1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/IR/LLVMContext.h" 17 #include "llvm/ProfileData/InstrProfReader.h" 18 #include "llvm/ProfileData/InstrProfWriter.h" 19 #include "llvm/ProfileData/ProfileCommon.h" 20 #include "llvm/ProfileData/SampleProfReader.h" 21 #include "llvm/ProfileData/SampleProfWriter.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Errc.h" 24 #include "llvm/Support/FileSystem.h" 25 #include "llvm/Support/Format.h" 26 #include "llvm/Support/FormattedStream.h" 27 #include "llvm/Support/InitLLVM.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/ThreadPool.h" 31 #include "llvm/Support/Threading.h" 32 #include "llvm/Support/WithColor.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> 35 36 using namespace llvm; 37 38 enum ProfileFormat { 39 PF_None = 0, 40 PF_Text, 41 PF_Compact_Binary, 42 PF_Ext_Binary, 43 PF_GCC, 44 PF_Binary 45 }; 46 47 static void warn(Twine Message, std::string Whence = "", 48 std::string Hint = "") { 49 WithColor::warning(); 50 if (!Whence.empty()) 51 errs() << Whence << ": "; 52 errs() << Message << "\n"; 53 if (!Hint.empty()) 54 WithColor::note() << Hint << "\n"; 55 } 56 57 static void warn(Error E, StringRef Whence = "") { 58 if (E.isA<InstrProfError>()) { 59 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 60 warn(IPE.message(), std::string(Whence), std::string("")); 61 }); 62 } 63 } 64 65 static void exitWithError(Twine Message, std::string Whence = "", 66 std::string Hint = "") { 67 WithColor::error(); 68 if (!Whence.empty()) 69 errs() << Whence << ": "; 70 errs() << Message << "\n"; 71 if (!Hint.empty()) 72 WithColor::note() << Hint << "\n"; 73 ::exit(1); 74 } 75 76 static void exitWithError(Error E, StringRef Whence = "") { 77 if (E.isA<InstrProfError>()) { 78 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 79 instrprof_error instrError = IPE.get(); 80 StringRef Hint = ""; 81 if (instrError == instrprof_error::unrecognized_format) { 82 // Hint for common error of forgetting --sample for sample profiles. 83 Hint = "Perhaps you forgot to use the --sample option?"; 84 } 85 exitWithError(IPE.message(), std::string(Whence), std::string(Hint)); 86 }); 87 } 88 89 exitWithError(toString(std::move(E)), std::string(Whence)); 90 } 91 92 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 93 exitWithError(EC.message(), std::string(Whence)); 94 } 95 96 namespace { 97 enum ProfileKinds { instr, sample }; 98 enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid }; 99 } 100 101 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 102 StringRef Whence = "") { 103 if (FailMode == failIfAnyAreInvalid) 104 exitWithErrorCode(EC, Whence); 105 else 106 warn(EC.message(), std::string(Whence)); 107 } 108 109 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 110 StringRef WhenceFunction = "", 111 bool ShowHint = true) { 112 if (!WhenceFile.empty()) 113 errs() << WhenceFile << ": "; 114 if (!WhenceFunction.empty()) 115 errs() << WhenceFunction << ": "; 116 117 auto IPE = instrprof_error::success; 118 E = handleErrors(std::move(E), 119 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 120 IPE = E->get(); 121 return Error(std::move(E)); 122 }); 123 errs() << toString(std::move(E)) << "\n"; 124 125 if (ShowHint) { 126 StringRef Hint = ""; 127 if (IPE != instrprof_error::success) { 128 switch (IPE) { 129 case instrprof_error::hash_mismatch: 130 case instrprof_error::count_mismatch: 131 case instrprof_error::value_site_count_mismatch: 132 Hint = "Make sure that all profile data to be merged is generated " 133 "from the same binary."; 134 break; 135 default: 136 break; 137 } 138 } 139 140 if (!Hint.empty()) 141 errs() << Hint << "\n"; 142 } 143 } 144 145 namespace { 146 /// A remapper from original symbol names to new symbol names based on a file 147 /// containing a list of mappings from old name to new name. 148 class SymbolRemapper { 149 std::unique_ptr<MemoryBuffer> File; 150 DenseMap<StringRef, StringRef> RemappingTable; 151 152 public: 153 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 154 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 155 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 156 if (!BufOrError) 157 exitWithErrorCode(BufOrError.getError(), InputFile); 158 159 auto Remapper = std::make_unique<SymbolRemapper>(); 160 Remapper->File = std::move(BufOrError.get()); 161 162 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 163 !LineIt.is_at_eof(); ++LineIt) { 164 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 165 if (Parts.first.empty() || Parts.second.empty() || 166 Parts.second.count(' ')) { 167 exitWithError("unexpected line in remapping file", 168 (InputFile + ":" + Twine(LineIt.line_number())).str(), 169 "expected 'old_symbol new_symbol'"); 170 } 171 Remapper->RemappingTable.insert(Parts); 172 } 173 return Remapper; 174 } 175 176 /// Attempt to map the given old symbol into a new symbol. 177 /// 178 /// \return The new symbol, or \p Name if no such symbol was found. 179 StringRef operator()(StringRef Name) { 180 StringRef New = RemappingTable.lookup(Name); 181 return New.empty() ? Name : New; 182 } 183 }; 184 } 185 186 struct WeightedFile { 187 std::string Filename; 188 uint64_t Weight; 189 }; 190 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 191 192 /// Keep track of merged data and reported errors. 193 struct WriterContext { 194 std::mutex Lock; 195 InstrProfWriter Writer; 196 std::vector<std::pair<Error, std::string>> Errors; 197 std::mutex &ErrLock; 198 SmallSet<instrprof_error, 4> &WriterErrorCodes; 199 200 WriterContext(bool IsSparse, std::mutex &ErrLock, 201 SmallSet<instrprof_error, 4> &WriterErrorCodes) 202 : Lock(), Writer(IsSparse), Errors(), ErrLock(ErrLock), 203 WriterErrorCodes(WriterErrorCodes) {} 204 }; 205 206 /// Computer the overlap b/w profile BaseFilename and TestFileName, 207 /// and store the program level result to Overlap. 208 static void overlapInput(const std::string &BaseFilename, 209 const std::string &TestFilename, WriterContext *WC, 210 OverlapStats &Overlap, 211 const OverlapFuncFilters &FuncFilter, 212 raw_fd_ostream &OS, bool IsCS) { 213 auto ReaderOrErr = InstrProfReader::create(TestFilename); 214 if (Error E = ReaderOrErr.takeError()) { 215 // Skip the empty profiles by returning sliently. 216 instrprof_error IPE = InstrProfError::take(std::move(E)); 217 if (IPE != instrprof_error::empty_raw_profile) 218 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename); 219 return; 220 } 221 222 auto Reader = std::move(ReaderOrErr.get()); 223 for (auto &I : *Reader) { 224 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 225 FuncOverlap.setFuncInfo(I.Name, I.Hash); 226 227 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 228 FuncOverlap.dump(OS); 229 } 230 } 231 232 /// Load an input into a writer context. 233 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 234 WriterContext *WC) { 235 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 236 237 // Copy the filename, because llvm::ThreadPool copied the input "const 238 // WeightedFile &" by value, making a reference to the filename within it 239 // invalid outside of this packaged task. 240 std::string Filename = Input.Filename; 241 242 auto ReaderOrErr = InstrProfReader::create(Input.Filename); 243 if (Error E = ReaderOrErr.takeError()) { 244 // Skip the empty profiles by returning sliently. 245 instrprof_error IPE = InstrProfError::take(std::move(E)); 246 if (IPE != instrprof_error::empty_raw_profile) 247 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename); 248 return; 249 } 250 251 auto Reader = std::move(ReaderOrErr.get()); 252 bool IsIRProfile = Reader->isIRLevelProfile(); 253 bool HasCSIRProfile = Reader->hasCSIRLevelProfile(); 254 if (Error E = WC->Writer.setIsIRLevelProfile(IsIRProfile, HasCSIRProfile)) { 255 consumeError(std::move(E)); 256 WC->Errors.emplace_back( 257 make_error<StringError>( 258 "Merge IR generated profile with Clang generated profile.", 259 std::error_code()), 260 Filename); 261 return; 262 } 263 WC->Writer.setInstrEntryBBEnabled(Reader->instrEntryBBEnabled()); 264 265 for (auto &I : *Reader) { 266 if (Remapper) 267 I.Name = (*Remapper)(I.Name); 268 const StringRef FuncName = I.Name; 269 bool Reported = false; 270 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 271 if (Reported) { 272 consumeError(std::move(E)); 273 return; 274 } 275 Reported = true; 276 // Only show hint the first time an error occurs. 277 instrprof_error IPE = InstrProfError::take(std::move(E)); 278 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 279 bool firstTime = WC->WriterErrorCodes.insert(IPE).second; 280 handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename, 281 FuncName, firstTime); 282 }); 283 } 284 if (Reader->hasError()) 285 if (Error E = Reader->getError()) 286 WC->Errors.emplace_back(std::move(E), Filename); 287 } 288 289 /// Merge the \p Src writer context into \p Dst. 290 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 291 for (auto &ErrorPair : Src->Errors) 292 Dst->Errors.push_back(std::move(ErrorPair)); 293 Src->Errors.clear(); 294 295 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 296 instrprof_error IPE = InstrProfError::take(std::move(E)); 297 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 298 bool firstTime = Dst->WriterErrorCodes.insert(IPE).second; 299 if (firstTime) 300 warn(toString(make_error<InstrProfError>(IPE))); 301 }); 302 } 303 304 static void writeInstrProfile(StringRef OutputFilename, 305 ProfileFormat OutputFormat, 306 InstrProfWriter &Writer) { 307 std::error_code EC; 308 raw_fd_ostream Output(OutputFilename.data(), EC, 309 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF 310 : sys::fs::OF_None); 311 if (EC) 312 exitWithErrorCode(EC, OutputFilename); 313 314 if (OutputFormat == PF_Text) { 315 if (Error E = Writer.writeText(Output)) 316 warn(std::move(E)); 317 } else { 318 if (Error E = Writer.write(Output)) 319 warn(std::move(E)); 320 } 321 } 322 323 static void mergeInstrProfile(const WeightedFileVector &Inputs, 324 SymbolRemapper *Remapper, 325 StringRef OutputFilename, 326 ProfileFormat OutputFormat, bool OutputSparse, 327 unsigned NumThreads, FailureMode FailMode) { 328 if (OutputFilename.compare("-") == 0) 329 exitWithError("Cannot write indexed profdata format to stdout."); 330 331 if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary && 332 OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text) 333 exitWithError("Unknown format is specified."); 334 335 std::mutex ErrorLock; 336 SmallSet<instrprof_error, 4> WriterErrorCodes; 337 338 // If NumThreads is not specified, auto-detect a good default. 339 if (NumThreads == 0) 340 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 341 unsigned((Inputs.size() + 1) / 2)); 342 // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails 343 // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't 344 // merged, thus the emitted file ends up with a PF_Unknown kind. 345 346 // Initialize the writer contexts. 347 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 348 for (unsigned I = 0; I < NumThreads; ++I) 349 Contexts.emplace_back(std::make_unique<WriterContext>( 350 OutputSparse, ErrorLock, WriterErrorCodes)); 351 352 if (NumThreads == 1) { 353 for (const auto &Input : Inputs) 354 loadInput(Input, Remapper, Contexts[0].get()); 355 } else { 356 ThreadPool Pool(hardware_concurrency(NumThreads)); 357 358 // Load the inputs in parallel (N/NumThreads serial steps). 359 unsigned Ctx = 0; 360 for (const auto &Input : Inputs) { 361 Pool.async(loadInput, Input, Remapper, Contexts[Ctx].get()); 362 Ctx = (Ctx + 1) % NumThreads; 363 } 364 Pool.wait(); 365 366 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 367 unsigned Mid = Contexts.size() / 2; 368 unsigned End = Contexts.size(); 369 assert(Mid > 0 && "Expected more than one context"); 370 do { 371 for (unsigned I = 0; I < Mid; ++I) 372 Pool.async(mergeWriterContexts, Contexts[I].get(), 373 Contexts[I + Mid].get()); 374 Pool.wait(); 375 if (End & 1) { 376 Pool.async(mergeWriterContexts, Contexts[0].get(), 377 Contexts[End - 1].get()); 378 Pool.wait(); 379 } 380 End = Mid; 381 Mid /= 2; 382 } while (Mid > 0); 383 } 384 385 // Handle deferred errors encountered during merging. If the number of errors 386 // is equal to the number of inputs the merge failed. 