n";
5913     OS << "\n";
5914     SecEntries.clear();
5915   };
5916 
5917   auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
5918     if (SectionStarted)
5919       PrintSection();
5920     SectionStarted = true;
5921     Current.Offset = Shdr.sh_offset;
5922     Current.Name = this->getPrintableSectionName(Shdr);
5923   };
5924   auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
5925     SecEntries.push_back(NameOffset{Lib, Offset});
5926   };
5927 
5928   this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
5929   if (SectionStarted)
5930     PrintSection();
5931 }
5932 
5933 template <class ELFT>
5934 SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress(
5935     uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec) {
5936   SmallVector<uint32_t> SymbolIndexes;
5937   if (!this->AddressToIndexMap.hasValue()) {
5938     // Populate the address to index map upon the first invocation of this
5939     // function.
5940     this->AddressToIndexMap.emplace();
5941     if (this->DotSymtabSec) {
5942       if (Expected<Elf_Sym_Range> SymsOrError =
5943               Obj.symbols(this->DotSymtabSec)) {
5944         uint32_t Index = (uint32_t)-1;
5945         for (const Elf_Sym &Sym : *SymsOrError) {
5946           ++Index;
5947 
5948           if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
5949             continue;
5950 
5951           Expected<uint64_t> SymAddrOrErr =
5952               ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress();
5953           if (!SymAddrOrErr) {
5954             std::string Name = this->getStaticSymbolName(Index);
5955             reportUniqueWarning("unable to get address of symbol '" + Name +
5956                                 "': " + toString(SymAddrOrErr.takeError()));
5957             return SymbolIndexes;
5958           }
5959 
5960           (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index);
5961         }
5962       } else {
5963         reportUniqueWarning("unable to read the symbol table: " +
5964                             toString(SymsOrError.takeError()));
5965       }
5966     }
5967   }
5968 
5969   auto Symbols = this->AddressToIndexMap->find(SymValue);
5970   if (Symbols == this->AddressToIndexMap->end())
5971     return SymbolIndexes;
5972 
5973   for (uint32_t Index : Symbols->second) {
5974     // Check if the symbol is in the right section. FunctionSec == None
5975     // means "any section".
5976     if (FunctionSec) {
5977       const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index));
5978       if (Expected<const Elf_Shdr *> SecOrErr =
5979               Obj.getSection(Sym, this->DotSymtabSec,
5980                              this->getShndxTable(this->DotSymtabSec))) {
5981         if (*FunctionSec != *SecOrErr)
5982           continue;
5983       } else {
5984         std::string Name = this->getStaticSymbolName(Index);
5985         // Note: it is impossible to trigger this error currently, it is
5986         // untested.
5987         reportUniqueWarning("unable to get section of symbol '" + Name +
5988                             "': " + toString(SecOrErr.takeError()));
5989         return SymbolIndexes;
5990       }
5991     }
5992 
5993     SymbolIndexes.push_back(Index);
5994   }
5995 
5996   return SymbolIndexes;
5997 }
5998 
5999 template <class ELFT>
6000 bool ELFDumper<ELFT>::printFunctionStackSize(
6001     uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec,
6002     const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
6003   SmallVector<uint32_t> FuncSymIndexes =
6004       this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec);
6005   if (FuncSymIndexes.empty())
6006     reportUniqueWarning(
6007         "could not identify function symbol for stack size entry in " +
6008         describe(StackSizeSec));
6009 
6010   // Extract the size. The expectation is that Offset is pointing to the right
6011   // place, i.e. past the function address.
6012   Error Err = Error::success();
6013   uint64_t StackSize = Data.getULEB128(Offset, &Err);
6014   if (Err) {
6015     reportUniqueWarning("could not extract a valid stack size from " +
6016                         describe(StackSizeSec) + ": " +
6017                         toString(std::move(Err)));
6018     return false;
6019   }
6020 
6021   if (FuncSymIndexes.empty()) {
6022     printStackSizeEntry(StackSize, {"?"});
6023   } else {
6024     SmallVector<std::string> FuncSymNames;
6025     for (uint32_t Index : FuncSymIndexes)
6026       FuncSymNames.push_back(this->getStaticSymbolName(Index));
6027     printStackSizeEntry(StackSize, FuncSymNames);
6028   }
6029 
6030   return true;
6031 }
6032 
6033 template <class ELFT>
6034 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
6035                                              ArrayRef<std::string> FuncNames) {
6036   OS.PadToColumn(2);
6037   OS << format_decimal(Size, 11);
6038   OS.PadToColumn(18);
6039 
6040   OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n";
6041 }
6042 
6043 template <class ELFT>
6044 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
6045                                      const Elf_Shdr &RelocSec, unsigned Ndx,
6046                                      const Elf_Shdr *SymTab,
6047                                      const Elf_Shdr *FunctionSec,
6048                                      const Elf_Shdr &StackSizeSec,
6049                                      const RelocationResolver &Resolver,
6050                                      DataExtractor Data) {
6051   // This function ignores potentially erroneous input, unless it is directly
6052   // related to stack size reporting.
6053   const Elf_Sym *Sym = nullptr;
6054   Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
6055   if (!TargetOrErr)
6056     reportUniqueWarning("unable to get the target of relocation with index " +
6057                         Twine(Ndx) + " in " + describe(RelocSec) + ": " +
6058                         toString(TargetOrErr.takeError()));
6059   else
6060     Sym = TargetOrErr->Sym;
6061 
6062   uint64_t RelocSymValue = 0;
6063   if (Sym) {
6064     Expected<const Elf_Shdr *> SectionOrErr =
6065         this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
6066     if (!SectionOrErr) {
6067       reportUniqueWarning(
6068           "cannot identify the section for relocation symbol '" +
6069           (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
6070     } else if (*SectionOrErr != FunctionSec) {
6071       reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
6072                           "' is not in the expected section");
6073       // Pretend that the symbol is in the correct section and report its
6074       // stack size anyway.
6075       FunctionSec = *SectionOrErr;
6076     }
6077 
6078     RelocSymValue = Sym->st_value;
6079   }
6080 
6081   uint64_t Offset = R.Offset;
6082   if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6083     reportUniqueWarning("found invalid relocation offset (0x" +
6084                         Twine::utohexstr(Offset) + ") into " +
6085                         describe(StackSizeSec) +
6086                         " while trying to extract a stack size entry");
6087     return;
6088   }
6089 
6090   uint64_t SymValue =
6091       Resolver(R.Type, Offset, RelocSymValue, Data.getAddress(&Offset),
6092                R.Addend.getValueOr(0));
6093   this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
6094                                &Offset);
6095 }
6096 
6097 template <class ELFT>
6098 void ELFDumper<ELFT>::printNonRelocatableStackSizes(
6099     std::function<void()> PrintHeader) {
6100   // This function ignores potentially erroneous input, unless it is directly
6101   // related to stack size reporting.
