1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/IR/LLVMContext.h" 17 #include "llvm/ProfileData/InstrProfReader.h" 18 #include "llvm/ProfileData/InstrProfWriter.h" 19 #include "llvm/ProfileData/ProfileCommon.h" 20 #include "llvm/ProfileData/SampleProfReader.h" 21 #include "llvm/ProfileData/SampleProfWriter.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Errc.h" 24 #include "llvm/Support/FileSystem.h" 25 #include "llvm/Support/Format.h" 26 #include "llvm/Support/FormattedStream.h" 27 #include "llvm/Support/InitLLVM.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/ThreadPool.h" 31 #include "llvm/Support/Threading.h" 32 #include "llvm/Support/WithColor.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> 35 36 using namespace llvm; 37 38 enum ProfileFormat { 39 PF_None = 0, 40 PF_Text, 41 PF_Compact_Binary, 42 PF_Ext_Binary, 43 PF_GCC, 44 PF_Binary 45 }; 46 47 static void warn(Twine Message, std::string Whence = "", 48 std::string Hint = "") { 49 WithColor::warning(); 50 if (!Whence.empty()) 51 errs() << Whence << ": "; 52 errs() << Message << "\n"; 53 if (!Hint.empty()) 54 WithColor::note() << Hint << "\n"; 55 } 56 57 static void exitWithError(Twine Message, std::string Whence = "", 58 std::string Hint = "") { 59 WithColor::error(); 60 if (!Whence.empty()) 61 errs() << Whence << ": "; 62 errs() << Message << "\n"; 63 if (!Hint.empty()) 64 WithColor::note() << Hint << "\n"; 65 ::exit(1); 66 } 67 68 static void exitWithError(Error E, StringRef Whence = "") { 69 if (E.isA<InstrProfError>()) { 70 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 71 instrprof_error instrError = IPE.get(); 72 StringRef Hint = ""; 73 if (instrError == instrprof_error::unrecognized_format) { 74 // Hint for common error of forgetting --sample for sample profiles. 75 Hint = "Perhaps you forgot to use the --sample option?"; 76 } 77 exitWithError(IPE.message(), std::string(Whence), std::string(Hint)); 78 }); 79 } 80 81 exitWithError(toString(std::move(E)), std::string(Whence)); 82 } 83 84 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 85 exitWithError(EC.message(), std::string(Whence)); 86 } 87 88 namespace { 89 enum ProfileKinds { instr, sample }; 90 enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid }; 91 } 92 93 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 94 StringRef Whence = "") { 95 if (FailMode == failIfAnyAreInvalid) 96 exitWithErrorCode(EC, Whence); 97 else 98 warn(EC.message(), std::string(Whence)); 99 } 100 101 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 102 StringRef WhenceFunction = "", 103 bool ShowHint = true) { 104 if (!WhenceFile.empty()) 105 errs() << WhenceFile << ": "; 106 if (!WhenceFunction.empty()) 107 errs() << WhenceFunction << ": "; 108 109 auto IPE = instrprof_error::success; 110 E = handleErrors(std::move(E), 111 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 112 IPE = E->get(); 113 return Error(std::move(E)); 114 }); 115 errs() << toString(std::move(E)) << "\n"; 116 117 if (ShowHint) { 118 StringRef Hint = ""; 119 if (IPE != instrprof_error::success) { 120 switch (IPE) { 121 case instrprof_error::hash_mismatch: 122 case instrprof_error::count_mismatch: 123 case instrprof_error::value_site_count_mismatch: 124 Hint = "Make sure that all profile data to be merged is generated " 125 "from the same binary."; 126 break; 127 default: 128 break; 129 } 130 } 131 132 if (!Hint.empty()) 133 errs() << Hint << "\n"; 134 } 135 } 136 137 namespace { 138 /// A remapper from original symbol names to new symbol names based on a file 139 /// containing a list of mappings from old name to new name. 140 class SymbolRemapper { 141 std::unique_ptr<MemoryBuffer> File; 142 DenseMap<StringRef, StringRef> RemappingTable; 143 144 public: 145 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 146 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 147 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 148 if (!BufOrError) 149 exitWithErrorCode(BufOrError.getError(), InputFile); 150 151 auto Remapper = std::make_unique<SymbolRemapper>(); 152 Remapper->File = std::move(BufOrError.get()); 153 154 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 155 !LineIt.is_at_eof(); ++LineIt) { 156 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 157 if (Parts.first.empty() || Parts.second.empty() || 158 Parts.second.count(' ')) { 159 exitWithError("unexpected line in remapping file", 160 (InputFile + ":" + Twine(LineIt.line_number())).str(), 161 "expected 'old_symbol new_symbol'"); 162 } 163 Remapper->RemappingTable.insert(Parts); 164 } 165 return Remapper; 166 } 167 168 /// Attempt to map the given old symbol into a new symbol. 169 /// 170 /// \return The new symbol, or \p Name if no such symbol was found. 171 StringRef operator()(StringRef Name) { 172 StringRef New = RemappingTable.lookup(Name); 173 return New.empty() ? Name : New; 174 } 175 }; 176 } 177 178 struct WeightedFile { 179 std::string Filename; 180 uint64_t Weight; 181 }; 182 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 183 184 /// Keep track of merged data and reported errors. 185 struct WriterContext { 186 std::mutex Lock; 187 InstrProfWriter Writer; 188 std::vector<std::pair<Error, std::string>> Errors; 189 std::mutex &ErrLock; 190 SmallSet<instrprof_error, 4> &WriterErrorCodes; 191 192 WriterContext(bool IsSparse, std::mutex &ErrLock, 193 SmallSet<instrprof_error, 4> &WriterErrorCodes) 194 : Lock(), Writer(IsSparse), Errors(), ErrLock(ErrLock), 195 WriterErrorCodes(WriterErrorCodes) {} 196 }; 197 198 /// Computer the overlap b/w profile BaseFilename and TestFileName, 199 /// and store the program level result to Overlap. 200 static void overlapInput(const std::string &BaseFilename, 201 const std::string &TestFilename, WriterContext *WC, 202 OverlapStats &Overlap, 203 const OverlapFuncFilters &FuncFilter, 204 raw_fd_ostream &OS, bool IsCS) { 205 auto ReaderOrErr = InstrProfReader::create(TestFilename); 206 if (Error E = ReaderOrErr.takeError()) { 207 // Skip the empty profiles by returning sliently. 208 instrprof_error IPE = InstrProfError::take(std::move(E)); 209 if (IPE != instrprof_error::empty_raw_profile) 210 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename); 211 return; 212 } 213 214 auto Reader = std::move(ReaderOrErr.get()); 215 for (auto &I : *Reader) { 216 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 217 FuncOverlap.setFuncInfo(I.Name, I.Hash); 218 219 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 220 FuncOverlap.dump(OS); 221 } 222 } 223 224 /// Load an input into a writer context. 225 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 226 WriterContext *WC) { 227 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 228 229 // Copy the filename, because llvm::ThreadPool copied the input "const 230 // WeightedFile &" by value, making a reference to the filename within it 231 // invalid outside of this packaged task. 232 std::string Filename = Input.Filename; 233 234 auto ReaderOrErr = InstrProfReader::create(Input.Filename); 235 if (Error E = ReaderOrErr.takeError()) { 236 // Skip the empty profiles by returning sliently. 237 instrprof_error IPE = InstrProfError::take(std::move(E)); 238 if (IPE != instrprof_error::empty_raw_profile) 239 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename); 240 return; 241 } 242 243 auto Reader = std::move(ReaderOrErr.get()); 244 bool IsIRProfile = Reader->isIRLevelProfile(); 245 bool HasCSIRProfile = Reader->hasCSIRLevelProfile(); 246 if (WC->Writer.setIsIRLevelProfile(IsIRProfile, HasCSIRProfile)) { 247 WC->Errors.emplace_back( 248 make_error<StringError>( 249 "Merge IR generated profile with Clang generated profile.", 250 std::error_code()), 251 Filename); 252 return; 253 } 254 WC->Writer.setInstrEntryBBEnabled(Reader->instrEntryBBEnabled()); 255 256 for (auto &I : *Reader) { 257 if (Remapper) 258 I.Name = (*Remapper)(I.Name); 259 const StringRef FuncName = I.Name; 260 bool Reported = false; 261 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 262 if (Reported) { 263 consumeError(std::move(E)); 264 return; 265 } 266 Reported = true; 267 // Only show hint the first time an error occurs. 268 instrprof_error IPE = InstrProfError::take(std::move(E)); 269 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 270 bool firstTime = WC->WriterErrorCodes.insert(IPE).second; 271 handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename, 272 FuncName, firstTime); 273 }); 274 } 275 if (Reader->hasError()) 276 if (Error E = Reader->getError()) 277 WC->Errors.emplace_back(std::move(E), Filename); 278 } 279 280 /// Merge the \p Src writer context into \p Dst. 281 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 282 for (auto &ErrorPair : Src->Errors) 283 Dst->Errors.push_back(std::move(ErrorPair)); 284 Src->Errors.clear(); 285 286 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 287 instrprof_error IPE = InstrProfError::take(std::move(E)); 288 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 289 bool firstTime = Dst->WriterErrorCodes.insert(IPE).second; 290 if (firstTime) 291 warn(toString(make_error<InstrProfError>(IPE))); 292 }); 293 } 294 295 static void writeInstrProfile(StringRef OutputFilename, 296 ProfileFormat OutputFormat, 297 InstrProfWriter &Writer) { 298 std::error_code EC; 299 raw_fd_ostream Output(OutputFilename.data(), EC, sys::fs::OF_None); 300 if (EC) 301 exitWithErrorCode(EC, OutputFilename); 302 303 if (OutputFormat == PF_Text) { 304 if (Error E = Writer.writeText(Output)) 305 exitWithError(std::move(E)); 306 } else { 307 Writer.write(Output); 308 } 309 } 310 311 static void mergeInstrProfile(const WeightedFileVector &Inputs, 312 SymbolRemapper *Remapper, 313 StringRef OutputFilename, 314 ProfileFormat OutputFormat, bool OutputSparse, 315 unsigned NumThreads, FailureMode FailMode) { 316 if (OutputFilename.compare("-") == 0) 317 exitWithError("Cannot write indexed profdata format to stdout."); 318 319 if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary && 320 OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text) 321 exitWithError("Unknown format is specified."); 322 323 std::mutex ErrorLock; 324 SmallSet<instrprof_error, 4> WriterErrorCodes; 325 326 // If NumThreads is not specified, auto-detect a good default. 327 if (NumThreads == 0) 328 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 329 unsigned((Inputs.size() + 1) / 2)); 330 // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails 331 // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't 332 // merged, thus the emitted file ends up with a PF_Unknown kind. 333 334 // Initialize the writer contexts. 335 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 336 for (unsigned I = 0; I < NumThreads; ++I) 337 Contexts.emplace_back(std::make_unique<WriterContext>( 338 OutputSparse, ErrorLock, WriterErrorCodes)); 339 340 if (NumThreads == 1) { 341 for (const auto &Input : Inputs) 342 loadInput(Input, Remapper, Contexts[0].get()); 343 } else { 344 ThreadPool Pool(hardware_concurrency(NumThreads)); 345 346 // Load the inputs in parallel (N/NumThreads serial steps). 347 unsigned Ctx = 0; 348 for (const auto &Input : Inputs) { 349 Pool.async(loadInput, Input, Remapper, Contexts[Ctx].get()); 350 Ctx = (Ctx + 1) % NumThreads; 351 } 352 Pool.wait(); 353 354 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 355 unsigned Mid = Contexts.size() / 2; 356 unsigned End = Contexts.size(); 357 assert(Mid > 0 && "Expected more than one context"); 358 do { 359 for (unsigned I = 0; I < Mid; ++I) 360 Pool.async(mergeWriterContexts, Contexts[I].get(), 361 Contexts[I + Mid].get()); 362 Pool.wait(); 363 if (End & 1) { 364 Pool.async(mergeWriterContexts, Contexts[0].get(), 365 Contexts[End - 1].get()); 366 Pool.wait(); 367 } 368 End = Mid; 369 Mid /= 2; 370 } while (Mid > 0); 371 } 372 373 // Handle deferred errors encountered during merging. If the number of errors 374 // is equal to the number of inputs the merge failed. 