1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/IR/LLVMContext.h" 17 #include "llvm/ProfileData/InstrProfReader.h" 18 #include "llvm/ProfileData/InstrProfWriter.h" 19 #include "llvm/ProfileData/ProfileCommon.h" 20 #include "llvm/ProfileData/SampleProfReader.h" 21 #include "llvm/ProfileData/SampleProfWriter.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Errc.h" 24 #include "llvm/Support/FileSystem.h" 25 #include "llvm/Support/Format.h" 26 #include "llvm/Support/FormattedStream.h" 27 #include "llvm/Support/InitLLVM.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/ThreadPool.h" 31 #include "llvm/Support/Threading.h" 32 #include "llvm/Support/WithColor.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> 35 36 using namespace llvm; 37 38 enum ProfileFormat { 39 PF_None = 0, 40 PF_Text, 41 PF_Compact_Binary, 42 PF_Ext_Binary, 43 PF_GCC, 44 PF_Binary 45 }; 46 47 static void warn(Twine Message, std::string Whence = "", 48 std::string Hint = "") { 49 WithColor::warning(); 50 if (!Whence.empty()) 51 errs() << Whence << ": "; 52 errs() << Message << "\n"; 53 if (!Hint.empty()) 54 WithColor::note() << Hint << "\n"; 55 } 56 57 static void warn(Error E, StringRef Whence = "") { 58 if (E.isA<InstrProfError>()) { 59 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 60 warn(IPE.message(), std::string(Whence), std::string("")); 61 }); 62 } 63 } 64 65 static void exitWithError(Twine Message, std::string Whence = "", 66 std::string Hint = "") { 67 WithColor::error(); 68 if (!Whence.empty()) 69 errs() << Whence << ": "; 70 errs() << Message << "\n"; 71 if (!Hint.empty()) 72 WithColor::note() << Hint << "\n"; 73 ::exit(1); 74 } 75 76 static void exitWithError(Error E, StringRef Whence = "") { 77 if (E.isA<InstrProfError>()) { 78 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 79 instrprof_error instrError = IPE.get(); 80 StringRef Hint = ""; 81 if (instrError == instrprof_error::unrecognized_format) { 82 // Hint for common error of forgetting --sample for sample profiles. 83 Hint = "Perhaps you forgot to use the --sample option?"; 84 } 85 exitWithError(IPE.message(), std::string(Whence), std::string(Hint)); 86 }); 87 } 88 89 exitWithError(toString(std::move(E)), std::string(Whence)); 90 } 91 92 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 93 exitWithError(EC.message(), std::string(Whence)); 94 } 95 96 namespace { 97 enum ProfileKinds { instr, sample }; 98 enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid }; 99 } 100 101 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 102 StringRef Whence = "") { 103 if (FailMode == failIfAnyAreInvalid) 104 exitWithErrorCode(EC, Whence); 105 else 106 warn(EC.message(), std::string(Whence)); 107 } 108 109 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 110 StringRef WhenceFunction = "", 111 bool ShowHint = true) { 112 if (!WhenceFile.empty()) 113 errs() << WhenceFile << ": "; 114 if (!WhenceFunction.empty()) 115 errs() << WhenceFunction << ": "; 116 117 auto IPE = instrprof_error::success; 118 E = handleErrors(std::move(E), 119 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 120 IPE = E->get(); 121 return Error(std::move(E)); 122 }); 123 errs() << toString(std::move(E)) << "\n"; 124 125 if (ShowHint) { 126 StringRef Hint = ""; 127 if (IPE != instrprof_error::success) { 128 switch (IPE) { 129 case instrprof_error::hash_mismatch: 130 case instrprof_error::count_mismatch: 131 case instrprof_error::value_site_count_mismatch: 132 Hint = "Make sure that all profile data to be merged is generated " 133 "from the same binary."; 134 break; 135 default: 136 break; 137 } 138 } 139 140 if (!Hint.empty()) 141 errs() << Hint << "\n"; 142 } 143 } 144 145 namespace { 146 /// A remapper from original symbol names to new symbol names based on a file 147 /// containing a list of mappings from old name to new name. 148 class SymbolRemapper { 149 std::unique_ptr<MemoryBuffer> File; 150 DenseMap<StringRef, StringRef> RemappingTable; 151 152 public: 153 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 154 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 155 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 156 if (!BufOrError) 157 exitWithErrorCode(BufOrError.getError(), InputFile); 158 159 auto Remapper = std::make_unique<SymbolRemapper>(); 160 Remapper->File = std::move(BufOrError.get()); 161 162 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 163 !LineIt.is_at_eof(); ++LineIt) { 164 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 165 if (Parts.first.empty() || Parts.second.empty() || 166 Parts.second.count(' ')) { 167 exitWithError("unexpected line in remapping file", 168 (InputFile + ":" + Twine(LineIt.line_number())).str(), 169 "expected 'old_symbol new_symbol'"); 170 } 171 Remapper->RemappingTable.insert(Parts); 172 } 173 return Remapper; 174 } 175 176 /// Attempt to map the given old symbol into a new symbol. 177 /// 178 /// \return The new symbol, or \p Name if no such symbol was found. 179 StringRef operator()(StringRef Name) { 180 StringRef New = RemappingTable.lookup(Name); 181 return New.empty() ? Name : New; 182 } 183 }; 184 } 185 186 struct WeightedFile { 187 std::string Filename; 188 uint64_t Weight; 189 }; 190 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 191 192 /// Keep track of merged data and reported errors. 