1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/PointerIntPair.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
33 #include "llvm/BinaryFormat/ELF.h"
34 #include "llvm/Demangle/Demangle.h"
35 #include "llvm/Object/Archive.h"
36 #include "llvm/Object/ELF.h"
37 #include "llvm/Object/ELFObjectFile.h"
38 #include "llvm/Object/ELFTypes.h"
39 #include "llvm/Object/Error.h"
40 #include "llvm/Object/ObjectFile.h"
41 #include "llvm/Object/RelocationResolver.h"
42 #include "llvm/Object/StackMapParser.h"
43 #include "llvm/Support/AMDGPUMetadata.h"
44 #include "llvm/Support/ARMAttributeParser.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Endian.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/Format.h"
51 #include "llvm/Support/FormatVariadic.h"
52 #include "llvm/Support/FormattedStream.h"
53 #include "llvm/Support/LEB128.h"
54 #include "llvm/Support/MSP430AttributeParser.h"
55 #include "llvm/Support/MSP430Attributes.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/MipsABIFlags.h"
58 #include "llvm/Support/RISCVAttributeParser.h"
59 #include "llvm/Support/RISCVAttributes.h"
60 #include "llvm/Support/ScopedPrinter.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cinttypes>
64 #include <cstddef>
65 #include <cstdint>
66 #include <cstdlib>
67 #include <iterator>
68 #include <memory>
69 #include <string>
70 #include <system_error>
71 #include <vector>
72 
73 using namespace llvm;
74 using namespace llvm::object;
75 using namespace ELF;
76 
77 #define LLVM_READOBJ_ENUM_CASE(ns, enum)                                       \
78   case ns::enum:                                                               \
79     return #enum;
80 
81 #define ENUM_ENT(enum, altName)                                                \
82   { #enum, altName, ELF::enum }
83 
84 #define ENUM_ENT_1(enum)                                                       \
85   { #enum, #enum, ELF::enum }
86 
87 namespace {
88 
89 template <class ELFT> struct RelSymbol {
90   RelSymbol(const typename ELFT::Sym *S, StringRef N)
91       : Sym(S), Name(N.str()) {}
92   const typename ELFT::Sym *Sym;
93   std::string Name;
94 };
95 
96 /// Represents a contiguous uniform range in the file. We cannot just create a
97 /// range directly because when creating one of these from the .dynamic table
98 /// the size, entity size and virtual address are different entries in arbitrary
99 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
100 struct DynRegionInfo {
101   DynRegionInfo(const Binary &Owner, const ObjDumper &D)
102       : Obj(&Owner), Dumper(&D) {}
103   DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
104                 uint64_t S, uint64_t ES)
105       : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
106 
107   /// Address in current address space.
108   const uint8_t *Addr = nullptr;
109   /// Size in bytes of the region.
110   uint64_t Size = 0;
111   /// Size of each entity in the region.
112   uint64_t EntSize = 0;
113 
114   /// Owner object. Used for error reporting.
115   const Binary *Obj;
116   /// Dumper used for error reporting.
117   const ObjDumper *Dumper;
118   /// Error prefix. Used for error reporting to provide more information.
119   std::string Context;
120   /// Region size name. Used for error reporting.
121   StringRef SizePrintName = "size";
122   /// Entry size name. Used for error reporting. If this field is empty, errors
123   /// will not mention the entry size.
124   StringRef EntSizePrintName = "entry size";
125 
126   template <typename Type> ArrayRef<Type> getAsArrayRef() const {
127     const Type *Start = reinterpret_cast<const Type *>(Addr);
128     if (!Start)
129       return {Start, Start};
130 
131     const uint64_t Offset =
132         Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
133     const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
134 
135     if (Size > ObjSize - Offset) {
136       Dumper->reportUniqueWarning(
137           "unable to read data at 0x" + Twine::utohexstr(Offset) +
138           " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
139           "): it goes past the end of the file of size 0x" +
140           Twine::utohexstr(ObjSize));
141       return {Start, Start};
142     }
143 
144     if (EntSize == sizeof(Type) && (Size % EntSize == 0))
145       return {Start, Start + (Size / EntSize)};
146 
147     std::string Msg;
148     if (!Context.empty())
149       Msg += Context + " has ";
150 
151     Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
152                .str();
153     if (!EntSizePrintName.empty())
154       Msg +=
155           (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
156               .str();
157 
158     Dumper->reportUniqueWarning(Msg);
159     return {Start, Start};
160   }
161 };
162 
163 struct GroupMember {
164   StringRef Name;
165   uint64_t Index;
166 };
167 
168 struct GroupSection {
169   StringRef Name;
170   std::string Signature;
171   uint64_t ShName;
172   uint64_t Index;
173   uint32_t Link;
174   uint32_t Info;
175   uint32_t Type;
176   std::vector<GroupMember> Members;
177 };
178 
179 namespace {
180 
181 struct NoteType {
182   uint32_t ID;
183   StringRef Name;
184 };
185 
186 } // namespace
187 
188 template <class ELFT> class Relocation {
189 public:
190   Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
191       : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
192         Offset(R.r_offset), Info(R.r_info) {}
193 
194   Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
195       : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
196     Addend = R.r_addend;
197   }
198 
199   uint32_t Type;
200   uint32_t Symbol;
201   typename ELFT::uint Offset;
202   typename ELFT::uint Info;
203   Optional<int64_t> Addend;
204 };
205 
206 template <class ELFT> class MipsGOTParser;
207 
208 template <typename ELFT> class ELFDumper : public ObjDumper {
209   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
210 
211 public:
212   ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
213 
214   void printUnwindInfo() override;
215   void printNeededLibraries() override;
216   void printHashTable() override;
217   void printGnuHashTable() override;
218   void printLoadName() override;
219   void printVersionInfo() override;
220   void printArchSpecificInfo() override;
221   void printStackMap() const override;
222 
223   const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
224 
225   std::string describe(const Elf_Shdr &Sec) const;
226 
227   unsigned getHashTableEntSize() const {
228     // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
229     // sections. This violates the ELF specification.
230     if (Obj.getHeader().e_machine == ELF::EM_S390 ||
231         Obj.getHeader().e_machine == ELF::EM_ALPHA)
232       return 8;
233     return 4;
234   }
235 
236   Elf_Dyn_Range dynamic_table() const {
237     // A valid .dynamic section contains an array of entries terminated
238     // with a DT_NULL entry. However, sometimes the section content may
239     // continue past the DT_NULL entry, so to dump the section correctly,
240     // we first find the end of the entries by iterating over them.
241     Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
242 
243     size_t Size = 0;
244     while (Size < Table.size())
245       if (Table[Size++].getTag() == DT_NULL)
246         break;
247 
248     return Table.slice(0, Size);
249   }
250 
251   Elf_Sym_Range dynamic_symbols() const {
252     if (!DynSymRegion)
253       return Elf_Sym_Range();
254     return DynSymRegion->template getAsArrayRef<Elf_Sym>();
255   }
256 
257   const Elf_Shdr *findSectionByName(StringRef Name) const;
258 
259   StringRef getDynamicStringTable() const { return DynamicStringTable; }
260 
261 protected:
262   virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
263   virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
264   virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
265 
266   void
267   printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
268                            function_ref<void(StringRef, uint64_t)> OnLibEntry);
269 
270   virtual void printRelRelaReloc(const Relocation<ELFT> &R,
271                                  const RelSymbol<ELFT> &RelSym) = 0;
272   virtual void printRelrReloc(const Elf_Relr &R) = 0;
273   virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
274                                        const DynRegionInfo &Reg) {}
275   void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
276                   const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
277   void printDynamicReloc(const Relocation<ELFT> &R);
278   void printDynamicRelocationsHelper();
279   void printRelocationsHelper(const Elf_Shdr &Sec);
280   void forEachRelocationDo(
281       const Elf_Shdr &Sec, bool RawRelr,
282       llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
283                               const Elf_Shdr &, const Elf_Shdr *)>
284           RelRelaFn,
285       llvm::function_ref<void(const Elf_Relr &)> RelrFn);
286 
287   virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
288                                   bool NonVisibilityBitsUsed) const {};
289   virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
290                            DataRegion<Elf_Word> ShndxTable,
291                            Optional<StringRef> StrTable, bool IsDynamic,
292                            bool NonVisibilityBitsUsed) const = 0;
293 
294   virtual void printMipsABIFlags() = 0;
295   virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
296   virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
297 
298   Expected<ArrayRef<Elf_Versym>>
299   getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
300                   StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
301   StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
302 
303   std::vector<GroupSection> getGroups();
304 
305   // Returns the function symbol index for the given address. Matches the
306   // symbol's section with FunctionSec when specified.
307   // Returns None if no function symbol can be found for the address or in case
308   // it is not defined in the specified section.
309   SmallVector<uint32_t>
310   getSymbolIndexesForFunctionAddress(uint64_t SymValue,
311                                      Optional<const Elf_Shdr *> FunctionSec);
312   bool printFunctionStackSize(uint64_t SymValue,
313                               Optional<const Elf_Shdr *> FunctionSec,
314                               const Elf_Shdr &StackSizeSec, DataExtractor Data,
315                               uint64_t *Offset);
316   void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
317                       unsigned Ndx, const Elf_Shdr *SymTab,
318                       const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
319                       const RelocationResolver &Resolver, DataExtractor Data);
320   virtual void printStackSizeEntry(uint64_t Size,
321                                    ArrayRef<std::string> FuncNames) = 0;
322 
323   void printRelocatableStackSizes(std::function<void()> PrintHeader);
324   void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
325 
326   /// Retrieves sections with corresponding relocation sections based on
327   /// IsMatch.
328   void getSectionAndRelocations(
329       std::function<bool(const Elf_Shdr &)> IsMatch,
330       llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap);
331 
332   const object::ELFObjectFile<ELFT> &ObjF;
333   const ELFFile<ELFT> &Obj;
334   StringRef FileName;
335 
336   Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
337                                     uint64_t EntSize) {
338     if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
339       return createError("offset (0x" + Twine::utohexstr(Offset) +
340                          ") + size (0x" + Twine::utohexstr(Size) +
341                          ") is greater than the file size (0x" +
342                          Twine::utohexstr(Obj.getBufSize()) + ")");
343     return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
344   }
345 
346   void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>,
347                        support::endianness);
348   void printMipsReginfo();
349   void printMipsOptions();
350 
351   std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
352   void loadDynamicTable();
353   void parseDynamicTable();
354 
355   Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
356                                        bool &IsDefault) const;
357   Expected<SmallVector<Optional<VersionEntry>, 0> *> getVersionMap() const;
358 
359   DynRegionInfo DynRelRegion;
360   DynRegionInfo DynRelaRegion;
361   DynRegionInfo DynRelrRegion;
362   DynRegionInfo DynPLTRelRegion;
363   Optional<DynRegionInfo> DynSymRegion;
364   DynRegionInfo DynSymTabShndxRegion;
365   DynRegionInfo DynamicTable;
366   StringRef DynamicStringTable;
367   const Elf_Hash *HashTable = nullptr;
368   const Elf_GnuHash *GnuHashTable = nullptr;
369   const Elf_Shdr *DotSymtabSec = nullptr;
370   const Elf_Shdr *DotDynsymSec = nullptr;
371   const Elf_Shdr *DotAddrsigSec = nullptr;
372   DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
373   Optional<uint64_t> SONameOffset;
374   Optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap;
375 
376   const Elf_Shdr *SymbolVersionSection = nullptr;   // .gnu.version
377   const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
378   const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
379 
380   std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
381                                 DataRegion<Elf_Word> ShndxTable,
382                                 Optional<StringRef> StrTable,
383                                 bool IsDynamic) const;
384   Expected<unsigned>
385   getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
386                         DataRegion<Elf_Word> ShndxTable) const;
387   Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
388                                            unsigned SectionIndex) const;
389   std::string getStaticSymbolName(uint32_t Index) const;
390   StringRef getDynamicString(uint64_t Value) const;
391 
392   void printSymbolsHelper(bool IsDynamic) const;
393   std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
394 
395   Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
396                                                 const Elf_Shdr *SymTab) const;
397 
398   ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
399 
400 private:
401   mutable SmallVector<Optional<VersionEntry>, 0> VersionMap;
402 };
403 
404 template <class ELFT>
405 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
406   return ::describe(Obj, Sec);
407 }
408 
409 namespace {
410 
411 template <class ELFT> struct SymtabLink {
412   typename ELFT::SymRange Symbols;
413   StringRef StringTable;
414   const typename ELFT::Shdr *SymTab;
415 };
416 
417 // Returns the linked symbol table, symbols and associated string table for a
418 // given section.
419 template <class ELFT>
420 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
421                                            const typename ELFT::Shdr &Sec,
422                                            unsigned ExpectedType) {
423   Expected<const typename ELFT::Shdr *> SymtabOrErr =
424       Obj.getSection(Sec.sh_link);
425   if (!SymtabOrErr)
426     return createError("invalid section linked to " + describe(Obj, Sec) +
427                        ": " + toString(SymtabOrErr.takeError()));
428 
429   if ((*SymtabOrErr)->sh_type != ExpectedType)
430     return createError(
431         "invalid section linked to " + describe(Obj, Sec) + ": expected " +
432         object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
433         ", but got " +
434         object::getELFSectionTypeName(Obj.getHeader().e_machine,
435                                       (*SymtabOrErr)->sh_type));
436 
437   Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
438   if (!StrTabOrErr)
439     return createError(
440         "can't get a string table for the symbol table linked to " +
441         describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
442 
443   Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
444   if (!SymsOrErr)
445     return createError("unable to read symbols from the " + describe(Obj, Sec) +
446                        ": " + toString(SymsOrErr.takeError()));
447 
448   return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
449 }
450 
451 } // namespace
452 
453 template <class ELFT>
454 Expected<ArrayRef<typename ELFT::Versym>>
455 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
456                                  StringRef *StrTab,
457                                  const Elf_Shdr **SymTabSec) const {
458   assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec));
459   if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
460           sizeof(uint16_t) !=
461       0)
462     return createError("the " + describe(Sec) + " is misaligned");
463 
464   Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
465       Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
466   if (!VersionsOrErr)
467     return createError("cannot read content of " + describe(Sec) + ": " +
468                        toString(VersionsOrErr.takeError()));
469 
470   Expected<SymtabLink<ELFT>> SymTabOrErr =
471       getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
472   if (!SymTabOrErr) {
473     reportUniqueWarning(SymTabOrErr.takeError());
474     return *VersionsOrErr;
475   }
476 
477   if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
478     reportUniqueWarning(describe(Sec) + ": the number of entries (" +
479                         Twine(VersionsOrErr->size()) +
480                         ") does not match the number of symbols (" +
481                         Twine(SymTabOrErr->Symbols.size()) +
482                         ") in the symbol table with index " +
483                         Twine(Sec.sh_link));
484 
485   if (SymTab) {
486     *SymTab = SymTabOrErr->Symbols;
487     *StrTab = SymTabOrErr->StringTable;
488     *SymTabSec = SymTabOrErr->SymTab;
489   }
490   return *VersionsOrErr;
491 }
492 
493 template <class ELFT>
494 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
495   Optional<StringRef> StrTable;
496   size_t Entries = 0;
497   Elf_Sym_Range Syms(nullptr, nullptr);
498   const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
499 
500   if (IsDynamic) {
501     StrTable = DynamicStringTable;
502     Syms = dynamic_symbols();
503     Entries = Syms.size();
504   } else if (DotSymtabSec) {
505     if (Expected<StringRef> StrTableOrErr =
506             Obj.getStringTableForSymtab(*DotSymtabSec))
507       StrTable = *StrTableOrErr;
508     else
509       reportUniqueWarning(
510           "unable to get the string table for the SHT_SYMTAB section: " +
511           toString(StrTableOrErr.takeError()));
512 
513     if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
514       Syms = *SymsOrErr;
515     else
516       reportUniqueWarning(
517           "unable to read symbols from the SHT_SYMTAB section: " +
518           toString(SymsOrErr.takeError()));
519     Entries = DotSymtabSec->getEntityCount();
520   }
521   if (Syms.empty())
522     return;
523 
524   // The st_other field has 2 logical parts. The first two bits hold the symbol
525   // visibility (STV_*) and the remainder hold other platform-specific values.
526   bool NonVisibilityBitsUsed =
527       llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
528 
529   DataRegion<Elf_Word> ShndxTable =
530       IsDynamic ? DataRegion<Elf_Word>(
531                       (const Elf_Word *)this->DynSymTabShndxRegion.Addr,
532                       this->getElfObject().getELFFile().end())
533                 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
534 
535   printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed);
536   for (const Elf_Sym &Sym : Syms)
537     printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
538                 NonVisibilityBitsUsed);
539 }
540 
541 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
542   formatted_raw_ostream &OS;
543 
544 public:
545   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
546 
547   GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
548       : ELFDumper<ELFT>(ObjF, Writer),
549         OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
550     assert(&this->W.getOStream() == &llvm::fouts());
551   }
552 
553   void printFileSummary(StringRef FileStr, ObjectFile &Obj,
554                         ArrayRef<std::string> InputFilenames,
555                         const Archive *A) override;
556   void printFileHeaders() override;
557   void printGroupSections() override;
558   void printRelocations() override;
559   void printSectionHeaders() override;
560   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
561   void printHashSymbols() override;
562   void printSectionDetails() override;
563   void printDependentLibs() override;
564   void printDynamicTable() override;
565   void printDynamicRelocations() override;
566   void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
567                           bool NonVisibilityBitsUsed) const override;
568   void printProgramHeaders(bool PrintProgramHeaders,
569                            cl::boolOrDefault PrintSectionMapping) override;
570   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
571   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
572   void printVersionDependencySection(const Elf_Shdr *Sec) override;
573   void printHashHistograms() override;
574   void printCGProfile() override;
575   void printBBAddrMaps() override;
576   void printAddrsig() override;
577   void printNotes() override;
578   void printELFLinkerOptions() override;
579   void printStackSizes() override;
580 
581 private:
582   void printHashHistogram(const Elf_Hash &HashTable);
583   void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable);
584   void printHashTableSymbols(const Elf_Hash &HashTable);
585   void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
586 
587   struct Field {
588     std::string Str;
589     unsigned Column;
590 
591     Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
592     Field(unsigned Col) : Column(Col) {}
593   };
594 
595   template <typename T, typename TEnum>
596   std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
597                          TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
598                          TEnum EnumMask3 = {}) const {
599     std::string Str;
600     for (const EnumEntry<TEnum> &Flag : EnumValues) {
601       if (Flag.Value == 0)
602         continue;
603 
604       TEnum EnumMask{};
605       if (Flag.Value & EnumMask1)
606         EnumMask = EnumMask1;
607       else if (Flag.Value & EnumMask2)
608         EnumMask = EnumMask2;
609       else if (Flag.Value & EnumMask3)
610         EnumMask = EnumMask3;
611       bool IsEnum = (Flag.Value & EnumMask) != 0;
612       if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
613           (IsEnum && (Value & EnumMask) == Flag.Value)) {
614         if (!Str.empty())
615           Str += ", ";
616         Str += Flag.AltName;
617       }
618     }
619     return Str;
620   }
621 
622   formatted_raw_ostream &printField(struct Field F) const {
623     if (F.Column != 0)
624       OS.PadToColumn(F.Column);
625     OS << F.Str;
626     OS.flush();
627     return OS;
628   }
629   void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
630                          DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
631                          uint32_t Bucket);
632   void printRelrReloc(const Elf_Relr &R) override;
633   void printRelRelaReloc(const Relocation<ELFT> &R,
634                          const RelSymbol<ELFT> &RelSym) override;
635   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
636                    DataRegion<Elf_Word> ShndxTable,
637                    Optional<StringRef> StrTable, bool IsDynamic,
638                    bool NonVisibilityBitsUsed) const override;
639   void printDynamicRelocHeader(unsigned Type, StringRef Name,
640                                const DynRegionInfo &Reg) override;
641 
642   std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
643                                   DataRegion<Elf_Word> ShndxTable) const;
644   void printProgramHeaders() override;
645   void printSectionMapping() override;
646   void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
647                                     const Twine &Label, unsigned EntriesNum);
648 
649   void printStackSizeEntry(uint64_t Size,
650                            ArrayRef<std::string> FuncNames) override;
651 
652   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
653   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
654   void printMipsABIFlags() override;
655 };
656 
657 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
658 public:
659   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
660 
661   LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
662       : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
663 
664   void printFileHeaders() override;
665   void printGroupSections() override;
666   void printRelocations() override;
667   void printSectionHeaders() override;
668   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
669   void printDependentLibs() override;
670   void printDynamicTable() override;
671   void printDynamicRelocations() override;
672   void printProgramHeaders(bool PrintProgramHeaders,
673                            cl::boolOrDefault PrintSectionMapping) override;
674   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
675   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
676   void printVersionDependencySection(const Elf_Shdr *Sec) override;
677   void printHashHistograms() override;
678   void printCGProfile() override;
679   void printBBAddrMaps() override;
680   void printAddrsig() override;
681   void printNotes() override;
682   void printELFLinkerOptions() override;
683   void printStackSizes() override;
684 
685 private:
686   void printRelrReloc(const Elf_Relr &R) override;
687   void printRelRelaReloc(const Relocation<ELFT> &R,
688                          const RelSymbol<ELFT> &RelSym) override;
689 
690   void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
691                           DataRegion<Elf_Word> ShndxTable) const;
692   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
693                    DataRegion<Elf_Word> ShndxTable,
694                    Optional<StringRef> StrTable, bool IsDynamic,
695                    bool /*NonVisibilityBitsUsed*/) const override;
696   void printProgramHeaders() override;
697   void printSectionMapping() override {}
698   void printStackSizeEntry(uint64_t Size,
699                            ArrayRef<std::string> FuncNames) override;
700 
701   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
702   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
703   void printMipsABIFlags() override;
704 
705 protected:
706   ScopedPrinter &W;
707 };
708 
709 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except
710 // it uses a JSONScopedPrinter.
711 template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> {
712 public:
713   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
714 
715   JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
716       : LLVMELFDumper<ELFT>(ObjF, Writer) {}
717 
718   void printFileSummary(StringRef FileStr, ObjectFile &Obj,
719                         ArrayRef<std::string> InputFilenames,
720                         const Archive *A) override;
721 
722 private:
723   std::unique_ptr<DictScope> FileScope;
724 };
725 
726 } // end anonymous namespace
727 
728 namespace llvm {
729 
730 template <class ELFT>
731 static std::unique_ptr<ObjDumper>
732 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
733   if (opts::Output == opts::GNU)
734     return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
735   else if (opts::Output == opts::JSON)
736     return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer);
737   return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
738 }
739 
740 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
741                                            ScopedPrinter &Writer) {
742   // Little-endian 32-bit
743   if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
744     return createELFDumper(*ELFObj, Writer);
745 
746   // Big-endian 32-bit
747   if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
748     return createELFDumper(*ELFObj, Writer);
749 
750   // Little-endian 64-bit
751   if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
752     return createELFDumper(*ELFObj, Writer);
753 
754   // Big-endian 64-bit
755   return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
756 }
757 
758 } // end namespace llvm
759 
760 template <class ELFT>
761 Expected<SmallVector<Optional<VersionEntry>, 0> *>
762 ELFDumper<ELFT>::getVersionMap() const {
763   // If the VersionMap has already been loaded or if there is no dynamic symtab
764   // or version table, there is nothing to do.
765   if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
766     return &VersionMap;
767 
768   Expected<SmallVector<Optional<VersionEntry>, 0>> MapOrErr =
769       Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
770   if (MapOrErr)
771     VersionMap = *MapOrErr;
772   else
773     return MapOrErr.takeError();
774 
775   return &VersionMap;
776 }
777 
778 template <typename ELFT>
779 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
780                                                       bool &IsDefault) const {
781   // This is a dynamic symbol. Look in the GNU symbol version table.
782   if (!SymbolVersionSection) {
783     // No version table.
784     IsDefault = false;
785     return "";
786   }
787 
788   assert(DynSymRegion && "DynSymRegion has not been initialised");
789   // Determine the position in the symbol table of this entry.
790   size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
791                        reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
792                       sizeof(Elf_Sym);
793 
794   // Get the corresponding version index entry.