375 unsigned NumErrors = 0; 376 for (std::unique_ptr<WriterContext> &WC : Contexts) { 377 for (auto &ErrorPair : WC->Errors) { 378 ++NumErrors; 379 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 380 } 381 } 382 if (NumErrors == Inputs.size() || 383 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 384 exitWithError("No profiles could be merged."); 385 386 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 387 } 388 389 /// The profile entry for a function in instrumentation profile. 390 struct InstrProfileEntry { 391 uint64_t MaxCount = 0; 392 float ZeroCounterRatio = 0.0; 393 InstrProfRecord *ProfRecord; 394 InstrProfileEntry(InstrProfRecord *Record); 395 InstrProfileEntry() = default; 396 }; 397 398 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 399 ProfRecord = Record; 400 uint64_t CntNum = Record->Counts.size(); 401 uint64_t ZeroCntNum = 0; 402 for (size_t I = 0; I < CntNum; ++I) { 403 MaxCount = std::max(MaxCount, Record->Counts[I]); 404 ZeroCntNum += !Record->Counts[I]; 405 } 406 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 407 } 408 409 /// Either set all the counters in the instr profile entry \p IFE to -1 410 /// in order to drop the profile or scale up the counters in \p IFP to 411 /// be above hot threshold. We use the ratio of zero counters in the 412 /// profile of a function to decide the profile is helpful or harmful 413 /// for performance, and to choose whether to scale up or drop it. 414 static void updateInstrProfileEntry(InstrProfileEntry &IFE, 415 uint64_t HotInstrThreshold, 416 float ZeroCounterThreshold) { 417 InstrProfRecord *ProfRecord = IFE.ProfRecord; 418 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 419 // If all or most of the counters of the function are zero, the 420 // profile is unaccountable and shuld be dropped. Reset all the 421 // counters to be -1 and PGO profile-use will drop the profile. 422 // All counters being -1 also implies that the function is hot so 423 // PGO profile-use will also set the entry count metadata to be 424 // above hot threshold. 425 for (size_t I = 0; I < ProfRecord->Counts.size(); ++I) 426 ProfRecord->Counts[I] = -1; 427 return; 428 } 429 430 // Scale up the MaxCount to be multiple times above hot threshold. 431 const unsigned MultiplyFactor = 3; 432 uint64_t Numerator = HotInstrThreshold * MultiplyFactor; 433 uint64_t Denominator = IFE.MaxCount; 434 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 435 warn(toString(make_error<InstrProfError>(E))); 436 }); 437 } 438 439 const uint64_t ColdPercentileIdx = 15; 440 const uint64_t HotPercentileIdx = 11; 441 442 /// Adjust the instr profile in \p WC based on the sample profile in 443 /// \p Reader. 444 static void 445 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 446 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 447 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 448 unsigned InstrProfColdThreshold) { 449 // Function to its entry in instr profile. 450 StringMap<InstrProfileEntry> InstrProfileMap; 451 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 452 for (auto &PD : WC->Writer.getProfileData()) { 453 // Populate IPBuilder. 454 for (const auto &PDV : PD.getValue()) { 455 InstrProfRecord Record = PDV.second; 456 IPBuilder.addRecord(Record); 457 } 458 459 // If a function has multiple entries in instr profile, skip it. 460 if (PD.getValue().size() != 1) 461 continue; 462 463 // Initialize InstrProfileMap. 464 InstrProfRecord *R = &PD.getValue().begin()->second; 465 InstrProfileMap[PD.getKey()] = InstrProfileEntry(R); 466 } 467 468 ProfileSummary InstrPS = *IPBuilder.getSummary(); 469 ProfileSummary SamplePS = Reader->getSummary(); 470 471 // Compute cold thresholds for instr profile and sample profile. 472 uint64_t ColdSampleThreshold = 473 ProfileSummaryBuilder::getEntryForPercentile( 474 SamplePS.getDetailedSummary(), 475 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 476 .MinCount; 477 uint64_t HotInstrThreshold = 478 ProfileSummaryBuilder::getEntryForPercentile( 479 InstrPS.getDetailedSummary(), 480 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 481 .MinCount; 482 uint64_t ColdInstrThreshold = 483 InstrProfColdThreshold 484 ? InstrProfColdThreshold 485 : ProfileSummaryBuilder::getEntryForPercentile( 486 InstrPS.getDetailedSummary(), 487 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 488 .MinCount; 489 490 // Find hot/warm functions in sample profile which is cold in instr profile 491 // and adjust the profiles of those functions in the instr profile. 492 for (const auto &PD : Reader->getProfiles()) { 493 StringRef FName = PD.getKey(); 494 const sampleprof::FunctionSamples &FS = PD.getValue(); 495 auto It = InstrProfileMap.find(FName); 496 if (FS.getHeadSamples() > ColdSampleThreshold && 497 It != InstrProfileMap.end() && 498 It->second.MaxCount <= ColdInstrThreshold && 499 FS.getBodySamples().size() >= SupplMinSizeThreshold) { 500 updateInstrProfileEntry(It->second, HotInstrThreshold, 501 ZeroCounterThreshold); 502 } 503 } 504 } 505 506 /// The main function to supplement instr profile with sample profile. 507 /// \Inputs contains the instr profile. \p SampleFilename specifies the 508 /// sample profile. \p OutputFilename specifies the output profile name. 509 /// \p OutputFormat specifies the output profile format. \p OutputSparse 510 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 511 /// specifies the minimal size for the functions whose profile will be 512 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 513 /// a function contains too many zero counters and whether its profile 514 /// should be dropped. \p InstrProfColdThreshold is the user specified 515 /// cold threshold which will override the cold threshold got from the 516 /// instr profile summary. 517 static void supplementInstrProfile( 518 const WeightedFileVector &Inputs, StringRef SampleFilename, 519 StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse, 520 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 521 unsigned InstrProfColdThreshold) { 522 if (OutputFilename.compare("-") == 0) 523 exitWithError("Cannot write indexed profdata format to stdout."); 524 if (Inputs.size() != 1) 525 exitWithError("Expect one input to be an instr profile."); 526 if (Inputs[0].Weight != 1) 527 exitWithError("Expect instr profile doesn't have weight."); 528 529 StringRef InstrFilename = Inputs[0].Filename; 530 531 // Read sample profile. 532 LLVMContext Context; 533 auto ReaderOrErr = 534 sampleprof::SampleProfileReader::create(SampleFilename.str(), Context); 535 if (std::error_code EC = ReaderOrErr.getError()) 536 exitWithErrorCode(EC, SampleFilename); 537 auto Reader = std::move(ReaderOrErr.get()); 538 if (std::error_code EC = Reader->read()) 539 exitWithErrorCode(EC, SampleFilename); 540 541 // Read instr profile. 542 std::mutex ErrorLock; 543 SmallSet<instrprof_error, 4> WriterErrorCodes; 544 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 545 WriterErrorCodes); 546 loadInput(Inputs[0], nullptr, WC.get()); 547 if (WC->Errors.size() > 0) 548 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 549 550 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 551 InstrProfColdThreshold); 552 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 553 } 554 555 /// Make a copy of the given function samples with all symbol names remapped 556 /// by the provided symbol remapper. 557 static sampleprof::FunctionSamples 558 remapSamples(const sampleprof::FunctionSamples &Samples, 559 SymbolRemapper &Remapper, sampleprof_error &Error) { 560 sampleprof::FunctionSamples Result; 561 Result.setName(Remapper(Samples.getName())); 562 Result.addTotalSamples(Samples.getTotalSamples()); 563 Result.addHeadSamples(Samples.getHeadSamples()); 564 for (const auto &BodySample : Samples.getBodySamples()) { 565 Result.addBodySamples(BodySample.first.LineOffset, 566 BodySample.first.Discriminator, 567 BodySample.second.getSamples()); 568 for (const auto &Target : BodySample.second.getCallTargets()) { 569 Result.addCalledTargetSamples(BodySample.first.LineOffset, 570 BodySample.first.Discriminator, 571 Remapper(Target.first()), Target.second); 572 } 573 } 574 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 575 sampleprof::FunctionSamplesMap &Target = 576 Result.functionSamplesAt(CallsiteSamples.first); 577 for (const auto &Callsite : CallsiteSamples.second) { 578 sampleprof::FunctionSamples Remapped = 579 remapSamples(Callsite.second, Remapper, Error); 580 MergeResult(Error, 581 Target[std::string(Remapped.getName())].merge(Remapped)); 582 } 583 } 584 return Result; 585 } 586 587 static sampleprof::SampleProfileFormat FormatMap[] = { 588 sampleprof::SPF_None, 589 sampleprof::SPF_Text, 590 sampleprof::SPF_Compact_Binary, 591 sampleprof::SPF_Ext_Binary, 592 sampleprof::SPF_GCC, 593 sampleprof::SPF_Binary}; 594 595 static std::unique_ptr<MemoryBuffer> 596 getInputFileBuf(const StringRef &InputFile) { 597 if (InputFile == "") 598 return {}; 599 600 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 601 if (!BufOrError) 602 exitWithErrorCode(BufOrError.getError(), InputFile); 603 604 return std::move(*BufOrError); 605 } 606 607 static void populateProfileSymbolList(MemoryBuffer *Buffer, 608 sampleprof::ProfileSymbolList &PSL) { 609 if (!Buffer) 610 return; 611 612 SmallVector<StringRef, 32> SymbolVec; 613 StringRef Data = Buffer->getBuffer(); 614 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 615 616 for (StringRef symbol : SymbolVec) 617 PSL.add(symbol); 618 } 619 620 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 621 ProfileFormat OutputFormat, 622 MemoryBuffer *Buffer, 623 sampleprof::ProfileSymbolList &WriterList, 624 bool CompressAllSections, bool UseMD5, 625 bool GenPartialProfile) { 626 populateProfileSymbolList(Buffer, WriterList); 627 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 628 warn("Profile Symbol list is not empty but the output format is not " 629 "ExtBinary format. The list will be lost in the output. "); 630 631 Writer.setProfileSymbolList(&WriterList); 632 633 if (CompressAllSections) { 634 if (OutputFormat != PF_Ext_Binary) 635 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 636 else 637 Writer.setToCompressAllSections(); 638 } 639 if (UseMD5) { 640 if (OutputFormat != PF_Ext_Binary) 641 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 642 else 643 Writer.setUseMD5(); 644 } 645 if (GenPartialProfile) { 646 if (OutputFormat != PF_Ext_Binary) 647 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 648 else 649 Writer.setPartialProfile(); 650 } 651 } 652 653 static void 654 mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper, 655 StringRef OutputFilename, ProfileFormat OutputFormat, 656 StringRef ProfileSymbolListFile, bool CompressAllSections, 657 bool UseMD5, bool GenPartialProfile, FailureMode FailMode) { 658 using namespace sampleprof; 659 StringMap<FunctionSamples> ProfileMap; 660 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 661 LLVMContext Context; 662 sampleprof::ProfileSymbolList WriterList; 663 Optional<bool> ProfileIsProbeBased; 664 for (const auto &Input : Inputs) { 665 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context); 666 if (std::error_code EC = ReaderOrErr.getError()) { 667 warnOrExitGivenError(FailMode, EC, Input.Filename); 668 continue; 669 } 670 671 // We need to keep the readers around until after all the files are 672 // read so that we do not lose the function names stored in each 673 // reader's memory. The function names are needed to write out the 674 // merged profile map. 675 Readers.push_back(std::move(ReaderOrErr.get())); 676 const auto Reader = Readers.back().get(); 677 if (std::error_code EC = Reader->read()) { 678 warnOrExitGivenError(FailMode, EC, Input.Filename); 679 Readers.pop_back(); 680 continue; 681 } 682 683 StringMap<FunctionSamples> &Profiles = Reader->getProfiles(); 684 if (ProfileIsProbeBased && 685 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) 686 exitWithError( 687 "cannot merge probe-based profile with non-probe-based profile"); 688 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; 689 for (StringMap<FunctionSamples>::iterator I = Profiles.begin(), 690 E = Profiles.end(); 691 I != E; ++I) { 692 sampleprof_error Result = sampleprof_error::success; 693 FunctionSamples Remapped = 694 Remapper ? remapSamples(I->second, *Remapper, Result) 695 : FunctionSamples(); 696 FunctionSamples &Samples = Remapper ? Remapped : I->second; 697 StringRef FName = Samples.getName(); 698 MergeResult(Result, ProfileMap[FName].merge(Samples, Input.Weight)); 699 if (Result != sampleprof_error::success) { 700 std::error_code EC = make_error_code(Result); 701 handleMergeWriterError(errorCodeToError(EC), Input.Filename, FName); 702 } 703 } 704 705 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 706 Reader->getProfileSymbolList(); 707 if (ReaderList) 708 WriterList.merge(*ReaderList); 709 } 710 auto WriterOrErr = 711 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 712 if (std::error_code EC = WriterOrErr.getError()) 713 exitWithErrorCode(EC, OutputFilename); 714 715 auto Writer = std::move(WriterOrErr.get()); 716 // WriterList will have StringRef refering to string in Buffer. 