1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/IR/LLVMContext.h" 17 #include "llvm/ProfileData/InstrProfReader.h" 18 #include "llvm/ProfileData/InstrProfWriter.h" 19 #include "llvm/ProfileData/ProfileCommon.h" 20 #include "llvm/ProfileData/SampleProfReader.h" 21 #include "llvm/ProfileData/SampleProfWriter.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Discriminator.h" 24 #include "llvm/Support/Errc.h" 25 #include "llvm/Support/FileSystem.h" 26 #include "llvm/Support/Format.h" 27 #include "llvm/Support/FormattedStream.h" 28 #include "llvm/Support/InitLLVM.h" 29 #include "llvm/Support/MemoryBuffer.h" 30 #include "llvm/Support/Path.h" 31 #include "llvm/Support/ThreadPool.h" 32 #include "llvm/Support/Threading.h" 33 #include "llvm/Support/WithColor.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> 36 37 using namespace llvm; 38 39 enum ProfileFormat { 40 PF_None = 0, 41 PF_Text, 42 PF_Compact_Binary, 43 PF_Ext_Binary, 44 PF_GCC, 45 PF_Binary 46 }; 47 48 static void warn(Twine Message, std::string Whence = "", 49 std::string Hint = "") { 50 WithColor::warning(); 51 if (!Whence.empty()) 52 errs() << Whence << ": "; 53 errs() << Message << "\n"; 54 if (!Hint.empty()) 55 WithColor::note() << Hint << "\n"; 56 } 57 58 static void warn(Error E, StringRef Whence = "") { 59 if (E.isA<InstrProfError>()) { 60 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 61 warn(IPE.message(), std::string(Whence), std::string("")); 62 }); 63 } 64 } 65 66 static void exitWithError(Twine Message, std::string Whence = "", 67 std::string Hint = "") { 68 WithColor::error(); 69 if (!Whence.empty()) 70 errs() << Whence << ": "; 71 errs() << Message << "\n"; 72 if (!Hint.empty()) 73 WithColor::note() << Hint << "\n"; 74 ::exit(1); 75 } 76 77 static void exitWithError(Error E, StringRef Whence = "") { 78 if (E.isA<InstrProfError>()) { 79 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 80 instrprof_error instrError = IPE.get(); 81 StringRef Hint = ""; 82 if (instrError == instrprof_error::unrecognized_format) { 83 // Hint for common error of forgetting --sample for sample profiles. 84 Hint = "Perhaps you forgot to use the --sample option?"; 85 } 86 exitWithError(IPE.message(), std::string(Whence), std::string(Hint)); 87 }); 88 } 89 90 exitWithError(toString(std::move(E)), std::string(Whence)); 91 } 92 93 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 94 exitWithError(EC.message(), std::string(Whence)); 95 } 96 97 namespace { 98 enum ProfileKinds { instr, sample }; 99 enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid }; 100 } 101 102 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 103 StringRef Whence = "") { 104 if (FailMode == failIfAnyAreInvalid) 105 exitWithErrorCode(EC, Whence); 106 else 107 warn(EC.message(), std::string(Whence)); 108 } 109 110 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 111 StringRef WhenceFunction = "", 112 bool ShowHint = true) { 113 if (!WhenceFile.empty()) 114 errs() << WhenceFile << ": "; 115 if (!WhenceFunction.empty()) 116 errs() << WhenceFunction << ": "; 117 118 auto IPE = instrprof_error::success; 119 E = handleErrors(std::move(E), 120 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 121 IPE = E->get(); 122 return Error(std::move(E)); 123 }); 124 errs() << toString(std::move(E)) << "\n"; 125 126 if (ShowHint) { 127 StringRef Hint = ""; 128 if (IPE != instrprof_error::success) { 129 switch (IPE) { 130 case instrprof_error::hash_mismatch: 131 case instrprof_error::count_mismatch: 132 case instrprof_error::value_site_count_mismatch: 133 Hint = "Make sure that all profile data to be merged is generated " 134 "from the same binary."; 135 break; 136 default: 137 break; 138 } 139 } 140 141 if (!Hint.empty()) 142 errs() << Hint << "\n"; 143 } 144 } 145 146 namespace { 147 /// A remapper from original symbol names to new symbol names based on a file 148 /// containing a list of mappings from old name to new name. 149 class SymbolRemapper { 150 std::unique_ptr<MemoryBuffer> File; 151 DenseMap<StringRef, StringRef> RemappingTable; 152 153 public: 154 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 155 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 156 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 157 if (!BufOrError) 158 exitWithErrorCode(BufOrError.getError(), InputFile); 159 160 auto Remapper = std::make_unique<SymbolRemapper>(); 161 Remapper->File = std::move(BufOrError.get()); 162 163 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 164 !LineIt.is_at_eof(); ++LineIt) { 165 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 166 if (Parts.first.empty() || Parts.second.empty() || 167 Parts.second.count(' ')) { 168 exitWithError("unexpected line in remapping file", 169 (InputFile + ":" + Twine(LineIt.line_number())).str(), 170 "expected 'old_symbol new_symbol'"); 171 } 172 Remapper->RemappingTable.insert(Parts); 173 } 174 return Remapper; 175 } 176 177 /// Attempt to map the given old symbol into a new symbol. 178 /// 179 /// \return The new symbol, or \p Name if no such symbol was found. 180 StringRef operator()(StringRef Name) { 181 StringRef New = RemappingTable.lookup(Name); 182 return New.empty() ? Name : New; 183 } 184 }; 185 } 186 187 struct WeightedFile { 188 std::string Filename; 189 uint64_t Weight; 190 }; 191 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 192 193 /// Keep track of merged data and reported errors. 194 struct WriterContext { 195 std::mutex Lock; 196 InstrProfWriter Writer; 197 std::vector<std::pair<Error, std::string>> Errors; 198 std::mutex &ErrLock; 199 SmallSet<instrprof_error, 4> &WriterErrorCodes; 200 201 WriterContext(bool IsSparse, std::mutex &ErrLock, 202 SmallSet<instrprof_error, 4> &WriterErrorCodes) 203 : Lock(), Writer(IsSparse), Errors(), ErrLock(ErrLock), 204 WriterErrorCodes(WriterErrorCodes) {} 205 }; 206 207 /// Computer the overlap b/w profile BaseFilename and TestFileName, 208 /// and store the program level result to Overlap. 209 static void overlapInput(const std::string &BaseFilename, 210 const std::string &TestFilename, WriterContext *WC, 211 OverlapStats &Overlap, 212 const OverlapFuncFilters &FuncFilter, 213 raw_fd_ostream &OS, bool IsCS) { 214 auto ReaderOrErr = InstrProfReader::create(TestFilename); 215 if (Error E = ReaderOrErr.takeError()) { 216 // Skip the empty profiles by returning sliently. 217 instrprof_error IPE = InstrProfError::take(std::move(E)); 218 if (IPE != instrprof_error::empty_raw_profile) 219 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename); 220 return; 221 } 222 223 auto Reader = std::move(ReaderOrErr.get()); 224 for (auto &I : *Reader) { 225 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 226 FuncOverlap.setFuncInfo(I.Name, I.Hash); 227 228 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 229 FuncOverlap.dump(OS); 230 } 231 } 232 233 /// Load an input into a writer context. 234 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 235 WriterContext *WC) { 236 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 237 238 // Copy the filename, because llvm::ThreadPool copied the input "const 239 // WeightedFile &" by value, making a reference to the filename within it 240 // invalid outside of this packaged task. 241 std::string Filename = Input.Filename; 242 243 auto ReaderOrErr = InstrProfReader::create(Input.Filename); 244 if (Error E = ReaderOrErr.takeError()) { 245 // Skip the empty profiles by returning sliently. 246 instrprof_error IPE = InstrProfError::take(std::move(E)); 247 if (IPE != instrprof_error::empty_raw_profile) 248 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename); 249 return; 250 } 251 252 auto Reader = std::move(ReaderOrErr.get()); 253 bool IsIRProfile = Reader->isIRLevelProfile(); 254 bool HasCSIRProfile = Reader->hasCSIRLevelProfile(); 255 if (Error E = WC->Writer.setIsIRLevelProfile(IsIRProfile, HasCSIRProfile)) { 256 consumeError(std::move(E)); 257 WC->Errors.emplace_back( 258 make_error<StringError>( 259 "Merge IR generated profile with Clang generated profile.", 260 std::error_code()), 261 Filename); 262 return; 263 } 264 WC->Writer.setInstrEntryBBEnabled(Reader->instrEntryBBEnabled()); 265 266 for (auto &I : *Reader) { 267 if (Remapper) 268 I.Name = (*Remapper)(I.Name); 269 const StringRef FuncName = I.Name; 270 bool Reported = false; 271 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 272 if (Reported) { 273 consumeError(std::move(E)); 274 return; 275 } 276 Reported = true; 277 // Only show hint the first time an error occurs. 278 instrprof_error IPE = InstrProfError::take(std::move(E)); 279 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 280 bool firstTime = WC->WriterErrorCodes.insert(IPE).second; 281 handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename, 282 FuncName, firstTime); 283 }); 284 } 285 if (Reader->hasError()) 286 if (Error E = Reader->getError()) 287 WC->Errors.emplace_back(std::move(E), Filename); 288 } 289 290 /// Merge the \p Src writer context into \p Dst. 291 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 292 for (auto &ErrorPair : Src->Errors) 293 Dst->Errors.push_back(std::move(ErrorPair)); 294 Src->Errors.clear(); 295 296 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 297 instrprof_error IPE = InstrProfError::take(std::move(E)); 298 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 299 bool firstTime = Dst->WriterErrorCodes.insert(IPE).second; 300 if (firstTime) 301 warn(toString(make_error<InstrProfError>(IPE))); 302 }); 303 } 304 305 static void writeInstrProfile(StringRef OutputFilename, 306 ProfileFormat OutputFormat, 307 InstrProfWriter &Writer) { 308 std::error_code EC; 309 raw_fd_ostream Output(OutputFilename.data(), EC, 310 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF 311 : sys::fs::OF_None); 312 if (EC) 313 exitWithErrorCode(EC, OutputFilename); 314 315 if (OutputFormat == PF_Text) { 316 if (Error E = Writer.writeText(Output)) 317 warn(std::move(E)); 318 } else { 319 if (Error E = Writer.write(Output)) 320 warn(std::move(E)); 321 } 322 } 323 324 static void mergeInstrProfile(const WeightedFileVector &Inputs, 325 SymbolRemapper *Remapper, 326 StringRef OutputFilename, 327 ProfileFormat OutputFormat, bool OutputSparse, 328 unsigned NumThreads, FailureMode FailMode) { 329 if (OutputFilename.compare("-") == 0) 330 exitWithError("Cannot write indexed profdata format to stdout."); 331 332 if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary && 333 OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text) 334 exitWithError("Unknown format is specified."); 335 336 std::mutex ErrorLock; 337 SmallSet<instrprof_error, 4> WriterErrorCodes; 338 339 // If NumThreads is not specified, auto-detect a good default. 340 if (NumThreads == 0) 341 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 342 unsigned((Inputs.size() + 1) / 2)); 343 // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails 344 // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't 345 // merged, thus the emitted file ends up with a PF_Unknown kind. 346 347 // Initialize the writer contexts. 348 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 349 for (unsigned I = 0; I < NumThreads; ++I) 350 Contexts.emplace_back(std::make_unique<WriterContext>( 351 OutputSparse, ErrorLock, WriterErrorCodes)); 352 353 if (NumThreads == 1) { 354 for (const auto &Input : Inputs) 355 loadInput(Input, Remapper, Contexts[0].get()); 356 } else { 357 ThreadPool Pool(hardware_concurrency(NumThreads)); 358 359 // Load the inputs in parallel (N/NumThreads serial steps). 360 unsigned Ctx = 0; 361 for (const auto &Input : Inputs) { 362 Pool.async(loadInput, Input, Remapper, Contexts[Ctx].get()); 363 Ctx = (Ctx + 1) % NumThreads; 364 } 365 Pool.wait(); 366 367 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 368 unsigned Mid = Contexts.size() / 2; 369 unsigned End = Contexts.size(); 370 assert(Mid > 0 && "Expected more than one context"); 371 do { 372 for (unsigned I = 0; I < Mid; ++I) 373 Pool.async(mergeWriterContexts, Contexts[I].get(), 374 Contexts[I + Mid].get()); 375 Pool.wait(); 376 if (End & 1) { 377 Pool.async(mergeWriterContexts, Contexts[0].get(), 378 Contexts[End - 1].get()); 379 Pool.wait(); 380 } 381 End = Mid; 382 Mid /= 2; 383 } while (Mid > 0); 384 } 385 386 // Handle deferred errors encountered during merging. If the number of errors 387 // is equal to the number of inputs the merge failed. 