795   Expected<const Elf_Versym *> EntryOrErr =
796       Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
797   if (!EntryOrErr)
798     return EntryOrErr.takeError();
799 
800   unsigned Version = (*EntryOrErr)->vs_index;
801   if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
802     IsDefault = false;
803     return "";
804   }
805 
806   Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
807       getVersionMap();
808   if (!MapOrErr)
809     return MapOrErr.takeError();
810 
811   return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
812                                      Sym.st_shndx == ELF::SHN_UNDEF);
813 }
814 
815 template <typename ELFT>
816 Expected<RelSymbol<ELFT>>
817 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
818                                      const Elf_Shdr *SymTab) const {
819   if (R.Symbol == 0)
820     return RelSymbol<ELFT>(nullptr, "");
821 
822   Expected<const Elf_Sym *> SymOrErr =
823       Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
824   if (!SymOrErr)
825     return createError("unable to read an entry with index " + Twine(R.Symbol) +
826                        " from " + describe(*SymTab) + ": " +
827                        toString(SymOrErr.takeError()));
828   const Elf_Sym *Sym = *SymOrErr;
829   if (!Sym)
830     return RelSymbol<ELFT>(nullptr, "");
831 
832   Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
833   if (!StrTableOrErr)
834     return StrTableOrErr.takeError();
835 
836   const Elf_Sym *FirstSym =
837       cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
838   std::string SymbolName =
839       getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
840                         *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
841   return RelSymbol<ELFT>(Sym, SymbolName);
842 }
843 
844 template <typename ELFT>
845 ArrayRef<typename ELFT::Word>
846 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
847   if (Symtab) {
848     auto It = ShndxTables.find(Symtab);
849     if (It != ShndxTables.end())
850       return It->second;
851   }
852   return {};
853 }
854 
855 static std::string maybeDemangle(StringRef Name) {
856   return opts::Demangle ? demangle(std::string(Name)) : Name.str();
857 }
858 
859 template <typename ELFT>
860 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
861   auto Warn = [&](Error E) -> std::string {
862     reportUniqueWarning("unable to read the name of symbol with index " +
863                         Twine(Index) + ": " + toString(std::move(E)));
864     return "<?>";
865   };
866 
867   Expected<const typename ELFT::Sym *> SymOrErr =
868       Obj.getSymbol(DotSymtabSec, Index);
869   if (!SymOrErr)
870     return Warn(SymOrErr.takeError());
871 
872   Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
873   if (!StrTabOrErr)
874     return Warn(StrTabOrErr.takeError());
875 
876   Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
877   if (!NameOrErr)
878     return Warn(NameOrErr.takeError());
879   return maybeDemangle(*NameOrErr);
880 }
881 
882 template <typename ELFT>
883 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym &Symbol,
884                                                unsigned SymIndex,
885                                                DataRegion<Elf_Word> ShndxTable,
886                                                Optional<StringRef> StrTable,
887                                                bool IsDynamic) const {
888   if (!StrTable)
889     return "<?>";
890 
891   std::string SymbolName;
892   if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
893     SymbolName = maybeDemangle(*NameOrErr);
894   } else {
895     reportUniqueWarning(NameOrErr.takeError());
896     return "<?>";
897   }
898 
899   if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
900     Expected<unsigned> SectionIndex =
901         getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
902     if (!SectionIndex) {
903       reportUniqueWarning(SectionIndex.takeError());
904       return "<?>";
905     }
906     Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
907     if (!NameOrErr) {
908       reportUniqueWarning(NameOrErr.takeError());
909       return ("<section " + Twine(*SectionIndex) + ">").str();
910     }
911     return std::string(*NameOrErr);
912   }
913 
914   if (!IsDynamic)
915     return SymbolName;
916 
917   bool IsDefault;
918   Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
919   if (!VersionOrErr) {
920     reportUniqueWarning(VersionOrErr.takeError());
921     return SymbolName + "@<corrupt>";
922   }
923 
924   if (!VersionOrErr->empty()) {
925     SymbolName += (IsDefault ? "@@" : "@");
926     SymbolName += *VersionOrErr;
927   }
928   return SymbolName;
929 }
930 
931 template <typename ELFT>
932 Expected<unsigned>
933 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
934                                        DataRegion<Elf_Word> ShndxTable) const {
935   unsigned Ndx = Symbol.st_shndx;
936   if (Ndx == SHN_XINDEX)
937     return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
938                                                      ShndxTable);
939   if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
940     return Ndx;
941 
942   auto CreateErr = [&](const Twine &Name, Optional<unsigned> Offset = None) {
943     std::string Desc;
944     if (Offset)
945       Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
946     else
947       Desc = Name.str();
948     return createError(
949         "unable to get section index for symbol with st_shndx = 0x" +
950         Twine::utohexstr(Ndx) + " (" + Desc + ")");
951   };
952 
953   if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
954     return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
955   if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
956     return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
957   if (Ndx == ELF::SHN_UNDEF)
958     return CreateErr("SHN_UNDEF");
959   if (Ndx == ELF::SHN_ABS)
960     return CreateErr("SHN_ABS");
961   if (Ndx == ELF::SHN_COMMON)
962     return CreateErr("SHN_COMMON");
963   return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
964 }
965 
966 template <typename ELFT>
967 Expected<StringRef>
968 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
969                                       unsigned SectionIndex) const {
970   Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
971   if (!SecOrErr)
972     return SecOrErr.takeError();
973   return Obj.getSectionName(**SecOrErr);
974 }
975 
976 template <class ELFO>
977 static const typename ELFO::Elf_Shdr *
978 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
979                              uint64_t Addr) {
980   for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
981     if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
982       return &Shdr;
983   return nullptr;
984 }
985 
986 const EnumEntry<unsigned> ElfClass[] = {
987   {"None",   "none",   ELF::ELFCLASSNONE},
988   {"32-bit", "ELF32",  ELF::ELFCLASS32},
989   {"64-bit", "ELF64",  ELF::ELFCLASS64},
990 };
991 
992 const EnumEntry<unsigned> ElfDataEncoding[] = {
993   {"None",         "none",                          ELF::ELFDATANONE},
994   {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
995   {"BigEndian",    "2's complement, big endian",    ELF::ELFDATA2MSB},
996 };
997 
998 const EnumEntry<unsigned> ElfObjectFileType[] = {
999   {"None",         "NONE (none)",              ELF::ET_NONE},
1000   {"Relocatable",  "REL (Relocatable file)",   ELF::ET_REL},
1001   {"Executable",   "EXEC (Executable file)",   ELF::ET_EXEC},
1002   {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1003   {"Core",         "CORE (Core file)",         ELF::ET_CORE},
1004 };
1005 
1006 const EnumEntry<unsigned> ElfOSABI[] = {
1007   {"SystemV",      "UNIX - System V",      ELF::ELFOSABI_NONE},
1008   {"HPUX",         "UNIX - HP-UX",         ELF::ELFOSABI_HPUX},
1009   {"NetBSD",       "UNIX - NetBSD",        ELF::ELFOSABI_NETBSD},
1010   {"GNU/Linux",    "UNIX - GNU",           ELF::ELFOSABI_LINUX},
1011   {"GNU/Hurd",     "GNU/Hurd",             ELF::ELFOSABI_HURD},
1012   {"Solaris",      "UNIX - Solaris",       ELF::ELFOSABI_SOLARIS},
1013   {"AIX",          "UNIX - AIX",           ELF::ELFOSABI_AIX},
1014   {"IRIX",         "UNIX - IRIX",          ELF::ELFOSABI_IRIX},
1015   {"FreeBSD",      "UNIX - FreeBSD",       ELF::ELFOSABI_FREEBSD},
1016   {"TRU64",        "UNIX - TRU64",         ELF::ELFOSABI_TRU64},
1017   {"Modesto",      "Novell - Modesto",     ELF::ELFOSABI_MODESTO},
1018   {"OpenBSD",      "UNIX - OpenBSD",       ELF::ELFOSABI_OPENBSD},
1019   {"OpenVMS",      "VMS - OpenVMS",        ELF::ELFOSABI_OPENVMS},
1020   {"NSK",          "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1021   {"AROS",         "AROS",                 ELF::ELFOSABI_AROS},
1022   {"FenixOS",      "FenixOS",              ELF::ELFOSABI_FENIXOS},
1023   {"CloudABI",     "CloudABI",             ELF::ELFOSABI_CLOUDABI},
1024   {"Standalone",   "Standalone App",       ELF::ELFOSABI_STANDALONE}
1025 };
1026 
1027 const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1028   {"AMDGPU_HSA",    "AMDGPU - HSA",    ELF::ELFOSABI_AMDGPU_HSA},
1029   {"AMDGPU_PAL",    "AMDGPU - PAL",    ELF::ELFOSABI_AMDGPU_PAL},
1030   {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1031 };
1032 
1033 const EnumEntry<unsigned> ARMElfOSABI[] = {
1034   {"ARM", "ARM", ELF::ELFOSABI_ARM}
1035 };
1036 
1037 const EnumEntry<unsigned> C6000ElfOSABI[] = {
1038   {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1039   {"C6000_LINUX",  "Linux C6000",      ELF::ELFOSABI_C6000_LINUX}
1040 };
1041 
1042 const EnumEntry<unsigned> ElfMachineType[] = {
1043   ENUM_ENT(EM_NONE,          "None"),
1044   ENUM_ENT(EM_M32,           "WE32100"),
1045   ENUM_ENT(EM_SPARC,         "Sparc"),
1046   ENUM_ENT(EM_386,           "Intel 80386"),
1047   ENUM_ENT(EM_68K,           "MC68000"),
1048   ENUM_ENT(EM_88K,           "MC88000"),
1049   ENUM_ENT(EM_IAMCU,         "EM_IAMCU"),
1050   ENUM_ENT(EM_860,           "Intel 80860"),
1051   ENUM_ENT(EM_MIPS,          "MIPS R3000"),
1052   ENUM_ENT(EM_S370,          "IBM System/370"),
1053   ENUM_ENT(EM_MIPS_RS3_LE,   "MIPS R3000 little-endian"),
1054   ENUM_ENT(EM_PARISC,        "HPPA"),
1055   ENUM_ENT(EM_VPP500,        "Fujitsu VPP500"),
1056   ENUM_ENT(EM_SPARC32PLUS,   "Sparc v8+"),
1057   ENUM_ENT(EM_960,           "Intel 80960"),
1058   ENUM_ENT(EM_PPC,           "PowerPC"),
1059   ENUM_ENT(EM_PPC64,         "PowerPC64"),
1060   ENUM_ENT(EM_S390,          "IBM S/390"),
1061   ENUM_ENT(EM_SPU,           "SPU"),
1062   ENUM_ENT(EM_V800,          "NEC V800 series"),
1063   ENUM_ENT(EM_FR20,          "Fujistsu FR20"),
1064   ENUM_ENT(EM_RH32,          "TRW RH-32"),
1065   ENUM_ENT(EM_RCE,           "Motorola RCE"),
1066   ENUM_ENT(EM_ARM,           "ARM"),
1067   ENUM_ENT(EM_ALPHA,         "EM_ALPHA"),
1068   ENUM_ENT(EM_SH,            "Hitachi SH"),
1069   ENUM_ENT(EM_SPARCV9,       "Sparc v9"),
1070   ENUM_ENT(EM_TRICORE,       "Siemens Tricore"),
1071   ENUM_ENT(EM_ARC,           "ARC"),
1072   ENUM_ENT(EM_H8_300,        "Hitachi H8/300"),
1073   ENUM_ENT(EM_H8_300H,       "Hitachi H8/300H"),
1074   ENUM_ENT(EM_H8S,           "Hitachi H8S"),
1075   ENUM_ENT(EM_H8_500,        "Hitachi H8/500"),
1076   ENUM_ENT(EM_IA_64,         "Intel IA-64"),
1077   ENUM_ENT(EM_MIPS_X,        "Stanford MIPS-X"),
1078   ENUM_ENT(EM_COLDFIRE,      "Motorola Coldfire"),
1079   ENUM_ENT(EM_68HC12,        "Motorola MC68HC12 Microcontroller"),
1080   ENUM_ENT(EM_MMA,           "Fujitsu Multimedia Accelerator"),
1081   ENUM_ENT(EM_PCP,           "Siemens PCP"),
1082   ENUM_ENT(EM_NCPU,          "Sony nCPU embedded RISC processor"),
1083   ENUM_ENT(EM_NDR1,          "Denso NDR1 microprocesspr"),
1084   ENUM_ENT(EM_STARCORE,      "Motorola Star*Core processor"),
1085   ENUM_ENT(EM_ME16,          "Toyota ME16 processor"),
1086   ENUM_ENT(EM_ST100,         "STMicroelectronics ST100 processor"),
1087   ENUM_ENT(EM_TINYJ,         "Advanced Logic Corp. TinyJ embedded processor"),
1088   ENUM_ENT(EM_X86_64,        "Advanced Micro Devices X86-64"),
1089   ENUM_ENT(EM_PDSP,          "Sony DSP processor"),
1090   ENUM_ENT(EM_PDP10,         "Digital Equipment Corp. PDP-10"),
1091   ENUM_ENT(EM_PDP11,         "Digital Equipment Corp. PDP-11"),
1092   ENUM_ENT(EM_FX66,          "Siemens FX66 microcontroller"),
1093   ENUM_ENT(EM_ST9PLUS,       "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1094   ENUM_ENT(EM_ST7,           "STMicroelectronics ST7 8-bit microcontroller"),
1095   ENUM_ENT(EM_68HC16,        "Motorola MC68HC16 Microcontroller"),
1096   ENUM_ENT(EM_68HC11,        "Motorola MC68HC11 Microcontroller"),
1097   ENUM_ENT(EM_68HC08,        "Motorola MC68HC08 Microcontroller"),
1098   ENUM_ENT(EM_68HC05,        "Motorola MC68HC05 Microcontroller"),
1099   ENUM_ENT(EM_SVX,           "Silicon Graphics SVx"),
1100   ENUM_ENT(EM_ST19,          "STMicroelectronics ST19 8-bit microcontroller"),
1101   ENUM_ENT(EM_VAX,           "Digital VAX"),
1102   ENUM_ENT(EM_CRIS,          "Axis Communications 32-bit embedded processor"),
1103   ENUM_ENT(EM_JAVELIN,       "Infineon Technologies 32-bit embedded cpu"),
1104   ENUM_ENT(EM_FIREPATH,      "Element 14 64-bit DSP processor"),
1105   ENUM_ENT(EM_ZSP,           "LSI Logic's 16-bit DSP processor"),
1106   ENUM_ENT(EM_MMIX,          "Donald Knuth's educational 64-bit processor"),
1107   ENUM_ENT(EM_HUANY,         "Harvard Universitys's machine-independent object format"),
1108   ENUM_ENT(EM_PRISM,         "Vitesse Prism"),
1109   ENUM_ENT(EM_AVR,           "Atmel AVR 8-bit microcontroller"),
1110   ENUM_ENT(EM_FR30,          "Fujitsu FR30"),
1111   ENUM_ENT(EM_D10V,          "Mitsubishi D10V"),
1112   ENUM_ENT(EM_D30V,          "Mitsubishi D30V"),
1113   ENUM_ENT(EM_V850,          "NEC v850"),
1114   ENUM_ENT(EM_M32R,          "Renesas M32R (formerly Mitsubishi M32r)"),
1115   ENUM_ENT(EM_MN10300,       "Matsushita MN10300"),
1116   ENUM_ENT(EM_MN10200,       "Matsushita MN10200"),
1117   ENUM_ENT(EM_PJ,            "picoJava"),
1118   ENUM_ENT(EM_OPENRISC,      "OpenRISC 32-bit embedded processor"),
1119   ENUM_ENT(EM_ARC_COMPACT,   "EM_ARC_COMPACT"),
1120   ENUM_ENT(EM_XTENSA,        "Tensilica Xtensa Processor"),
1121   ENUM_ENT(EM_VIDEOCORE,     "Alphamosaic VideoCore processor"),
1122   ENUM_ENT(EM_TMM_GPP,       "Thompson Multimedia General Purpose Processor"),
1123   ENUM_ENT(EM_NS32K,         "National Semiconductor 32000 series"),
1124   ENUM_ENT(EM_TPC,           "Tenor Network TPC processor"),
1125   ENUM_ENT(EM_SNP1K,         "EM_SNP1K"),
1126   ENUM_ENT(EM_ST200,         "STMicroelectronics ST200 microcontroller"),
1127   ENUM_ENT(EM_IP2K,          "Ubicom IP2xxx 8-bit microcontrollers"),
1128   ENUM_ENT(EM_MAX,           "MAX Processor"),
1129   ENUM_ENT(EM_CR,            "National Semiconductor CompactRISC"),
1130   ENUM_ENT(EM_F2MC16,        "Fujitsu F2MC16"),
1131   ENUM_ENT(EM_MSP430,        "Texas Instruments msp430 microcontroller"),
1132   ENUM_ENT(EM_BLACKFIN,      "Analog Devices Blackfin"),
1133   ENUM_ENT(EM_SE_C33,        "S1C33 Family of Seiko Epson processors"),
1134   ENUM_ENT(EM_SEP,           "Sharp embedded microprocessor"),
1135   ENUM_ENT(EM_ARCA,          "Arca RISC microprocessor"),
1136   ENUM_ENT(EM_UNICORE,       "Unicore"),
1137   ENUM_ENT(EM_EXCESS,        "eXcess 16/32/64-bit configurable embedded CPU"),
1138   ENUM_ENT(EM_DXP,           "Icera Semiconductor Inc. Deep Execution Processor"),
1139   ENUM_ENT(EM_ALTERA_NIOS2,  "Altera Nios"),
1140   ENUM_ENT(EM_CRX,           "National Semiconductor CRX microprocessor"),
1141   ENUM_ENT(EM_XGATE,         "Motorola XGATE embedded processor"),
1142   ENUM_ENT(EM_C166,          "Infineon Technologies xc16x"),
1143   ENUM_ENT(EM_M16C,          "Renesas M16C"),
1144   ENUM_ENT(EM_DSPIC30F,      "Microchip Technology dsPIC30F Digital Signal Controller"),
1145   ENUM_ENT(EM_CE,            "Freescale Communication Engine RISC core"),
1146   ENUM_ENT(EM_M32C,          "Renesas M32C"),
1147   ENUM_ENT(EM_TSK3000,       "Altium TSK3000 core"),
1148   ENUM_ENT(EM_RS08,          "Freescale RS08 embedded processor"),
1149   ENUM_ENT(EM_SHARC,         "EM_SHARC"),
1150   ENUM_ENT(EM_ECOG2,         "Cyan Technology eCOG2 microprocessor"),
1151   ENUM_ENT(EM_SCORE7,        "SUNPLUS S+Core"),
1152   ENUM_ENT(EM_DSP24,         "New Japan Radio (NJR) 24-bit DSP Processor"),
1153   ENUM_ENT(EM_VIDEOCORE3,    "Broadcom VideoCore III processor"),
1154   ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1155   ENUM_ENT(EM_SE_C17,        "Seiko Epson C17 family"),
1156   ENUM_ENT(EM_TI_C6000,      "Texas Instruments TMS320C6000 DSP family"),
1157   ENUM_ENT(EM_TI_C2000,      "Texas Instruments TMS320C2000 DSP family"),
1158   ENUM_ENT(EM_TI_C5500,      "Texas Instruments TMS320C55x DSP family"),
1159   ENUM_ENT(EM_MMDSP_PLUS,    "STMicroelectronics 64bit VLIW Data Signal Processor"),
1160   ENUM_ENT(EM_CYPRESS_M8C,   "Cypress M8C microprocessor"),
1161   ENUM_ENT(EM_R32C,          "Renesas R32C series microprocessors"),
1162   ENUM_ENT(EM_TRIMEDIA,      "NXP Semiconductors TriMedia architecture family"),
1163   ENUM_ENT(EM_HEXAGON,       "Qualcomm Hexagon"),
1164   ENUM_ENT(EM_8051,          "Intel 8051 and variants"),
1165   ENUM_ENT(EM_STXP7X,        "STMicroelectronics STxP7x family"),
1166   ENUM_ENT(EM_NDS32,         "Andes Technology compact code size embedded RISC processor family"),
1167   ENUM_ENT(EM_ECOG1,         "Cyan Technology eCOG1 microprocessor"),
1168   // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1169   //        an identical number to EM_ECOG1.
1170   ENUM_ENT(EM_ECOG1X,        "Cyan Technology eCOG1X family"),
1171   ENUM_ENT(EM_MAXQ30,        "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1172   ENUM_ENT(EM_XIMO16,        "New Japan Radio (NJR) 16-bit DSP Processor"),
1173   ENUM_ENT(EM_MANIK,         "M2000 Reconfigurable RISC Microprocessor"),
1174   ENUM_ENT(EM_CRAYNV2,       "Cray Inc. NV2 vector architecture"),
1175   ENUM_ENT(EM_RX,            "Renesas RX"),
1176   ENUM_ENT(EM_METAG,         "Imagination Technologies Meta processor architecture"),
1177   ENUM_ENT(EM_MCST_ELBRUS,   "MCST Elbrus general purpose hardware architecture"),
1178   ENUM_ENT(EM_ECOG16,        "Cyan Technology eCOG16 family"),
1179   ENUM_ENT(EM_CR16,          "National Semiconductor CompactRISC 16-bit processor"),
1180   ENUM_ENT(EM_ETPU,          "Freescale Extended Time Processing Unit"),
1181   ENUM_ENT(EM_SLE9X,         "Infineon Technologies SLE9X core"),
1182   ENUM_ENT(EM_L10M,          "EM_L10M"),
1183   ENUM_ENT(EM_K10M,          "EM_K10M"),
1184   ENUM_ENT(EM_AARCH64,       "AArch64"),
1185   ENUM_ENT(EM_AVR32,         "Atmel Corporation 32-bit microprocessor family"),
1186   ENUM_ENT(EM_STM8,          "STMicroeletronics STM8 8-bit microcontroller"),
1187   ENUM_ENT(EM_TILE64,        "Tilera TILE64 multicore architecture family"),
1188   ENUM_ENT(EM_TILEPRO,       "Tilera TILEPro multicore architecture family"),
1189   ENUM_ENT(EM_MICROBLAZE,    "Xilinx MicroBlaze 32-bit RISC soft processor core"),
1190   ENUM_ENT(EM_CUDA,          "NVIDIA CUDA architecture"),
1191   ENUM_ENT(EM_TILEGX,        "Tilera TILE-Gx multicore architecture family"),
1192   ENUM_ENT(EM_CLOUDSHIELD,   "EM_CLOUDSHIELD"),
1193   ENUM_ENT(EM_COREA_1ST,     "EM_COREA_1ST"),
1194   ENUM_ENT(EM_COREA_2ND,     "EM_COREA_2ND"),
1195   ENUM_ENT(EM_ARC_COMPACT2,  "EM_ARC_COMPACT2"),
1196   ENUM_ENT(EM_OPEN8,         "EM_OPEN8"),
1197   ENUM_ENT(EM_RL78,          "Renesas RL78"),
1198   ENUM_ENT(EM_VIDEOCORE5,    "Broadcom VideoCore V processor"),
1199   ENUM_ENT(EM_78KOR,         "EM_78KOR"),
1200   ENUM_ENT(EM_56800EX,       "EM_56800EX"),
1201   ENUM_ENT(EM_AMDGPU,        "EM_AMDGPU"),
1202   ENUM_ENT(EM_RISCV,         "RISC-V"),
1203   ENUM_ENT(EM_LANAI,         "EM_LANAI"),
1204   ENUM_ENT(EM_BPF,           "EM_BPF"),
1205   ENUM_ENT(EM_VE,            "NEC SX-Aurora Vector Engine"),
1206 };
1207 
1208 const EnumEntry<unsigned> ElfSymbolBindings[] = {
1209     {"Local",  "LOCAL",  ELF::STB_LOCAL},
1210     {"Global", "GLOBAL", ELF::STB_GLOBAL},
1211     {"Weak",   "WEAK",   ELF::STB_WEAK},
1212     {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1213 
1214 const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1215     {"DEFAULT",   "DEFAULT",   ELF::STV_DEFAULT},
1216     {"INTERNAL",  "INTERNAL",  ELF::STV_INTERNAL},
1217     {"HIDDEN",    "HIDDEN",    ELF::STV_HIDDEN},
1218     {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1219 
1220 const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1221   { "AMDGPU_HSA_KERNEL",            ELF::STT_AMDGPU_HSA_KERNEL }
1222 };
1223 
1224 static const char *getGroupType(uint32_t Flag) {
1225   if (Flag & ELF::GRP_COMDAT)
1226     return "COMDAT";
1227   else
1228     return "(unknown)";
1229 }
1230 
1231 const EnumEntry<unsigned> ElfSectionFlags[] = {
1232   ENUM_ENT(SHF_WRITE,            "W"),
1233   ENUM_ENT(SHF_ALLOC,            "A"),
1234   ENUM_ENT(SHF_EXECINSTR,        "X"),
1235   ENUM_ENT(SHF_MERGE,            "M"),
1236   ENUM_ENT(SHF_STRINGS,          "S"),
1237   ENUM_ENT(SHF_INFO_LINK,        "I"),
1238   ENUM_ENT(SHF_LINK_ORDER,       "L"),
1239   ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
1240   ENUM_ENT(SHF_GROUP,            "G"),
1241   ENUM_ENT(SHF_TLS,              "T"),
1242   ENUM_ENT(SHF_COMPRESSED,       "C"),
1243   ENUM_ENT(SHF_GNU_RETAIN,       "R"),
1244   ENUM_ENT(SHF_EXCLUDE,          "E"),
1245 };
1246 
1247 const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1248   ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
1249   ENUM_ENT(XCORE_SHF_DP_SECTION, "")
1250 };
1251 
1252 const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1253   ENUM_ENT(SHF_ARM_PURECODE, "y")
1254 };
1255 
1256 const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1257   ENUM_ENT(SHF_HEX_GPREL, "")
1258 };
1259 
1260 const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1261   ENUM_ENT(SHF_MIPS_NODUPES, ""),
1262   ENUM_ENT(SHF_MIPS_NAMES,   ""),
1263   ENUM_ENT(SHF_MIPS_LOCAL,   ""),
1264   ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
1265   ENUM_ENT(SHF_MIPS_GPREL,   ""),
1266   ENUM_ENT(SHF_MIPS_MERGE,   ""),
1267   ENUM_ENT(SHF_MIPS_ADDR,    ""),
1268   ENUM_ENT(SHF_MIPS_STRING,  "")
1269 };
1270 
1271 const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1272   ENUM_ENT(SHF_X86_64_LARGE, "l")
1273 };
1274 
1275 static std::vector<EnumEntry<unsigned>>
1276 getSectionFlagsForTarget(unsigned EMachine) {
1277   std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1278                                        std::end(ElfSectionFlags));
1279   switch (EMachine) {
1280   case EM_ARM:
1281     Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1282                std::end(ElfARMSectionFlags));
1283     break;
1284   case EM_HEXAGON:
1285     Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1286                std::end(ElfHexagonSectionFlags));
1287     break;
1288   case EM_MIPS:
1289     Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1290                std::end(ElfMipsSectionFlags));
1291     break;
1292   case EM_X86_64:
1293     Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1294                std::end(ElfX86_64SectionFlags));
1295     break;
1296   case EM_XCORE:
1297     Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1298                std::end(ElfXCoreSectionFlags));
1299     break;
1300   default:
1301     break;
1302   }
1303   return Ret;
1304 }
1305 
1306 static std::string getGNUFlags(unsigned EMachine, uint64_t Flags) {
1307   // Here we are trying to build the flags string in the same way as GNU does.
1308   // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1309   // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1310   // GNU readelf will not print "E" or "Ep" in this case, but will print just
1311   // "p". It only will print "E" when no other processor flag is set.
1312   std::string Str;
1313   bool HasUnknownFlag = false;
1314   bool HasOSFlag = false;
1315   bool HasProcFlag = false;
1316   std::vector<EnumEntry<unsigned>> FlagsList =
1317       getSectionFlagsForTarget(EMachine);
1318   while (Flags) {
1319     // Take the least significant bit as a flag.
1320     uint64_t Flag = Flags & -Flags;
1321     Flags -= Flag;
1322 
1323     // Find the flag in the known flags list.
1324     auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1325       // Flags with empty names are not printed in GNU style output.
1326       return E.Value == Flag && !E.AltName.empty();
1327     });
1328     if (I != FlagsList.end()) {
1329       Str += I->AltName;
1330       continue;
1331     }
1332 
1333     // If we did not find a matching regular flag, then we deal with an OS
1334     // specific flag, processor specific flag or an unknown flag.
1335     if (Flag & ELF::SHF_MASKOS) {
1336       HasOSFlag = true;
1337       Flags &= ~ELF::SHF_MASKOS;
1338     } else if (Flag & ELF::SHF_MASKPROC) {
1339       HasProcFlag = true;
1340       // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1341       // bit if set so that it doesn't also get printed.
1342       Flags &= ~ELF::SHF_MASKPROC;
1343     } else {
1344       HasUnknownFlag = true;
1345     }
1346   }
1347 
1348   // "o", "p" and "x" are printed last.
1349   if (HasOSFlag)
1350     Str += "o";
1351   if (HasProcFlag)
1352     Str += "p";
1353   if (HasUnknownFlag)
1354     Str += "x";
1355   return Str;
1356 }
1357 
1358 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1359   // Check potentially overlapped processor-specific program header type.
1360   switch (Arch) {
1361   case ELF::EM_ARM:
1362     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1363     break;
1364   case ELF::EM_MIPS:
1365   case ELF::EM_MIPS_RS3_LE:
1366     switch (Type) {
1367       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1368       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1369       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1370       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1371     }
1372     break;
1373   }
1374 
1375   switch (Type) {
1376     LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL);
1377     LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD);
1378     LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1379     LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP);
1380     LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE);
1381     LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB);
1382     LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR);
1383     LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS);
1384 
1385     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1386     LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1387 
1388     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1389     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1390     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
1391 
1392     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1393     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1394     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1395   default:
1396     return "";
1397   }
1398 }
1399 
1400 static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1401   StringRef Seg = segmentTypeToString(Arch, Type);
1402   if (Seg.empty())
1403     return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1404 
1405   // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1406   if (Seg.startswith("PT_ARM_"))
1407     return Seg.drop_front(7).str();
1408 
1409   // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1410   if (Seg.startswith("PT_MIPS_"))
1411     return Seg.drop_front(8).str();
1412 
1413   // E.g. "PT_LOAD" -> "LOAD".
1414   assert(Seg.startswith("PT_"));
1415   return Seg.drop_front(3).str();
1416 }
1417 
1418 const EnumEntry<unsigned> ElfSegmentFlags[] = {
1419   LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1420   LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1421   LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1422 };
1423 
1424 const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1425   ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1426   ENUM_ENT(EF_MIPS_PIC, "pic"),
1427   ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1428   ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1429   ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1430   ENUM_ENT(EF_MIPS_FP64, "fp64"),
1431   ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1432   ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1433   ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1434   ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1435   ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1436   ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1437   ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1438   ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1439   ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1440   ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1441   ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1442   ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1443   ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1444   ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1445   ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1446   ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1447   ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1448   ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1449   ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1450   ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1451   ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1452   ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1453   ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1454   ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1455   ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1456   ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1457   ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1458   ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1459   ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1460   ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1461   ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1462   ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1463   ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1464   ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1465   ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1466   ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1467   ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1468 };
1469 
1470 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
1471   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1472   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1473   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1474   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1475   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1476   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1477   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1478   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1479   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1480   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1481   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1482   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1483   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1484   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1485   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1486   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1487   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1488   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1489   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1490   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1491   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1492   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1493   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1494   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1495   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1496   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1497   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1498   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1499   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1500   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1501   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1502   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1503   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1504   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1505   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1506   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1507   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1508   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1509   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1510   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1511   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1512   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1513   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1514   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1515   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1516   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1517   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1518   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1519   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1520   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3),
1521   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3)
1522 };
1523 
1524 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
1525   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1526   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1527   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1528   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1529   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1530   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1531   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1532   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1533   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1534   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1535   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1536   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1537   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1538   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1539   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1540   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1541   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1542   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1543   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1544   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1545   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1546   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1547   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1548   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1549   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1550   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1551   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1552   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1553   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1554   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1555   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1556   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1557   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1558   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1559   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1560   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1561   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1562   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1563   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1564   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1565   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1566   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1567   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1568   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1569   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1570   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1571   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1572   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1573   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1574   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4),
1575   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4),
1576   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4),
1577   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4),
1578   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4),
1579   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4)
1580 };
1581 
1582 const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1583   ENUM_ENT(EF_RISCV_RVC, "RVC"),
1584   ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1585   ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1586   ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1587   ENUM_ENT(EF_RISCV_RVE, "RVE"),
1588   ENUM_ENT(EF_RISCV_TSO, "TSO"),
1589 };
1590 
1591 const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
1592   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1),
1593   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2),
1594   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25),
1595   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3),
1596   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31),
1597   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35),
1598   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4),
1599   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5),
1600   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51),
1601   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6),
1602   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY),
1603   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1),
1604   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2),
1605   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3),
1606   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4),
1607   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5),
1608   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6),
1609   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7),
1610   ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"),
1611 };
1612 
1613 
1614 const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1615   LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1616   LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1617   LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1618 };
1619 
1620 const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1621   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1622   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1623   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1624   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1625 };
1626 
1627 const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1628   LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS)
1629 };
1630 
1631 const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1632   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1633   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1634   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1635 };
1636 
1637 const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = {
1638     LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)};
1639 
1640 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1641   switch (Odk) {
1642   LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1643   LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1644   LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1645   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1646   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1647   LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1648   LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1649   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1650   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1651   LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1652   LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1653   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1654   default:
1655     return "Unknown";
1656   }
1657 }
1658 
1659 template <typename ELFT>
1660 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1661 ELFDumper<ELFT>::findDynamic() {
1662   // Try to locate the PT_DYNAMIC header.
1663   const Elf_Phdr *DynamicPhdr = nullptr;
1664   if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1665     for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1666       if (Phdr.p_type != ELF::PT_DYNAMIC)
1667         continue;
1668       DynamicPhdr = &Phdr;
1669       break;
1670     }
1671   } else {
1672     reportUniqueWarning(
1673         "unable to read program headers to locate the PT_DYNAMIC segment: " +
1674         toString(PhdrsOrErr.takeError()));
1675   }
1676 
1677   // Try to locate the .dynamic section in the sections header table.
1678   const Elf_Shdr *DynamicSec = nullptr;
1679   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1680     if (Sec.sh_type != ELF::SHT_DYNAMIC)
1681       continue;
1682     DynamicSec = &Sec;
1683     break;
1684   }
1685 
1686   if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1687                        ObjF.getMemoryBufferRef().getBufferSize()) ||
1688                       (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1689                        DynamicPhdr->p_offset))) {
1690     reportUniqueWarning(
1691         "PT_DYNAMIC segment offset (0x" +
1692         Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1693         Twine::utohexstr(DynamicPhdr->p_filesz) +
1694         ") exceeds the size of the file (0x" +
1695         Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1696     // Don't use the broken dynamic header.
1697     DynamicPhdr = nullptr;
1698   }
1699 
1700   if (DynamicPhdr && DynamicSec) {
1701     if (DynamicSec->sh_addr + DynamicSec->sh_size >
1702             DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1703         DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1704       reportUniqueWarning(describe(*DynamicSec) +
1705                           " is not contained within the "
1706                           "PT_DYNAMIC segment");
1707 
1708     if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1709       reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1710                                                   "PT_DYNAMIC segment");
1711   }
1712 
1713   return std::make_pair(DynamicPhdr, DynamicSec);
1714 }
1715 
1716 template <typename ELFT>
1717 void ELFDumper<ELFT>::loadDynamicTable() {
1718   const Elf_Phdr *DynamicPhdr;
1719   const Elf_Shdr *DynamicSec;
1720   std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1721   if (!DynamicPhdr && !DynamicSec)
1722     return;
1723 
1724   DynRegionInfo FromPhdr(ObjF, *this);
1725   bool IsPhdrTableValid = false;
1726   if (DynamicPhdr) {
1727     // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1728     // validated in findDynamic() and so createDRI() is not expected to fail.
1729     FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1730                                   sizeof(Elf_Dyn)));
1731     FromPhdr.SizePrintName = "PT_DYNAMIC size";
1732     FromPhdr.EntSizePrintName = "";
1733     IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
1734   }
1735 
1736   // Locate the dynamic table described in a section header.
1737   // Ignore sh_entsize and use the expected value for entry size explicitly.
1738   // This allows us to dump dynamic sections with a broken sh_entsize
1739   // field.
1740   DynRegionInfo FromSec(ObjF, *this);
1741   bool IsSecTableValid = false;
1742   if (DynamicSec) {
1743     Expected<DynRegionInfo> RegOrErr =
1744         createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1745     if (RegOrErr) {
1746       FromSec = *RegOrErr;
1747       FromSec.Context = describe(*DynamicSec);
1748       FromSec.EntSizePrintName = "";
1749       IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
1750     } else {
1751       reportUniqueWarning("unable to read the dynamic table from " +
1752                           describe(*DynamicSec) + ": " +
1753                           toString(RegOrErr.takeError()));
1754     }
1755   }
1756 
1757   // When we only have information from one of the SHT_DYNAMIC section header or
1758   // PT_DYNAMIC program header, just use that.
1759   if (!DynamicPhdr || !DynamicSec) {
1760     if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1761       DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1762       parseDynamicTable();
1763     } else {
1764       reportUniqueWarning("no valid dynamic table was found");
1765     }
1766     return;
1767   }
1768 
1769   // At this point we have tables found from the section header and from the
1770   // dynamic segment. Usually they match, but we have to do sanity checks to
1771   // verify that.