717 // Make sure Buffer lives as long as WriterList. 718 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 719 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 720 CompressAllSections, UseMD5, GenPartialProfile); 721 Writer->write(ProfileMap); 722 } 723 724 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 725 StringRef WeightStr, FileName; 726 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 727 728 uint64_t Weight; 729 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 730 exitWithError("Input weight must be a positive integer."); 731 732 return {std::string(FileName), Weight}; 733 } 734 735 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 736 StringRef Filename = WF.Filename; 737 uint64_t Weight = WF.Weight; 738 739 // If it's STDIN just pass it on. 740 if (Filename == "-") { 741 WNI.push_back({std::string(Filename), Weight}); 742 return; 743 } 744 745 llvm::sys::fs::file_status Status; 746 llvm::sys::fs::status(Filename, Status); 747 if (!llvm::sys::fs::exists(Status)) 748 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 749 Filename); 750 // If it's a source file, collect it. 751 if (llvm::sys::fs::is_regular_file(Status)) { 752 WNI.push_back({std::string(Filename), Weight}); 753 return; 754 } 755 756 if (llvm::sys::fs::is_directory(Status)) { 757 std::error_code EC; 758 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 759 F != E && !EC; F.increment(EC)) { 760 if (llvm::sys::fs::is_regular_file(F->path())) { 761 addWeightedInput(WNI, {F->path(), Weight}); 762 } 763 } 764 if (EC) 765 exitWithErrorCode(EC, Filename); 766 } 767 } 768 769 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 770 WeightedFileVector &WFV) { 771 if (!Buffer) 772 return; 773 774 SmallVector<StringRef, 8> Entries; 775 StringRef Data = Buffer->getBuffer(); 776 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 777 for (const StringRef &FileWeightEntry : Entries) { 778 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 779 // Skip comments. 780 if (SanitizedEntry.startswith("#")) 781 continue; 782 // If there's no comma, it's an unweighted profile. 783 else if (SanitizedEntry.find(',') == StringRef::npos) 784 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 785 else 786 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 787 } 788 } 789 790 static int merge_main(int argc, const char *argv[]) { 791 cl::list<std::string> InputFilenames(cl::Positional, 792 cl::desc("<filename...>")); 793 cl::list<std::string> WeightedInputFilenames("weighted-input", 794 cl::desc("<weight>,<filename>")); 795 cl::opt<std::string> InputFilenamesFile( 796 "input-files", cl::init(""), 797 cl::desc("Path to file containing newline-separated " 798 "[<weight>,]<filename> entries")); 799 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 800 cl::aliasopt(InputFilenamesFile)); 801 cl::opt<bool> DumpInputFileList( 802 "dump-input-file-list", cl::init(false), cl::Hidden, 803 cl::desc("Dump the list of input files and their weights, then exit")); 804 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 805 cl::desc("Symbol remapping file")); 806 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 807 cl::aliasopt(RemappingFile)); 808 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 809 cl::init("-"), cl::Required, 810 cl::desc("Output file")); 811 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 812 cl::aliasopt(OutputFilename)); 813 cl::opt<ProfileKinds> ProfileKind( 814 cl::desc("Profile kind:"), cl::init(instr), 815 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 816 clEnumVal(sample, "Sample profile"))); 817 cl::opt<ProfileFormat> OutputFormat( 818 cl::desc("Format of output profile"), cl::init(PF_Binary), 819 cl::values( 820 clEnumValN(PF_Binary, "binary", "Binary encoding (default)"), 821 clEnumValN(PF_Compact_Binary, "compbinary", 822 "Compact binary encoding"), 823 clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"), 824 clEnumValN(PF_Text, "text", "Text encoding"), 825 clEnumValN(PF_GCC, "gcc", 826 "GCC encoding (only meaningful for -sample)"))); 827 cl::opt<FailureMode> FailureMode( 828 "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"), 829 cl::values(clEnumValN(failIfAnyAreInvalid, "any", 830 "Fail if any profile is invalid."), 831 clEnumValN(failIfAllAreInvalid, "all", 832 "Fail only if all profiles are invalid."))); 833 cl::opt<bool> OutputSparse("sparse", cl::init(false), 834 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 835 cl::opt<unsigned> NumThreads( 836 "num-threads", cl::init(0), 837 cl::desc("Number of merge threads to use (default: autodetect)")); 838 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 839 cl::aliasopt(NumThreads)); 840 cl::opt<std::string> ProfileSymbolListFile( 841 "prof-sym-list", cl::init(""), 842 cl::desc("Path to file containing the list of function symbols " 843 "used to populate profile symbol list")); 844 cl::opt<bool> CompressAllSections( 845 "compress-all-sections", cl::init(false), cl::Hidden, 846 cl::desc("Compress all sections when writing the profile (only " 847 "meaningful for -extbinary)")); 848 cl::opt<bool> UseMD5( 849 "use-md5", cl::init(false), cl::Hidden, 850 cl::desc("Choose to use MD5 to represent string in name table (only " 851 "meaningful for -extbinary)")); 852 cl::opt<bool> GenPartialProfile( 853 "gen-partial-profile", cl::init(false), cl::Hidden, 854 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 855 cl::opt<std::string> SupplInstrWithSample( 856 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 857 cl::desc("Supplement an instr profile with sample profile, to correct " 858 "the profile unrepresentativeness issue. The sample " 859 "profile is the input of the flag. Output will be in instr " 860 "format (The flag only works with -instr)")); 861 cl::opt<float> ZeroCounterThreshold( 862 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 863 cl::desc("For the function which is cold in instr profile but hot in " 864 "sample profile, if the ratio of the number of zero counters " 865 "divided by the the total number of counters is above the " 866 "threshold, the profile of the function will be regarded as " 867 "being harmful for performance and will be dropped. ")); 868 cl::opt<unsigned> SupplMinSizeThreshold( 869 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 870 cl::desc("If the size of a function is smaller than the threshold, " 871 "assume it can be inlined by PGO early inliner and it won't " 872 "be adjusted based on sample profile. ")); 873 cl::opt<unsigned> InstrProfColdThreshold( 874 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 875 cl::desc("User specified cold threshold for instr profile which will " 876 "override the cold threshold got from profile summary. ")); 877 878 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n"); 879 880 WeightedFileVector WeightedInputs; 881 for (StringRef Filename : InputFilenames) 882 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 883 for (StringRef WeightedFilename : WeightedInputFilenames) 884 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 885 886 // Make sure that the file buffer stays alive for the duration of the 887 // weighted input vector's lifetime. 888 auto Buffer = getInputFileBuf(InputFilenamesFile); 889 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 890 891 if (WeightedInputs.empty()) 892 exitWithError("No input files specified. See " + 893 sys::path::filename(argv[0]) + " -help"); 894 895 if (DumpInputFileList) { 896 for (auto &WF : WeightedInputs) 897 outs() << WF.Weight << "," << WF.Filename << "\n"; 898 return 0; 899 } 900 901 std::unique_ptr<SymbolRemapper> Remapper; 902 if (!RemappingFile.empty()) 903 Remapper = SymbolRemapper::create(RemappingFile); 904 905 if (!SupplInstrWithSample.empty()) { 906 if (ProfileKind != instr) 907 exitWithError( 908 "-supplement-instr-with-sample can only work with -instr. "); 909 910 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename, 911 OutputFormat, OutputSparse, SupplMinSizeThreshold, 912 ZeroCounterThreshold, InstrProfColdThreshold); 913 return 0; 914 } 915 916 if (ProfileKind == instr) 917 mergeInstrProfile(WeightedInputs, Remapper.get(), OutputFilename, 918 OutputFormat, OutputSparse, NumThreads, FailureMode); 919 else 920 mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename, 921 OutputFormat, ProfileSymbolListFile, CompressAllSections, 922 UseMD5, GenPartialProfile, FailureMode); 923 924 return 0; 925 } 926 927 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 928 static void overlapInstrProfile(const std::string &BaseFilename, 929 const std::string &TestFilename, 930 const OverlapFuncFilters &FuncFilter, 931 raw_fd_ostream &OS, bool IsCS) { 932 std::mutex ErrorLock; 933 SmallSet<instrprof_error, 4> WriterErrorCodes; 934 WriterContext Context(false, ErrorLock, WriterErrorCodes); 935 WeightedFile WeightedInput{BaseFilename, 1}; 936 OverlapStats Overlap; 937 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 938 if (E) 939 exitWithError(std::move(E), "Error in getting profile count sums"); 940 if (Overlap.Base.CountSum < 1.0f) { 941 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 942 exit(0); 943 } 944 if (Overlap.Test.CountSum < 1.0f) { 945 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 946 exit(0); 947 } 948 loadInput(WeightedInput, nullptr, &Context); 949 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 950 IsCS); 951 Overlap.dump(OS); 952 } 953 954 namespace { 955 struct SampleOverlapStats { 956 StringRef BaseName; 957 StringRef TestName; 958 // Number of overlap units 959 uint64_t OverlapCount; 960 // Total samples of overlap units 961 uint64_t OverlapSample; 962 // Number of and total samples of units that only present in base or test 963 // profile 964 uint64_t BaseUniqueCount; 965 uint64_t BaseUniqueSample; 966 uint64_t TestUniqueCount; 967 uint64_t TestUniqueSample; 968 // Number of units and total samples in base or test profile 969 uint64_t BaseCount; 970 