6102   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6103     if (this->getPrintableSectionName(Sec) != ".stack_sizes")
6104       continue;
6105     PrintHeader();
6106     ArrayRef<uint8_t> Contents =
6107         unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
6108     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6109     uint64_t Offset = 0;
6110     while (Offset < Contents.size()) {
6111       // The function address is followed by a ULEB representing the stack
6112       // size. Check for an extra byte before we try to process the entry.
6113       if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6114         reportUniqueWarning(
6115             describe(Sec) +
6116             " ended while trying to extract a stack size entry");
6117         break;
6118       }
6119       uint64_t SymValue = Data.getAddress(&Offset);
6120       if (!printFunctionStackSize(SymValue, /*FunctionSec=*/None, Sec, Data,
6121                                   &Offset))
6122         break;
6123     }
6124   }
6125 }
6126 
6127 template <class ELFT>
6128 void ELFDumper<ELFT>::getSectionAndRelocations(
6129     std::function<bool(const Elf_Shdr &)> IsMatch,
6130     llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap) {
6131   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6132     if (IsMatch(Sec))
6133       if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
6134               .second)
6135         continue;
6136 
6137     if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
6138       continue;
6139 
6140     Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info);
6141     if (!RelSecOrErr) {
6142       reportUniqueWarning(describe(Sec) +
6143                           ": failed to get a relocated section: " +
6144                           toString(RelSecOrErr.takeError()));
6145       continue;
6146     }
6147     const Elf_Shdr *ContentsSec = *RelSecOrErr;
6148     if (IsMatch(*ContentsSec))
6149       SecToRelocMap[ContentsSec] = &Sec;
6150   }
6151 }
6152 
6153 template <class ELFT>
6154 void ELFDumper<ELFT>::printRelocatableStackSizes(
6155     std::function<void()> PrintHeader) {
6156   // Build a map between stack size sections and their corresponding relocation
6157   // sections.
6158   llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap;
6159   auto IsMatch = [&](const Elf_Shdr &Sec) -> bool {
6160     StringRef SectionName;
6161     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
6162       SectionName = *NameOrErr;
6163     else
6164       consumeError(NameOrErr.takeError());
6165 
6166     return SectionName == ".stack_sizes";
6167   };
6168   getSectionAndRelocations(IsMatch, StackSizeRelocMap);
6169 
6170   for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
6171     PrintHeader();
6172     const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
6173     const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
6174 
6175     // Warn about stack size sections without a relocation section.
6176     if (!RelocSec) {
6177       reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
6178                                 ") does not have a corresponding "
6179                                 "relocation section"),
6180                     FileName);
6181       continue;
6182     }
6183 
6184     // A .stack_sizes section header's sh_link field is supposed to point
6185     // to the section that contains the functions whose stack sizes are
6186     // described in it.
6187     const Elf_Shdr *FunctionSec = unwrapOrError(
6188         this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
6189 
6190     SupportsRelocation IsSupportedFn;
6191     RelocationResolver Resolver;
6192     std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
6193     ArrayRef<uint8_t> Contents =
6194         unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
6195     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6196 
6197     forEachRelocationDo(
6198         *RelocSec, /*RawRelr=*/false,
6199         [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
6200             const Elf_Shdr *SymTab) {
6201           if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
6202             reportUniqueWarning(
6203                 describe(*RelocSec) +
6204                 " contains an unsupported relocation with index " + Twine(Ndx) +
6205                 ": " + Obj.getRelocationTypeName(R.Type));
6206             return;
6207           }
6208 
6209           this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
6210                                *StackSizesELFSec, Resolver, Data);
6211         },
6212         [](const Elf_Relr &) {
6213           llvm_unreachable("can't get here, because we only support "
6214                            "SHT_REL/SHT_RELA sections");
6215         });
6216   }
6217 }
6218 
6219 template <class ELFT>
6220 void GNUELFDumper<ELFT>::printStackSizes() {
6221   bool HeaderHasBeenPrinted = false;
6222   auto PrintHeader = [&]() {
6223     if (HeaderHasBeenPrinted)
6224       return;
6225     OS << "\nStack Sizes:\n";
6226     OS.PadToColumn(9);
6227     OS << "Size";
6228     OS.PadToColumn(18);
6229     OS << "Functions\n";
6230     HeaderHasBeenPrinted = true;
6231   };
6232 
6233   // For non-relocatable objects, look directly for sections whose name starts
6234   // with .stack_sizes and process the contents.
6235   if (this->Obj.getHeader().e_type == ELF::ET_REL)
6236     this->printRelocatableStackSizes(PrintHeader);
6237   else
6238     this->printNonRelocatableStackSizes(PrintHeader);
6239 }
6240 
6241 template <class ELFT>
6242 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6243   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6244   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6245     OS.PadToColumn(2);
6246     OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
6247     OS.PadToColumn(11 + Bias);
6248     OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
6249     OS.PadToColumn(22 + Bias);
6250     OS << format_hex_no_prefix(*E, 8 + Bias);
6251     OS.PadToColumn(31 + 2 * Bias);
6252     OS << Purpose << "\n";
6253   };
6254 
6255   OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6256   OS << " Canonical gp value: "
6257      << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6258 
6259   OS << " Reserved entries:\n";
6260   if (ELFT::Is64Bits)
6261     OS << "           Address     Access          Initial Purpose\n";
6262   else
6263     OS << "   Address     Access  Initial Purpose\n";
6264   PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6265   if (Parser.getGotModulePointer())
6266     PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6267 
6268   if (!Parser.getLocalEntries().empty()) {
6269     OS << "\n";
6270     OS << " Local entries:\n";
6271     if (ELFT::Is64Bits)
6272       OS << "           Address     Access          Initial\n";
6273     else
6274       OS << "   Address     Access  Initial\n";
6275     for (auto &E : Parser.getLocalEntries())
6276       PrintEntry(&E, "");
6277   }
6278 
6279   if (Parser.IsStatic)
6280     return;
6281 
6282   if (!Parser.getGlobalEntries().empty()) {
6283     OS << "\n";
6284     OS << " Global entries:\n";
6285     if (ELFT::Is64Bits)