1772 
1773   if (FromPhdr.Addr != FromSec.Addr)
1774     reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1775                         "program header disagree about "
1776                         "the location of the dynamic table");
1777 
1778   if (!IsPhdrTableValid && !IsSecTableValid) {
1779     reportUniqueWarning("no valid dynamic table was found");
1780     return;
1781   }
1782 
1783   // Information in the PT_DYNAMIC program header has priority over the
1784   // information in a section header.
1785   if (IsPhdrTableValid) {
1786     if (!IsSecTableValid)
1787       reportUniqueWarning(
1788           "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1789     DynamicTable = FromPhdr;
1790   } else {
1791     reportUniqueWarning(
1792         "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1793     DynamicTable = FromSec;
1794   }
1795 
1796   parseDynamicTable();
1797 }
1798 
1799 template <typename ELFT>
1800 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
1801                            ScopedPrinter &Writer)
1802     : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
1803       FileName(O.getFileName()), DynRelRegion(O, *this),
1804       DynRelaRegion(O, *this), DynRelrRegion(O, *this),
1805       DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
1806       DynamicTable(O, *this) {
1807   if (!O.IsContentValid())
1808     return;
1809 
1810   typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
1811   for (const Elf_Shdr &Sec : Sections) {
1812     switch (Sec.sh_type) {
1813     case ELF::SHT_SYMTAB:
1814       if (!DotSymtabSec)
1815         DotSymtabSec = &Sec;
1816       break;
1817     case ELF::SHT_DYNSYM:
1818       if (!DotDynsymSec)
1819         DotDynsymSec = &Sec;
1820 
1821       if (!DynSymRegion) {
1822         Expected<DynRegionInfo> RegOrErr =
1823             createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
1824         if (RegOrErr) {
1825           DynSymRegion = *RegOrErr;
1826           DynSymRegion->Context = describe(Sec);
1827 
1828           if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
1829             DynamicStringTable = *E;
1830           else
1831             reportUniqueWarning("unable to get the string table for the " +
1832                                 describe(Sec) + ": " + toString(E.takeError()));
1833         } else {
1834           reportUniqueWarning("unable to read dynamic symbols from " +
1835                               describe(Sec) + ": " +
1836                               toString(RegOrErr.takeError()));
1837         }
1838       }
1839       break;
1840     case ELF::SHT_SYMTAB_SHNDX: {
1841       uint32_t SymtabNdx = Sec.sh_link;
1842       if (SymtabNdx >= Sections.size()) {
1843         reportUniqueWarning(
1844             "unable to get the associated symbol table for " + describe(Sec) +
1845             ": sh_link (" + Twine(SymtabNdx) +
1846             ") is greater than or equal to the total number of sections (" +
1847             Twine(Sections.size()) + ")");
1848         continue;
1849       }
1850 
1851       if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
1852               Obj.getSHNDXTable(Sec)) {
1853         if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
1854                  .second)
1855           reportUniqueWarning(
1856               "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1857               describe(Sec));
1858       } else {
1859         reportUniqueWarning(ShndxTableOrErr.takeError());
1860       }
1861       break;
1862     }
1863     case ELF::SHT_GNU_versym:
1864       if (!SymbolVersionSection)
1865         SymbolVersionSection = &Sec;
1866       break;
1867     case ELF::SHT_GNU_verdef:
1868       if (!SymbolVersionDefSection)
1869         SymbolVersionDefSection = &Sec;
1870       break;
1871     case ELF::SHT_GNU_verneed:
1872       if (!SymbolVersionNeedSection)
1873         SymbolVersionNeedSection = &Sec;
1874       break;
1875     case ELF::SHT_LLVM_ADDRSIG:
1876       if (!DotAddrsigSec)
1877         DotAddrsigSec = &Sec;
1878       break;
1879     }
1880   }
1881 
1882   loadDynamicTable();
1883 }
1884 
1885 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
1886   auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
1887     auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
1888       this->reportUniqueWarning(Msg);
1889       return Error::success();
1890     });
1891     if (!MappedAddrOrError) {
1892       this->reportUniqueWarning("unable to parse DT_" +
1893                                 Obj.getDynamicTagAsString(Tag) + ": " +
1894                                 llvm::toString(MappedAddrOrError.takeError()));
1895       return nullptr;
1896     }
1897     return MappedAddrOrError.get();
1898   };
1899 
1900   const char *StringTableBegin = nullptr;
1901   uint64_t StringTableSize = 0;
1902   Optional<DynRegionInfo> DynSymFromTable;
1903   for (const Elf_Dyn &Dyn : dynamic_table()) {
1904     switch (Dyn.d_tag) {
1905     case ELF::DT_HASH:
1906       HashTable = reinterpret_cast<const Elf_Hash *>(
1907           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1908       break;
1909     case ELF::DT_GNU_HASH:
1910       GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
1911           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1912       break;
1913     case ELF::DT_STRTAB:
1914       StringTableBegin = reinterpret_cast<const char *>(
1915           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1916       break;
1917     case ELF::DT_STRSZ:
1918       StringTableSize = Dyn.getVal();
1919       break;
1920     case ELF::DT_SYMTAB: {
1921       // If we can't map the DT_SYMTAB value to an address (e.g. when there are
1922       // no program headers), we ignore its value.
1923       if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
1924         DynSymFromTable.emplace(ObjF, *this);
1925         DynSymFromTable->Addr = VA;
1926         DynSymFromTable->EntSize = sizeof(Elf_Sym);
1927         DynSymFromTable->EntSizePrintName = "";
1928       }
1929       break;
1930     }
1931     case ELF::DT_SYMENT: {
1932       uint64_t Val = Dyn.getVal();
1933       if (Val != sizeof(Elf_Sym))
1934         this->reportUniqueWarning("DT_SYMENT value of 0x" +
1935                                   Twine::utohexstr(Val) +
1936                                   " is not the size of a symbol (0x" +
1937                                   Twine::utohexstr(sizeof(Elf_Sym)) + ")");
1938       break;
1939     }
1940     case ELF::DT_RELA:
1941       DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1942       break;
1943     case ELF::DT_RELASZ:
1944       DynRelaRegion.Size = Dyn.getVal();
1945       DynRelaRegion.SizePrintName = "DT_RELASZ value";
1946       break;
1947     case ELF::DT_RELAENT:
1948       DynRelaRegion.EntSize = Dyn.getVal();
1949       DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
1950       break;
1951     case ELF::DT_SONAME:
1952       SONameOffset = Dyn.getVal();
1953       break;
1954     case ELF::DT_REL:
1955       DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1956       break;
1957     case ELF::DT_RELSZ:
1958       DynRelRegion.Size = Dyn.getVal();
1959       DynRelRegion.SizePrintName = "DT_RELSZ value";
1960       break;
1961     case ELF::DT_RELENT:
1962       DynRelRegion.EntSize = Dyn.getVal();
1963       DynRelRegion.EntSizePrintName = "DT_RELENT value";
1964       break;
1965     case ELF::DT_RELR:
1966     case ELF::DT_ANDROID_RELR:
1967       DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1968       break;
1969     case ELF::DT_RELRSZ:
1970     case ELF::DT_ANDROID_RELRSZ:
1971       DynRelrRegion.Size = Dyn.getVal();
1972       DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
1973                                         ? "DT_RELRSZ value"
1974                                         : "DT_ANDROID_RELRSZ value";
1975       break;
1976     case ELF::DT_RELRENT:
1977     case ELF::DT_ANDROID_RELRENT:
1978       DynRelrRegion.EntSize = Dyn.getVal();
1979       DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
1980                                            ? "DT_RELRENT value"
1981                                            : "DT_ANDROID_RELRENT value";
1982       break;
1983     case ELF::DT_PLTREL:
1984       if (Dyn.getVal() == DT_REL)
1985         DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
1986       else if (Dyn.getVal() == DT_RELA)
1987         DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
1988       else
1989         reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
1990                             Twine((uint64_t)Dyn.getVal()));
1991       DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
1992       break;
1993     case ELF::DT_JMPREL:
1994       DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1995       break;
1996     case ELF::DT_PLTRELSZ:
1997       DynPLTRelRegion.Size = Dyn.getVal();
1998       DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
1999       break;
2000     case ELF::DT_SYMTAB_SHNDX:
2001       DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2002       DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
2003       break;
2004     }
2005   }
2006 
2007   if (StringTableBegin) {
2008     const uint64_t FileSize = Obj.getBufSize();
2009     const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
2010     if (StringTableSize > FileSize - Offset)
2011       reportUniqueWarning(
2012           "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
2013           " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
2014           ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
2015     else
2016       DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2017   }
2018 
2019   const bool IsHashTableSupported = getHashTableEntSize() == 4;
2020   if (DynSymRegion) {
2021     // Often we find the information about the dynamic symbol table
2022     // location in the SHT_DYNSYM section header. However, the value in
2023     // DT_SYMTAB has priority, because it is used by dynamic loaders to
2024     // locate .dynsym at runtime. The location we find in the section header
2025     // and the location we find here should match.
2026     if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2027       reportUniqueWarning(
2028           createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2029                       "the location of the dynamic symbol table"));
2030 
2031     // According to the ELF gABI: "The number of symbol table entries should
2032     // equal nchain". Check to see if the DT_HASH hash table nchain value
2033     // conflicts with the number of symbols in the dynamic symbol table
2034     // according to the section header.
2035     if (HashTable && IsHashTableSupported) {
2036       if (DynSymRegion->EntSize == 0)
2037         reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2038       else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2039         reportUniqueWarning(
2040             "hash table nchain (" + Twine(HashTable->nchain) +
2041             ") differs from symbol count derived from SHT_DYNSYM section "
2042             "header (" +
2043             Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2044     }
2045   }
2046 
2047   // Delay the creation of the actual dynamic symbol table until now, so that
2048   // checks can always be made against the section header-based properties,
2049   // without worrying about tag order.
2050   if (DynSymFromTable) {
2051     if (!DynSymRegion) {
2052       DynSymRegion = DynSymFromTable;
2053     } else {
2054       DynSymRegion->Addr = DynSymFromTable->Addr;
2055       DynSymRegion->EntSize = DynSymFromTable->EntSize;
2056       DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2057     }
2058   }
2059 
2060   // Derive the dynamic symbol table size from the DT_HASH hash table, if
2061   // present.
2062   if (HashTable && IsHashTableSupported && DynSymRegion) {
2063     const uint64_t FileSize = Obj.getBufSize();
2064     const uint64_t DerivedSize =
2065         (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2066     const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2067     if (DerivedSize > FileSize - Offset)
2068       reportUniqueWarning(
2069           "the size (0x" + Twine::utohexstr(DerivedSize) +
2070           ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2071           ", derived from the hash table, goes past the end of the file (0x" +
2072           Twine::utohexstr(FileSize) + ") and will be ignored");
2073     else
2074       DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2075   }
2076 }
2077 
2078 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2079   // Dump version symbol section.
2080   printVersionSymbolSection(SymbolVersionSection);
2081 
2082   // Dump version definition section.
2083   printVersionDefinitionSection(SymbolVersionDefSection);
2084 
2085   // Dump version dependency section.
2086   printVersionDependencySection(SymbolVersionNeedSection);
2087 }
2088 
2089 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum)                                 \
2090   { #enum, prefix##_##enum }
2091 
2092 const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2093   LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2094   LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2095   LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2096   LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2097   LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2098 };
2099 
2100 const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2101   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2102   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2103   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2104   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2105   LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2106   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2107   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2108   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2109   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2110   LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2111   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2112   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2113   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2114   LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2115   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2116   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2117   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2118   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2119   LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2120   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2121   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2122   LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2123   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2124   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2125   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2126   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2127   LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2128 };
2129 
2130 const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2131   LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2132   LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2133   LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2134   LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2135   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2136   LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2137   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2138   LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2139   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2140   LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2141   LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2142   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2143   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2144   LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2145   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2146   LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2147 };
2148 
2149 #undef LLVM_READOBJ_DT_FLAG_ENT
2150 
2151 template <typename T, typename TFlag>
2152 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2153   SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2154   for (const EnumEntry<TFlag> &Flag : Flags)
2155     if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2156       SetFlags.push_back(Flag);
2157 
2158   for (const EnumEntry<TFlag> &Flag : SetFlags)
2159     OS << Flag.Name << " ";
2160 }
2161 
2162 template <class ELFT>
2163 const typename ELFT::Shdr *
2164 ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2165   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2166     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2167       if (*NameOrErr == Name)
2168         return &Shdr;
2169     } else {
2170       reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2171                           ": " + toString(NameOrErr.takeError()));
2172     }
2173   }
2174   return nullptr;
2175 }
2176 
2177 template <class ELFT>
2178 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2179                                              uint64_t Value) const {
2180   auto FormatHexValue = [](uint64_t V) {
2181     std::string Str;
2182     raw_string_ostream OS(Str);
2183     const char *ConvChar =
2184         (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
2185     OS << format(ConvChar, V);
2186     return OS.str();
2187   };
2188 
2189   auto FormatFlags = [](uint64_t V,
2190                         llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2191     std::string Str;
2192     raw_string_ostream OS(Str);
2193     printFlags(V, Array, OS);
2194     return OS.str();
2195   };
2196 
2197   // Handle custom printing of architecture specific tags
2198   switch (Obj.getHeader().e_machine) {
2199   case EM_AARCH64:
2200     switch (Type) {
2201     case DT_AARCH64_BTI_PLT:
2202     case DT_AARCH64_PAC_PLT:
2203     case DT_AARCH64_VARIANT_PCS:
2204       return std::to_string(Value);
2205     default:
2206       break;
2207     }
2208     break;
2209   case EM_HEXAGON:
2210     switch (Type) {
2211     case DT_HEXAGON_VER:
2212       return std::to_string(Value);
2213     case DT_HEXAGON_SYMSZ:
2214     case DT_HEXAGON_PLT:
2215       return FormatHexValue(Value);
2216     default:
2217       break;
2218     }
2219     break;
2220   case EM_MIPS:
2221     switch (Type) {
2222     case DT_MIPS_RLD_VERSION:
2223     case DT_MIPS_LOCAL_GOTNO:
2224     case DT_MIPS_SYMTABNO:
2225     case DT_MIPS_UNREFEXTNO:
2226       return std::to_string(Value);
2227     case DT_MIPS_TIME_STAMP:
2228     case DT_MIPS_ICHECKSUM:
2229     case DT_MIPS_IVERSION:
2230     case DT_MIPS_BASE_ADDRESS:
2231     case DT_MIPS_MSYM:
2232     case DT_MIPS_CONFLICT:
2233     case DT_MIPS_LIBLIST:
2234     case DT_MIPS_CONFLICTNO:
2235     case DT_MIPS_LIBLISTNO:
2236     case DT_MIPS_GOTSYM:
2237     case DT_MIPS_HIPAGENO:
2238     case DT_MIPS_RLD_MAP:
2239     case DT_MIPS_DELTA_CLASS:
2240     case DT_MIPS_DELTA_CLASS_NO:
2241     case DT_MIPS_DELTA_INSTANCE:
2242     case DT_MIPS_DELTA_RELOC:
2243     case DT_MIPS_DELTA_RELOC_NO:
2244     case DT_MIPS_DELTA_SYM:
2245     case DT_MIPS_DELTA_SYM_NO:
2246     case DT_MIPS_DELTA_CLASSSYM:
2247     case DT_MIPS_DELTA_CLASSSYM_NO:
2248     case DT_MIPS_CXX_FLAGS:
2249     case DT_MIPS_PIXIE_INIT:
2250     case DT_MIPS_SYMBOL_LIB:
2251     case DT_MIPS_LOCALPAGE_GOTIDX:
2252     case DT_MIPS_LOCAL_GOTIDX:
2253     case DT_MIPS_HIDDEN_GOTIDX:
2254     case DT_MIPS_PROTECTED_GOTIDX:
2255     case DT_MIPS_OPTIONS:
2256     case DT_MIPS_INTERFACE:
2257     case DT_MIPS_DYNSTR_ALIGN:
2258     case DT_MIPS_INTERFACE_SIZE:
2259     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2260     case DT_MIPS_PERF_SUFFIX:
2261     case DT_MIPS_COMPACT_SIZE:
2262     case DT_MIPS_GP_VALUE:
2263     case DT_MIPS_AUX_DYNAMIC:
2264     case DT_MIPS_PLTGOT:
2265     case DT_MIPS_RWPLT:
2266     case DT_MIPS_RLD_MAP_REL:
2267       return FormatHexValue(Value);
2268     case DT_MIPS_FLAGS:
2269       return FormatFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags));
2270     default:
2271       break;
2272     }
2273     break;
2274   default:
2275     break;
2276   }
2277 
2278   switch (Type) {
2279   case DT_PLTREL:
2280     if (Value == DT_REL)
2281       return "REL";
2282     if (Value == DT_RELA)
2283       return "RELA";
2284     LLVM_FALLTHROUGH;
2285   case DT_PLTGOT:
2286   case DT_HASH:
2287   case DT_STRTAB:
2288   case DT_SYMTAB:
2289   case DT_RELA:
2290   case DT_INIT:
2291   case DT_FINI:
2292   case DT_REL:
2293   case DT_JMPREL:
2294   case DT_INIT_ARRAY:
2295   case DT_FINI_ARRAY:
2296   case DT_PREINIT_ARRAY:
2297   case DT_DEBUG:
2298   case DT_VERDEF:
2299   case DT_VERNEED:
2300   case DT_VERSYM:
2301   case DT_GNU_HASH:
2302   case DT_NULL:
2303     return FormatHexValue(Value);
2304   case DT_RELACOUNT:
2305   case DT_RELCOUNT:
2306   case DT_VERDEFNUM:
2307   case DT_VERNEEDNUM:
2308     return std::to_string(Value);
2309   case DT_PLTRELSZ:
2310   case DT_RELASZ:
2311   case DT_RELAENT:
2312   case DT_STRSZ:
2313   case DT_SYMENT:
2314   case DT_RELSZ:
2315   case DT_RELENT:
2316   case DT_INIT_ARRAYSZ:
2317   case DT_FINI_ARRAYSZ:
2318   case DT_PREINIT_ARRAYSZ:
2319   case DT_RELRSZ:
2320   case DT_RELRENT:
2321   case DT_ANDROID_RELSZ:
2322   case DT_ANDROID_RELASZ:
2323     return std::to_string(Value) + " (bytes)";
2324   case DT_NEEDED:
2325   case DT_SONAME:
2326   case DT_AUXILIARY:
2327   case DT_USED:
2328   case DT_FILTER:
2329   case DT_RPATH:
2330   case DT_RUNPATH: {
2331     const std::map<uint64_t, const char *> TagNames = {
2332         {DT_NEEDED, "Shared library"},       {DT_SONAME, "Library soname"},
2333         {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2334         {DT_FILTER, "Filter library"},       {DT_RPATH, "Library rpath"},
2335         {DT_RUNPATH, "Library runpath"},
2336     };
2337 
2338     return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2339         .str();
2340   }
2341   case DT_FLAGS:
2342     return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags));
2343   case DT_FLAGS_1:
2344     return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags1));
2345   default:
2346     return FormatHexValue(Value);
2347   }
2348 }
2349 
2350 template <class ELFT>
2351 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2352   if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2353     reportUniqueWarning("string table was not found");
2354     return "<?>";
2355   }
2356 
2357   auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2358     reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2359                         Msg);
2360     return "<?>";
2361   };
2362 
2363   const uint64_t FileSize = Obj.getBufSize();
2364   const uint64_t Offset =
2365       (const uint8_t *)DynamicStringTable.data() - Obj.base();
2366   if (DynamicStringTable.size() > FileSize - Offset)
2367     return WarnAndReturn(" with size 0x" +
2368                              Twine::utohexstr(DynamicStringTable.size()) +
2369                              " goes past the end of the file (0x" +
2370                              Twine::utohexstr(FileSize) + ")",
2371                          Offset);
2372 
2373   if (Value >= DynamicStringTable.size())
2374     return WarnAndReturn(
2375         ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2376             ": it goes past the end of the table (0x" +
2377             Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2378         Offset);
2379 
2380   if (DynamicStringTable.back() != '\0')
2381     return WarnAndReturn(": unable to read the string at 0x" +
2382                              Twine::utohexstr(Offset + Value) +
2383                              ": the string table is not null-terminated",
2384                          Offset);
2385 
2386   return DynamicStringTable.data() + Value;
2387 }
2388 
2389 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2390   DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2391   Ctx.printUnwindInformation();
2392 }
2393 
2394 // The namespace is needed to fix the compilation with GCC older than 7.0+.
2395 namespace {
2396 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2397   if (Obj.getHeader().e_machine == EM_ARM) {
2398     ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2399                                             DotSymtabSec);
2400     Ctx.PrintUnwindInformation();
2401   }
2402   DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2403   Ctx.printUnwindInformation();
2404 }
2405 } // namespace
2406 
2407 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2408   ListScope D(W, "NeededLibraries");
2409 
2410   std::vector<StringRef> Libs;
2411   for (const auto &Entry : dynamic_table())
2412     if (Entry.d_tag == ELF::DT_NEEDED)
2413       Libs.push_back(getDynamicString(Entry.d_un.d_val));
2414 
2415   llvm::sort(Libs);
2416 
2417   for (StringRef L : Libs)
2418     W.startLine() << L << "\n";
2419 }
2420 
2421 template <class ELFT>
2422 static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2423                             const typename ELFT::Hash *H,
2424                             bool *IsHeaderValid = nullptr) {
2425   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2426   const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2427   if (Dumper.getHashTableEntSize() == 8) {
2428     auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2429       return E.Value == Obj.getHeader().e_machine;
2430     });
2431     if (IsHeaderValid)
2432       *IsHeaderValid = false;
2433     return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2434                        " is not supported: it contains non-standard 8 "
2435                        "byte entries on " +
2436                        It->AltName + " platform");
2437   }
2438 
2439   auto MakeError = [&](const Twine &Msg = "") {
2440     return createError("the hash table at offset 0x" +
2441                        Twine::utohexstr(SecOffset) +
2442                        " goes past the end of the file (0x" +
2443                        Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2444   };
2445 
2446   // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2447   const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2448 
2449   if (IsHeaderValid)
2450     *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2451 
2452   if (Obj.getBufSize() - SecOffset < HeaderSize)
2453     return MakeError();
2454 
2455   if (Obj.getBufSize() - SecOffset - HeaderSize <
2456       ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2457     return MakeError(", nbucket = " + Twine(H->nbucket) +
2458                      ", nchain = " + Twine(H->nchain));
2459   return Error::success();
2460 }
2461 
2462 template <class ELFT>
2463 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2464                                const typename ELFT::GnuHash *GnuHashTable,
2465                                bool *IsHeaderValid = nullptr) {
2466   const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2467   assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&
2468          "GnuHashTable must always point to a location inside the file");
2469 
2470   uint64_t TableOffset = TableData - Obj.base();
2471   if (IsHeaderValid)
2472     *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2473   if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2474           (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2475       Obj.getBufSize())
2476     return createError("unable to dump the SHT_GNU_HASH "
2477                        "section at 0x" +
2478                        Twine::utohexstr(TableOffset) +
2479                        ": it goes past the end of the file");
2480   return Error::success();
2481 }
2482 
2483 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2484   DictScope D(W, "HashTable");
2485   if (!HashTable)
2486     return;
2487 
2488   bool IsHeaderValid;
2489   Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2490   if (IsHeaderValid) {
2491     W.printNumber("Num Buckets", HashTable->nbucket);
2492     W.printNumber("Num Chains", HashTable->nchain);
2493   }
2494 
2495   if (Err) {
2496     reportUniqueWarning(std::move(Err));
2497     return;
2498   }
2499 
2500   W.printList("Buckets", HashTable->buckets());
2501   W.printList("Chains", HashTable->chains());
2502 }
2503 
2504 template <class ELFT>
2505 static Expected<ArrayRef<typename ELFT::Word>>
2506 getGnuHashTableChains(Optional<DynRegionInfo> DynSymRegion,
2507                       const typename ELFT::GnuHash *GnuHashTable) {
2508   if (!DynSymRegion)
2509     return createError("no dynamic symbol table found");
2510 
2511   ArrayRef<typename ELFT::Sym> DynSymTable =
2512       DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
2513   size_t NumSyms = DynSymTable.size();
2514   if (!NumSyms)
2515     return createError("the dynamic symbol table is empty");
2516 
2517   if (GnuHashTable->symndx < NumSyms)
2518     return GnuHashTable->values(NumSyms);
2519 
2520   // A normal empty GNU hash table section produced by linker might have
2521   // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2522   // and have dummy null values in the Bloom filter and in the buckets
2523   // vector (or no values at all). It happens because the value of symndx is not
2524   // important for dynamic loaders when the GNU hash table is empty. They just
2525   // skip the whole object during symbol lookup. In such cases, the symndx value
2526   // is irrelevant and we should not report a warning.
2527   ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2528   if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2529     return createError(
2530         "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2531         ") is greater than or equal to the number of dynamic symbols (" +
2532         Twine(NumSyms) + ")");
2533   // There is no way to represent an array of (dynamic symbols count - symndx)
2534   // length.
2535   return ArrayRef<typename ELFT::Word>();
2536 }
2537 
2538 template <typename ELFT>
2539 void ELFDumper<ELFT>::printGnuHashTable() {
2540   DictScope D(W, "GnuHashTable");
2541   if (!GnuHashTable)
2542     return;
2543 
2544   bool IsHeaderValid;
2545   Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2546   if (IsHeaderValid) {
2547     W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2548     W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2549     W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2550     W.printNumber("Shift Count", GnuHashTable->shift2);
2551   }
2552 
2553   if (Err) {
2554     reportUniqueWarning(std::move(Err));
2555     return;
2556   }
2557 
2558   ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2559   W.printHexList("Bloom Filter", BloomFilter);
2560 
2561   ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2562   W.printList("Buckets", Buckets);
2563 
2564   Expected<ArrayRef<Elf_Word>> Chains =
2565       getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2566   if (!Chains) {
2567     reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2568                         "section: " +
2569                         toString(Chains.takeError()));
2570     return;
2571   }
2572 
2573   W.printHexList("Values", *Chains);
2574 }
2575 
2576 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2577   StringRef SOName = "<Not found>";
2578   if (SONameOffset)
2579     SOName = getDynamicString(*SONameOffset);
2580   W.printString("LoadName", SOName);
2581 }
2582 
2583 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2584   switch (Obj.getHeader().e_machine) {
2585   case EM_ARM:
2586     if (Obj.isLE())
2587       printAttributes(ELF::SHT_ARM_ATTRIBUTES,
2588                       std::make_unique<ARMAttributeParser>(&W),
2589                       support::little);
2590     else
2591       reportUniqueWarning("attribute printing not implemented for big-endian "
2592                           "ARM objects");
2593     break;
2594   case EM_RISCV:
2595     if (Obj.isLE())
2596       printAttributes(ELF::SHT_RISCV_ATTRIBUTES,
2597                       std::make_unique<RISCVAttributeParser>(&W),
2598                       support::little);
2599     else
2600       reportUniqueWarning("attribute printing not implemented for big-endian "
2601                           "RISC-V objects");
2602     break;
2603   case EM_MSP430:
2604     printAttributes(ELF::SHT_MSP430_ATTRIBUTES,
2605                     std::make_unique<MSP430AttributeParser>(&W),
2606                     support::little);
2607     break;
2608   case EM_MIPS: {
2609     printMipsABIFlags();
2610     printMipsOptions();
2611     printMipsReginfo();
2612     MipsGOTParser<ELFT> Parser(*this);
2613     if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2614       reportUniqueWarning(std::move(E));
2615     else if (!Parser.isGotEmpty())
2616       printMipsGOT(Parser);
2617 
2618     if (Error E = Parser.findPLT(dynamic_table()))
2619       reportUniqueWarning(std::move(E));
2620     else if (!Parser.isPltEmpty())
2621       printMipsPLT(Parser);
2622     break;
2623   }
2624   default:
2625     break;
2626   }
2627 }
2628 
2629 template <class ELFT>
2630 void ELFDumper<ELFT>::printAttributes(
2631     unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser,
2632     support::endianness Endianness) {
2633   assert((AttrShType != ELF::SHT_NULL) && AttrParser &&
2634          "Incomplete ELF attribute implementation");
2635   DictScope BA(W, "BuildAttributes");
2636   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2637     if (Sec.sh_type != AttrShType)
2638       continue;
2639 
2640     ArrayRef<uint8_t> Contents;
2641     if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2642             Obj.getSectionContents(Sec)) {
2643       Contents = *ContentOrErr;
2644       if (Contents.empty()) {
2645         reportUniqueWarning("the " + describe(Sec) + " is empty");
2646         continue;
2647       }
2648     } else {
2649       reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2650                           ": " + toString(ContentOrErr.takeError()));
2651       continue;
2652     }
2653 
2654     W.printHex("FormatVersion", Contents[0]);
2655 
2656     if (Error E = AttrParser->parse(Contents, Endianness))
2657       reportUniqueWarning("unable to dump attributes from the " +
2658                           describe(Sec) + ": " + toString(std::move(E)));
2659   }
2660 }
2661 
2662 namespace {
2663 
2664 template <class ELFT> class MipsGOTParser {
2665 public:
2666   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
2667   using Entry = typename ELFT::Addr;
2668   using Entries = ArrayRef<Entry>;
2669 
2670   const bool IsStatic;
2671   const ELFFile<ELFT> &Obj;
2672   const ELFDumper<ELFT> &Dumper;
2673 
2674   MipsGOTParser(const ELFDumper<ELFT> &D);
2675   Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2676   Error findPLT(Elf_Dyn_Range DynTable);
2677 
2678   bool isGotEmpty() const { return GotEntries.empty(); }
2679   bool isPltEmpty() const { return PltEntries.empty(); }
2680 
2681   uint64_t getGp() const;
2682 
2683   const Entry *getGotLazyResolver() const;
2684   const Entry *getGotModulePointer() const;
2685   const Entry *getPltLazyResolver() const;
2686   const Entry *getPltModulePointer() const;
2687 
2688   Entries getLocalEntries() const;
2689   Entries getGlobalEntries() const;
2690   Entries getOtherEntries() const;
2691   Entries getPltEntries() const;
2692 
2693   uint64_t getGotAddress(const Entry * E) const;
2694   int64_t getGotOffset(const Entry * E) const;
2695   const Elf_Sym *getGotSym(const Entry *E) const;
2696 
2697   uint64_t getPltAddress(const Entry * E) const;
2698   const Elf_Sym *getPltSym(const Entry *E) const;
2699 
2700   StringRef getPltStrTable() const { return PltStrTable; }
2701   const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2702 
2703 private:
2704   const Elf_Shdr *GotSec;
2705   size_t LocalNum;
2706   size_t GlobalNum;
2707 
2708   const Elf_Shdr *PltSec;
2709   const Elf_Shdr *PltRelSec;
2710   const Elf_Shdr *PltSymTable;
2711   StringRef FileName;
2712 
2713   Elf_Sym_Range GotDynSyms;
2714   StringRef PltStrTable;
2715 
2716   Entries GotEntries;
2717   Entries PltEntries;
2718 };
2719 
2720 } // end anonymous namespace
2721 
2722 template <class ELFT>
2723 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
2724     : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
2725       Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2726       PltRelSec(nullptr), PltSymTable(nullptr),
2727       FileName(D.getElfObject().getFileName()) {}
2728 
2729 template <class ELFT>
2730 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
2731                                    Elf_Sym_Range DynSyms) {
2732   // See "Global Offset Table" in Chapter 5 in the following document
2733   // for detailed GOT description.