388 unsigned NumErrors = 0; 389 for (std::unique_ptr<WriterContext> &WC : Contexts) { 390 for (auto &ErrorPair : WC->Errors) { 391 ++NumErrors; 392 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 393 } 394 } 395 if (NumErrors == Inputs.size() || 396 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 397 exitWithError("No profiles could be merged."); 398 399 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 400 } 401 402 /// The profile entry for a function in instrumentation profile. 403 struct InstrProfileEntry { 404 uint64_t MaxCount = 0; 405 float ZeroCounterRatio = 0.0; 406 InstrProfRecord *ProfRecord; 407 InstrProfileEntry(InstrProfRecord *Record); 408 InstrProfileEntry() = default; 409 }; 410 411 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 412 ProfRecord = Record; 413 uint64_t CntNum = Record->Counts.size(); 414 uint64_t ZeroCntNum = 0; 415 for (size_t I = 0; I < CntNum; ++I) { 416 MaxCount = std::max(MaxCount, Record->Counts[I]); 417 ZeroCntNum += !Record->Counts[I]; 418 } 419 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 420 } 421 422 /// Either set all the counters in the instr profile entry \p IFE to -1 423 /// in order to drop the profile or scale up the counters in \p IFP to 424 /// be above hot threshold. We use the ratio of zero counters in the 425 /// profile of a function to decide the profile is helpful or harmful 426 /// for performance, and to choose whether to scale up or drop it. 427 static void updateInstrProfileEntry(InstrProfileEntry &IFE, 428 uint64_t HotInstrThreshold, 429 float ZeroCounterThreshold) { 430 InstrProfRecord *ProfRecord = IFE.ProfRecord; 431 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 432 // If all or most of the counters of the function are zero, the 433 // profile is unaccountable and shuld be dropped. Reset all the 434 // counters to be -1 and PGO profile-use will drop the profile. 435 // All counters being -1 also implies that the function is hot so 436 // PGO profile-use will also set the entry count metadata to be 437 // above hot threshold. 438 for (size_t I = 0; I < ProfRecord->Counts.size(); ++I) 439 ProfRecord->Counts[I] = -1; 440 return; 441 } 442 443 // Scale up the MaxCount to be multiple times above hot threshold. 444 const unsigned MultiplyFactor = 3; 445 uint64_t Numerator = HotInstrThreshold * MultiplyFactor; 446 uint64_t Denominator = IFE.MaxCount; 447 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 448 warn(toString(make_error<InstrProfError>(E))); 449 }); 450 } 451 452 const uint64_t ColdPercentileIdx = 15; 453 const uint64_t HotPercentileIdx = 11; 454 455 using sampleprof::FSDiscriminatorPass; 456 457 // Internal options to set FSDiscriminatorPass. Used in merge and show 458 // commands. 459 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption( 460 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden, 461 cl::desc("Zero out the discriminator bits for the FS discrimiantor " 462 "pass beyond this value. The enum values are defined in " 463 "Support/Discriminator.h"), 464 cl::values(clEnumVal(Base, "Use base discriminators only"), 465 clEnumVal(Pass1, "Use base and pass 1 discriminators"), 466 clEnumVal(Pass2, "Use base and pass 1-2 discriminators"), 467 clEnumVal(Pass3, "Use base and pass 1-3 discriminators"), 468 clEnumVal(PassLast, "Use all discriminator bits (default)"))); 469 470 static unsigned getDiscriminatorMask() { 471 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue())); 472 } 473 474 /// Adjust the instr profile in \p WC based on the sample profile in 475 /// \p Reader. 476 static void 477 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 478 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 479 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 480 unsigned InstrProfColdThreshold) { 481 // Function to its entry in instr profile. 482 StringMap<InstrProfileEntry> InstrProfileMap; 483 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 484 for (auto &PD : WC->Writer.getProfileData()) { 485 // Populate IPBuilder. 486 for (const auto &PDV : PD.getValue()) { 487 InstrProfRecord Record = PDV.second; 488 IPBuilder.addRecord(Record); 489 } 490 491 // If a function has multiple entries in instr profile, skip it. 492 if (PD.getValue().size() != 1) 493 continue; 494 495 // Initialize InstrProfileMap. 496 InstrProfRecord *R = &PD.getValue().begin()->second; 497 InstrProfileMap[PD.getKey()] = InstrProfileEntry(R); 498 } 499 500 ProfileSummary InstrPS = *IPBuilder.getSummary(); 501 ProfileSummary SamplePS = Reader->getSummary(); 502 503 // Compute cold thresholds for instr profile and sample profile. 504 uint64_t ColdSampleThreshold = 505 ProfileSummaryBuilder::getEntryForPercentile( 506 SamplePS.getDetailedSummary(), 507 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 508 .MinCount; 509 uint64_t HotInstrThreshold = 510 ProfileSummaryBuilder::getEntryForPercentile( 511 InstrPS.getDetailedSummary(), 512 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 513 .MinCount; 514 uint64_t ColdInstrThreshold = 515 InstrProfColdThreshold 516 ? InstrProfColdThreshold 517 : ProfileSummaryBuilder::getEntryForPercentile( 518 InstrPS.getDetailedSummary(), 519 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 520 .MinCount; 521 522 // Find hot/warm functions in sample profile which is cold in instr profile 523 // and adjust the profiles of those functions in the instr profile. 524 for (const auto &PD : Reader->getProfiles()) { 525 StringRef FName = PD.getKey(); 526 const sampleprof::FunctionSamples &FS = PD.getValue(); 527 auto It = InstrProfileMap.find(FName); 528 if (FS.getHeadSamples() > ColdSampleThreshold && 529 It != InstrProfileMap.end() && 530 It->second.MaxCount <= ColdInstrThreshold && 531 FS.getBodySamples().size() >= SupplMinSizeThreshold) { 532 updateInstrProfileEntry(It->second, HotInstrThreshold, 533 ZeroCounterThreshold); 534 } 535 } 536 } 537 538 /// The main function to supplement instr profile with sample profile. 539 /// \Inputs contains the instr profile. \p SampleFilename specifies the 540 /// sample profile. \p OutputFilename specifies the output profile name. 541 /// \p OutputFormat specifies the output profile format. \p OutputSparse 542 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 543 /// specifies the minimal size for the functions whose profile will be 544 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 545 /// a function contains too many zero counters and whether its profile 546 /// should be dropped. \p InstrProfColdThreshold is the user specified 547 /// cold threshold which will override the cold threshold got from the 548 /// instr profile summary. 549 static void supplementInstrProfile( 550 const WeightedFileVector &Inputs, StringRef SampleFilename, 551 StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse, 552 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 553 unsigned InstrProfColdThreshold) { 554 if (OutputFilename.compare("-") == 0) 555 exitWithError("Cannot write indexed profdata format to stdout."); 556 if (Inputs.size() != 1) 557 exitWithError("Expect one input to be an instr profile."); 558 if (Inputs[0].Weight != 1) 559 exitWithError("Expect instr profile doesn't have weight."); 560 561 StringRef InstrFilename = Inputs[0].Filename; 562 563 // Read sample profile. 564 LLVMContext Context; 565 auto ReaderOrErr = sampleprof::SampleProfileReader::create( 566 SampleFilename.str(), Context, FSDiscriminatorPassOption); 567 if (std::error_code EC = ReaderOrErr.getError()) 568 exitWithErrorCode(EC, SampleFilename); 569 auto Reader = std::move(ReaderOrErr.get()); 570 if (std::error_code EC = Reader->read()) 571 exitWithErrorCode(EC, SampleFilename); 572 573 // Read instr profile. 574 std::mutex ErrorLock; 575 SmallSet<instrprof_error, 4> WriterErrorCodes; 576 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 577 WriterErrorCodes); 578 loadInput(Inputs[0], nullptr, WC.get()); 579 if (WC->Errors.size() > 0) 580 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 581 582 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 583 InstrProfColdThreshold); 584 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 585 } 586 587 /// Make a copy of the given function samples with all symbol names remapped 588 /// by the provided symbol remapper. 589 static sampleprof::FunctionSamples 590 remapSamples(const sampleprof::FunctionSamples &Samples, 591 SymbolRemapper &Remapper, sampleprof_error &Error) { 592 sampleprof::FunctionSamples Result; 593 Result.setName(Remapper(Samples.getName())); 594 Result.addTotalSamples(Samples.getTotalSamples()); 595 Result.addHeadSamples(Samples.getHeadSamples()); 596 for (const auto &BodySample : Samples.getBodySamples()) { 597 uint32_t MaskedDiscriminator = 598 BodySample.first.Discriminator & getDiscriminatorMask(); 599 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator, 600 BodySample.second.getSamples()); 601 for (const auto &Target : BodySample.second.getCallTargets()) { 602 Result.addCalledTargetSamples(BodySample.first.LineOffset, 603 MaskedDiscriminator, 604 Remapper(Target.first()), Target.second); 605 } 606 } 607 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 608 sampleprof::FunctionSamplesMap &Target = 609 Result.functionSamplesAt(CallsiteSamples.first); 610 for (const auto &Callsite : CallsiteSamples.second) { 611 sampleprof::FunctionSamples Remapped = 612 remapSamples(Callsite.second, Remapper, Error); 613 MergeResult(Error, 614 Target[std::string(Remapped.getName())].merge(Remapped)); 615 } 616 } 617 return Result; 618 } 619 620 static sampleprof::SampleProfileFormat FormatMap[] = { 621 sampleprof::SPF_None, 622 sampleprof::SPF_Text, 623 sampleprof::SPF_Compact_Binary, 624 sampleprof::SPF_Ext_Binary, 625 sampleprof::SPF_GCC, 626 sampleprof::SPF_Binary}; 627 628 static std::unique_ptr<MemoryBuffer> 629 getInputFileBuf(const StringRef &InputFile) { 630 if (InputFile == "") 631 return {}; 632 633 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 634 if (!BufOrError) 635 exitWithErrorCode(BufOrError.getError(), InputFile); 636 637 return std::move(*BufOrError); 638 } 639 640 static void populateProfileSymbolList(MemoryBuffer *Buffer, 641 sampleprof::ProfileSymbolList &PSL) { 642 if (!Buffer) 643 return; 644 645 SmallVector<StringRef, 32> SymbolVec; 646 StringRef Data = Buffer->getBuffer(); 647 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 648 649 for (StringRef symbol : SymbolVec) 650 PSL.add(symbol); 651 } 652 653 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 654 ProfileFormat OutputFormat, 655 MemoryBuffer *Buffer, 656 sampleprof::ProfileSymbolList &WriterList, 657 bool CompressAllSections, bool UseMD5, 658 bool GenPartialProfile) { 659 populateProfileSymbolList(Buffer, WriterList); 660 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 661 warn("Profile Symbol list is not empty but the output format is not " 662 "ExtBinary format. The list will be lost in the output. "); 663 664 Writer.setProfileSymbolList(&WriterList); 665 666 if (CompressAllSections) { 667 if (OutputFormat != PF_Ext_Binary) 668 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 669 else 670 Writer.setToCompressAllSections(); 671 } 672 if (UseMD5) { 673 if (OutputFormat != PF_Ext_Binary) 674 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 675 else 676 Writer.setUseMD5(); 677 } 678 if (GenPartialProfile) { 679 if (OutputFormat != PF_Ext_Binary) 680 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 681 else 682 Writer.setPartialProfile(); 683 } 684 } 685 686 static void 687 mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper, 688 StringRef OutputFilename, ProfileFormat OutputFormat, 689 StringRef ProfileSymbolListFile, bool CompressAllSections, 690 bool UseMD5, bool GenPartialProfile, 691 bool SampleMergeColdContext, bool SampleTrimColdContext, 692 FailureMode FailMode) { 