387 unsigned NumErrors = 0; 388 for (std::unique_ptr<WriterContext> &WC : Contexts) { 389 for (auto &ErrorPair : WC->Errors) { 390 ++NumErrors; 391 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 392 } 393 } 394 if (NumErrors == Inputs.size() || 395 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 396 exitWithError("No profiles could be merged."); 397 398 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 399 } 400 401 /// The profile entry for a function in instrumentation profile. 402 struct InstrProfileEntry { 403 uint64_t MaxCount = 0; 404 float ZeroCounterRatio = 0.0; 405 InstrProfRecord *ProfRecord; 406 InstrProfileEntry(InstrProfRecord *Record); 407 InstrProfileEntry() = default; 408 }; 409 410 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 411 ProfRecord = Record; 412 uint64_t CntNum = Record->Counts.size(); 413 uint64_t ZeroCntNum = 0; 414 for (size_t I = 0; I < CntNum; ++I) { 415 MaxCount = std::max(MaxCount, Record->Counts[I]); 416 ZeroCntNum += !Record->Counts[I]; 417 } 418 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 419 } 420 421 /// Either set all the counters in the instr profile entry \p IFE to -1 422 /// in order to drop the profile or scale up the counters in \p IFP to 423 /// be above hot threshold. We use the ratio of zero counters in the 424 /// profile of a function to decide the profile is helpful or harmful 425 /// for performance, and to choose whether to scale up or drop it. 426 static void updateInstrProfileEntry(InstrProfileEntry &IFE, 427 uint64_t HotInstrThreshold, 428 float ZeroCounterThreshold) { 429 InstrProfRecord *ProfRecord = IFE.ProfRecord; 430 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 431 // If all or most of the counters of the function are zero, the 432 // profile is unaccountable and shuld be dropped. Reset all the 433 // counters to be -1 and PGO profile-use will drop the profile. 434 // All counters being -1 also implies that the function is hot so 435 // PGO profile-use will also set the entry count metadata to be 436 // above hot threshold. 437 for (size_t I = 0; I < ProfRecord->Counts.size(); ++I) 438 ProfRecord->Counts[I] = -1; 439 return; 440 } 441 442 // Scale up the MaxCount to be multiple times above hot threshold. 443 const unsigned MultiplyFactor = 3; 444 uint64_t Numerator = HotInstrThreshold * MultiplyFactor; 445 uint64_t Denominator = IFE.MaxCount; 446 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 447 warn(toString(make_error<InstrProfError>(E))); 448 }); 449 } 450 451 const uint64_t ColdPercentileIdx = 15; 452 const uint64_t HotPercentileIdx = 11; 453 454 /// Adjust the instr profile in \p WC based on the sample profile in 455 /// \p Reader. 456 static void 457 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 458 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 459 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 460 unsigned InstrProfColdThreshold) { 461 // Function to its entry in instr profile. 462 StringMap<InstrProfileEntry> InstrProfileMap; 463 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 464 for (auto &PD : WC->Writer.getProfileData()) { 465 // Populate IPBuilder. 466 for (const auto &PDV : PD.getValue()) { 467 InstrProfRecord Record = PDV.second; 468 IPBuilder.addRecord(Record); 469 } 470 471 // If a function has multiple entries in instr profile, skip it. 472 if (PD.getValue().size() != 1) 473 continue; 474 475 // Initialize InstrProfileMap. 476 InstrProfRecord *R = &PD.getValue().begin()->second; 477 InstrProfileMap[PD.getKey()] = InstrProfileEntry(R); 478 } 479 480 ProfileSummary InstrPS = *IPBuilder.getSummary(); 481 ProfileSummary SamplePS = Reader->getSummary(); 482 483 // Compute cold thresholds for instr profile and sample profile. 484 uint64_t ColdSampleThreshold = 485 ProfileSummaryBuilder::getEntryForPercentile( 486 SamplePS.getDetailedSummary(), 487 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 488 .MinCount; 489 uint64_t HotInstrThreshold = 490 ProfileSummaryBuilder::getEntryForPercentile( 491 InstrPS.getDetailedSummary(), 492 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 493 .MinCount; 494 uint64_t ColdInstrThreshold = 495 InstrProfColdThreshold 496 ? InstrProfColdThreshold 497 : ProfileSummaryBuilder::getEntryForPercentile( 498 InstrPS.getDetailedSummary(), 499 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 500 .MinCount; 501 502 // Find hot/warm functions in sample profile which is cold in instr profile 503 // and adjust the profiles of those functions in the instr profile. 504 for (const auto &PD : Reader->getProfiles()) { 505 StringRef FName = PD.getKey(); 506 const sampleprof::FunctionSamples &FS = PD.getValue(); 507 auto It = InstrProfileMap.find(FName); 508 if (FS.getHeadSamples() > ColdSampleThreshold && 509 It != InstrProfileMap.end() && 510 It->second.MaxCount <= ColdInstrThreshold && 511 FS.getBodySamples().size() >= SupplMinSizeThreshold) { 512 updateInstrProfileEntry(It->second, HotInstrThreshold, 513 ZeroCounterThreshold); 514 } 515 } 516 } 517 518 /// The main function to supplement instr profile with sample profile. 519 /// \Inputs contains the instr profile. \p SampleFilename specifies the 520 /// sample profile. \p OutputFilename specifies the output profile name. 521 /// \p OutputFormat specifies the output profile format. \p OutputSparse 522 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 523 /// specifies the minimal size for the functions whose profile will be 524 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 525 /// a function contains too many zero counters and whether its profile 526 /// should be dropped. \p InstrProfColdThreshold is the user specified 527 /// cold threshold which will override the cold threshold got from the 528 /// instr profile summary. 529 static void supplementInstrProfile( 530 const WeightedFileVector &Inputs, StringRef SampleFilename, 531 StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse, 532 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 533 unsigned InstrProfColdThreshold) { 534 if (OutputFilename.compare("-") == 0) 535 exitWithError("Cannot write indexed profdata format to stdout."); 536 if (Inputs.size() != 1) 537 exitWithError("Expect one input to be an instr profile."); 538 if (Inputs[0].Weight != 1) 539 exitWithError("Expect instr profile doesn't have weight."); 540 541 StringRef InstrFilename = Inputs[0].Filename; 542 543 // Read sample profile. 544 LLVMContext Context; 545 auto ReaderOrErr = 546 sampleprof::SampleProfileReader::create(SampleFilename.str(), Context); 547 if (std::error_code EC = ReaderOrErr.getError()) 548 exitWithErrorCode(EC, SampleFilename); 549 auto Reader = std::move(ReaderOrErr.get()); 550 if (std::error_code EC = Reader->read()) 551 exitWithErrorCode(EC, SampleFilename); 552 553 // Read instr profile. 554 std::mutex ErrorLock; 555 SmallSet<instrprof_error, 4> WriterErrorCodes; 556 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 557 WriterErrorCodes); 558 loadInput(Inputs[0], nullptr, WC.get()); 559 if (WC->Errors.size() > 0) 560 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 561 562 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 563 InstrProfColdThreshold); 564 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 565 } 566 567 /// Make a copy of the given function samples with all symbol names remapped 568 /// by the provided symbol remapper. 569 static sampleprof::FunctionSamples 570 remapSamples(const sampleprof::FunctionSamples &Samples, 571 SymbolRemapper &Remapper, sampleprof_error &Error) { 572 sampleprof::FunctionSamples Result; 573 Result.setName(Remapper(Samples.getName())); 574 Result.addTotalSamples(Samples.getTotalSamples()); 575 Result.addHeadSamples(Samples.getHeadSamples()); 576 for (const auto &BodySample : Samples.getBodySamples()) { 577 Result.addBodySamples(BodySample.first.LineOffset, 578 BodySample.first.Discriminator, 579 BodySample.second.getSamples()); 580 for (const auto &Target : BodySample.second.getCallTargets()) { 581 Result.addCalledTargetSamples(BodySample.first.LineOffset, 582 BodySample.first.Discriminator, 583 Remapper(Target.first()), Target.second); 584 } 585 } 586 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 587 sampleprof::FunctionSamplesMap &Target = 588 Result.functionSamplesAt(CallsiteSamples.first); 589 for (const auto &Callsite : CallsiteSamples.second) { 590 sampleprof::FunctionSamples Remapped = 591 remapSamples(Callsite.second, Remapper, Error); 592 MergeResult(Error, 593 Target[std::string(Remapped.getName())].merge(Remapped)); 594 } 595 } 596 return Result; 597 } 598 599 static sampleprof::SampleProfileFormat FormatMap[] = { 600 sampleprof::SPF_None, 601 sampleprof::SPF_Text, 602 sampleprof::SPF_Compact_Binary, 603 sampleprof::SPF_Ext_Binary, 604 sampleprof::SPF_GCC, 605 sampleprof::SPF_Binary}; 606 607 static std::unique_ptr<MemoryBuffer> 608 getInputFileBuf(const StringRef &InputFile) { 609 if (InputFile == "") 610 return {}; 611 612 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 613 if (!BufOrError) 614 exitWithErrorCode(BufOrError.getError(), InputFile); 615 616 return std::move(*BufOrError); 617 } 618 619 static void populateProfileSymbolList(MemoryBuffer *Buffer, 620 sampleprof::ProfileSymbolList &PSL) { 621 if (!Buffer) 622 return; 623 624 SmallVector<StringRef, 32> SymbolVec; 625 StringRef Data = Buffer->getBuffer(); 626 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 627 628 for (StringRef symbol : SymbolVec) 629 PSL.add(symbol); 630 } 631 632 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 633 ProfileFormat OutputFormat, 634 MemoryBuffer *Buffer, 635 sampleprof::ProfileSymbolList &WriterList, 636 bool CompressAllSections, bool UseMD5, 637 bool GenPartialProfile) { 638 populateProfileSymbolList(Buffer, WriterList); 639 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 640 warn("Profile Symbol list is not empty but the output format is not " 641 "ExtBinary format. The list will be lost in the output. "); 642 643 Writer.setProfileSymbolList(&WriterList); 644 645 if (CompressAllSections) { 646 if (OutputFormat != PF_Ext_Binary) 647 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 648 else 649 Writer.setToCompressAllSections(); 650 } 651 if (UseMD5) { 652 if (OutputFormat != PF_Ext_Binary) 653 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 654 else 655 Writer.setUseMD5(); 656 } 657 if (GenPartialProfile) { 658 if (OutputFormat != PF_Ext_Binary) 659 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 660 else 661 Writer.setPartialProfile(); 662 } 663 } 664 665 static void 666 mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper, 667 StringRef OutputFilename, ProfileFormat OutputFormat, 668 StringRef ProfileSymbolListFile, bool CompressAllSections, 669 bool UseMD5, bool GenPartialProfile, 670 bool SampleMergeColdContext, bool SampleTrimColdContext, 671 FailureMode FailMode) { 672 using namespace sampleprof; 673 StringMap<FunctionSamples> ProfileMap; 674 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 675 LLVMContext Context; 676 sampleprof::ProfileSymbolList WriterList; 677 Optional<bool> ProfileIsProbeBased; 678 Optional<bool> ProfileIsCS; 679 for (const auto &Input : Inputs) { 680 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context); 681 if (std::error_code EC = ReaderOrErr.getError()) { 682 warnOrExitGivenError(FailMode, EC, Input.Filename); 683 continue; 684 } 685 686 // We need to keep the readers around until after all the files are 687 // read so that we do not lose the function names stored in each 688 // reader's memory. The function names are needed to write out the 689 // merged profile map. 690 Readers.push_back(std::move(ReaderOrErr.get())); 691 const auto Reader = Readers.back().get(); 692 if (std::error_code EC = Reader->read()) { 693 warnOrExitGivenError(FailMode, EC, Input.Filename); 694 Readers.pop_back(); 695 continue; 696 } 697 698 StringMap<FunctionSamples> &Profiles = Reader->getProfiles(); 699 if (ProfileIsProbeBased.hasValue() && 700 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) 701 exitWithError( 702 "cannot merge probe-based profile with non-probe-based profile"); 703 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; 704 if (ProfileIsCS.hasValue() && ProfileIsCS != FunctionSamples::ProfileIsCS) 705 exitWithError("cannot merge CS profile with non-CS profile"); 706 ProfileIsCS = FunctionSamples::ProfileIsCS; 707 for (StringMap<FunctionSamples>::iterator I = Profiles.begin(), 708 E = Profiles.end(); 709 I != E; ++I) { 710 sampleprof_error Result = sampleprof_error::success; 711 FunctionSamples Remapped = 712 Remapper ? remapSamples(I->second, *Remapper, Result) 713 : FunctionSamples(); 714 FunctionSamples &Samples = Remapper ? Remapped : I->second; 715 StringRef FName = Samples.getNameWithContext(); 716 MergeResult(Result, ProfileMap[FName].merge(Samples, Input.Weight)); 717 if (Result != sampleprof_error::success) { 718 std::error_code EC = make_error_code(Result); 719 handleMergeWriterError(errorCodeToError(EC), Input.Filename, FName); 720 } 721 } 722 723 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 724 Reader->getProfileSymbolList(); 725 if (ReaderList) 726 WriterList.merge(*ReaderList); 727 } 728 729 if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) { 730 // Use threshold calculated from profile summary unless specified. 