6286       OS << "           Address     Access          Initial         Sym.Val."
6287          << " Type    Ndx Name\n";
6288     else
6289       OS << "   Address     Access  Initial Sym.Val. Type    Ndx Name\n";
6290 
6291     DataRegion<Elf_Word> ShndxTable(
6292         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6293     for (auto &E : Parser.getGlobalEntries()) {
6294       const Elf_Sym &Sym = *Parser.getGotSym(&E);
6295       const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
6296       std::string SymName = this->getFullSymbolName(
6297           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6298 
6299       OS.PadToColumn(2);
6300       OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6301       OS.PadToColumn(11 + Bias);
6302       OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6303       OS.PadToColumn(22 + Bias);
6304       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6305       OS.PadToColumn(31 + 2 * Bias);
6306       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6307       OS.PadToColumn(40 + 3 * Bias);
6308       OS << enumToString(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6309       OS.PadToColumn(48 + 3 * Bias);
6310       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6311                                 ShndxTable);
6312       OS.PadToColumn(52 + 3 * Bias);
6313       OS << SymName << "\n";
6314     }
6315   }
6316 
6317   if (!Parser.getOtherEntries().empty())
6318     OS << "\n Number of TLS and multi-GOT entries "
6319        << Parser.getOtherEntries().size() << "\n";
6320 }
6321 
6322 template <class ELFT>
6323 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6324   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6325   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6326     OS.PadToColumn(2);
6327     OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6328     OS.PadToColumn(11 + Bias);
6329     OS << format_hex_no_prefix(*E, 8 + Bias);
6330     OS.PadToColumn(20 + 2 * Bias);
6331     OS << Purpose << "\n";
6332   };
6333 
6334   OS << "PLT GOT:\n\n";
6335 
6336   OS << " Reserved entries:\n";
6337   OS << "   Address  Initial Purpose\n";
6338   PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6339   if (Parser.getPltModulePointer())
6340     PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6341 
6342   if (!Parser.getPltEntries().empty()) {
6343     OS << "\n";
6344     OS << " Entries:\n";
6345     OS << "   Address  Initial Sym.Val. Type    Ndx Name\n";
6346     DataRegion<Elf_Word> ShndxTable(
6347         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6348     for (auto &E : Parser.getPltEntries()) {
6349       const Elf_Sym &Sym = *Parser.getPltSym(&E);
6350       const Elf_Sym &FirstSym = *cantFail(
6351           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
6352       std::string SymName = this->getFullSymbolName(
6353           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6354 
6355       OS.PadToColumn(2);
6356       OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6357       OS.PadToColumn(11 + Bias);
6358       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6359       OS.PadToColumn(20 + 2 * Bias);
6360       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6361       OS.PadToColumn(29 + 3 * Bias);
6362       OS << enumToString(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6363       OS.PadToColumn(37 + 3 * Bias);
6364       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6365                                 ShndxTable);
6366       OS.PadToColumn(41 + 3 * Bias);
6367       OS << SymName << "\n";
6368     }
6369   }
6370 }
6371 
6372 template <class ELFT>
6373 Expected<const Elf_Mips_ABIFlags<ELFT> *>
6374 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6375   const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6376   if (Sec == nullptr)
6377     return nullptr;
6378 
6379   constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6380   Expected<ArrayRef<uint8_t>> DataOrErr =
6381       Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6382   if (!DataOrErr)
6383     return createError(ErrPrefix + toString(DataOrErr.takeError()));
6384 
6385   if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6386     return createError(ErrPrefix + "it has a wrong size (" +
6387         Twine(DataOrErr->size()) + ")");
6388   return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6389 }
6390 
6391 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
6392   const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6393   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6394           getMipsAbiFlagsSection(*this))
6395     Flags = *SecOrErr;
6396   else
6397     this->reportUniqueWarning(SecOrErr.takeError());
6398   if (!Flags)
6399     return;
6400 
6401   OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6402   OS << "ISA: MIPS" << int(Flags->isa_level);
6403   if (Flags->isa_rev > 1)
6404     OS << "r" << int(Flags->isa_rev);
6405   OS << "\n";
6406   OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6407   OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6408   OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6409   OS << "FP ABI: "
6410      << enumToString(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)) << "\n";
6411   OS << "ISA Extension: "
6412      << enumToString(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n";
6413   if (Flags->ases == 0)
6414     OS << "ASEs: None\n";
6415   else
6416     // FIXME: Print each flag on a separate line.
6417     OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags))
6418        << "\n";
6419   OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6420   OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6421   OS << "\n";
6422 }
6423 
6424 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
6425   const Elf_Ehdr &E = this->Obj.getHeader();
6426   {
6427     DictScope D(W, "ElfHeader");
6428     {
6429       DictScope D(W, "Ident");
6430       W.printBinary("Magic", makeArrayRef(E.e_ident).slice(ELF::EI_MAG0, 4));
6431       W.printEnum("Class", E.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
6432       W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
6433                   makeArrayRef(ElfDataEncoding));
6434       W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
6435 
6436       auto OSABI = makeArrayRef(ElfOSABI);
6437       if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6438           E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6439         switch (E.e_machine) {
6440         case ELF::EM_AMDGPU:
6441           OSABI = makeArrayRef(AMDGPUElfOSABI);
6442           break;
6443         case ELF::EM_ARM:
6444           OSABI = makeArrayRef(ARMElfOSABI);
6445           break;
6446         case ELF::EM_TI_C6000:
6447           OSABI = makeArrayRef(C6000ElfOSABI);
6448           break;
6449         }
6450       }
6451       W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
6452       W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
6453       W.printBinary("Unused", makeArrayRef(E.e_ident).slice(ELF::EI_PAD));
6454     }
6455 
6456     std::string TypeStr;
6457     if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
6458       TypeStr = Ent->Name.str();
6459     } else {
6460       if (E.e_type >= ET_LOPROC)
6461         TypeStr = "Processor Specific";
6462       else if (E.e_type >= ET_LOOS)
6463         TypeStr = "OS Specific";
6464       else
6465         TypeStr = "Unknown";
6466     }
6467     W.printString("Type", TypeStr + " (0x" + to_hexString(E.e_type) + ")");
6468 
6469     W.printEnum("Machine", E.e_machine, makeArrayRef(ElfMachineType));
6470     W.printNumber("Version", E.e_version);
6471     W.printHex("Entry", E.e_entry);
6472     W.printHex("ProgramHeaderOffset", E.e_phoff);
6473     W.printHex("SectionHeaderOffset", E.e_shoff);
6474     if (E.e_machine == EM_MIPS)
6475       W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderMipsFlags),
6476                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6477                    unsigned(ELF::EF_MIPS_MACH));
6478     else if (E.e_machine == EM_AMDGPU) {
6479       switch (E.e_ident[ELF::EI_ABIVERSION]) {
6480       default:
6481         W.printHex("Flags", E.e_flags);
6482         break;
6483       case 0:
6484         // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6485         LLVM_FALLTHROUGH;
6486       case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
6487         W.printFlags("Flags", E.e_flags,