2734   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2735 
2736   // Find static GOT secton.
2737   if (IsStatic) {
2738     GotSec = Dumper.findSectionByName(".got");
2739     if (!GotSec)
2740       return Error::success();
2741 
2742     ArrayRef<uint8_t> Content =
2743         unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2744     GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2745                          Content.size() / sizeof(Entry));
2746     LocalNum = GotEntries.size();
2747     return Error::success();
2748   }
2749 
2750   // Lookup dynamic table tags which define the GOT layout.
2751   Optional<uint64_t> DtPltGot;
2752   Optional<uint64_t> DtLocalGotNum;
2753   Optional<uint64_t> DtGotSym;
2754   for (const auto &Entry : DynTable) {
2755     switch (Entry.getTag()) {
2756     case ELF::DT_PLTGOT:
2757       DtPltGot = Entry.getVal();
2758       break;
2759     case ELF::DT_MIPS_LOCAL_GOTNO:
2760       DtLocalGotNum = Entry.getVal();
2761       break;
2762     case ELF::DT_MIPS_GOTSYM:
2763       DtGotSym = Entry.getVal();
2764       break;
2765     }
2766   }
2767 
2768   if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
2769     return Error::success();
2770 
2771   if (!DtPltGot)
2772     return createError("cannot find PLTGOT dynamic tag");
2773   if (!DtLocalGotNum)
2774     return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
2775   if (!DtGotSym)
2776     return createError("cannot find MIPS_GOTSYM dynamic tag");
2777 
2778   size_t DynSymTotal = DynSyms.size();
2779   if (*DtGotSym > DynSymTotal)
2780     return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
2781                        ") exceeds the number of dynamic symbols (" +
2782                        Twine(DynSymTotal) + ")");
2783 
2784   GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
2785   if (!GotSec)
2786     return createError("there is no non-empty GOT section at 0x" +
2787                        Twine::utohexstr(*DtPltGot));
2788 
2789   LocalNum = *DtLocalGotNum;
2790   GlobalNum = DynSymTotal - *DtGotSym;
2791 
2792   ArrayRef<uint8_t> Content =
2793       unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2794   GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2795                        Content.size() / sizeof(Entry));
2796   GotDynSyms = DynSyms.drop_front(*DtGotSym);
2797 
2798   return Error::success();
2799 }
2800 
2801 template <class ELFT>
2802 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
2803   // Lookup dynamic table tags which define the PLT layout.
2804   Optional<uint64_t> DtMipsPltGot;
2805   Optional<uint64_t> DtJmpRel;
2806   for (const auto &Entry : DynTable) {
2807     switch (Entry.getTag()) {
2808     case ELF::DT_MIPS_PLTGOT:
2809       DtMipsPltGot = Entry.getVal();
2810       break;
2811     case ELF::DT_JMPREL:
2812       DtJmpRel = Entry.getVal();
2813       break;
2814     }
2815   }
2816 
2817   if (!DtMipsPltGot && !DtJmpRel)
2818     return Error::success();
2819 
2820   // Find PLT section.
2821   if (!DtMipsPltGot)
2822     return createError("cannot find MIPS_PLTGOT dynamic tag");
2823   if (!DtJmpRel)
2824     return createError("cannot find JMPREL dynamic tag");
2825 
2826   PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
2827   if (!PltSec)
2828     return createError("there is no non-empty PLTGOT section at 0x" +
2829                        Twine::utohexstr(*DtMipsPltGot));
2830 
2831   PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
2832   if (!PltRelSec)
2833     return createError("there is no non-empty RELPLT section at 0x" +
2834                        Twine::utohexstr(*DtJmpRel));
2835 
2836   if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
2837           Obj.getSectionContents(*PltSec))
2838     PltEntries =
2839         Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
2840                 PltContentOrErr->size() / sizeof(Entry));
2841   else
2842     return createError("unable to read PLTGOT section content: " +
2843                        toString(PltContentOrErr.takeError()));
2844 
2845   if (Expected<const Elf_Shdr *> PltSymTableOrErr =
2846           Obj.getSection(PltRelSec->sh_link))
2847     PltSymTable = *PltSymTableOrErr;
2848   else
2849     return createError("unable to get a symbol table linked to the " +
2850                        describe(Obj, *PltRelSec) + ": " +
2851                        toString(PltSymTableOrErr.takeError()));
2852 
2853   if (Expected<StringRef> StrTabOrErr =
2854           Obj.getStringTableForSymtab(*PltSymTable))
2855     PltStrTable = *StrTabOrErr;
2856   else
2857     return createError("unable to get a string table for the " +
2858                        describe(Obj, *PltSymTable) + ": " +
2859                        toString(StrTabOrErr.takeError()));
2860 
2861   return Error::success();
2862 }
2863 
2864 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
2865   return GotSec->sh_addr + 0x7ff0;
2866 }
2867 
2868 template <class ELFT>
2869 const typename MipsGOTParser<ELFT>::Entry *
2870 MipsGOTParser<ELFT>::getGotLazyResolver() const {
2871   return LocalNum > 0 ? &GotEntries[0] : nullptr;
2872 }
2873 
2874 template <class ELFT>
2875 const typename MipsGOTParser<ELFT>::Entry *
2876 MipsGOTParser<ELFT>::getGotModulePointer() const {
2877   if (LocalNum < 2)
2878     return nullptr;
2879   const Entry &E = GotEntries[1];
2880   if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
2881     return nullptr;
2882   return &E;
2883 }
2884 
2885 template <class ELFT>
2886 typename MipsGOTParser<ELFT>::Entries
2887 MipsGOTParser<ELFT>::getLocalEntries() const {
2888   size_t Skip = getGotModulePointer() ? 2 : 1;
2889   if (LocalNum - Skip <= 0)
2890     return Entries();
2891   return GotEntries.slice(Skip, LocalNum - Skip);
2892 }
2893 
2894 template <class ELFT>
2895 typename MipsGOTParser<ELFT>::Entries
2896 MipsGOTParser<ELFT>::getGlobalEntries() const {
2897   if (GlobalNum == 0)
2898     return Entries();
2899   return GotEntries.slice(LocalNum, GlobalNum);
2900 }
2901 
2902 template <class ELFT>
2903 typename MipsGOTParser<ELFT>::Entries
2904 MipsGOTParser<ELFT>::getOtherEntries() const {
2905   size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
2906   if (OtherNum == 0)
2907     return Entries();
2908   return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
2909 }
2910 
2911 template <class ELFT>
2912 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
2913   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2914   return GotSec->sh_addr + Offset;
2915 }
2916 
2917 template <class ELFT>
2918 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
2919   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2920   return Offset - 0x7ff0;
2921 }
2922 
2923 template <class ELFT>
2924 const typename MipsGOTParser<ELFT>::Elf_Sym *
2925 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
2926   int64_t Offset = std::distance(GotEntries.data(), E);
2927   return &GotDynSyms[Offset - LocalNum];
2928 }
2929 
2930 template <class ELFT>
2931 const typename MipsGOTParser<ELFT>::Entry *
2932 MipsGOTParser<ELFT>::getPltLazyResolver() const {
2933   return PltEntries.empty() ? nullptr : &PltEntries[0];
2934 }
2935 
2936 template <class ELFT>
2937 const typename MipsGOTParser<ELFT>::Entry *
2938 MipsGOTParser<ELFT>::getPltModulePointer() const {
2939   return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
2940 }
2941 
2942 template <class ELFT>
2943 typename MipsGOTParser<ELFT>::Entries
2944 MipsGOTParser<ELFT>::getPltEntries() const {
2945   if (PltEntries.size() <= 2)
2946     return Entries();
2947   return PltEntries.slice(2, PltEntries.size() - 2);
2948 }
2949 
2950 template <class ELFT>
2951 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
2952   int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
2953   return PltSec->sh_addr + Offset;
2954 }
2955 
2956 template <class ELFT>
2957 const typename MipsGOTParser<ELFT>::Elf_Sym *
2958 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
2959   int64_t Offset = std::distance(getPltEntries().data(), E);
2960   if (PltRelSec->sh_type == ELF::SHT_REL) {
2961     Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
2962     return unwrapOrError(FileName,
2963                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
2964   } else {
2965     Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
2966     return unwrapOrError(FileName,
2967                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
2968   }
2969 }
2970 
2971 const EnumEntry<unsigned> ElfMipsISAExtType[] = {
2972   {"None",                    Mips::AFL_EXT_NONE},
2973   {"Broadcom SB-1",           Mips::AFL_EXT_SB1},
2974   {"Cavium Networks Octeon",  Mips::AFL_EXT_OCTEON},
2975   {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
2976   {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
2977   {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
2978   {"LSI R4010",               Mips::AFL_EXT_4010},
2979   {"Loongson 2E",             Mips::AFL_EXT_LOONGSON_2E},
2980   {"Loongson 2F",             Mips::AFL_EXT_LOONGSON_2F},
2981   {"Loongson 3A",             Mips::AFL_EXT_LOONGSON_3A},
2982   {"MIPS R4650",              Mips::AFL_EXT_4650},
2983   {"MIPS R5900",              Mips::AFL_EXT_5900},
2984   {"MIPS R10000",             Mips::AFL_EXT_10000},
2985   {"NEC VR4100",              Mips::AFL_EXT_4100},
2986   {"NEC VR4111/VR4181",       Mips::AFL_EXT_4111},
2987   {"NEC VR4120",              Mips::AFL_EXT_4120},
2988   {"NEC VR5400",              Mips::AFL_EXT_5400},
2989   {"NEC VR5500",              Mips::AFL_EXT_5500},
2990   {"RMI Xlr",                 Mips::AFL_EXT_XLR},
2991   {"Toshiba R3900",           Mips::AFL_EXT_3900}
2992 };
2993 
2994 const EnumEntry<unsigned> ElfMipsASEFlags[] = {
2995   {"DSP",                Mips::AFL_ASE_DSP},
2996   {"DSPR2",              Mips::AFL_ASE_DSPR2},
2997   {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
2998   {"MCU",                Mips::AFL_ASE_MCU},
2999   {"MDMX",               Mips::AFL_ASE_MDMX},
3000   {"MIPS-3D",            Mips::AFL_ASE_MIPS3D},
3001   {"MT",                 Mips::AFL_ASE_MT},
3002   {"SmartMIPS",          Mips::AFL_ASE_SMARTMIPS},
3003   {"VZ",                 Mips::AFL_ASE_VIRT},
3004   {"MSA",                Mips::AFL_ASE_MSA},
3005   {"MIPS16",             Mips::AFL_ASE_MIPS16},
3006   {"microMIPS",          Mips::AFL_ASE_MICROMIPS},
3007   {"XPA",                Mips::AFL_ASE_XPA},
3008   {"CRC",                Mips::AFL_ASE_CRC},
3009   {"GINV",               Mips::AFL_ASE_GINV},
3010 };
3011 
3012 const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3013   {"Hard or soft float",                  Mips::Val_GNU_MIPS_ABI_FP_ANY},
3014   {"Hard float (double precision)",       Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3015   {"Hard float (single precision)",       Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3016   {"Soft float",                          Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3017   {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3018    Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3019   {"Hard float (32-bit CPU, Any FPU)",    Mips::Val_GNU_MIPS_ABI_FP_XX},
3020   {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3021   {"Hard float compat (32-bit CPU, 64-bit FPU)",
3022    Mips::Val_GNU_MIPS_ABI_FP_64A}
3023 };
3024 
3025 static const EnumEntry<unsigned> ElfMipsFlags1[] {
3026   {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3027 };
3028 
3029 static int getMipsRegisterSize(uint8_t Flag) {
3030   switch (Flag) {
3031   case Mips::AFL_REG_NONE:
3032     return 0;
3033   case Mips::AFL_REG_32:
3034     return 32;
3035   case Mips::AFL_REG_64:
3036     return 64;
3037   case Mips::AFL_REG_128:
3038     return 128;
3039   default:
3040     return -1;
3041   }
3042 }
3043 
3044 template <class ELFT>
3045 static void printMipsReginfoData(ScopedPrinter &W,
3046                                  const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3047   W.printHex("GP", Reginfo.ri_gp_value);
3048   W.printHex("General Mask", Reginfo.ri_gprmask);
3049   W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3050   W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3051   W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3052   W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3053 }
3054 
3055 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3056   const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3057   if (!RegInfoSec) {
3058     W.startLine() << "There is no .reginfo section in the file.\n";
3059     return;
3060   }
3061 
3062   Expected<ArrayRef<uint8_t>> ContentsOrErr =
3063       Obj.getSectionContents(*RegInfoSec);
3064   if (!ContentsOrErr) {
3065     this->reportUniqueWarning(
3066         "unable to read the content of the .reginfo section (" +
3067         describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3068     return;
3069   }
3070 
3071   if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3072     this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3073                               Twine::utohexstr(ContentsOrErr->size()) + ")");
3074     return;
3075   }
3076 
3077   DictScope GS(W, "MIPS RegInfo");
3078   printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3079                               ContentsOrErr->data()));
3080 }
3081 
3082 template <class ELFT>
3083 static Expected<const Elf_Mips_Options<ELFT> *>
3084 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3085                 bool &IsSupported) {
3086   if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3087     return createError("the .MIPS.options section has an invalid size (0x" +
3088                        Twine::utohexstr(SecData.size()) + ")");
3089 
3090   const Elf_Mips_Options<ELFT> *O =
3091       reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3092   const uint8_t Size = O->size;
3093   if (Size > SecData.size()) {
3094     const uint64_t Offset = SecData.data() - SecBegin;
3095     const uint64_t SecSize = Offset + SecData.size();
3096     return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3097                        " at offset 0x" + Twine::utohexstr(Offset) +
3098                        " goes past the end of the .MIPS.options "
3099                        "section of size 0x" +
3100                        Twine::utohexstr(SecSize));
3101   }
3102 
3103   IsSupported = O->kind == ODK_REGINFO;
3104   const size_t ExpectedSize =
3105       sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3106 
3107   if (IsSupported)
3108     if (Size < ExpectedSize)
3109       return createError(
3110           "a .MIPS.options entry of kind " +
3111           Twine(getElfMipsOptionsOdkType(O->kind)) +
3112           " has an invalid size (0x" + Twine::utohexstr(Size) +
3113           "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3114 
3115   SecData = SecData.drop_front(Size);
3116   return O;
3117 }
3118 
3119 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3120   const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3121   if (!MipsOpts) {
3122     W.startLine() << "There is no .MIPS.options section in the file.\n";
3123     return;
3124   }
3125 
3126   DictScope GS(W, "MIPS Options");
3127 
3128   ArrayRef<uint8_t> Data =
3129       unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3130   const uint8_t *const SecBegin = Data.begin();
3131   while (!Data.empty()) {
3132     bool IsSupported;
3133     Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3134         readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3135     if (!OptsOrErr) {
3136       reportUniqueWarning(OptsOrErr.takeError());
3137       break;
3138     }
3139 
3140     unsigned Kind = (*OptsOrErr)->kind;
3141     const char *Type = getElfMipsOptionsOdkType(Kind);
3142     if (!IsSupported) {
3143       W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3144                     << ")\n";
3145       continue;
3146     }
3147 
3148     DictScope GS(W, Type);
3149     if (Kind == ODK_REGINFO)
3150       printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3151     else
3152       llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3153   }
3154 }
3155 
3156 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3157   const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3158   if (!StackMapSection)
3159     return;
3160 
3161   auto Warn = [&](Error &&E) {
3162     this->reportUniqueWarning("unable to read the stack map from " +
3163                               describe(*StackMapSection) + ": " +
3164                               toString(std::move(E)));
3165   };
3166 
3167   Expected<ArrayRef<uint8_t>> ContentOrErr =
3168       Obj.getSectionContents(*StackMapSection);
3169   if (!ContentOrErr) {
3170     Warn(ContentOrErr.takeError());
3171     return;
3172   }
3173 
3174   if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
3175           *ContentOrErr)) {
3176     Warn(std::move(E));
3177     return;
3178   }
3179 
3180   prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
3181 }
3182 
3183 template <class ELFT>
3184 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3185                                  const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3186   Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
3187   if (!Target)
3188     reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3189                         " in " + describe(Sec) + ": " +
3190                         toString(Target.takeError()));
3191   else
3192     printRelRelaReloc(R, *Target);
3193 }
3194 
3195 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3196                                StringRef Str2) {
3197   OS.PadToColumn(2u);
3198   OS << Str1;
3199   OS.PadToColumn(37u);
3200   OS << Str2 << "\n";
3201   OS.flush();
3202 }
3203 
3204 template <class ELFT>
3205 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3206                                               StringRef FileName) {
3207   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3208   if (ElfHeader.e_shnum != 0)
3209     return to_string(ElfHeader.e_shnum);
3210 
3211   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3212   if (!ArrOrErr) {
3213     // In this case we can ignore an error, because we have already reported a
3214     // warning about the broken section header table earlier.
3215     consumeError(ArrOrErr.takeError());
3216     return "<?>";
3217   }
3218 
3219   if (ArrOrErr->empty())
3220     return "0";
3221   return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3222 }
3223 
3224 template <class ELFT>
3225 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3226                                                     StringRef FileName) {
3227   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3228   if (ElfHeader.e_shstrndx != SHN_XINDEX)
3229     return to_string(ElfHeader.e_shstrndx);
3230 
3231   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3232   if (!ArrOrErr) {
3233     // In this case we can ignore an error, because we have already reported a
3234     // warning about the broken section header table earlier.
3235     consumeError(ArrOrErr.takeError());
3236     return "<?>";
3237   }
3238 
3239   if (ArrOrErr->empty())
3240     return "65535 (corrupt: out of range)";
3241   return to_string(ElfHeader.e_shstrndx) + " (" +
3242          to_string((*ArrOrErr)[0].sh_link) + ")";
3243 }
3244 
3245 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
3246   auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3247     return E.Value == Type;
3248   });
3249   if (It != makeArrayRef(ElfObjectFileType).end())
3250     return It;
3251   return nullptr;
3252 }
3253 
3254 template <class ELFT>
3255 void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
3256                                           ArrayRef<std::string> InputFilenames,
3257                                           const Archive *A) {
3258   if (InputFilenames.size() > 1 || A) {
3259     this->W.startLine() << "\n";
3260     this->W.printString("File", FileStr);
3261   }
3262 }
3263 
3264 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
3265   const Elf_Ehdr &e = this->Obj.getHeader();
3266   OS << "ELF Header:\n";
3267   OS << "  Magic:  ";
3268   std::string Str;
3269   for (int i = 0; i < ELF::EI_NIDENT; i++)
3270     OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3271   OS << "\n";
3272   Str = enumToString(e.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
3273   printFields(OS, "Class:", Str);
3274   Str = enumToString(e.e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
3275   printFields(OS, "Data:", Str);
3276   OS.PadToColumn(2u);
3277   OS << "Version:";
3278   OS.PadToColumn(37u);
3279   OS << to_hexString(e.e_ident[ELF::EI_VERSION]);
3280   if (e.e_version == ELF::EV_CURRENT)
3281     OS << " (current)";
3282   OS << "\n";
3283   Str = enumToString(e.e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
3284   printFields(OS, "OS/ABI:", Str);
3285   printFields(OS,
3286               "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3287 
3288   if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
3289     Str = E->AltName.str();
3290   } else {
3291     if (e.e_type >= ET_LOPROC)
3292       Str = "Processor Specific: (" + to_hexString(e.e_type, false) + ")";
3293     else if (e.e_type >= ET_LOOS)
3294       Str = "OS Specific: (" + to_hexString(e.e_type, false) + ")";
3295     else
3296       Str = "<unknown>: " + to_hexString(e.e_type, false);
3297   }
3298   printFields(OS, "Type:", Str);
3299 
3300   Str = enumToString(e.e_machine, makeArrayRef(ElfMachineType));
3301   printFields(OS, "Machine:", Str);
3302   Str = "0x" + to_hexString(e.e_version);
3303   printFields(OS, "Version:", Str);
3304   Str = "0x" + to_hexString(e.e_entry);
3305   printFields(OS, "Entry point address:", Str);
3306   Str = to_string(e.e_phoff) + " (bytes into file)";
3307   printFields(OS, "Start of program headers:", Str);
3308   Str = to_string(e.e_shoff) + " (bytes into file)";
3309   printFields(OS, "Start of section headers:", Str);
3310   std::string ElfFlags;
3311   if (e.e_machine == EM_MIPS)
3312     ElfFlags =
3313         printFlags(e.e_flags, makeArrayRef(ElfHeaderMipsFlags),
3314                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
3315                    unsigned(ELF::EF_MIPS_MACH));
3316   else if (e.e_machine == EM_RISCV)
3317     ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
3318   else if (e.e_machine == EM_AVR)
3319     ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderAVRFlags),
3320                           unsigned(ELF::EF_AVR_ARCH_MASK));
3321   Str = "0x" + to_hexString(e.e_flags);
3322   if (!ElfFlags.empty())
3323     Str = Str + ", " + ElfFlags;
3324   printFields(OS, "Flags:", Str);
3325   Str = to_string(e.e_ehsize) + " (bytes)";
3326   printFields(OS, "Size of this header:", Str);
3327   Str = to_string(e.e_phentsize) + " (bytes)";
3328   printFields(OS, "Size of program headers:", Str);
3329   Str = to_string(e.e_phnum);
3330   printFields(OS, "Number of program headers:", Str);
3331   Str = to_string(e.e_shentsize) + " (bytes)";
3332   printFields(OS, "Size of section headers:", Str);
3333   Str = getSectionHeadersNumString(this->Obj, this->FileName);
3334   printFields(OS, "Number of section headers:", Str);
3335   Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3336   printFields(OS, "Section header string table index:", Str);
3337 }
3338 
3339 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
3340   auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3341                           const Elf_Shdr &Symtab) -> StringRef {
3342     Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3343     if (!StrTableOrErr) {
3344       reportUniqueWarning("unable to get the string table for " +
3345                           describe(Symtab) + ": " +
3346                           toString(StrTableOrErr.takeError()));
3347       return "<?>";
3348     }
3349 
3350     StringRef Strings = *StrTableOrErr;
3351     if (Sym.st_name >= Strings.size()) {
3352       reportUniqueWarning("unable to get the name of the symbol with index " +
3353                           Twine(SymNdx) + ": st_name (0x" +
3354                           Twine::utohexstr(Sym.st_name) +
3355                           ") is past the end of the string table of size 0x" +
3356                           Twine::utohexstr(Strings.size()));
3357       return "<?>";
3358     }
3359 
3360     return StrTableOrErr->data() + Sym.st_name;
3361   };
3362 
3363   std::vector<GroupSection> Ret;
3364   uint64_t I = 0;
3365   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3366     ++I;
3367     if (Sec.sh_type != ELF::SHT_GROUP)
3368       continue;
3369 
3370     StringRef Signature = "<?>";
3371     if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3372       if (Expected<const Elf_Sym *> SymOrErr =
3373               Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3374         Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3375       else
3376         reportUniqueWarning("unable to get the signature symbol for " +
3377                             describe(Sec) + ": " +
3378                             toString(SymOrErr.takeError()));
3379     } else {
3380       reportUniqueWarning("unable to get the symbol table for " +
3381                           describe(Sec) + ": " +
3382                           toString(SymtabOrErr.takeError()));
3383     }
3384 
3385     ArrayRef<Elf_Word> Data;
3386     if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3387             Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3388       if (ContentsOrErr->empty())
3389         reportUniqueWarning("unable to read the section group flag from the " +
3390                             describe(Sec) + ": the section is empty");
3391       else
3392         Data = *ContentsOrErr;
3393     } else {
3394       reportUniqueWarning("unable to get the content of the " + describe(Sec) +
3395                           ": " + toString(ContentsOrErr.takeError()));
3396     }
3397 
3398     Ret.push_back({getPrintableSectionName(Sec),
3399                    maybeDemangle(Signature),
3400                    Sec.sh_name,
3401                    I - 1,
3402                    Sec.sh_link,
3403                    Sec.sh_info,
3404                    Data.empty() ? Elf_Word(0) : Data[0],
3405                    {}});
3406 
3407     if (Data.empty())
3408       continue;
3409 
3410     std::vector<GroupMember> &GM = Ret.back().Members;
3411     for (uint32_t Ndx : Data.slice(1)) {
3412       if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3413         GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3414       } else {
3415         reportUniqueWarning("unable to get the section with index " +
3416                             Twine(Ndx) + " when dumping the " + describe(Sec) +
3417                             ": " + toString(SecOrErr.takeError()));
3418         GM.push_back({"<?>", Ndx});
3419       }
3420     }
3421   }
3422   return Ret;
3423 }
3424 
3425 static DenseMap<uint64_t, const GroupSection *>
3426 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3427   DenseMap<uint64_t, const GroupSection *> Ret;
3428   for (const GroupSection &G : Groups)
3429     for (const GroupMember &GM : G.Members)
3430       Ret.insert({GM.Index, &G});
3431   return Ret;
3432 }
3433 
3434 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
3435   std::vector<GroupSection> V = this->getGroups();
3436   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3437   for (const GroupSection &G : V) {
3438     OS << "\n"
3439        << getGroupType(G.Type) << " group section ["
3440        << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3441        << "] contains " << G.Members.size() << " sections:\n"
3442        << "   [Index]    Name\n";
3443     for (const GroupMember &GM : G.Members) {
3444       const GroupSection *MainGroup = Map[GM.Index];
3445       if (MainGroup != &G)
3446         this->reportUniqueWarning(
3447             "section with index " + Twine(GM.Index) +
3448             ", included in the group section with index " +
3449             Twine(MainGroup->Index) +
3450             ", was also found in the group section with index " +
3451             Twine(G.Index));
3452       OS << "   [" << format_decimal(GM.Index, 5) << "]   " << GM.Name << "\n";
3453     }
3454   }
3455 
3456   if (V.empty())
3457     OS << "There are no section groups in this file.\n";
3458 }
3459 
3460 template <class ELFT>
3461 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
3462   OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
3463 }
3464 
3465 template <class ELFT>
3466 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3467                                            const RelSymbol<ELFT> &RelSym) {
3468   // First two fields are bit width dependent. The rest of them are fixed width.
3469   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3470   Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3471   unsigned Width = ELFT::Is64Bits ? 16 : 8;
3472 
3473   Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3474   Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3475 
3476   SmallString<32> RelocName;
3477   this->Obj.getRelocationTypeName(R.Type, RelocName);
3478   Fields[2].Str = RelocName.c_str();
3479 
3480   if (RelSym.Sym)
3481     Fields[3].Str =
3482         to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3483 
3484   Fields[4].Str = std::string(RelSym.Name);
3485   for (const Field &F : Fields)
3486     printField(F);
3487 
3488   std::string Addend;
3489   if (Optional<int64_t> A = R.Addend) {
3490     int64_t RelAddend = *A;
3491     if (!RelSym.Name.empty()) {
3492       if (RelAddend < 0) {
3493         Addend = " - ";
3494         RelAddend = std::abs(RelAddend);
3495       } else {
3496         Addend = " + ";
3497       }
3498     }
3499     Addend += to_hexString(RelAddend, false);
3500   }
3501   OS << Addend << "\n";
3502 }
3503 
3504 template <class ELFT>
3505 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) {
3506   bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3507   bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
3508   if (ELFT::Is64Bits)
3509     OS << "    ";
3510   else
3511     OS << " ";
3512   if (IsRelr && opts::RawRelr)
3513     OS << "Data  ";
3514   else
3515     OS << "Offset";
3516   if (ELFT::Is64Bits)
3517     OS << "             Info             Type"
3518        << "               Symbol's Value  Symbol's Name";
3519   else
3520     OS << "     Info    Type                Sym. Value  Symbol's Name";
3521   if (IsRela)
3522     OS << " + Addend";
3523   OS << "\n";
3524 }
3525 
3526 template <class ELFT>
3527 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3528                                                  const DynRegionInfo &Reg) {
3529   uint64_t Offset = Reg.Addr - this->Obj.base();
3530   OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3531      << to_hexString(Offset, false) << " contains " << Reg.Size << " bytes:\n";
3532   printRelocHeaderFields<ELFT>(OS, Type);
3533 }
3534 
3535 template <class ELFT>
3536 static bool isRelocationSec(const typename ELFT::Shdr &Sec) {
3537   return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3538          Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
3539          Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3540          Sec.sh_type == ELF::SHT_ANDROID_RELR;
3541 }
3542 
3543 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
3544   auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3545     // Android's packed relocation section needs to be unpacked first
3546     // to get the actual number of entries.
3547     if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3548         Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3549       Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3550           this->Obj.android_relas(Sec);
3551       if (!RelasOrErr)
3552         return RelasOrErr.takeError();
3553       return RelasOrErr->size();
3554     }
3555 
3556     if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3557                            Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3558       Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3559       if (!RelrsOrErr)
3560         return RelrsOrErr.takeError();
3561       return this->Obj.decode_relrs(*RelrsOrErr).size();
3562     }
3563 
3564     return Sec.getEntityCount();
3565   };
3566 
3567   bool HasRelocSections = false;
3568   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3569     if (!isRelocationSec<ELFT>(Sec))
3570       continue;
3571     HasRelocSections = true;
3572 
3573     std::string EntriesNum = "<?>";
3574     if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3575       EntriesNum = std::to_string(*NumOrErr);
3576     else
3577       this->reportUniqueWarning("unable to get the number of relocations in " +
3578                                 this->describe(Sec) + ": " +
3579                                 toString(NumOrErr.takeError()));
3580 
3581     uintX_t Offset = Sec.sh_offset;
3582     StringRef Name = this->getPrintableSectionName(Sec);
3583     OS << "\nRelocation section '" << Name << "' at offset 0x"
3584        << to_hexString(Offset, false) << " contains " << EntriesNum
3585        << " entries:\n";
3586     printRelocHeaderFields<ELFT>(OS, Sec.sh_type);
3587     this->printRelocationsHelper(Sec);
3588   }
3589   if (!HasRelocSections)
3590     OS << "\nThere are no relocations in this file.\n";
3591 }
3592 
3593 // Print the offset of a particular section from anyone of the ranges:
3594 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3595 // If 'Type' does not fall within any of those ranges, then a string is
3596 // returned as '<unknown>' followed by the type value.