731 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 732 auto Summary = Builder.computeSummaryForProfiles(ProfileMap); 733 uint64_t SampleProfColdThreshold = 734 ProfileSummaryBuilder::getColdCountThreshold( 735 (Summary->getDetailedSummary())); 736 737 // Trim and merge cold context profile using cold threshold above; 738 SampleContextTrimmer(ProfileMap) 739 .trimAndMergeColdContextProfiles(SampleProfColdThreshold, 740 SampleTrimColdContext, 741 SampleMergeColdContext); 742 } 743 744 auto WriterOrErr = 745 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 746 if (std::error_code EC = WriterOrErr.getError()) 747 exitWithErrorCode(EC, OutputFilename); 748 749 auto Writer = std::move(WriterOrErr.get()); 750 // WriterList will have StringRef refering to string in Buffer. 751 // Make sure Buffer lives as long as WriterList. 752 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 753 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 754 CompressAllSections, UseMD5, GenPartialProfile); 755 if (std::error_code EC = Writer->write(ProfileMap)) 756 exitWithErrorCode(std::move(EC)); 757 } 758 759 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 760 StringRef WeightStr, FileName; 761 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 762 763 uint64_t Weight; 764 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 765 exitWithError("Input weight must be a positive integer."); 766 767 return {std::string(FileName), Weight}; 768 } 769 770 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 771 StringRef Filename = WF.Filename; 772 uint64_t Weight = WF.Weight; 773 774 // If it's STDIN just pass it on. 775 if (Filename == "-") { 776 WNI.push_back({std::string(Filename), Weight}); 777 return; 778 } 779 780 llvm::sys::fs::file_status Status; 781 llvm::sys::fs::status(Filename, Status); 782 if (!llvm::sys::fs::exists(Status)) 783 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 784 Filename); 785 // If it's a source file, collect it. 786 if (llvm::sys::fs::is_regular_file(Status)) { 787 WNI.push_back({std::string(Filename), Weight}); 788 return; 789 } 790 791 if (llvm::sys::fs::is_directory(Status)) { 792 std::error_code EC; 793 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 794 F != E && !EC; F.increment(EC)) { 795 if (llvm::sys::fs::is_regular_file(F->path())) { 796 addWeightedInput(WNI, {F->path(), Weight}); 797 } 798 } 799 if (EC) 800 exitWithErrorCode(EC, Filename); 801 } 802 } 803 804 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 805 WeightedFileVector &WFV) { 806 if (!Buffer) 807 return; 808 809 SmallVector<StringRef, 8> Entries; 810 StringRef Data = Buffer->getBuffer(); 811 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 812 for (const StringRef &FileWeightEntry : Entries) { 813 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 814 // Skip comments. 815 if (SanitizedEntry.startswith("#")) 816 continue; 817 // If there's no comma, it's an unweighted profile. 818 else if (SanitizedEntry.find(',') == StringRef::npos) 819 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 820 else 821 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 822 } 823 } 824 825 static int merge_main(int argc, const char *argv[]) { 826 cl::list<std::string> InputFilenames(cl::Positional, 827 cl::desc("<filename...>")); 828 cl::list<std::string> WeightedInputFilenames("weighted-input", 829 cl::desc("<weight>,<filename>")); 830 cl::opt<std::string> InputFilenamesFile( 831 "input-files", cl::init(""), 832 cl::desc("Path to file containing newline-separated " 833 "[<weight>,]<filename> entries")); 834 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 835 cl::aliasopt(InputFilenamesFile)); 836 cl::opt<bool> DumpInputFileList( 837 "dump-input-file-list", cl::init(false), cl::Hidden, 838 cl::desc("Dump the list of input files and their weights, then exit")); 839 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 840 cl::desc("Symbol remapping file")); 841 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 842 cl::aliasopt(RemappingFile)); 843 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 844 cl::init("-"), cl::Required, 845 cl::desc("Output file")); 846 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 847 cl::aliasopt(OutputFilename)); 848 cl::opt<ProfileKinds> ProfileKind( 849 cl::desc("Profile kind:"), cl::init(instr), 850 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 851 clEnumVal(sample, "Sample profile"))); 852 cl::opt<ProfileFormat> OutputFormat( 853 cl::desc("Format of output profile"), cl::init(PF_Binary), 854 cl::values( 855 clEnumValN(PF_Binary, "binary", "Binary encoding (default)"), 856 clEnumValN(PF_Compact_Binary, "compbinary", 857 "Compact binary encoding"), 858 clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"), 859 clEnumValN(PF_Text, "text", "Text encoding"), 860 clEnumValN(PF_GCC, "gcc", 861 "GCC encoding (only meaningful for -sample)"))); 862 cl::opt<FailureMode> FailureMode( 863 "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"), 864 cl::values(clEnumValN(failIfAnyAreInvalid, "any", 865 "Fail if any profile is invalid."), 866 clEnumValN(failIfAllAreInvalid, "all", 867 "Fail only if all profiles are invalid."))); 868 cl::opt<bool> OutputSparse("sparse", cl::init(false), 869 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 870 cl::opt<unsigned> NumThreads( 871 "num-threads", cl::init(0), 872 cl::desc("Number of merge threads to use (default: autodetect)")); 873 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 874 cl::aliasopt(NumThreads)); 875 cl::opt<std::string> ProfileSymbolListFile( 876 "prof-sym-list", cl::init(""), 877 cl::desc("Path to file containing the list of function symbols " 878 "used to populate profile symbol list")); 879 cl::opt<bool> CompressAllSections( 880 "compress-all-sections", cl::init(false), cl::Hidden, 881 cl::desc("Compress all sections when writing the profile (only " 882 "meaningful for -extbinary)")); 883 cl::opt<bool> UseMD5( 884 "use-md5", cl::init(false), cl::Hidden, 885 cl::desc("Choose to use MD5 to represent string in name table (only " 886 "meaningful for -extbinary)")); 887 cl::opt<bool> SampleMergeColdContext( 888 "sample-merge-cold-context", cl::init(false), cl::Hidden, 889 cl::desc( 890 "Merge context sample profiles whose count is below cold threshold")); 891 cl::opt<bool> SampleTrimColdContext( 892 "sample-trim-cold-context", cl::init(false), cl::Hidden, 893 cl::desc( 894 "Trim context sample profiles whose count is below cold threshold")); 895 cl::opt<bool> GenPartialProfile( 896 "gen-partial-profile", cl::init(false), cl::Hidden, 897 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 898 cl::opt<std::string> SupplInstrWithSample( 899 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 900 cl::desc("Supplement an instr profile with sample profile, to correct " 901 "the profile unrepresentativeness issue. The sample " 902 "profile is the input of the flag. Output will be in instr " 903 "format (The flag only works with -instr)")); 904 cl::opt<float> ZeroCounterThreshold( 905 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 906 cl::desc("For the function which is cold in instr profile but hot in " 907 "sample profile, if the ratio of the number of zero counters " 908 "divided by the the total number of counters is above the " 909 "threshold, the profile of the function will be regarded as " 910 "being harmful for performance and will be dropped. ")); 911 cl::opt<unsigned> SupplMinSizeThreshold( 912 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 913 cl::desc("If the size of a function is smaller than the threshold, " 914 "assume it can be inlined by PGO early inliner and it won't " 915 "be adjusted based on sample profile. ")); 916 cl::opt<unsigned> InstrProfColdThreshold( 917 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 918 cl::desc("User specified cold threshold for instr profile which will " 919 "override the cold threshold got from profile summary. ")); 920 921 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n"); 922 923 WeightedFileVector WeightedInputs; 924 for (StringRef Filename : InputFilenames) 925 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 926 for (StringRef WeightedFilename : WeightedInputFilenames) 927 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 928 929 // Make sure that the file buffer stays alive for the duration of the 930 // weighted input vector's lifetime. 931 auto Buffer = getInputFileBuf(InputFilenamesFile); 932 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 933 934 if (WeightedInputs.empty()) 935 exitWithError("No input files specified. See " + 936 sys::path::filename(argv[0]) + " -help"); 937 938 if (DumpInputFileList) { 939 for (auto &WF : WeightedInputs) 940 outs() << WF.Weight << "," << WF.Filename << "\n"; 941 return 0; 942 } 943 944 std::unique_ptr<SymbolRemapper> Remapper; 945 if (!RemappingFile.empty()) 946 Remapper = SymbolRemapper::create(RemappingFile); 947 948 if (!SupplInstrWithSample.empty()) { 949 if (ProfileKind != instr) 950 exitWithError( 951 "-supplement-instr-with-sample can only work with -instr. "); 952 953 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename, 954 OutputFormat, OutputSparse, SupplMinSizeThreshold, 955 ZeroCounterThreshold, InstrProfColdThreshold); 956 return 0; 957 } 958 959 if (ProfileKind == instr) 960 mergeInstrProfile(WeightedInputs, Remapper.get(), OutputFilename, 961 OutputFormat, OutputSparse, NumThreads, FailureMode); 962 else 963 mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename, 964 OutputFormat, ProfileSymbolListFile, CompressAllSections, 965 UseMD5, GenPartialProfile, SampleMergeColdContext, 966 SampleTrimColdContext, FailureMode); 967 968 return 0; 969 } 970 971 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 972 static void overlapInstrProfile(const std::string &BaseFilename, 973 const std::string &TestFilename, 974 const OverlapFuncFilters &FuncFilter, 975 raw_fd_ostream &OS, bool IsCS) { 976 std::mutex ErrorLock; 977 SmallSet<instrprof_error, 4> WriterErrorCodes; 978 WriterContext Context(false, ErrorLock, WriterErrorCodes); 979 WeightedFile WeightedInput{BaseFilename, 1}; 980 OverlapStats Overlap; 981 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 982 if (E) 983 