693 using namespace sampleprof; 694 StringMap<FunctionSamples> ProfileMap; 695 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 696 LLVMContext Context; 697 sampleprof::ProfileSymbolList WriterList; 698 Optional<bool> ProfileIsProbeBased; 699 Optional<bool> ProfileIsCS; 700 for (const auto &Input : Inputs) { 701 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context, 702 FSDiscriminatorPassOption); 703 if (std::error_code EC = ReaderOrErr.getError()) { 704 warnOrExitGivenError(FailMode, EC, Input.Filename); 705 continue; 706 } 707 708 // We need to keep the readers around until after all the files are 709 // read so that we do not lose the function names stored in each 710 // reader's memory. The function names are needed to write out the 711 // merged profile map. 712 Readers.push_back(std::move(ReaderOrErr.get())); 713 const auto Reader = Readers.back().get(); 714 if (std::error_code EC = Reader->read()) { 715 warnOrExitGivenError(FailMode, EC, Input.Filename); 716 Readers.pop_back(); 717 continue; 718 } 719 720 StringMap<FunctionSamples> &Profiles = Reader->getProfiles(); 721 if (ProfileIsProbeBased.hasValue() && 722 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) 723 exitWithError( 724 "cannot merge probe-based profile with non-probe-based profile"); 725 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; 726 if (ProfileIsCS.hasValue() && ProfileIsCS != FunctionSamples::ProfileIsCS) 727 exitWithError("cannot merge CS profile with non-CS profile"); 728 ProfileIsCS = FunctionSamples::ProfileIsCS; 729 for (StringMap<FunctionSamples>::iterator I = Profiles.begin(), 730 E = Profiles.end(); 731 I != E; ++I) { 732 sampleprof_error Result = sampleprof_error::success; 733 FunctionSamples Remapped = 734 Remapper ? remapSamples(I->second, *Remapper, Result) 735 : FunctionSamples(); 736 FunctionSamples &Samples = Remapper ? Remapped : I->second; 737 StringRef FName = Samples.getNameWithContext(); 738 MergeResult(Result, ProfileMap[FName].merge(Samples, Input.Weight)); 739 if (Result != sampleprof_error::success) { 740 std::error_code EC = make_error_code(Result); 741 handleMergeWriterError(errorCodeToError(EC), Input.Filename, FName); 742 } 743 } 744 745 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 746 Reader->getProfileSymbolList(); 747 if (ReaderList) 748 WriterList.merge(*ReaderList); 749 } 750 751 if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) { 752 // Use threshold calculated from profile summary unless specified. 753 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 754 auto Summary = Builder.computeSummaryForProfiles(ProfileMap); 755 uint64_t SampleProfColdThreshold = 756 ProfileSummaryBuilder::getColdCountThreshold( 757 (Summary->getDetailedSummary())); 758 759 // Trim and merge cold context profile using cold threshold above; 760 SampleContextTrimmer(ProfileMap) 761 .trimAndMergeColdContextProfiles(SampleProfColdThreshold, 762 SampleTrimColdContext, 763 SampleMergeColdContext); 764 } 765 766 auto WriterOrErr = 767 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 768 if (std::error_code EC = WriterOrErr.getError()) 769 exitWithErrorCode(EC, OutputFilename); 770 771 auto Writer = std::move(WriterOrErr.get()); 772 // WriterList will have StringRef refering to string in Buffer. 773 // Make sure Buffer lives as long as WriterList. 774 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 775 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 776 CompressAllSections, UseMD5, GenPartialProfile); 777 if (std::error_code EC = Writer->write(ProfileMap)) 778 exitWithErrorCode(std::move(EC)); 779 } 780 781 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 782 StringRef WeightStr, FileName; 783 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 784 785 uint64_t Weight; 786 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 787 exitWithError("Input weight must be a positive integer."); 788 789 return {std::string(FileName), Weight}; 790 } 791 792 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 793 StringRef Filename = WF.Filename; 794 uint64_t Weight = WF.Weight; 795 796 // If it's STDIN just pass it on. 797 if (Filename == "-") { 798 WNI.push_back({std::string(Filename), Weight}); 799 return; 800 } 801 802 llvm::sys::fs::file_status Status; 803 llvm::sys::fs::status(Filename, Status); 804 if (!llvm::sys::fs::exists(Status)) 805 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 806 Filename); 807 // If it's a source file, collect it. 808 if (llvm::sys::fs::is_regular_file(Status)) { 809 WNI.push_back({std::string(Filename), Weight}); 810 return; 811 } 812 813 if (llvm::sys::fs::is_directory(Status)) { 814 std::error_code EC; 815 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 816 F != E && !EC; F.increment(EC)) { 817 if (llvm::sys::fs::is_regular_file(F->path())) { 818 addWeightedInput(WNI, {F->path(), Weight}); 819 } 820 } 821 if (EC) 822 exitWithErrorCode(EC, Filename); 823 } 824 } 825 826 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 827 WeightedFileVector &WFV) { 828 if (!Buffer) 829 return; 830 831 SmallVector<StringRef, 8> Entries; 832 StringRef Data = Buffer->getBuffer(); 833 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 834 for (const StringRef &FileWeightEntry : Entries) { 835 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 836 // Skip comments. 837 if (SanitizedEntry.startswith("#")) 838 continue; 839 // If there's no comma, it's an unweighted profile. 840 else if (SanitizedEntry.find(',') == StringRef::npos) 841 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 842 else 843 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 844 } 845 } 846 847 static int merge_main(int argc, const char *argv[]) { 848 cl::list<std::string> InputFilenames(cl::Positional, 849 cl::desc("<filename...>")); 850 cl::list<std::string> WeightedInputFilenames("weighted-input", 851 cl::desc("<weight>,<filename>")); 852 cl::opt<std::string> InputFilenamesFile( 853 "input-files", cl::init(""), 854 cl::desc("Path to file containing newline-separated " 855 "[<weight>,]<filename> entries")); 856 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 857 cl::aliasopt(InputFilenamesFile)); 858 cl::opt<bool> DumpInputFileList( 859 "dump-input-file-list", cl::init(false), cl::Hidden, 860 cl::desc("Dump the list of input files and their weights, then exit")); 861 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 862 cl::desc("Symbol remapping file")); 863 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 864 cl::aliasopt(RemappingFile)); 865 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 866 cl::init("-"), cl::Required, 867 cl::desc("Output file")); 868 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 869 cl::aliasopt(OutputFilename)); 870 cl::opt<ProfileKinds> ProfileKind( 871 cl::desc("Profile kind:"), cl::init(instr), 872 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 873 clEnumVal(sample, "Sample profile"))); 874 cl::opt<ProfileFormat> OutputFormat( 875 cl::desc("Format of output profile"), cl::init(PF_Binary), 876 cl::values( 877 clEnumValN(PF_Binary, "binary", "Binary encoding (default)"), 878 clEnumValN(PF_Compact_Binary, "compbinary", 879 "Compact binary encoding"), 880 clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"), 881 clEnumValN(PF_Text, "text", "Text encoding"), 882 clEnumValN(PF_GCC, "gcc", 883 "GCC encoding (only meaningful for -sample)"))); 884 cl::opt<FailureMode> FailureMode( 885 "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"), 886 cl::values(clEnumValN(failIfAnyAreInvalid, "any", 887 "Fail if any profile is invalid."), 888 clEnumValN(failIfAllAreInvalid, "all", 889 "Fail only if all profiles are invalid."))); 890 cl::opt<bool> OutputSparse("sparse", cl::init(false), 891 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 892 cl::opt<unsigned> NumThreads( 893 "num-threads", cl::init(0), 894 cl::desc("Number of merge threads to use (default: autodetect)")); 895 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 896 cl::aliasopt(NumThreads)); 897 cl::opt<std::string> ProfileSymbolListFile( 898 "prof-sym-list", cl::init(""), 899 cl::desc("Path to file containing the list of function symbols " 900 "used to populate profile symbol list")); 901 cl::opt<bool> CompressAllSections( 902 "compress-all-sections", cl::init(false), cl::Hidden, 903 cl::desc("Compress all sections when writing the profile (only " 904 "meaningful for -extbinary)")); 905 cl::opt<bool> UseMD5( 906 "use-md5", cl::init(false), cl::Hidden, 907 cl::desc("Choose to use MD5 to represent string in name table (only " 908 "meaningful for -extbinary)")); 909 cl::opt<bool> SampleMergeColdContext( 910 "sample-merge-cold-context", cl::init(false), cl::Hidden, 911 cl::desc( 912 "Merge context sample profiles whose count is below cold threshold")); 913 cl::opt<bool> SampleTrimColdContext( 914 "sample-trim-cold-context", cl::init(false), cl::Hidden, 915 cl::desc( 916 "Trim context sample profiles whose count is below cold threshold")); 917 cl::opt<bool> GenPartialProfile( 918 "gen-partial-profile", cl::init(false), cl::Hidden, 919 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 920 cl::opt<std::string> SupplInstrWithSample( 921 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 922 cl::desc("Supplement an instr profile with sample profile, to correct " 923 "the profile unrepresentativeness issue. The sample " 924 "profile is the input of the flag. Output will be in instr " 925 "format (The flag only works with -instr)")); 926 cl::opt<float> ZeroCounterThreshold( 927 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 928 cl::desc("For the function which is cold in instr profile but hot in " 929 "sample profile, if the ratio of the number of zero counters " 930 "divided by the the total number of counters is above the " 931 "threshold, the profile of the function will be regarded as " 932 "being harmful for performance and will be dropped.")); 933 cl::opt<unsigned> SupplMinSizeThreshold( 934 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 935 cl::desc("If the size of a function is smaller than the threshold, " 936 "assume it can be inlined by PGO early inliner and it won't " 937 "be adjusted based on sample profile.")); 938 cl::opt<unsigned> InstrProfColdThreshold( 939 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 940 cl::desc("User specified cold threshold for instr profile which will " 941 "override the cold threshold got from profile summary.")); 942 943 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n"); 944 945 WeightedFileVector WeightedInputs; 946 for (StringRef Filename : InputFilenames) 947 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 948 for (StringRef WeightedFilename : WeightedInputFilenames) 949 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 950 951 // Make sure that the file buffer stays alive for the duration of the 952 // weighted input vector's lifetime. 