3597 static std::string getSectionTypeOffsetString(unsigned Type) {
3598   if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3599     return "LOOS+0x" + to_hexString(Type - SHT_LOOS);
3600   else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3601     return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC);
3602   else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3603     return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER);
3604   return "0x" + to_hexString(Type) + ": <unknown>";
3605 }
3606 
3607 static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
3608   StringRef Name = getELFSectionTypeName(Machine, Type);
3609 
3610   // Handle SHT_GNU_* type names.
3611   if (Name.startswith("SHT_GNU_")) {
3612     if (Name == "SHT_GNU_HASH")
3613       return "GNU_HASH";
3614     // E.g. SHT_GNU_verneed -> VERNEED.
3615     return Name.drop_front(8).upper();
3616   }
3617 
3618   if (Name == "SHT_SYMTAB_SHNDX")
3619     return "SYMTAB SECTION INDICES";
3620 
3621   if (Name.startswith("SHT_"))
3622     return Name.drop_front(4).str();
3623   return getSectionTypeOffsetString(Type);
3624 }
3625 
3626 static void printSectionDescription(formatted_raw_ostream &OS,
3627                                     unsigned EMachine) {
3628   OS << "Key to Flags:\n";
3629   OS << "  W (write), A (alloc), X (execute), M (merge), S (strings), I "
3630         "(info),\n";
3631   OS << "  L (link order), O (extra OS processing required), G (group), T "
3632         "(TLS),\n";
3633   OS << "  C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3634   OS << "  R (retain)";
3635 
3636   if (EMachine == EM_X86_64)
3637     OS << ", l (large)";
3638   else if (EMachine == EM_ARM)
3639     OS << ", y (purecode)";
3640 
3641   OS << ", p (processor specific)\n";
3642 }
3643 
3644 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
3645   unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3646   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
3647   OS << "There are " << to_string(Sections.size())
3648      << " section headers, starting at offset "
3649      << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n";
3650   OS << "Section Headers:\n";
3651   Field Fields[11] = {
3652       {"[Nr]", 2},        {"Name", 7},        {"Type", 25},
3653       {"Address", 41},    {"Off", 58 - Bias}, {"Size", 65 - Bias},
3654       {"ES", 72 - Bias},  {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3655       {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3656   for (const Field &F : Fields)
3657     printField(F);
3658   OS << "\n";
3659 
3660   StringRef SecStrTable;
3661   if (Expected<StringRef> SecStrTableOrErr =
3662           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
3663     SecStrTable = *SecStrTableOrErr;
3664   else
3665     this->reportUniqueWarning(SecStrTableOrErr.takeError());
3666 
3667   size_t SectionIndex = 0;
3668   for (const Elf_Shdr &Sec : Sections) {
3669     Fields[0].Str = to_string(SectionIndex);
3670     if (SecStrTable.empty())
3671       Fields[1].Str = "<no-strings>";
3672     else
3673       Fields[1].Str = std::string(unwrapOrError<StringRef>(
3674           this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
3675     Fields[2].Str =
3676         getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
3677     Fields[3].Str =
3678         to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3679     Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3680     Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3681     Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3682     Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_machine, Sec.sh_flags);
3683     Fields[8].Str = to_string(Sec.sh_link);
3684     Fields[9].Str = to_string(Sec.sh_info);
3685     Fields[10].Str = to_string(Sec.sh_addralign);
3686 
3687     OS.PadToColumn(Fields[0].Column);
3688     OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3689     for (int i = 1; i < 7; i++)
3690       printField(Fields[i]);
3691     OS.PadToColumn(Fields[7].Column);
3692     OS << right_justify(Fields[7].Str, 3);
3693     OS.PadToColumn(Fields[8].Column);
3694     OS << right_justify(Fields[8].Str, 2);
3695     OS.PadToColumn(Fields[9].Column);
3696     OS << right_justify(Fields[9].Str, 3);
3697     OS.PadToColumn(Fields[10].Column);
3698     OS << right_justify(Fields[10].Str, 2);
3699     OS << "\n";
3700     ++SectionIndex;
3701   }
3702   printSectionDescription(OS, this->Obj.getHeader().e_machine);
3703 }
3704 
3705 template <class ELFT>
3706 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
3707                                             size_t Entries,
3708                                             bool NonVisibilityBitsUsed) const {
3709   StringRef Name;
3710   if (Symtab)
3711     Name = this->getPrintableSectionName(*Symtab);
3712   if (!Name.empty())
3713     OS << "\nSymbol table '" << Name << "'";
3714   else
3715     OS << "\nSymbol table for image";
3716   OS << " contains " << Entries << " entries:\n";
3717 
3718   if (ELFT::Is64Bits)
3719     OS << "   Num:    Value          Size Type    Bind   Vis";
3720   else
3721     OS << "   Num:    Value  Size Type    Bind   Vis";
3722 
3723   if (NonVisibilityBitsUsed)
3724     OS << "             ";
3725   OS << "       Ndx Name\n";
3726 }
3727 
3728 template <class ELFT>
3729 std::string
3730 GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol,
3731                                         unsigned SymIndex,
3732                                         DataRegion<Elf_Word> ShndxTable) const {
3733   unsigned SectionIndex = Symbol.st_shndx;
3734   switch (SectionIndex) {
3735   case ELF::SHN_UNDEF:
3736     return "UND";
3737   case ELF::SHN_ABS:
3738     return "ABS";
3739   case ELF::SHN_COMMON:
3740     return "COM";
3741   case ELF::SHN_XINDEX: {
3742     Expected<uint32_t> IndexOrErr =
3743         object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
3744     if (!IndexOrErr) {
3745       assert(Symbol.st_shndx == SHN_XINDEX &&
3746              "getExtendedSymbolTableIndex should only fail due to an invalid "
3747              "SHT_SYMTAB_SHNDX table/reference");
3748       this->reportUniqueWarning(IndexOrErr.takeError());
3749       return "RSV[0xffff]";
3750     }
3751     return to_string(format_decimal(*IndexOrErr, 3));
3752   }
3753   default:
3754     // Find if:
3755     // Processor specific
3756     if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
3757       return std::string("PRC[0x") +
3758              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3759     // OS specific
3760     if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
3761       return std::string("OS[0x") +
3762              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3763     // Architecture reserved:
3764     if (SectionIndex >= ELF::SHN_LORESERVE &&
3765         SectionIndex <= ELF::SHN_HIRESERVE)
3766       return std::string("RSV[0x") +
3767              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3768     // A normal section with an index
3769     return to_string(format_decimal(SectionIndex, 3));
3770   }
3771 }
3772 
3773 template <class ELFT>
3774 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
3775                                      DataRegion<Elf_Word> ShndxTable,
3776                                      Optional<StringRef> StrTable,
3777                                      bool IsDynamic,
3778                                      bool NonVisibilityBitsUsed) const {
3779   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3780   Field Fields[8] = {0,         8,         17 + Bias, 23 + Bias,
3781                      31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
3782   Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
3783   Fields[1].Str =
3784       to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
3785   Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
3786 
3787   unsigned char SymbolType = Symbol.getType();
3788   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3789       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3790     Fields[3].Str = enumToString(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3791   else
3792     Fields[3].Str = enumToString(SymbolType, makeArrayRef(ElfSymbolTypes));
3793 
3794   Fields[4].Str =
3795       enumToString(Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
3796   Fields[5].Str =
3797       enumToString(Symbol.getVisibility(), makeArrayRef(ElfSymbolVisibilities));
3798 
3799   if (Symbol.st_other & ~0x3) {
3800     if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
3801       uint8_t Other = Symbol.st_other & ~0x3;
3802       if (Other & STO_AARCH64_VARIANT_PCS) {
3803         Other &= ~STO_AARCH64_VARIANT_PCS;
3804         Fields[5].Str += " [VARIANT_PCS";
3805         if (Other != 0)
3806           Fields[5].Str.append(" | " + to_hexString(Other, false));
3807         Fields[5].Str.append("]");
3808       }
3809     } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) {
3810       uint8_t Other = Symbol.st_other & ~0x3;
3811       if (Other & STO_RISCV_VARIANT_CC) {
3812         Other &= ~STO_RISCV_VARIANT_CC;
3813         Fields[5].Str += " [VARIANT_CC";
3814         if (Other != 0)
3815           Fields[5].Str.append(" | " + to_hexString(Other, false));
3816         Fields[5].Str.append("]");
3817       }
3818     } else {
3819       Fields[5].Str +=
3820           " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
3821     }
3822   }
3823 
3824   Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
3825   Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable);
3826 
3827   Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
3828                                           StrTable, IsDynamic);
3829   for (const Field &Entry : Fields)
3830     printField(Entry);
3831   OS << "\n";
3832 }
3833 
3834 template <class ELFT>
3835 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
3836                                            unsigned SymIndex,
3837                                            DataRegion<Elf_Word> ShndxTable,
3838                                            StringRef StrTable,
3839                                            uint32_t Bucket) {
3840   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3841   Field Fields[9] = {0,         6,         11,        20 + Bias, 25 + Bias,
3842                      34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
3843   Fields[0].Str = to_string(format_decimal(SymIndex, 5));
3844   Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
3845 
3846   Fields[2].Str = to_string(
3847       format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
3848   Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
3849 
3850   unsigned char SymbolType = Symbol->getType();
3851   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3852       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3853     Fields[4].Str = enumToString(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3854   else
3855     Fields[4].Str = enumToString(SymbolType, makeArrayRef(ElfSymbolTypes));
3856 
3857   Fields[5].Str =
3858       enumToString(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3859   Fields[6].Str = enumToString(Symbol->getVisibility(),
3860                                makeArrayRef(ElfSymbolVisibilities));
3861   Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
3862   Fields[8].Str =
3863       this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
3864 
3865   for (const Field &Entry : Fields)
3866     printField(Entry);
3867   OS << "\n";
3868 }
3869 
3870 template <class ELFT>
3871 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
3872                                       bool PrintDynamicSymbols) {
3873   if (!PrintSymbols && !PrintDynamicSymbols)
3874     return;
3875   // GNU readelf prints both the .dynsym and .symtab with --symbols.
3876   this->printSymbolsHelper(true);
3877   if (PrintSymbols)
3878     this->printSymbolsHelper(false);
3879 }
3880 
3881 template <class ELFT>
3882 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
3883   if (this->DynamicStringTable.empty())
3884     return;
3885 
3886   if (ELFT::Is64Bits)
3887     OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
3888   else
3889     OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
3890   OS << "\n";
3891 
3892   Elf_Sym_Range DynSyms = this->dynamic_symbols();
3893   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3894   if (!FirstSym) {
3895     this->reportUniqueWarning(
3896         Twine("unable to print symbols for the .hash table: the "
3897               "dynamic symbol table ") +
3898         (this->DynSymRegion ? "is empty" : "was not found"));
3899     return;
3900   }
3901 
3902   DataRegion<Elf_Word> ShndxTable(
3903       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
3904   auto Buckets = SysVHash.buckets();
3905   auto Chains = SysVHash.chains();
3906   for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
3907     if (Buckets[Buc] == ELF::STN_UNDEF)
3908       continue;
3909     BitVector Visited(SysVHash.nchain);
3910     for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
3911       if (Ch == ELF::STN_UNDEF)
3912         break;
3913 
3914       if (Visited[Ch]) {
3915         this->reportUniqueWarning(".hash section is invalid: bucket " +
3916                                   Twine(Ch) +
3917                                   ": a cycle was detected in the linked chain");
3918         break;
3919       }
3920 
3921       printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
3922                         Buc);
3923       Visited[Ch] = true;
3924     }
3925   }
3926 }
3927 
3928 template <class ELFT>
3929 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
3930   if (this->DynamicStringTable.empty())
3931     return;
3932 
3933   Elf_Sym_Range DynSyms = this->dynamic_symbols();
3934   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3935   if (!FirstSym) {
3936     this->reportUniqueWarning(
3937         Twine("unable to print symbols for the .gnu.hash table: the "
3938               "dynamic symbol table ") +
3939         (this->DynSymRegion ? "is empty" : "was not found"));
3940     return;
3941   }
3942 
3943   auto GetSymbol = [&](uint64_t SymIndex,
3944                        uint64_t SymsTotal) -> const Elf_Sym * {
3945     if (SymIndex >= SymsTotal) {
3946       this->reportUniqueWarning(
3947           "unable to print hashed symbol with index " + Twine(SymIndex) +
3948           ", which is greater than or equal to the number of dynamic symbols "
3949           "(" +
3950           Twine::utohexstr(SymsTotal) + ")");
3951       return nullptr;
3952     }
3953     return FirstSym + SymIndex;
3954   };
3955 
3956   Expected<ArrayRef<Elf_Word>> ValuesOrErr =
3957       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
3958   ArrayRef<Elf_Word> Values;
3959   if (!ValuesOrErr)
3960     this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
3961                               "section: " +
3962                               toString(ValuesOrErr.takeError()));
3963   else
3964     Values = *ValuesOrErr;
3965 
3966   DataRegion<Elf_Word> ShndxTable(
3967       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
3968   ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
3969   for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
3970     if (Buckets[Buc] == ELF::STN_UNDEF)
3971       continue;
3972     uint32_t Index = Buckets[Buc];
3973     // Print whole chain.
3974     while (true) {
3975       uint32_t SymIndex = Index++;
3976       if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
3977         printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
3978                           Buc);
3979       else
3980         break;
3981 
3982       if (SymIndex < GnuHash.symndx) {
3983         this->reportUniqueWarning(
3984             "unable to read the hash value for symbol with index " +
3985             Twine(SymIndex) +
3986             ", which is less than the index of the first hashed symbol (" +
3987             Twine(GnuHash.symndx) + ")");
3988         break;
3989       }
3990 
3991        // Chain ends at symbol with stopper bit.
3992       if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
3993         break;
3994     }
3995   }
3996 }
3997 
3998 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
3999   if (this->HashTable) {
4000     OS << "\n Symbol table of .hash for image:\n";
4001     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4002       this->reportUniqueWarning(std::move(E));
4003     else
4004       printHashTableSymbols(*this->HashTable);
4005   }
4006 
4007   // Try printing the .gnu.hash table.
4008   if (this->GnuHashTable) {
4009     OS << "\n Symbol table of .gnu.hash for image:\n";
4010     if (ELFT::Is64Bits)
4011       OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
4012     else
4013       OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
4014     OS << "\n";
4015 
4016     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4017       this->reportUniqueWarning(std::move(E));
4018     else
4019       printGnuHashTableSymbols(*this->GnuHashTable);
4020   }
4021 }
4022 
4023 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
4024   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4025   OS << "There are " << to_string(Sections.size())
4026      << " section headers, starting at offset "
4027      << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n";
4028 
4029   OS << "Section Headers:\n";
4030 
4031   auto PrintFields = [&](ArrayRef<Field> V) {
4032     for (const Field &F : V)
4033       printField(F);
4034     OS << "\n";
4035   };
4036 
4037   PrintFields({{"[Nr]", 2}, {"Name", 7}});
4038 
4039   constexpr bool Is64 = ELFT::Is64Bits;
4040   PrintFields({{"Type", 7},
4041                {Is64 ? "Address" : "Addr", 23},
4042                {"Off", Is64 ? 40 : 32},
4043                {"Size", Is64 ? 47 : 39},
4044                {"ES", Is64 ? 54 : 46},
4045                {"Lk", Is64 ? 59 : 51},
4046                {"Inf", Is64 ? 62 : 54},
4047                {"Al", Is64 ? 66 : 57}});
4048   PrintFields({{"Flags", 7}});
4049 
4050   StringRef SecStrTable;
4051   if (Expected<StringRef> SecStrTableOrErr =
4052           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4053     SecStrTable = *SecStrTableOrErr;
4054   else
4055     this->reportUniqueWarning(SecStrTableOrErr.takeError());
4056 
4057   size_t SectionIndex = 0;
4058   const unsigned AddrSize = Is64 ? 16 : 8;
4059   for (const Elf_Shdr &S : Sections) {
4060     StringRef Name = "<?>";
4061     if (Expected<StringRef> NameOrErr =
4062             this->Obj.getSectionName(S, SecStrTable))
4063       Name = *NameOrErr;
4064     else
4065       this->reportUniqueWarning(NameOrErr.takeError());
4066 
4067     OS.PadToColumn(2);
4068     OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4069     PrintFields({{Name, 7}});
4070     PrintFields(
4071         {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4072          {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4073          {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4074          {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4075          {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4076          {to_string(S.sh_link), Is64 ? 59 : 51},
4077          {to_string(S.sh_info), Is64 ? 63 : 55},
4078          {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4079 
4080     OS.PadToColumn(7);
4081     OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4082 
4083     DenseMap<unsigned, StringRef> FlagToName = {
4084         {SHF_WRITE, "WRITE"},           {SHF_ALLOC, "ALLOC"},
4085         {SHF_EXECINSTR, "EXEC"},        {SHF_MERGE, "MERGE"},
4086         {SHF_STRINGS, "STRINGS"},       {SHF_INFO_LINK, "INFO LINK"},
4087         {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4088         {SHF_GROUP, "GROUP"},           {SHF_TLS, "TLS"},
4089         {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4090 
4091     uint64_t Flags = S.sh_flags;
4092     uint64_t UnknownFlags = 0;
4093     ListSeparator LS;
4094     while (Flags) {
4095       // Take the least significant bit as a flag.
4096       uint64_t Flag = Flags & -Flags;
4097       Flags -= Flag;
4098 
4099       auto It = FlagToName.find(Flag);
4100       if (It != FlagToName.end())
4101         OS << LS << It->second;
4102       else
4103         UnknownFlags |= Flag;
4104     }
4105 
4106     auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4107       uint64_t FlagsToPrint = UnknownFlags & Mask;
4108       if (!FlagsToPrint)
4109         return;
4110 
4111       OS << LS << Name << " ("
4112          << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4113       UnknownFlags &= ~Mask;
4114     };
4115 
4116     PrintUnknownFlags(SHF_MASKOS, "OS");
4117     PrintUnknownFlags(SHF_MASKPROC, "PROC");
4118     PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4119 
4120     OS << "\n";
4121     ++SectionIndex;
4122   }
4123 }
4124 
4125 static inline std::string printPhdrFlags(unsigned Flag) {
4126   std::string Str;
4127   Str = (Flag & PF_R) ? "R" : " ";
4128   Str += (Flag & PF_W) ? "W" : " ";
4129   Str += (Flag & PF_X) ? "E" : " ";
4130   return Str;
4131 }
4132 
4133 template <class ELFT>
4134 static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4135                              const typename ELFT::Shdr &Sec) {
4136   if (Sec.sh_flags & ELF::SHF_TLS) {
4137     // .tbss must only be shown in the PT_TLS segment.
4138     if (Sec.sh_type == ELF::SHT_NOBITS)
4139       return Phdr.p_type == ELF::PT_TLS;
4140 
4141     // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4142     // segments.
4143     return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4144            (Phdr.p_type == ELF::PT_GNU_RELRO);
4145   }
4146 
4147   // PT_TLS must only have SHF_TLS sections.
4148   return Phdr.p_type != ELF::PT_TLS;
4149 }
4150 
4151 template <class ELFT>
4152 static bool checkOffsets(const typename ELFT::Phdr &Phdr,
4153                          const typename ELFT::Shdr &Sec) {
4154   // SHT_NOBITS sections don't need to have an offset inside the segment.
4155   if (Sec.sh_type == ELF::SHT_NOBITS)
4156     return true;
4157 
4158   if (Sec.sh_offset < Phdr.p_offset)
4159     return false;
4160 
4161   // Only non-empty sections can be at the end of a segment.
4162   if (Sec.sh_size == 0)
4163     return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
4164   return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
4165 }
4166 
4167 // Check that an allocatable section belongs to a virtual address
4168 // space of a segment.
4169 template <class ELFT>
4170 static bool checkVMA(const typename ELFT::Phdr &Phdr,
4171                      const typename ELFT::Shdr &Sec) {
4172   if (!(Sec.sh_flags & ELF::SHF_ALLOC))
4173     return true;
4174 
4175   if (Sec.sh_addr < Phdr.p_vaddr)
4176     return false;
4177 
4178   bool IsTbss =
4179       (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
4180   // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4181   bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
4182   // Only non-empty sections can be at the end of a segment.
4183   if (Sec.sh_size == 0 || IsTbssInNonTLS)
4184     return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
4185   return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
4186 }
4187 
4188 template <class ELFT>
4189 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4190                            const typename ELFT::Shdr &Sec) {
4191   if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4192     return true;
4193 
4194   // We get here when we have an empty section. Only non-empty sections can be
4195   // at the start or at the end of PT_DYNAMIC.
4196   // Is section within the phdr both based on offset and VMA?
4197   bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4198                      (Sec.sh_offset > Phdr.p_offset &&
4199                       Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4200   bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4201                  (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4202   return CheckOffset && CheckVA;
4203 }
4204 
4205 template <class ELFT>
4206 void GNUELFDumper<ELFT>::printProgramHeaders(
4207     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4208   if (PrintProgramHeaders)
4209     printProgramHeaders();
4210 
4211   // Display the section mapping along with the program headers, unless
4212   // -section-mapping is explicitly set to false.
4213   if (PrintSectionMapping != cl::BOU_FALSE)
4214     printSectionMapping();
4215 }
4216 
4217 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
4218   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4219   const Elf_Ehdr &Header = this->Obj.getHeader();
4220   Field Fields[8] = {2,         17,        26,        37 + Bias,
4221                      48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4222   OS << "\nElf file type is "
4223      << enumToString(Header.e_type, makeArrayRef(ElfObjectFileType)) << "\n"
4224      << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4225      << "There are " << Header.e_phnum << " program headers,"
4226      << " starting at offset " << Header.e_phoff << "\n\n"
4227      << "Program Headers:\n";
4228   if (ELFT::Is64Bits)
4229     OS << "  Type           Offset   VirtAddr           PhysAddr         "
4230        << "  FileSiz  MemSiz   Flg Align\n";
4231   else
4232     OS << "  Type           Offset   VirtAddr   PhysAddr   FileSiz "
4233        << "MemSiz  Flg Align\n";
4234 
4235   unsigned Width = ELFT::Is64Bits ? 18 : 10;
4236   unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4237 
4238   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4239   if (!PhdrsOrErr) {
4240     this->reportUniqueWarning("unable to dump program headers: " +
4241                               toString(PhdrsOrErr.takeError()));
4242     return;
4243   }
4244 
4245   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4246     Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4247     Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4248     Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4249     Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4250     Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4251     Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4252     Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4253     Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4254     for (const Field &F : Fields)
4255       printField(F);
4256     if (Phdr.p_type == ELF::PT_INTERP) {
4257       OS << "\n";
4258       auto ReportBadInterp = [&](const Twine &Msg) {
4259         this->reportUniqueWarning(
4260             "unable to read program interpreter name at offset 0x" +
4261             Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4262       };
4263 
4264       if (Phdr.p_offset >= this->Obj.getBufSize()) {
4265         ReportBadInterp("it goes past the end of the file (0x" +
4266                         Twine::utohexstr(this->Obj.getBufSize()) + ")");
4267         continue;
4268       }
4269 
4270       const char *Data =
4271           reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4272       size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4273       size_t Len = strnlen(Data, MaxSize);
4274       if (Len == MaxSize) {
4275         ReportBadInterp("it is not null-terminated");
4276         continue;
4277       }
4278 
4279       OS << "      [Requesting program interpreter: ";
4280       OS << StringRef(Data, Len) << "]";
4281     }
4282     OS << "\n";
4283   }
4284 }
4285 
4286 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
4287   OS << "\n Section to Segment mapping:\n  Segment Sections...\n";
4288   DenseSet<const Elf_Shdr *> BelongsToSegment;
4289   int Phnum = 0;
4290 
4291   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4292   if (!PhdrsOrErr) {
4293     this->reportUniqueWarning(
4294         "can't read program headers to build section to segment mapping: " +
4295         toString(PhdrsOrErr.takeError()));
4296     return;
4297   }
4298 
4299   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4300     std::string Sections;
4301     OS << format("   %2.2d     ", Phnum++);
4302     // Check if each section is in a segment and then print mapping.
4303     for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4304       if (Sec.sh_type == ELF::SHT_NULL)
4305         continue;
4306 
4307       // readelf additionally makes sure it does not print zero sized sections
4308       // at end of segments and for PT_DYNAMIC both start and end of section
4309       // .tbss must only be shown in PT_TLS section.
4310       if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
4311           checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
4312         Sections +=
4313             unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4314             " ";
4315         BelongsToSegment.insert(&Sec);
4316       }
4317     }
4318     OS << Sections << "\n";
4319     OS.flush();
4320   }
4321 
4322   // Display sections that do not belong to a segment.
4323   std::string Sections;
4324   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4325     if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4326       Sections +=
4327           unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4328           ' ';
4329   }
4330   if (!Sections.empty()) {
4331     OS << "   None  " << Sections << '\n';
4332     OS.flush();
4333   }
4334 }
4335 
4336 namespace {
4337 
4338 template <class ELFT>
4339 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4340                                   const Relocation<ELFT> &Reloc) {
4341   using Elf_Sym = typename ELFT::Sym;
4342   auto WarnAndReturn = [&](const Elf_Sym *Sym,
4343                            const Twine &Reason) -> RelSymbol<ELFT> {
4344     Dumper.reportUniqueWarning(
4345         "unable to get name of the dynamic symbol with index " +
4346         Twine(Reloc.Symbol) + ": " + Reason);
4347     return {Sym, "<corrupt>"};
4348   };
4349 
4350   ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4351   const Elf_Sym *FirstSym = Symbols.begin();
4352   if (!FirstSym)
4353     return WarnAndReturn(nullptr, "no dynamic symbol table found");
4354 
4355   // We might have an object without a section header. In this case the size of
4356   // Symbols is zero, because there is no way to know the size of the dynamic
4357   // table. We should allow this case and not print a warning.
4358   if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4359     return WarnAndReturn(
4360         nullptr,
4361         "index is greater than or equal to the number of dynamic symbols (" +
4362             Twine(Symbols.size()) + ")");
4363 
4364   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4365   const uint64_t FileSize = Obj.getBufSize();
4366   const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4367                              (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4368   if (SymOffset + sizeof(Elf_Sym) > FileSize)
4369     return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4370                                       " goes past the end of the file (0x" +
4371                                       Twine::utohexstr(FileSize) + ")");
4372 
4373   const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4374   Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4375   if (!ErrOrName)
4376     return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4377 
4378   return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4379 }
4380 } // namespace
4381 
4382 template <class ELFT>
4383 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4384                                    typename ELFT::DynRange Tags) {
4385   size_t Max = 0;
4386   for (const typename ELFT::Dyn &Dyn : Tags)
4387     Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4388   return Max;
4389 }
4390 
4391 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
4392   Elf_Dyn_Range Table = this->dynamic_table();
4393   if (Table.empty())
4394     return;
4395 
4396   OS << "Dynamic section at offset "
4397      << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
4398                        this->Obj.base(),
4399                    1)
4400      << " contains " << Table.size() << " entries:\n";
4401 
4402   // The type name is surrounded with round brackets, hence add 2.
4403   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4404   // The "Name/Value" column should be indented from the "Type" column by N
4405   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4406   // space (1) = 3.
4407   OS << "  Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4408      << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4409 
4410   std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4411   for (auto Entry : Table) {
4412     uintX_t Tag = Entry.getTag();
4413     std::string Type =
4414         std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")";
4415     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
4416     OS << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4417        << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4418   }
4419 }
4420 
4421 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
4422   this->printDynamicRelocationsHelper();
4423 }
4424 
4425 template <class ELFT>
4426 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4427   printRelRelaReloc(R, getSymbolForReloc(*this, R));
4428 }
4429 
4430 template <class ELFT>
4431 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4432   this->forEachRelocationDo(
4433       Sec, opts::RawRelr,
4434       [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4435           const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
4436       [&](const Elf_Relr &R) { printRelrReloc(R); });
4437 }
4438 
4439 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
4440   const bool IsMips64EL = this->Obj.isMips64EL();
4441   if (this->DynRelaRegion.Size > 0) {
4442     printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
4443     for (const Elf_Rela &Rela :
4444          this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
4445       printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4446   }
4447 
4448   if (this->DynRelRegion.Size > 0) {
4449     printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
4450     for (const Elf_Rel &Rel :
4451          this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
4452       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4453   }
4454 
4455   if (this->DynRelrRegion.Size > 0) {
4456     printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
4457     Elf_Relr_Range Relrs =
4458         this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
4459     for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4460       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4461   }
4462 
4463   if (this->DynPLTRelRegion.Size) {
4464     if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4465       printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
4466       for (const Elf_Rela &Rela :
4467            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
4468         printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4469     } else {
4470       printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
4471       for (const Elf_Rel &Rel :
4472            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
4473         printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4474     }
4475   }
4476 }
4477 
4478 template <class ELFT>
4479 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
4480     const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
4481   // Don't inline the SecName, because it might report a warning to stderr and
4482   // corrupt the output.
4483   StringRef SecName = this->getPrintableSectionName(Sec);
4484   OS << Label << " section '" << SecName << "' "
4485      << "contains " << EntriesNum << " entries:\n";
4486 
4487   StringRef LinkedSecName = "<corrupt>";
4488   if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
4489           this->Obj.getSection(Sec.sh_link))
4490     LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
4491   else
4492     this->reportUniqueWarning("invalid section linked to " +
4493                               this->describe(Sec) + ": " +
4494                               toString(LinkedSecOrErr.takeError()));
4495 
4496   OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
4497      << "  Offset: " << format_hex(Sec.sh_offset, 8)
4498      << "  Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
4499 }
4500 
4501 template <class ELFT>
4502 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
4503   if (!Sec)
4504     return;
4505 
4506   printGNUVersionSectionProlog(*Sec, "Version symbols",
4507                                Sec->sh_size / sizeof(Elf_Versym));
4508   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4509       this->getVersionTable(*Sec, /*SymTab=*/nullptr,
4510                             /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4511   if (!VerTableOrErr) {
4512     this->reportUniqueWarning(VerTableOrErr.takeError());
4513     return;
4514   }
4515 
4516   SmallVector<Optional<VersionEntry>, 0> *VersionMap = nullptr;
4517   if (Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
4518           this->getVersionMap())
4519     VersionMap = *MapOrErr;
4520   else
4521     this->reportUniqueWarning(MapOrErr.takeError());
4522 
4523   ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4524   std::vector<StringRef> Versions;
4525   for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4526     unsigned Ndx = VerTable[I].vs_index;
4527     if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4528       Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4529       continue;
4530     }
4531 
4532     if (!VersionMap) {
4533       Versions.emplace_back("<corrupt>");
4534       continue;
4535     }
4536 
4537     bool IsDefault;
4538     Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
4539         Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/None);
4540     if (!NameOrErr) {
4541       this->reportUniqueWarning("unable to get a version for entry " +
4542                                 Twine(I) + " of " + this->describe(*Sec) +
4543                                 ": " + toString(NameOrErr.takeError()));
4544       Versions.emplace_back("<corrupt>");
4545       continue;
4546     }
4547     Versions.emplace_back(*NameOrErr);
4548   }
4549 
4550   // readelf prints 4 entries per line.
