1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 17 #include "llvm/IR/LLVMContext.h" 18 #include "llvm/Object/Binary.h" 19 #include "llvm/ProfileData/InstrProfCorrelator.h" 20 #include "llvm/ProfileData/InstrProfReader.h" 21 #include "llvm/ProfileData/InstrProfWriter.h" 22 #include "llvm/ProfileData/MemProf.h" 23 #include "llvm/ProfileData/ProfileCommon.h" 24 #include "llvm/ProfileData/RawMemProfReader.h" 25 #include "llvm/ProfileData/SampleProfReader.h" 26 #include "llvm/ProfileData/SampleProfWriter.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Discriminator.h" 29 #include "llvm/Support/Errc.h" 30 #include "llvm/Support/FileSystem.h" 31 #include "llvm/Support/Format.h" 32 #include "llvm/Support/FormattedStream.h" 33 #include "llvm/Support/InitLLVM.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/Path.h" 36 #include "llvm/Support/ThreadPool.h" 37 #include "llvm/Support/Threading.h" 38 #include "llvm/Support/WithColor.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <algorithm> 41 42 using namespace llvm; 43 44 enum ProfileFormat { 45 PF_None = 0, 46 PF_Text, 47 PF_Compact_Binary, 48 PF_Ext_Binary, 49 PF_GCC, 50 PF_Binary 51 }; 52 53 static void warn(Twine Message, std::string Whence = "", 54 std::string Hint = "") { 55 WithColor::warning(); 56 if (!Whence.empty()) 57 errs() << Whence << ": "; 58 errs() << Message << "\n"; 59 if (!Hint.empty()) 60 WithColor::note() << Hint << "\n"; 61 } 62 63 static void warn(Error E, StringRef Whence = "") { 64 if (E.isA<InstrProfError>()) { 65 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 66 warn(IPE.message(), std::string(Whence), std::string("")); 67 }); 68 } 69 } 70 71 static void exitWithError(Twine Message, std::string Whence = "", 72 std::string Hint = "") { 73 WithColor::error(); 74 if (!Whence.empty()) 75 errs() << Whence << ": "; 76 errs() << Message << "\n"; 77 if (!Hint.empty()) 78 WithColor::note() << Hint << "\n"; 79 ::exit(1); 80 } 81 82 static void exitWithError(Error E, StringRef Whence = "") { 83 if (E.isA<InstrProfError>()) { 84 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 85 instrprof_error instrError = IPE.get(); 86 StringRef Hint = ""; 87 if (instrError == instrprof_error::unrecognized_format) { 88 // Hint in case user missed specifying the profile type. 89 Hint = "Perhaps you forgot to use the --sample or --memory option?"; 90 } 91 exitWithError(IPE.message(), std::string(Whence), std::string(Hint)); 92 }); 93 return; 94 } 95 96 exitWithError(toString(std::move(E)), std::string(Whence)); 97 } 98 99 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 100 exitWithError(EC.message(), std::string(Whence)); 101 } 102 103 namespace { 104 enum ProfileKinds { instr, sample, memory }; 105 enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid }; 106 } 107 108 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 109 StringRef Whence = "") { 110 if (FailMode == failIfAnyAreInvalid) 111 exitWithErrorCode(EC, Whence); 112 else 113 warn(EC.message(), std::string(Whence)); 114 } 115 116 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 117 StringRef WhenceFunction = "", 118 bool ShowHint = true) { 119 if (!WhenceFile.empty()) 120 errs() << WhenceFile << ": "; 121 if (!WhenceFunction.empty()) 122 errs() << WhenceFunction << ": "; 123 124 auto IPE = instrprof_error::success; 125 E = handleErrors(std::move(E), 126 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 127 IPE = E->get(); 128 return Error(std::move(E)); 129 }); 130 errs() << toString(std::move(E)) << "\n"; 131 132 if (ShowHint) { 133 StringRef Hint = ""; 134 if (IPE != instrprof_error::success) { 135 switch (IPE) { 136 case instrprof_error::hash_mismatch: 137 case instrprof_error::count_mismatch: 138 case instrprof_error::value_site_count_mismatch: 139 Hint = "Make sure that all profile data to be merged is generated " 140 "from the same binary."; 141 break; 142 default: 143 break; 144 } 145 } 146 147 if (!Hint.empty()) 148 errs() << Hint << "\n"; 149 } 150 } 151 152 namespace { 153 /// A remapper from original symbol names to new symbol names based on a file 154 /// containing a list of mappings from old name to new name. 155 class SymbolRemapper { 156 std::unique_ptr<MemoryBuffer> File; 157 DenseMap<StringRef, StringRef> RemappingTable; 158 159 public: 160 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 161 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 162 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 163 if (!BufOrError) 164 exitWithErrorCode(BufOrError.getError(), InputFile); 165 166 auto Remapper = std::make_unique<SymbolRemapper>(); 167 Remapper->File = std::move(BufOrError.get()); 168 169 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 170 !LineIt.is_at_eof(); ++LineIt) { 171 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 172 if (Parts.first.empty() || Parts.second.empty() || 173 Parts.second.count(' ')) { 174 exitWithError("unexpected line in remapping file", 175 (InputFile + ":" + Twine(LineIt.line_number())).str(), 176 "expected 'old_symbol new_symbol'"); 177 } 178 Remapper->RemappingTable.insert(Parts); 179 } 180 return Remapper; 181 } 182 183 /// Attempt to map the given old symbol into a new symbol. 184 /// 185 /// \return The new symbol, or \p Name if no such symbol was found. 186 StringRef operator()(StringRef Name) { 187 StringRef New = RemappingTable.lookup(Name); 188 return New.empty() ? Name : New; 189 } 190 }; 191 } 192 193 struct WeightedFile { 194 std::string Filename; 195 uint64_t Weight; 196 }; 197 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 198 199 /// Keep track of merged data and reported errors. 200 struct WriterContext { 201 std::mutex Lock; 202 InstrProfWriter Writer; 203 std::vector<std::pair<Error, std::string>> Errors; 204 std::mutex &ErrLock; 205 SmallSet<instrprof_error, 4> &WriterErrorCodes; 206 207 WriterContext(bool IsSparse, std::mutex &ErrLock, 208 SmallSet<instrprof_error, 4> &WriterErrorCodes) 209 : Writer(IsSparse), ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) { 210 } 211 }; 212 213 /// Computer the overlap b/w profile BaseFilename and TestFileName, 214 /// and store the program level result to Overlap. 215 static void overlapInput(const std::string &BaseFilename, 216 const std::string &TestFilename, WriterContext *WC, 217 OverlapStats &Overlap, 218 const OverlapFuncFilters &FuncFilter, 219 raw_fd_ostream &OS, bool IsCS) { 220 auto ReaderOrErr = InstrProfReader::create(TestFilename); 221 if (Error E = ReaderOrErr.takeError()) { 222 // Skip the empty profiles by returning sliently. 223 instrprof_error IPE = InstrProfError::take(std::move(E)); 224 if (IPE != instrprof_error::empty_raw_profile) 225 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename); 226 return; 227 } 228 229 auto Reader = std::move(ReaderOrErr.get()); 230 for (auto &I : *Reader) { 231 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 232 FuncOverlap.setFuncInfo(I.Name, I.Hash); 233 234 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 235 FuncOverlap.dump(OS); 236 } 237 } 238 239 /// Load an input into a writer context. 240 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 241 const InstrProfCorrelator *Correlator, 242 const StringRef ProfiledBinary, WriterContext *WC) { 243 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 244 245 // Copy the filename, because llvm::ThreadPool copied the input "const 246 // WeightedFile &" by value, making a reference to the filename within it 247 // invalid outside of this packaged task. 248 std::string Filename = Input.Filename; 249 250 using ::llvm::memprof::RawMemProfReader; 251 if (RawMemProfReader::hasFormat(Input.Filename)) { 252 auto ReaderOrErr = RawMemProfReader::create(Input.Filename, ProfiledBinary); 253 if (!ReaderOrErr) { 254 exitWithError(ReaderOrErr.takeError(), Input.Filename); 255 } 256 std::unique_ptr<RawMemProfReader> Reader = std::move(ReaderOrErr.get()); 257 // Check if the profile types can be merged, e.g. clang frontend profiles 258 // should not be merged with memprof profiles. 259 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 260 consumeError(std::move(E)); 261 WC->Errors.emplace_back( 262 make_error<StringError>( 263 "Cannot merge MemProf profile with Clang generated profile.", 264 std::error_code()), 265 Filename); 266 return; 267 } 268 269 // Add the records into the writer context. 270 for (const memprof::MemProfRecord &MR : *Reader) { 271 WC->Writer.addRecord(MR, [&](Error E) { 272 instrprof_error IPE = InstrProfError::take(std::move(E)); 273 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename); 274 }); 275 } 276 return; 277 } 278 279 auto ReaderOrErr = InstrProfReader::create(Input.Filename, Correlator); 280 if (Error E = ReaderOrErr.takeError()) { 281 // Skip the empty profiles by returning sliently. 282 instrprof_error IPE = InstrProfError::take(std::move(E)); 283 if (IPE != instrprof_error::empty_raw_profile) 284 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename); 285 return; 286 } 287 288 auto Reader = std::move(ReaderOrErr.get()); 289 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 290 consumeError(std::move(E)); 291 WC->Errors.emplace_back( 292 make_error<StringError>( 293 "Merge IR generated profile with Clang generated profile.", 294 std::error_code()), 295 Filename); 296 return; 297 } 298 299 for (auto &I : *Reader) { 300 if (Remapper) 301 I.Name = (*Remapper)(I.Name); 302 const StringRef FuncName = I.Name; 303 bool Reported = false; 304 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 305 if (Reported) { 306 consumeError(std::move(E)); 307 return; 308 } 309 Reported = true; 310 // Only show hint the first time an error occurs. 311 instrprof_error IPE = InstrProfError::take(std::move(E)); 312 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 313 bool firstTime = WC->WriterErrorCodes.insert(IPE).second; 314 handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename, 315 FuncName, firstTime); 316 }); 317 } 318 if (Reader->hasError()) 319 if (Error E = Reader->getError()) 320 WC->Errors.emplace_back(std::move(E), Filename); 321 } 322 323 /// Merge the \p Src writer context into \p Dst. 324 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 325 for (auto &ErrorPair : Src->Errors) 326 Dst->Errors.push_back(std::move(ErrorPair)); 327 Src->Errors.clear(); 328 329 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 330 instrprof_error IPE = InstrProfError::take(std::move(E)); 331 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 332 bool firstTime = Dst->WriterErrorCodes.insert(IPE).second; 333 if (firstTime) 334 warn(toString(make_error<InstrProfError>(IPE))); 335 }); 336 } 337 338 static void writeInstrProfile(StringRef OutputFilename, 339 ProfileFormat OutputFormat, 340 InstrProfWriter &Writer) { 341 std::error_code EC; 342 raw_fd_ostream Output(OutputFilename.data(), EC, 343 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF 344 : sys::fs::OF_None); 345 if (EC) 346 exitWithErrorCode(EC, OutputFilename); 347 348 if (OutputFormat == PF_Text) { 349 if (Error E = Writer.writeText(Output)) 350 warn(std::move(E)); 351 } else { 352 if (Output.is_displayed()) 353 exitWithError("cannot write a non-text format profile to the terminal"); 354 if (Error E = Writer.write(Output)) 355 warn(std::move(E)); 356 } 357 } 358 359 static void mergeInstrProfile(const WeightedFileVector &Inputs, 360 StringRef DebugInfoFilename, 361 SymbolRemapper *Remapper, 362 StringRef OutputFilename, 363 ProfileFormat OutputFormat, bool OutputSparse, 364 unsigned NumThreads, FailureMode FailMode, 365 const StringRef ProfiledBinary) { 366 if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary && 367 OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text) 368 exitWithError("unknown format is specified"); 369 370 std::unique_ptr<InstrProfCorrelator> Correlator; 371 if (!DebugInfoFilename.empty()) { 372 if (auto Err = 373 InstrProfCorrelator::get(DebugInfoFilename).moveInto(Correlator)) 374 exitWithError(std::move(Err), DebugInfoFilename); 375 if (auto Err = Correlator->correlateProfileData()) 376 exitWithError(std::move(Err), DebugInfoFilename); 377 } 378 379 std::mutex ErrorLock; 380 SmallSet<instrprof_error, 4> WriterErrorCodes; 381 382 // If NumThreads is not specified, auto-detect a good default. 383 if (NumThreads == 0) 384 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 385 unsigned((Inputs.size() + 1) / 2)); 386 // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails 387 // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't 388 // merged, thus the emitted file ends up with a PF_Unknown kind. 389 390 // Initialize the writer contexts. 