953 auto Buffer = getInputFileBuf(InputFilenamesFile); 954 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 955 956 if (WeightedInputs.empty()) 957 exitWithError("No input files specified. See " + 958 sys::path::filename(argv[0]) + " -help"); 959 960 if (DumpInputFileList) { 961 for (auto &WF : WeightedInputs) 962 outs() << WF.Weight << "," << WF.Filename << "\n"; 963 return 0; 964 } 965 966 std::unique_ptr<SymbolRemapper> Remapper; 967 if (!RemappingFile.empty()) 968 Remapper = SymbolRemapper::create(RemappingFile); 969 970 if (!SupplInstrWithSample.empty()) { 971 if (ProfileKind != instr) 972 exitWithError( 973 "-supplement-instr-with-sample can only work with -instr. "); 974 975 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename, 976 OutputFormat, OutputSparse, SupplMinSizeThreshold, 977 ZeroCounterThreshold, InstrProfColdThreshold); 978 return 0; 979 } 980 981 if (ProfileKind == instr) 982 mergeInstrProfile(WeightedInputs, Remapper.get(), OutputFilename, 983 OutputFormat, OutputSparse, NumThreads, FailureMode); 984 else 985 mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename, 986 OutputFormat, ProfileSymbolListFile, CompressAllSections, 987 UseMD5, GenPartialProfile, SampleMergeColdContext, 988 SampleTrimColdContext, FailureMode); 989 990 return 0; 991 } 992 993 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 994 static void overlapInstrProfile(const std::string &BaseFilename, 995 const std::string &TestFilename, 996 const OverlapFuncFilters &FuncFilter, 997 raw_fd_ostream &OS, bool IsCS) { 998 std::mutex ErrorLock; 999 SmallSet<instrprof_error, 4> WriterErrorCodes; 1000 WriterContext Context(false, ErrorLock, WriterErrorCodes); 1001 WeightedFile WeightedInput{BaseFilename, 1}; 1002 OverlapStats Overlap; 1003 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 1004 if (E) 1005 exitWithError(std::move(E), "Error in getting profile count sums"); 1006 if (Overlap.Base.CountSum < 1.0f) { 1007 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 1008 exit(0); 1009 } 1010 if (Overlap.Test.CountSum < 1.0f) { 1011 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 1012 exit(0); 1013 } 1014 loadInput(WeightedInput, nullptr, &Context); 1015 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 1016 IsCS); 1017 Overlap.dump(OS); 1018 } 1019 1020 namespace { 1021 struct SampleOverlapStats { 1022 StringRef BaseName; 1023 StringRef TestName; 1024 // Number of overlap units 1025 uint64_t OverlapCount; 1026 // Total samples of overlap units 1027 uint64_t OverlapSample; 1028 // Number of and total samples of units that only present in base or test 1029 // profile 1030 uint64_t BaseUniqueCount; 1031 uint64_t BaseUniqueSample; 1032 uint64_t TestUniqueCount; 1033 uint64_t TestUniqueSample; 1034 // Number of units and total samples in base or test profile 1035 uint64_t BaseCount; 1036 uint64_t BaseSample; 1037 uint64_t TestCount; 1038 uint64_t TestSample; 1039 // Number of and total samples of units that present in at least one profile 1040 uint64_t UnionCount; 1041 uint64_t UnionSample; 1042 // Weighted similarity 1043 double Similarity; 1044 // For SampleOverlapStats instances representing functions, weights of the 1045 // function in base and test profiles 1046 double BaseWeight; 1047 double TestWeight; 1048 1049 SampleOverlapStats() 1050 : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0), 1051 BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0), 1052 BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0), 1053 UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {} 1054 }; 1055 } // end anonymous namespace 1056 1057 namespace { 1058 struct FuncSampleStats { 1059 uint64_t SampleSum; 1060 uint64_t MaxSample; 1061 uint64_t HotBlockCount; 1062 FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {} 1063 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 1064 uint64_t HotBlockCount) 1065 : SampleSum(SampleSum), MaxSample(MaxSample), 1066 HotBlockCount(HotBlockCount) {} 1067 }; 1068 } // end anonymous namespace 1069 1070 namespace { 1071 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1072 1073 // Class for updating merging steps for two sorted maps. The class should be 1074 // instantiated with a map iterator type. 1075 template <class T> class MatchStep { 1076 public: 1077 MatchStep() = delete; 1078 1079 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1080 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1081 SecondEnd(SecondEnd), Status(MS_None) {} 1082 1083 bool areBothFinished() const { 1084 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1085 } 1086 1087 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1088 1089 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1090 1091 /// Advance one step based on the previous match status unless the previous 1092 /// status is MS_None. Then update Status based on the comparison between two 1093 /// container iterators at the current step. If the previous status is 1094 /// MS_None, it means two iterators are at the beginning and no comparison has 1095 /// been made, so we simply update Status without advancing the iterators. 1096 void updateOneStep(); 1097 1098 T getFirstIter() const { return FirstIter; } 1099 1100 T getSecondIter() const { return SecondIter; } 1101 1102 MatchStatus getMatchStatus() const { return Status; } 1103 1104 private: 1105 // Current iterator and end iterator of the first container. 1106 T FirstIter; 1107 T FirstEnd; 1108 // Current iterator and end iterator of the second container. 1109 T SecondIter; 1110 T SecondEnd; 1111 // Match status of the current step. 1112 MatchStatus Status; 1113 }; 1114 } // end anonymous namespace 1115 1116 template <class T> void MatchStep<T>::updateOneStep() { 1117 switch (Status) { 1118 case MS_Match: 1119 ++FirstIter; 1120 ++SecondIter; 1121 break; 1122 case MS_FirstUnique: 1123 ++FirstIter; 1124 break; 1125 case MS_SecondUnique: 1126 ++SecondIter; 1127 break; 1128 case MS_None: 1129 break; 1130 } 1131 1132 // Update Status according to iterators at the current step. 1133 if (areBothFinished()) 1134 return; 1135 if (FirstIter != FirstEnd && 1136 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1137 Status = MS_FirstUnique; 1138 else if (SecondIter != SecondEnd && 1139 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1140 Status = MS_SecondUnique; 1141 else 1142 Status = MS_Match; 1143 } 1144 1145 // Return the sum of line/block samples, the max line/block sample, and the 1146 // number of line/block samples above the given threshold in a function 1147 // including its inlinees. 1148 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1149 FuncSampleStats &FuncStats, 1150 uint64_t HotThreshold) { 1151 for (const auto &L : Func.getBodySamples()) { 1152 uint64_t Sample = L.second.getSamples(); 1153 FuncStats.SampleSum += Sample; 1154 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1155 if (Sample >= HotThreshold) 1156 ++FuncStats.HotBlockCount; 1157 } 1158 1159 for (const auto &C : Func.getCallsiteSamples()) { 1160 for (const auto &F : C.second) 1161 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1162 } 1163 } 1164 1165 /// Predicate that determines if a function is hot with a given threshold. We 1166 /// keep it separate from its callsites for possible extension in the future. 1167 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1168 uint64_t HotThreshold) { 1169 // We intentionally compare the maximum sample count in a function with the 1170 // HotThreshold to get an approximate determination on hot functions. 1171 return (FuncStats.MaxSample >= HotThreshold); 1172 } 1173 1174 namespace { 1175 class SampleOverlapAggregator { 1176 public: 1177 SampleOverlapAggregator(const std::string &BaseFilename, 1178 const std::string &TestFilename, 1179 double LowSimilarityThreshold, double Epsilon, 1180 const OverlapFuncFilters &FuncFilter) 1181 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1182 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1183 FuncFilter(FuncFilter) {} 1184 1185 /// Detect 0-sample input profile and report to output stream. This interface 1186 /// should be called after loadProfiles(). 1187 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1188 1189 /// Write out function-level similarity statistics for functions specified by 1190 /// options --function, --value-cutoff, and --similarity-cutoff. 1191 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1192 1193 /// Write out program-level similarity and overlap statistics. 1194 void dumpProgramSummary(raw_fd_ostream &OS) const; 1195 1196 /// Write out hot-function and hot-block statistics for base_profile, 1197 /// test_profile, and their overlap. For both cases, the overlap HO is 1198 /// calculated as follows: 1199 /// Given the number of functions (or blocks) that are hot in both profiles 1200 /// HCommon and the number of functions (or blocks) that are hot in at 1201 /// least one profile HUnion, HO = HCommon / HUnion. 1202 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 1203 1204 /// This function tries matching functions in base and test profiles. For each 1205 /// pair of matched functions, it aggregates the function-level 1206 /// similarity into a profile-level similarity. It also dump function-level 1207 /// similarity information of functions specified by --function, 1208 /// --value-cutoff, and --similarity-cutoff options. The program-level 1209 /// similarity PS is computed as follows: 1210 /// Given function-level similarity FS(A) for all function A, the 1211 /// weight of function A in base profile WB(A), and the weight of function 1212 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 1213 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 1214 /// meaning no-overlap. 1215 void computeSampleProfileOverlap(raw_fd_ostream &OS); 1216 1217 /// Initialize ProfOverlap with the sum of samples in base and test 1218 /// profiles. This function also computes and keeps the sum of samples and 1219 /// max sample counts of each function in BaseStats and TestStats for later 1220 /// use to avoid re-computations. 1221 void initializeSampleProfileOverlap(); 1222 1223 /// Load profiles specified by BaseFilename and TestFilename. 1224 std::error_code loadProfiles(); 1225 1226 private: 1227 SampleOverlapStats ProfOverlap; 1228 SampleOverlapStats HotFuncOverlap; 1229 SampleOverlapStats HotBlockOverlap; 1230 std::string BaseFilename; 1231 std::string TestFilename; 1232 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 1233 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 1234 // BaseStats and TestStats hold FuncSampleStats for each function, with 1235 // function name as the key. 1236 StringMap<FuncSampleStats> BaseStats; 1237 StringMap<FuncSampleStats> TestStats; 1238 // Low similarity threshold in floating point number 1239 double LowSimilarityThreshold; 1240 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 1241 // for tracking hot blocks. 1242 uint64_t BaseHotThreshold; 1243 uint64_t TestHotThreshold; 1244 // A small threshold used to round the results of floating point accumulations 1245 // to resolve imprecision. 1246 const double Epsilon; 1247 std::multimap<double, SampleOverlapStats, std::greater<double>> 1248 FuncSimilarityDump; 1249 // FuncFilter carries specifications in options --value-cutoff and 1250 // --function. 1251 OverlapFuncFilters FuncFilter; 1252 // Column offsets for printing the function-level details table. 1253 static const unsigned int TestWeightCol = 15; 1254 static const unsigned int SimilarityCol = 30; 1255 static const unsigned int OverlapCol = 43; 1256 static const unsigned int BaseUniqueCol = 53; 1257 static const unsigned int TestUniqueCol = 67; 1258 static const unsigned int BaseSampleCol = 81; 1259 static const unsigned int TestSampleCol = 96; 1260 static const unsigned int FuncNameCol = 111; 1261 1262 /// Return a similarity of two line/block sample counters in the same 1263 /// function in base and test profiles. The line/block-similarity BS(i) is 1264 /// computed as follows: 1265 /// For an offsets i, given the sample count at i in base profile BB(i), 1266 /// the sample count at i in test profile BT(i), the sum of sample counts 1267 /// in this function in base profile SB, and the sum of sample counts in 1268 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 1269 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 1270 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 1271 const SampleOverlapStats &FuncOverlap) const; 1272 1273 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 1274 uint64_t HotBlockCount); 1275 1276 void getHotFunctions(const StringMap<FuncSampleStats> &ProfStats, 1277 StringMap<FuncSampleStats> &HotFunc, 1278 uint64_t HotThreshold) const; 1279 1280 void computeHotFuncOverlap(); 1281 1282 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1283 /// Difference for two sample units in a matched function according to the 1284 /// given match status. 1285 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 1286 uint64_t HotBlockCount, 1287 SampleOverlapStats &FuncOverlap, 1288 double &Difference, MatchStatus Status); 1289 1290 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1291 /// Difference for unmatched callees that only present in one profile in a 1292 /// matched caller function. 