4551   uint64_t Entries = VerTable.size();
4552   for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4553     OS << "  " << format_hex_no_prefix(VersymRow, 3) << ":";
4554     for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4555       unsigned Ndx = VerTable[VersymRow + I].vs_index;
4556       OS << format("%4x%c", Ndx & VERSYM_VERSION,
4557                    Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4558       OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4559     }
4560     OS << '\n';
4561   }
4562   OS << '\n';
4563 }
4564 
4565 static std::string versionFlagToString(unsigned Flags) {
4566   if (Flags == 0)
4567     return "none";
4568 
4569   std::string Ret;
4570   auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4571     if (!(Flags & Flag))
4572       return;
4573     if (!Ret.empty())
4574       Ret += " | ";
4575     Ret += Name;
4576     Flags &= ~Flag;
4577   };
4578 
4579   AddFlag(VER_FLG_BASE, "BASE");
4580   AddFlag(VER_FLG_WEAK, "WEAK");
4581   AddFlag(VER_FLG_INFO, "INFO");
4582   AddFlag(~0, "<unknown>");
4583   return Ret;
4584 }
4585 
4586 template <class ELFT>
4587 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
4588   if (!Sec)
4589     return;
4590 
4591   printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
4592 
4593   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
4594   if (!V) {
4595     this->reportUniqueWarning(V.takeError());
4596     return;
4597   }
4598 
4599   for (const VerDef &Def : *V) {
4600     OS << format("  0x%04x: Rev: %u  Flags: %s  Index: %u  Cnt: %u  Name: %s\n",
4601                  Def.Offset, Def.Version,
4602                  versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4603                  Def.Name.data());
4604     unsigned I = 0;
4605     for (const VerdAux &Aux : Def.AuxV)
4606       OS << format("  0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4607                    Aux.Name.data());
4608   }
4609 
4610   OS << '\n';
4611 }
4612 
4613 template <class ELFT>
4614 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
4615   if (!Sec)
4616     return;
4617 
4618   unsigned VerneedNum = Sec->sh_info;
4619   printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
4620 
4621   Expected<std::vector<VerNeed>> V =
4622       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
4623   if (!V) {
4624     this->reportUniqueWarning(V.takeError());
4625     return;
4626   }
4627 
4628   for (const VerNeed &VN : *V) {
4629     OS << format("  0x%04x: Version: %u  File: %s  Cnt: %u\n", VN.Offset,
4630                  VN.Version, VN.File.data(), VN.Cnt);
4631     for (const VernAux &Aux : VN.AuxV)
4632       OS << format("  0x%04x:   Name: %s  Flags: %s  Version: %u\n", Aux.Offset,
4633                    Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
4634                    Aux.Other);
4635   }
4636   OS << '\n';
4637 }
4638 
4639 template <class ELFT>
4640 void GNUELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) {
4641   size_t NBucket = HashTable.nbucket;
4642   size_t NChain = HashTable.nchain;
4643   ArrayRef<Elf_Word> Buckets = HashTable.buckets();
4644   ArrayRef<Elf_Word> Chains = HashTable.chains();
4645   size_t TotalSyms = 0;
4646   // If hash table is correct, we have at least chains with 0 length
4647   size_t MaxChain = 1;
4648   size_t CumulativeNonZero = 0;
4649 
4650   if (NChain == 0 || NBucket == 0)
4651     return;
4652 
4653   std::vector<size_t> ChainLen(NBucket, 0);
4654   // Go over all buckets and and note chain lengths of each bucket (total
4655   // unique chain lengths).
4656   for (size_t B = 0; B < NBucket; B++) {
4657     BitVector Visited(NChain);
4658     for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
4659       if (C == ELF::STN_UNDEF)
4660         break;
4661       if (Visited[C]) {
4662         this->reportUniqueWarning(".hash section is invalid: bucket " +
4663                                   Twine(C) +
4664                                   ": a cycle was detected in the linked chain");
4665         break;
4666       }
4667       Visited[C] = true;
4668       if (MaxChain <= ++ChainLen[B])
4669         MaxChain++;
4670     }
4671     TotalSyms += ChainLen[B];
4672   }
4673 
4674   if (!TotalSyms)
4675     return;
4676 
4677   std::vector<size_t> Count(MaxChain, 0);
4678   // Count how long is the chain for each bucket
4679   for (size_t B = 0; B < NBucket; B++)
4680     ++Count[ChainLen[B]];
4681   // Print Number of buckets with each chain lengths and their cumulative
4682   // coverage of the symbols
4683   OS << "Histogram for bucket list length (total of " << NBucket
4684      << " buckets)\n"
4685      << " Length  Number     % of total  Coverage\n";
4686   for (size_t I = 0; I < MaxChain; I++) {
4687     CumulativeNonZero += Count[I] * I;
4688     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4689                  (Count[I] * 100.0) / NBucket,
4690                  (CumulativeNonZero * 100.0) / TotalSyms);
4691   }
4692 }
4693 
4694 template <class ELFT>
4695 void GNUELFDumper<ELFT>::printGnuHashHistogram(
4696     const Elf_GnuHash &GnuHashTable) {
4697   Expected<ArrayRef<Elf_Word>> ChainsOrErr =
4698       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
4699   if (!ChainsOrErr) {
4700     this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
4701                               toString(ChainsOrErr.takeError()));
4702     return;
4703   }
4704 
4705   ArrayRef<Elf_Word> Chains = *ChainsOrErr;
4706   size_t Symndx = GnuHashTable.symndx;
4707   size_t TotalSyms = 0;
4708   size_t MaxChain = 1;
4709   size_t CumulativeNonZero = 0;
4710 
4711   size_t NBucket = GnuHashTable.nbuckets;
4712   if (Chains.empty() || NBucket == 0)
4713     return;
4714 
4715   ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
4716   std::vector<size_t> ChainLen(NBucket, 0);
4717   for (size_t B = 0; B < NBucket; B++) {
4718     if (!Buckets[B])
4719       continue;
4720     size_t Len = 1;
4721     for (size_t C = Buckets[B] - Symndx;
4722          C < Chains.size() && (Chains[C] & 1) == 0; C++)
4723       if (MaxChain < ++Len)
4724         MaxChain++;
4725     ChainLen[B] = Len;
4726     TotalSyms += Len;
4727   }
4728   MaxChain++;
4729 
4730   if (!TotalSyms)
4731     return;
4732 
4733   std::vector<size_t> Count(MaxChain, 0);
4734   for (size_t B = 0; B < NBucket; B++)
4735     ++Count[ChainLen[B]];
4736   // Print Number of buckets with each chain lengths and their cumulative
4737   // coverage of the symbols
4738   OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4739      << " buckets)\n"
4740      << " Length  Number     % of total  Coverage\n";
4741   for (size_t I = 0; I < MaxChain; I++) {
4742     CumulativeNonZero += Count[I] * I;
4743     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4744                  (Count[I] * 100.0) / NBucket,
4745                  (CumulativeNonZero * 100.0) / TotalSyms);
4746   }
4747 }
4748 
4749 // Hash histogram shows statistics of how efficient the hash was for the
4750 // dynamic symbol table. The table shows the number of hash buckets for
4751 // different lengths of chains as an absolute number and percentage of the total
4752 // buckets, and the cumulative coverage of symbols for each set of buckets.
4753 template <class ELFT> void GNUELFDumper<ELFT>::printHashHistograms() {
4754   // Print histogram for the .hash section.
4755   if (this->HashTable) {
4756     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4757       this->reportUniqueWarning(std::move(E));
4758     else
4759       printHashHistogram(*this->HashTable);
4760   }
4761 
4762   // Print histogram for the .gnu.hash section.
4763   if (this->GnuHashTable) {
4764     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4765       this->reportUniqueWarning(std::move(E));
4766     else
4767       printGnuHashHistogram(*this->GnuHashTable);
4768   }
4769 }
4770 
4771 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
4772   OS << "GNUStyle::printCGProfile not implemented\n";
4773 }
4774 
4775 template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
4776   OS << "GNUStyle::printBBAddrMaps not implemented\n";
4777 }
4778 
4779 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
4780   std::vector<uint64_t> Ret;
4781   const uint8_t *Cur = Data.begin();
4782   const uint8_t *End = Data.end();
4783   while (Cur != End) {
4784     unsigned Size;
4785     const char *Err;
4786     Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
4787     if (Err)
4788       return createError(Err);
4789     Cur += Size;
4790   }
4791   return Ret;
4792 }
4793 
4794 template <class ELFT>
4795 static Expected<std::vector<uint64_t>>
4796 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
4797   Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
4798   if (!ContentsOrErr)
4799     return ContentsOrErr.takeError();
4800 
4801   if (Expected<std::vector<uint64_t>> SymsOrErr =
4802           toULEB128Array(*ContentsOrErr))
4803     return *SymsOrErr;
4804   else
4805     return createError("unable to decode " + describe(Obj, Sec) + ": " +
4806                        toString(SymsOrErr.takeError()));
4807 }
4808 
4809 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
4810   if (!this->DotAddrsigSec)
4811     return;
4812 
4813   Expected<std::vector<uint64_t>> SymsOrErr =
4814       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
4815   if (!SymsOrErr) {
4816     this->reportUniqueWarning(SymsOrErr.takeError());
4817     return;
4818   }
4819 
4820   StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
4821   OS << "\nAddress-significant symbols section '" << Name << "'"
4822      << " contains " << SymsOrErr->size() << " entries:\n";
4823   OS << "   Num: Name\n";
4824 
4825   Field Fields[2] = {0, 8};
4826   size_t SymIndex = 0;
4827   for (uint64_t Sym : *SymsOrErr) {
4828     Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
4829     Fields[1].Str = this->getStaticSymbolName(Sym);
4830     for (const Field &Entry : Fields)
4831       printField(Entry);
4832     OS << "\n";
4833   }
4834 }
4835 
4836 template <typename ELFT>
4837 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
4838                                   ArrayRef<uint8_t> Data) {
4839   std::string str;
4840   raw_string_ostream OS(str);
4841   uint32_t PrData;
4842   auto DumpBit = [&](uint32_t Flag, StringRef Name) {
4843     if (PrData & Flag) {
4844       PrData &= ~Flag;
4845       OS << Name;
4846       if (PrData)
4847         OS << ", ";
4848     }
4849   };
4850 
4851   switch (Type) {
4852   default:
4853     OS << format("<application-specific type 0x%x>", Type);
4854     return OS.str();
4855   case GNU_PROPERTY_STACK_SIZE: {
4856     OS << "stack size: ";
4857     if (DataSize == sizeof(typename ELFT::uint))
4858       OS << formatv("{0:x}",
4859                     (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
4860     else
4861       OS << format("<corrupt length: 0x%x>", DataSize);
4862     return OS.str();
4863   }
4864   case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
4865     OS << "no copy on protected";
4866     if (DataSize)
4867       OS << format(" <corrupt length: 0x%x>", DataSize);
4868     return OS.str();
4869   case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
4870   case GNU_PROPERTY_X86_FEATURE_1_AND:
4871     OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
4872                                                         : "x86 feature: ");
4873     if (DataSize != 4) {
4874       OS << format("<corrupt length: 0x%x>", DataSize);
4875       return OS.str();
4876     }
4877     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4878     if (PrData == 0) {
4879       OS << "<None>";
4880       return OS.str();
4881     }
4882     if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
4883       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
4884       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
4885     } else {
4886       DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
4887       DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
4888     }
4889     if (PrData)
4890       OS << format("<unknown flags: 0x%x>", PrData);
4891     return OS.str();
4892   case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
4893   case GNU_PROPERTY_X86_FEATURE_2_USED:
4894     OS << "x86 feature "
4895        << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
4896     if (DataSize != 4) {
4897       OS << format("<corrupt length: 0x%x>", DataSize);
4898       return OS.str();
4899     }
4900     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4901     if (PrData == 0) {
4902       OS << "<None>";
4903       return OS.str();
4904     }
4905     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
4906     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
4907     DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
4908     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
4909     DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
4910     DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
4911     DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
4912     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
4913     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
4914     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
4915     if (PrData)
4916       OS << format("<unknown flags: 0x%x>", PrData);
4917     return OS.str();
4918   case GNU_PROPERTY_X86_ISA_1_NEEDED:
4919   case GNU_PROPERTY_X86_ISA_1_USED:
4920     OS << "x86 ISA "
4921        << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
4922     if (DataSize != 4) {
4923       OS << format("<corrupt length: 0x%x>", DataSize);
4924       return OS.str();
4925     }
4926     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4927     if (PrData == 0) {
4928       OS << "<None>";
4929       return OS.str();
4930     }
4931     DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
4932     DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
4933     DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
4934     DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
4935     if (PrData)
4936       OS << format("<unknown flags: 0x%x>", PrData);
4937     return OS.str();
4938   }
4939 }
4940 
4941 template <typename ELFT>
4942 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
4943   using Elf_Word = typename ELFT::Word;
4944 
4945   SmallVector<std::string, 4> Properties;
4946   while (Arr.size() >= 8) {
4947     uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
4948     uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
4949     Arr = Arr.drop_front(8);
4950 
4951     // Take padding size into account if present.
4952     uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
4953     std::string str;
4954     raw_string_ostream OS(str);
4955     if (Arr.size() < PaddedSize) {
4956       OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
4957       Properties.push_back(OS.str());
4958       break;
4959     }
4960     Properties.push_back(
4961         getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
4962     Arr = Arr.drop_front(PaddedSize);
4963   }
4964 
4965   if (!Arr.empty())
4966     Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
4967 
4968   return Properties;
4969 }
4970 
4971 struct GNUAbiTag {
4972   std::string OSName;
4973   std::string ABI;
4974   bool IsValid;
4975 };
4976 
4977 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
4978   typedef typename ELFT::Word Elf_Word;
4979 
4980   ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
4981                            reinterpret_cast<const Elf_Word *>(Desc.end()));
4982 
4983   if (Words.size() < 4)
4984     return {"", "", /*IsValid=*/false};
4985 
4986   static const char *OSNames[] = {
4987       "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
4988   };
4989   StringRef OSName = "Unknown";
4990   if (Words[0] < array_lengthof(OSNames))
4991     OSName = OSNames[Words[0]];
4992   uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
4993   std::string str;
4994   raw_string_ostream ABI(str);
4995   ABI << Major << "." << Minor << "." << Patch;
4996   return {std::string(OSName), ABI.str(), /*IsValid=*/true};
4997 }
4998 
4999 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5000   std::string str;
5001   raw_string_ostream OS(str);
5002   for (uint8_t B : Desc)
5003     OS << format_hex_no_prefix(B, 2);
5004   return OS.str();
5005 }
5006 
5007 static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) {
5008   return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5009 }
5010 
5011 template <typename ELFT>
5012 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
5013                          ArrayRef<uint8_t> Desc) {
5014   // Return true if we were able to pretty-print the note, false otherwise.
5015   switch (NoteType) {
5016   default:
5017     return false;
5018   case ELF::NT_GNU_ABI_TAG: {
5019     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5020     if (!AbiTag.IsValid)
5021       OS << "    <corrupt GNU_ABI_TAG>";
5022     else
5023       OS << "    OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5024     break;
5025   }
5026   case ELF::NT_GNU_BUILD_ID: {
5027     OS << "    Build ID: " << getGNUBuildId(Desc);
5028     break;
5029   }
5030   case ELF::NT_GNU_GOLD_VERSION:
5031     OS << "    Version: " << getDescAsStringRef(Desc);
5032     break;
5033   case ELF::NT_GNU_PROPERTY_TYPE_0:
5034     OS << "    Properties:";
5035     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
5036       OS << "    " << Property << "\n";
5037     break;
5038   }
5039   OS << '\n';
5040   return true;
5041 }
5042 
5043 template <typename ELFT>
5044 static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType,
5045                                     ArrayRef<uint8_t> Desc) {
5046   switch (NoteType) {
5047   default:
5048     return false;
5049   case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
5050     OS << "    Version: " << getDescAsStringRef(Desc);
5051     break;
5052   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
5053     OS << "    Producer: " << getDescAsStringRef(Desc);
5054     break;
5055   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
5056     OS << "    Producer version: " << getDescAsStringRef(Desc);
5057     break;
5058   }
5059   OS << '\n';
5060   return true;
5061 }
5062 
5063 const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
5064     {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
5065     {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
5066     {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
5067     {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
5068     {"LA48", NT_FREEBSD_FCTL_LA48},
5069     {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
5070 };
5071 
5072 struct FreeBSDNote {
5073   std::string Type;
5074   std::string Value;
5075 };
5076 
5077 template <typename ELFT>
5078 static Optional<FreeBSDNote>
5079 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
5080   if (IsCore)
5081     return None; // No pretty-printing yet.
5082   switch (NoteType) {
5083   case ELF::NT_FREEBSD_ABI_TAG:
5084     if (Desc.size() != 4)
5085       return None;
5086     return FreeBSDNote{
5087         "ABI tag",
5088         utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
5089   case ELF::NT_FREEBSD_ARCH_TAG:
5090     return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
5091   case ELF::NT_FREEBSD_FEATURE_CTL: {
5092     if (Desc.size() != 4)
5093       return None;
5094     unsigned Value =
5095         support::endian::read32<ELFT::TargetEndianness>(Desc.data());
5096     std::string FlagsStr;
5097     raw_string_ostream OS(FlagsStr);
5098     printFlags(Value, makeArrayRef(FreeBSDFeatureCtlFlags), OS);
5099     if (OS.str().empty())
5100       OS << "0x" << utohexstr(Value);
5101     else
5102       OS << "(0x" << utohexstr(Value) << ")";
5103     return FreeBSDNote{"Feature flags", OS.str()};
5104   }
5105   default:
5106     return None;
5107   }
5108 }
5109 
5110 struct AMDNote {
5111   std::string Type;
5112   std::string Value;
5113 };
5114 
5115 template <typename ELFT>
5116 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5117   switch (NoteType) {
5118   default:
5119     return {"", ""};
5120   case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
5121     struct CodeObjectVersion {
5122       uint32_t MajorVersion;
5123       uint32_t MinorVersion;
5124     };
5125     if (Desc.size() != sizeof(CodeObjectVersion))
5126       return {"AMD HSA Code Object Version",
5127               "Invalid AMD HSA Code Object Version"};
5128     std::string VersionString;
5129     raw_string_ostream StrOS(VersionString);
5130     auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
5131     StrOS << "[Major: " << Version->MajorVersion
5132           << ", Minor: " << Version->MinorVersion << "]";
5133     return {"AMD HSA Code Object Version", VersionString};
5134   }
5135   case ELF::NT_AMD_HSA_HSAIL: {
5136     struct HSAILProperties {
5137       uint32_t HSAILMajorVersion;
5138       uint32_t HSAILMinorVersion;
5139       uint8_t Profile;
5140       uint8_t MachineModel;
5141       uint8_t DefaultFloatRound;
5142     };
5143     if (Desc.size() != sizeof(HSAILProperties))
5144       return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5145     auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
5146     std::string HSAILPropetiesString;
5147     raw_string_ostream StrOS(HSAILPropetiesString);
5148     StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
5149           << ", HSAIL Minor: " << Properties->HSAILMinorVersion
5150           << ", Profile: " << uint32_t(Properties->Profile)
5151           << ", Machine Model: " << uint32_t(Properties->MachineModel)
5152           << ", Default Float Round: "
5153           << uint32_t(Properties->DefaultFloatRound) << "]";
5154     return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
5155   }
5156   case ELF::NT_AMD_HSA_ISA_VERSION: {
5157     struct IsaVersion {
5158       uint16_t VendorNameSize;
5159       uint16_t ArchitectureNameSize;
5160       uint32_t Major;
5161       uint32_t Minor;
5162       uint32_t Stepping;
5163     };
5164     if (Desc.size() < sizeof(IsaVersion))
5165       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5166     auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
5167     if (Desc.size() < sizeof(IsaVersion) +
5168                           Isa->VendorNameSize + Isa->ArchitectureNameSize ||
5169         Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
5170       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5171     std::string IsaString;
5172     raw_string_ostream StrOS(IsaString);
5173     StrOS << "[Vendor: "
5174           << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
5175           << ", Architecture: "
5176           << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
5177                        Isa->ArchitectureNameSize - 1)
5178           << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
5179           << ", Stepping: " << Isa->Stepping << "]";
5180     return {"AMD HSA ISA Version", IsaString};
5181   }
5182   case ELF::NT_AMD_HSA_METADATA: {
5183     if (Desc.size() == 0)
5184       return {"AMD HSA Metadata", ""};
5185     return {
5186         "AMD HSA Metadata",
5187         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
5188   }
5189   case ELF::NT_AMD_HSA_ISA_NAME: {
5190     if (Desc.size() == 0)
5191       return {"AMD HSA ISA Name", ""};
5192     return {
5193         "AMD HSA ISA Name",
5194         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5195   }
5196   case ELF::NT_AMD_PAL_METADATA: {
5197     struct PALMetadata {
5198       uint32_t Key;
5199       uint32_t Value;
5200     };
5201     if (Desc.size() % sizeof(PALMetadata) != 0)
5202       return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5203     auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
5204     std::string MetadataString;
5205     raw_string_ostream StrOS(MetadataString);
5206     for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
5207       StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
5208     }
5209     return {"AMD PAL Metadata", MetadataString};
5210   }
5211   }
5212 }
5213 
5214 struct AMDGPUNote {
5215   std::string Type;
5216   std::string Value;
5217 };
5218 
5219 template <typename ELFT>
5220 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5221   switch (NoteType) {
5222   default:
5223     return {"", ""};
5224   case ELF::NT_AMDGPU_METADATA: {
5225     StringRef MsgPackString =
5226         StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5227     msgpack::Document MsgPackDoc;
5228     if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5229       return {"", ""};
5230 
5231     AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5232     std::string MetadataString;
5233     if (!Verifier.verify(MsgPackDoc.getRoot()))
5234       MetadataString = "Invalid AMDGPU Metadata\n";
5235 
5236     raw_string_ostream StrOS(MetadataString);
5237     if (MsgPackDoc.getRoot().isScalar()) {
5238       // TODO: passing a scalar root to toYAML() asserts:
5239       // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5240       //    "plain scalar documents are not supported")
5241       // To avoid this crash we print the raw data instead.
5242       return {"", ""};
5243     }
5244     MsgPackDoc.toYAML(StrOS);
5245     return {"AMDGPU Metadata", StrOS.str()};
5246   }
5247   }
5248 }
5249 
5250 struct CoreFileMapping {
5251   uint64_t Start, End, Offset;
5252   StringRef Filename;
5253 };
5254 
5255 struct CoreNote {
5256   uint64_t PageSize;
5257   std::vector<CoreFileMapping> Mappings;
5258 };
5259 
5260 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5261   // Expected format of the NT_FILE note description:
5262   // 1. # of file mappings (call it N)
5263   // 2. Page size
5264   // 3. N (start, end, offset) triples
5265   // 4. N packed filenames (null delimited)
5266   // Each field is an Elf_Addr, except for filenames which are char* strings.
5267 
5268   CoreNote Ret;
5269   const int Bytes = Desc.getAddressSize();
5270 
5271   if (!Desc.isValidOffsetForAddress(2))
5272     return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5273                        " is too short, expected at least 0x" +
5274                        Twine::utohexstr(Bytes * 2));
5275   if (Desc.getData().back() != 0)
5276     return createError("the note is not NUL terminated");
5277 
5278   uint64_t DescOffset = 0;
5279   uint64_t FileCount = Desc.getAddress(&DescOffset);
5280   Ret.PageSize = Desc.getAddress(&DescOffset);
5281 
5282   if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5283     return createError("unable to read file mappings (found " +
5284                        Twine(FileCount) + "): the note of size 0x" +
5285                        Twine::utohexstr(Desc.size()) + " is too short");
5286 
5287   uint64_t FilenamesOffset = 0;
5288   DataExtractor Filenames(
5289       Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5290       Desc.isLittleEndian(), Desc.getAddressSize());
5291 
5292   Ret.Mappings.resize(FileCount);
5293   size_t I = 0;
5294   for (CoreFileMapping &Mapping : Ret.Mappings) {
5295     ++I;
5296     if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5297       return createError(
5298           "unable to read the file name for the mapping with index " +
5299           Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5300           " is truncated");
5301     Mapping.Start = Desc.getAddress(&DescOffset);
5302     Mapping.End = Desc.getAddress(&DescOffset);
5303     Mapping.Offset = Desc.getAddress(&DescOffset);
5304     Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5305   }
5306 
5307   return Ret;
5308 }
5309 
5310 template <typename ELFT>
5311 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5312   // Length of "0x<address>" string.
5313   const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5314 
5315   OS << "    Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5316   OS << "    " << right_justify("Start", FieldWidth) << "  "
5317      << right_justify("End", FieldWidth) << "  "
5318      << right_justify("Page Offset", FieldWidth) << '\n';
5319   for (const CoreFileMapping &Mapping : Note.Mappings) {
5320     OS << "    " << format_hex(Mapping.Start, FieldWidth) << "  "
5321        << format_hex(Mapping.End, FieldWidth) << "  "
5322        << format_hex(Mapping.Offset, FieldWidth) << "\n        "
5323        << Mapping.Filename << '\n';
5324   }
5325 }
5326 
5327 const NoteType GenericNoteTypes[] = {
5328     {ELF::NT_VERSION, "NT_VERSION (version)"},
5329     {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5330     {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5331     {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5332 };
5333 
5334 const NoteType GNUNoteTypes[] = {
5335     {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5336     {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5337     {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5338     {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5339     {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5340 };
5341 
5342 const NoteType FreeBSDCoreNoteTypes[] = {
5343     {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5344     {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5345     {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5346     {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5347     {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5348     {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5349     {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5350     {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5351     {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5352      "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5353     {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5354 };
5355 
5356 const NoteType FreeBSDNoteTypes[] = {
5357     {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5358     {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5359     {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5360     {ELF::NT_FREEBSD_FEATURE_CTL,
5361      "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5362 };
5363 
5364 const NoteType NetBSDCoreNoteTypes[] = {
5365     {ELF::NT_NETBSDCORE_PROCINFO,
5366      "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5367     {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5368     {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5369 };
5370 
5371 const NoteType OpenBSDCoreNoteTypes[] = {
5372     {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5373     {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5374     {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"},
5375     {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"},
5376     {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"},
5377 };
5378 
5379 const NoteType AMDNoteTypes[] = {
5380     {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
5381      "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5382     {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5383     {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5384     {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5385     {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5386     {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5387 };
5388 
5389 const NoteType AMDGPUNoteTypes[] = {
5390     {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5391 };
5392 
5393 const NoteType LLVMOMPOFFLOADNoteTypes[] = {
5394     {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION,
5395      "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5396     {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER,
5397      "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5398     {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION,
5399      "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5400 };
5401 
5402 const NoteType CoreNoteTypes[] = {
5403     {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5404     {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5405     {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5406     {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5407     {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5408     {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5409     {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5410     {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5411     {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5412     {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5413     {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5414 
5415     {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5416     {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5417     {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5418     {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5419     {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5420     {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5421     {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5422     {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5423     {ELF::NT_PPC_TM_CFPR,
5424      "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5425     {ELF::NT_PPC_TM_CVMX,
5426      "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5427     {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5428     {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5429     {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5430     {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5431     {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5432 
5433     {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
5434     {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
5435     {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5436 
5437     {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5438     {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
5439     {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
5440     {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
5441     {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
5442     {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
5443     {ELF::NT_S390_LAST_BREAK,
5444      "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5445     {ELF::NT_S390_SYSTEM_CALL,
5446      "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5447     {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
5448     {ELF::NT_S390_VXRS_LOW,
5449      "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5450     {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5451     {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5452     {ELF::NT_S390_GS_BC,
5453      "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5454 
5455     {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
5456     {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
5457     {ELF::NT_ARM_HW_BREAK,
5458      "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5459     {ELF::NT_ARM_HW_WATCH,
5460      "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5461 
5462     {ELF::NT_FILE, "NT_FILE (mapped files)"},
5463     {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5464     {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5465 };
5466 
5467 template <class ELFT>
5468 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
5469   uint32_t Type = Note.getType();
5470   auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
5471     for (const NoteType &N : V)
5472       if (N.ID == Type)
5473         return N.Name;
5474     return "";
5475   };
5476 
5477   StringRef Name = Note.getName();
5478   if (Name == "GNU")
5479     return FindNote(GNUNoteTypes);
5480   if (Name == "FreeBSD") {
5481     if (ELFType == ELF::ET_CORE) {
5482       // FreeBSD also places the generic core notes in the FreeBSD namespace.
5483       StringRef Result = FindNote(FreeBSDCoreNoteTypes);
5484       if (!Result.empty())
5485         return Result;
5486       return FindNote(CoreNoteTypes);
5487     } else {
5488       return FindNote(FreeBSDNoteTypes);
5489     }
5490   }
5491   if (ELFType == ELF::ET_CORE && Name.startswith("NetBSD-CORE")) {
5492     StringRef Result = FindNote(NetBSDCoreNoteTypes);
5493     if (!Result.empty())
5494       return Result;
5495     return FindNote(CoreNoteTypes);
5496   }
5497   if (ELFType == ELF::ET_CORE && Name.startswith("OpenBSD")) {
5498     // OpenBSD also places the generic core notes in the OpenBSD namespace.