391 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 392 for (unsigned I = 0; I < NumThreads; ++I) 393 Contexts.emplace_back(std::make_unique<WriterContext>( 394 OutputSparse, ErrorLock, WriterErrorCodes)); 395 396 if (NumThreads == 1) { 397 for (const auto &Input : Inputs) 398 loadInput(Input, Remapper, Correlator.get(), ProfiledBinary, 399 Contexts[0].get()); 400 } else { 401 ThreadPool Pool(hardware_concurrency(NumThreads)); 402 403 // Load the inputs in parallel (N/NumThreads serial steps). 404 unsigned Ctx = 0; 405 for (const auto &Input : Inputs) { 406 Pool.async(loadInput, Input, Remapper, Correlator.get(), ProfiledBinary, 407 Contexts[Ctx].get()); 408 Ctx = (Ctx + 1) % NumThreads; 409 } 410 Pool.wait(); 411 412 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 413 unsigned Mid = Contexts.size() / 2; 414 unsigned End = Contexts.size(); 415 assert(Mid > 0 && "Expected more than one context"); 416 do { 417 for (unsigned I = 0; I < Mid; ++I) 418 Pool.async(mergeWriterContexts, Contexts[I].get(), 419 Contexts[I + Mid].get()); 420 Pool.wait(); 421 if (End & 1) { 422 Pool.async(mergeWriterContexts, Contexts[0].get(), 423 Contexts[End - 1].get()); 424 Pool.wait(); 425 } 426 End = Mid; 427 Mid /= 2; 428 } while (Mid > 0); 429 } 430 431 // Handle deferred errors encountered during merging. If the number of errors 432 // is equal to the number of inputs the merge failed. 433 unsigned NumErrors = 0; 434 for (std::unique_ptr<WriterContext> &WC : Contexts) { 435 for (auto &ErrorPair : WC->Errors) { 436 ++NumErrors; 437 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 438 } 439 } 440 if (NumErrors == Inputs.size() || 441 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 442 exitWithError("no profile can be merged"); 443 444 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 445 } 446 447 /// The profile entry for a function in instrumentation profile. 448 struct InstrProfileEntry { 449 uint64_t MaxCount = 0; 450 float ZeroCounterRatio = 0.0; 451 InstrProfRecord *ProfRecord; 452 InstrProfileEntry(InstrProfRecord *Record); 453 InstrProfileEntry() = default; 454 }; 455 456 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 457 ProfRecord = Record; 458 uint64_t CntNum = Record->Counts.size(); 459 uint64_t ZeroCntNum = 0; 460 for (size_t I = 0; I < CntNum; ++I) { 461 MaxCount = std::max(MaxCount, Record->Counts[I]); 462 ZeroCntNum += !Record->Counts[I]; 463 } 464 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 465 } 466 467 /// Either set all the counters in the instr profile entry \p IFE to -1 468 /// in order to drop the profile or scale up the counters in \p IFP to 469 /// be above hot threshold. We use the ratio of zero counters in the 470 /// profile of a function to decide the profile is helpful or harmful 471 /// for performance, and to choose whether to scale up or drop it. 472 static void updateInstrProfileEntry(InstrProfileEntry &IFE, 473 uint64_t HotInstrThreshold, 474 float ZeroCounterThreshold) { 475 InstrProfRecord *ProfRecord = IFE.ProfRecord; 476 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 477 // If all or most of the counters of the function are zero, the 478 // profile is unaccountable and shuld be dropped. Reset all the 479 // counters to be -1 and PGO profile-use will drop the profile. 480 // All counters being -1 also implies that the function is hot so 481 // PGO profile-use will also set the entry count metadata to be 482 // above hot threshold. 483 for (size_t I = 0; I < ProfRecord->Counts.size(); ++I) 484 ProfRecord->Counts[I] = -1; 485 return; 486 } 487 488 // Scale up the MaxCount to be multiple times above hot threshold. 489 const unsigned MultiplyFactor = 3; 490 uint64_t Numerator = HotInstrThreshold * MultiplyFactor; 491 uint64_t Denominator = IFE.MaxCount; 492 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 493 warn(toString(make_error<InstrProfError>(E))); 494 }); 495 } 496 497 const uint64_t ColdPercentileIdx = 15; 498 const uint64_t HotPercentileIdx = 11; 499 500 using sampleprof::FSDiscriminatorPass; 501 502 // Internal options to set FSDiscriminatorPass. Used in merge and show 503 // commands. 504 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption( 505 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden, 506 cl::desc("Zero out the discriminator bits for the FS discrimiantor " 507 "pass beyond this value. The enum values are defined in " 508 "Support/Discriminator.h"), 509 cl::values(clEnumVal(Base, "Use base discriminators only"), 510 clEnumVal(Pass1, "Use base and pass 1 discriminators"), 511 clEnumVal(Pass2, "Use base and pass 1-2 discriminators"), 512 clEnumVal(Pass3, "Use base and pass 1-3 discriminators"), 513 clEnumVal(PassLast, "Use all discriminator bits (default)"))); 514 515 static unsigned getDiscriminatorMask() { 516 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue())); 517 } 518 519 /// Adjust the instr profile in \p WC based on the sample profile in 520 /// \p Reader. 521 static void 522 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 523 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 524 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 525 unsigned InstrProfColdThreshold) { 526 // Function to its entry in instr profile. 527 StringMap<InstrProfileEntry> InstrProfileMap; 528 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 529 for (auto &PD : WC->Writer.getProfileData()) { 530 // Populate IPBuilder. 531 for (const auto &PDV : PD.getValue()) { 532 InstrProfRecord Record = PDV.second; 533 IPBuilder.addRecord(Record); 534 } 535 536 // If a function has multiple entries in instr profile, skip it. 537 if (PD.getValue().size() != 1) 538 continue; 539 540 // Initialize InstrProfileMap. 541 InstrProfRecord *R = &PD.getValue().begin()->second; 542 InstrProfileMap[PD.getKey()] = InstrProfileEntry(R); 543 } 544 545 ProfileSummary InstrPS = *IPBuilder.getSummary(); 546 ProfileSummary SamplePS = Reader->getSummary(); 547 548 // Compute cold thresholds for instr profile and sample profile. 549 uint64_t ColdSampleThreshold = 550 ProfileSummaryBuilder::getEntryForPercentile( 551 SamplePS.getDetailedSummary(), 552 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 553 .MinCount; 554 uint64_t HotInstrThreshold = 555 ProfileSummaryBuilder::getEntryForPercentile( 556 InstrPS.getDetailedSummary(), 557 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 558 .MinCount; 559 uint64_t ColdInstrThreshold = 560 InstrProfColdThreshold 561 ? InstrProfColdThreshold 562 : ProfileSummaryBuilder::getEntryForPercentile( 563 InstrPS.getDetailedSummary(), 564 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 565 .MinCount; 566 567 // Find hot/warm functions in sample profile which is cold in instr profile 568 // and adjust the profiles of those functions in the instr profile. 569 for (const auto &PD : Reader->getProfiles()) { 570 auto &FContext = PD.first; 571 const sampleprof::FunctionSamples &FS = PD.second; 572 auto It = InstrProfileMap.find(FContext.toString()); 573 if (FS.getHeadSamples() > ColdSampleThreshold && 574 It != InstrProfileMap.end() && 575 It->second.MaxCount <= ColdInstrThreshold && 576 FS.getBodySamples().size() >= SupplMinSizeThreshold) { 577 updateInstrProfileEntry(It->second, HotInstrThreshold, 578 ZeroCounterThreshold); 579 } 580 } 581 } 582 583 /// The main function to supplement instr profile with sample profile. 584 /// \Inputs contains the instr profile. \p SampleFilename specifies the 585 /// sample profile. \p OutputFilename specifies the output profile name. 586 /// \p OutputFormat specifies the output profile format. \p OutputSparse 587 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 588 /// specifies the minimal size for the functions whose profile will be 589 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 590 /// a function contains too many zero counters and whether its profile 591 /// should be dropped. \p InstrProfColdThreshold is the user specified 592 /// cold threshold which will override the cold threshold got from the 593 /// instr profile summary. 594 static void supplementInstrProfile( 595 const WeightedFileVector &Inputs, StringRef SampleFilename, 596 StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse, 597 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 598 unsigned InstrProfColdThreshold) { 599 if (OutputFilename.compare("-") == 0) 600 exitWithError("cannot write indexed profdata format to stdout"); 601 if (Inputs.size() != 1) 602 exitWithError("expect one input to be an instr profile"); 603 if (Inputs[0].Weight != 1) 604 exitWithError("expect instr profile doesn't have weight"); 605 606 StringRef InstrFilename = Inputs[0].Filename; 607 608 // Read sample profile. 609 LLVMContext Context; 610 auto ReaderOrErr = sampleprof::SampleProfileReader::create( 611 SampleFilename.str(), Context, FSDiscriminatorPassOption); 612 if (std::error_code EC = ReaderOrErr.getError()) 613 exitWithErrorCode(EC, SampleFilename); 614 auto Reader = std::move(ReaderOrErr.get()); 615 if (std::error_code EC = Reader->read()) 616 exitWithErrorCode(EC, SampleFilename); 617 618 // Read instr profile. 619 std::mutex ErrorLock; 620 SmallSet<instrprof_error, 4> WriterErrorCodes; 621 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 622 WriterErrorCodes); 623 loadInput(Inputs[0], nullptr, nullptr, /*ProfiledBinary=*/"", WC.get()); 624 if (WC->Errors.size() > 0) 625 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 626 627 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 628 InstrProfColdThreshold); 629 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 630 } 631 632 /// Make a copy of the given function samples with all symbol names remapped 633 /// by the provided symbol remapper. 634 static sampleprof::FunctionSamples 635 remapSamples(const sampleprof::FunctionSamples &Samples, 636 SymbolRemapper &Remapper, sampleprof_error &Error) { 637 sampleprof::FunctionSamples Result; 638 Result.setName(Remapper(Samples.getName())); 639 Result.addTotalSamples(Samples.getTotalSamples()); 640 Result.addHeadSamples(Samples.getHeadSamples()); 641 for (const auto &BodySample : Samples.getBodySamples()) { 642 uint32_t MaskedDiscriminator = 643 BodySample.first.Discriminator & getDiscriminatorMask(); 644 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator, 645 BodySample.second.getSamples()); 646 for (const auto &Target : BodySample.second.getCallTargets()) { 647 Result.addCalledTargetSamples(BodySample.first.LineOffset, 648 MaskedDiscriminator, 649 Remapper(Target.first()), Target.second); 650 } 651 } 652 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 653 sampleprof::FunctionSamplesMap &Target = 654 Result.functionSamplesAt(CallsiteSamples.first); 655 for (const auto &Callsite : CallsiteSamples.second) { 656 sampleprof::FunctionSamples Remapped = 657 remapSamples(Callsite.second, Remapper, Error); 658 MergeResult(Error, 659 Target[std::string(Remapped.getName())].merge(Remapped)); 660 } 661 } 662 return Result; 663 } 664 665 static sampleprof::SampleProfileFormat FormatMap[] = { 666 sampleprof::SPF_None, 667 sampleprof::SPF_Text, 668 sampleprof::SPF_Compact_Binary, 669 sampleprof::SPF_Ext_Binary, 670 sampleprof::SPF_GCC, 671 sampleprof::SPF_Binary}; 672 673 static std::unique_ptr<MemoryBuffer> 674 getInputFileBuf(const StringRef &InputFile) { 675 if (InputFile == "") 676 return {}; 677 678 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 679 if (!BufOrError) 680 exitWithErrorCode(BufOrError.getError(), InputFile); 681 682 return std::move(*BufOrError); 683 } 684 685 static void populateProfileSymbolList(MemoryBuffer *Buffer, 686 sampleprof::ProfileSymbolList &PSL) { 687 if (!Buffer) 688 return; 689 690 SmallVector<StringRef, 32> SymbolVec; 691 StringRef Data = Buffer->getBuffer(); 692 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 693 694 for (StringRef SymbolStr : SymbolVec) 695 PSL.add(SymbolStr.trim()); 696 } 697 698 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 699 ProfileFormat OutputFormat, 700 MemoryBuffer *Buffer, 701 sampleprof::ProfileSymbolList &WriterList, 702 bool CompressAllSections, bool UseMD5, 703 bool GenPartialProfile) { 704 populateProfileSymbolList(Buffer, WriterList); 705 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 706 warn("Profile Symbol list is not empty but the output format is not " 707 "ExtBinary format. The list will be lost in the output. "); 708 709 Writer.setProfileSymbolList(&WriterList); 710 711 if (CompressAllSections) { 712 if (OutputFormat != PF_Ext_Binary) 713 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 714 else 715 Writer.setToCompressAllSections(); 716 } 717 if (UseMD5) { 718 if (OutputFormat != PF_Ext_Binary) 719 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 720 else 721 Writer.setUseMD5(); 722 } 723 if (GenPartialProfile) { 724 if (OutputFormat != PF_Ext_Binary) 725 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 726 else 727 Writer.setPartialProfile(); 728 } 729 } 730 731 static void 732 mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper, 733 StringRef OutputFilename, ProfileFormat OutputFormat, 