exitWithError(std::move(E), "Error in getting profile count sums"); 984 if (Overlap.Base.CountSum < 1.0f) { 985 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 986 exit(0); 987 } 988 if (Overlap.Test.CountSum < 1.0f) { 989 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 990 exit(0); 991 } 992 loadInput(WeightedInput, nullptr, &Context); 993 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 994 IsCS); 995 Overlap.dump(OS); 996 } 997 998 namespace { 999 struct SampleOverlapStats { 1000 StringRef BaseName; 1001 StringRef TestName; 1002 // Number of overlap units 1003 uint64_t OverlapCount; 1004 // Total samples of overlap units 1005 uint64_t OverlapSample; 1006 // Number of and total samples of units that only present in base or test 1007 // profile 1008 uint64_t BaseUniqueCount; 1009 uint64_t BaseUniqueSample; 1010 uint64_t TestUniqueCount; 1011 uint64_t TestUniqueSample; 1012 // Number of units and total samples in base or test profile 1013 uint64_t BaseCount; 1014 uint64_t BaseSample; 1015 uint64_t TestCount; 1016 uint64_t TestSample; 1017 // Number of and total samples of units that present in at least one profile 1018 uint64_t UnionCount; 1019 uint64_t UnionSample; 1020 // Weighted similarity 1021 double Similarity; 1022 // For SampleOverlapStats instances representing functions, weights of the 1023 // function in base and test profiles 1024 double BaseWeight; 1025 double TestWeight; 1026 1027 SampleOverlapStats() 1028 : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0), 1029 BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0), 1030 BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0), 1031 UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {} 1032 }; 1033 } // end anonymous namespace 1034 1035 namespace { 1036 struct FuncSampleStats { 1037 uint64_t SampleSum; 1038 uint64_t MaxSample; 1039 uint64_t HotBlockCount; 1040 FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {} 1041 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 1042 uint64_t HotBlockCount) 1043 : SampleSum(SampleSum), MaxSample(MaxSample), 1044 HotBlockCount(HotBlockCount) {} 1045 }; 1046 } // end anonymous namespace 1047 1048 namespace { 1049 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1050 1051 // Class for updating merging steps for two sorted maps. The class should be 1052 // instantiated with a map iterator type. 1053 template <class T> class MatchStep { 1054 public: 1055 MatchStep() = delete; 1056 1057 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1058 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1059 SecondEnd(SecondEnd), Status(MS_None) {} 1060 1061 bool areBothFinished() const { 1062 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1063 } 1064 1065 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1066 1067 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1068 1069 /// Advance one step based on the previous match status unless the previous 1070 /// status is MS_None. Then update Status based on the comparison between two 1071 /// container iterators at the current step. If the previous status is 1072 /// MS_None, it means two iterators are at the beginning and no comparison has 1073 /// been made, so we simply update Status without advancing the iterators. 1074 void updateOneStep(); 1075 1076 T getFirstIter() const { return FirstIter; } 1077 1078 T getSecondIter() const { return SecondIter; } 1079 1080 MatchStatus getMatchStatus() const { return Status; } 1081 1082 private: 1083 // Current iterator and end iterator of the first container. 1084 T FirstIter; 1085 T FirstEnd; 1086 // Current iterator and end iterator of the second container. 1087 T SecondIter; 1088 T SecondEnd; 1089 // Match status of the current step. 1090 MatchStatus Status; 1091 }; 1092 } // end anonymous namespace 1093 1094 template <class T> void MatchStep<T>::updateOneStep() { 1095 switch (Status) { 1096 case MS_Match: 1097 ++FirstIter; 1098 ++SecondIter; 1099 break; 1100 case MS_FirstUnique: 1101 ++FirstIter; 1102 break; 1103 case MS_SecondUnique: 1104 ++SecondIter; 1105 break; 1106 case MS_None: 1107 break; 1108 } 1109 1110 // Update Status according to iterators at the current step. 1111 if (areBothFinished()) 1112 return; 1113 if (FirstIter != FirstEnd && 1114 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1115 Status = MS_FirstUnique; 1116 else if (SecondIter != SecondEnd && 1117 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1118 Status = MS_SecondUnique; 1119 else 1120 Status = MS_Match; 1121 } 1122 1123 // Return the sum of line/block samples, the max line/block sample, and the 1124 // number of line/block samples above the given threshold in a function 1125 // including its inlinees. 1126 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1127 FuncSampleStats &FuncStats, 1128 uint64_t HotThreshold) { 1129 for (const auto &L : Func.getBodySamples()) { 1130 uint64_t Sample = L.second.getSamples(); 1131 FuncStats.SampleSum += Sample; 1132 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1133 if (Sample >= HotThreshold) 1134 ++FuncStats.HotBlockCount; 1135 } 1136 1137 for (const auto &C : Func.getCallsiteSamples()) { 1138 for (const auto &F : C.second) 1139 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1140 } 1141 } 1142 1143 /// Predicate that determines if a function is hot with a given threshold. We 1144 /// keep it separate from its callsites for possible extension in the future. 1145 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1146 uint64_t HotThreshold) { 1147 // We intentionally compare the maximum sample count in a function with the 1148 // HotThreshold to get an approximate determination on hot functions. 1149 return (FuncStats.MaxSample >= HotThreshold); 1150 } 1151 1152 namespace { 1153 class SampleOverlapAggregator { 1154 public: 1155 SampleOverlapAggregator(const std::string &BaseFilename, 1156 const std::string &TestFilename, 1157 double LowSimilarityThreshold, double Epsilon, 1158 const OverlapFuncFilters &FuncFilter) 1159 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1160 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1161 FuncFilter(FuncFilter) {} 1162 1163 /// Detect 0-sample input profile and report to output stream. This interface 1164 /// should be called after loadProfiles(). 1165 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1166 1167 /// Write out function-level similarity statistics for functions specified by 1168 /// options --function, --value-cutoff, and --similarity-cutoff. 1169 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1170 1171 /// Write out program-level similarity and overlap statistics. 1172 void dumpProgramSummary(raw_fd_ostream &OS) const; 1173 1174 /// Write out hot-function and hot-block statistics for base_profile, 1175 /// test_profile, and their overlap. For both cases, the overlap HO is 1176 /// calculated as follows: 1177 /// Given the number of functions (or blocks) that are hot in both profiles 1178 /// HCommon and the number of functions (or blocks) that are hot in at 1179 /// least one profile HUnion, HO = HCommon / HUnion. 1180 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 1181 1182 /// This function tries matching functions in base and test profiles. For each 1183 /// pair of matched functions, it aggregates the function-level 1184 /// similarity into a profile-level similarity. It also dump function-level 1185 /// similarity information of functions specified by --function, 1186 /// --value-cutoff, and --similarity-cutoff options. The program-level 1187 /// similarity PS is computed as follows: 1188 /// Given function-level similarity FS(A) for all function A, the 1189 /// weight of function A in base profile WB(A), and the weight of function 1190 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 1191 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 1192 /// meaning no-overlap. 1193 void computeSampleProfileOverlap(raw_fd_ostream &OS); 1194 1195 /// Initialize ProfOverlap with the sum of samples in base and test 1196 /// profiles. This function also computes and keeps the sum of samples and 1197 /// max sample counts of each function in BaseStats and TestStats for later 1198 /// use to avoid re-computations. 1199 void initializeSampleProfileOverlap(); 1200 1201 /// Load profiles specified by BaseFilename and TestFilename. 1202 std::error_code loadProfiles(); 1203 1204 private: 1205 SampleOverlapStats ProfOverlap; 1206 SampleOverlapStats HotFuncOverlap; 1207 SampleOverlapStats HotBlockOverlap; 1208 std::string BaseFilename; 1209 std::string TestFilename; 1210 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 1211 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 1212 // BaseStats and TestStats hold FuncSampleStats for each function, with 1213 // function name as the key. 1214 StringMap<FuncSampleStats> BaseStats; 1215 StringMap<FuncSampleStats> TestStats; 1216 // Low similarity threshold in floating point number 1217 double LowSimilarityThreshold; 1218 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 1219 // for tracking hot blocks. 1220 uint64_t BaseHotThreshold; 1221 uint64_t TestHotThreshold; 1222 // A small threshold used to round the results of floating point accumulations 1223 // to resolve imprecision. 1224 const double Epsilon; 1225 std::multimap<double, SampleOverlapStats, std::greater<double>> 1226 FuncSimilarityDump; 1227 // FuncFilter carries specifications in options --value-cutoff and 1228 // --function. 1229 OverlapFuncFilters FuncFilter; 1230 // Column offsets for printing the function-level details table. 1231 static const unsigned int TestWeightCol = 15; 1232 static const unsigned int SimilarityCol = 30; 1233 static const unsigned int OverlapCol = 43; 1234 static const unsigned int BaseUniqueCol = 53; 1235 static const unsigned int TestUniqueCol = 67; 1236 static const unsigned int BaseSampleCol = 81; 1237 static const unsigned int TestSampleCol = 96; 1238 static const unsigned int FuncNameCol = 111; 1239 1240 /// Return a similarity of two line/block sample counters in the same 1241 /// function in base and test profiles. The line/block-similarity BS(i) is 1242 /// computed as follows: 1243 /// For an offsets i, given the sample count at i in base profile BB(i), 1244 /// the sample count at i in test profile BT(i), the sum of sample counts 1245 /// in this function in base profile SB, and the sum of sample counts in 1246 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 1247 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 1248 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 1249 const SampleOverlapStats &FuncOverlap) const; 1250 1251 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 1252 uint64_t HotBlockCount); 1253 1254 void getHotFunctions(const StringMap<FuncSampleStats> &ProfStats, 1255 StringMap<FuncSampleStats> &HotFunc, 1256 uint64_t HotThreshold) const; 1257 1258 void computeHotFuncOverlap(); 1259 1260 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1261 /// Difference for two sample units in a matched function according to the 1262 /// given match status. 1263 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 1264 uint64_t HotBlockCount, 1265 SampleOverlapStats &FuncOverlap, 1266 double &Difference, MatchStatus Status); 1267 1268 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1269 /// Difference for unmatched callees that only present in one profile in a 1270 /// matched caller function. 1271 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 1272 SampleOverlapStats &FuncOverlap, 1273 double &Difference, MatchStatus Status); 1274 1275 /// This function updates sample overlap statistics of an overlap function in 1276 /// base and test profile. It also calculates a function-internal similarity 1277 /// FIS as follows: 1278 /// For offsets i that have samples in at least one profile in this 1279 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 1280 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 1281 /// 0.0 meaning no overlap. 