1293 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 1294 SampleOverlapStats &FuncOverlap, 1295 double &Difference, MatchStatus Status); 1296 1297 /// This function updates sample overlap statistics of an overlap function in 1298 /// base and test profile. It also calculates a function-internal similarity 1299 /// FIS as follows: 1300 /// For offsets i that have samples in at least one profile in this 1301 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 1302 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 1303 /// 0.0 meaning no overlap. 1304 double computeSampleFunctionInternalOverlap( 1305 const sampleprof::FunctionSamples &BaseFunc, 1306 const sampleprof::FunctionSamples &TestFunc, 1307 SampleOverlapStats &FuncOverlap); 1308 1309 /// Function-level similarity (FS) is a weighted value over function internal 1310 /// similarity (FIS). This function computes a function's FS from its FIS by 1311 /// applying the weight. 1312 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 1313 uint64_t TestFuncSample) const; 1314 1315 /// The function-level similarity FS(A) for a function A is computed as 1316 /// follows: 1317 /// Compute a function-internal similarity FIS(A) by 1318 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 1319 /// function A in base profile WB(A), and the weight of function A in test 1320 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 1321 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 1322 double 1323 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 1324 const sampleprof::FunctionSamples *TestFunc, 1325 SampleOverlapStats *FuncOverlap, 1326 uint64_t BaseFuncSample, 1327 uint64_t TestFuncSample); 1328 1329 /// Profile-level similarity (PS) is a weighted aggregate over function-level 1330 /// similarities (FS). This method weights the FS value by the function 1331 /// weights in the base and test profiles for the aggregation. 1332 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 1333 uint64_t TestFuncSample) const; 1334 }; 1335 } // end anonymous namespace 1336 1337 bool SampleOverlapAggregator::detectZeroSampleProfile( 1338 raw_fd_ostream &OS) const { 1339 bool HaveZeroSample = false; 1340 if (ProfOverlap.BaseSample == 0) { 1341 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 1342 HaveZeroSample = true; 1343 } 1344 if (ProfOverlap.TestSample == 0) { 1345 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 1346 HaveZeroSample = true; 1347 } 1348 return HaveZeroSample; 1349 } 1350 1351 double SampleOverlapAggregator::computeBlockSimilarity( 1352 uint64_t BaseSample, uint64_t TestSample, 1353 const SampleOverlapStats &FuncOverlap) const { 1354 double BaseFrac = 0.0; 1355 double TestFrac = 0.0; 1356 if (FuncOverlap.BaseSample > 0) 1357 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 1358 if (FuncOverlap.TestSample > 0) 1359 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 1360 return 1.0 - std::fabs(BaseFrac - TestFrac); 1361 } 1362 1363 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 1364 uint64_t TestSample, 1365 uint64_t HotBlockCount) { 1366 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 1367 bool IsTestHot = (TestSample >= TestHotThreshold); 1368 if (!IsBaseHot && !IsTestHot) 1369 return; 1370 1371 HotBlockOverlap.UnionCount += HotBlockCount; 1372 if (IsBaseHot) 1373 HotBlockOverlap.BaseCount += HotBlockCount; 1374 if (IsTestHot) 1375 HotBlockOverlap.TestCount += HotBlockCount; 1376 if (IsBaseHot && IsTestHot) 1377 HotBlockOverlap.OverlapCount += HotBlockCount; 1378 } 1379 1380 void SampleOverlapAggregator::getHotFunctions( 1381 const StringMap<FuncSampleStats> &ProfStats, 1382 StringMap<FuncSampleStats> &HotFunc, uint64_t HotThreshold) const { 1383 for (const auto &F : ProfStats) { 1384 if (isFunctionHot(F.second, HotThreshold)) 1385 HotFunc.try_emplace(F.first(), F.second); 1386 } 1387 } 1388 1389 void SampleOverlapAggregator::computeHotFuncOverlap() { 1390 StringMap<FuncSampleStats> BaseHotFunc; 1391 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 1392 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 1393 1394 StringMap<FuncSampleStats> TestHotFunc; 1395 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 1396 HotFuncOverlap.TestCount = TestHotFunc.size(); 1397 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 1398 1399 for (const auto &F : BaseHotFunc) { 1400 if (TestHotFunc.count(F.first())) 1401 ++HotFuncOverlap.OverlapCount; 1402 else 1403 ++HotFuncOverlap.UnionCount; 1404 } 1405 } 1406 1407 void SampleOverlapAggregator::updateOverlapStatsForFunction( 1408 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 1409 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 1410 assert(Status != MS_None && 1411 "Match status should be updated before updating overlap statistics"); 1412 if (Status == MS_FirstUnique) { 1413 TestSample = 0; 1414 FuncOverlap.BaseUniqueSample += BaseSample; 1415 } else if (Status == MS_SecondUnique) { 1416 BaseSample = 0; 1417 FuncOverlap.TestUniqueSample += TestSample; 1418 } else { 1419 ++FuncOverlap.OverlapCount; 1420 } 1421 1422 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 1423 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 1424 Difference += 1425 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 1426 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 1427 } 1428 1429 void SampleOverlapAggregator::updateForUnmatchedCallee( 1430 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 1431 double &Difference, MatchStatus Status) { 1432 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 1433 "Status must be either of the two unmatched cases"); 1434 FuncSampleStats FuncStats; 1435 if (Status == MS_FirstUnique) { 1436 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 1437 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 1438 FuncStats.HotBlockCount, FuncOverlap, 1439 Difference, Status); 1440 } else { 1441 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 1442 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 1443 FuncStats.HotBlockCount, FuncOverlap, 1444 Difference, Status); 1445 } 1446 } 1447 1448 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 1449 const sampleprof::FunctionSamples &BaseFunc, 1450 const sampleprof::FunctionSamples &TestFunc, 1451 SampleOverlapStats &FuncOverlap) { 1452 1453 using namespace sampleprof; 1454 1455 double Difference = 0; 1456 1457 // Accumulate Difference for regular line/block samples in the function. 1458 // We match them through sort-merge join algorithm because 1459 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 1460 // by their offsets. 1461 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 1462 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 1463 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 1464 BlockIterStep.updateOneStep(); 1465 while (!BlockIterStep.areBothFinished()) { 1466 uint64_t BaseSample = 1467 BlockIterStep.isFirstFinished() 1468 ? 0 1469 : BlockIterStep.getFirstIter()->second.getSamples(); 1470 uint64_t TestSample = 1471 BlockIterStep.isSecondFinished() 1472 ? 0 1473 : BlockIterStep.getSecondIter()->second.getSamples(); 1474 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 1475 Difference, BlockIterStep.getMatchStatus()); 1476 1477 BlockIterStep.updateOneStep(); 1478 } 1479 1480 // Accumulate Difference for callsite lines in the function. We match 1481 // them through sort-merge algorithm because 1482 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 1483 // ordered by their offsets. 1484 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 1485 BaseFunc.getCallsiteSamples().cbegin(), 1486 BaseFunc.getCallsiteSamples().cend(), 1487 TestFunc.getCallsiteSamples().cbegin(), 1488 TestFunc.getCallsiteSamples().cend()); 1489 CallsiteIterStep.updateOneStep(); 1490 while (!CallsiteIterStep.areBothFinished()) { 1491 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 1492 assert(CallsiteStepStatus != MS_None && 1493 "Match status should be updated before entering loop body"); 1494 1495 if (CallsiteStepStatus != MS_Match) { 1496 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 1497 ? CallsiteIterStep.getFirstIter() 1498 : CallsiteIterStep.getSecondIter(); 1499 for (const auto &F : Callsite->second) 1500 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 1501 CallsiteStepStatus); 1502 } else { 1503 // There may be multiple inlinees at the same offset, so we need to try 1504 // matching all of them. This match is implemented through sort-merge 1505 // algorithm because callsite records at the same offset are ordered by 1506 // function names. 1507 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 1508 CallsiteIterStep.getFirstIter()->second.cbegin(), 1509 CallsiteIterStep.getFirstIter()->second.cend(), 1510 CallsiteIterStep.getSecondIter()->second.cbegin(), 1511 CallsiteIterStep.getSecondIter()->second.cend()); 1512 CalleeIterStep.updateOneStep(); 1513 while (!CalleeIterStep.areBothFinished()) { 1514 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 1515 if (CalleeStepStatus != MS_Match) { 1516 auto Callee = (CalleeStepStatus == MS_FirstUnique) 1517 ? CalleeIterStep.getFirstIter() 1518 : CalleeIterStep.getSecondIter(); 1519 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 1520 CalleeStepStatus); 1521 } else { 1522 // An inlined function can contain other inlinees inside, so compute 1523 // the Difference recursively. 1524 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 1525 CalleeIterStep.getFirstIter()->second, 1526 CalleeIterStep.getSecondIter()->second, 1527 FuncOverlap); 1528 } 1529 CalleeIterStep.updateOneStep(); 1530 } 1531 } 1532 CallsiteIterStep.updateOneStep(); 1533 } 1534 1535 // Difference reflects the total differences of line/block samples in this 1536 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 1537 // reflect the similarity between function profiles in [0.0f to 1.0f]. 1538 return (2.0 - Difference) / 2; 1539 } 1540 1541 double SampleOverlapAggregator::weightForFuncSimilarity( 1542 double FuncInternalSimilarity, uint64_t BaseFuncSample, 1543 uint64_t TestFuncSample) const { 1544 // Compute the weight as the distance between the function weights in two 1545 // profiles. 1546 double BaseFrac = 0.0; 1547 double TestFrac = 0.0; 1548 assert(ProfOverlap.BaseSample > 0 && 1549 "Total samples in base profile should be greater than 0"); 1550 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 1551 assert(ProfOverlap.TestSample > 0 && 1552 "Total samples in test profile should be greater than 0"); 1553 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 1554 double WeightDistance = std::fabs(BaseFrac - TestFrac); 1555 1556 // Take WeightDistance into the similarity. 1557 return FuncInternalSimilarity * (1 - WeightDistance); 1558 } 1559 1560 double 1561 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 1562 uint64_t BaseFuncSample, 1563 uint64_t TestFuncSample) const { 1564 1565 double BaseFrac = 0.0; 1566 double TestFrac = 0.0; 1567 assert(ProfOverlap.BaseSample > 0 && 1568 "Total samples in base profile should be greater than 0"); 1569 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 1570 assert(ProfOverlap.TestSample > 0 && 1571 "Total samples in test profile should be greater than 0"); 1572 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 1573 return FuncSimilarity * (BaseFrac + TestFrac); 1574 } 1575 1576 double SampleOverlapAggregator::computeSampleFunctionOverlap( 1577 const sampleprof::FunctionSamples *BaseFunc, 1578 const sampleprof::FunctionSamples *TestFunc, 1579 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 1580 uint64_t TestFuncSample) { 1581 // Default function internal similarity before weighted, meaning two functions 1582 // has no overlap. 1583 const double DefaultFuncInternalSimilarity = 0; 1584 double FuncSimilarity; 1585 double FuncInternalSimilarity; 1586 1587 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 1588 // In this case, we use DefaultFuncInternalSimilarity as the function internal 1589 // similarity. 