734 StringRef ProfileSymbolListFile, bool CompressAllSections, 735 bool UseMD5, bool GenPartialProfile, bool GenCSNestedProfile, 736 bool SampleMergeColdContext, bool SampleTrimColdContext, 737 bool SampleColdContextFrameDepth, FailureMode FailMode) { 738 using namespace sampleprof; 739 SampleProfileMap ProfileMap; 740 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 741 LLVMContext Context; 742 sampleprof::ProfileSymbolList WriterList; 743 Optional<bool> ProfileIsProbeBased; 744 Optional<bool> ProfileIsCSFlat; 745 for (const auto &Input : Inputs) { 746 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context, 747 FSDiscriminatorPassOption); 748 if (std::error_code EC = ReaderOrErr.getError()) { 749 warnOrExitGivenError(FailMode, EC, Input.Filename); 750 continue; 751 } 752 753 // We need to keep the readers around until after all the files are 754 // read so that we do not lose the function names stored in each 755 // reader's memory. The function names are needed to write out the 756 // merged profile map. 757 Readers.push_back(std::move(ReaderOrErr.get())); 758 const auto Reader = Readers.back().get(); 759 if (std::error_code EC = Reader->read()) { 760 warnOrExitGivenError(FailMode, EC, Input.Filename); 761 Readers.pop_back(); 762 continue; 763 } 764 765 SampleProfileMap &Profiles = Reader->getProfiles(); 766 if (ProfileIsProbeBased.hasValue() && 767 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) 768 exitWithError( 769 "cannot merge probe-based profile with non-probe-based profile"); 770 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; 771 if (ProfileIsCSFlat.hasValue() && 772 ProfileIsCSFlat != FunctionSamples::ProfileIsCSFlat) 773 exitWithError("cannot merge CS profile with non-CS profile"); 774 ProfileIsCSFlat = FunctionSamples::ProfileIsCSFlat; 775 for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end(); 776 I != E; ++I) { 777 sampleprof_error Result = sampleprof_error::success; 778 FunctionSamples Remapped = 779 Remapper ? remapSamples(I->second, *Remapper, Result) 780 : FunctionSamples(); 781 FunctionSamples &Samples = Remapper ? Remapped : I->second; 782 SampleContext FContext = Samples.getContext(); 783 MergeResult(Result, ProfileMap[FContext].merge(Samples, Input.Weight)); 784 if (Result != sampleprof_error::success) { 785 std::error_code EC = make_error_code(Result); 786 handleMergeWriterError(errorCodeToError(EC), Input.Filename, 787 FContext.toString()); 788 } 789 } 790 791 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 792 Reader->getProfileSymbolList(); 793 if (ReaderList) 794 WriterList.merge(*ReaderList); 795 } 796 797 if (ProfileIsCSFlat && (SampleMergeColdContext || SampleTrimColdContext)) { 798 // Use threshold calculated from profile summary unless specified. 799 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 800 auto Summary = Builder.computeSummaryForProfiles(ProfileMap); 801 uint64_t SampleProfColdThreshold = 802 ProfileSummaryBuilder::getColdCountThreshold( 803 (Summary->getDetailedSummary())); 804 805 // Trim and merge cold context profile using cold threshold above; 806 SampleContextTrimmer(ProfileMap) 807 .trimAndMergeColdContextProfiles( 808 SampleProfColdThreshold, SampleTrimColdContext, 809 SampleMergeColdContext, SampleColdContextFrameDepth, false); 810 } 811 812 if (ProfileIsCSFlat && GenCSNestedProfile) { 813 CSProfileConverter CSConverter(ProfileMap); 814 CSConverter.convertProfiles(); 815 ProfileIsCSFlat = FunctionSamples::ProfileIsCSFlat = false; 816 } 817 818 auto WriterOrErr = 819 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 820 if (std::error_code EC = WriterOrErr.getError()) 821 exitWithErrorCode(EC, OutputFilename); 822 823 auto Writer = std::move(WriterOrErr.get()); 824 // WriterList will have StringRef refering to string in Buffer. 825 // Make sure Buffer lives as long as WriterList. 826 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 827 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 828 CompressAllSections, UseMD5, GenPartialProfile); 829 if (std::error_code EC = Writer->write(ProfileMap)) 830 exitWithErrorCode(std::move(EC)); 831 } 832 833 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 834 StringRef WeightStr, FileName; 835 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 836 837 uint64_t Weight; 838 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 839 exitWithError("input weight must be a positive integer"); 840 841 return {std::string(FileName), Weight}; 842 } 843 844 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 845 StringRef Filename = WF.Filename; 846 uint64_t Weight = WF.Weight; 847 848 // If it's STDIN just pass it on. 849 if (Filename == "-") { 850 WNI.push_back({std::string(Filename), Weight}); 851 return; 852 } 853 854 llvm::sys::fs::file_status Status; 855 llvm::sys::fs::status(Filename, Status); 856 if (!llvm::sys::fs::exists(Status)) 857 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 858 Filename); 859 // If it's a source file, collect it. 860 if (llvm::sys::fs::is_regular_file(Status)) { 861 WNI.push_back({std::string(Filename), Weight}); 862 return; 863 } 864 865 if (llvm::sys::fs::is_directory(Status)) { 866 std::error_code EC; 867 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 868 F != E && !EC; F.increment(EC)) { 869 if (llvm::sys::fs::is_regular_file(F->path())) { 870 addWeightedInput(WNI, {F->path(), Weight}); 871 } 872 } 873 if (EC) 874 exitWithErrorCode(EC, Filename); 875 } 876 } 877 878 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 879 WeightedFileVector &WFV) { 880 if (!Buffer) 881 return; 882 883 SmallVector<StringRef, 8> Entries; 884 StringRef Data = Buffer->getBuffer(); 885 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 886 for (const StringRef &FileWeightEntry : Entries) { 887 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 888 // Skip comments. 889 if (SanitizedEntry.startswith("#")) 890 continue; 891 // If there's no comma, it's an unweighted profile. 892 else if (!SanitizedEntry.contains(',')) 893 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 894 else 895 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 896 } 897 } 898 899 static int merge_main(int argc, const char *argv[]) { 900 cl::list<std::string> InputFilenames(cl::Positional, 901 cl::desc("<filename...>")); 902 cl::list<std::string> WeightedInputFilenames("weighted-input", 903 cl::desc("<weight>,<filename>")); 904 cl::opt<std::string> InputFilenamesFile( 905 "input-files", cl::init(""), 906 cl::desc("Path to file containing newline-separated " 907 "[<weight>,]<filename> entries")); 908 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 909 cl::aliasopt(InputFilenamesFile)); 910 cl::opt<bool> DumpInputFileList( 911 "dump-input-file-list", cl::init(false), cl::Hidden, 912 cl::desc("Dump the list of input files and their weights, then exit")); 913 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 914 cl::desc("Symbol remapping file")); 915 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 916 cl::aliasopt(RemappingFile)); 917 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 918 cl::init("-"), cl::desc("Output file")); 919 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 920 cl::aliasopt(OutputFilename)); 921 cl::opt<ProfileKinds> ProfileKind( 922 cl::desc("Profile kind:"), cl::init(instr), 923 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 924 clEnumVal(sample, "Sample profile"))); 925 cl::opt<ProfileFormat> OutputFormat( 926 cl::desc("Format of output profile"), cl::init(PF_Binary), 927 cl::values( 928 clEnumValN(PF_Binary, "binary", "Binary encoding (default)"), 929 clEnumValN(PF_Compact_Binary, "compbinary", 930 "Compact binary encoding"), 931 clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"), 932 clEnumValN(PF_Text, "text", "Text encoding"), 933 clEnumValN(PF_GCC, "gcc", 934 "GCC encoding (only meaningful for -sample)"))); 935 cl::opt<FailureMode> FailureMode( 936 "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"), 937 cl::values(clEnumValN(failIfAnyAreInvalid, "any", 938 "Fail if any profile is invalid."), 939 clEnumValN(failIfAllAreInvalid, "all", 940 "Fail only if all profiles are invalid."))); 941 cl::opt<bool> OutputSparse("sparse", cl::init(false), 942 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 943 cl::opt<unsigned> NumThreads( 944 "num-threads", cl::init(0), 945 cl::desc("Number of merge threads to use (default: autodetect)")); 946 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 947 cl::aliasopt(NumThreads)); 948 cl::opt<std::string> ProfileSymbolListFile( 949 "prof-sym-list", cl::init(""), 950 cl::desc("Path to file containing the list of function symbols " 951 "used to populate profile symbol list")); 952 cl::opt<bool> CompressAllSections( 953 "compress-all-sections", cl::init(false), cl::Hidden, 954 cl::desc("Compress all sections when writing the profile (only " 955 "meaningful for -extbinary)")); 956 cl::opt<bool> UseMD5( 957 "use-md5", cl::init(false), cl::Hidden, 958 cl::desc("Choose to use MD5 to represent string in name table (only " 959 "meaningful for -extbinary)")); 960 cl::opt<bool> SampleMergeColdContext( 961 "sample-merge-cold-context", cl::init(false), cl::Hidden, 962 cl::desc( 963 "Merge context sample profiles whose count is below cold threshold")); 964 cl::opt<bool> SampleTrimColdContext( 965 "sample-trim-cold-context", cl::init(false), cl::Hidden, 966 cl::desc( 967 "Trim context sample profiles whose count is below cold threshold")); 968 cl::opt<uint32_t> SampleColdContextFrameDepth( 969 "sample-frame-depth-for-cold-context", cl::init(1), cl::ZeroOrMore, 970 cl::desc("Keep the last K frames while merging cold profile. 1 means the " 971 "context-less base profile")); 972 cl::opt<bool> GenPartialProfile( 973 "gen-partial-profile", cl::init(false), cl::Hidden, 974 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 975 cl::opt<std::string> SupplInstrWithSample( 976 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 977 cl::desc("Supplement an instr profile with sample profile, to correct " 978 "the profile unrepresentativeness issue. The sample " 979 "profile is the input of the flag. Output will be in instr " 980 "format (The flag only works with -instr)")); 981 cl::opt<float> ZeroCounterThreshold( 982 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 983 cl::desc("For the function which is cold in instr profile but hot in " 984 "sample profile, if the ratio of the number of zero counters " 985 "divided by the the total number of counters is above the " 986 "threshold, the profile of the function will be regarded as " 987 "being harmful for performance and will be dropped.")); 988 cl::opt<unsigned> SupplMinSizeThreshold( 989 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 990 cl::desc("If the size of a function is smaller than the threshold, " 991 "assume it can be inlined by PGO early inliner and it won't " 992 "be adjusted based on sample profile.")); 993 cl::opt<unsigned> InstrProfColdThreshold( 994 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 995 cl::desc("User specified cold threshold for instr profile which will " 996 "override the cold threshold got from profile summary. ")); 997 cl::opt<bool> GenCSNestedProfile( 998 "gen-cs-nested-profile", cl::Hidden, cl::init(false), 999 cl::desc("Generate nested function profiles for CSSPGO")); 1000 cl::opt<std::string> DebugInfoFilename( 1001 "debug-info", cl::init(""), 1002 cl::desc("Use the provided debug info to correlate the raw profile.")); 1003 cl::opt<std::string> ProfiledBinary( 1004 "profiled-binary", cl::init(""), 1005 cl::desc("Path to binary from which the profile was collected.")); 1006 1007 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n"); 1008 1009 WeightedFileVector WeightedInputs; 1010 for (StringRef Filename : InputFilenames) 1011 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 1012 for (StringRef WeightedFilename : WeightedInputFilenames) 1013 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 1014 1015 // Make sure that the file buffer stays alive for the duration of the 1016 // weighted input vector's lifetime. 