1282 double computeSampleFunctionInternalOverlap( 1283 const sampleprof::FunctionSamples &BaseFunc, 1284 const sampleprof::FunctionSamples &TestFunc, 1285 SampleOverlapStats &FuncOverlap); 1286 1287 /// Function-level similarity (FS) is a weighted value over function internal 1288 /// similarity (FIS). This function computes a function's FS from its FIS by 1289 /// applying the weight. 1290 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 1291 uint64_t TestFuncSample) const; 1292 1293 /// The function-level similarity FS(A) for a function A is computed as 1294 /// follows: 1295 /// Compute a function-internal similarity FIS(A) by 1296 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 1297 /// function A in base profile WB(A), and the weight of function A in test 1298 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 1299 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 1300 double 1301 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 1302 const sampleprof::FunctionSamples *TestFunc, 1303 SampleOverlapStats *FuncOverlap, 1304 uint64_t BaseFuncSample, 1305 uint64_t TestFuncSample); 1306 1307 /// Profile-level similarity (PS) is a weighted aggregate over function-level 1308 /// similarities (FS). This method weights the FS value by the function 1309 /// weights in the base and test profiles for the aggregation. 1310 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 1311 uint64_t TestFuncSample) const; 1312 }; 1313 } // end anonymous namespace 1314 1315 bool SampleOverlapAggregator::detectZeroSampleProfile( 1316 raw_fd_ostream &OS) const { 1317 bool HaveZeroSample = false; 1318 if (ProfOverlap.BaseSample == 0) { 1319 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 1320 HaveZeroSample = true; 1321 } 1322 if (ProfOverlap.TestSample == 0) { 1323 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 1324 HaveZeroSample = true; 1325 } 1326 return HaveZeroSample; 1327 } 1328 1329 double SampleOverlapAggregator::computeBlockSimilarity( 1330 uint64_t BaseSample, uint64_t TestSample, 1331 const SampleOverlapStats &FuncOverlap) const { 1332 double BaseFrac = 0.0; 1333 double TestFrac = 0.0; 1334 if (FuncOverlap.BaseSample > 0) 1335 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 1336 if (FuncOverlap.TestSample > 0) 1337 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 1338 return 1.0 - std::fabs(BaseFrac - TestFrac); 1339 } 1340 1341 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 1342 uint64_t TestSample, 1343 uint64_t HotBlockCount) { 1344 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 1345 bool IsTestHot = (TestSample >= TestHotThreshold); 1346 if (!IsBaseHot && !IsTestHot) 1347 return; 1348 1349 HotBlockOverlap.UnionCount += HotBlockCount; 1350 if (IsBaseHot) 1351 HotBlockOverlap.BaseCount += HotBlockCount; 1352 if (IsTestHot) 1353 HotBlockOverlap.TestCount += HotBlockCount; 1354 if (IsBaseHot && IsTestHot) 1355 HotBlockOverlap.OverlapCount += HotBlockCount; 1356 } 1357 1358 void SampleOverlapAggregator::getHotFunctions( 1359 const StringMap<FuncSampleStats> &ProfStats, 1360 StringMap<FuncSampleStats> &HotFunc, uint64_t HotThreshold) const { 1361 for (const auto &F : ProfStats) { 1362 if (isFunctionHot(F.second, HotThreshold)) 1363 HotFunc.try_emplace(F.first(), F.second); 1364 } 1365 } 1366 1367 void SampleOverlapAggregator::computeHotFuncOverlap() { 1368 StringMap<FuncSampleStats> BaseHotFunc; 1369 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 1370 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 1371 1372 StringMap<FuncSampleStats> TestHotFunc; 1373 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 1374 HotFuncOverlap.TestCount = TestHotFunc.size(); 1375 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 1376 1377 for (const auto &F : BaseHotFunc) { 1378 if (TestHotFunc.count(F.first())) 1379 ++HotFuncOverlap.OverlapCount; 1380 else 1381 ++HotFuncOverlap.UnionCount; 1382 } 1383 } 1384 1385 void SampleOverlapAggregator::updateOverlapStatsForFunction( 1386 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 1387 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 1388 assert(Status != MS_None && 1389 "Match status should be updated before updating overlap statistics"); 1390 if (Status == MS_FirstUnique) { 1391 TestSample = 0; 1392 FuncOverlap.BaseUniqueSample += BaseSample; 1393 } else if (Status == MS_SecondUnique) { 1394 BaseSample = 0; 1395 FuncOverlap.TestUniqueSample += TestSample; 1396 } else { 1397 ++FuncOverlap.OverlapCount; 1398 } 1399 1400 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 1401 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 1402 Difference += 1403 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 1404 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 1405 } 1406 1407 void SampleOverlapAggregator::updateForUnmatchedCallee( 1408 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 1409 double &Difference, MatchStatus Status) { 1410 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 1411 "Status must be either of the two unmatched cases"); 1412 FuncSampleStats FuncStats; 1413 if (Status == MS_FirstUnique) { 1414 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 1415 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 1416 FuncStats.HotBlockCount, FuncOverlap, 1417 Difference, Status); 1418 } else { 1419 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 1420 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 1421 FuncStats.HotBlockCount, FuncOverlap, 1422 Difference, Status); 1423 } 1424 } 1425 1426 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 1427 const sampleprof::FunctionSamples &BaseFunc, 1428 const sampleprof::FunctionSamples &TestFunc, 1429 SampleOverlapStats &FuncOverlap) { 1430 1431 using namespace sampleprof; 1432 1433 double Difference = 0; 1434 1435 // Accumulate Difference for regular line/block samples in the function. 1436 // We match them through sort-merge join algorithm because 1437 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 1438 // by their offsets. 1439 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 1440 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 1441 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 1442 BlockIterStep.updateOneStep(); 1443 while (!BlockIterStep.areBothFinished()) { 1444 uint64_t BaseSample = 1445 BlockIterStep.isFirstFinished() 1446 ? 0 1447 : BlockIterStep.getFirstIter()->second.getSamples(); 1448 uint64_t TestSample = 1449 BlockIterStep.isSecondFinished() 1450 ? 0 1451 : BlockIterStep.getSecondIter()->second.getSamples(); 1452 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 1453 Difference, BlockIterStep.getMatchStatus()); 1454 1455 BlockIterStep.updateOneStep(); 1456 } 1457 1458 // Accumulate Difference for callsite lines in the function. We match 1459 // them through sort-merge algorithm because 1460 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 1461 // ordered by their offsets. 1462 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 1463 BaseFunc.getCallsiteSamples().cbegin(), 1464 BaseFunc.getCallsiteSamples().cend(), 1465 TestFunc.getCallsiteSamples().cbegin(), 1466 TestFunc.getCallsiteSamples().cend()); 1467 CallsiteIterStep.updateOneStep(); 1468 while (!CallsiteIterStep.areBothFinished()) { 1469 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 1470 assert(CallsiteStepStatus != MS_None && 1471 "Match status should be updated before entering loop body"); 1472 1473 if (CallsiteStepStatus != MS_Match) { 1474 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 1475 ? CallsiteIterStep.getFirstIter() 1476 : CallsiteIterStep.getSecondIter(); 1477 for (const auto &F : Callsite->second) 1478 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 1479 CallsiteStepStatus); 1480 } else { 1481 // There may be multiple inlinees at the same offset, so we need to try 1482 // matching all of them. This match is implemented through sort-merge 1483 // algorithm because callsite records at the same offset are ordered by 1484 // function names. 1485 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 1486 CallsiteIterStep.getFirstIter()->second.cbegin(), 1487 CallsiteIterStep.getFirstIter()->second.cend(), 1488 CallsiteIterStep.getSecondIter()->second.cbegin(), 1489 CallsiteIterStep.getSecondIter()->second.cend()); 1490 CalleeIterStep.updateOneStep(); 1491 while (!CalleeIterStep.areBothFinished()) { 1492 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 1493 if (CalleeStepStatus != MS_Match) { 1494 auto Callee = (CalleeStepStatus == MS_FirstUnique) 1495 ? CalleeIterStep.getFirstIter() 1496 : CalleeIterStep.getSecondIter(); 1497 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 1498 CalleeStepStatus); 1499 } else { 1500 // An inlined function can contain other inlinees inside, so compute 1501 // the Difference recursively. 1502 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 1503 CalleeIterStep.getFirstIter()->second, 1504 CalleeIterStep.getSecondIter()->second, 1505 FuncOverlap); 1506 } 1507 CalleeIterStep.updateOneStep(); 1508 } 1509 } 1510 CallsiteIterStep.updateOneStep(); 1511 } 1512 1513 // Difference reflects the total differences of line/block samples in this 1514 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 1515 // reflect the similarity between function profiles in [0.0f to 1.0f]. 1516 return (2.0 - Difference) / 2; 1517 } 1518 1519 double SampleOverlapAggregator::weightForFuncSimilarity( 1520 double FuncInternalSimilarity, uint64_t BaseFuncSample, 1521 uint64_t TestFuncSample) const { 1522 // Compute the weight as the distance between the function weights in two 1523 // profiles. 1524 double BaseFrac = 0.0; 1525 double TestFrac = 0.0; 1526 assert(ProfOverlap.BaseSample > 0 && 1527 "Total samples in base profile should be greater than 0"); 1528 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 1529 assert(ProfOverlap.TestSample > 0 && 1530 "Total samples in test profile should be greater than 0"); 1531 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 1532 double WeightDistance = std::fabs(BaseFrac - TestFrac); 1533 1534 // Take WeightDistance into the similarity. 1535 return FuncInternalSimilarity * (1 - WeightDistance); 1536 } 1537 1538 double 1539 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 1540 uint64_t BaseFuncSample, 1541 uint64_t TestFuncSample) const { 1542 1543 double BaseFrac = 0.0; 1544 double TestFrac = 0.0; 1545 assert(ProfOverlap.BaseSample > 0 && 1546 "Total samples in base profile should be greater than 0"); 1547 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 1548 assert(ProfOverlap.TestSample > 0 && 1549 "Total samples in test profile should be greater than 0"); 1550 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 1551 return FuncSimilarity * (BaseFrac + TestFrac); 1552 } 1553 1554 double SampleOverlapAggregator::computeSampleFunctionOverlap( 1555 const sampleprof::FunctionSamples *BaseFunc, 1556 const sampleprof::FunctionSamples *TestFunc, 1557 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 1558 uint64_t TestFuncSample) { 1559 // Default function internal similarity before weighted, meaning two functions 1560 // has no overlap. 1561 const double DefaultFuncInternalSimilarity = 0; 1562 double FuncSimilarity; 1563 double FuncInternalSimilarity; 1564 1565 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 1566 // In this case, we use DefaultFuncInternalSimilarity as the function internal 1567 // similarity. 1568 if (!BaseFunc || !TestFunc) { 1569 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 1570 } else { 1571 assert(FuncOverlap != nullptr && 1572 "FuncOverlap should be provided in this case"); 1573 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 1574 *BaseFunc, *TestFunc, *FuncOverlap); 1575 // Now, FuncInternalSimilarity may be a little less than 0 due to 1576 // imprecision of floating point accumulations. Make it zero if the 1577 // difference is below Epsilon. 1578 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 1579 ? 