1590 if (!BaseFunc || !TestFunc) { 1591 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 1592 } else { 1593 assert(FuncOverlap != nullptr && 1594 "FuncOverlap should be provided in this case"); 1595 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 1596 *BaseFunc, *TestFunc, *FuncOverlap); 1597 // Now, FuncInternalSimilarity may be a little less than 0 due to 1598 // imprecision of floating point accumulations. Make it zero if the 1599 // difference is below Epsilon. 1600 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 1601 ? 0 1602 : FuncInternalSimilarity; 1603 } 1604 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 1605 BaseFuncSample, TestFuncSample); 1606 return FuncSimilarity; 1607 } 1608 1609 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 1610 using namespace sampleprof; 1611 1612 StringMap<const FunctionSamples *> BaseFuncProf; 1613 const auto &BaseProfiles = BaseReader->getProfiles(); 1614 for (const auto &BaseFunc : BaseProfiles) { 1615 BaseFuncProf.try_emplace(BaseFunc.second.getNameWithContext(), 1616 &(BaseFunc.second)); 1617 } 1618 ProfOverlap.UnionCount = BaseFuncProf.size(); 1619 1620 const auto &TestProfiles = TestReader->getProfiles(); 1621 for (const auto &TestFunc : TestProfiles) { 1622 SampleOverlapStats FuncOverlap; 1623 FuncOverlap.TestName = TestFunc.second.getNameWithContext(); 1624 assert(TestStats.count(FuncOverlap.TestName) && 1625 "TestStats should have records for all functions in test profile " 1626 "except inlinees"); 1627 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 1628 1629 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 1630 if (Match == BaseFuncProf.end()) { 1631 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 1632 ++ProfOverlap.TestUniqueCount; 1633 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 1634 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 1635 1636 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 1637 1638 double FuncSimilarity = computeSampleFunctionOverlap( 1639 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 1640 ProfOverlap.Similarity += 1641 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 1642 1643 ++ProfOverlap.UnionCount; 1644 ProfOverlap.UnionSample += FuncStats.SampleSum; 1645 } else { 1646 ++ProfOverlap.OverlapCount; 1647 1648 // Two functions match with each other. Compute function-level overlap and 1649 // aggregate them into profile-level overlap. 1650 FuncOverlap.BaseName = Match->second->getNameWithContext(); 1651 assert(BaseStats.count(FuncOverlap.BaseName) && 1652 "BaseStats should have records for all functions in base profile " 1653 "except inlinees"); 1654 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 1655 1656 FuncOverlap.Similarity = computeSampleFunctionOverlap( 1657 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 1658 FuncOverlap.TestSample); 1659 ProfOverlap.Similarity += 1660 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 1661 FuncOverlap.TestSample); 1662 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 1663 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 1664 1665 // Accumulate the percentage of base unique and test unique samples into 1666 // ProfOverlap. 1667 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 1668 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 1669 1670 // Remove matched base functions for later reporting functions not found 1671 // in test profile. 1672 BaseFuncProf.erase(Match); 1673 } 1674 1675 // Print function-level similarity information if specified by options. 1676 assert(TestStats.count(FuncOverlap.TestName) && 1677 "TestStats should have records for all functions in test profile " 1678 "except inlinees"); 1679 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 1680 (Match != BaseFuncProf.end() && 1681 FuncOverlap.Similarity < LowSimilarityThreshold) || 1682 (Match != BaseFuncProf.end() && !FuncFilter.NameFilter.empty() && 1683 FuncOverlap.BaseName.find(FuncFilter.NameFilter) != 1684 FuncOverlap.BaseName.npos)) { 1685 assert(ProfOverlap.BaseSample > 0 && 1686 "Total samples in base profile should be greater than 0"); 1687 FuncOverlap.BaseWeight = 1688 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 1689 assert(ProfOverlap.TestSample > 0 && 1690 "Total samples in test profile should be greater than 0"); 1691 FuncOverlap.TestWeight = 1692 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 1693 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 1694 } 1695 } 1696 1697 // Traverse through functions in base profile but not in test profile. 1698 for (const auto &F : BaseFuncProf) { 1699 assert(BaseStats.count(F.second->getNameWithContext()) && 1700 "BaseStats should have records for all functions in base profile " 1701 "except inlinees"); 1702 const FuncSampleStats &FuncStats = 1703 BaseStats[F.second->getNameWithContext()]; 1704 ++ProfOverlap.BaseUniqueCount; 1705 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 1706 1707 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 1708 1709 double FuncSimilarity = computeSampleFunctionOverlap( 1710 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 1711 ProfOverlap.Similarity += 1712 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 1713 1714 ProfOverlap.UnionSample += FuncStats.SampleSum; 1715 } 1716 1717 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 1718 // of floating point accumulations. Make it 1.0 if the difference is below 1719 // Epsilon. 1720 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 1721 ? 1 1722 : ProfOverlap.Similarity; 1723 1724 computeHotFuncOverlap(); 1725 } 1726 1727 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 1728 const auto &BaseProf = BaseReader->getProfiles(); 1729 for (const auto &I : BaseProf) { 1730 ++ProfOverlap.BaseCount; 1731 FuncSampleStats FuncStats; 1732 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 1733 ProfOverlap.BaseSample += FuncStats.SampleSum; 1734 BaseStats.try_emplace(I.second.getNameWithContext(), FuncStats); 1735 } 1736 1737 const auto &TestProf = TestReader->getProfiles(); 1738 for (const auto &I : TestProf) { 1739 ++ProfOverlap.TestCount; 1740 FuncSampleStats FuncStats; 1741 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 1742 ProfOverlap.TestSample += FuncStats.SampleSum; 1743 TestStats.try_emplace(I.second.getNameWithContext(), FuncStats); 1744 } 1745 1746 ProfOverlap.BaseName = StringRef(BaseFilename); 1747 ProfOverlap.TestName = StringRef(TestFilename); 1748 } 1749 1750 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 1751 using namespace sampleprof; 1752 1753 if (FuncSimilarityDump.empty()) 1754 return; 1755 1756 formatted_raw_ostream FOS(OS); 1757 FOS << "Function-level details:\n"; 1758 FOS << "Base weight"; 1759 FOS.PadToColumn(TestWeightCol); 1760 FOS << "Test weight"; 1761 FOS.PadToColumn(SimilarityCol); 1762 FOS << "Similarity"; 1763 FOS.PadToColumn(OverlapCol); 1764 FOS << "Overlap"; 1765 FOS.PadToColumn(BaseUniqueCol); 1766 FOS << "Base unique"; 1767 FOS.PadToColumn(TestUniqueCol); 1768 FOS << "Test unique"; 1769 FOS.PadToColumn(BaseSampleCol); 1770 FOS << "Base samples"; 1771 FOS.PadToColumn(TestSampleCol); 1772 FOS << "Test samples"; 1773 FOS.PadToColumn(FuncNameCol); 1774 FOS << "Function name\n"; 1775 for (const auto &F : FuncSimilarityDump) { 1776 double OverlapPercent = 1777 F.second.UnionSample > 0 1778 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 1779 : 0; 1780 double BaseUniquePercent = 1781 F.second.BaseSample > 0 1782 ? static_cast<double>(F.second.BaseUniqueSample) / 1783 F.second.BaseSample 1784 : 0; 1785 double TestUniquePercent = 1786 F.second.TestSample > 0 1787 ? static_cast<double>(F.second.TestUniqueSample) / 1788 F.second.TestSample 1789 : 0; 1790 1791 FOS << format("%.2f%%", F.second.BaseWeight * 100); 1792 FOS.PadToColumn(TestWeightCol); 1793 FOS << format("%.2f%%", F.second.TestWeight * 100); 1794 FOS.PadToColumn(SimilarityCol); 1795 FOS << format("%.2f%%", F.second.Similarity * 100); 1796 FOS.PadToColumn(OverlapCol); 1797 FOS << format("%.2f%%", OverlapPercent * 100); 1798 FOS.PadToColumn(BaseUniqueCol); 1799 FOS << format("%.2f%%", BaseUniquePercent * 100); 1800 FOS.PadToColumn(TestUniqueCol); 1801 FOS << format("%.2f%%", TestUniquePercent * 100); 1802 FOS.PadToColumn(BaseSampleCol); 1803 FOS << F.second.BaseSample; 1804 FOS.PadToColumn(TestSampleCol); 1805 FOS << F.second.TestSample; 1806 FOS.PadToColumn(FuncNameCol); 1807 FOS << F.second.TestName << "\n"; 1808 } 1809 } 1810 1811 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 1812 OS << "Profile overlap infomation for base_profile: " << ProfOverlap.BaseName 1813 << " and test_profile: " << ProfOverlap.TestName << "\nProgram level:\n"; 1814 1815 OS << " Whole program profile similarity: " 1816 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 1817 1818 assert(ProfOverlap.UnionSample > 0 && 1819 "Total samples in two profile should be greater than 0"); 1820 double OverlapPercent = 1821 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 1822 assert(ProfOverlap.BaseSample > 0 && 1823 "Total samples in base profile should be greater than 0"); 1824 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 1825 ProfOverlap.BaseSample; 1826 assert(ProfOverlap.TestSample > 0 && 1827 "Total samples in test profile should be greater than 0"); 1828 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 1829 ProfOverlap.TestSample; 1830 1831 OS << " Whole program sample overlap: " 1832 << format("%.3f%%", OverlapPercent * 100) << "\n"; 1833 OS << " percentage of samples unique in base profile: " 1834 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 1835 OS << " percentage of samples unique in test profile: " 1836 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 1837 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 1838 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 1839 1840 assert(ProfOverlap.UnionCount > 0 && 1841 "There should be at least one function in two input profiles"); 1842 double FuncOverlapPercent = 1843 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 1844 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 1845 << "\n"; 1846 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 1847 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 1848 << "\n"; 1849 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 1850 << "\n"; 1851 } 1852 1853 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 1854 raw_fd_ostream &OS) const { 1855 assert(HotFuncOverlap.UnionCount > 0 && 1856 "There should be at least one hot function in two input profiles"); 1857 OS << " Hot-function overlap: " 1858 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 1859 HotFuncOverlap.UnionCount * 100) 1860 << "\n"; 1861 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 1862 OS << " hot functions unique in base profile: " 1863 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 1864 OS << " hot functions unique in test profile: " 1865 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 1866 1867 assert(HotBlockOverlap.UnionCount > 0 && 1868 "There should be at least one hot block in two input profiles"); 1869 OS << " Hot-block overlap: " 1870 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 1871 HotBlockOverlap.UnionCount * 100) 1872 << "\n"; 1873 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 1874 OS << " hot blocks unique in base profile: " 1875 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 1876 OS << " hot blocks unique in test profile: " 1877 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 1878 } 1879 1880 std::error_code SampleOverlapAggregator::loadProfiles() { 1881 using namespace sampleprof; 1882 1883 LLVMContext Context; 1884 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context, 1885 FSDiscriminatorPassOption); 1886 if (std::error_code EC = BaseReaderOrErr.getError()) 1887 exitWithErrorCode(EC, BaseFilename); 1888 1889 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context, 1890 FSDiscriminatorPassOption); 1891 if (std::error_code EC = TestReaderOrErr.getError()) 1892 exitWithErrorCode(EC, TestFilename); 1893 1894 BaseReader = std::move(BaseReaderOrErr.get()); 1895 TestReader = std::move(TestReaderOrErr.get()); 1896 1897 if (std::error_code EC = BaseReader->read()) 1898 exitWithErrorCode(EC, BaseFilename); 1899 if (std::error_code EC = TestReader->read()) 1900 exitWithErrorCode(EC, TestFilename); 1901 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) 1902 exitWithError( 1903 "cannot compare probe-based profile with non-probe-based profile"); 1904 if (BaseReader->profileIsCS() != TestReader->profileIsCS()) 1905 exitWithError("cannot compare CS profile with non-CS profile"); 1906 1907 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 1908 // profile summary. 