1017 auto Buffer = getInputFileBuf(InputFilenamesFile); 1018 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 1019 1020 if (WeightedInputs.empty()) 1021 exitWithError("no input files specified. See " + 1022 sys::path::filename(argv[0]) + " -help"); 1023 1024 if (DumpInputFileList) { 1025 for (auto &WF : WeightedInputs) 1026 outs() << WF.Weight << "," << WF.Filename << "\n"; 1027 return 0; 1028 } 1029 1030 std::unique_ptr<SymbolRemapper> Remapper; 1031 if (!RemappingFile.empty()) 1032 Remapper = SymbolRemapper::create(RemappingFile); 1033 1034 if (!SupplInstrWithSample.empty()) { 1035 if (ProfileKind != instr) 1036 exitWithError( 1037 "-supplement-instr-with-sample can only work with -instr. "); 1038 1039 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename, 1040 OutputFormat, OutputSparse, SupplMinSizeThreshold, 1041 ZeroCounterThreshold, InstrProfColdThreshold); 1042 return 0; 1043 } 1044 1045 if (ProfileKind == instr) 1046 mergeInstrProfile(WeightedInputs, DebugInfoFilename, Remapper.get(), 1047 OutputFilename, OutputFormat, OutputSparse, NumThreads, 1048 FailureMode, ProfiledBinary); 1049 else 1050 mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename, 1051 OutputFormat, ProfileSymbolListFile, CompressAllSections, 1052 UseMD5, GenPartialProfile, GenCSNestedProfile, 1053 SampleMergeColdContext, SampleTrimColdContext, 1054 SampleColdContextFrameDepth, FailureMode); 1055 return 0; 1056 } 1057 1058 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 1059 static void overlapInstrProfile(const std::string &BaseFilename, 1060 const std::string &TestFilename, 1061 const OverlapFuncFilters &FuncFilter, 1062 raw_fd_ostream &OS, bool IsCS) { 1063 std::mutex ErrorLock; 1064 SmallSet<instrprof_error, 4> WriterErrorCodes; 1065 WriterContext Context(false, ErrorLock, WriterErrorCodes); 1066 WeightedFile WeightedInput{BaseFilename, 1}; 1067 OverlapStats Overlap; 1068 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 1069 if (E) 1070 exitWithError(std::move(E), "error in getting profile count sums"); 1071 if (Overlap.Base.CountSum < 1.0f) { 1072 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 1073 exit(0); 1074 } 1075 if (Overlap.Test.CountSum < 1.0f) { 1076 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 1077 exit(0); 1078 } 1079 loadInput(WeightedInput, nullptr, nullptr, /*ProfiledBinary=*/"", &Context); 1080 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 1081 IsCS); 1082 Overlap.dump(OS); 1083 } 1084 1085 namespace { 1086 struct SampleOverlapStats { 1087 SampleContext BaseName; 1088 SampleContext TestName; 1089 // Number of overlap units 1090 uint64_t OverlapCount; 1091 // Total samples of overlap units 1092 uint64_t OverlapSample; 1093 // Number of and total samples of units that only present in base or test 1094 // profile 1095 uint64_t BaseUniqueCount; 1096 uint64_t BaseUniqueSample; 1097 uint64_t TestUniqueCount; 1098 uint64_t TestUniqueSample; 1099 // Number of units and total samples in base or test profile 1100 uint64_t BaseCount; 1101 uint64_t BaseSample; 1102 uint64_t TestCount; 1103 uint64_t TestSample; 1104 // Number of and total samples of units that present in at least one profile 1105 uint64_t UnionCount; 1106 uint64_t UnionSample; 1107 // Weighted similarity 1108 double Similarity; 1109 // For SampleOverlapStats instances representing functions, weights of the 1110 // function in base and test profiles 1111 double BaseWeight; 1112 double TestWeight; 1113 1114 SampleOverlapStats() 1115 : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0), 1116 BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0), 1117 BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0), 1118 UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {} 1119 }; 1120 } // end anonymous namespace 1121 1122 namespace { 1123 struct FuncSampleStats { 1124 uint64_t SampleSum; 1125 uint64_t MaxSample; 1126 uint64_t HotBlockCount; 1127 FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {} 1128 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 1129 uint64_t HotBlockCount) 1130 : SampleSum(SampleSum), MaxSample(MaxSample), 1131 HotBlockCount(HotBlockCount) {} 1132 }; 1133 } // end anonymous namespace 1134 1135 namespace { 1136 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1137 1138 // Class for updating merging steps for two sorted maps. The class should be 1139 // instantiated with a map iterator type. 1140 template <class T> class MatchStep { 1141 public: 1142 MatchStep() = delete; 1143 1144 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1145 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1146 SecondEnd(SecondEnd), Status(MS_None) {} 1147 1148 bool areBothFinished() const { 1149 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1150 } 1151 1152 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1153 1154 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1155 1156 /// Advance one step based on the previous match status unless the previous 1157 /// status is MS_None. Then update Status based on the comparison between two 1158 /// container iterators at the current step. If the previous status is 1159 /// MS_None, it means two iterators are at the beginning and no comparison has 1160 /// been made, so we simply update Status without advancing the iterators. 1161 void updateOneStep(); 1162 1163 T getFirstIter() const { return FirstIter; } 1164 1165 T getSecondIter() const { return SecondIter; } 1166 1167 MatchStatus getMatchStatus() const { return Status; } 1168 1169 private: 1170 // Current iterator and end iterator of the first container. 1171 T FirstIter; 1172 T FirstEnd; 1173 // Current iterator and end iterator of the second container. 1174 T SecondIter; 1175 T SecondEnd; 1176 // Match status of the current step. 1177 MatchStatus Status; 1178 }; 1179 } // end anonymous namespace 1180 1181 template <class T> void MatchStep<T>::updateOneStep() { 1182 switch (Status) { 1183 case MS_Match: 1184 ++FirstIter; 1185 ++SecondIter; 1186 break; 1187 case MS_FirstUnique: 1188 ++FirstIter; 1189 break; 1190 case MS_SecondUnique: 1191 ++SecondIter; 1192 break; 1193 case MS_None: 1194 break; 1195 } 1196 1197 // Update Status according to iterators at the current step. 1198 if (areBothFinished()) 1199 return; 1200 if (FirstIter != FirstEnd && 1201 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1202 Status = MS_FirstUnique; 1203 else if (SecondIter != SecondEnd && 1204 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1205 Status = MS_SecondUnique; 1206 else 1207 Status = MS_Match; 1208 } 1209 1210 // Return the sum of line/block samples, the max line/block sample, and the 1211 // number of line/block samples above the given threshold in a function 1212 // including its inlinees. 1213 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1214 FuncSampleStats &FuncStats, 1215 uint64_t HotThreshold) { 1216 for (const auto &L : Func.getBodySamples()) { 1217 uint64_t Sample = L.second.getSamples(); 1218 FuncStats.SampleSum += Sample; 1219 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1220 if (Sample >= HotThreshold) 1221 ++FuncStats.HotBlockCount; 1222 } 1223 1224 for (const auto &C : Func.getCallsiteSamples()) { 1225 for (const auto &F : C.second) 1226 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1227 } 1228 } 1229 1230 /// Predicate that determines if a function is hot with a given threshold. We 1231 /// keep it separate from its callsites for possible extension in the future. 1232 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1233 uint64_t HotThreshold) { 1234 // We intentionally compare the maximum sample count in a function with the 1235 // HotThreshold to get an approximate determination on hot functions. 1236 return (FuncStats.MaxSample >= HotThreshold); 1237 } 1238 1239 namespace { 1240 class SampleOverlapAggregator { 1241 public: 1242 SampleOverlapAggregator(const std::string &BaseFilename, 1243 const std::string &TestFilename, 1244 double LowSimilarityThreshold, double Epsilon, 1245 const OverlapFuncFilters &FuncFilter) 1246 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1247 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1248 FuncFilter(FuncFilter) {} 1249 1250 /// Detect 0-sample input profile and report to output stream. This interface 1251 /// should be called after loadProfiles(). 1252 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1253 1254 /// Write out function-level similarity statistics for functions specified by 1255 /// options --function, --value-cutoff, and --similarity-cutoff. 1256 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1257 1258 /// Write out program-level similarity and overlap statistics. 1259 void dumpProgramSummary(raw_fd_ostream &OS) const; 1260 1261 /// Write out hot-function and hot-block statistics for base_profile, 1262 /// test_profile, and their overlap. For both cases, the overlap HO is 1263 /// calculated as follows: 1264 /// Given the number of functions (or blocks) that are hot in both profiles 1265 /// HCommon and the number of functions (or blocks) that are hot in at 1266 /// least one profile HUnion, HO = HCommon / HUnion. 1267 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 1268 1269 /// This function tries matching functions in base and test profiles. For each 1270 /// pair of matched functions, it aggregates the function-level 1271 /// similarity into a profile-level similarity. It also dump function-level 1272 /// similarity information of functions specified by --function, 1273 /// --value-cutoff, and --similarity-cutoff options. The program-level 1274 /// similarity PS is computed as follows: 1275 /// Given function-level similarity FS(A) for all function A, the 1276 /// weight of function A in base profile WB(A), and the weight of function 1277 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 1278 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 1279 /// meaning no-overlap. 1280 void computeSampleProfileOverlap(raw_fd_ostream &OS); 1281 1282 /// Initialize ProfOverlap with the sum of samples in base and test 1283 /// profiles. This function also computes and keeps the sum of samples and 1284 /// max sample counts of each function in BaseStats and TestStats for later 1285 /// use to avoid re-computations. 1286 void initializeSampleProfileOverlap(); 1287 1288 /// Load profiles specified by BaseFilename and TestFilename. 1289 std::error_code loadProfiles(); 1290 1291 using FuncSampleStatsMap = 1292 std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>; 1293 1294 private: 1295 SampleOverlapStats ProfOverlap; 1296 SampleOverlapStats HotFuncOverlap; 1297 SampleOverlapStats HotBlockOverlap; 1298 std::string BaseFilename; 1299 std::string TestFilename; 1300 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 1301 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 1302 // BaseStats and TestStats hold FuncSampleStats for each function, with 1303 // function name as the key. 1304 FuncSampleStatsMap BaseStats; 1305 FuncSampleStatsMap TestStats; 1306 // Low similarity threshold in floating point number 1307 double LowSimilarityThreshold; 1308 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 1309 // for tracking hot blocks. 1310 uint64_t BaseHotThreshold; 1311 uint64_t TestHotThreshold; 1312 // A small threshold used to round the results of floating point accumulations 1313 // to resolve imprecision. 1314 const double Epsilon; 1315 std::multimap<double, SampleOverlapStats, std::greater<double>> 1316 FuncSimilarityDump; 1317 // FuncFilter carries specifications in options --value-cutoff and 1318 // --function. 1319 OverlapFuncFilters FuncFilter; 1320 // Column offsets for printing the function-level details table. 1321 static const unsigned int TestWeightCol = 15; 1322 static const unsigned int SimilarityCol = 30; 1323 static const unsigned int OverlapCol = 43; 1324 static const unsigned int BaseUniqueCol = 53; 1325 static const unsigned int TestUniqueCol = 67; 1326 static const unsigned int BaseSampleCol = 81; 1327 static const unsigned int TestSampleCol = 96; 1328 static const unsigned int FuncNameCol = 111; 1329 1330 /// Return a similarity of two line/block sample counters in the same 1331 /// function in base and test profiles. The line/block-similarity BS(i) is 1332 /// computed as follows: 1333 /// For an offsets i, given the sample count at i in base profile BB(i), 1334 /// the sample count at i in test profile BT(i), the sum of sample counts 1335 /// in this function in base profile SB, and the sum of sample counts in 1336 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 1337 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 1338 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 1339 const SampleOverlapStats &FuncOverlap) const; 1340 1341 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 1342 uint64_t HotBlockCount); 1343 1344 void getHotFunctions(const FuncSampleStatsMap &ProfStats, 1345 FuncSampleStatsMap &HotFunc, 1346 uint64_t HotThreshold) const; 1347 1348 void computeHotFuncOverlap(); 1349 1350 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1351 /// Difference for two sample units in a matched function according to the 1352 /// given match status. 1353 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 1354 uint64_t HotBlockCount, 1355 SampleOverlapStats &FuncOverlap, 1356 double &Difference, MatchStatus Status); 1357 1358 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1359 /// Difference for unmatched callees that only present in one profile in a 1360 /// matched caller function. 