5499     StringRef Result = FindNote(OpenBSDCoreNoteTypes);
5500     if (!Result.empty())
5501       return Result;
5502     return FindNote(CoreNoteTypes);
5503   }
5504   if (Name == "AMD")
5505     return FindNote(AMDNoteTypes);
5506   if (Name == "AMDGPU")
5507     return FindNote(AMDGPUNoteTypes);
5508   if (Name == "LLVMOMPOFFLOAD")
5509     return FindNote(LLVMOMPOFFLOADNoteTypes);
5510 
5511   if (ELFType == ELF::ET_CORE)
5512     return FindNote(CoreNoteTypes);
5513   return FindNote(GenericNoteTypes);
5514 }
5515 
5516 template <class ELFT>
5517 static void printNotesHelper(
5518     const ELFDumper<ELFT> &Dumper,
5519     llvm::function_ref<void(Optional<StringRef>, typename ELFT::Off,
5520                             typename ELFT::Addr)>
5521         StartNotesFn,
5522     llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
5523     llvm::function_ref<void()> FinishNotesFn) {
5524   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
5525   bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
5526 
5527   ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
5528   if (!IsCoreFile && !Sections.empty()) {
5529     for (const typename ELFT::Shdr &S : Sections) {
5530       if (S.sh_type != SHT_NOTE)
5531         continue;
5532       StartNotesFn(expectedToOptional(Obj.getSectionName(S)), S.sh_offset,
5533                    S.sh_size);
5534       Error Err = Error::success();
5535       size_t I = 0;
5536       for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
5537         if (Error E = ProcessNoteFn(Note, IsCoreFile))
5538           Dumper.reportUniqueWarning(
5539               "unable to read note with index " + Twine(I) + " from the " +
5540               describe(Obj, S) + ": " + toString(std::move(E)));
5541         ++I;
5542       }
5543       if (Err)
5544         Dumper.reportUniqueWarning("unable to read notes from the " +
5545                                    describe(Obj, S) + ": " +
5546                                    toString(std::move(Err)));
5547       FinishNotesFn();
5548     }
5549     return;
5550   }
5551 
5552   Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
5553   if (!PhdrsOrErr) {
5554     Dumper.reportUniqueWarning(
5555         "unable to read program headers to locate the PT_NOTE segment: " +
5556         toString(PhdrsOrErr.takeError()));
5557     return;
5558   }
5559 
5560   for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
5561     const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
5562     if (P.p_type != PT_NOTE)
5563       continue;
5564     StartNotesFn(/*SecName=*/None, P.p_offset, P.p_filesz);
5565     Error Err = Error::success();
5566     size_t Index = 0;
5567     for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
5568       if (Error E = ProcessNoteFn(Note, IsCoreFile))
5569         Dumper.reportUniqueWarning("unable to read note with index " +
5570                                    Twine(Index) +
5571                                    " from the PT_NOTE segment with index " +
5572                                    Twine(I) + ": " + toString(std::move(E)));
5573       ++Index;
5574     }
5575     if (Err)
5576       Dumper.reportUniqueWarning(
5577           "unable to read notes from the PT_NOTE segment with index " +
5578           Twine(I) + ": " + toString(std::move(Err)));
5579     FinishNotesFn();
5580   }
5581 }
5582 
5583 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
5584   bool IsFirstHeader = true;
5585   auto PrintHeader = [&](Optional<StringRef> SecName,
5586                          const typename ELFT::Off Offset,
5587                          const typename ELFT::Addr Size) {
5588     // Print a newline between notes sections to match GNU readelf.
5589     if (!IsFirstHeader) {
5590       OS << '\n';
5591     } else {
5592       IsFirstHeader = false;
5593     }
5594 
5595     OS << "Displaying notes found ";
5596 
5597     if (SecName)
5598       OS << "in: " << *SecName << "\n";
5599     else
5600       OS << "at file offset " << format_hex(Offset, 10) << " with length "
5601          << format_hex(Size, 10) << ":\n";
5602 
5603     OS << "  Owner                Data size \tDescription\n";
5604   };
5605 
5606   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
5607     StringRef Name = Note.getName();
5608     ArrayRef<uint8_t> Descriptor = Note.getDesc();
5609     Elf_Word Type = Note.getType();
5610 
5611     // Print the note owner/type.
5612     OS << "  " << left_justify(Name, 20) << ' '
5613        << format_hex(Descriptor.size(), 10) << '\t';
5614 
5615     StringRef NoteType =
5616         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
5617     if (!NoteType.empty())
5618       OS << NoteType << '\n';
5619     else
5620       OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
5621 
5622     // Print the description, or fallback to printing raw bytes for unknown
5623     // owners/if we fail to pretty-print the contents.
5624     if (Name == "GNU") {
5625       if (printGNUNote<ELFT>(OS, Type, Descriptor))
5626         return Error::success();
5627     } else if (Name == "FreeBSD") {
5628       if (Optional<FreeBSDNote> N =
5629               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
5630         OS << "    " << N->Type << ": " << N->Value << '\n';
5631         return Error::success();
5632       }
5633     } else if (Name == "AMD") {
5634       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5635       if (!N.Type.empty()) {
5636         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
5637         return Error::success();
5638       }
5639     } else if (Name == "AMDGPU") {
5640       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5641       if (!N.Type.empty()) {
5642         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
5643         return Error::success();
5644       }
5645     } else if (Name == "LLVMOMPOFFLOAD") {
5646       if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor))
5647         return Error::success();
5648     } else if (Name == "CORE") {
5649       if (Type == ELF::NT_FILE) {
5650         DataExtractor DescExtractor(Descriptor,
5651                                     ELFT::TargetEndianness == support::little,
5652                                     sizeof(Elf_Addr));
5653         if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
5654           printCoreNote<ELFT>(OS, *NoteOrErr);
5655           return Error::success();
5656         } else {
5657           return NoteOrErr.takeError();
5658         }
5659       }
5660     }
5661     if (!Descriptor.empty()) {
5662       OS << "   description data:";
5663       for (uint8_t B : Descriptor)
5664         OS << " " << format("%02x", B);
5665       OS << '\n';
5666     }
5667     return Error::success();
5668   };
5669 
5670   printNotesHelper(*this, PrintHeader, ProcessNote, []() {});
5671 }
5672 
5673 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
5674   OS << "printELFLinkerOptions not implemented!\n";
5675 }
5676 
5677 template <class ELFT>
5678 void ELFDumper<ELFT>::printDependentLibsHelper(
5679     function_ref<void(const Elf_Shdr &)> OnSectionStart,
5680     function_ref<void(StringRef, uint64_t)> OnLibEntry) {
5681   auto Warn = [this](unsigned SecNdx, StringRef Msg) {
5682     this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
5683                               Twine(SecNdx) + " is broken: " + Msg);
5684   };
5685 
5686   unsigned I = -1;
5687   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
5688     ++I;
5689     if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
5690       continue;
5691 
5692     OnSectionStart(Shdr);
5693 
5694     Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
5695     if (!ContentsOrErr) {
5696       Warn(I, toString(ContentsOrErr.takeError()));
5697       continue;
5698     }
5699 
5700     ArrayRef<uint8_t> Contents = *ContentsOrErr;
5701     if (!Contents.empty() && Contents.back() != 0) {
5702       Warn(I, "the content is not null-terminated");
5703       continue;
5704     }
5705 
5706     for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
5707       StringRef Lib((const char *)I);
5708       OnLibEntry(Lib, I - Contents.begin());
5709       I += Lib.size() + 1;
5710     }
5711   }
5712 }
5713 
5714 template <class ELFT>
5715 void ELFDumper<ELFT>::forEachRelocationDo(
5716     const Elf_Shdr &Sec, bool RawRelr,
5717     llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
5718                             const Elf_Shdr &, const Elf_Shdr *)>
5719         RelRelaFn,
5720     llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
5721   auto Warn = [&](Error &&E,
5722                   const Twine &Prefix = "unable to read relocations from") {
5723     this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
5724                               toString(std::move(E)));
5725   };
5726 
5727   // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
5728   // For them we should not treat the value of the sh_link field as an index of
5729   // a symbol table.
5730   const Elf_Shdr *SymTab;
5731   if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) {
5732     Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
5733     if (!SymTabOrErr) {
5734       Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
5735       return;
5736     }
5737     SymTab = *SymTabOrErr;
5738   }
5739 
5740   unsigned RelNdx = 0;
5741   const bool IsMips64EL = this->Obj.isMips64EL();
5742   switch (Sec.sh_type) {
5743   case ELF::SHT_REL:
5744     if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
5745       for (const Elf_Rel &R : *RangeOrErr)
5746         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5747     } else {
5748       Warn(RangeOrErr.takeError());
5749     }
5750     break;
5751   case ELF::SHT_RELA:
5752     if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
5753       for (const Elf_Rela &R : *RangeOrErr)
5754         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5755     } else {
5756       Warn(RangeOrErr.takeError());
5757     }
5758     break;
5759   case ELF::SHT_RELR:
5760   case ELF::SHT_ANDROID_RELR: {
5761     Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
5762     if (!RangeOrErr) {
5763       Warn(RangeOrErr.takeError());
5764       break;
5765     }
5766     if (RawRelr) {
5767       for (const Elf_Relr &R : *RangeOrErr)
5768         RelrFn(R);
5769       break;
5770     }
5771 
5772     for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
5773       RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
5774                 /*SymTab=*/nullptr);
5775     break;
5776   }
5777   case ELF::SHT_ANDROID_REL:
5778   case ELF::SHT_ANDROID_RELA:
5779     if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
5780       for (const Elf_Rela &R : *RelasOrErr)
5781         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5782     } else {
5783       Warn(RelasOrErr.takeError());
5784     }
5785     break;
5786   }
5787 }
5788 
5789 template <class ELFT>
5790 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
5791   StringRef Name = "<?>";
5792   if (Expected<StringRef> SecNameOrErr =
5793           Obj.getSectionName(Sec, this->WarningHandler))
5794     Name = *SecNameOrErr;
5795   else
5796     this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
5797                               ": " + toString(SecNameOrErr.takeError()));
5798   return Name;
5799 }
5800 
5801 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
5802   bool SectionStarted = false;
5803   struct NameOffset {
5804     StringRef Name;
5805     uint64_t Offset;
5806   };
5807   std::vector<NameOffset> SecEntries;
5808   NameOffset Current;
5809   auto PrintSection = [&]() {
5810     OS << "Dependent libraries section " << Current.Name << " at offset "
5811        << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
5812        << " entries:\n";
5813     for (NameOffset Entry : SecEntries)
5814       OS << "  [" << format("%6" PRIx64, Entry.Offset) << "]  " << Entry.Name
5815          << "\n";
5816     OS << "\n";
5817     SecEntries.clear();
5818   };
5819 
5820   auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
5821     if (SectionStarted)
5822       PrintSection();
5823     SectionStarted = true;
5824     Current.Offset = Shdr.sh_offset;
5825     Current.Name = this->getPrintableSectionName(Shdr);
5826   };
5827   auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
5828     SecEntries.push_back(NameOffset{Lib, Offset});
5829   };
5830 
5831   this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
5832   if (SectionStarted)
5833     PrintSection();
5834 }
5835 
5836 template <class ELFT>
5837 SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress(
5838     uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec) {
5839   SmallVector<uint32_t> SymbolIndexes;
5840   if (!this->AddressToIndexMap.hasValue()) {
5841     // Populate the address to index map upon the first invocation of this
5842     // function.
5843     this->AddressToIndexMap.emplace();
5844     if (this->DotSymtabSec) {
5845       if (Expected<Elf_Sym_Range> SymsOrError =
5846               Obj.symbols(this->DotSymtabSec)) {
5847         uint32_t Index = (uint32_t)-1;
5848         for (const Elf_Sym &Sym : *SymsOrError) {
5849           ++Index;
5850 
5851           if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
5852             continue;
5853 
5854           Expected<uint64_t> SymAddrOrErr =
5855               ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress();
5856           if (!SymAddrOrErr) {
5857             std::string Name = this->getStaticSymbolName(Index);
5858             reportUniqueWarning("unable to get address of symbol '" + Name +
5859                                 "': " + toString(SymAddrOrErr.takeError()));
5860             return SymbolIndexes;
5861           }
5862 
5863           (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index);
5864         }
5865       } else {
5866         reportUniqueWarning("unable to read the symbol table: " +
5867                             toString(SymsOrError.takeError()));
5868       }
5869     }
5870   }
5871 
5872   auto Symbols = this->AddressToIndexMap->find(SymValue);
5873   if (Symbols == this->AddressToIndexMap->end())
5874     return SymbolIndexes;
5875 
5876   for (uint32_t Index : Symbols->second) {
5877     // Check if the symbol is in the right section. FunctionSec == None
5878     // means "any section".
5879     if (FunctionSec) {
5880       const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index));
5881       if (Expected<const Elf_Shdr *> SecOrErr =
5882               Obj.getSection(Sym, this->DotSymtabSec,
5883                              this->getShndxTable(this->DotSymtabSec))) {
5884         if (*FunctionSec != *SecOrErr)
5885           continue;
5886       } else {
5887         std::string Name = this->getStaticSymbolName(Index);
5888         // Note: it is impossible to trigger this error currently, it is
5889         // untested.
5890         reportUniqueWarning("unable to get section of symbol '" + Name +
5891                             "': " + toString(SecOrErr.takeError()));
5892         return SymbolIndexes;
5893       }
5894     }
5895 
5896     SymbolIndexes.push_back(Index);
5897   }
5898 
5899   return SymbolIndexes;
5900 }
5901 
5902 template <class ELFT>
5903 bool ELFDumper<ELFT>::printFunctionStackSize(
5904     uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec,
5905     const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
5906   SmallVector<uint32_t> FuncSymIndexes =
5907       this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec);
5908   if (FuncSymIndexes.empty())
5909     reportUniqueWarning(
5910         "could not identify function symbol for stack size entry in " +
5911         describe(StackSizeSec));
5912 
5913   // Extract the size. The expectation is that Offset is pointing to the right
5914   // place, i.e. past the function address.
5915   Error Err = Error::success();
5916   uint64_t StackSize = Data.getULEB128(Offset, &Err);
5917   if (Err) {
5918     reportUniqueWarning("could not extract a valid stack size from " +
5919                         describe(StackSizeSec) + ": " +
5920                         toString(std::move(Err)));
5921     return false;
5922   }
5923 
5924   if (FuncSymIndexes.empty()) {
5925     printStackSizeEntry(StackSize, {"?"});
5926   } else {
5927     SmallVector<std::string> FuncSymNames;
5928     for (uint32_t Index : FuncSymIndexes)
5929       FuncSymNames.push_back(this->getStaticSymbolName(Index));
5930     printStackSizeEntry(StackSize, FuncSymNames);
5931   }
5932 
5933   return true;
5934 }
5935 
5936 template <class ELFT>
5937 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
5938                                              ArrayRef<std::string> FuncNames) {
5939   OS.PadToColumn(2);
5940   OS << format_decimal(Size, 11);
5941   OS.PadToColumn(18);
5942 
5943   OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n";
5944 }
5945 
5946 template <class ELFT>
5947 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
5948                                      const Elf_Shdr &RelocSec, unsigned Ndx,
5949                                      const Elf_Shdr *SymTab,
5950                                      const Elf_Shdr *FunctionSec,
5951                                      const Elf_Shdr &StackSizeSec,
5952                                      const RelocationResolver &Resolver,
5953                                      DataExtractor Data) {
5954   // This function ignores potentially erroneous input, unless it is directly
5955   // related to stack size reporting.
5956   const Elf_Sym *Sym = nullptr;
5957   Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
5958   if (!TargetOrErr)
5959     reportUniqueWarning("unable to get the target of relocation with index " +
5960                         Twine(Ndx) + " in " + describe(RelocSec) + ": " +
5961                         toString(TargetOrErr.takeError()));
5962   else
5963     Sym = TargetOrErr->Sym;
5964 
5965   uint64_t RelocSymValue = 0;
5966   if (Sym) {
5967     Expected<const Elf_Shdr *> SectionOrErr =
5968         this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
5969     if (!SectionOrErr) {
5970       reportUniqueWarning(
5971           "cannot identify the section for relocation symbol '" +
5972           (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
5973     } else if (*SectionOrErr != FunctionSec) {
5974       reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
5975                           "' is not in the expected section");
5976       // Pretend that the symbol is in the correct section and report its
5977       // stack size anyway.
5978       FunctionSec = *SectionOrErr;
5979     }
5980 
5981     RelocSymValue = Sym->st_value;
5982   }
5983 
5984   uint64_t Offset = R.Offset;
5985   if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
5986     reportUniqueWarning("found invalid relocation offset (0x" +
5987                         Twine::utohexstr(Offset) + ") into " +
5988                         describe(StackSizeSec) +
5989                         " while trying to extract a stack size entry");
5990     return;
5991   }
5992 
5993   uint64_t SymValue =
5994       Resolver(R.Type, Offset, RelocSymValue, Data.getAddress(&Offset),
5995                R.Addend.getValueOr(0));
5996   this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
5997                                &Offset);
5998 }
5999 
6000 template <class ELFT>
6001 void ELFDumper<ELFT>::printNonRelocatableStackSizes(
6002     std::function<void()> PrintHeader) {
6003   // This function ignores potentially erroneous input, unless it is directly
6004   // related to stack size reporting.
6005   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6006     if (this->getPrintableSectionName(Sec) != ".stack_sizes")
6007       continue;
6008     PrintHeader();
6009     ArrayRef<uint8_t> Contents =
6010         unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
6011     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6012     uint64_t Offset = 0;
6013     while (Offset < Contents.size()) {
6014       // The function address is followed by a ULEB representing the stack
6015       // size. Check for an extra byte before we try to process the entry.
6016       if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6017         reportUniqueWarning(
6018             describe(Sec) +
6019             " ended while trying to extract a stack size entry");
6020         break;
6021       }
6022       uint64_t SymValue = Data.getAddress(&Offset);
6023       if (!printFunctionStackSize(SymValue, /*FunctionSec=*/None, Sec, Data,
6024                                   &Offset))
6025         break;
6026     }
6027   }
6028 }
6029 
6030 template <class ELFT>
6031 void ELFDumper<ELFT>::getSectionAndRelocations(
6032     std::function<bool(const Elf_Shdr &)> IsMatch,
6033     llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap) {
6034   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6035     if (IsMatch(Sec))
6036       if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
6037               .second)
6038         continue;
6039 
6040     if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
6041       continue;
6042 
6043     Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info);
6044     if (!RelSecOrErr) {
6045       reportUniqueWarning(describe(Sec) +
6046                           ": failed to get a relocated section: " +
6047                           toString(RelSecOrErr.takeError()));
6048       continue;
6049     }
6050     const Elf_Shdr *ContentsSec = *RelSecOrErr;
6051     if (IsMatch(*ContentsSec))
6052       SecToRelocMap[ContentsSec] = &Sec;
6053   }
6054 }
6055 
6056 template <class ELFT>
6057 void ELFDumper<ELFT>::printRelocatableStackSizes(
6058     std::function<void()> PrintHeader) {
6059   // Build a map between stack size sections and their corresponding relocation
6060   // sections.
6061   llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap;
6062   auto IsMatch = [&](const Elf_Shdr &Sec) -> bool {
6063     StringRef SectionName;
6064     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
6065       SectionName = *NameOrErr;
6066     else
6067       consumeError(NameOrErr.takeError());
6068 
6069     return SectionName == ".stack_sizes";
6070   };
6071   getSectionAndRelocations(IsMatch, StackSizeRelocMap);
6072 
6073   for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
6074     PrintHeader();
6075     const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
6076     const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
6077 
6078     // Warn about stack size sections without a relocation section.
6079     if (!RelocSec) {
6080       reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
6081                                 ") does not have a corresponding "
6082                                 "relocation section"),
6083                     FileName);
6084       continue;
6085     }
6086 
6087     // A .stack_sizes section header's sh_link field is supposed to point
6088     // to the section that contains the functions whose stack sizes are
6089     // described in it.
6090     const Elf_Shdr *FunctionSec = unwrapOrError(
6091         this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
6092 
6093     SupportsRelocation IsSupportedFn;
6094     RelocationResolver Resolver;
6095     std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
6096     ArrayRef<uint8_t> Contents =
6097         unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
6098     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6099 
6100     forEachRelocationDo(
6101         *RelocSec, /*RawRelr=*/false,
6102         [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
6103             const Elf_Shdr *SymTab) {
6104           if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
6105             reportUniqueWarning(
6106                 describe(*RelocSec) +
6107                 " contains an unsupported relocation with index " + Twine(Ndx) +
6108                 ": " + Obj.getRelocationTypeName(R.Type));
6109             return;
6110           }
6111 
6112           this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
6113                                *StackSizesELFSec, Resolver, Data);
6114         },
6115         [](const Elf_Relr &) {
6116           llvm_unreachable("can't get here, because we only support "
6117                            "SHT_REL/SHT_RELA sections");
6118         });
6119   }
6120 }
6121 
6122 template <class ELFT>
6123 void GNUELFDumper<ELFT>::printStackSizes() {
6124   bool HeaderHasBeenPrinted = false;
6125   auto PrintHeader = [&]() {
6126     if (HeaderHasBeenPrinted)
6127       return;
6128     OS << "\nStack Sizes:\n";
6129     OS.PadToColumn(9);
6130     OS << "Size";
6131     OS.PadToColumn(18);
6132     OS << "Functions\n";
6133     HeaderHasBeenPrinted = true;
6134   };
6135 
6136   // For non-relocatable objects, look directly for sections whose name starts
6137   // with .stack_sizes and process the contents.
6138   if (this->Obj.getHeader().e_type == ELF::ET_REL)
6139     this->printRelocatableStackSizes(PrintHeader);
6140   else
6141     this->printNonRelocatableStackSizes(PrintHeader);
6142 }
6143 
6144 template <class ELFT>
6145 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6146   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6147   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6148     OS.PadToColumn(2);
6149     OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
6150     OS.PadToColumn(11 + Bias);
6151     OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
6152     OS.PadToColumn(22 + Bias);
6153     OS << format_hex_no_prefix(*E, 8 + Bias);
6154     OS.PadToColumn(31 + 2 * Bias);
6155     OS << Purpose << "\n";
6156   };
6157 
6158   OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6159   OS << " Canonical gp value: "
6160      << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6161 
6162   OS << " Reserved entries:\n";
6163   if (ELFT::Is64Bits)
6164     OS << "           Address     Access          Initial Purpose\n";
6165   else
6166     OS << "   Address     Access  Initial Purpose\n";
6167   PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6168   if (Parser.getGotModulePointer())
6169     PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6170 
6171   if (!Parser.getLocalEntries().empty()) {
6172     OS << "\n";
6173     OS << " Local entries:\n";
6174     if (ELFT::Is64Bits)
6175       OS << "           Address     Access          Initial\n";
6176     else
6177       OS << "   Address     Access  Initial\n";
6178     for (auto &E : Parser.getLocalEntries())
6179       PrintEntry(&E, "");
6180   }
6181 
6182   if (Parser.IsStatic)
6183     return;
6184 
6185   if (!Parser.getGlobalEntries().empty()) {
6186     OS << "\n";
6187     OS << " Global entries:\n";
6188     if (ELFT::Is64Bits)
6189       OS << "           Address     Access          Initial         Sym.Val."
6190          << " Type    Ndx Name\n";
6191     else
6192       OS << "   Address     Access  Initial Sym.Val. Type    Ndx Name\n";
6193 
6194     DataRegion<Elf_Word> ShndxTable(
6195         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6196     for (auto &E : Parser.getGlobalEntries()) {
6197       const Elf_Sym &Sym = *Parser.getGotSym(&E);
6198       const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
6199       std::string SymName = this->getFullSymbolName(
6200           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6201 
6202       OS.PadToColumn(2);
6203       OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6204       OS.PadToColumn(11 + Bias);
6205       OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6206       OS.PadToColumn(22 + Bias);
6207       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6208       OS.PadToColumn(31 + 2 * Bias);
6209       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6210       OS.PadToColumn(40 + 3 * Bias);
6211       OS << enumToString(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6212       OS.PadToColumn(48 + 3 * Bias);
6213       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6214                                 ShndxTable);
6215       OS.PadToColumn(52 + 3 * Bias);
6216       OS << SymName << "\n";
6217     }
6218   }
6219 
6220   if (!Parser.getOtherEntries().empty())
6221     OS << "\n Number of TLS and multi-GOT entries "
6222        << Parser.getOtherEntries().size() << "\n";
6223 }
6224 
6225 template <class ELFT>
6226 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6227   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6228   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6229     OS.PadToColumn(2);
6230     OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6231     OS.PadToColumn(11 + Bias);
6232     OS << format_hex_no_prefix(*E, 8 + Bias);
6233     OS.PadToColumn(20 + 2 * Bias);
6234     OS << Purpose << "\n";
6235   };
6236 
6237   OS << "PLT GOT:\n\n";
6238 
6239   OS << " Reserved entries:\n";
6240   OS << "   Address  Initial Purpose\n";
6241   PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6242   if (Parser.getPltModulePointer())
6243     PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6244 
6245   if (!Parser.getPltEntries().empty()) {
6246     OS << "\n";
6247     OS << " Entries:\n";
6248     OS << "   Address  Initial Sym.Val. Type    Ndx Name\n";
6249     DataRegion<Elf_Word> ShndxTable(
6250         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6251     for (auto &E : Parser.getPltEntries()) {
6252       const Elf_Sym &Sym = *Parser.getPltSym(&E);
6253       const Elf_Sym &FirstSym = *cantFail(
6254           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
6255       std::string SymName = this->getFullSymbolName(
6256           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6257 
6258       OS.PadToColumn(2);
6259       OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6260       OS.PadToColumn(11 + Bias);
6261       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6262       OS.PadToColumn(20 + 2 * Bias);
6263       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6264       OS.PadToColumn(29 + 3 * Bias);
6265       OS << enumToString(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6266       OS.PadToColumn(37 + 3 * Bias);
6267       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6268                                 ShndxTable);
6269       OS.PadToColumn(41 + 3 * Bias);
6270       OS << SymName << "\n";
6271     }
6272   }
6273 }
6274 
6275 template <class ELFT>
6276 Expected<const Elf_Mips_ABIFlags<ELFT> *>
6277 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6278   const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6279   if (Sec == nullptr)
6280     return nullptr;
6281 
6282   constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6283   Expected<ArrayRef<uint8_t>> DataOrErr =
6284       Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6285   if (!DataOrErr)
6286     return createError(ErrPrefix + toString(DataOrErr.takeError()));
6287 
6288   if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6289     return createError(ErrPrefix + "it has a wrong size (" +
6290         Twine(DataOrErr->size()) + ")");
6291   return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6292 }
6293 
6294 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
6295   const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6296   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6297           getMipsAbiFlagsSection(*this))
6298     Flags = *SecOrErr;
6299   else
6300     this->reportUniqueWarning(SecOrErr.takeError());
6301   if (!Flags)
6302     return;
6303 
6304   OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6305   OS << "ISA: MIPS" << int(Flags->isa_level);
6306   if (Flags->isa_rev > 1)
6307     OS << "r" << int(Flags->isa_rev);
6308   OS << "\n";
6309   OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6310   OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6311   OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6312   OS << "FP ABI: "
6313      << enumToString(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)) << "\n";
6314   OS << "ISA Extension: "
6315      << enumToString(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n";
6316   if (Flags->ases == 0)
6317     OS << "ASEs: None\n";
6318   else
6319     // FIXME: Print each flag on a separate line.