1909 const uint64_t HotCutoff = 990000; 1910 ProfileSummary &BasePS = BaseReader->getSummary(); 1911 for (const auto &SummaryEntry : BasePS.getDetailedSummary()) { 1912 if (SummaryEntry.Cutoff == HotCutoff) { 1913 BaseHotThreshold = SummaryEntry.MinCount; 1914 break; 1915 } 1916 } 1917 1918 ProfileSummary &TestPS = TestReader->getSummary(); 1919 for (const auto &SummaryEntry : TestPS.getDetailedSummary()) { 1920 if (SummaryEntry.Cutoff == HotCutoff) { 1921 TestHotThreshold = SummaryEntry.MinCount; 1922 break; 1923 } 1924 } 1925 return std::error_code(); 1926 } 1927 1928 void overlapSampleProfile(const std::string &BaseFilename, 1929 const std::string &TestFilename, 1930 const OverlapFuncFilters &FuncFilter, 1931 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 1932 using namespace sampleprof; 1933 1934 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 1935 // report 2--3 places after decimal point in percentage numbers. 1936 SampleOverlapAggregator OverlapAggr( 1937 BaseFilename, TestFilename, 1938 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 1939 if (std::error_code EC = OverlapAggr.loadProfiles()) 1940 exitWithErrorCode(EC); 1941 1942 OverlapAggr.initializeSampleProfileOverlap(); 1943 if (OverlapAggr.detectZeroSampleProfile(OS)) 1944 return; 1945 1946 OverlapAggr.computeSampleProfileOverlap(OS); 1947 1948 OverlapAggr.dumpProgramSummary(OS); 1949 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 1950 OverlapAggr.dumpFuncSimilarity(OS); 1951 } 1952 1953 static int overlap_main(int argc, const char *argv[]) { 1954 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 1955 cl::desc("<base profile file>")); 1956 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 1957 cl::desc("<test profile file>")); 1958 cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"), 1959 cl::desc("Output file")); 1960 cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output)); 1961 cl::opt<bool> IsCS( 1962 "cs", cl::init(false), 1963 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO.")); 1964 cl::opt<unsigned long long> ValueCutoff( 1965 "value-cutoff", cl::init(-1), 1966 cl::desc( 1967 "Function level overlap information for every function (with calling " 1968 "context for csspgo) in test " 1969 "profile with max count value greater then the parameter value")); 1970 cl::opt<std::string> FuncNameFilter( 1971 "function", 1972 cl::desc("Function level overlap information for matching functions. For " 1973 "CSSPGO this takes a a function name with calling context")); 1974 cl::opt<unsigned long long> SimilarityCutoff( 1975 "similarity-cutoff", cl::init(0), 1976 cl::desc("For sample profiles, list function names (with calling context " 1977 "for csspgo) for overlapped functions " 1978 "with similarities below the cutoff (percentage times 10000).")); 1979 cl::opt<ProfileKinds> ProfileKind( 1980 cl::desc("Profile kind:"), cl::init(instr), 1981 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 1982 clEnumVal(sample, "Sample profile"))); 1983 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n"); 1984 1985 std::error_code EC; 1986 raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_TextWithCRLF); 1987 if (EC) 1988 exitWithErrorCode(EC, Output); 1989 1990 if (ProfileKind == instr) 1991 overlapInstrProfile(BaseFilename, TestFilename, 1992 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS, 1993 IsCS); 1994 else 1995 overlapSampleProfile(BaseFilename, TestFilename, 1996 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, 1997 SimilarityCutoff, OS); 1998 1999 return 0; 2000 } 2001 2002 typedef struct ValueSitesStats { 2003 ValueSitesStats() 2004 : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0), 2005 TotalNumValues(0) {} 2006 uint64_t TotalNumValueSites; 2007 uint64_t TotalNumValueSitesWithValueProfile; 2008 uint64_t TotalNumValues; 2009 std::vector<unsigned> ValueSitesHistogram; 2010 } ValueSitesStats; 2011 2012 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 2013 ValueSitesStats &Stats, raw_fd_ostream &OS, 2014 InstrProfSymtab *Symtab) { 2015 uint32_t NS = Func.getNumValueSites(VK); 2016 Stats.TotalNumValueSites += NS; 2017 for (size_t I = 0; I < NS; ++I) { 2018 uint32_t NV = Func.getNumValueDataForSite(VK, I); 2019 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I); 2020 Stats.TotalNumValues += NV; 2021 if (NV) { 2022 Stats.TotalNumValueSitesWithValueProfile++; 2023 if (NV > Stats.ValueSitesHistogram.size()) 2024 Stats.ValueSitesHistogram.resize(NV, 0); 2025 Stats.ValueSitesHistogram[NV - 1]++; 2026 } 2027 2028 uint64_t SiteSum = 0; 2029 for (uint32_t V = 0; V < NV; V++) 2030 SiteSum += VD[V].Count; 2031 if (SiteSum == 0) 2032 SiteSum = 1; 2033 2034 for (uint32_t V = 0; V < NV; V++) { 2035 OS << "\t[ " << format("%2u", I) << ", "; 2036 if (Symtab == nullptr) 2037 OS << format("%4" PRIu64, VD[V].Value); 2038 else 2039 OS << Symtab->getFuncName(VD[V].Value); 2040 OS << ", " << format("%10" PRId64, VD[V].Count) << " ] (" 2041 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n"; 2042 } 2043 } 2044 } 2045 2046 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 2047 ValueSitesStats &Stats) { 2048 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 2049 OS << " Total number of sites with values: " 2050 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 2051 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 2052 2053 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 2054 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 2055 if (Stats.ValueSitesHistogram[I] > 0) 2056 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 2057 } 2058 } 2059 2060 static int showInstrProfile(const std::string &Filename, bool ShowCounts, 2061 uint32_t TopN, bool ShowIndirectCallTargets, 2062 bool ShowMemOPSizes, bool ShowDetailedSummary, 2063 std::vector<uint32_t> DetailedSummaryCutoffs, 2064 bool ShowAllFunctions, bool ShowCS, 2065 uint64_t ValueCutoff, bool OnlyListBelow, 2066 const std::string &ShowFunction, bool TextFormat, 2067 raw_fd_ostream &OS) { 2068 auto ReaderOrErr = InstrProfReader::create(Filename); 2069 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 2070 if (ShowDetailedSummary && Cutoffs.empty()) { 2071 Cutoffs = {800000, 900000, 950000, 990000, 999000, 999900, 999990}; 2072 } 2073 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 2074 if (Error E = ReaderOrErr.takeError()) 2075 exitWithError(std::move(E), Filename); 2076 2077 auto Reader = std::move(ReaderOrErr.get()); 2078 bool IsIRInstr = Reader->isIRLevelProfile(); 2079 size_t ShownFunctions = 0; 2080 size_t BelowCutoffFunctions = 0; 2081 int NumVPKind = IPVK_Last - IPVK_First + 1; 2082 std::vector<ValueSitesStats> VPStats(NumVPKind); 2083 2084 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2085 const std::pair<std::string, uint64_t> &v2) { 2086 return v1.second > v2.second; 2087 }; 2088 2089 std::priority_queue<std::pair<std::string, uint64_t>, 2090 std::vector<std::pair<std::string, uint64_t>>, 2091 decltype(MinCmp)> 2092 HottestFuncs(MinCmp); 2093 2094 if (!TextFormat && OnlyListBelow) { 2095 OS << "The list of functions with the maximum counter less than " 2096 << ValueCutoff << ":\n"; 2097 } 2098 2099 // Add marker so that IR-level instrumentation round-trips properly. 2100 if (TextFormat && IsIRInstr) 2101 OS << ":ir\n"; 2102 2103 for (const auto &Func : *Reader) { 2104 if (Reader->isIRLevelProfile()) { 2105 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2106 if (FuncIsCS != ShowCS) 2107 continue; 2108 } 2109 bool Show = 2110 ShowAllFunctions || (!ShowFunction.empty() && 2111 Func.Name.find(ShowFunction) != Func.Name.npos); 2112 2113 bool doTextFormatDump = (Show && TextFormat); 2114 2115 if (doTextFormatDump) { 2116 InstrProfSymtab &Symtab = Reader->getSymtab(); 2117 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2118 OS); 2119 continue; 2120 } 2121 2122 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2123 Builder.addRecord(Func); 2124 2125 uint64_t FuncMax = 0; 2126 uint64_t FuncSum = 0; 2127 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2128 if (Func.Counts[I] == (uint64_t)-1) 2129 continue; 2130 FuncMax = std::max(FuncMax, Func.Counts[I]); 2131 FuncSum += Func.Counts[I]; 2132 } 2133 2134 if (FuncMax < ValueCutoff) { 2135 ++BelowCutoffFunctions; 2136 if (OnlyListBelow) { 2137 OS << " " << Func.Name << ": (Max = " << FuncMax 2138 << " Sum = " << FuncSum << ")\n"; 2139 } 2140 continue; 2141 } else if (OnlyListBelow) 2142 continue; 2143 2144 if (TopN) { 2145 if (HottestFuncs.size() == TopN) { 2146 if (HottestFuncs.top().second < FuncMax) { 2147 HottestFuncs.pop(); 2148 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2149 } 2150 } else 2151 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2152 } 2153 2154 if (Show) { 2155 if (!ShownFunctions) 2156 OS << "Counters:\n"; 2157 2158 ++ShownFunctions; 2159 2160 OS << " " << Func.Name << ":\n" 2161 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2162 << " Counters: " << Func.Counts.size() << "\n"; 2163 if (!IsIRInstr) 2164 OS << " Function count: " << Func.Counts[0] << "\n"; 2165 2166 if (ShowIndirectCallTargets) 2167 OS << " Indirect Call Site Count: " 2168 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2169 2170 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2171 if (ShowMemOPSizes && NumMemOPCalls > 0) 2172 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2173 << "\n"; 2174 2175 if (ShowCounts) { 2176 OS << " Block counts: ["; 2177 size_t Start = (IsIRInstr ? 0 : 1); 2178 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2179 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2180 } 2181 OS << "]\n"; 2182 } 2183 2184 if (ShowIndirectCallTargets) { 2185 OS << " Indirect Target Results:\n"; 2186 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2187 VPStats[IPVK_IndirectCallTarget], OS, 2188 &(Reader->getSymtab())); 2189 } 2190 2191 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2192 OS << " Memory Intrinsic Size Results:\n"; 2193 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2194 nullptr); 2195 } 2196 } 2197 } 2198 if (Reader->hasError()) 2199 exitWithError(Reader->getError(), Filename); 2200 2201 if (TextFormat) 2202 return 0; 2203 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 2204 bool IsIR = Reader->isIRLevelProfile(); 2205 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 2206 if (IsIR) 2207 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 2208 OS << "\n"; 2209 if (ShowAllFunctions || !ShowFunction.empty()) 2210 OS << "Functions shown: " << ShownFunctions << "\n"; 2211 OS << "Total functions: " << PS->getNumFunctions() << "\n"; 2212 if (ValueCutoff > 0) { 2213 OS << "Number of functions with maximum count (< " << ValueCutoff 2214 << "): " << BelowCutoffFunctions << "\n"; 2215 OS << "Number of functions with maximum count (>= " << ValueCutoff 2216 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 2217 } 2218 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; 2219 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; 2220 2221 if (TopN) { 2222 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 2223 while (!HottestFuncs.empty()) { 2224 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 2225 HottestFuncs.pop(); 2226 } 2227 OS << "Top " << TopN 2228 << " functions with the largest internal block counts: \n"; 2229 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 2230 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 2231 } 2232 2233 if (ShownFunctions && ShowIndirectCallTargets) { 2234 OS << "Statistics for indirect call sites profile:\n"; 2235 showValueSitesStats(OS, IPVK_IndirectCallTarget, 2236 VPStats[IPVK_IndirectCallTarget]); 2237 } 2238 2239 if (ShownFunctions && ShowMemOPSizes) { 2240 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 2241 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 2242 } 2243 2244 if (ShowDetailedSummary) { 2245 OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; 2246 OS << "Total count: " << PS->getTotalCount() << "\n"; 2247 PS->printDetailedSummary(OS); 2248 } 2249 return 0; 2250 } 2251 2252 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 2253 raw_fd_ostream &OS) { 2254 if (!Reader->dumpSectionInfo(OS)) { 2255 WithColor::warning() << "-show-sec-info-only is only supported for " 2256 << "sample profile in extbinary format and is " 2257 << "ignored for other formats.