6488                      makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
6489                      unsigned(ELF::EF_AMDGPU_MACH));
6490         break;
6491       case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
6492       case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
6493         W.printFlags("Flags", E.e_flags,
6494                      makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
6495                      unsigned(ELF::EF_AMDGPU_MACH),
6496                      unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
6497                      unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
6498         break;
6499       }
6500     } else if (E.e_machine == EM_RISCV)
6501       W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
6502     else if (E.e_machine == EM_AVR)
6503       W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderAVRFlags),
6504                    unsigned(ELF::EF_AVR_ARCH_MASK));
6505     else
6506       W.printFlags("Flags", E.e_flags);
6507     W.printNumber("HeaderSize", E.e_ehsize);
6508     W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
6509     W.printNumber("ProgramHeaderCount", E.e_phnum);
6510     W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
6511     W.printString("SectionHeaderCount",
6512                   getSectionHeadersNumString(this->Obj, this->FileName));
6513     W.printString("StringTableSectionIndex",
6514                   getSectionHeaderTableIndexString(this->Obj, this->FileName));
6515   }
6516 }
6517 
6518 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
6519   DictScope Lists(W, "Groups");
6520   std::vector<GroupSection> V = this->getGroups();
6521   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6522   for (const GroupSection &G : V) {
6523     DictScope D(W, "Group");
6524     W.printNumber("Name", G.Name, G.ShName);
6525     W.printNumber("Index", G.Index);
6526     W.printNumber("Link", G.Link);
6527     W.printNumber("Info", G.Info);
6528     W.printHex("Type", getGroupType(G.Type), G.Type);
6529     W.startLine() << "Signature: " << G.Signature << "\n";
6530 
6531     ListScope L(W, "Section(s) in group");
6532     for (const GroupMember &GM : G.Members) {
6533       const GroupSection *MainGroup = Map[GM.Index];
6534       if (MainGroup != &G)
6535         this->reportUniqueWarning(
6536             "section with index " + Twine(GM.Index) +
6537             ", included in the group section with index " +
6538             Twine(MainGroup->Index) +
6539             ", was also found in the group section with index " +
6540             Twine(G.Index));
6541       W.startLine() << GM.Name << " (" << GM.Index << ")\n";
6542     }
6543   }
6544 
6545   if (V.empty())
6546     W.startLine() << "There are no group sections in the file.\n";
6547 }
6548 
6549 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
6550   ListScope D(W, "Relocations");
6551 
6552   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6553     if (!isRelocationSec<ELFT>(Sec))
6554       continue;
6555 
6556     StringRef Name = this->getPrintableSectionName(Sec);
6557     unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
6558     W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n";
6559     W.indent();
6560     this->printRelocationsHelper(Sec);
6561     W.unindent();
6562     W.startLine() << "}\n";
6563   }
6564 }
6565 
6566 template <class ELFT>
6567 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
6568   W.startLine() << W.hex(R) << "\n";
6569 }
6570 
6571 template <class ELFT>
6572 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
6573                                             const RelSymbol<ELFT> &RelSym) {
6574   StringRef SymbolName = RelSym.Name;
6575   SmallString<32> RelocName;
6576   this->Obj.getRelocationTypeName(R.Type, RelocName);
6577 
6578   if (opts::ExpandRelocs) {
6579     DictScope Group(W, "Relocation");
6580     W.printHex("Offset", R.Offset);
6581     W.printNumber("Type", RelocName, R.Type);
6582     W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
6583     if (R.Addend)
6584       W.printHex("Addend", (uintX_t)*R.Addend);
6585   } else {
6586     raw_ostream &OS = W.startLine();
6587     OS << W.hex(R.Offset) << " " << RelocName << " "
6588        << (!SymbolName.empty() ? SymbolName : "-");
6589     if (R.Addend)
6590       OS << " " << W.hex((uintX_t)*R.Addend);
6591     OS << "\n";
6592   }
6593 }
6594 
6595 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
6596   ListScope SectionsD(W, "Sections");
6597 
6598   int SectionIndex = -1;
6599   std::vector<EnumEntry<unsigned>> FlagsList =
6600       getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
6601                                this->Obj.getHeader().e_machine);
6602   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6603     DictScope SectionD(W, "Section");
6604     W.printNumber("Index", ++SectionIndex);
6605     W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
6606     W.printHex("Type",
6607                object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
6608                                              Sec.sh_type),
6609                Sec.sh_type);
6610     W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList));
6611     W.printHex("Address", Sec.sh_addr);
6612     W.printHex("Offset", Sec.sh_offset);
6613     W.printNumber("Size", Sec.sh_size);
6614     W.printNumber("Link", Sec.sh_link);
6615     W.printNumber("Info", Sec.sh_info);
6616     W.printNumber("AddressAlignment", Sec.sh_addralign);
6617     W.printNumber("EntrySize", Sec.sh_entsize);
6618 
6619     if (opts::SectionRelocations) {
6620       ListScope D(W, "Relocations");
6621       this->printRelocationsHelper(Sec);
6622     }
6623 
6624     if (opts::SectionSymbols) {
6625       ListScope D(W, "Symbols");
6626       if (this->DotSymtabSec) {
6627         StringRef StrTable = unwrapOrError(
6628             this->FileName,
6629             this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
6630         ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
6631 
6632         typename ELFT::SymRange Symbols = unwrapOrError(
6633             this->FileName, this->Obj.symbols(this->DotSymtabSec));
6634         for (const Elf_Sym &Sym : Symbols) {
6635           const Elf_Shdr *SymSec = unwrapOrError(
6636               this->FileName,
6637               this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
6638           if (SymSec == &Sec)
6639             printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
6640                         false);
6641         }
6642       }
6643     }
6644 
6645     if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
6646       ArrayRef<uint8_t> Data =
6647           unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
6648       W.printBinaryBlock(
6649           "SectionData",
6650           StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
6651     }
6652   }
6653 }
6654 
6655 template <class ELFT>
6656 void LLVMELFDumper<ELFT>::printSymbolSection(
6657     const Elf_Sym &Symbol, unsigned SymIndex,
6658     DataRegion<Elf_Word> ShndxTable) const {
6659   auto GetSectionSpecialType = [&]() -> Optional<StringRef> {
6660     if (Symbol.isUndefined())
6661       return StringRef("Undefined");
6662     if (Symbol.isProcessorSpecific())
6663       return StringRef("Processor Specific");
6664     if (Symbol.isOSSpecific())
6665       return StringRef("Operating System Specific");
6666     if (Symbol.isAbsolute())
6667       return StringRef("Absolute");
6668     if (Symbol.isCommon())
6669       return StringRef("Common");
6670     if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
6671       return StringRef("Reserved");
6672     return None;
6673   };
6674 
6675   if (Optional<StringRef> Type = GetSectionSpecialType()) {
6676     W.printHex("Section", *Type, Symbol.st_shndx);
6677     return;
6678   }
6679 
6680   Expected<unsigned> SectionIndex =
6681       this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
6682   if (!SectionIndex) {
6683     assert(Symbol.st_shndx == SHN_XINDEX &&
6684            "getSymbolSectionIndex should only fail due to an invalid "
6685            "SHT_SYMTAB_SHNDX table/reference");
6686     this->reportUniqueWarning(SectionIndex.takeError());
6687     W.printHex("Section", "Reserved", SHN_XINDEX);
6688     return;
6689   }
6690 
6691   Expected<StringRef> SectionName =
6692       this->getSymbolSectionName(Symbol, *SectionIndex);
6693   if (!SectionName) {
6694     // Don't report an invalid section name if the section headers are missing.