uint64_t BaseSample; 971 uint64_t TestCount; 972 uint64_t TestSample; 973 // Number of and total samples of units that present in at least one profile 974 uint64_t UnionCount; 975 uint64_t UnionSample; 976 // Weighted similarity 977 double Similarity; 978 // For SampleOverlapStats instances representing functions, weights of the 979 // function in base and test profiles 980 double BaseWeight; 981 double TestWeight; 982 983 SampleOverlapStats() 984 : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0), 985 BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0), 986 BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0), 987 UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {} 988 }; 989 } // end anonymous namespace 990 991 namespace { 992 struct FuncSampleStats { 993 uint64_t SampleSum; 994 uint64_t MaxSample; 995 uint64_t HotBlockCount; 996 FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {} 997 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 998 uint64_t HotBlockCount) 999 : SampleSum(SampleSum), MaxSample(MaxSample), 1000 HotBlockCount(HotBlockCount) {} 1001 }; 1002 } // end anonymous namespace 1003 1004 namespace { 1005 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1006 1007 // Class for updating merging steps for two sorted maps. The class should be 1008 // instantiated with a map iterator type. 1009 template <class T> class MatchStep { 1010 public: 1011 MatchStep() = delete; 1012 1013 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1014 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1015 SecondEnd(SecondEnd), Status(MS_None) {} 1016 1017 bool areBothFinished() const { 1018 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1019 } 1020 1021 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1022 1023 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1024 1025 /// Advance one step based on the previous match status unless the previous 1026 /// status is MS_None. Then update Status based on the comparison between two 1027 /// container iterators at the current step. If the previous status is 1028 /// MS_None, it means two iterators are at the beginning and no comparison has 1029 /// been made, so we simply update Status without advancing the iterators. 1030 void updateOneStep(); 1031 1032 T getFirstIter() const { return FirstIter; } 1033 1034 T getSecondIter() const { return SecondIter; } 1035 1036 MatchStatus getMatchStatus() const { return Status; } 1037 1038 private: 1039 // Current iterator and end iterator of the first container. 1040 T FirstIter; 1041 T FirstEnd; 1042 // Current iterator and end iterator of the second container. 1043 T SecondIter; 1044 T SecondEnd; 1045 // Match status of the current step. 1046 MatchStatus Status; 1047 }; 1048 } // end anonymous namespace 1049 1050 template <class T> void MatchStep<T>::updateOneStep() { 1051 switch (Status) { 1052 case MS_Match: 1053 ++FirstIter; 1054 ++SecondIter; 1055 break; 1056 case MS_FirstUnique: 1057 ++FirstIter; 1058 break; 1059 case MS_SecondUnique: 1060 ++SecondIter; 1061 break; 1062 case MS_None: 1063 break; 1064 } 1065 1066 // Update Status according to iterators at the current step. 1067 if (areBothFinished()) 1068 return; 1069 if (FirstIter != FirstEnd && 1070 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1071 Status = MS_FirstUnique; 1072 else if (SecondIter != SecondEnd && 1073 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1074 Status = MS_SecondUnique; 1075 else 1076 Status = MS_Match; 1077 } 1078 1079 // Return the sum of line/block samples, the max line/block sample, and the 1080 // number of line/block samples above the given threshold in a function 1081 // including its inlinees. 1082 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1083 FuncSampleStats &FuncStats, 1084 uint64_t HotThreshold) { 1085 for (const auto &L : Func.getBodySamples()) { 1086 uint64_t Sample = L.second.getSamples(); 1087 FuncStats.SampleSum += Sample; 1088 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1089 if (Sample >= HotThreshold) 1090 ++FuncStats.HotBlockCount; 1091 } 1092 1093 for (const auto &C : Func.getCallsiteSamples()) { 1094 for (const auto &F : C.second) 1095 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1096 } 1097 } 1098 1099 /// Predicate that determines if a function is hot with a given threshold. We 1100 /// keep it separate from its callsites for possible extension in the future. 1101 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1102 uint64_t HotThreshold) { 1103 // We intentionally compare the maximum sample count in a function with the 1104 // HotThreshold to get an approximate determination on hot functions. 1105 return (FuncStats.MaxSample >= HotThreshold); 1106 } 1107 1108 namespace { 1109 class SampleOverlapAggregator { 1110 public: 1111 SampleOverlapAggregator(const std::string &BaseFilename, 1112 const std::string &TestFilename, 1113 double LowSimilarityThreshold, double Epsilon, 1114 const OverlapFuncFilters &FuncFilter) 1115 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1116 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1117 FuncFilter(FuncFilter) {} 1118 1119 /// Detect 0-sample input profile and report to output stream. This interface 1120 /// should be called after loadProfiles(). 1121 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1122 1123 /// Write out function-level similarity statistics for functions specified by 1124 /// options --function, --value-cutoff, and --similarity-cutoff. 1125 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1126 1127 /// Write out program-level similarity and overlap statistics. 1128 void dumpProgramSummary(raw_fd_ostream &OS) const; 1129 1130 /// Write out hot-function and hot-block statistics for base_profile, 1131 /// test_profile, and their overlap. For both cases, the overlap HO is 1132 /// calculated as follows: 1133 /// Given the number of functions (or blocks) that are hot in both profiles 1134 /// HCommon and the number of functions (or blocks) that are hot in at 1135 /// least one profile HUnion, HO = HCommon / HUnion. 1136 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 1137 1138 /// This function tries matching functions in base and test profiles. For each 1139 /// pair of matched functions, it aggregates the function-level 1140 /// similarity into a profile-level similarity. It also dump function-level 1141 /// similarity information of functions specified by --function, 1142 /// --value-cutoff, and --similarity-cutoff options. The program-level 1143 /// similarity PS is computed as follows: 1144 /// Given function-level similarity FS(A) for all function A, the 1145 /// weight of function A in base profile WB(A), and the weight of function 1146 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 1147 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 1148 /// meaning no-overlap. 1149 void computeSampleProfileOverlap(raw_fd_ostream &OS); 1150 1151 /// Initialize ProfOverlap with the sum of samples in base and test 1152 /// profiles. This function also computes and keeps the sum of samples and 1153 /// max sample counts of each function in BaseStats and TestStats for later 1154 /// use to avoid re-computations. 1155 void initializeSampleProfileOverlap(); 1156 1157 /// Load profiles specified by BaseFilename and TestFilename. 1158 std::error_code loadProfiles(); 1159 1160 private: 1161 SampleOverlapStats ProfOverlap; 1162 SampleOverlapStats HotFuncOverlap; 1163 SampleOverlapStats HotBlockOverlap; 1164 std::string BaseFilename; 1165 std::string TestFilename; 1166 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 1167 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 1168 // BaseStats and TestStats hold FuncSampleStats for each function, with 1169 // function name as the key. 1170 StringMap<FuncSampleStats> BaseStats; 1171 StringMap<FuncSampleStats> TestStats; 1172 // Low similarity threshold in floating point number 1173 double LowSimilarityThreshold; 1174 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 1175 // for tracking hot blocks. 1176 uint64_t BaseHotThreshold; 1177 uint64_t TestHotThreshold; 1178 // A small threshold used to round the results of floating point accumulations 1179 // to resolve imprecision. 1180 const double Epsilon; 1181 std::multimap<double, SampleOverlapStats, std::greater<double>> 1182 FuncSimilarityDump; 1183 // FuncFilter carries specifications in options --value-cutoff and 1184 // --function. 1185 OverlapFuncFilters FuncFilter; 1186 // Column offsets for printing the function-level details table. 1187 static const unsigned int TestWeightCol = 15; 1188 static const unsigned int SimilarityCol = 30; 1189 static const unsigned int OverlapCol = 43; 1190 static const unsigned int BaseUniqueCol = 53; 1191 static const unsigned int TestUniqueCol = 67; 1192 static const unsigned int BaseSampleCol = 81; 1193 static const unsigned int TestSampleCol = 96; 1194 static const unsigned int FuncNameCol = 111; 1195 1196 /// Return a similarity of two line/block sample counters in the same 1197 /// function in base and test profiles. The line/block-similarity BS(i) is 1198 /// computed as follows: 1199 /// For an offsets i, given the sample count at i in base profile BB(i), 1200 /// the sample count at i in test profile BT(i), the sum of sample counts 1201 /// in this function in base profile SB, and the sum of sample counts in 1202 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 1203 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 1204 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 1205 const SampleOverlapStats &FuncOverlap) const; 1206 1207 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 1208 uint64_t HotBlockCount); 1209 1210 void getHotFunctions(const StringMap<FuncSampleStats> &ProfStats, 1211 StringMap<FuncSampleStats> &HotFunc, 1212 uint64_t HotThreshold) const; 1213 1214 void computeHotFuncOverlap(); 1215 1216 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1217 /// Difference for two sample units in a matched function according to the 1218 /// given match status. 1219 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 1220 uint64_t HotBlockCount, 1221 SampleOverlapStats &FuncOverlap, 1222 double &Difference, MatchStatus Status); 1223 1224 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1225 /// Difference for unmatched callees that only present in one profile in a 1226 /// matched caller function. 1227 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 1228 SampleOverlapStats &FuncOverlap, 1229 double &Difference, MatchStatus Status); 1230 1231 /// This function updates sample overlap statistics of an overlap function in 1232 /// base and test profile. It also calculates a function-internal similarity 1233 /// FIS as follows: 1234 /// For offsets i that have samples in at least one profile in this 1235 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 1236 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 1237 /// 0.0 meaning no overlap. 1238 double computeSampleFunctionInternalOverlap( 1239 const sampleprof::FunctionSamples &BaseFunc, 1240 const sampleprof::FunctionSamples &TestFunc, 1241 SampleOverlapStats &FuncOverlap); 1242 1243 /// Function-level similarity (FS) is a weighted value over function internal 1244 /// similarity (FIS). This function computes a function's FS from its FIS by 1245 /// applying the weight. 