1361 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 1362 SampleOverlapStats &FuncOverlap, 1363 double &Difference, MatchStatus Status); 1364 1365 /// This function updates sample overlap statistics of an overlap function in 1366 /// base and test profile. It also calculates a function-internal similarity 1367 /// FIS as follows: 1368 /// For offsets i that have samples in at least one profile in this 1369 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 1370 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 1371 /// 0.0 meaning no overlap. 1372 double computeSampleFunctionInternalOverlap( 1373 const sampleprof::FunctionSamples &BaseFunc, 1374 const sampleprof::FunctionSamples &TestFunc, 1375 SampleOverlapStats &FuncOverlap); 1376 1377 /// Function-level similarity (FS) is a weighted value over function internal 1378 /// similarity (FIS). This function computes a function's FS from its FIS by 1379 /// applying the weight. 1380 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 1381 uint64_t TestFuncSample) const; 1382 1383 /// The function-level similarity FS(A) for a function A is computed as 1384 /// follows: 1385 /// Compute a function-internal similarity FIS(A) by 1386 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 1387 /// function A in base profile WB(A), and the weight of function A in test 1388 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 1389 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 1390 double 1391 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 1392 const sampleprof::FunctionSamples *TestFunc, 1393 SampleOverlapStats *FuncOverlap, 1394 uint64_t BaseFuncSample, 1395 uint64_t TestFuncSample); 1396 1397 /// Profile-level similarity (PS) is a weighted aggregate over function-level 1398 /// similarities (FS). This method weights the FS value by the function 1399 /// weights in the base and test profiles for the aggregation. 1400 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 1401 uint64_t TestFuncSample) const; 1402 }; 1403 } // end anonymous namespace 1404 1405 bool SampleOverlapAggregator::detectZeroSampleProfile( 1406 raw_fd_ostream &OS) const { 1407 bool HaveZeroSample = false; 1408 if (ProfOverlap.BaseSample == 0) { 1409 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 1410 HaveZeroSample = true; 1411 } 1412 if (ProfOverlap.TestSample == 0) { 1413 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 1414 HaveZeroSample = true; 1415 } 1416 return HaveZeroSample; 1417 } 1418 1419 double SampleOverlapAggregator::computeBlockSimilarity( 1420 uint64_t BaseSample, uint64_t TestSample, 1421 const SampleOverlapStats &FuncOverlap) const { 1422 double BaseFrac = 0.0; 1423 double TestFrac = 0.0; 1424 if (FuncOverlap.BaseSample > 0) 1425 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 1426 if (FuncOverlap.TestSample > 0) 1427 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 1428 return 1.0 - std::fabs(BaseFrac - TestFrac); 1429 } 1430 1431 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 1432 uint64_t TestSample, 1433 uint64_t HotBlockCount) { 1434 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 1435 bool IsTestHot = (TestSample >= TestHotThreshold); 1436 if (!IsBaseHot && !IsTestHot) 1437 return; 1438 1439 HotBlockOverlap.UnionCount += HotBlockCount; 1440 if (IsBaseHot) 1441 HotBlockOverlap.BaseCount += HotBlockCount; 1442 if (IsTestHot) 1443 HotBlockOverlap.TestCount += HotBlockCount; 1444 if (IsBaseHot && IsTestHot) 1445 HotBlockOverlap.OverlapCount += HotBlockCount; 1446 } 1447 1448 void SampleOverlapAggregator::getHotFunctions( 1449 const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc, 1450 uint64_t HotThreshold) const { 1451 for (const auto &F : ProfStats) { 1452 if (isFunctionHot(F.second, HotThreshold)) 1453 HotFunc.emplace(F.first, F.second); 1454 } 1455 } 1456 1457 void SampleOverlapAggregator::computeHotFuncOverlap() { 1458 FuncSampleStatsMap BaseHotFunc; 1459 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 1460 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 1461 1462 FuncSampleStatsMap TestHotFunc; 1463 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 1464 HotFuncOverlap.TestCount = TestHotFunc.size(); 1465 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 1466 1467 for (const auto &F : BaseHotFunc) { 1468 if (TestHotFunc.count(F.first)) 1469 ++HotFuncOverlap.OverlapCount; 1470 else 1471 ++HotFuncOverlap.UnionCount; 1472 } 1473 } 1474 1475 void SampleOverlapAggregator::updateOverlapStatsForFunction( 1476 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 1477 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 1478 assert(Status != MS_None && 1479 "Match status should be updated before updating overlap statistics"); 1480 if (Status == MS_FirstUnique) { 1481 TestSample = 0; 1482 FuncOverlap.BaseUniqueSample += BaseSample; 1483 } else if (Status == MS_SecondUnique) { 1484 BaseSample = 0; 1485 FuncOverlap.TestUniqueSample += TestSample; 1486 } else { 1487 ++FuncOverlap.OverlapCount; 1488 } 1489 1490 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 1491 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 1492 Difference += 1493 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 1494 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 1495 } 1496 1497 void SampleOverlapAggregator::updateForUnmatchedCallee( 1498 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 1499 double &Difference, MatchStatus Status) { 1500 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 1501 "Status must be either of the two unmatched cases"); 1502 FuncSampleStats FuncStats; 1503 if (Status == MS_FirstUnique) { 1504 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 1505 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 1506 FuncStats.HotBlockCount, FuncOverlap, 1507 Difference, Status); 1508 } else { 1509 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 1510 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 1511 FuncStats.HotBlockCount, FuncOverlap, 1512 Difference, Status); 1513 } 1514 } 1515 1516 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 1517 const sampleprof::FunctionSamples &BaseFunc, 1518 const sampleprof::FunctionSamples &TestFunc, 1519 SampleOverlapStats &FuncOverlap) { 1520 1521 using namespace sampleprof; 1522 1523 double Difference = 0; 1524 1525 // Accumulate Difference for regular line/block samples in the function. 1526 // We match them through sort-merge join algorithm because 1527 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 1528 // by their offsets. 1529 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 1530 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 1531 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 1532 BlockIterStep.updateOneStep(); 1533 while (!BlockIterStep.areBothFinished()) { 1534 uint64_t BaseSample = 1535 BlockIterStep.isFirstFinished() 1536 ? 0 1537 : BlockIterStep.getFirstIter()->second.getSamples(); 1538 uint64_t TestSample = 1539 BlockIterStep.isSecondFinished() 1540 ? 0 1541 : BlockIterStep.getSecondIter()->second.getSamples(); 1542 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 1543 Difference, BlockIterStep.getMatchStatus()); 1544 1545 BlockIterStep.updateOneStep(); 1546 } 1547 1548 // Accumulate Difference for callsite lines in the function. We match 1549 // them through sort-merge algorithm because 1550 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 1551 // ordered by their offsets. 1552 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 1553 BaseFunc.getCallsiteSamples().cbegin(), 1554 BaseFunc.getCallsiteSamples().cend(), 1555 TestFunc.getCallsiteSamples().cbegin(), 1556 TestFunc.getCallsiteSamples().cend()); 1557 CallsiteIterStep.updateOneStep(); 1558 while (!CallsiteIterStep.areBothFinished()) { 1559 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 1560 assert(CallsiteStepStatus != MS_None && 1561 "Match status should be updated before entering loop body"); 1562 1563 if (CallsiteStepStatus != MS_Match) { 1564 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 1565 ? CallsiteIterStep.getFirstIter() 1566 : CallsiteIterStep.getSecondIter(); 1567 for (const auto &F : Callsite->second) 1568 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 1569 CallsiteStepStatus); 1570 } else { 1571 // There may be multiple inlinees at the same offset, so we need to try 1572 // matching all of them. This match is implemented through sort-merge 1573 // algorithm because callsite records at the same offset are ordered by 1574 // function names. 1575 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 1576 CallsiteIterStep.getFirstIter()->second.cbegin(), 1577 CallsiteIterStep.getFirstIter()->second.cend(), 1578 CallsiteIterStep.getSecondIter()->second.cbegin(), 1579 CallsiteIterStep.getSecondIter()->second.cend()); 1580 CalleeIterStep.updateOneStep(); 1581 while (!CalleeIterStep.areBothFinished()) { 1582 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 1583 if (CalleeStepStatus != MS_Match) { 1584 auto Callee = (CalleeStepStatus == MS_FirstUnique) 1585 ? CalleeIterStep.getFirstIter() 1586 : CalleeIterStep.getSecondIter(); 1587 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 1588 CalleeStepStatus); 1589 } else { 1590 // An inlined function can contain other inlinees inside, so compute 1591 // the Difference recursively. 1592 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 1593 CalleeIterStep.getFirstIter()->second, 1594 CalleeIterStep.getSecondIter()->second, 1595 FuncOverlap); 1596 } 1597 CalleeIterStep.updateOneStep(); 1598 } 1599 } 1600 CallsiteIterStep.updateOneStep(); 1601 } 1602 1603 // Difference reflects the total differences of line/block samples in this 1604 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 1605 // reflect the similarity between function profiles in [0.0f to 1.0f]. 1606 return (2.0 - Difference) / 2; 1607 } 1608 1609 double SampleOverlapAggregator::weightForFuncSimilarity( 1610 double FuncInternalSimilarity, uint64_t BaseFuncSample, 1611 uint64_t TestFuncSample) const { 1612 // Compute the weight as the distance between the function weights in two 1613 // profiles. 1614 double BaseFrac = 0.0; 1615 double TestFrac = 0.0; 1616 assert(ProfOverlap.BaseSample > 0 && 1617 "Total samples in base profile should be greater than 0"); 1618 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 1619 assert(ProfOverlap.TestSample > 0 && 1620 "Total samples in test profile should be greater than 0"); 1621 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 1622 double WeightDistance = std::fabs(BaseFrac - TestFrac); 1623 1624 // Take WeightDistance into the similarity. 1625 return FuncInternalSimilarity * (1 - WeightDistance); 1626 } 1627 1628 double 1629 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 1630 uint64_t BaseFuncSample, 1631 uint64_t TestFuncSample) const { 1632 1633 double BaseFrac = 0.0; 1634 double TestFrac = 0.0; 1635 assert(ProfOverlap.BaseSample > 0 && 1636 "Total samples in base profile should be greater than 0"); 1637 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 1638 assert(ProfOverlap.TestSample > 0 && 1639 "Total samples in test profile should be greater than 0"); 1640 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 1641 return FuncSimilarity * (BaseFrac + TestFrac); 1642 } 1643 1644 double SampleOverlapAggregator::computeSampleFunctionOverlap( 1645 const sampleprof::FunctionSamples *BaseFunc, 1646 const sampleprof::FunctionSamples *TestFunc, 1647 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 1648 uint64_t TestFuncSample) { 1649 // Default function internal similarity before weighted, meaning two functions 1650 // has no overlap. 1651 const double DefaultFuncInternalSimilarity = 0; 1652 double FuncSimilarity; 1653 double FuncInternalSimilarity; 1654 1655 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 1656 // In this case, we use DefaultFuncInternalSimilarity as the function internal 1657 // similarity. 1658 if (!BaseFunc || !TestFunc) { 1659 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 1660 } else { 1661 assert(FuncOverlap != nullptr && 1662 "FuncOverlap should be provided in this case"); 1663 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 1664 *BaseFunc, *TestFunc, *FuncOverlap); 1665 // Now, FuncInternalSimilarity may be a little less than 0 due to 1666 // imprecision of floating point accumulations. Make it zero if the 1667 // difference is below Epsilon. 1668 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 1669 ? 