6695     // In such situations, all sections will be "invalid".
6696     if (!this->ObjF.sections().empty())
6697       this->reportUniqueWarning(SectionName.takeError());
6698     else
6699       consumeError(SectionName.takeError());
6700     W.printHex("Section", "<?>", *SectionIndex);
6701   } else {
6702     W.printHex("Section", *SectionName, *SectionIndex);
6703   }
6704 }
6705 
6706 template <class ELFT>
6707 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
6708                                       DataRegion<Elf_Word> ShndxTable,
6709                                       Optional<StringRef> StrTable,
6710                                       bool IsDynamic,
6711                                       bool /*NonVisibilityBitsUsed*/) const {
6712   std::string FullSymbolName = this->getFullSymbolName(
6713       Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
6714   unsigned char SymbolType = Symbol.getType();
6715 
6716   DictScope D(W, "Symbol");
6717   W.printNumber("Name", FullSymbolName, Symbol.st_name);
6718   W.printHex("Value", Symbol.st_value);
6719   W.printNumber("Size", Symbol.st_size);
6720   W.printEnum("Binding", Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
6721   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
6722       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
6723     W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
6724   else
6725     W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
6726   if (Symbol.st_other == 0)
6727     // Usually st_other flag is zero. Do not pollute the output
6728     // by flags enumeration in that case.
6729     W.printNumber("Other", 0);
6730   else {
6731     std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
6732                                                    std::end(ElfSymOtherFlags));
6733     if (this->Obj.getHeader().e_machine == EM_MIPS) {
6734       // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
6735       // flag overlapped with other ST_MIPS_xxx flags. So consider both
6736       // cases separately.
6737       if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
6738         SymOtherFlags.insert(SymOtherFlags.end(),
6739                              std::begin(ElfMips16SymOtherFlags),
6740                              std::end(ElfMips16SymOtherFlags));
6741       else
6742         SymOtherFlags.insert(SymOtherFlags.end(),
6743                              std::begin(ElfMipsSymOtherFlags),
6744                              std::end(ElfMipsSymOtherFlags));
6745     } else if (this->Obj.getHeader().e_machine == EM_AARCH64) {
6746       SymOtherFlags.insert(SymOtherFlags.end(),
6747                            std::begin(ElfAArch64SymOtherFlags),
6748                            std::end(ElfAArch64SymOtherFlags));
6749     } else if (this->Obj.getHeader().e_machine == EM_RISCV) {
6750       SymOtherFlags.insert(SymOtherFlags.end(),
6751                            std::begin(ElfRISCVSymOtherFlags),
6752                            std::end(ElfRISCVSymOtherFlags));
6753     }
6754     W.printFlags("Other", Symbol.st_other, makeArrayRef(SymOtherFlags), 0x3u);
6755   }
6756   printSymbolSection(Symbol, SymIndex, ShndxTable);
6757 }
6758 
6759 template <class ELFT>
6760 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
6761                                        bool PrintDynamicSymbols) {
6762   if (PrintSymbols) {
6763     ListScope Group(W, "Symbols");
6764     this->printSymbolsHelper(false);
6765   }
6766   if (PrintDynamicSymbols) {
6767     ListScope Group(W, "DynamicSymbols");
6768     this->printSymbolsHelper(true);
6769   }
6770 }
6771 
6772 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
6773   Elf_Dyn_Range Table = this->dynamic_table();
6774   if (Table.empty())
6775     return;
6776 
6777   W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
6778 
6779   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
6780   // The "Name/Value" column should be indented from the "Type" column by N
6781   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
6782   // space (1) = -3.
6783   W.startLine() << "  Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
6784                 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
6785 
6786   std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
6787   for (auto Entry : Table) {
6788     uintX_t Tag = Entry.getTag();
6789     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
6790     W.startLine() << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
6791                   << " "
6792                   << format(ValueFmt.c_str(),
6793                             this->Obj.getDynamicTagAsString(Tag).c_str())
6794                   << Value << "\n";
6795   }
6796   W.startLine() << "]\n";
6797 }
6798 
6799 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
6800   W.startLine() << "Dynamic Relocations {\n";
6801   W.indent();
6802   this->printDynamicRelocationsHelper();
6803   W.unindent();
6804   W.startLine() << "}\n";
6805 }
6806 
6807 template <class ELFT>
6808 void LLVMELFDumper<ELFT>::printProgramHeaders(
6809     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
6810   if (PrintProgramHeaders)
6811     printProgramHeaders();
6812   if (PrintSectionMapping == cl::BOU_TRUE)
6813     printSectionMapping();
6814 }
6815 
6816 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
6817   ListScope L(W, "ProgramHeaders");
6818 
6819   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
6820   if (!PhdrsOrErr) {
6821     this->reportUniqueWarning("unable to dump program headers: " +
6822                               toString(PhdrsOrErr.takeError()));
6823     return;
6824   }
6825 
6826   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
6827     DictScope P(W, "ProgramHeader");
6828     StringRef Type =
6829         segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
6830 
6831     W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
6832     W.printHex("Offset", Phdr.p_offset);
6833     W.printHex("VirtualAddress", Phdr.p_vaddr);
6834     W.printHex("PhysicalAddress", Phdr.p_paddr);
6835     W.printNumber("FileSize", Phdr.p_filesz);
6836     W.printNumber("MemSize", Phdr.p_memsz);
6837     W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
6838     W.printNumber("Alignment", Phdr.p_align);
6839   }
6840 }
6841 
6842 template <class ELFT>
6843 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
6844   ListScope SS(W, "VersionSymbols");
6845   if (!Sec)
6846     return;
6847 
6848   StringRef StrTable;
6849   ArrayRef<Elf_Sym> Syms;
6850   const Elf_Shdr *SymTabSec;
6851   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
6852       this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
6853   if (!VerTableOrErr) {
6854     this->reportUniqueWarning(VerTableOrErr.takeError());
6855     return;
6856   }
6857 
6858   if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
6859     return;
6860 
6861   ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
6862   for (size_t I = 0, E = Syms.size(); I < E; ++I) {
6863     DictScope S(W, "Symbol");
6864     W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
6865     W.printString("Name",
6866                   this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
6867                                           /*IsDynamic=*/true));
6868   }
6869 }
6870 
6871 const EnumEntry<unsigned> SymVersionFlags[] = {
6872     {"Base", "BASE", VER_FLG_BASE},
6873     {"Weak", "WEAK", VER_FLG_WEAK},
6874     {"Info", "INFO", VER_FLG_INFO}};
6875 
6876 template <class ELFT>
6877 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
6878   ListScope SD(W, "VersionDefinitions");
6879   if (!Sec)
6880     return;
6881 
6882   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
6883   if (!V) {
6884     this->reportUniqueWarning(V.takeError());
6885     return;
6886   }
6887 
6888   for (const VerDef &D : *V) {
6889     DictScope Def(W, "Definition");
6890     W.printNumber("Version", D.Version);
6891     W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags));
6892     W.printNumber("Index", D.Ndx);
6893     W.printNumber("Hash", D.Hash);
6894     W.printString("Name", D.Name.c_str());
6895     W.printList(
6896         "Predecessors", D.AuxV,
6897         [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
6898   }
6899 }
6900 
6901 template <class ELFT>
6902 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
6903   ListScope SD(W, "VersionRequirements");
6904   if (!Sec)
6905     return;
6906 
6907   Expected<std::vector<VerNeed>> V =
6908       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
6909   if (!V) {
6910     this->reportUniqueWarning(V.takeError());
6911     return;
6912   }
6913 
6914   for (const VerNeed &VN : *V) {
6915     DictScope Entry(W, "Dependency");
6916     W.printNumber("Version", VN.Version);
6917     W.printNumber("Count", VN.Cnt);
6918     W.printString("FileName", VN.File.c_str());
6919 
6920     ListScope L(W, "Entries");
6921     for (const VernAux &Aux : VN.AuxV) {
6922       DictScope Entry(W, "Entry");
6923       W.printNumber("Hash", Aux.Hash);
6924       W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags));
6925       W.printNumber("Index", Aux.Other);
6926       W.printString("Name", Aux.Name.c_str());
6927     }
6928   }
6929 }
6930 
6931 template <class ELFT> void LLVMELFDumper<ELFT>::printHashHistograms() {
6932   W.startLine() << "Hash Histogram not implemented!\n";
6933 }
6934 
6935 // Returns true if rel/rela section exists, and populates SymbolIndices.