6320     OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags))
6321        << "\n";
6322   OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6323   OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6324   OS << "\n";
6325 }
6326 
6327 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
6328   const Elf_Ehdr &E = this->Obj.getHeader();
6329   {
6330     DictScope D(W, "ElfHeader");
6331     {
6332       DictScope D(W, "Ident");
6333       W.printBinary("Magic", makeArrayRef(E.e_ident).slice(ELF::EI_MAG0, 4));
6334       W.printEnum("Class", E.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
6335       W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
6336                   makeArrayRef(ElfDataEncoding));
6337       W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
6338 
6339       auto OSABI = makeArrayRef(ElfOSABI);
6340       if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6341           E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6342         switch (E.e_machine) {
6343         case ELF::EM_AMDGPU:
6344           OSABI = makeArrayRef(AMDGPUElfOSABI);
6345           break;
6346         case ELF::EM_ARM:
6347           OSABI = makeArrayRef(ARMElfOSABI);
6348           break;
6349         case ELF::EM_TI_C6000:
6350           OSABI = makeArrayRef(C6000ElfOSABI);
6351           break;
6352         }
6353       }
6354       W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
6355       W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
6356       W.printBinary("Unused", makeArrayRef(E.e_ident).slice(ELF::EI_PAD));
6357     }
6358 
6359     std::string TypeStr;
6360     if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
6361       TypeStr = Ent->Name.str();
6362     } else {
6363       if (E.e_type >= ET_LOPROC)
6364         TypeStr = "Processor Specific";
6365       else if (E.e_type >= ET_LOOS)
6366         TypeStr = "OS Specific";
6367       else
6368         TypeStr = "Unknown";
6369     }
6370     W.printString("Type", TypeStr + " (0x" + to_hexString(E.e_type) + ")");
6371 
6372     W.printEnum("Machine", E.e_machine, makeArrayRef(ElfMachineType));
6373     W.printNumber("Version", E.e_version);
6374     W.printHex("Entry", E.e_entry);
6375     W.printHex("ProgramHeaderOffset", E.e_phoff);
6376     W.printHex("SectionHeaderOffset", E.e_shoff);
6377     if (E.e_machine == EM_MIPS)
6378       W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderMipsFlags),
6379                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6380                    unsigned(ELF::EF_MIPS_MACH));
6381     else if (E.e_machine == EM_AMDGPU) {
6382       switch (E.e_ident[ELF::EI_ABIVERSION]) {
6383       default:
6384         W.printHex("Flags", E.e_flags);
6385         break;
6386       case 0:
6387         // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6388         LLVM_FALLTHROUGH;
6389       case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
6390         W.printFlags("Flags", E.e_flags,
6391                      makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
6392                      unsigned(ELF::EF_AMDGPU_MACH));
6393         break;
6394       case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
6395         W.printFlags("Flags", E.e_flags,
6396                      makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
6397                      unsigned(ELF::EF_AMDGPU_MACH),
6398                      unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
6399                      unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
6400         break;
6401       }
6402     } else if (E.e_machine == EM_RISCV)
6403       W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
6404     else if (E.e_machine == EM_AVR)
6405       W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderAVRFlags),
6406                    unsigned(ELF::EF_AVR_ARCH_MASK));
6407     else
6408       W.printFlags("Flags", E.e_flags);
6409     W.printNumber("HeaderSize", E.e_ehsize);
6410     W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
6411     W.printNumber("ProgramHeaderCount", E.e_phnum);
6412     W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
6413     W.printString("SectionHeaderCount",
6414                   getSectionHeadersNumString(this->Obj, this->FileName));
6415     W.printString("StringTableSectionIndex",
6416                   getSectionHeaderTableIndexString(this->Obj, this->FileName));
6417   }
6418 }
6419 
6420 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
6421   DictScope Lists(W, "Groups");
6422   std::vector<GroupSection> V = this->getGroups();
6423   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6424   for (const GroupSection &G : V) {
6425     DictScope D(W, "Group");
6426     W.printNumber("Name", G.Name, G.ShName);
6427     W.printNumber("Index", G.Index);
6428     W.printNumber("Link", G.Link);
6429     W.printNumber("Info", G.Info);
6430     W.printHex("Type", getGroupType(G.Type), G.Type);
6431     W.startLine() << "Signature: " << G.Signature << "\n";
6432 
6433     ListScope L(W, "Section(s) in group");
6434     for (const GroupMember &GM : G.Members) {
6435       const GroupSection *MainGroup = Map[GM.Index];
6436       if (MainGroup != &G)
6437         this->reportUniqueWarning(
6438             "section with index " + Twine(GM.Index) +
6439             ", included in the group section with index " +
6440             Twine(MainGroup->Index) +
6441             ", was also found in the group section with index " +
6442             Twine(G.Index));
6443       W.startLine() << GM.Name << " (" << GM.Index << ")\n";
6444     }
6445   }
6446 
6447   if (V.empty())
6448     W.startLine() << "There are no group sections in the file.\n";
6449 }
6450 
6451 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
6452   ListScope D(W, "Relocations");
6453 
6454   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6455     if (!isRelocationSec<ELFT>(Sec))
6456       continue;
6457 
6458     StringRef Name = this->getPrintableSectionName(Sec);
6459     unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
6460     W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n";
6461     W.indent();
6462     this->printRelocationsHelper(Sec);
6463     W.unindent();
6464     W.startLine() << "}\n";
6465   }
6466 }
6467 
6468 template <class ELFT>
6469 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
6470   W.startLine() << W.hex(R) << "\n";
6471 }
6472 
6473 template <class ELFT>
6474 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
6475                                             const RelSymbol<ELFT> &RelSym) {
6476   StringRef SymbolName = RelSym.Name;
6477   SmallString<32> RelocName;
6478   this->Obj.getRelocationTypeName(R.Type, RelocName);
6479 
6480   if (opts::ExpandRelocs) {
6481     DictScope Group(W, "Relocation");
6482     W.printHex("Offset", R.Offset);
6483     W.printNumber("Type", RelocName, R.Type);
6484     W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
6485     if (R.Addend)
6486       W.printHex("Addend", (uintX_t)*R.Addend);
6487   } else {
6488     raw_ostream &OS = W.startLine();
6489     OS << W.hex(R.Offset) << " " << RelocName << " "
6490        << (!SymbolName.empty() ? SymbolName : "-");
6491     if (R.Addend)
6492       OS << " " << W.hex((uintX_t)*R.Addend);
6493     OS << "\n";
6494   }
6495 }
6496 
6497 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
6498   ListScope SectionsD(W, "Sections");
6499 
6500   int SectionIndex = -1;
6501   std::vector<EnumEntry<unsigned>> FlagsList =
6502       getSectionFlagsForTarget(this->Obj.getHeader().e_machine);
6503   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6504     DictScope SectionD(W, "Section");
6505     W.printNumber("Index", ++SectionIndex);
6506     W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
6507     W.printHex("Type",
6508                object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
6509                                              Sec.sh_type),
6510                Sec.sh_type);
6511     W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList));
6512     W.printHex("Address", Sec.sh_addr);
6513     W.printHex("Offset", Sec.sh_offset);
6514     W.printNumber("Size", Sec.sh_size);
6515     W.printNumber("Link", Sec.sh_link);
6516     W.printNumber("Info", Sec.sh_info);
6517     W.printNumber("AddressAlignment", Sec.sh_addralign);
6518     W.printNumber("EntrySize", Sec.sh_entsize);
6519 
6520     if (opts::SectionRelocations) {
6521       ListScope D(W, "Relocations");
6522       this->printRelocationsHelper(Sec);
6523     }
6524 
6525     if (opts::SectionSymbols) {
6526       ListScope D(W, "Symbols");
6527       if (this->DotSymtabSec) {
6528         StringRef StrTable = unwrapOrError(
6529             this->FileName,
6530             this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
6531         ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
6532 
6533         typename ELFT::SymRange Symbols = unwrapOrError(
6534             this->FileName, this->Obj.symbols(this->DotSymtabSec));
6535         for (const Elf_Sym &Sym : Symbols) {
6536           const Elf_Shdr *SymSec = unwrapOrError(
6537               this->FileName,
6538               this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
6539           if (SymSec == &Sec)
6540             printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
6541                         false);
6542         }
6543       }
6544     }
6545 
6546     if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
6547       ArrayRef<uint8_t> Data =
6548           unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
6549       W.printBinaryBlock(
6550           "SectionData",
6551           StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
6552     }
6553   }
6554 }
6555 
6556 template <class ELFT>
6557 void LLVMELFDumper<ELFT>::printSymbolSection(
6558     const Elf_Sym &Symbol, unsigned SymIndex,
6559     DataRegion<Elf_Word> ShndxTable) const {
6560   auto GetSectionSpecialType = [&]() -> Optional<StringRef> {
6561     if (Symbol.isUndefined())
6562       return StringRef("Undefined");
6563     if (Symbol.isProcessorSpecific())
6564       return StringRef("Processor Specific");
6565     if (Symbol.isOSSpecific())
6566       return StringRef("Operating System Specific");
6567     if (Symbol.isAbsolute())
6568       return StringRef("Absolute");
6569     if (Symbol.isCommon())
6570       return StringRef("Common");
6571     if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
6572       return StringRef("Reserved");
6573     return None;
6574   };
6575 
6576   if (Optional<StringRef> Type = GetSectionSpecialType()) {
6577     W.printHex("Section", *Type, Symbol.st_shndx);
6578     return;
6579   }
6580 
6581   Expected<unsigned> SectionIndex =
6582       this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
6583   if (!SectionIndex) {
6584     assert(Symbol.st_shndx == SHN_XINDEX &&
6585            "getSymbolSectionIndex should only fail due to an invalid "
6586            "SHT_SYMTAB_SHNDX table/reference");
6587     this->reportUniqueWarning(SectionIndex.takeError());
6588     W.printHex("Section", "Reserved", SHN_XINDEX);
6589     return;
6590   }
6591 
6592   Expected<StringRef> SectionName =
6593       this->getSymbolSectionName(Symbol, *SectionIndex);
6594   if (!SectionName) {
6595     // Don't report an invalid section name if the section headers are missing.
6596     // In such situations, all sections will be "invalid".
6597     if (!this->ObjF.sections().empty())
6598       this->reportUniqueWarning(SectionName.takeError());
6599     else
6600       consumeError(SectionName.takeError());
6601     W.printHex("Section", "<?>", *SectionIndex);
6602   } else {
6603     W.printHex("Section", *SectionName, *SectionIndex);
6604   }
6605 }
6606 
6607 template <class ELFT>
6608 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
6609                                       DataRegion<Elf_Word> ShndxTable,
6610                                       Optional<StringRef> StrTable,
6611                                       bool IsDynamic,
6612                                       bool /*NonVisibilityBitsUsed*/) const {
6613   std::string FullSymbolName = this->getFullSymbolName(
6614       Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
6615   unsigned char SymbolType = Symbol.getType();
6616 
6617   DictScope D(W, "Symbol");
6618   W.printNumber("Name", FullSymbolName, Symbol.st_name);
6619   W.printHex("Value", Symbol.st_value);
6620   W.printNumber("Size", Symbol.st_size);
6621   W.printEnum("Binding", Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
6622   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
6623       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
6624     W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
6625   else
6626     W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
6627   if (Symbol.st_other == 0)
6628     // Usually st_other flag is zero. Do not pollute the output
6629     // by flags enumeration in that case.
6630     W.printNumber("Other", 0);
6631   else {
6632     std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
6633                                                    std::end(ElfSymOtherFlags));
6634     if (this->Obj.getHeader().e_machine == EM_MIPS) {
6635       // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
6636       // flag overlapped with other ST_MIPS_xxx flags. So consider both
6637       // cases separately.
6638       if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
6639         SymOtherFlags.insert(SymOtherFlags.end(),
6640                              std::begin(ElfMips16SymOtherFlags),
6641                              std::end(ElfMips16SymOtherFlags));
6642       else
6643         SymOtherFlags.insert(SymOtherFlags.end(),
6644                              std::begin(ElfMipsSymOtherFlags),
6645                              std::end(ElfMipsSymOtherFlags));
6646     } else if (this->Obj.getHeader().e_machine == EM_AARCH64) {
6647       SymOtherFlags.insert(SymOtherFlags.end(),
6648                            std::begin(ElfAArch64SymOtherFlags),
6649                            std::end(ElfAArch64SymOtherFlags));
6650     } else if (this->Obj.getHeader().e_machine == EM_RISCV) {
6651       SymOtherFlags.insert(SymOtherFlags.end(),
6652                            std::begin(ElfRISCVSymOtherFlags),
6653                            std::end(ElfRISCVSymOtherFlags));
6654     }
6655     W.printFlags("Other", Symbol.st_other, makeArrayRef(SymOtherFlags), 0x3u);
6656   }
6657   printSymbolSection(Symbol, SymIndex, ShndxTable);
6658 }
6659 
6660 template <class ELFT>
6661 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
6662                                        bool PrintDynamicSymbols) {
6663   if (PrintSymbols) {
6664     ListScope Group(W, "Symbols");
6665     this->printSymbolsHelper(false);
6666   }
6667   if (PrintDynamicSymbols) {
6668     ListScope Group(W, "DynamicSymbols");
6669     this->printSymbolsHelper(true);
6670   }
6671 }
6672 
6673 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
6674   Elf_Dyn_Range Table = this->dynamic_table();
6675   if (Table.empty())
6676     return;
6677 
6678   W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
6679 
6680   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
6681   // The "Name/Value" column should be indented from the "Type" column by N
6682   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
6683   // space (1) = -3.
6684   W.startLine() << "  Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
6685                 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
6686 
6687   std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
6688   for (auto Entry : Table) {
6689     uintX_t Tag = Entry.getTag();
6690     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
6691     W.startLine() << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
6692                   << " "
6693                   << format(ValueFmt.c_str(),
6694                             this->Obj.getDynamicTagAsString(Tag).c_str())
6695                   << Value << "\n";
6696   }
6697   W.startLine() << "]\n";
6698 }
6699 
6700 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
6701   W.startLine() << "Dynamic Relocations {\n";
6702   W.indent();
6703   this->printDynamicRelocationsHelper();
6704   W.unindent();
6705   W.startLine() << "}\n";
6706 }
6707 
6708 template <class ELFT>
6709 void LLVMELFDumper<ELFT>::printProgramHeaders(
6710     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
6711   if (PrintProgramHeaders)
6712     printProgramHeaders();
6713   if (PrintSectionMapping == cl::BOU_TRUE)
6714     printSectionMapping();
6715 }
6716 
6717 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
6718   ListScope L(W, "ProgramHeaders");
6719 
6720   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
6721   if (!PhdrsOrErr) {
6722     this->reportUniqueWarning("unable to dump program headers: " +
6723                               toString(PhdrsOrErr.takeError()));
6724     return;
6725   }
6726 
6727   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
6728     DictScope P(W, "ProgramHeader");
6729     StringRef Type =
6730         segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
6731 
6732     W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
6733     W.printHex("Offset", Phdr.p_offset);
6734     W.printHex("VirtualAddress", Phdr.p_vaddr);
6735     W.printHex("PhysicalAddress", Phdr.p_paddr);
6736     W.printNumber("FileSize", Phdr.p_filesz);
6737     W.printNumber("MemSize", Phdr.p_memsz);
6738     W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
6739     W.printNumber("Alignment", Phdr.p_align);
6740   }
6741 }
6742 
6743 template <class ELFT>
6744 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
6745   ListScope SS(W, "VersionSymbols");
6746   if (!Sec)
6747     return;
6748 
6749   StringRef StrTable;
6750   ArrayRef<Elf_Sym> Syms;
6751   const Elf_Shdr *SymTabSec;
6752   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
6753       this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
6754   if (!VerTableOrErr) {
6755     this->reportUniqueWarning(VerTableOrErr.takeError());
6756     return;
6757   }
6758 
6759   if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
6760     return;
6761 
6762   ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
6763   for (size_t I = 0, E = Syms.size(); I < E; ++I) {
6764     DictScope S(W, "Symbol");
6765     W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
6766     W.printString("Name",
6767                   this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
6768                                           /*IsDynamic=*/true));
6769   }
6770 }
6771 
6772 const EnumEntry<unsigned> SymVersionFlags[] = {
6773     {"Base", "BASE", VER_FLG_BASE},
6774     {"Weak", "WEAK", VER_FLG_WEAK},
6775     {"Info", "INFO", VER_FLG_INFO}};
6776 
6777 template <class ELFT>
6778 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
6779   ListScope SD(W, "VersionDefinitions");
6780   if (!Sec)
6781     return;
6782 
6783   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
6784   if (!V) {
6785     this->reportUniqueWarning(V.takeError());
6786     return;
6787   }
6788 
6789   for (const VerDef &D : *V) {
6790     DictScope Def(W, "Definition");
6791     W.printNumber("Version", D.Version);
6792     W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags));
6793     W.printNumber("Index", D.Ndx);
6794     W.printNumber("Hash", D.Hash);
6795     W.printString("Name", D.Name.c_str());
6796     W.printList(
6797         "Predecessors", D.AuxV,
6798         [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
6799   }
6800 }
6801 
6802 template <class ELFT>
6803 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
6804   ListScope SD(W, "VersionRequirements");
6805   if (!Sec)
6806     return;
6807 
6808   Expected<std::vector<VerNeed>> V =
6809       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
6810   if (!V) {
6811     this->reportUniqueWarning(V.takeError());
6812     return;
6813   }
6814 
6815   for (const VerNeed &VN : *V) {
6816     DictScope Entry(W, "Dependency");
6817     W.printNumber("Version", VN.Version);
6818     W.printNumber("Count", VN.Cnt);
6819     W.printString("FileName", VN.File.c_str());
6820 
6821     ListScope L(W, "Entries");
6822     for (const VernAux &Aux : VN.AuxV) {
6823       DictScope Entry(W, "Entry");
6824       W.printNumber("Hash", Aux.Hash);
6825       W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags));
6826       W.printNumber("Index", Aux.Other);
6827       W.printString("Name", Aux.Name.c_str());
6828     }
6829   }
6830 }
6831 
6832 template <class ELFT> void LLVMELFDumper<ELFT>::printHashHistograms() {
6833   W.startLine() << "Hash Histogram not implemented!\n";
6834 }
6835 
6836 // Returns true if rel/rela section exists, and populates SymbolIndices.
6837 // Otherwise returns false.
6838 template <class ELFT>
6839 static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection,
6840                              const ELFFile<ELFT> &Obj,
6841                              const LLVMELFDumper<ELFT> *Dumper,
6842                              SmallVector<uint32_t, 128> &SymbolIndices) {
6843   if (!CGRelSection) {
6844     Dumper->reportUniqueWarning(
6845         "relocation section for a call graph section doesn't exist");
6846     return false;
6847   }
6848 
6849   if (CGRelSection->sh_type == SHT_REL) {
6850     typename ELFT::RelRange CGProfileRel;
6851     Expected<typename ELFT::RelRange> CGProfileRelOrError =
6852         Obj.rels(*CGRelSection);
6853     if (!CGProfileRelOrError) {
6854       Dumper->reportUniqueWarning("unable to load relocations for "
6855                                   "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6856                                   toString(CGProfileRelOrError.takeError()));
6857       return false;
6858     }
6859 
6860     CGProfileRel = *CGProfileRelOrError;
6861     for (const typename ELFT::Rel &Rel : CGProfileRel)
6862       SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL()));
6863   } else {
6864     // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
6865     // the format to SHT_RELA
6866     // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
6867     typename ELFT::RelaRange CGProfileRela;
6868     Expected<typename ELFT::RelaRange> CGProfileRelaOrError =
6869         Obj.relas(*CGRelSection);
6870     if (!CGProfileRelaOrError) {
6871       Dumper->reportUniqueWarning("unable to load relocations for "
6872                                   "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6873                                   toString(CGProfileRelaOrError.takeError()));
6874       return false;
6875     }
6876 
6877     CGProfileRela = *CGProfileRelaOrError;
6878     for (const typename ELFT::Rela &Rela : CGProfileRela)
6879       SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL()));
6880   }
6881 
6882   return true;
6883 }
6884 
6885 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
6886   llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap;
6887 
6888   auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
6889     return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
6890   };
6891   this->getSectionAndRelocations(IsMatch, SecToRelocMap);
6892 
6893   for (const auto &CGMapEntry : SecToRelocMap) {
6894     const Elf_Shdr *CGSection = CGMapEntry.first;
6895     const Elf_Shdr *CGRelSection = CGMapEntry.second;
6896 
6897     Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
6898         this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection);
6899     if (!CGProfileOrErr) {
6900       this->reportUniqueWarning(
6901           "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6902           toString(CGProfileOrErr.takeError()));
6903       return;
6904     }
6905 
6906     SmallVector<uint32_t, 128> SymbolIndices;
6907     bool UseReloc =
6908         getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices);
6909     if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) {
6910       this->reportUniqueWarning(
6911           "number of from/to pairs does not match number of frequencies");
6912       UseReloc = false;
6913     }
6914 
6915     ListScope L(W, "CGProfile");
6916     for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) {
6917       const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I];
6918       DictScope D(W, "CGProfileEntry");
6919       if (UseReloc) {
6920         uint32_t From = SymbolIndices[I * 2];
6921         uint32_t To = SymbolIndices[I * 2 + 1];
6922         W.printNumber("From", this->getStaticSymbolName(From), From);
6923         W.printNumber("To", this->getStaticSymbolName(To), To);
6924       }
6925       W.printNumber("Weight", CGPE.cgp_weight);
6926     }
6927   }
6928 }
6929 
6930 template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
6931   bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL;
6932   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6933     if (Sec.sh_type != SHT_LLVM_BB_ADDR_MAP)
6934       continue;
6935     Optional<const Elf_Shdr *> FunctionSec = None;
6936     if (IsRelocatable)
6937       FunctionSec =
6938           unwrapOrError(this->FileName, this->Obj.getSection(Sec.sh_link));
6939     ListScope L(W, "BBAddrMap");
6940     Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
6941         this->Obj.decodeBBAddrMap(Sec);
6942     if (!BBAddrMapOrErr) {
6943       this->reportUniqueWarning("unable to dump " + this->describe(Sec) + ": " +
6944                                 toString(BBAddrMapOrErr.takeError()));
6945       continue;
6946     }
6947     for (const BBAddrMap &AM : *BBAddrMapOrErr) {
6948       DictScope D(W, "Function");
6949       W.printHex("At", AM.Addr);
6950       SmallVector<uint32_t> FuncSymIndex =
6951           this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec);
6952       std::string FuncName = "<?>";
6953       if (FuncSymIndex.empty())
6954         this->reportUniqueWarning(
6955             "could not identify function symbol for address (0x" +
6956             Twine::utohexstr(AM.Addr) + ") in " + this->describe(Sec));
6957       else
6958         FuncName = this->getStaticSymbolName(FuncSymIndex.front());
6959       W.printString("Name", FuncName);
6960 
6961       ListScope L(W, "BB entries");
6962       for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) {
6963         DictScope L(W);
6964         W.printHex("Offset", BBE.Offset);
6965         W.printHex("Size", BBE.Size);
6966         W.printBoolean("HasReturn", BBE.HasReturn);
6967         W.printBoolean("HasTailCall", BBE.HasTailCall);
6968         W.printBoolean("IsEHPad", BBE.IsEHPad);
6969         W.printBoolean("CanFallThrough", BBE.CanFallThrough);
6970       }
6971     }
6972   }
6973 }
6974 
6975 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
6976   ListScope L(W, "Addrsig");
6977   if (!this->DotAddrsigSec)
6978     return;
6979 
6980   Expected<std::vector<uint64_t>> SymsOrErr =
6981       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
6982   if (!SymsOrErr) {
6983     this->reportUniqueWarning(SymsOrErr.takeError());
6984     return;
6985   }
6986 
6987   for (uint64_t Sym : *SymsOrErr)
6988     W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
6989 }
6990 
6991 template <typename ELFT>
6992 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
6993                                   ScopedPrinter &W) {
6994   // Return true if we were able to pretty-print the note, false otherwise.
6995   switch (NoteType) {
6996   default:
6997     return false;
6998   case ELF::NT_GNU_ABI_TAG: {
6999     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
7000     if (!AbiTag.IsValid) {
7001       W.printString("ABI", "<corrupt GNU_ABI_TAG>");
7002       return false;
7003     } else {
7004       W.printString("OS", AbiTag.OSName);
7005       W.printString("ABI", AbiTag.ABI);
7006     }
7007     break;
7008   }
7009   case ELF::NT_GNU_BUILD_ID: {
7010     W.printString("Build ID", getGNUBuildId(Desc));
7011     break;
7012   }
7013   case ELF::NT_GNU_GOLD_VERSION:
7014     W.printString("Version", getDescAsStringRef(Desc));
7015     break;
7016   case ELF::NT_GNU_PROPERTY_TYPE_0:
7017     ListScope D(W, "Property");
7018     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
7019       W.printString(Property);
7020     break;
7021   }
7022   return true;
7023 }
7024 
7025 template <typename ELFT>
7026 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,
7027                                              ArrayRef<uint8_t> Desc,
7028                                              ScopedPrinter &W) {
7029   switch (NoteType) {
7030   default:
7031     return false;
7032   case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
7033     W.printString("Version", getDescAsStringRef(Desc));
7034     break;
7035   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
7036     W.printString("Producer", getDescAsStringRef(Desc));
7037     break;
7038   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
7039     W.printString("Producer version", getDescAsStringRef(Desc));
7040     break;
7041   }
7042   return true;
7043 }
7044 
7045 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
7046   W.printNumber("Page Size", Note.PageSize);
7047   for (const CoreFileMapping &Mapping : Note.Mappings) {
7048     ListScope D(W, "Mapping");
7049     W.printHex("Start", Mapping.Start);
7050     W.printHex("End", Mapping.End);
7051     W.printHex("Offset", Mapping.Offset);
7052     W.printString("Filename", Mapping.Filename);
7053   }
7054 }
7055 
7056 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
7057   ListScope L(W, "Notes");
7058 
7059   std::unique_ptr<DictScope> NoteScope;
7060   auto StartNotes = [&](Optional<StringRef> SecName,
7061                         const typename ELFT::Off Offset,
7062                         const typename ELFT::Addr Size) {
7063     NoteScope = std::make_unique<DictScope>(W, "NoteSection");
7064     W.printString("Name", SecName ? *SecName : "<?>");
7065     W.printHex("Offset", Offset);
7066     W.printHex("Size", Size);
7067   };
7068 
7069   auto EndNotes = [&] { NoteScope.reset(); };
7070 
7071   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
7072     DictScope D2(W, "Note");
7073     StringRef Name = Note.getName();
7074     ArrayRef<uint8_t> Descriptor = Note.getDesc();
7075     Elf_Word Type = Note.getType();
7076 
7077     // Print the note owner/type.
7078     W.printString("Owner", Name);
7079     W.printHex("Data size", Descriptor.size());
7080 
7081     StringRef NoteType =
7082         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
7083     if (!NoteType.empty())
7084       W.printString("Type", NoteType);
7085     else
7086       W.printString("Type",
7087                     "Unknown (" + to_string(format_hex(Type, 10)) + ")");
7088 
7089     // Print the description, or fallback to printing raw bytes for unknown
7090     // owners/if we fail to pretty-print the contents.
7091     if (Name == "GNU") {
7092       if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7093         return Error::success();
7094     } else if (Name == "FreeBSD") {
7095       if (Optional<FreeBSDNote> N =
7096               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
7097         W.printString(N->Type, N->Value);
7098         return Error::success();
7099       }
7100     } else if (Name == "AMD") {
7101       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
7102       if (!N.Type.empty()) {
7103         W.printString(N.Type, N.Value);
7104         return Error::success();
7105       }
7106     } else if (Name == "AMDGPU") {
7107       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
7108       if (!N.Type.empty()) {
7109         W.printString(N.Type, N.Value);
7110         return Error::success();
7111       }
7112     } else if (Name == "LLVMOMPOFFLOAD") {
7113       if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7114         return Error::success();
7115     } else if (Name == "CORE") {
7116       if (Type == ELF::NT_FILE) {
7117         DataExtractor DescExtractor(Descriptor,
7118                                     ELFT::TargetEndianness == support::little,
7119                                     sizeof(Elf_Addr));
7120         if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
7121           printCoreNoteLLVMStyle(*N, W);
7122           return Error::success();
7123         } else {
7124           return N.takeError();
7125         }
7126       }
7127     }
7128     if (!Descriptor.empty()) {
7129       W.printBinaryBlock("Description data", Descriptor);
7130     }
7131     return Error::success();
7132   };
7133 
7134   printNotesHelper(*this, StartNotes, ProcessNote, EndNotes);
7135 }
7136 
7137 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
7138   ListScope L(W, "LinkerOptions");
7139 
7140   unsigned I = -1;
7141   for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
7142     ++I;
7143     if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
7144       continue;
7145 
7146     Expected<ArrayRef<uint8_t>> ContentsOrErr =
7147         this->Obj.getSectionContents(Shdr);
7148     if (!ContentsOrErr) {
7149       this->reportUniqueWarning("unable to read the content of the "
7150                                 "SHT_LLVM_LINKER_OPTIONS section: " +
7151                                 toString(ContentsOrErr.takeError()));
7152       continue;
7153     }
7154     if (ContentsOrErr->empty())
7155       continue;
7156 
7157     if (ContentsOrErr->back() != 0) {
7158       this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
7159                                 Twine(I) +
7160                                 " is broken: the "
7161                                 "content is not null-terminated");
7162       continue;
7163     }
7164 
7165     SmallVector<StringRef, 16> Strings;
7166     toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
7167     if (Strings.size() % 2 != 0) {
7168       this->reportUniqueWarning(
7169           "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
7170           " is broken: an incomplete "
7171           "key-value pair was found. The last possible key was: \"" +
7172           Strings.back() + "\"");
7173       continue;
7174     }
7175 
7176     for (size_t I = 0; I < Strings.size(); I += 2)
7177       W.printString(Strings[I], Strings[I + 1]);
7178   }
7179 }
7180 
7181 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
7182   ListScope L(W, "DependentLibs");
7183   this->printDependentLibsHelper(
7184       [](const Elf_Shdr &) {},
7185       [this](StringRef Lib, uint64_t) { W.printString(Lib); });
7186 }
7187 
7188 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
7189   ListScope L(W, "StackSizes");
7190   if (this->Obj.getHeader().e_type == ELF::ET_REL)
7191     this->printRelocatableStackSizes([]() {});
7192   else
7193     this->printNonRelocatableStackSizes([]() {});
7194 }
7195 
7196 template <class ELFT>
7197 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
7198                                               ArrayRef<std::string> FuncNames) {
7199   DictScope D(W, "Entry");
7200   W.printList("Functions", FuncNames);
7201   W.printHex("Size", Size);
7202 }
7203 
7204 template <class ELFT>
7205 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
7206   auto PrintEntry = [&](const Elf_Addr *E) {
7207     W.printHex("Address", Parser.getGotAddress(E));
7208     W.printNumber("Access", Parser.getGotOffset(E));
7209     W.printHex("Initial", *E);
7210   };
7211 
7212   DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
7213 
7214   W.printHex("Canonical gp value", Parser.getGp());
7215   {
7216     ListScope RS(W, "Reserved entries");
7217     {
7218       DictScope D(W, "Entry");
7219       PrintEntry(Parser.getGotLazyResolver());
7220       W.printString("Purpose", StringRef("Lazy resolver"));
7221     }
7222 
7223     if (Parser.getGotModulePointer()) {
7224       DictScope D(W, "Entry");
7225       PrintEntry(Parser.getGotModulePointer());
7226       W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7227     }
7228   }
7229   {
7230     ListScope LS(W, "Local entries");
7231     for (auto &E : Parser.getLocalEntries()) {
7232       DictScope D(W, "Entry");
7233       PrintEntry(&E);
7234     }
7235   }
7236 
7237   if (Parser.IsStatic)
7238     return;
7239 
7240   {
7241     ListScope GS(W, "Global entries");
7242     for (auto &E : Parser.getGlobalEntries()) {
7243       DictScope D(W, "Entry");
7244 
7245       PrintEntry(&E);
7246 
7247       const Elf_Sym &Sym = *Parser.getGotSym(&E);
7248       W.printHex("Value", Sym.st_value);
7249       W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
7250 
7251       const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
7252       DataRegion<Elf_Word> ShndxTable(
7253           (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7254       printSymbolSection(Sym, SymIndex, ShndxTable);
7255 
7256       std::string SymName = this->getFullSymbolName(
7257           Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
7258       W.printNumber("Name", SymName, Sym.st_name);
7259     }
7260   }
7261 
7262   W.printNumber("Number of TLS and multi-GOT entries",
7263                 uint64_t(Parser.getOtherEntries().size()));
7264 }
7265 
7266 template <class ELFT>
7267 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
7268   auto PrintEntry = [&](const Elf_Addr *E) {
7269     W.printHex("Address", Parser.getPltAddress(E));
7270     W.printHex("Initial", *E);
7271   };
7272 
7273   DictScope GS(W, "PLT GOT");
7274 
7275   {
7276     ListScope RS(W, "Reserved entries");
7277     {
7278       DictScope D(W, "Entry");
7279       PrintEntry(Parser.getPltLazyResolver());
7280       W.printString("Purpose", StringRef("PLT lazy resolver"));
7281     }
7282 
7283     if (auto E = Parser.getPltModulePointer()) {
7284       DictScope D(W, "Entry");
7285       PrintEntry(E);
7286       W.printString("Purpose", StringRef("Module pointer"));
7287     }
7288   }
7289   {
7290     ListScope LS(W, "Entries");
7291     DataRegion<Elf_Word> ShndxTable(
7292         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7293     for (auto &E : Parser.getPltEntries()) {
7294       DictScope D(W, "Entry");
7295       PrintEntry(&E);
7296 
7297       const Elf_Sym &Sym = *Parser.getPltSym(&E);
7298       W.printHex("Value", Sym.st_value);
7299       W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
7300       printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
7301                          ShndxTable);
7302 
7303       const Elf_Sym *FirstSym = cantFail(
7304           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
7305       std::string SymName = this->getFullSymbolName(
7306           Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
7307       W.printNumber("Name", SymName, Sym.st_name);
7308     }
7309   }
7310 }
7311 
7312 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
7313   const Elf_Mips_ABIFlags<ELFT> *Flags;
7314   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
7315           getMipsAbiFlagsSection(*this)) {
7316     Flags = *SecOrErr;
7317     if (!Flags) {
7318       W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7319       return;
7320     }
7321   } else {
7322     this->reportUniqueWarning(SecOrErr.takeError());
7323     return;
7324   }
7325 
7326   raw_ostream &OS = W.getOStream();
7327   DictScope GS(W, "MIPS ABI Flags");
7328 
7329   W.printNumber("Version", Flags->version);
7330   W.startLine() << "ISA: ";
7331   if (Flags->isa_rev <= 1)
7332     OS << format("MIPS%u", Flags->isa_level);
7333   else
7334     OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
7335   OS << "\n";
7336   W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
7337   W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
7338   W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
7339   W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
7340   W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
7341   W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
7342   W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
7343   W.printHex("Flags 2", Flags->flags2);
7344 }
7345 
7346 template <class ELFT>
7347 void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
7348                                            ArrayRef<std::string> InputFilenames,
7349                                            const Archive *A) {
7350   FileScope = std::make_unique<DictScope>(this->W, FileStr);
7351   DictScope D(this->W, "FileSummary");
7352   this->W.printString("File", FileStr);
7353   this->W.printString("Format", Obj.getFileFormatName());
7354   this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch()));
7355   this->W.printString(
7356       "AddressSize",
7357       std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress())));
7358   this->printLoadName();
7359 }
7360