0 1670 : FuncInternalSimilarity; 1671 } 1672 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 1673 BaseFuncSample, TestFuncSample); 1674 return FuncSimilarity; 1675 } 1676 1677 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 1678 using namespace sampleprof; 1679 1680 std::unordered_map<SampleContext, const FunctionSamples *, 1681 SampleContext::Hash> 1682 BaseFuncProf; 1683 const auto &BaseProfiles = BaseReader->getProfiles(); 1684 for (const auto &BaseFunc : BaseProfiles) { 1685 BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second)); 1686 } 1687 ProfOverlap.UnionCount = BaseFuncProf.size(); 1688 1689 const auto &TestProfiles = TestReader->getProfiles(); 1690 for (const auto &TestFunc : TestProfiles) { 1691 SampleOverlapStats FuncOverlap; 1692 FuncOverlap.TestName = TestFunc.second.getContext(); 1693 assert(TestStats.count(FuncOverlap.TestName) && 1694 "TestStats should have records for all functions in test profile " 1695 "except inlinees"); 1696 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 1697 1698 bool Matched = false; 1699 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 1700 if (Match == BaseFuncProf.end()) { 1701 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 1702 ++ProfOverlap.TestUniqueCount; 1703 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 1704 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 1705 1706 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 1707 1708 double FuncSimilarity = computeSampleFunctionOverlap( 1709 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 1710 ProfOverlap.Similarity += 1711 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 1712 1713 ++ProfOverlap.UnionCount; 1714 ProfOverlap.UnionSample += FuncStats.SampleSum; 1715 } else { 1716 ++ProfOverlap.OverlapCount; 1717 1718 // Two functions match with each other. Compute function-level overlap and 1719 // aggregate them into profile-level overlap. 1720 FuncOverlap.BaseName = Match->second->getContext(); 1721 assert(BaseStats.count(FuncOverlap.BaseName) && 1722 "BaseStats should have records for all functions in base profile " 1723 "except inlinees"); 1724 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 1725 1726 FuncOverlap.Similarity = computeSampleFunctionOverlap( 1727 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 1728 FuncOverlap.TestSample); 1729 ProfOverlap.Similarity += 1730 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 1731 FuncOverlap.TestSample); 1732 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 1733 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 1734 1735 // Accumulate the percentage of base unique and test unique samples into 1736 // ProfOverlap. 1737 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 1738 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 1739 1740 // Remove matched base functions for later reporting functions not found 1741 // in test profile. 1742 BaseFuncProf.erase(Match); 1743 Matched = true; 1744 } 1745 1746 // Print function-level similarity information if specified by options. 1747 assert(TestStats.count(FuncOverlap.TestName) && 1748 "TestStats should have records for all functions in test profile " 1749 "except inlinees"); 1750 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 1751 (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) || 1752 (Matched && !FuncFilter.NameFilter.empty() && 1753 FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) != 1754 std::string::npos)) { 1755 assert(ProfOverlap.BaseSample > 0 && 1756 "Total samples in base profile should be greater than 0"); 1757 FuncOverlap.BaseWeight = 1758 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 1759 assert(ProfOverlap.TestSample > 0 && 1760 "Total samples in test profile should be greater than 0"); 1761 FuncOverlap.TestWeight = 1762 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 1763 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 1764 } 1765 } 1766 1767 // Traverse through functions in base profile but not in test profile. 1768 for (const auto &F : BaseFuncProf) { 1769 assert(BaseStats.count(F.second->getContext()) && 1770 "BaseStats should have records for all functions in base profile " 1771 "except inlinees"); 1772 const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()]; 1773 ++ProfOverlap.BaseUniqueCount; 1774 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 1775 1776 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 1777 1778 double FuncSimilarity = computeSampleFunctionOverlap( 1779 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 1780 ProfOverlap.Similarity += 1781 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 1782 1783 ProfOverlap.UnionSample += FuncStats.SampleSum; 1784 } 1785 1786 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 1787 // of floating point accumulations. Make it 1.0 if the difference is below 1788 // Epsilon. 1789 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 1790 ? 1 1791 : ProfOverlap.Similarity; 1792 1793 computeHotFuncOverlap(); 1794 } 1795 1796 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 1797 const auto &BaseProf = BaseReader->getProfiles(); 1798 for (const auto &I : BaseProf) { 1799 ++ProfOverlap.BaseCount; 1800 FuncSampleStats FuncStats; 1801 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 1802 ProfOverlap.BaseSample += FuncStats.SampleSum; 1803 BaseStats.emplace(I.second.getContext(), FuncStats); 1804 } 1805 1806 const auto &TestProf = TestReader->getProfiles(); 1807 for (const auto &I : TestProf) { 1808 ++ProfOverlap.TestCount; 1809 FuncSampleStats FuncStats; 1810 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 1811 ProfOverlap.TestSample += FuncStats.SampleSum; 1812 TestStats.emplace(I.second.getContext(), FuncStats); 1813 } 1814 1815 ProfOverlap.BaseName = StringRef(BaseFilename); 1816 ProfOverlap.TestName = StringRef(TestFilename); 1817 } 1818 1819 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 1820 using namespace sampleprof; 1821 1822 if (FuncSimilarityDump.empty()) 1823 return; 1824 1825 formatted_raw_ostream FOS(OS); 1826 FOS << "Function-level details:\n"; 1827 FOS << "Base weight"; 1828 FOS.PadToColumn(TestWeightCol); 1829 FOS << "Test weight"; 1830 FOS.PadToColumn(SimilarityCol); 1831 FOS << "Similarity"; 1832 FOS.PadToColumn(OverlapCol); 1833 FOS << "Overlap"; 1834 FOS.PadToColumn(BaseUniqueCol); 1835 FOS << "Base unique"; 1836 FOS.PadToColumn(TestUniqueCol); 1837 FOS << "Test unique"; 1838 FOS.PadToColumn(BaseSampleCol); 1839 FOS << "Base samples"; 1840 FOS.PadToColumn(TestSampleCol); 1841 FOS << "Test samples"; 1842 FOS.PadToColumn(FuncNameCol); 1843 FOS << "Function name\n"; 1844 for (const auto &F : FuncSimilarityDump) { 1845 double OverlapPercent = 1846 F.second.UnionSample > 0 1847 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 1848 : 0; 1849 double BaseUniquePercent = 1850 F.second.BaseSample > 0 1851 ? static_cast<double>(F.second.BaseUniqueSample) / 1852 F.second.BaseSample 1853 : 0; 1854 double TestUniquePercent = 1855 F.second.TestSample > 0 1856 ? static_cast<double>(F.second.TestUniqueSample) / 1857 F.second.TestSample 1858 : 0; 1859 1860 FOS << format("%.2f%%", F.second.BaseWeight * 100); 1861 FOS.PadToColumn(TestWeightCol); 1862 FOS << format("%.2f%%", F.second.TestWeight * 100); 1863 FOS.PadToColumn(SimilarityCol); 1864 FOS << format("%.2f%%", F.second.Similarity * 100); 1865 FOS.PadToColumn(OverlapCol); 1866 FOS << format("%.2f%%", OverlapPercent * 100); 1867 FOS.PadToColumn(BaseUniqueCol); 1868 FOS << format("%.2f%%", BaseUniquePercent * 100); 1869 FOS.PadToColumn(TestUniqueCol); 1870 FOS << format("%.2f%%", TestUniquePercent * 100); 1871 FOS.PadToColumn(BaseSampleCol); 1872 FOS << F.second.BaseSample; 1873 FOS.PadToColumn(TestSampleCol); 1874 FOS << F.second.TestSample; 1875 FOS.PadToColumn(FuncNameCol); 1876 FOS << F.second.TestName.toString() << "\n"; 1877 } 1878 } 1879 1880 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 1881 OS << "Profile overlap infomation for base_profile: " 1882 << ProfOverlap.BaseName.toString() 1883 << " and test_profile: " << ProfOverlap.TestName.toString() 1884 << "\nProgram level:\n"; 1885 1886 OS << " Whole program profile similarity: " 1887 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 1888 1889 assert(ProfOverlap.UnionSample > 0 && 1890 "Total samples in two profile should be greater than 0"); 1891 double OverlapPercent = 1892 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 1893 assert(ProfOverlap.BaseSample > 0 && 1894 "Total samples in base profile should be greater than 0"); 1895 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 1896 ProfOverlap.BaseSample; 1897 assert(ProfOverlap.TestSample > 0 && 1898 "Total samples in test profile should be greater than 0"); 1899 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 1900 ProfOverlap.TestSample; 1901 1902 OS << " Whole program sample overlap: " 1903 << format("%.3f%%", OverlapPercent * 100) << "\n"; 1904 OS << " percentage of samples unique in base profile: " 1905 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 1906 OS << " percentage of samples unique in test profile: " 1907 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 1908 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 1909 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 1910 1911 assert(ProfOverlap.UnionCount > 0 && 1912 "There should be at least one function in two input profiles"); 1913 double FuncOverlapPercent = 1914 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 1915 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 1916 << "\n"; 1917 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 1918 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 1919 << "\n"; 1920 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 1921 << "\n"; 1922 } 1923 1924 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 1925 raw_fd_ostream &OS) const { 1926 assert(HotFuncOverlap.UnionCount > 0 && 1927 "There should be at least one hot function in two input profiles"); 1928 OS << " Hot-function overlap: " 1929 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 1930 HotFuncOverlap.UnionCount * 100) 1931 << "\n"; 1932 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 1933 OS << " hot functions unique in base profile: " 1934 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 1935 OS << " hot functions unique in test profile: " 1936 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 1937 1938 assert(HotBlockOverlap.UnionCount > 0 && 1939 "There should be at least one hot block in two input profiles"); 1940 OS << " Hot-block overlap: " 1941 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 1942 HotBlockOverlap.UnionCount * 100) 1943 << "\n"; 1944 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 1945 OS << " hot blocks unique in base profile: " 1946 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 1947 OS << " hot blocks unique in test profile: " 1948 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 1949 } 1950 1951 std::error_code SampleOverlapAggregator::loadProfiles() { 1952 using namespace sampleprof; 1953 1954 LLVMContext Context; 1955 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context, 1956 FSDiscriminatorPassOption); 1957 if (std::error_code EC = BaseReaderOrErr.getError()) 1958 exitWithErrorCode(EC, BaseFilename); 1959 1960 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context, 1961 FSDiscriminatorPassOption); 1962 if (std::error_code EC = TestReaderOrErr.getError()) 1963 exitWithErrorCode(EC, TestFilename); 1964 1965 BaseReader = std::move(BaseReaderOrErr.get()); 1966 TestReader = std::move(TestReaderOrErr.get()); 1967 1968 if (std::error_code EC = BaseReader->read()) 1969 exitWithErrorCode(EC, BaseFilename); 1970 if (std::error_code EC = TestReader->read()) 1971 exitWithErrorCode(EC, TestFilename); 1972 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) 1973 exitWithError( 1974 "cannot compare probe-based profile with non-probe-based profile"); 1975 if (BaseReader->profileIsCSFlat() != TestReader->profileIsCSFlat()) 1976 exitWithError("cannot compare CS profile with non-CS profile"); 1977 1978 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 1979 // profile summary. 1980 ProfileSummary &BasePS = BaseReader->getSummary(); 1981 ProfileSummary &TestPS = TestReader->getSummary(); 1982 BaseHotThreshold = 1983 ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary()); 1984 TestHotThreshold = 1985 ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary()); 1986 1987 return std::error_code(); 1988 } 1989 1990 void overlapSampleProfile(const std::string &BaseFilename, 1991 const std::string &TestFilename, 1992 const OverlapFuncFilters &FuncFilter, 1993 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 1994 using namespace sampleprof; 1995 1996 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 1997 // report 2--3 places after decimal point in percentage numbers. 