1246 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 1247 uint64_t TestFuncSample) const; 1248 1249 /// The function-level similarity FS(A) for a function A is computed as 1250 /// follows: 1251 /// Compute a function-internal similarity FIS(A) by 1252 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 1253 /// function A in base profile WB(A), and the weight of function A in test 1254 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 1255 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 1256 double 1257 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 1258 const sampleprof::FunctionSamples *TestFunc, 1259 SampleOverlapStats *FuncOverlap, 1260 uint64_t BaseFuncSample, 1261 uint64_t TestFuncSample); 1262 1263 /// Profile-level similarity (PS) is a weighted aggregate over function-level 1264 /// similarities (FS). This method weights the FS value by the function 1265 /// weights in the base and test profiles for the aggregation. 1266 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 1267 uint64_t TestFuncSample) const; 1268 }; 1269 } // end anonymous namespace 1270 1271 bool SampleOverlapAggregator::detectZeroSampleProfile( 1272 raw_fd_ostream &OS) const { 1273 bool HaveZeroSample = false; 1274 if (ProfOverlap.BaseSample == 0) { 1275 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 1276 HaveZeroSample = true; 1277 } 1278 if (ProfOverlap.TestSample == 0) { 1279 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 1280 HaveZeroSample = true; 1281 } 1282 return HaveZeroSample; 1283 } 1284 1285 double SampleOverlapAggregator::computeBlockSimilarity( 1286 uint64_t BaseSample, uint64_t TestSample, 1287 const SampleOverlapStats &FuncOverlap) const { 1288 double BaseFrac = 0.0; 1289 double TestFrac = 0.0; 1290 if (FuncOverlap.BaseSample > 0) 1291 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 1292 if (FuncOverlap.TestSample > 0) 1293 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 1294 return 1.0 - std::fabs(BaseFrac - TestFrac); 1295 } 1296 1297 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 1298 uint64_t TestSample, 1299 uint64_t HotBlockCount) { 1300 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 1301 bool IsTestHot = (TestSample >= TestHotThreshold); 1302 if (!IsBaseHot && !IsTestHot) 1303 return; 1304 1305 HotBlockOverlap.UnionCount += HotBlockCount; 1306 if (IsBaseHot) 1307 HotBlockOverlap.BaseCount += HotBlockCount; 1308 if (IsTestHot) 1309 HotBlockOverlap.TestCount += HotBlockCount; 1310 if (IsBaseHot && IsTestHot) 1311 HotBlockOverlap.OverlapCount += HotBlockCount; 1312 } 1313 1314 void SampleOverlapAggregator::getHotFunctions( 1315 const StringMap<FuncSampleStats> &ProfStats, 1316 StringMap<FuncSampleStats> &HotFunc, uint64_t HotThreshold) const { 1317 for (const auto &F : ProfStats) { 1318 if (isFunctionHot(F.second, HotThreshold)) 1319 HotFunc.try_emplace(F.first(), F.second); 1320 } 1321 } 1322 1323 void SampleOverlapAggregator::computeHotFuncOverlap() { 1324 StringMap<FuncSampleStats> BaseHotFunc; 1325 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 1326 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 1327 1328 StringMap<FuncSampleStats> TestHotFunc; 1329 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 1330 HotFuncOverlap.TestCount = TestHotFunc.size(); 1331 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 1332 1333 for (const auto &F : BaseHotFunc) { 1334 if (TestHotFunc.count(F.first())) 1335 ++HotFuncOverlap.OverlapCount; 1336 else 1337 ++HotFuncOverlap.UnionCount; 1338 } 1339 } 1340 1341 void SampleOverlapAggregator::updateOverlapStatsForFunction( 1342 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 1343 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 1344 assert(Status != MS_None && 1345 "Match status should be updated before updating overlap statistics"); 1346 if (Status == MS_FirstUnique) { 1347 TestSample = 0; 1348 FuncOverlap.BaseUniqueSample += BaseSample; 1349 } else if (Status == MS_SecondUnique) { 1350 BaseSample = 0; 1351 FuncOverlap.TestUniqueSample += TestSample; 1352 } else { 1353 ++FuncOverlap.OverlapCount; 1354 } 1355 1356 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 1357 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 1358 Difference += 1359 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 1360 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 1361 } 1362 1363 void SampleOverlapAggregator::updateForUnmatchedCallee( 1364 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 1365 double &Difference, MatchStatus Status) { 1366 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 1367 "Status must be either of the two unmatched cases"); 1368 FuncSampleStats FuncStats; 1369 if (Status == MS_FirstUnique) { 1370 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 1371 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 1372 FuncStats.HotBlockCount, FuncOverlap, 1373 Difference, Status); 1374 } else { 1375 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 1376 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 1377 FuncStats.HotBlockCount, FuncOverlap, 1378 Difference, Status); 1379 } 1380 } 1381 1382 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 1383 const sampleprof::FunctionSamples &BaseFunc, 1384 const sampleprof::FunctionSamples &TestFunc, 1385 SampleOverlapStats &FuncOverlap) { 1386 1387 using namespace sampleprof; 1388 1389 double Difference = 0; 1390 1391 // Accumulate Difference for regular line/block samples in the function. 1392 // We match them through sort-merge join algorithm because 1393 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 1394 // by their offsets. 1395 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 1396 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 1397 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 1398 BlockIterStep.updateOneStep(); 1399 while (!BlockIterStep.areBothFinished()) { 1400 uint64_t BaseSample = 1401 BlockIterStep.isFirstFinished() 1402 ? 0 1403 : BlockIterStep.getFirstIter()->second.getSamples(); 1404 uint64_t TestSample = 1405 BlockIterStep.isSecondFinished() 1406 ? 0 1407 : BlockIterStep.getSecondIter()->second.getSamples(); 1408 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 1409 Difference, BlockIterStep.getMatchStatus()); 1410 1411 BlockIterStep.updateOneStep(); 1412 } 1413 1414 // Accumulate Difference for callsite lines in the function. We match 1415 // them through sort-merge algorithm because 1416 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 1417 // ordered by their offsets. 1418 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 1419 BaseFunc.getCallsiteSamples().cbegin(), 1420 BaseFunc.getCallsiteSamples().cend(), 1421 TestFunc.getCallsiteSamples().cbegin(), 1422 TestFunc.getCallsiteSamples().cend()); 1423 CallsiteIterStep.updateOneStep(); 1424 while (!CallsiteIterStep.areBothFinished()) { 1425 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 1426 assert(CallsiteStepStatus != MS_None && 1427 "Match status should be updated before entering loop body"); 1428 1429 if (CallsiteStepStatus != MS_Match) { 1430 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 1431 ? CallsiteIterStep.getFirstIter() 1432 : CallsiteIterStep.getSecondIter(); 1433 for (const auto &F : Callsite->second) 1434 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 1435 CallsiteStepStatus); 1436 } else { 1437 // There may be multiple inlinees at the same offset, so we need to try 1438 // matching all of them. This match is implemented through sort-merge 1439 // algorithm because callsite records at the same offset are ordered by 1440 // function names. 1441 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 1442 CallsiteIterStep.getFirstIter()->second.cbegin(), 1443 CallsiteIterStep.getFirstIter()->second.cend(), 1444 CallsiteIterStep.getSecondIter()->second.cbegin(), 1445 CallsiteIterStep.getSecondIter()->second.cend()); 1446 CalleeIterStep.updateOneStep(); 1447 while (!CalleeIterStep.areBothFinished()) { 1448 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 1449 if (CalleeStepStatus != MS_Match) { 1450 auto Callee = (CalleeStepStatus == MS_FirstUnique) 1451 ? CalleeIterStep.getFirstIter() 1452 : CalleeIterStep.getSecondIter(); 1453 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 1454 CalleeStepStatus); 1455 } else { 1456 // An inlined function can contain other inlinees inside, so compute 1457 // the Difference recursively. 1458 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 1459 CalleeIterStep.getFirstIter()->second, 1460 CalleeIterStep.getSecondIter()->second, 1461 FuncOverlap); 1462 } 1463 CalleeIterStep.updateOneStep(); 1464 } 1465 } 1466 CallsiteIterStep.updateOneStep(); 1467 } 1468 1469 // Difference reflects the total differences of line/block samples in this 1470 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 1471 // reflect the similarity between function profiles in [0.0f to 1.0f]. 1472 return (2.0 - Difference) / 2; 1473 } 1474 1475 double SampleOverlapAggregator::weightForFuncSimilarity( 1476 double FuncInternalSimilarity, uint64_t BaseFuncSample, 1477 uint64_t TestFuncSample) const { 1478 // Compute the weight as the distance between the function weights in two 1479 // profiles. 1480 double BaseFrac = 0.0; 1481 double TestFrac = 0.0; 1482 assert(ProfOverlap.BaseSample > 0 && 1483 "Total samples in base profile should be greater than 0"); 1484 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 1485 assert(ProfOverlap.TestSample > 0 && 1486 "Total samples in test profile should be greater than 0"); 1487 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 1488 double WeightDistance = std::fabs(BaseFrac - TestFrac); 1489 1490 // Take WeightDistance into the similarity. 1491 return FuncInternalSimilarity * (1 - WeightDistance); 1492 } 1493 1494 double 1495 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 1496 uint64_t BaseFuncSample, 1497 uint64_t TestFuncSample) const { 1498 1499 double BaseFrac = 0.0; 1500 double TestFrac = 0.0; 1501 assert(ProfOverlap.BaseSample > 0 && 1502 "Total samples in base profile should be greater than 0"); 1503 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 1504 assert(ProfOverlap.TestSample > 0 && 1505 "Total samples in test profile should be greater than 0"); 1506 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 1507 return FuncSimilarity * (BaseFrac + TestFrac); 1508 } 1509 1510 double SampleOverlapAggregator::computeSampleFunctionOverlap( 1511 const sampleprof::FunctionSamples *BaseFunc, 1512 const sampleprof::FunctionSamples *TestFunc, 1513 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 1514 uint64_t TestFuncSample) { 1515 // Default function internal similarity before weighted, meaning two functions 1516 // has no overlap. 1517 const double DefaultFuncInternalSimilarity = 0; 1518 double FuncSimilarity; 1519 double FuncInternalSimilarity; 1520 1521 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 1522 // In this case, we use DefaultFuncInternalSimilarity as the function internal 1523 // similarity. 1524 if (!BaseFunc || !TestFunc) { 1525 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 1526 } else { 1527 assert(FuncOverlap != nullptr && 1528 "FuncOverlap should be provided in this case"); 1529 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 1530 *BaseFunc, *TestFunc, *FuncOverlap); 1531 // Now, FuncInternalSimilarity may be a little less than 0 due to 1532 // imprecision of floating point accumulations. Make it zero if the 1533 // difference is below Epsilon. 1534 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 1535 ? 