6936 // Otherwise returns false.
6937 template <class ELFT>
6938 static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection,
6939                              const ELFFile<ELFT> &Obj,
6940                              const LLVMELFDumper<ELFT> *Dumper,
6941                              SmallVector<uint32_t, 128> &SymbolIndices) {
6942   if (!CGRelSection) {
6943     Dumper->reportUniqueWarning(
6944         "relocation section for a call graph section doesn't exist");
6945     return false;
6946   }
6947 
6948   if (CGRelSection->sh_type == SHT_REL) {
6949     typename ELFT::RelRange CGProfileRel;
6950     Expected<typename ELFT::RelRange> CGProfileRelOrError =
6951         Obj.rels(*CGRelSection);
6952     if (!CGProfileRelOrError) {
6953       Dumper->reportUniqueWarning("unable to load relocations for "
6954                                   "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6955                                   toString(CGProfileRelOrError.takeError()));
6956       return false;
6957     }
6958 
6959     CGProfileRel = *CGProfileRelOrError;
6960     for (const typename ELFT::Rel &Rel : CGProfileRel)
6961       SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL()));
6962   } else {
6963     // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
6964     // the format to SHT_RELA
6965     // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
6966     typename ELFT::RelaRange CGProfileRela;
6967     Expected<typename ELFT::RelaRange> CGProfileRelaOrError =
6968         Obj.relas(*CGRelSection);
6969     if (!CGProfileRelaOrError) {
6970       Dumper->reportUniqueWarning("unable to load relocations for "
6971                                   "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6972                                   toString(CGProfileRelaOrError.takeError()));
6973       return false;
6974     }
6975 
6976     CGProfileRela = *CGProfileRelaOrError;
6977     for (const typename ELFT::Rela &Rela : CGProfileRela)
6978       SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL()));
6979   }
6980 
6981   return true;
6982 }
6983 
6984 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
6985   llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap;
6986 
6987   auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
6988     return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
6989   };
6990   this->getSectionAndRelocations(IsMatch, SecToRelocMap);
6991 
6992   for (const auto &CGMapEntry : SecToRelocMap) {
6993     const Elf_Shdr *CGSection = CGMapEntry.first;
6994     const Elf_Shdr *CGRelSection = CGMapEntry.second;
6995 
6996     Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
6997         this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection);
6998     if (!CGProfileOrErr) {
6999       this->reportUniqueWarning(
7000           "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7001           toString(CGProfileOrErr.takeError()));
7002       return;
7003     }
7004 
7005     SmallVector<uint32_t, 128> SymbolIndices;
7006     bool UseReloc =
7007         getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices);
7008     if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) {
7009       this->reportUniqueWarning(
7010           "number of from/to pairs does not match number of frequencies");
7011       UseReloc = false;
7012     }
7013 
7014     ListScope L(W, "CGProfile");
7015     for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) {
7016       const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I];
7017       DictScope D(W, "CGProfileEntry");
7018       if (UseReloc) {
7019         uint32_t From = SymbolIndices[I * 2];
7020         uint32_t To = SymbolIndices[I * 2 + 1];
7021         W.printNumber("From", this->getStaticSymbolName(From), From);
7022         W.printNumber("To", this->getStaticSymbolName(To), To);
7023       }
7024       W.printNumber("Weight", CGPE.cgp_weight);
7025     }
7026   }
7027 }
7028 
7029 template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
7030   bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL;
7031   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
7032     if (Sec.sh_type != SHT_LLVM_BB_ADDR_MAP)
7033       continue;
7034     Optional<const Elf_Shdr *> FunctionSec = None;
7035     if (IsRelocatable)
7036       FunctionSec =
7037           unwrapOrError(this->FileName, this->Obj.getSection(Sec.sh_link));
7038     ListScope L(W, "BBAddrMap");
7039     Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
7040         this->Obj.decodeBBAddrMap(Sec);
7041     if (!BBAddrMapOrErr) {
7042       this->reportUniqueWarning("unable to dump " + this->describe(Sec) + ": " +
7043                                 toString(BBAddrMapOrErr.takeError()));
7044       continue;
7045     }
7046     for (const BBAddrMap &AM : *BBAddrMapOrErr) {
7047       DictScope D(W, "Function");
7048       W.printHex("At", AM.Addr);
7049       SmallVector<uint32_t> FuncSymIndex =
7050           this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec);
7051       std::string FuncName = "<?>";
7052       if (FuncSymIndex.empty())
7053         this->reportUniqueWarning(
7054             "could not identify function symbol for address (0x" +
7055             Twine::utohexstr(AM.Addr) + ") in " + this->describe(Sec));
7056       else
7057         FuncName = this->getStaticSymbolName(FuncSymIndex.front());
7058       W.printString("Name", FuncName);
7059 
7060       ListScope L(W, "BB entries");
7061       for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) {
7062         DictScope L(W);
7063         W.printHex("Offset", BBE.Offset);
7064         W.printHex("Size", BBE.Size);
7065         W.printBoolean("HasReturn", BBE.HasReturn);
7066         W.printBoolean("HasTailCall", BBE.HasTailCall);
7067         W.printBoolean("IsEHPad", BBE.IsEHPad);
7068         W.printBoolean("CanFallThrough", BBE.CanFallThrough);
7069       }
7070     }
7071   }
7072 }
7073 
7074 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
7075   ListScope L(W, "Addrsig");
7076   if (!this->DotAddrsigSec)
7077     return;
7078 
7079   Expected<std::vector<uint64_t>> SymsOrErr =
7080       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
7081   if (!SymsOrErr) {
7082     this->reportUniqueWarning(SymsOrErr.takeError());
7083     return;
7084   }
7085 
7086   for (uint64_t Sym : *SymsOrErr)
7087     W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
7088 }
7089 
7090 template <typename ELFT>
7091 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7092                                   ScopedPrinter &W) {
7093   // Return true if we were able to pretty-print the note, false otherwise.