1998 SampleOverlapAggregator OverlapAggr( 1999 BaseFilename, TestFilename, 2000 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 2001 if (std::error_code EC = OverlapAggr.loadProfiles()) 2002 exitWithErrorCode(EC); 2003 2004 OverlapAggr.initializeSampleProfileOverlap(); 2005 if (OverlapAggr.detectZeroSampleProfile(OS)) 2006 return; 2007 2008 OverlapAggr.computeSampleProfileOverlap(OS); 2009 2010 OverlapAggr.dumpProgramSummary(OS); 2011 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 2012 OverlapAggr.dumpFuncSimilarity(OS); 2013 } 2014 2015 static int overlap_main(int argc, const char *argv[]) { 2016 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 2017 cl::desc("<base profile file>")); 2018 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 2019 cl::desc("<test profile file>")); 2020 cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"), 2021 cl::desc("Output file")); 2022 cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output)); 2023 cl::opt<bool> IsCS( 2024 "cs", cl::init(false), 2025 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO.")); 2026 cl::opt<unsigned long long> ValueCutoff( 2027 "value-cutoff", cl::init(-1), 2028 cl::desc( 2029 "Function level overlap information for every function (with calling " 2030 "context for csspgo) in test " 2031 "profile with max count value greater then the parameter value")); 2032 cl::opt<std::string> FuncNameFilter( 2033 "function", 2034 cl::desc("Function level overlap information for matching functions. For " 2035 "CSSPGO this takes a a function name with calling context")); 2036 cl::opt<unsigned long long> SimilarityCutoff( 2037 "similarity-cutoff", cl::init(0), 2038 cl::desc("For sample profiles, list function names (with calling context " 2039 "for csspgo) for overlapped functions " 2040 "with similarities below the cutoff (percentage times 10000).")); 2041 cl::opt<ProfileKinds> ProfileKind( 2042 cl::desc("Profile kind:"), cl::init(instr), 2043 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 2044 clEnumVal(sample, "Sample profile"))); 2045 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n"); 2046 2047 std::error_code EC; 2048 raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_TextWithCRLF); 2049 if (EC) 2050 exitWithErrorCode(EC, Output); 2051 2052 if (ProfileKind == instr) 2053 overlapInstrProfile(BaseFilename, TestFilename, 2054 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS, 2055 IsCS); 2056 else 2057 overlapSampleProfile(BaseFilename, TestFilename, 2058 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, 2059 SimilarityCutoff, OS); 2060 2061 return 0; 2062 } 2063 2064 namespace { 2065 struct ValueSitesStats { 2066 ValueSitesStats() 2067 : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0), 2068 TotalNumValues(0) {} 2069 uint64_t TotalNumValueSites; 2070 uint64_t TotalNumValueSitesWithValueProfile; 2071 uint64_t TotalNumValues; 2072 std::vector<unsigned> ValueSitesHistogram; 2073 }; 2074 } // namespace 2075 2076 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 2077 ValueSitesStats &Stats, raw_fd_ostream &OS, 2078 InstrProfSymtab *Symtab) { 2079 uint32_t NS = Func.getNumValueSites(VK); 2080 Stats.TotalNumValueSites += NS; 2081 for (size_t I = 0; I < NS; ++I) { 2082 uint32_t NV = Func.getNumValueDataForSite(VK, I); 2083 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I); 2084 Stats.TotalNumValues += NV; 2085 if (NV) { 2086 Stats.TotalNumValueSitesWithValueProfile++; 2087 if (NV > Stats.ValueSitesHistogram.size()) 2088 Stats.ValueSitesHistogram.resize(NV, 0); 2089 Stats.ValueSitesHistogram[NV - 1]++; 2090 } 2091 2092 uint64_t SiteSum = 0; 2093 for (uint32_t V = 0; V < NV; V++) 2094 SiteSum += VD[V].Count; 2095 if (SiteSum == 0) 2096 SiteSum = 1; 2097 2098 for (uint32_t V = 0; V < NV; V++) { 2099 OS << "\t[ " << format("%2u", I) << ", "; 2100 if (Symtab == nullptr) 2101 OS << format("%4" PRIu64, VD[V].Value); 2102 else 2103 OS << Symtab->getFuncName(VD[V].Value); 2104 OS << ", " << format("%10" PRId64, VD[V].Count) << " ] (" 2105 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n"; 2106 } 2107 } 2108 } 2109 2110 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 2111 ValueSitesStats &Stats) { 2112 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 2113 OS << " Total number of sites with values: " 2114 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 2115 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 2116 2117 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 2118 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 2119 if (Stats.ValueSitesHistogram[I] > 0) 2120 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 2121 } 2122 } 2123 2124 static int showInstrProfile(const std::string &Filename, bool ShowCounts, 2125 uint32_t TopN, bool ShowIndirectCallTargets, 2126 bool ShowMemOPSizes, bool ShowDetailedSummary, 2127 std::vector<uint32_t> DetailedSummaryCutoffs, 2128 bool ShowAllFunctions, bool ShowCS, 2129 uint64_t ValueCutoff, bool OnlyListBelow, 2130 const std::string &ShowFunction, bool TextFormat, 2131 bool ShowBinaryIds, bool ShowCovered, 2132 raw_fd_ostream &OS) { 2133 auto ReaderOrErr = InstrProfReader::create(Filename); 2134 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 2135 if (ShowDetailedSummary && Cutoffs.empty()) { 2136 Cutoffs = {800000, 900000, 950000, 990000, 999000, 999900, 999990}; 2137 } 2138 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 2139 if (Error E = ReaderOrErr.takeError()) 2140 exitWithError(std::move(E), Filename); 2141 2142 auto Reader = std::move(ReaderOrErr.get()); 2143 bool IsIRInstr = Reader->isIRLevelProfile(); 2144 size_t ShownFunctions = 0; 2145 size_t BelowCutoffFunctions = 0; 2146 int NumVPKind = IPVK_Last - IPVK_First + 1; 2147 std::vector<ValueSitesStats> VPStats(NumVPKind); 2148 2149 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2150 const std::pair<std::string, uint64_t> &v2) { 2151 return v1.second > v2.second; 2152 }; 2153 2154 std::priority_queue<std::pair<std::string, uint64_t>, 2155 std::vector<std::pair<std::string, uint64_t>>, 2156 decltype(MinCmp)> 2157 HottestFuncs(MinCmp); 2158 2159 if (!TextFormat && OnlyListBelow) { 2160 OS << "The list of functions with the maximum counter less than " 2161 << ValueCutoff << ":\n"; 2162 } 2163 2164 // Add marker so that IR-level instrumentation round-trips properly. 2165 if (TextFormat && IsIRInstr) 2166 OS << ":ir\n"; 2167 2168 for (const auto &Func : *Reader) { 2169 if (Reader->isIRLevelProfile()) { 2170 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2171 if (FuncIsCS != ShowCS) 2172 continue; 2173 } 2174 bool Show = ShowAllFunctions || 2175 (!ShowFunction.empty() && Func.Name.contains(ShowFunction)); 2176 2177 bool doTextFormatDump = (Show && TextFormat); 2178 2179 if (doTextFormatDump) { 2180 InstrProfSymtab &Symtab = Reader->getSymtab(); 2181 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2182 OS); 2183 continue; 2184 } 2185 2186 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2187 Builder.addRecord(Func); 2188 2189 if (ShowCovered) { 2190 if (std::any_of(Func.Counts.begin(), Func.Counts.end(), 2191 [](uint64_t C) { return C; })) 2192 OS << Func.Name << "\n"; 2193 continue; 2194 } 2195 2196 uint64_t FuncMax = 0; 2197 uint64_t FuncSum = 0; 2198 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2199 if (Func.Counts[I] == (uint64_t)-1) 2200 continue; 2201 FuncMax = std::max(FuncMax, Func.Counts[I]); 2202 FuncSum += Func.Counts[I]; 2203 } 2204 2205 if (FuncMax < ValueCutoff) { 2206 ++BelowCutoffFunctions; 2207 if (OnlyListBelow) { 2208 OS << " " << Func.Name << ": (Max = " << FuncMax 2209 << " Sum = " << FuncSum << ")\n"; 2210 } 2211 continue; 2212 } else if (OnlyListBelow) 2213 continue; 2214 2215 if (TopN) { 2216 if (HottestFuncs.size() == TopN) { 2217 if (HottestFuncs.top().second < FuncMax) { 2218 HottestFuncs.pop(); 2219 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2220 } 2221 } else 2222 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2223 } 2224 2225 if (Show) { 2226 if (!ShownFunctions) 2227 OS << "Counters:\n"; 2228 2229 ++ShownFunctions; 2230 2231 OS << " " << Func.Name << ":\n" 2232 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2233 << " Counters: " << Func.Counts.size() << "\n"; 2234 if (!IsIRInstr) 2235 OS << " Function count: " << Func.Counts[0] << "\n"; 2236 2237 if (ShowIndirectCallTargets) 2238 OS << " Indirect Call Site Count: " 2239 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2240 2241 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2242 if (ShowMemOPSizes && NumMemOPCalls > 0) 2243 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2244 << "\n"; 2245 2246 if (ShowCounts) { 2247 OS << " Block counts: ["; 2248 size_t Start = (IsIRInstr ? 0 : 1); 2249 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2250 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2251 } 2252 OS << "]\n"; 2253 } 2254 2255 if (ShowIndirectCallTargets) { 2256 OS << " Indirect Target Results:\n"; 2257 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2258 VPStats[IPVK_IndirectCallTarget], OS, 2259 &(Reader->getSymtab())); 2260 } 2261 2262 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2263 OS << " Memory Intrinsic Size Results:\n"; 2264 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2265 nullptr); 2266 } 2267 } 2268 } 2269 if (Reader->hasError()) 2270 exitWithError(Reader->getError(), Filename); 2271 2272 if (TextFormat || ShowCovered) 2273 return 0; 2274 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 2275 bool IsIR = Reader->isIRLevelProfile(); 2276 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 2277 if (IsIR) 2278 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 2279 OS << "\n"; 2280 if (ShowAllFunctions || !ShowFunction.empty()) 2281 OS << "Functions shown: " << ShownFunctions << "\n"; 2282 OS << "Total functions: " << PS->getNumFunctions() << "\n"; 2283 if (ValueCutoff > 0) { 2284 OS << "Number of functions with maximum count (< " << ValueCutoff 2285 << "): " << BelowCutoffFunctions << "\n"; 2286 OS << "Number of functions with maximum count (>= " << ValueCutoff 2287 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 2288 } 2289 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; 2290 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; 2291 2292 if (TopN) { 2293 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 2294 while (!HottestFuncs.empty()) { 2295 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 2296 HottestFuncs.pop(); 2297 } 2298 OS << "Top " << TopN 2299 << " functions with the largest internal block counts: \n"; 2300 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 2301 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 2302 } 2303 2304 if (ShownFunctions && ShowIndirectCallTargets) { 2305 OS << "Statistics for indirect call sites profile:\n"; 2306 showValueSitesStats(OS, IPVK_IndirectCallTarget, 2307 VPStats[IPVK_IndirectCallTarget]); 2308 } 2309 2310 if (ShownFunctions && ShowMemOPSizes) { 2311 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 2312 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 2313 } 2314 2315 if (ShowDetailedSummary) { 2316 OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; 2317 OS << "Total count: " << PS->getTotalCount() << "\n"; 2318 PS->printDetailedSummary(OS); 2319 } 2320 2321 if (ShowBinaryIds) 2322 if (Error E = Reader->printBinaryIds(OS)) 2323 exitWithError(std::move(E), Filename); 2324 2325 return 0; 2326 } 2327 2328 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 2329 raw_fd_ostream &OS) { 2330 if (!Reader->dumpSectionInfo(OS)) { 2331 WithColor::warning() << "-show-sec-info-only is only supported for " 2332 << "sample profile in extbinary format and is " 2333 << "ignored for other formats.\n"; 2334 return; 2335 } 2336 } 2337 2338 namespace { 2339 struct HotFuncInfo { 2340 std::string FuncName; 2341 uint64_t TotalCount; 2342 double TotalCountPercent; 2343 uint64_t MaxCount; 2344 uint64_t EntryCount; 2345 2346 HotFuncInfo() 2347 : TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), EntryCount(0) {} 2348 2349 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 2350 : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP), 2351 MaxCount(MS), EntryCount(ES) {} 2352 }; 2353 } // namespace 2354 2355 // Print out detailed information about hot functions in PrintValues vector. 2356 // Users specify titles and offset of every columns through ColumnTitle and 2357 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 2358 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 2359 // print out or let it be an empty string. 2360 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 2361 const std::vector<int> &ColumnOffset, 2362 const std::vector<HotFuncInfo> &PrintValues, 2363 uint64_t HotFuncCount, uint64_t TotalFuncCount, 2364 uint64_t HotProfCount, uint64_t TotalProfCount, 2365 const std::string &HotFuncMetric, 2366 uint32_t TopNFunctions, raw_fd_ostream &OS) { 2367 assert(ColumnOffset.size() == ColumnTitle.size() && 2368 "ColumnOffset and ColumnTitle should have the same size"); 2369 assert(ColumnTitle.size() >= 4 && 2370 "ColumnTitle should have at least 4 elements"); 2371 assert(TotalFuncCount > 0 && 2372 "There should be at least one function in the profile"); 2373 double TotalProfPercent = 0; 2374 if (TotalProfCount > 0) 2375 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 2376 2377 formatted_raw_ostream FOS(OS); 2378 FOS << HotFuncCount << " out of " << TotalFuncCount 2379 << " functions with profile (" 2380 << format("%.2f%%", 2381 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 2382 << ") are considered hot functions"; 2383 if (!HotFuncMetric.empty()) 2384 FOS << " (" << HotFuncMetric << ")"; 2385 FOS << ".