0 1536 : FuncInternalSimilarity; 1537 } 1538 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 1539 BaseFuncSample, TestFuncSample); 1540 return FuncSimilarity; 1541 } 1542 1543 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 1544 using namespace sampleprof; 1545 1546 StringMap<const FunctionSamples *> BaseFuncProf; 1547 const auto &BaseProfiles = BaseReader->getProfiles(); 1548 for (const auto &BaseFunc : BaseProfiles) { 1549 BaseFuncProf.try_emplace(BaseFunc.second.getName(), &(BaseFunc.second)); 1550 } 1551 ProfOverlap.UnionCount = BaseFuncProf.size(); 1552 1553 const auto &TestProfiles = TestReader->getProfiles(); 1554 for (const auto &TestFunc : TestProfiles) { 1555 SampleOverlapStats FuncOverlap; 1556 FuncOverlap.TestName = TestFunc.second.getName(); 1557 assert(TestStats.count(FuncOverlap.TestName) && 1558 "TestStats should have records for all functions in test profile " 1559 "except inlinees"); 1560 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 1561 1562 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 1563 if (Match == BaseFuncProf.end()) { 1564 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 1565 ++ProfOverlap.TestUniqueCount; 1566 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 1567 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 1568 1569 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 1570 1571 double FuncSimilarity = computeSampleFunctionOverlap( 1572 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 1573 ProfOverlap.Similarity += 1574 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 1575 1576 ++ProfOverlap.UnionCount; 1577 ProfOverlap.UnionSample += FuncStats.SampleSum; 1578 } else { 1579 ++ProfOverlap.OverlapCount; 1580 1581 // Two functions match with each other. Compute function-level overlap and 1582 // aggregate them into profile-level overlap. 1583 FuncOverlap.BaseName = Match->second->getName(); 1584 assert(BaseStats.count(FuncOverlap.BaseName) && 1585 "BaseStats should have records for all functions in base profile " 1586 "except inlinees"); 1587 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 1588 1589 FuncOverlap.Similarity = computeSampleFunctionOverlap( 1590 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 1591 FuncOverlap.TestSample); 1592 ProfOverlap.Similarity += 1593 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 1594 FuncOverlap.TestSample); 1595 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 1596 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 1597 1598 // Accumulate the percentage of base unique and test unique samples into 1599 // ProfOverlap. 1600 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 1601 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 1602 1603 // Remove matched base functions for later reporting functions not found 1604 // in test profile. 1605 BaseFuncProf.erase(Match); 1606 } 1607 1608 // Print function-level similarity information if specified by options. 1609 assert(TestStats.count(FuncOverlap.TestName) && 1610 "TestStats should have records for all functions in test profile " 1611 "except inlinees"); 1612 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 1613 (Match != BaseFuncProf.end() && 1614 FuncOverlap.Similarity < LowSimilarityThreshold) || 1615 (Match != BaseFuncProf.end() && !FuncFilter.NameFilter.empty() && 1616 FuncOverlap.BaseName.find(FuncFilter.NameFilter) != 1617 FuncOverlap.BaseName.npos)) { 1618 assert(ProfOverlap.BaseSample > 0 && 1619 "Total samples in base profile should be greater than 0"); 1620 FuncOverlap.BaseWeight = 1621 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 1622 assert(ProfOverlap.TestSample > 0 && 1623 "Total samples in test profile should be greater than 0"); 1624 FuncOverlap.TestWeight = 1625 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 1626 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 1627 } 1628 } 1629 1630 // Traverse through functions in base profile but not in test profile. 1631 for (const auto &F : BaseFuncProf) { 1632 assert(BaseStats.count(F.second->getName()) && 1633 "BaseStats should have records for all functions in base profile " 1634 "except inlinees"); 1635 const FuncSampleStats &FuncStats = BaseStats[F.second->getName()]; 1636 ++ProfOverlap.BaseUniqueCount; 1637 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 1638 1639 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 1640 1641 double FuncSimilarity = computeSampleFunctionOverlap( 1642 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 1643 ProfOverlap.Similarity += 1644 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 1645 1646 ProfOverlap.UnionSample += FuncStats.SampleSum; 1647 } 1648 1649 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 1650 // of floating point accumulations. Make it 1.0 if the difference is below 1651 // Epsilon. 1652 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 1653 ? 1 1654 : ProfOverlap.Similarity; 1655 1656 computeHotFuncOverlap(); 1657 } 1658 1659 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 1660 const auto &BaseProf = BaseReader->getProfiles(); 1661 for (const auto &I : BaseProf) { 1662 ++ProfOverlap.BaseCount; 1663 FuncSampleStats FuncStats; 1664 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 1665 ProfOverlap.BaseSample += FuncStats.SampleSum; 1666 BaseStats.try_emplace(I.second.getName(), FuncStats); 1667 } 1668 1669 const auto &TestProf = TestReader->getProfiles(); 1670 for (const auto &I : TestProf) { 1671 ++ProfOverlap.TestCount; 1672 FuncSampleStats FuncStats; 1673 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 1674 ProfOverlap.TestSample += FuncStats.SampleSum; 1675 TestStats.try_emplace(I.second.getName(), FuncStats); 1676 } 1677 1678 ProfOverlap.BaseName = StringRef(BaseFilename); 1679 ProfOverlap.TestName = StringRef(TestFilename); 1680 } 1681 1682 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 1683 using namespace sampleprof; 1684 1685 if (FuncSimilarityDump.empty()) 1686 return; 1687 1688 formatted_raw_ostream FOS(OS); 1689 FOS << "Function-level details:\n"; 1690 FOS << "Base weight"; 1691 FOS.PadToColumn(TestWeightCol); 1692 FOS << "Test weight"; 1693 FOS.PadToColumn(SimilarityCol); 1694 FOS << "Similarity"; 1695 FOS.PadToColumn(OverlapCol); 1696 FOS << "Overlap"; 1697 FOS.PadToColumn(BaseUniqueCol); 1698 FOS << "Base unique"; 1699 FOS.PadToColumn(TestUniqueCol); 1700 FOS << "Test unique"; 1701 FOS.PadToColumn(BaseSampleCol); 1702 FOS << "Base samples"; 1703 FOS.PadToColumn(TestSampleCol); 1704 FOS << "Test samples"; 1705 FOS.PadToColumn(FuncNameCol); 1706 FOS << "Function name\n"; 1707 for (const auto &F : FuncSimilarityDump) { 1708 double OverlapPercent = 1709 F.second.UnionSample > 0 1710 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 1711 : 0; 1712 double BaseUniquePercent = 1713 F.second.BaseSample > 0 1714 ? static_cast<double>(F.second.BaseUniqueSample) / 1715 F.second.BaseSample 1716 : 0; 1717 double TestUniquePercent = 1718 F.second.TestSample > 0 1719 ? static_cast<double>(F.second.TestUniqueSample) / 1720 F.second.TestSample 1721 : 0; 1722 1723 FOS << format("%.2f%%", F.second.BaseWeight * 100); 1724 FOS.PadToColumn(TestWeightCol); 1725 FOS << format("%.2f%%", F.second.TestWeight * 100); 1726 FOS.PadToColumn(SimilarityCol); 1727 FOS << format("%.2f%%", F.second.Similarity * 100); 1728 FOS.PadToColumn(OverlapCol); 1729 FOS << format("%.2f%%", OverlapPercent * 100); 1730 FOS.PadToColumn(BaseUniqueCol); 1731 FOS << format("%.2f%%", BaseUniquePercent * 100); 1732 FOS.PadToColumn(TestUniqueCol); 1733 FOS << format("%.2f%%", TestUniquePercent * 100); 1734 FOS.PadToColumn(BaseSampleCol); 1735 FOS << F.second.BaseSample; 1736 FOS.PadToColumn(TestSampleCol); 1737 FOS << F.second.TestSample; 1738 FOS.PadToColumn(FuncNameCol); 1739 FOS << F.second.TestName << "\n"; 1740 } 1741 } 1742 1743 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 1744 OS << "Profile overlap infomation for base_profile: " << ProfOverlap.BaseName 1745 << " and test_profile: " << ProfOverlap.TestName << "\nProgram level:\n"; 1746 1747 OS << " Whole program profile similarity: " 1748 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 1749 1750 assert(ProfOverlap.UnionSample > 0 && 1751 "Total samples in two profile should be greater than 0"); 1752 double OverlapPercent = 1753 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 1754 assert(ProfOverlap.BaseSample > 0 && 1755 "Total samples in base profile should be greater than 0"); 1756 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 1757 ProfOverlap.BaseSample; 1758 assert(ProfOverlap.TestSample > 0 && 1759 "Total samples in test profile should be greater than 0"); 1760 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 1761 ProfOverlap.TestSample; 1762 1763 OS << " Whole program sample overlap: " 1764 << format("%.3f%%", OverlapPercent * 100) << "\n"; 1765 OS << " percentage of samples unique in base profile: " 1766 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 1767 OS << " percentage of samples unique in test profile: " 1768 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 1769 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 1770 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 1771 1772 assert(ProfOverlap.UnionCount > 0 && 1773 "There should be at least one function in two input profiles"); 1774 double FuncOverlapPercent = 1775 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 1776 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 1777 << "\n"; 1778 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 1779 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 1780 << "\n"; 1781 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 1782 << "\n"; 1783 } 1784 1785 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 1786 raw_fd_ostream &OS) const { 1787 assert(HotFuncOverlap.UnionCount > 0 && 1788 "There should be at least one hot function in two input profiles"); 1789 OS << " Hot-function overlap: " 1790 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 1791 HotFuncOverlap.UnionCount * 100) 1792 << "\n"; 1793 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 1794 OS << " hot functions unique in base profile: " 1795 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 1796 OS << " hot functions unique in test profile: " 1797 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 1798 1799 assert(HotBlockOverlap.UnionCount > 0 && 1800 "There should be at least one hot block in two input profiles"); 1801 OS << " Hot-block overlap: " 1802 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 1803 HotBlockOverlap.UnionCount * 100) 1804 << "\n"; 1805 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 1806 OS << " hot blocks unique in base profile: " 1807 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 1808 OS << " hot blocks unique in test profile: " 1809 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 1810 } 1811 1812 std::error_code SampleOverlapAggregator::loadProfiles() { 1813 using namespace sampleprof; 1814 1815 LLVMContext Context; 1816 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context); 1817 if (std::error_code EC = BaseReaderOrErr.getError()) 1818 exitWithErrorCode(EC, BaseFilename); 1819 1820 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context); 1821 if (std::error_code EC = TestReaderOrErr.getError()) 1822 exitWithErrorCode(EC, TestFilename); 1823 1824 BaseReader = std::move(BaseReaderOrErr.get()); 1825 TestReader = std::move(TestReaderOrErr.get()); 1826 1827 if (std::error_code EC = BaseReader->read()) 1828 exitWithErrorCode(EC, BaseFilename); 1829 if (std::error_code EC = TestReader->read()) 1830 exitWithErrorCode(EC, TestFilename); 1831 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) 1832 exitWithError( 1833 "cannot compare probe-based profile with non-probe-based profile"); 1834 1835 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 1836 // profile summary. 