7094   switch (NoteType) {
7095   default:
7096     return false;
7097   case ELF::NT_GNU_ABI_TAG: {
7098     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
7099     if (!AbiTag.IsValid) {
7100       W.printString("ABI", "<corrupt GNU_ABI_TAG>");
7101       return false;
7102     } else {
7103       W.printString("OS", AbiTag.OSName);
7104       W.printString("ABI", AbiTag.ABI);
7105     }
7106     break;
7107   }
7108   case ELF::NT_GNU_BUILD_ID: {
7109     W.printString("Build ID", getGNUBuildId(Desc));
7110     break;
7111   }
7112   case ELF::NT_GNU_GOLD_VERSION:
7113     W.printString("Version", getDescAsStringRef(Desc));
7114     break;
7115   case ELF::NT_GNU_PROPERTY_TYPE_0:
7116     ListScope D(W, "Property");
7117     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
7118       W.printString(Property);
7119     break;
7120   }
7121   return true;
7122 }
7123 
7124 static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7125                                       ScopedPrinter &W) {
7126   // Return true if we were able to pretty-print the note, false otherwise.
7127   AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
7128   if (Props.empty())
7129     return false;
7130   for (const auto &KV : Props)
7131     W.printString(KV.first, KV.second);
7132   return true;
7133 }
7134 
7135 template <typename ELFT>
7136 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,
7137                                              ArrayRef<uint8_t> Desc,
7138                                              ScopedPrinter &W) {
7139   switch (NoteType) {
7140   default:
7141     return false;
7142   case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
7143     W.printString("Version", getDescAsStringRef(Desc));
7144     break;
7145   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
7146     W.printString("Producer", getDescAsStringRef(Desc));
7147     break;
7148   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
7149     W.printString("Producer version", getDescAsStringRef(Desc));
7150     break;
7151   }
7152   return true;
7153 }
7154 
7155 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
7156   W.printNumber("Page Size", Note.PageSize);
7157   for (const CoreFileMapping &Mapping : Note.Mappings) {
7158     ListScope D(W, "Mapping");
7159     W.printHex("Start", Mapping.Start);
7160     W.printHex("End", Mapping.End);
7161     W.printHex("Offset", Mapping.Offset);
7162     W.printString("Filename", Mapping.Filename);
7163   }
7164 }
7165 
7166 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
7167   ListScope L(W, "Notes");
7168 
7169   std::unique_ptr<DictScope> NoteScope;
7170   auto StartNotes = [&](Optional<StringRef> SecName,
7171                         const typename ELFT::Off Offset,
7172                         const typename ELFT::Addr Size) {
7173     NoteScope = std::make_unique<DictScope>(W, "NoteSection");
7174     W.printString("Name", SecName ? *SecName : "<?>");
7175     W.printHex("Offset", Offset);
7176     W.printHex("Size", Size);
7177   };
7178 
7179   auto EndNotes = [&] { NoteScope.reset(); };
7180 
7181   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
7182     DictScope D2(W, "Note");
7183     StringRef Name = Note.getName();
7184     ArrayRef<uint8_t> Descriptor = Note.getDesc();
7185     Elf_Word Type = Note.getType();
7186 
7187     // Print the note owner/type.
7188     W.printString("Owner", Name);
7189     W.printHex("Data size", Descriptor.size());
7190 
7191     StringRef NoteType =
7192         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
7193     if (!NoteType.empty())
7194       W.printString("Type", NoteType);
7195     else
7196       W.printString("Type",
7197                     "Unknown (" + to_string(format_hex(Type, 10)) + ")");
7198 
7199     // Print the description, or fallback to printing raw bytes for unknown
7200     // owners/if we fail to pretty-print the contents.