\n"; 2386 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 2387 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 2388 2389 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 2390 FOS.PadToColumn(ColumnOffset[I]); 2391 FOS << ColumnTitle[I]; 2392 } 2393 FOS << "\n"; 2394 2395 uint32_t Count = 0; 2396 for (const auto &R : PrintValues) { 2397 if (TopNFunctions && (Count++ == TopNFunctions)) 2398 break; 2399 FOS.PadToColumn(ColumnOffset[0]); 2400 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 2401 FOS.PadToColumn(ColumnOffset[1]); 2402 FOS << R.MaxCount; 2403 FOS.PadToColumn(ColumnOffset[2]); 2404 FOS << R.EntryCount; 2405 FOS.PadToColumn(ColumnOffset[3]); 2406 FOS << R.FuncName << "\n"; 2407 } 2408 } 2409 2410 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles, 2411 ProfileSummary &PS, uint32_t TopN, 2412 raw_fd_ostream &OS) { 2413 using namespace sampleprof; 2414 2415 const uint32_t HotFuncCutoff = 990000; 2416 auto &SummaryVector = PS.getDetailedSummary(); 2417 uint64_t MinCountThreshold = 0; 2418 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 2419 if (SummaryEntry.Cutoff == HotFuncCutoff) { 2420 MinCountThreshold = SummaryEntry.MinCount; 2421 break; 2422 } 2423 } 2424 2425 // Traverse all functions in the profile and keep only hot functions. 2426 // The following loop also calculates the sum of total samples of all 2427 // functions. 2428 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 2429 std::greater<uint64_t>> 2430 HotFunc; 2431 uint64_t ProfileTotalSample = 0; 2432 uint64_t HotFuncSample = 0; 2433 uint64_t HotFuncCount = 0; 2434 2435 for (const auto &I : Profiles) { 2436 FuncSampleStats FuncStats; 2437 const FunctionSamples &FuncProf = I.second; 2438 ProfileTotalSample += FuncProf.getTotalSamples(); 2439 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 2440 2441 if (isFunctionHot(FuncStats, MinCountThreshold)) { 2442 HotFunc.emplace(FuncProf.getTotalSamples(), 2443 std::make_pair(&(I.second), FuncStats.MaxSample)); 2444 HotFuncSample += FuncProf.getTotalSamples(); 2445 ++HotFuncCount; 2446 } 2447 } 2448 2449 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 2450 "Entry sample", "Function name"}; 2451 std::vector<int> ColumnOffset{0, 24, 42, 58}; 2452 std::string Metric = 2453 std::string("max sample >= ") + std::to_string(MinCountThreshold); 2454 std::vector<HotFuncInfo> PrintValues; 2455 for (const auto &FuncPair : HotFunc) { 2456 const FunctionSamples &Func = *FuncPair.second.first; 2457 double TotalSamplePercent = 2458 (ProfileTotalSample > 0) 2459 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 2460 : 0; 2461 PrintValues.emplace_back(HotFuncInfo( 2462 Func.getContext().toString(), Func.getTotalSamples(), 2463 TotalSamplePercent, FuncPair.second.second, Func.getEntrySamples())); 2464 } 2465 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 2466 Profiles.size(), HotFuncSample, ProfileTotalSample, 2467 Metric, TopN, OS); 2468 2469 return 0; 2470 } 2471 2472 static int showSampleProfile(const std::string &Filename, bool ShowCounts, 2473 uint32_t TopN, bool ShowAllFunctions, 2474 bool ShowDetailedSummary, 2475 const std::string &ShowFunction, 2476 bool ShowProfileSymbolList, 2477 bool ShowSectionInfoOnly, bool ShowHotFuncList, 2478 raw_fd_ostream &OS) { 2479 using namespace sampleprof; 2480 LLVMContext Context; 2481 auto ReaderOrErr = 2482 SampleProfileReader::create(Filename, Context, FSDiscriminatorPassOption); 2483 if (std::error_code EC = ReaderOrErr.getError()) 2484 exitWithErrorCode(EC, Filename); 2485 2486 auto Reader = std::move(ReaderOrErr.get()); 2487 if (ShowSectionInfoOnly) { 2488 showSectionInfo(Reader.get(), OS); 2489 return 0; 2490 } 2491 2492 if (std::error_code EC = Reader->read()) 2493 exitWithErrorCode(EC, Filename); 2494 2495 if (ShowAllFunctions || ShowFunction.empty()) 2496 Reader->dump(OS); 2497 else 2498 // TODO: parse context string to support filtering by contexts. 2499 Reader->dumpFunctionProfile(StringRef(ShowFunction), OS); 2500 2501 if (ShowProfileSymbolList) { 2502 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 2503 Reader->getProfileSymbolList(); 2504 ReaderList->dump(OS); 2505 } 2506 2507 if (ShowDetailedSummary) { 2508 auto &PS = Reader->getSummary(); 2509 PS.printSummary(OS); 2510 PS.printDetailedSummary(OS); 2511 } 2512 2513 if (ShowHotFuncList || TopN) 2514 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), TopN, OS); 2515 2516 return 0; 2517 } 2518 2519 static int showMemProfProfile(const std::string &Filename, 2520 const std::string &ProfiledBinary, 2521 raw_fd_ostream &OS) { 2522 auto ReaderOr = 2523 llvm::memprof::RawMemProfReader::create(Filename, ProfiledBinary); 2524 if (Error E = ReaderOr.takeError()) 2525 // Since the error can be related to the profile or the binary we do not 2526 // pass whence. Instead additional context is provided where necessary in 2527 // the error message. 2528 exitWithError(std::move(E), /*Whence*/ ""); 2529 2530 std::unique_ptr<llvm::memprof::RawMemProfReader> Reader( 2531 ReaderOr.get().release()); 2532 2533 Reader->printYAML(OS); 2534 return 0; 2535 } 2536 2537 static int showDebugInfoCorrelation(const std::string &Filename, 2538 bool ShowDetailedSummary, 2539 bool ShowProfileSymbolList, 2540 raw_fd_ostream &OS) { 2541 std::unique_ptr<InstrProfCorrelator> Correlator; 2542 if (auto Err = InstrProfCorrelator::get(Filename).moveInto(Correlator)) 2543 exitWithError(std::move(Err), Filename); 2544 if (auto Err = Correlator->correlateProfileData()) 2545 exitWithError(std::move(Err), Filename); 2546 2547 InstrProfSymtab Symtab; 2548 if (auto Err = Symtab.create( 2549 StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize()))) 2550 exitWithError(std::move(Err), Filename); 2551 2552 if (ShowProfileSymbolList) 2553 Symtab.dumpNames(OS); 2554 // TODO: Read "Profile Data Type" from debug info to compute and show how many 2555 // counters the section holds. 2556 if (ShowDetailedSummary) 2557 OS << "Counters section size: 0x" 2558 << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n"; 2559 OS << "Found " << Correlator->getDataSize() << " functions\n"; 2560 2561 return 0; 2562 } 2563 2564 static int show_main(int argc, const char *argv[]) { 2565 cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>")); 2566 2567 cl::opt<bool> ShowCounts("counts", cl::init(false), 2568 cl::desc("Show counter values for shown functions")); 2569 cl::opt<bool> TextFormat( 2570 "text", cl::init(false), 2571 cl::desc("Show instr profile data in text dump format")); 2572 cl::opt<bool> ShowIndirectCallTargets( 2573 "ic-targets", cl::init(false), 2574 cl::desc("Show indirect call site target values for shown functions")); 2575 cl::opt<bool> ShowMemOPSizes( 2576 "memop-sizes", cl::init(false), 2577 cl::desc("Show the profiled sizes of the memory intrinsic calls " 2578 "for shown functions")); 2579 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 2580 cl::desc("Show detailed profile summary")); 2581 cl::list<uint32_t> DetailedSummaryCutoffs( 2582 cl::CommaSeparated, "detailed-summary-cutoffs", 2583 cl::desc( 2584 "Cutoff percentages (times 10000) for generating detailed summary"), 2585 cl::value_desc("800000,901000,999999")); 2586 cl::opt<bool> ShowHotFuncList( 2587 "hot-func-list", cl::init(false), 2588 cl::desc("Show profile summary of a list of hot functions")); 2589 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 2590 cl::desc("Details for every function")); 2591 cl::opt<bool> ShowCS("showcs", cl::init(false), 2592 cl::desc("Show context sensitive counts")); 2593 cl::opt<std::string> ShowFunction("function", 2594 cl::desc("Details for matching functions")); 2595 2596 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 2597 cl::init("-"), cl::desc("Output file")); 2598 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 2599 cl::aliasopt(OutputFilename)); 2600 cl::opt<ProfileKinds> ProfileKind( 2601 cl::desc("Profile kind:"), cl::init(instr), 2602 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 2603 clEnumVal(sample, "Sample profile"), 2604 clEnumVal(memory, "MemProf memory access profile"))); 2605 cl::opt<uint32_t> TopNFunctions( 2606 "topn", cl::init(0), 2607 cl::desc("Show the list of functions with the largest internal counts")); 2608 cl::opt<uint32_t> ValueCutoff( 2609 "value-cutoff", cl::init(0), 2610 cl::desc("Set the count value cutoff. Functions with the maximum count " 2611 "less than this value will not be printed out. (Default is 0)")); 2612 cl::opt<bool> OnlyListBelow( 2613 "list-below-cutoff", cl::init(false), 2614 cl::desc("Only output names of functions whose max count values are " 2615 "below the cutoff value")); 2616 cl::opt<bool> ShowProfileSymbolList( 2617 "show-prof-sym-list", cl::init(false), 2618 cl::desc("Show profile symbol list if it exists in the profile. ")); 2619 cl::opt<bool> ShowSectionInfoOnly( 2620 "show-sec-info-only", cl::init(false), 2621 cl::desc("Show the information of each section in the sample profile. " 2622 "The flag is only usable when the sample profile is in " 2623 "extbinary format")); 2624 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false), 2625 cl::desc("Show binary ids in the profile. ")); 2626 cl::opt<std::string> DebugInfoFilename( 2627 "debug-info", cl::init(""), 2628 cl::desc("Read and extract profile metadata from debug info and show " 2629 "the functions it found.")); 2630 cl::opt<bool> ShowCovered( 2631 "covered", cl::init(false), 2632 cl::desc("Show only the functions that have been executed.")); 2633 cl::opt<std::string> ProfiledBinary( 2634 "profiled-binary", cl::init(""), 2635 cl::desc("Path to binary from which the profile was collected.")); 2636 2637 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n"); 2638 2639 if (Filename.empty() && DebugInfoFilename.empty()) 2640 exitWithError( 2641 "the positional argument '<profdata-file>' is required unless '--" + 2642 DebugInfoFilename.ArgStr + "' is provided"); 2643 2644 if (Filename == OutputFilename) { 2645 errs() << sys::path::filename(argv[0]) 2646 << ": Input file name cannot be the same as the output file name!\n"; 2647 return 1; 2648 } 2649 2650 std::error_code EC; 2651 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 2652 if (EC) 2653 exitWithErrorCode(EC, OutputFilename); 2654 2655 if (ShowAllFunctions && !ShowFunction.empty()) 2656 WithColor::warning() << "-function argument ignored: showing all functions\n"; 2657 2658 if (!DebugInfoFilename.empty()) 2659 return showDebugInfoCorrelation(DebugInfoFilename, ShowDetailedSummary, 2660 ShowProfileSymbolList, OS); 2661 2662 if (ProfileKind == instr) 2663 return showInstrProfile( 2664 Filename, ShowCounts, TopNFunctions, ShowIndirectCallTargets, 2665 ShowMemOPSizes, ShowDetailedSummary, DetailedSummaryCutoffs, 2666 ShowAllFunctions, ShowCS, ValueCutoff, OnlyListBelow, ShowFunction, 2667 TextFormat, ShowBinaryIds, ShowCovered, OS); 2668 if (ProfileKind == sample) 2669 return showSampleProfile(Filename, ShowCounts, TopNFunctions, 2670 ShowAllFunctions, ShowDetailedSummary, 2671 ShowFunction, ShowProfileSymbolList, 2672 ShowSectionInfoOnly, ShowHotFuncList, OS); 2673 return showMemProfProfile(Filename, ProfiledBinary, OS); 2674 } 2675 2676 int main(int argc, const char *argv[]) { 2677 InitLLVM X(argc, argv); 2678 2679 StringRef ProgName(sys::path::filename(argv[0])); 2680 if (argc > 1) { 2681 int (*func)(int, const char *[]) = nullptr; 2682 2683 if (strcmp(argv[1], "merge") == 0) 2684 func = merge_main; 2685 else if (strcmp(argv[1], "show") == 0) 2686 func = show_main; 2687 else if (strcmp(argv[1], "overlap") == 0) 2688 func = overlap_main; 2689 2690 if (func) { 2691 std::string Invocation(ProgName.str() + " " + argv[1]); 2692 argv[1] = Invocation.c_str(); 2693 return func(argc - 1, argv + 1); 2694 } 2695 2696 if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 || 2697 strcmp(argv[1], "--help") == 0) { 2698 2699 errs() << "OVERVIEW: LLVM profile data tools\n\n" 2700 << "USAGE: " << ProgName << " <command> [args...]\n" 2701 << "USAGE: " << ProgName << " <command> -help\n\n" 2702 << "See each individual command --help for more details.\n" 2703 << "Available commands: merge, show, overlap\n"; 2704 return 0; 2705 } 2706 } 2707 2708 if (argc < 2) 2709 errs() << ProgName << ": No command specified!\n"; 2710 else 2711 errs() << ProgName << ": Unknown command!\n"; 2712 2713 errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n"; 2714 return 1; 2715 } 2716