1837 const uint64_t HotCutoff = 990000; 1838 ProfileSummary &BasePS = BaseReader->getSummary(); 1839 for (const auto &SummaryEntry : BasePS.getDetailedSummary()) { 1840 if (SummaryEntry.Cutoff == HotCutoff) { 1841 BaseHotThreshold = SummaryEntry.MinCount; 1842 break; 1843 } 1844 } 1845 1846 ProfileSummary &TestPS = TestReader->getSummary(); 1847 for (const auto &SummaryEntry : TestPS.getDetailedSummary()) { 1848 if (SummaryEntry.Cutoff == HotCutoff) { 1849 TestHotThreshold = SummaryEntry.MinCount; 1850 break; 1851 } 1852 } 1853 return std::error_code(); 1854 } 1855 1856 void overlapSampleProfile(const std::string &BaseFilename, 1857 const std::string &TestFilename, 1858 const OverlapFuncFilters &FuncFilter, 1859 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 1860 using namespace sampleprof; 1861 1862 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 1863 // report 2--3 places after decimal point in percentage numbers. 1864 SampleOverlapAggregator OverlapAggr( 1865 BaseFilename, TestFilename, 1866 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 1867 if (std::error_code EC = OverlapAggr.loadProfiles()) 1868 exitWithErrorCode(EC); 1869 1870 OverlapAggr.initializeSampleProfileOverlap(); 1871 if (OverlapAggr.detectZeroSampleProfile(OS)) 1872 return; 1873 1874 OverlapAggr.computeSampleProfileOverlap(OS); 1875 1876 OverlapAggr.dumpProgramSummary(OS); 1877 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 1878 OverlapAggr.dumpFuncSimilarity(OS); 1879 } 1880 1881 static int overlap_main(int argc, const char *argv[]) { 1882 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 1883 cl::desc("<base profile file>")); 1884 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 1885 cl::desc("<test profile file>")); 1886 cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"), 1887 cl::desc("Output file")); 1888 cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output)); 1889 cl::opt<bool> IsCS("cs", cl::init(false), 1890 cl::desc("For context sensitive counts")); 1891 cl::opt<unsigned long long> ValueCutoff( 1892 "value-cutoff", cl::init(-1), 1893 cl::desc( 1894 "Function level overlap information for every function in test " 1895 "profile with max count value greater then the parameter value")); 1896 cl::opt<std::string> FuncNameFilter( 1897 "function", 1898 cl::desc("Function level overlap information for matching functions")); 1899 cl::opt<unsigned long long> SimilarityCutoff( 1900 "similarity-cutoff", cl::init(0), 1901 cl::desc( 1902 "For sample profiles, list function names for overlapped functions " 1903 "with similarities below the cutoff (percentage times 10000).")); 1904 cl::opt<ProfileKinds> ProfileKind( 1905 cl::desc("Profile kind:"), cl::init(instr), 1906 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 1907 clEnumVal(sample, "Sample profile"))); 1908 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n"); 1909 1910 std::error_code EC; 1911 raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_Text); 1912 if (EC) 1913 exitWithErrorCode(EC, Output); 1914 1915 if (ProfileKind == instr) 1916 overlapInstrProfile(BaseFilename, TestFilename, 1917 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS, 1918 IsCS); 1919 else 1920 overlapSampleProfile(BaseFilename, TestFilename, 1921 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, 1922 SimilarityCutoff, OS); 1923 1924 return 0; 1925 } 1926 1927 typedef struct ValueSitesStats { 1928 ValueSitesStats() 1929 : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0), 1930 TotalNumValues(0) {} 1931 uint64_t TotalNumValueSites; 1932 uint64_t TotalNumValueSitesWithValueProfile; 1933 uint64_t TotalNumValues; 1934 std::vector<unsigned> ValueSitesHistogram; 1935 } ValueSitesStats; 1936 1937 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 1938 ValueSitesStats &Stats, raw_fd_ostream &OS, 1939 InstrProfSymtab *Symtab) { 1940 uint32_t NS = Func.getNumValueSites(VK); 1941 Stats.TotalNumValueSites += NS; 1942 for (size_t I = 0; I < NS; ++I) { 1943 uint32_t NV = Func.getNumValueDataForSite(VK, I); 1944 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I); 1945 Stats.TotalNumValues += NV; 1946 if (NV) { 1947 Stats.TotalNumValueSitesWithValueProfile++; 1948 if (NV > Stats.ValueSitesHistogram.size()) 1949 Stats.ValueSitesHistogram.resize(NV, 0); 1950 Stats.ValueSitesHistogram[NV - 1]++; 1951 } 1952 1953 uint64_t SiteSum = 0; 1954 for (uint32_t V = 0; V < NV; V++) 1955 SiteSum += VD[V].Count; 1956 if (SiteSum == 0) 1957 SiteSum = 1; 1958 1959 for (uint32_t V = 0; V < NV; V++) { 1960 OS << "\t[ " << format("%2u", I) << ", "; 1961 if (Symtab == nullptr) 1962 OS << format("%4" PRIu64, VD[V].Value); 1963 else 1964 OS << Symtab->getFuncName(VD[V].Value); 1965 OS << ", " << format("%10" PRId64, VD[V].Count) << " ] (" 1966 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n"; 1967 } 1968 } 1969 } 1970 1971 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 1972 ValueSitesStats &Stats) { 1973 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 1974 OS << " Total number of sites with values: " 1975 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 1976 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 1977 1978 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 1979 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 1980 if (Stats.ValueSitesHistogram[I] > 0) 1981 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 1982 } 1983 } 1984 1985 static int showInstrProfile(const std::string &Filename, bool ShowCounts, 1986 uint32_t TopN, bool ShowIndirectCallTargets, 1987 bool ShowMemOPSizes, bool ShowDetailedSummary, 1988 std::vector<uint32_t> DetailedSummaryCutoffs, 1989 bool ShowAllFunctions, bool ShowCS, 1990 uint64_t ValueCutoff, bool OnlyListBelow, 1991 const std::string &ShowFunction, bool TextFormat, 1992 raw_fd_ostream &OS) { 1993 auto ReaderOrErr = InstrProfReader::create(Filename); 1994 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 1995 if (ShowDetailedSummary && Cutoffs.empty()) { 1996 Cutoffs = {800000, 900000, 950000, 990000, 999000, 999900, 999990}; 1997 } 1998 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 1999 if (Error E = ReaderOrErr.takeError()) 2000 exitWithError(std::move(E), Filename); 2001 2002 auto Reader = std::move(ReaderOrErr.get()); 2003 bool IsIRInstr = Reader->isIRLevelProfile(); 2004 size_t ShownFunctions = 0; 2005 size_t BelowCutoffFunctions = 0; 2006 int NumVPKind = IPVK_Last - IPVK_First + 1; 2007 std::vector<ValueSitesStats> VPStats(NumVPKind); 2008 2009 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2010 const std::pair<std::string, uint64_t> &v2) { 2011 return v1.second > v2.second; 2012 }; 2013 2014 std::priority_queue<std::pair<std::string, uint64_t>, 2015 std::vector<std::pair<std::string, uint64_t>>, 2016 decltype(MinCmp)> 2017 HottestFuncs(MinCmp); 2018 2019 if (!TextFormat && OnlyListBelow) { 2020 OS << "The list of functions with the maximum counter less than " 2021 << ValueCutoff << ":\n"; 2022 } 2023 2024 // Add marker so that IR-level instrumentation round-trips properly. 2025 if (TextFormat && IsIRInstr) 2026 OS << ":ir\n"; 2027 2028 for (const auto &Func : *Reader) { 2029 if (Reader->isIRLevelProfile()) { 2030 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2031 if (FuncIsCS != ShowCS) 2032 continue; 2033 } 2034 bool Show = 2035 ShowAllFunctions || (!ShowFunction.empty() && 2036 Func.Name.find(ShowFunction) != Func.Name.npos); 2037 2038 bool doTextFormatDump = (Show && TextFormat); 2039 2040 if (doTextFormatDump) { 2041 InstrProfSymtab &Symtab = Reader->getSymtab(); 2042 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2043 OS); 2044 continue; 2045 } 2046 2047 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2048 Builder.addRecord(Func); 2049 2050 uint64_t FuncMax = 0; 2051 uint64_t FuncSum = 0; 2052 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2053 if (Func.Counts[I] == (uint64_t)-1) 2054 continue; 2055 FuncMax = std::max(FuncMax, Func.Counts[I]); 2056 FuncSum += Func.Counts[I]; 2057 } 2058 2059 if (FuncMax < ValueCutoff) { 2060 ++BelowCutoffFunctions; 2061 if (OnlyListBelow) { 2062 OS << " " << Func.Name << ": (Max = " << FuncMax 2063 << " Sum = " << FuncSum << ")\n"; 2064 } 2065 continue; 2066 } else if (OnlyListBelow) 2067 continue; 2068 2069 if (TopN) { 2070 if (HottestFuncs.size() == TopN) { 2071 if (HottestFuncs.top().second < FuncMax) { 2072 HottestFuncs.pop(); 2073 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2074 } 2075 } else 2076 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2077 } 2078 2079 if (Show) { 2080 if (!ShownFunctions) 2081 OS << "Counters:\n"; 2082 2083 ++ShownFunctions; 2084 2085 OS << " " << Func.Name << ":\n" 2086 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2087 << " Counters: " << Func.Counts.size() << "\n"; 2088 if (!IsIRInstr) 2089 OS << " Function count: " << Func.Counts[0] << "\n"; 2090 2091 if (ShowIndirectCallTargets) 2092 OS << " Indirect Call Site Count: " 2093 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2094 2095 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2096 if (ShowMemOPSizes && NumMemOPCalls > 0) 2097 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2098 << "\n"; 2099 2100 if (ShowCounts) { 2101 OS << " Block counts: ["; 2102 size_t Start = (IsIRInstr ? 0 : 1); 2103 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2104 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2105 } 2106 OS << "]\n"; 2107 } 2108 2109 if (ShowIndirectCallTargets) { 2110 OS << " Indirect Target Results:\n"; 2111 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2112 VPStats[IPVK_IndirectCallTarget], OS, 2113 &(Reader->getSymtab())); 2114 } 2115 2116 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2117 OS << " Memory Intrinsic Size Results:\n"; 2118 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2119 nullptr); 2120 } 2121 } 2122 } 2123 if (Reader->hasError()) 2124 exitWithError(Reader->getError(), Filename); 2125 2126 if (TextFormat) 2127 return 0; 2128 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 2129 bool IsIR = Reader->isIRLevelProfile(); 2130 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 2131 if (IsIR) 2132 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 2133 OS << "\n"; 2134 if (ShowAllFunctions || !ShowFunction.empty()) 2135 OS << "Functions shown: " << ShownFunctions << "\n"; 2136 OS << "Total functions: " << PS->getNumFunctions() << "\n"; 2137 if (ValueCutoff > 0) { 2138 OS << "Number of functions with maximum count (< " << ValueCutoff 2139 << "): " << BelowCutoffFunctions << "\n"; 2140 OS << "Number of functions with maximum count (>= " << ValueCutoff 2141 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 2142 } 2143 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; 2144 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; 2145 2146 if (TopN) { 2147 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 2148 while (!HottestFuncs.empty()) { 2149 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 2150 HottestFuncs.pop(); 2151 } 2152 OS << "Top " << TopN 2153 << " functions with the largest internal block counts: \n"; 2154 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 2155 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 2156 } 2157 2158 if (ShownFunctions && ShowIndirectCallTargets) { 2159 OS << "Statistics for indirect call sites profile:\n"; 2160 showValueSitesStats(OS, IPVK_IndirectCallTarget, 2161 VPStats[IPVK_IndirectCallTarget]); 2162 } 2163 2164 if (ShownFunctions && ShowMemOPSizes) { 2165 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 2166 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 2167 } 2168 2169 if (ShowDetailedSummary) { 2170 OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; 2171 OS << "Total count: " << PS->getTotalCount() << "\n"; 2172 PS->printDetailedSummary(OS); 2173 } 2174 return 0; 2175 } 2176 2177 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 2178 raw_fd_ostream &OS) { 2179 if (!Reader->dumpSectionInfo(OS)) { 2180 WithColor::warning() << "-show-sec-info-only is only supported for " 2181 << "sample profile in extbinary format and is " 2182 << "ignored for other formats.