0 1580 : FuncInternalSimilarity; 1581 } 1582 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 1583 BaseFuncSample, TestFuncSample); 1584 return FuncSimilarity; 1585 } 1586 1587 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 1588 using namespace sampleprof; 1589 1590 StringMap<const FunctionSamples *> BaseFuncProf; 1591 const auto &BaseProfiles = BaseReader->getProfiles(); 1592 for (const auto &BaseFunc : BaseProfiles) { 1593 BaseFuncProf.try_emplace(BaseFunc.second.getNameWithContext(), 1594 &(BaseFunc.second)); 1595 } 1596 ProfOverlap.UnionCount = BaseFuncProf.size(); 1597 1598 const auto &TestProfiles = TestReader->getProfiles(); 1599 for (const auto &TestFunc : TestProfiles) { 1600 SampleOverlapStats FuncOverlap; 1601 FuncOverlap.TestName = TestFunc.second.getNameWithContext(); 1602 assert(TestStats.count(FuncOverlap.TestName) && 1603 "TestStats should have records for all functions in test profile " 1604 "except inlinees"); 1605 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 1606 1607 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 1608 if (Match == BaseFuncProf.end()) { 1609 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 1610 ++ProfOverlap.TestUniqueCount; 1611 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 1612 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 1613 1614 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 1615 1616 double FuncSimilarity = computeSampleFunctionOverlap( 1617 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 1618 ProfOverlap.Similarity += 1619 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 1620 1621 ++ProfOverlap.UnionCount; 1622 ProfOverlap.UnionSample += FuncStats.SampleSum; 1623 } else { 1624 ++ProfOverlap.OverlapCount; 1625 1626 // Two functions match with each other. Compute function-level overlap and 1627 // aggregate them into profile-level overlap. 1628 FuncOverlap.BaseName = Match->second->getNameWithContext(); 1629 assert(BaseStats.count(FuncOverlap.BaseName) && 1630 "BaseStats should have records for all functions in base profile " 1631 "except inlinees"); 1632 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 1633 1634 FuncOverlap.Similarity = computeSampleFunctionOverlap( 1635 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 1636 FuncOverlap.TestSample); 1637 ProfOverlap.Similarity += 1638 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 1639 FuncOverlap.TestSample); 1640 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 1641 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 1642 1643 // Accumulate the percentage of base unique and test unique samples into 1644 // ProfOverlap. 1645 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 1646 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 1647 1648 // Remove matched base functions for later reporting functions not found 1649 // in test profile. 1650 BaseFuncProf.erase(Match); 1651 } 1652 1653 // Print function-level similarity information if specified by options. 1654 assert(TestStats.count(FuncOverlap.TestName) && 1655 "TestStats should have records for all functions in test profile " 1656 "except inlinees"); 1657 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 1658 (Match != BaseFuncProf.end() && 1659 FuncOverlap.Similarity < LowSimilarityThreshold) || 1660 (Match != BaseFuncProf.end() && !FuncFilter.NameFilter.empty() && 1661 FuncOverlap.BaseName.find(FuncFilter.NameFilter) != 1662 FuncOverlap.BaseName.npos)) { 1663 assert(ProfOverlap.BaseSample > 0 && 1664 "Total samples in base profile should be greater than 0"); 1665 FuncOverlap.BaseWeight = 1666 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 1667 assert(ProfOverlap.TestSample > 0 && 1668 "Total samples in test profile should be greater than 0"); 1669 FuncOverlap.TestWeight = 1670 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 1671 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 1672 } 1673 } 1674 1675 // Traverse through functions in base profile but not in test profile. 1676 for (const auto &F : BaseFuncProf) { 1677 assert(BaseStats.count(F.second->getNameWithContext()) && 1678 "BaseStats should have records for all functions in base profile " 1679 "except inlinees"); 1680 const FuncSampleStats &FuncStats = 1681 BaseStats[F.second->getNameWithContext()]; 1682 ++ProfOverlap.BaseUniqueCount; 1683 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 1684 1685 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 1686 1687 double FuncSimilarity = computeSampleFunctionOverlap( 1688 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 1689 ProfOverlap.Similarity += 1690 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 1691 1692 ProfOverlap.UnionSample += FuncStats.SampleSum; 1693 } 1694 1695 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 1696 // of floating point accumulations. Make it 1.0 if the difference is below 1697 // Epsilon. 1698 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 1699 ? 1 1700 : ProfOverlap.Similarity; 1701 1702 computeHotFuncOverlap(); 1703 } 1704 1705 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 1706 const auto &BaseProf = BaseReader->getProfiles(); 1707 for (const auto &I : BaseProf) { 1708 ++ProfOverlap.BaseCount; 1709 FuncSampleStats FuncStats; 1710 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 1711 ProfOverlap.BaseSample += FuncStats.SampleSum; 1712 BaseStats.try_emplace(I.second.getNameWithContext(), FuncStats); 1713 } 1714 1715 const auto &TestProf = TestReader->getProfiles(); 1716 for (const auto &I : TestProf) { 1717 ++ProfOverlap.TestCount; 1718 FuncSampleStats FuncStats; 1719 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 1720 ProfOverlap.TestSample += FuncStats.SampleSum; 1721 TestStats.try_emplace(I.second.getNameWithContext(), FuncStats); 1722 } 1723 1724 ProfOverlap.BaseName = StringRef(BaseFilename); 1725 ProfOverlap.TestName = StringRef(TestFilename); 1726 } 1727 1728 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 1729 using namespace sampleprof; 1730 1731 if (FuncSimilarityDump.empty()) 1732 return; 1733 1734 formatted_raw_ostream FOS(OS); 1735 FOS << "Function-level details:\n"; 1736 FOS << "Base weight"; 1737 FOS.PadToColumn(TestWeightCol); 1738 FOS << "Test weight"; 1739 FOS.PadToColumn(SimilarityCol); 1740 FOS << "Similarity"; 1741 FOS.PadToColumn(OverlapCol); 1742 FOS << "Overlap"; 1743 FOS.PadToColumn(BaseUniqueCol); 1744 FOS << "Base unique"; 1745 FOS.PadToColumn(TestUniqueCol); 1746 FOS << "Test unique"; 1747 FOS.PadToColumn(BaseSampleCol); 1748 FOS << "Base samples"; 1749 FOS.PadToColumn(TestSampleCol); 1750 FOS << "Test samples"; 1751 FOS.PadToColumn(FuncNameCol); 1752 FOS << "Function name\n"; 1753 for (const auto &F : FuncSimilarityDump) { 1754 double OverlapPercent = 1755 F.second.UnionSample > 0 1756 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 1757 : 0; 1758 double BaseUniquePercent = 1759 F.second.BaseSample > 0 1760 ? static_cast<double>(F.second.BaseUniqueSample) / 1761 F.second.BaseSample 1762 : 0; 1763 double TestUniquePercent = 1764 F.second.TestSample > 0 1765 ? static_cast<double>(F.second.TestUniqueSample) / 1766 F.second.TestSample 1767 : 0; 1768 1769 FOS << format("%.2f%%", F.second.BaseWeight * 100); 1770 FOS.PadToColumn(TestWeightCol); 1771 FOS << format("%.2f%%", F.second.TestWeight * 100); 1772 FOS.PadToColumn(SimilarityCol); 1773 FOS << format("%.2f%%", F.second.Similarity * 100); 1774 FOS.PadToColumn(OverlapCol); 1775 FOS << format("%.2f%%", OverlapPercent * 100); 1776 FOS.PadToColumn(BaseUniqueCol); 1777 FOS << format("%.2f%%", BaseUniquePercent * 100); 1778 FOS.PadToColumn(TestUniqueCol); 1779 FOS << format("%.2f%%", TestUniquePercent * 100); 1780 FOS.PadToColumn(BaseSampleCol); 1781 FOS << F.second.BaseSample; 1782 FOS.PadToColumn(TestSampleCol); 1783 FOS << F.second.TestSample; 1784 FOS.PadToColumn(FuncNameCol); 1785 FOS << F.second.TestName << "\n"; 1786 } 1787 } 1788 1789 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 1790 OS << "Profile overlap infomation for base_profile: " << ProfOverlap.BaseName 1791 << " and test_profile: " << ProfOverlap.TestName << "\nProgram level:\n"; 1792 1793 OS << " Whole program profile similarity: " 1794 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 1795 1796 assert(ProfOverlap.UnionSample > 0 && 1797 "Total samples in two profile should be greater than 0"); 1798 double OverlapPercent = 1799 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 1800 assert(ProfOverlap.BaseSample > 0 && 1801 "Total samples in base profile should be greater than 0"); 1802 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 1803 ProfOverlap.BaseSample; 1804 assert(ProfOverlap.TestSample > 0 && 1805 "Total samples in test profile should be greater than 0"); 1806 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 1807 ProfOverlap.TestSample; 1808 1809 OS << " Whole program sample overlap: " 1810 << format("%.3f%%", OverlapPercent * 100) << "\n"; 1811 OS << " percentage of samples unique in base profile: " 1812 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 1813 OS << " percentage of samples unique in test profile: " 1814 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 1815 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 1816 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 1817 1818 assert(ProfOverlap.UnionCount > 0 && 1819 "There should be at least one function in two input profiles"); 1820 double FuncOverlapPercent = 1821 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 1822 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 1823 << "\n"; 1824 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 1825 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 1826 << "\n"; 1827 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 1828 << "\n"; 1829 } 1830 1831 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 1832 raw_fd_ostream &OS) const { 1833 assert(HotFuncOverlap.UnionCount > 0 && 1834 "There should be at least one hot function in two input profiles"); 1835 OS << " Hot-function overlap: " 1836 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 1837 HotFuncOverlap.UnionCount * 100) 1838 << "\n"; 1839 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 1840 OS << " hot functions unique in base profile: " 1841 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 1842 OS << " hot functions unique in test profile: " 1843 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 1844 1845 assert(HotBlockOverlap.UnionCount > 0 && 1846 "There should be at least one hot block in two input profiles"); 1847 OS << " Hot-block overlap: " 1848 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 1849 HotBlockOverlap.UnionCount * 100) 1850 << "\n"; 1851 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 1852 OS << " hot blocks unique in base profile: " 1853 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 1854 OS << " hot blocks unique in test profile: " 1855 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 1856 } 1857 1858 std::error_code SampleOverlapAggregator::loadProfiles() { 1859 using namespace sampleprof; 1860 1861 LLVMContext Context; 1862 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context); 1863 if (std::error_code EC = BaseReaderOrErr.getError()) 1864 exitWithErrorCode(EC, BaseFilename); 1865 1866 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context); 1867 if (std::error_code EC = TestReaderOrErr.getError()) 1868 exitWithErrorCode(EC, TestFilename); 1869 1870 BaseReader = std::move(BaseReaderOrErr.get()); 1871 TestReader = std::move(TestReaderOrErr.get()); 1872 1873 if (std::error_code EC = BaseReader->read()) 1874 exitWithErrorCode(EC, BaseFilename); 1875 if (std::error_code EC = TestReader->read()) 1876 exitWithErrorCode(EC, TestFilename); 1877 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) 1878 exitWithError( 1879 "cannot compare probe-based profile with non-probe-based profile"); 1880 if (BaseReader->profileIsCS() != TestReader->profileIsCS()) 1881 exitWithError("cannot compare CS profile with non-CS profile"); 1882 1883 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 1884 // profile summary. 