7201     if (Name == "GNU") {
7202       if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7203         return Error::success();
7204     } else if (Name == "FreeBSD") {
7205       if (Optional<FreeBSDNote> N =
7206               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
7207         W.printString(N->Type, N->Value);
7208         return Error::success();
7209       }
7210     } else if (Name == "AMD") {
7211       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
7212       if (!N.Type.empty()) {
7213         W.printString(N.Type, N.Value);
7214         return Error::success();
7215       }
7216     } else if (Name == "AMDGPU") {
7217       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
7218       if (!N.Type.empty()) {
7219         W.printString(N.Type, N.Value);
7220         return Error::success();
7221       }
7222     } else if (Name == "LLVMOMPOFFLOAD") {
7223       if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7224         return Error::success();
7225     } else if (Name == "CORE") {
7226       if (Type == ELF::NT_FILE) {
7227         DataExtractor DescExtractor(Descriptor,
7228                                     ELFT::TargetEndianness == support::little,
7229                                     sizeof(Elf_Addr));
7230         if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
7231           printCoreNoteLLVMStyle(*N, W);
7232           return Error::success();
7233         } else {
7234           return N.takeError();
7235         }
7236       }
7237     } else if (Name == "Android") {
7238       if (printAndroidNoteLLVMStyle(Type, Descriptor, W))
7239         return Error::success();
7240     }
7241     if (!Descriptor.empty()) {
7242       W.printBinaryBlock("Description data", Descriptor);
7243     }
7244     return Error::success();
7245   };
7246 
7247   printNotesHelper(*this, StartNotes, ProcessNote, EndNotes);
7248 }
7249 
7250 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
7251   ListScope L(W, "LinkerOptions");
7252 
7253   unsigned I = -1;
7254   for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
7255     ++I;
7256     if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
7257       continue;
7258 
7259     Expected<ArrayRef<uint8_t>> ContentsOrErr =
7260         this->Obj.getSectionContents(Shdr);
7261     if (!ContentsOrErr) {
7262       this->reportUniqueWarning("unable to read the content of the "
7263                                 "SHT_LLVM_LINKER_OPTIONS section: " +
7264                                 toString(ContentsOrErr.takeError()));
7265       continue;
7266     }
7267     if (ContentsOrErr->empty())
7268       continue;
7269 
7270     if (ContentsOrErr->back() != 0) {
7271       this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
7272                                 Twine(I) +
7273                                 " is broken: the "
7274                                 "content is not null-terminated");
7275       continue;
7276     }
7277 
7278     SmallVector<StringRef, 16> Strings;
7279     toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
7280     if (Strings.size() % 2 != 0) {
7281       this->reportUniqueWarning(
7282           "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
7283           " is broken: an incomplete "
7284           "key-value pair was found. The last possible key was: \"" +
7285           Strings.back() + "\"");
7286       continue;
7287     }
7288 
7289     for (size_t I = 0; I < Strings.size(); I += 2)
7290       W.printString(Strings[I], Strings[I + 1]);
7291   }
7292 }
7293 
7294 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
7295   ListScope L(W, "DependentLibs");
7296   this->printDependentLibsHelper(
7297       [](const Elf_Shdr &) {},
7298       [this](StringRef Lib, uint64_t) { W.printString(Lib); });
7299 }
7300 
7301 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
7302   ListScope L(W, "StackSizes");
7303   if (this->Obj.getHeader().e_type == ELF::ET_REL)
7304     this->printRelocatableStackSizes([]() {});
7305   else
7306     this->printNonRelocatableStackSizes([]() {});
7307 }
7308 
7309 template <class ELFT>
7310 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
7311                                               ArrayRef<std::string> FuncNames) {
7312   DictScope D(W, "Entry");
7313   W.printList("Functions", FuncNames);
7314   W.printHex("Size", Size);
7315 }
7316 
7317 template <class ELFT>
7318 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
7319   auto PrintEntry = [&](const Elf_Addr *E) {
7320     W.printHex("Address", Parser.getGotAddress(E));
7321     W.printNumber("Access", Parser.getGotOffset(E));
7322     W.printHex("Initial", *E);
7323   };
7324 
7325   DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
7326 
7327   W.printHex("Canonical gp value", Parser.getGp());
7328   {
7329     ListScope RS(W, "Reserved entries");
7330     {
7331       DictScope D(W, "Entry");
7332       PrintEntry(Parser.getGotLazyResolver());
7333       W.printString("Purpose", StringRef("Lazy resolver"));
7334     }
7335 
7336     if (Parser.getGotModulePointer()) {
7337       DictScope D(W, "Entry");
7338       PrintEntry(Parser.getGotModulePointer());
7339       W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7340     }
7341   }
7342   {
7343     ListScope LS(W, "Local entries");
7344     for (auto &E : Parser.getLocalEntries()) {
7345       DictScope D(W, "Entry");
7346       PrintEntry(&E);
7347     }
7348   }
7349 
7350   if (Parser.IsStatic)
7351     return;
7352 
7353   {
7354     ListScope GS(W, "Global entries");
7355     for (auto &E : Parser.getGlobalEntries()) {
7356       DictScope D(W, "Entry");
7357 
7358       PrintEntry(&E);
7359 
7360       const Elf_Sym &Sym = *Parser.getGotSym(&E);
7361       W.printHex("Value", Sym.st_value);
7362       W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
7363 
7364       const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
7365       DataRegion<Elf_Word> ShndxTable(
7366           (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7367       printSymbolSection(Sym, SymIndex, ShndxTable);
7368 
7369       std::string SymName = this->getFullSymbolName(
7370           Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
7371       W.printNumber("Name", SymName, Sym.st_name);
7372     }
7373   }
7374 
7375   W.printNumber("Number of TLS and multi-GOT entries",
7376                 uint64_t(Parser.getOtherEntries().size()));
7377 }
7378 
7379 template <class ELFT>
7380 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
7381   auto PrintEntry = [&](const Elf_Addr *E) {
7382     W.printHex("Address", Parser.getPltAddress(E));
7383     W.printHex("Initial", *E);
7384   };
7385 
7386   DictScope GS(W, "PLT GOT");
7387 
7388   {
7389     ListScope RS(W, "Reserved entries");
7390     {
7391       DictScope D(W, "Entry");
7392       PrintEntry(Parser.getPltLazyResolver());
7393       W.printString("Purpose", StringRef("PLT lazy resolver"));
7394     }
7395 
7396     if (auto E = Parser.getPltModulePointer()) {
7397       DictScope D(W, "Entry");
7398       PrintEntry(E);
7399       W.printString("Purpose", StringRef("Module pointer"));
7400     }
7401   }
7402   {
7403     ListScope LS(W, "Entries");
7404     DataRegion<Elf_Word> ShndxTable(
7405         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7406     for (auto &E : Parser.getPltEntries()) {
7407       DictScope D(W, "Entry");
7408       PrintEntry(&E);
7409 
7410       const Elf_Sym &Sym = *Parser.getPltSym(&E);
7411       W.printHex("Value", Sym.st_value);
7412       W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
7413       printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
7414                          ShndxTable);
7415 
7416       const Elf_Sym *FirstSym = cantFail(
7417           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
7418       std::string SymName = this->getFullSymbolName(
7419           Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
7420       W.printNumber("Name", SymName, Sym.st_name);
7421     }
7422   }
7423 }
7424 
7425 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
7426   const Elf_Mips_ABIFlags<ELFT> *Flags;
7427   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
7428           getMipsAbiFlagsSection(*this)) {
7429     Flags = *SecOrErr;
7430     if (!Flags) {
7431       W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7432       return;
7433     }
7434   } else {
7435     this->reportUniqueWarning(SecOrErr.takeError());
7436     return;
7437   }
7438 
7439   raw_ostream &OS = W.getOStream();
7440   DictScope GS(W, "MIPS ABI Flags");
7441 
7442   W.printNumber("Version", Flags->version);
7443   W.startLine() << "ISA: ";
7444   if (Flags->isa_rev <= 1)
7445     OS << format("MIPS%u", Flags->isa_level);
7446   else
7447     OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
7448   OS << "\n";
7449   W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
7450   W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
7451   W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
7452   W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
7453   W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
7454   W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
7455   W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
7456   W.printHex("Flags 2", Flags->flags2);
7457 }
7458 
7459 template <class ELFT>
7460 void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
7461                                            ArrayRef<std::string> InputFilenames,
7462                                            const Archive *A) {
7463   FileScope = std::make_unique<DictScope>(this->W, FileStr);
7464   DictScope D(this->W, "FileSummary");
7465   this->W.printString("File", FileStr);
7466   this->W.printString("Format", Obj.getFileFormatName());
7467   this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch()));
7468   this->W.printString(
7469       "AddressSize",
7470       std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress())));
7471   this->printLoadName();
7472 }
7473