\n"; 2258 return; 2259 } 2260 } 2261 2262 namespace { 2263 struct HotFuncInfo { 2264 StringRef FuncName; 2265 uint64_t TotalCount; 2266 double TotalCountPercent; 2267 uint64_t MaxCount; 2268 uint64_t EntryCount; 2269 2270 HotFuncInfo() 2271 : FuncName(), TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), 2272 EntryCount(0) {} 2273 2274 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 2275 : FuncName(FN), TotalCount(TS), TotalCountPercent(TSP), MaxCount(MS), 2276 EntryCount(ES) {} 2277 }; 2278 } // namespace 2279 2280 // Print out detailed information about hot functions in PrintValues vector. 2281 // Users specify titles and offset of every columns through ColumnTitle and 2282 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 2283 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 2284 // print out or let it be an empty string. 2285 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 2286 const std::vector<int> &ColumnOffset, 2287 const std::vector<HotFuncInfo> &PrintValues, 2288 uint64_t HotFuncCount, uint64_t TotalFuncCount, 2289 uint64_t HotProfCount, uint64_t TotalProfCount, 2290 const std::string &HotFuncMetric, 2291 raw_fd_ostream &OS) { 2292 assert(ColumnOffset.size() == ColumnTitle.size() && 2293 "ColumnOffset and ColumnTitle should have the same size"); 2294 assert(ColumnTitle.size() >= 4 && 2295 "ColumnTitle should have at least 4 elements"); 2296 assert(TotalFuncCount > 0 && 2297 "There should be at least one function in the profile"); 2298 double TotalProfPercent = 0; 2299 if (TotalProfCount > 0) 2300 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 2301 2302 formatted_raw_ostream FOS(OS); 2303 FOS << HotFuncCount << " out of " << TotalFuncCount 2304 << " functions with profile (" 2305 << format("%.2f%%", 2306 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 2307 << ") are considered hot functions"; 2308 if (!HotFuncMetric.empty()) 2309 FOS << " (" << HotFuncMetric << ")"; 2310 FOS << ".\n"; 2311 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 2312 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 2313 2314 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 2315 FOS.PadToColumn(ColumnOffset[I]); 2316 FOS << ColumnTitle[I]; 2317 } 2318 FOS << "\n"; 2319 2320 for (const HotFuncInfo &R : PrintValues) { 2321 FOS.PadToColumn(ColumnOffset[0]); 2322 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 2323 FOS.PadToColumn(ColumnOffset[1]); 2324 FOS << R.MaxCount; 2325 FOS.PadToColumn(ColumnOffset[2]); 2326 FOS << R.EntryCount; 2327 FOS.PadToColumn(ColumnOffset[3]); 2328 FOS << R.FuncName << "\n"; 2329 } 2330 } 2331 2332 static int 2333 showHotFunctionList(const StringMap<sampleprof::FunctionSamples> &Profiles, 2334 ProfileSummary &PS, raw_fd_ostream &OS) { 2335 using namespace sampleprof; 2336 2337 const uint32_t HotFuncCutoff = 990000; 2338 auto &SummaryVector = PS.getDetailedSummary(); 2339 uint64_t MinCountThreshold = 0; 2340 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 2341 if (SummaryEntry.Cutoff == HotFuncCutoff) { 2342 MinCountThreshold = SummaryEntry.MinCount; 2343 break; 2344 } 2345 } 2346 2347 // Traverse all functions in the profile and keep only hot functions. 2348 // The following loop also calculates the sum of total samples of all 2349 // functions. 2350 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 2351 std::greater<uint64_t>> 2352 HotFunc; 2353 uint64_t ProfileTotalSample = 0; 2354 uint64_t HotFuncSample = 0; 2355 uint64_t HotFuncCount = 0; 2356 2357 for (const auto &I : Profiles) { 2358 FuncSampleStats FuncStats; 2359 const FunctionSamples &FuncProf = I.second; 2360 ProfileTotalSample += FuncProf.getTotalSamples(); 2361 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 2362 2363 if (isFunctionHot(FuncStats, MinCountThreshold)) { 2364 HotFunc.emplace(FuncProf.getTotalSamples(), 2365 std::make_pair(&(I.second), FuncStats.MaxSample)); 2366 HotFuncSample += FuncProf.getTotalSamples(); 2367 ++HotFuncCount; 2368 } 2369 } 2370 2371 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 2372 "Entry sample", "Function name"}; 2373 std::vector<int> ColumnOffset{0, 24, 42, 58}; 2374 std::string Metric = 2375 std::string("max sample >= ") + std::to_string(MinCountThreshold); 2376 std::vector<HotFuncInfo> PrintValues; 2377 for (const auto &FuncPair : HotFunc) { 2378 const FunctionSamples &Func = *FuncPair.second.first; 2379 double TotalSamplePercent = 2380 (ProfileTotalSample > 0) 2381 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 2382 : 0; 2383 PrintValues.emplace_back(HotFuncInfo( 2384 Func.getNameWithContext(), Func.getTotalSamples(), TotalSamplePercent, 2385 FuncPair.second.second, Func.getEntrySamples())); 2386 } 2387 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 2388 Profiles.size(), HotFuncSample, ProfileTotalSample, 2389 Metric, OS); 2390 2391 return 0; 2392 } 2393 2394 static int showSampleProfile(const std::string &Filename, bool ShowCounts, 2395 bool ShowAllFunctions, bool ShowDetailedSummary, 2396 const std::string &ShowFunction, 2397 bool ShowProfileSymbolList, 2398 bool ShowSectionInfoOnly, bool ShowHotFuncList, 2399 raw_fd_ostream &OS) { 2400 using namespace sampleprof; 2401 LLVMContext Context; 2402 auto ReaderOrErr = 2403 SampleProfileReader::create(Filename, Context, FSDiscriminatorPassOption); 2404 if (std::error_code EC = ReaderOrErr.getError()) 2405 exitWithErrorCode(EC, Filename); 2406 2407 auto Reader = std::move(ReaderOrErr.get()); 2408 if (ShowSectionInfoOnly) { 2409 showSectionInfo(Reader.get(), OS); 2410 return 0; 2411 } 2412 2413 if (std::error_code EC = Reader->read()) 2414 exitWithErrorCode(EC, Filename); 2415 2416 if (ShowAllFunctions || ShowFunction.empty()) 2417 Reader->dump(OS); 2418 else 2419 Reader->dumpFunctionProfile(ShowFunction, OS); 2420 2421 if (ShowProfileSymbolList) { 2422 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 2423 Reader->getProfileSymbolList(); 2424 ReaderList->dump(OS); 2425 } 2426 2427 if (ShowDetailedSummary) { 2428 auto &PS = Reader->getSummary(); 2429 PS.printSummary(OS); 2430 PS.printDetailedSummary(OS); 2431 } 2432 2433 if (ShowHotFuncList) 2434 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), OS); 2435 2436 return 0; 2437 } 2438 2439 static int show_main(int argc, const char *argv[]) { 2440 cl::opt<std::string> Filename(cl::Positional, cl::Required, 2441 cl::desc("<profdata-file>")); 2442 2443 cl::opt<bool> ShowCounts("counts", cl::init(false), 2444 cl::desc("Show counter values for shown functions")); 2445 cl::opt<bool> TextFormat( 2446 "text", cl::init(false), 2447 cl::desc("Show instr profile data in text dump format")); 2448 cl::opt<bool> ShowIndirectCallTargets( 2449 "ic-targets", cl::init(false), 2450 cl::desc("Show indirect call site target values for shown functions")); 2451 cl::opt<bool> ShowMemOPSizes( 2452 "memop-sizes", cl::init(false), 2453 cl::desc("Show the profiled sizes of the memory intrinsic calls " 2454 "for shown functions")); 2455 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 2456 cl::desc("Show detailed profile summary")); 2457 cl::list<uint32_t> DetailedSummaryCutoffs( 2458 cl::CommaSeparated, "detailed-summary-cutoffs", 2459 cl::desc( 2460 "Cutoff percentages (times 10000) for generating detailed summary"), 2461 cl::value_desc("800000,901000,999999")); 2462 cl::opt<bool> ShowHotFuncList( 2463 "hot-func-list", cl::init(false), 2464 cl::desc("Show profile summary of a list of hot functions")); 2465 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 2466 cl::desc("Details for every function")); 2467 cl::opt<bool> ShowCS("showcs", cl::init(false), 2468 cl::desc("Show context sensitive counts")); 2469 cl::opt<std::string> ShowFunction("function", 2470 cl::desc("Details for matching functions")); 2471 2472 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 2473 cl::init("-"), cl::desc("Output file")); 2474 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 2475 cl::aliasopt(OutputFilename)); 2476 cl::opt<ProfileKinds> ProfileKind( 2477 cl::desc("Profile kind:"), cl::init(instr), 2478 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 2479 clEnumVal(sample, "Sample profile"))); 2480 cl::opt<uint32_t> TopNFunctions( 2481 "topn", cl::init(0), 2482 cl::desc("Show the list of functions with the largest internal counts")); 2483 cl::opt<uint32_t> ValueCutoff( 2484 "value-cutoff", cl::init(0), 2485 cl::desc("Set the count value cutoff. Functions with the maximum count " 2486 "less than this value will not be printed out. (Default is 0)")); 2487 cl::opt<bool> OnlyListBelow( 2488 "list-below-cutoff", cl::init(false), 2489 cl::desc("Only output names of functions whose max count values are " 2490 "below the cutoff value")); 2491 cl::opt<bool> ShowProfileSymbolList( 2492 "show-prof-sym-list", cl::init(false), 2493 cl::desc("Show profile symbol list if it exists in the profile. ")); 2494 cl::opt<bool> ShowSectionInfoOnly( 2495 "show-sec-info-only", cl::init(false), 2496 cl::desc("Show the information of each section in the sample profile. " 2497 "The flag is only usable when the sample profile is in " 2498 "extbinary format")); 2499 2500 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n"); 2501 2502 if (OutputFilename.empty()) 2503 OutputFilename = "-"; 2504 2505 if (Filename == OutputFilename) { 2506 errs() << sys::path::filename(argv[0]) 2507 << ": Input file name cannot be the same as the output file name!\n"; 2508 return 1; 2509 } 2510 2511 std::error_code EC; 2512 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 2513 if (EC) 2514 exitWithErrorCode(EC, OutputFilename); 2515 2516 if (ShowAllFunctions && !ShowFunction.empty()) 2517 WithColor::warning() << "-function argument ignored: showing all functions\n"; 2518 2519 if (ProfileKind == instr) 2520 return showInstrProfile(Filename, ShowCounts, TopNFunctions, 2521 ShowIndirectCallTargets, ShowMemOPSizes, 2522 ShowDetailedSummary, DetailedSummaryCutoffs, 2523 ShowAllFunctions, ShowCS, ValueCutoff, 2524 OnlyListBelow, ShowFunction, TextFormat, OS); 2525 else 2526 return showSampleProfile(Filename, ShowCounts, ShowAllFunctions, 2527 ShowDetailedSummary, ShowFunction, 2528 ShowProfileSymbolList, ShowSectionInfoOnly, 2529 ShowHotFuncList, OS); 2530 } 2531 2532 int main(int argc, const char *argv[]) { 2533 InitLLVM X(argc, argv); 2534 2535 StringRef ProgName(sys::path::filename(argv[0])); 2536 if (argc > 1) { 2537 int (*func)(int, const char *[]) = nullptr; 2538 2539 if (strcmp(argv[1], "merge") == 0) 2540 func = merge_main; 2541 else if (strcmp(argv[1], "show") == 0) 2542 func = show_main; 2543 else if (strcmp(argv[1], "overlap") == 0) 2544 func = overlap_main; 2545 2546 if (func) { 2547 std::string Invocation(ProgName.str() + " " + argv[1]); 2548 argv[1] = Invocation.c_str(); 2549 return func(argc - 1, argv + 1); 2550 } 2551 2552 if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 || 2553 strcmp(argv[1], "--help") == 0) { 2554 2555 errs() << "OVERVIEW: LLVM profile data tools\n\n" 2556 << "USAGE: " << ProgName << " <command> [args...]\n" 2557 << "USAGE: " << ProgName << " <command> -help\n\n" 2558 << "See each individual command --help for more details.\n" 2559 << "Available commands: merge, show, overlap\n"; 2560 return 0; 2561 } 2562 } 2563 2564 if (argc < 2) 2565 errs() << ProgName << ": No command specified!\n"; 2566 else 2567 errs() << ProgName << ": Unknown command!\n"; 2568 2569 errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n"; 2570 return 1; 2571 } 2572