\n"; 2183 return; 2184 } 2185 } 2186 2187 namespace { 2188 struct HotFuncInfo { 2189 StringRef FuncName; 2190 uint64_t TotalCount; 2191 double TotalCountPercent; 2192 uint64_t MaxCount; 2193 uint64_t EntryCount; 2194 2195 HotFuncInfo() 2196 : FuncName(), TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), 2197 EntryCount(0) {} 2198 2199 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 2200 : FuncName(FN), TotalCount(TS), TotalCountPercent(TSP), MaxCount(MS), 2201 EntryCount(ES) {} 2202 }; 2203 } // namespace 2204 2205 // Print out detailed information about hot functions in PrintValues vector. 2206 // Users specify titles and offset of every columns through ColumnTitle and 2207 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 2208 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 2209 // print out or let it be an empty string. 2210 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 2211 const std::vector<int> &ColumnOffset, 2212 const std::vector<HotFuncInfo> &PrintValues, 2213 uint64_t HotFuncCount, uint64_t TotalFuncCount, 2214 uint64_t HotProfCount, uint64_t TotalProfCount, 2215 const std::string &HotFuncMetric, 2216 raw_fd_ostream &OS) { 2217 assert(ColumnOffset.size() == ColumnTitle.size() && 2218 "ColumnOffset and ColumnTitle should have the same size"); 2219 assert(ColumnTitle.size() >= 4 && 2220 "ColumnTitle should have at least 4 elements"); 2221 assert(TotalFuncCount > 0 && 2222 "There should be at least one function in the profile"); 2223 double TotalProfPercent = 0; 2224 if (TotalProfCount > 0) 2225 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 2226 2227 formatted_raw_ostream FOS(OS); 2228 FOS << HotFuncCount << " out of " << TotalFuncCount 2229 << " functions with profile (" 2230 << format("%.2f%%", 2231 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 2232 << ") are considered hot functions"; 2233 if (!HotFuncMetric.empty()) 2234 FOS << " (" << HotFuncMetric << ")"; 2235 FOS << ".\n"; 2236 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 2237 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 2238 2239 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 2240 FOS.PadToColumn(ColumnOffset[I]); 2241 FOS << ColumnTitle[I]; 2242 } 2243 FOS << "\n"; 2244 2245 for (const HotFuncInfo &R : PrintValues) { 2246 FOS.PadToColumn(ColumnOffset[0]); 2247 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 2248 FOS.PadToColumn(ColumnOffset[1]); 2249 FOS << R.MaxCount; 2250 FOS.PadToColumn(ColumnOffset[2]); 2251 FOS << R.EntryCount; 2252 FOS.PadToColumn(ColumnOffset[3]); 2253 FOS << R.FuncName << "\n"; 2254 } 2255 return; 2256 } 2257 2258 static int 2259 showHotFunctionList(const StringMap<sampleprof::FunctionSamples> &Profiles, 2260 ProfileSummary &PS, raw_fd_ostream &OS) { 2261 using namespace sampleprof; 2262 2263 const uint32_t HotFuncCutoff = 990000; 2264 auto &SummaryVector = PS.getDetailedSummary(); 2265 uint64_t MinCountThreshold = 0; 2266 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 2267 if (SummaryEntry.Cutoff == HotFuncCutoff) { 2268 MinCountThreshold = SummaryEntry.MinCount; 2269 break; 2270 } 2271 } 2272 2273 // Traverse all functions in the profile and keep only hot functions. 2274 // The following loop also calculates the sum of total samples of all 2275 // functions. 2276 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 2277 std::greater<uint64_t>> 2278 HotFunc; 2279 uint64_t ProfileTotalSample = 0; 2280 uint64_t HotFuncSample = 0; 2281 uint64_t HotFuncCount = 0; 2282 2283 for (const auto &I : Profiles) { 2284 FuncSampleStats FuncStats; 2285 const FunctionSamples &FuncProf = I.second; 2286 ProfileTotalSample += FuncProf.getTotalSamples(); 2287 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 2288 2289 if (isFunctionHot(FuncStats, MinCountThreshold)) { 2290 HotFunc.emplace(FuncProf.getTotalSamples(), 2291 std::make_pair(&(I.second), FuncStats.MaxSample)); 2292 HotFuncSample += FuncProf.getTotalSamples(); 2293 ++HotFuncCount; 2294 } 2295 } 2296 2297 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 2298 "Entry sample", "Function name"}; 2299 std::vector<int> ColumnOffset{0, 24, 42, 58}; 2300 std::string Metric = 2301 std::string("max sample >= ") + std::to_string(MinCountThreshold); 2302 std::vector<HotFuncInfo> PrintValues; 2303 for (const auto &FuncPair : HotFunc) { 2304 const FunctionSamples &Func = *FuncPair.second.first; 2305 double TotalSamplePercent = 2306 (ProfileTotalSample > 0) 2307 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 2308 : 0; 2309 PrintValues.emplace_back( 2310 HotFuncInfo(Func.getName(), Func.getTotalSamples(), TotalSamplePercent, 2311 FuncPair.second.second, Func.getEntrySamples())); 2312 } 2313 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 2314 Profiles.size(), HotFuncSample, ProfileTotalSample, 2315 Metric, OS); 2316 2317 return 0; 2318 } 2319 2320 static int showSampleProfile(const std::string &Filename, bool ShowCounts, 2321 bool ShowAllFunctions, bool ShowDetailedSummary, 2322 const std::string &ShowFunction, 2323 bool ShowProfileSymbolList, 2324 bool ShowSectionInfoOnly, bool ShowHotFuncList, 2325 raw_fd_ostream &OS) { 2326 using namespace sampleprof; 2327 LLVMContext Context; 2328 auto ReaderOrErr = SampleProfileReader::create(Filename, Context); 2329 if (std::error_code EC = ReaderOrErr.getError()) 2330 exitWithErrorCode(EC, Filename); 2331 2332 auto Reader = std::move(ReaderOrErr.get()); 2333 2334 if (ShowSectionInfoOnly) { 2335 showSectionInfo(Reader.get(), OS); 2336 return 0; 2337 } 2338 2339 if (std::error_code EC = Reader->read()) 2340 exitWithErrorCode(EC, Filename); 2341 2342 if (ShowAllFunctions || ShowFunction.empty()) 2343 Reader->dump(OS); 2344 else 2345 Reader->dumpFunctionProfile(ShowFunction, OS); 2346 2347 if (ShowProfileSymbolList) { 2348 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 2349 Reader->getProfileSymbolList(); 2350 ReaderList->dump(OS); 2351 } 2352 2353 if (ShowDetailedSummary) { 2354 auto &PS = Reader->getSummary(); 2355 PS.printSummary(OS); 2356 PS.printDetailedSummary(OS); 2357 } 2358 2359 if (ShowHotFuncList) 2360 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), OS); 2361 2362 return 0; 2363 } 2364 2365 static int show_main(int argc, const char *argv[]) { 2366 cl::opt<std::string> Filename(cl::Positional, cl::Required, 2367 cl::desc("<profdata-file>")); 2368 2369 cl::opt<bool> ShowCounts("counts", cl::init(false), 2370 cl::desc("Show counter values for shown functions")); 2371 cl::opt<bool> TextFormat( 2372 "text", cl::init(false), 2373 cl::desc("Show instr profile data in text dump format")); 2374 cl::opt<bool> ShowIndirectCallTargets( 2375 "ic-targets", cl::init(false), 2376 cl::desc("Show indirect call site target values for shown functions")); 2377 cl::opt<bool> ShowMemOPSizes( 2378 "memop-sizes", cl::init(false), 2379 cl::desc("Show the profiled sizes of the memory intrinsic calls " 2380 "for shown functions")); 2381 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 2382 cl::desc("Show detailed profile summary")); 2383 cl::list<uint32_t> DetailedSummaryCutoffs( 2384 cl::CommaSeparated, "detailed-summary-cutoffs", 2385 cl::desc( 2386 "Cutoff percentages (times 10000) for generating detailed summary"), 2387 cl::value_desc("800000,901000,999999")); 2388 cl::opt<bool> ShowHotFuncList( 2389 "hot-func-list", cl::init(false), 2390 cl::desc("Show profile summary of a list of hot functions")); 2391 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 2392 cl::desc("Details for every function")); 2393 cl::opt<bool> ShowCS("showcs", cl::init(false), 2394 cl::desc("Show context sensitive counts")); 2395 cl::opt<std::string> ShowFunction("function", 2396 cl::desc("Details for matching functions")); 2397 2398 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 2399 cl::init("-"), cl::desc("Output file")); 2400 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 2401 cl::aliasopt(OutputFilename)); 2402 cl::opt<ProfileKinds> ProfileKind( 2403 cl::desc("Profile kind:"), cl::init(instr), 2404 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 2405 clEnumVal(sample, "Sample profile"))); 2406 cl::opt<uint32_t> TopNFunctions( 2407 "topn", cl::init(0), 2408 cl::desc("Show the list of functions with the largest internal counts")); 2409 cl::opt<uint32_t> ValueCutoff( 2410 "value-cutoff", cl::init(0), 2411 cl::desc("Set the count value cutoff. Functions with the maximum count " 2412 "less than this value will not be printed out. (Default is 0)")); 2413 cl::opt<bool> OnlyListBelow( 2414 "list-below-cutoff", cl::init(false), 2415 cl::desc("Only output names of functions whose max count values are " 2416 "below the cutoff value")); 2417 cl::opt<bool> ShowProfileSymbolList( 2418 "show-prof-sym-list", cl::init(false), 2419 cl::desc("Show profile symbol list if it exists in the profile. ")); 2420 cl::opt<bool> ShowSectionInfoOnly( 2421 "show-sec-info-only", cl::init(false), 2422 cl::desc("Show the information of each section in the sample profile. " 2423 "The flag is only usable when the sample profile is in " 2424 "extbinary format")); 2425 2426 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n"); 2427 2428 if (OutputFilename.empty()) 2429 OutputFilename = "-"; 2430 2431 if (!Filename.compare(OutputFilename)) { 2432 errs() << sys::path::filename(argv[0]) 2433 << ": Input file name cannot be the same as the output file name!\n"; 2434 return 1; 2435 } 2436 2437 std::error_code EC; 2438 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_Text); 2439 if (EC) 2440 exitWithErrorCode(EC, OutputFilename); 2441 2442 if (ShowAllFunctions && !ShowFunction.empty()) 2443 WithColor::warning() << "-function argument ignored: showing all functions\n"; 2444 2445 if (ProfileKind == instr) 2446 return showInstrProfile(Filename, ShowCounts, TopNFunctions, 2447 ShowIndirectCallTargets, ShowMemOPSizes, 2448 ShowDetailedSummary, DetailedSummaryCutoffs, 2449 ShowAllFunctions, ShowCS, ValueCutoff, 2450 OnlyListBelow, ShowFunction, TextFormat, OS); 2451 else 2452 return showSampleProfile(Filename, ShowCounts, ShowAllFunctions, 2453 ShowDetailedSummary, ShowFunction, 2454 ShowProfileSymbolList, ShowSectionInfoOnly, 2455 ShowHotFuncList, OS); 2456 } 2457 2458 int main(int argc, const char *argv[]) { 2459 InitLLVM X(argc, argv); 2460 2461 StringRef ProgName(sys::path::filename(argv[0])); 2462 if (argc > 1) { 2463 int (*func)(int, const char *[]) = nullptr; 2464 2465 if (strcmp(argv[1], "merge") == 0) 2466 func = merge_main; 2467 else if (strcmp(argv[1], "show") == 0) 2468 func = show_main; 2469 else if (strcmp(argv[1], "overlap") == 0) 2470 func = overlap_main; 2471 2472 if (func) { 2473 std::string Invocation(ProgName.str() + " " + argv[1]); 2474 argv[1] = Invocation.c_str(); 2475 return func(argc - 1, argv + 1); 2476 } 2477 2478 if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 || 2479 strcmp(argv[1], "--help") == 0) { 2480 2481 errs() << "OVERVIEW: LLVM profile data tools\n\n" 2482 << "USAGE: " << ProgName << " <command> [args...]\n" 2483 << "USAGE: " << ProgName << " <command> -help\n\n" 2484 << "See each individual command --help for more details.\n" 2485 << "Available commands: merge, show, overlap\n"; 2486 return 0; 2487 } 2488 } 2489 2490 if (argc < 2) 2491 errs() << ProgName << ": No command specified!\n"; 2492 else 2493 errs() << ProgName << ": Unknown command!\n"; 2494 2495 errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n"; 2496 return 1; 2497 } 2498