1885 const uint64_t HotCutoff = 990000; 1886 ProfileSummary &BasePS = BaseReader->getSummary(); 1887 for (const auto &SummaryEntry : BasePS.getDetailedSummary()) { 1888 if (SummaryEntry.Cutoff == HotCutoff) { 1889 BaseHotThreshold = SummaryEntry.MinCount; 1890 break; 1891 } 1892 } 1893 1894 ProfileSummary &TestPS = TestReader->getSummary(); 1895 for (const auto &SummaryEntry : TestPS.getDetailedSummary()) { 1896 if (SummaryEntry.Cutoff == HotCutoff) { 1897 TestHotThreshold = SummaryEntry.MinCount; 1898 break; 1899 } 1900 } 1901 return std::error_code(); 1902 } 1903 1904 void overlapSampleProfile(const std::string &BaseFilename, 1905 const std::string &TestFilename, 1906 const OverlapFuncFilters &FuncFilter, 1907 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 1908 using namespace sampleprof; 1909 1910 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 1911 // report 2--3 places after decimal point in percentage numbers. 1912 SampleOverlapAggregator OverlapAggr( 1913 BaseFilename, TestFilename, 1914 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 1915 if (std::error_code EC = OverlapAggr.loadProfiles()) 1916 exitWithErrorCode(EC); 1917 1918 OverlapAggr.initializeSampleProfileOverlap(); 1919 if (OverlapAggr.detectZeroSampleProfile(OS)) 1920 return; 1921 1922 OverlapAggr.computeSampleProfileOverlap(OS); 1923 1924 OverlapAggr.dumpProgramSummary(OS); 1925 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 1926 OverlapAggr.dumpFuncSimilarity(OS); 1927 } 1928 1929 static int overlap_main(int argc, const char *argv[]) { 1930 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 1931 cl::desc("<base profile file>")); 1932 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 1933 cl::desc("<test profile file>")); 1934 cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"), 1935 cl::desc("Output file")); 1936 cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output)); 1937 cl::opt<bool> IsCS( 1938 "cs", cl::init(false), 1939 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO.")); 1940 cl::opt<unsigned long long> ValueCutoff( 1941 "value-cutoff", cl::init(-1), 1942 cl::desc( 1943 "Function level overlap information for every function (with calling " 1944 "context for csspgo) in test " 1945 "profile with max count value greater then the parameter value")); 1946 cl::opt<std::string> FuncNameFilter( 1947 "function", 1948 cl::desc("Function level overlap information for matching functions. For " 1949 "CSSPGO this takes a a function name with calling context")); 1950 cl::opt<unsigned long long> SimilarityCutoff( 1951 "similarity-cutoff", cl::init(0), 1952 cl::desc("For sample profiles, list function names (with calling context " 1953 "for csspgo) for overlapped functions " 1954 "with similarities below the cutoff (percentage times 10000).")); 1955 cl::opt<ProfileKinds> ProfileKind( 1956 cl::desc("Profile kind:"), cl::init(instr), 1957 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 1958 clEnumVal(sample, "Sample profile"))); 1959 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n"); 1960 1961 std::error_code EC; 1962 raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_TextWithCRLF); 1963 if (EC) 1964 exitWithErrorCode(EC, Output); 1965 1966 if (ProfileKind == instr) 1967 overlapInstrProfile(BaseFilename, TestFilename, 1968 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS, 1969 IsCS); 1970 else 1971 overlapSampleProfile(BaseFilename, TestFilename, 1972 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, 1973 SimilarityCutoff, OS); 1974 1975 return 0; 1976 } 1977 1978 typedef struct ValueSitesStats { 1979 ValueSitesStats() 1980 : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0), 1981 TotalNumValues(0) {} 1982 uint64_t TotalNumValueSites; 1983 uint64_t TotalNumValueSitesWithValueProfile; 1984 uint64_t TotalNumValues; 1985 std::vector<unsigned> ValueSitesHistogram; 1986 } ValueSitesStats; 1987 1988 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 1989 ValueSitesStats &Stats, raw_fd_ostream &OS, 1990 InstrProfSymtab *Symtab) { 1991 uint32_t NS = Func.getNumValueSites(VK); 1992 Stats.TotalNumValueSites += NS; 1993 for (size_t I = 0; I < NS; ++I) { 1994 uint32_t NV = Func.getNumValueDataForSite(VK, I); 1995 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I); 1996 Stats.TotalNumValues += NV; 1997 if (NV) { 1998 Stats.TotalNumValueSitesWithValueProfile++; 1999 if (NV > Stats.ValueSitesHistogram.size()) 2000 Stats.ValueSitesHistogram.resize(NV, 0); 2001 Stats.ValueSitesHistogram[NV - 1]++; 2002 } 2003 2004 uint64_t SiteSum = 0; 2005 for (uint32_t V = 0; V < NV; V++) 2006 SiteSum += VD[V].Count; 2007 if (SiteSum == 0) 2008 SiteSum = 1; 2009 2010 for (uint32_t V = 0; V < NV; V++) { 2011 OS << "\t[ " << format("%2u", I) << ", "; 2012 if (Symtab == nullptr) 2013 OS << format("%4" PRIu64, VD[V].Value); 2014 else 2015 OS << Symtab->getFuncName(VD[V].Value); 2016 OS << ", " << format("%10" PRId64, VD[V].Count) << " ] (" 2017 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n"; 2018 } 2019 } 2020 } 2021 2022 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 2023 ValueSitesStats &Stats) { 2024 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 2025 OS << " Total number of sites with values: " 2026 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 2027 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 2028 2029 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 2030 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 2031 if (Stats.ValueSitesHistogram[I] > 0) 2032 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 2033 } 2034 } 2035 2036 static int showInstrProfile(const std::string &Filename, bool ShowCounts, 2037 uint32_t TopN, bool ShowIndirectCallTargets, 2038 bool ShowMemOPSizes, bool ShowDetailedSummary, 2039 std::vector<uint32_t> DetailedSummaryCutoffs, 2040 bool ShowAllFunctions, bool ShowCS, 2041 uint64_t ValueCutoff, bool OnlyListBelow, 2042 const std::string &ShowFunction, bool TextFormat, 2043 raw_fd_ostream &OS) { 2044 auto ReaderOrErr = InstrProfReader::create(Filename); 2045 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 2046 if (ShowDetailedSummary && Cutoffs.empty()) { 2047 Cutoffs = {800000, 900000, 950000, 990000, 999000, 999900, 999990}; 2048 } 2049 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 2050 if (Error E = ReaderOrErr.takeError()) 2051 exitWithError(std::move(E), Filename); 2052 2053 auto Reader = std::move(ReaderOrErr.get()); 2054 bool IsIRInstr = Reader->isIRLevelProfile(); 2055 size_t ShownFunctions = 0; 2056 size_t BelowCutoffFunctions = 0; 2057 int NumVPKind = IPVK_Last - IPVK_First + 1; 2058 std::vector<ValueSitesStats> VPStats(NumVPKind); 2059 2060 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2061 const std::pair<std::string, uint64_t> &v2) { 2062 return v1.second > v2.second; 2063 }; 2064 2065 std::priority_queue<std::pair<std::string, uint64_t>, 2066 std::vector<std::pair<std::string, uint64_t>>, 2067 decltype(MinCmp)> 2068 HottestFuncs(MinCmp); 2069 2070 if (!TextFormat && OnlyListBelow) { 2071 OS << "The list of functions with the maximum counter less than " 2072 << ValueCutoff << ":\n"; 2073 } 2074 2075 // Add marker so that IR-level instrumentation round-trips properly. 2076 if (TextFormat && IsIRInstr) 2077 OS << ":ir\n"; 2078 2079 for (const auto &Func : *Reader) { 2080 if (Reader->isIRLevelProfile()) { 2081 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2082 if (FuncIsCS != ShowCS) 2083 continue; 2084 } 2085 bool Show = 2086 ShowAllFunctions || (!ShowFunction.empty() && 2087 Func.Name.find(ShowFunction) != Func.Name.npos); 2088 2089 bool doTextFormatDump = (Show && TextFormat); 2090 2091 if (doTextFormatDump) { 2092 InstrProfSymtab &Symtab = Reader->getSymtab(); 2093 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2094 OS); 2095 continue; 2096 } 2097 2098 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2099 Builder.addRecord(Func); 2100 2101 uint64_t FuncMax = 0; 2102 uint64_t FuncSum = 0; 2103 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2104 if (Func.Counts[I] == (uint64_t)-1) 2105 continue; 2106 FuncMax = std::max(FuncMax, Func.Counts[I]); 2107 FuncSum += Func.Counts[I]; 2108 } 2109 2110 if (FuncMax < ValueCutoff) { 2111 ++BelowCutoffFunctions; 2112 if (OnlyListBelow) { 2113 OS << " " << Func.Name << ": (Max = " << FuncMax 2114 << " Sum = " << FuncSum << ")\n"; 2115 } 2116 continue; 2117 } else if (OnlyListBelow) 2118 continue; 2119 2120 if (TopN) { 2121 if (HottestFuncs.size() == TopN) { 2122 if (HottestFuncs.top().second < FuncMax) { 2123 HottestFuncs.pop(); 2124 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2125 } 2126 } else 2127 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2128 } 2129 2130 if (Show) { 2131 if (!ShownFunctions) 2132 OS << "Counters:\n"; 2133 2134 ++ShownFunctions; 2135 2136 OS << " " << Func.Name << ":\n" 2137 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2138 << " Counters: " << Func.Counts.size() << "\n"; 2139 if (!IsIRInstr) 2140 OS << " Function count: " << Func.Counts[0] << "\n"; 2141 2142 if (ShowIndirectCallTargets) 2143 OS << " Indirect Call Site Count: " 2144 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2145 2146 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2147 if (ShowMemOPSizes && NumMemOPCalls > 0) 2148 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2149 << "\n"; 2150 2151 if (ShowCounts) { 2152 OS << " Block counts: ["; 2153 size_t Start = (IsIRInstr ? 0 : 1); 2154 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2155 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2156 } 2157 OS << "]\n"; 2158 } 2159 2160 if (ShowIndirectCallTargets) { 2161 OS << " Indirect Target Results:\n"; 2162 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2163 VPStats[IPVK_IndirectCallTarget], OS, 2164 &(Reader->getSymtab())); 2165 } 2166 2167 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2168 OS << " Memory Intrinsic Size Results:\n"; 2169 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2170 nullptr); 2171 } 2172 } 2173 } 2174 if (Reader->hasError()) 2175 exitWithError(Reader->getError(), Filename); 2176 2177 if (TextFormat) 2178 return 0; 2179 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 2180 bool IsIR = Reader->isIRLevelProfile(); 2181 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 2182 if (IsIR) 2183 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 2184 OS << "\n"; 2185 if (ShowAllFunctions || !ShowFunction.empty()) 2186 OS << "Functions shown: " << ShownFunctions << "\n"; 2187 OS << "Total functions: " << PS->getNumFunctions() << "\n"; 2188 if (ValueCutoff > 0) { 2189 OS << "Number of functions with maximum count (< " << ValueCutoff 2190 << "): " << BelowCutoffFunctions << "\n"; 2191 OS << "Number of functions with maximum count (>= " << ValueCutoff 2192 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 2193 } 2194 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; 2195 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; 2196 2197 if (TopN) { 2198 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 2199 while (!HottestFuncs.empty()) { 2200 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 2201 HottestFuncs.pop(); 2202 } 2203 OS << "Top " << TopN 2204 << " functions with the largest internal block counts: \n"; 2205 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 2206 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 2207 } 2208 2209 if (ShownFunctions && ShowIndirectCallTargets) { 2210 OS << "Statistics for indirect call sites profile:\n"; 2211 showValueSitesStats(OS, IPVK_IndirectCallTarget, 2212 VPStats[IPVK_IndirectCallTarget]); 2213 } 2214 2215 if (ShownFunctions && ShowMemOPSizes) { 2216 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 2217 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 2218 } 2219 2220 if (ShowDetailedSummary) { 2221 OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; 2222 OS << "Total count: " << PS->getTotalCount() << "\n"; 2223 PS->printDetailedSummary(OS); 2224 } 2225 return 0; 2226 } 2227 2228 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 2229 raw_fd_ostream &OS) { 2230 if (!Reader->dumpSectionInfo(OS)) { 2231 WithColor::warning() << "-show-sec-info-only is only supported for " 2232 << "sample profile in extbinary format and is " 2233 << "ignored for other formats.\n"; 2234 return; 2235 } 2236 } 2237 2238 namespace { 2239 struct HotFuncInfo { 2240 StringRef FuncName; 2241 uint64_t TotalCount; 2242 double TotalCountPercent; 2243 uint64_t MaxCount; 2244 uint64_t EntryCount; 2245 2246 HotFuncInfo() 2247 : FuncName(), TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), 2248 EntryCount(0) {} 2249 2250 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 2251 : FuncName(FN), TotalCount(TS), TotalCountPercent(TSP), MaxCount(MS), 2252 EntryCount(ES) {} 2253 }; 2254 } // namespace 2255 2256 // Print out detailed information about hot functions in PrintValues vector. 2257 // Users specify titles and offset of every columns through ColumnTitle and 2258 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 2259 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 2260 // print out or let it be an empty string. 2261 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 2262 const std::vector<int> &ColumnOffset, 2263 const std::vector<HotFuncInfo> &PrintValues, 2264 uint64_t HotFuncCount, uint64_t TotalFuncCount, 2265 uint64_t HotProfCount, uint64_t TotalProfCount, 2266 const std::string &HotFuncMetric, 2267 raw_fd_ostream &OS) { 2268 assert(ColumnOffset.size() == ColumnTitle.size() && 2269 "ColumnOffset and ColumnTitle should have the same size"); 2270 assert(ColumnTitle.size() >= 4 && 2271 "ColumnTitle should have at least 4 elements"); 2272 assert(TotalFuncCount > 0 && 2273 "There should be at least one function in the profile"); 2274 double TotalProfPercent = 0; 2275 if (TotalProfCount > 0) 2276 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 2277 2278 formatted_raw_ostream FOS(OS); 2279 FOS << HotFuncCount << " out of " << TotalFuncCount 2280 << " functions with profile (" 2281 << format("%.2f%%", 2282 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 2283 << ") are considered hot functions"; 2284 if (!HotFuncMetric.empty()) 2285 FOS << " (" << HotFuncMetric << ")"; 2286 FOS << ".\n"; 2287 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 2288 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 2289 2290 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 2291 FOS.PadToColumn(ColumnOffset[I]); 2292 FOS << ColumnTitle[I]; 2293 } 2294 FOS << "\n"; 2295 2296 for (const HotFuncInfo &R : PrintValues) { 2297 FOS.PadToColumn(ColumnOffset[0]); 2298 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 2299 FOS.PadToColumn(ColumnOffset[1]); 2300 FOS << R.MaxCount; 2301 FOS.PadToColumn(ColumnOffset[2]); 2302 FOS << R.EntryCount; 2303 FOS.PadToColumn(ColumnOffset[3]); 2304 FOS << R.FuncName << "\n"; 2305 } 2306 } 2307 2308 static int 2309 showHotFunctionList(const StringMap<sampleprof::FunctionSamples> &Profiles, 2310 ProfileSummary &PS, raw_fd_ostream &OS) { 2311 using namespace sampleprof; 2312 2313 const uint32_t HotFuncCutoff = 990000; 2314 auto &SummaryVector = PS.getDetailedSummary(); 2315 uint64_t MinCountThreshold = 0; 2316 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 2317 if (SummaryEntry.Cutoff == HotFuncCutoff) { 2318 MinCountThreshold = SummaryEntry.MinCount; 2319 break; 2320 } 2321 } 2322 2323 // Traverse all functions in the profile and keep only hot functions. 2324 // The following loop also calculates the sum of total samples of all 2325 // functions. 2326 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 2327 std::greater<uint64_t>> 2328 HotFunc; 2329 uint64_t ProfileTotalSample = 0; 2330 uint64_t HotFuncSample = 0; 2331 uint64_t HotFuncCount = 0; 2332 2333 for (const auto &I : Profiles) { 2334 FuncSampleStats FuncStats; 2335 const FunctionSamples &FuncProf = I.second; 2336 ProfileTotalSample += FuncProf.getTotalSamples(); 2337 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 2338 2339 if (isFunctionHot(FuncStats, MinCountThreshold)) { 2340 HotFunc.emplace(FuncProf.getTotalSamples(), 2341 std::make_pair(&(I.second), FuncStats.MaxSample)); 2342 HotFuncSample += FuncProf.getTotalSamples(); 2343 ++HotFuncCount; 2344 } 2345 } 2346 2347 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 2348 "Entry sample", "Function name"}; 2349 std::vector<int> ColumnOffset{0, 24, 42, 58}; 2350 std::string Metric = 2351 std::string("max sample >= ") + std::to_string(MinCountThreshold); 2352 std::vector<HotFuncInfo> PrintValues; 2353 for (const auto &FuncPair : HotFunc) { 2354 const FunctionSamples &Func = *FuncPair.second.first; 2355 double TotalSamplePercent = 2356 (ProfileTotalSample > 0) 2357 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 2358 : 0; 2359 PrintValues.emplace_back(HotFuncInfo( 2360 Func.getNameWithContext(), Func.getTotalSamples(), TotalSamplePercent, 2361 FuncPair.second.second, Func.getEntrySamples())); 2362 } 2363 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 2364 Profiles.size(), HotFuncSample, ProfileTotalSample, 2365 Metric, OS); 2366 2367 return 0; 2368 } 2369 2370 static int showSampleProfile(const std::string &Filename, bool ShowCounts, 2371 bool ShowAllFunctions, bool ShowDetailedSummary, 2372 const std::string &ShowFunction, 2373 bool ShowProfileSymbolList, 2374 bool ShowSectionInfoOnly, bool ShowHotFuncList, 2375 raw_fd_ostream &OS) { 2376 using namespace sampleprof; 2377 LLVMContext Context; 2378 auto ReaderOrErr = SampleProfileReader::create(Filename, Context); 2379 if (std::error_code EC = ReaderOrErr.getError()) 2380 exitWithErrorCode(EC, Filename); 2381 2382 auto Reader = std::move(ReaderOrErr.get()); 2383 2384 if (ShowSectionInfoOnly) { 2385 showSectionInfo(Reader.get(), OS); 2386 return 0; 2387 } 2388 2389 if (std::error_code EC = Reader->read()) 2390 exitWithErrorCode(EC, Filename); 2391 2392 if (ShowAllFunctions || ShowFunction.empty()) 2393 Reader->dump(OS); 2394 else 2395 Reader->dumpFunctionProfile(ShowFunction, OS); 2396 2397 if (ShowProfileSymbolList) { 2398 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 2399 Reader->getProfileSymbolList(); 2400 ReaderList->dump(OS); 2401 } 2402 2403 if (ShowDetailedSummary) { 2404 auto &PS = Reader->getSummary(); 2405 PS.printSummary(OS); 2406 PS.printDetailedSummary(OS); 2407 } 2408 2409 if (ShowHotFuncList) 2410 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), OS); 2411 2412 return 0; 2413 } 2414 2415 static int show_main(int argc, const char *argv[]) { 2416 cl::opt<std::string> Filename(cl::Positional, cl::Required, 2417 cl::desc("<profdata-file>")); 2418 2419 cl::opt<bool> ShowCounts("counts", cl::init(false), 2420 cl::desc("Show counter values for shown functions")); 2421 cl::opt<bool> TextFormat( 2422 "text", cl::init(false), 2423 cl::desc("Show instr profile data in text dump format")); 2424 cl::opt<bool> ShowIndirectCallTargets( 2425 "ic-targets", cl::init(false), 2426 cl::desc("Show indirect call site target values for shown functions")); 2427 cl::opt<bool> ShowMemOPSizes( 2428 "memop-sizes", cl::init(false), 2429 cl::desc("Show the profiled sizes of the memory intrinsic calls " 2430 "for shown functions")); 2431 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 2432 cl::desc("Show detailed profile summary")); 2433 cl::list<uint32_t> DetailedSummaryCutoffs( 2434 cl::CommaSeparated, "detailed-summary-cutoffs", 2435 cl::desc( 2436 "Cutoff percentages (times 10000) for generating detailed summary"), 2437 cl::value_desc("800000,901000,999999")); 2438 cl::opt<bool> ShowHotFuncList( 2439 "hot-func-list", cl::init(false), 2440 cl::desc("Show profile summary of a list of hot functions")); 2441 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 2442 cl::desc("Details for every function")); 2443 cl::opt<bool> ShowCS("showcs", cl::init(false), 2444 cl::desc("Show context sensitive counts")); 2445 cl::opt<std::string> ShowFunction("function", 2446 cl::desc("Details for matching functions")); 2447 2448 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 2449 cl::init("-"), cl::desc("Output file")); 2450 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 2451 cl::aliasopt(OutputFilename)); 2452 cl::opt<ProfileKinds> ProfileKind( 2453 cl::desc("Profile kind:"), cl::init(instr), 2454 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 2455 clEnumVal(sample, "Sample profile"))); 2456 cl::opt<uint32_t> TopNFunctions( 2457 "topn", cl::init(0), 2458 cl::desc("Show the list of functions with the largest internal counts")); 2459 cl::opt<uint32_t> ValueCutoff( 2460 "value-cutoff", cl::init(0), 2461 cl::desc("Set the count value cutoff. Functions with the maximum count " 2462 "less than this value will not be printed out. (Default is 0)")); 2463 cl::opt<bool> OnlyListBelow( 2464 "list-below-cutoff", cl::init(false), 2465 cl::desc("Only output names of functions whose max count values are " 2466 "below the cutoff value")); 2467 cl::opt<bool> ShowProfileSymbolList( 2468 "show-prof-sym-list", cl::init(false), 2469 cl::desc("Show profile symbol list if it exists in the profile. ")); 2470 cl::opt<bool> ShowSectionInfoOnly( 2471 "show-sec-info-only", cl::init(false), 2472 cl::desc("Show the information of each section in the sample profile. " 2473 "The flag is only usable when the sample profile is in " 2474 "extbinary format")); 2475 2476 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n"); 2477 2478 if (OutputFilename.empty()) 2479 OutputFilename = "-"; 2480 2481 if (Filename == OutputFilename) { 2482 errs() << sys::path::filename(argv[0]) 2483 << ": Input file name cannot be the same as the output file name!\n"; 2484 return 1; 2485 } 2486 2487 std::error_code EC; 2488 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 2489 if (EC) 2490 exitWithErrorCode(EC, OutputFilename); 2491 2492 if (ShowAllFunctions && !ShowFunction.empty()) 2493 WithColor::warning() << "-function argument ignored: showing all functions\n"; 2494 2495 if (ProfileKind == instr) 2496 return showInstrProfile(Filename, ShowCounts, TopNFunctions, 2497 ShowIndirectCallTargets, ShowMemOPSizes, 2498 ShowDetailedSummary, DetailedSummaryCutoffs, 2499 ShowAllFunctions, ShowCS, ValueCutoff, 2500 OnlyListBelow, ShowFunction, TextFormat, OS); 2501 else 2502 return showSampleProfile(Filename, ShowCounts, ShowAllFunctions, 2503 ShowDetailedSummary, ShowFunction, 2504 ShowProfileSymbolList, ShowSectionInfoOnly, 2505 ShowHotFuncList, OS); 2506 } 2507 2508 int main(int argc, const char *argv[]) { 2509 InitLLVM X(argc, argv); 2510 2511 StringRef ProgName(sys::path::filename(argv[0])); 2512 if (argc > 1) { 2513 int (*func)(int, const char *[]) = nullptr; 2514 2515 if (strcmp(argv[1], "merge") == 0) 2516 func = merge_main; 2517 else if (strcmp(argv[1], "show") == 0) 2518 func = show_main; 2519 else if (strcmp(argv[1], "overlap") == 0) 2520 func = overlap_main; 2521 2522 if (func) { 2523 std::string Invocation(ProgName.str() + " " + argv[1]); 2524 argv[1] = Invocation.c_str(); 2525 return func(argc - 1, argv + 1); 2526 } 2527 2528 if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 || 2529 strcmp(argv[1], "--help") == 0) { 2530 2531 errs() << "OVERVIEW: LLVM profile data tools\n\n" 2532 << "USAGE: " << ProgName << " <command> [args...]\n" 2533 << "USAGE: " << ProgName << " <command> -help\n\n" 2534 << "See each individual command --help for more details.\n" 2535 << "Available commands: merge, show, overlap\n"; 2536 return 0; 2537 } 2538 } 2539 2540 if (argc < 2) 2541 errs() << ProgName << ": No command specified!\n"; 2542 else 2543 errs() << ProgName << ": Unknown command!\n"; 2544 2545 errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n"; 2546 return 1; 2547 } 2548