193 struct WriterContext { 194 std::mutex Lock; 195 InstrProfWriter Writer; 196 std::vector<std::pair<Error, std::string>> Errors; 197 std::mutex &ErrLock; 198 SmallSet<instrprof_error, 4> &WriterErrorCodes; 199 200 WriterContext(bool IsSparse, std::mutex &ErrLock, 201 SmallSet<instrprof_error, 4> &WriterErrorCodes) 202 : Lock(), Writer(IsSparse), Errors(), ErrLock(ErrLock), 203 WriterErrorCodes(WriterErrorCodes) {} 204 }; 205 206 /// Computer the overlap b/w profile BaseFilename and TestFileName, 207 /// and store the program level result to Overlap. 208 static void overlapInput(const std::string &BaseFilename, 209 const std::string &TestFilename, WriterContext *WC, 210 OverlapStats &Overlap, 211 const OverlapFuncFilters &FuncFilter, 212 raw_fd_ostream &OS, bool IsCS) { 213 auto ReaderOrErr = InstrProfReader::create(TestFilename); 214 if (Error E = ReaderOrErr.takeError()) { 215 // Skip the empty profiles by returning sliently. 216 instrprof_error IPE = InstrProfError::take(std::move(E)); 217 if (IPE != instrprof_error::empty_raw_profile) 218 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename); 219 return; 220 } 221 222 auto Reader = std::move(ReaderOrErr.get()); 223 for (auto &I : *Reader) { 224 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 225 FuncOverlap.setFuncInfo(I.Name, I.Hash); 226 227 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 228 FuncOverlap.dump(OS); 229 } 230 } 231 232 /// Load an input into a writer context. 233 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 234 WriterContext *WC) { 235 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 236 237 // Copy the filename, because llvm::ThreadPool copied the input "const 238 // WeightedFile &" by value, making a reference to the filename within it 239 // invalid outside of this packaged task. 240 std::string Filename = Input.Filename; 241 242 auto ReaderOrErr = InstrProfReader::create(Input.Filename); 243 if (Error E = ReaderOrErr.takeError()) { 244 // Skip the empty profiles by returning sliently. 245 instrprof_error IPE = InstrProfError::take(std::move(E)); 246 if (IPE != instrprof_error::empty_raw_profile) 247 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename); 248 return; 249 } 250 251 auto Reader = std::move(ReaderOrErr.get()); 252 bool IsIRProfile = Reader->isIRLevelProfile(); 253 bool HasCSIRProfile = Reader->hasCSIRLevelProfile(); 254 if (Error E = WC->Writer.setIsIRLevelProfile(IsIRProfile, HasCSIRProfile)) { 255 consumeError(std::move(E)); 256 WC->Errors.emplace_back( 257 make_error<StringError>( 258 "Merge IR generated profile with Clang generated profile.", 259 std::error_code()), 260 Filename); 261 return; 262 } 263 WC->Writer.setInstrEntryBBEnabled(Reader->instrEntryBBEnabled()); 264 265 for (auto &I : *Reader) { 266 if (Remapper) 267 I.Name = (*Remapper)(I.Name); 268 const StringRef FuncName = I.Name; 269 bool Reported = false; 270 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 271 if (Reported) { 272 consumeError(std::move(E)); 273 return; 274 } 275 Reported = true; 276 // Only show hint the first time an error occurs. 277 instrprof_error IPE = InstrProfError::take(std::move(E)); 278 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 279 bool firstTime = WC->WriterErrorCodes.insert(IPE).second; 280 handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename, 281 FuncName, firstTime); 282 }); 283 } 284 if (Reader->hasError()) 285 if (Error E = Reader->getError()) 286 WC->Errors.emplace_back(std::move(E), Filename); 287 } 288 289 /// Merge the \p Src writer context into \p Dst. 290 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 291 for (auto &ErrorPair : Src->Errors) 292 Dst->Errors.push_back(std::move(ErrorPair)); 293 Src->Errors.clear(); 294 295 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 296 instrprof_error IPE = InstrProfError::take(std::move(E)); 297 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 298 bool firstTime = Dst->WriterErrorCodes.insert(IPE).second; 299 if (firstTime) 300 warn(toString(make_error<InstrProfError>(IPE))); 301 }); 302 } 303 304 static void writeInstrProfile(StringRef OutputFilename, 305 ProfileFormat OutputFormat, 306 InstrProfWriter &Writer) { 307 std::error_code EC; 308 raw_fd_ostream Output(OutputFilename.data(), EC, 309 OutputFormat == PF_Text ? sys::fs::OF_Text 310 : sys::fs::OF_None); 311 if (EC) 312 exitWithErrorCode(EC, OutputFilename); 313 314 if (OutputFormat == PF_Text) { 315 if (Error E = Writer.writeText(Output)) 316 warn(std::move(E)); 317 } else { 318 if (Error E = Writer.write(Output)) 319 warn(std::move(E)); 320 } 321 } 322 323 static void mergeInstrProfile(const WeightedFileVector &Inputs, 324 SymbolRemapper *Remapper, 325 StringRef OutputFilename, 326 ProfileFormat OutputFormat, bool OutputSparse, 327 unsigned NumThreads, FailureMode FailMode) { 328 if (OutputFilename.compare("-") == 0) 329 exitWithError("Cannot write indexed profdata format to stdout."); 330 331 if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary && 332 OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text) 333 exitWithError("Unknown format is specified."); 334 335 std::mutex ErrorLock; 336 SmallSet<instrprof_error, 4> WriterErrorCodes; 337 338 // If NumThreads is not specified, auto-detect a good default. 339 if (NumThreads == 0) 340 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 341 unsigned((Inputs.size() + 1) / 2)); 342 // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails 343 // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't 344 // merged, thus the emitted file ends up with a PF_Unknown kind. 345 346 // Initialize the writer contexts. 347 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 348 for (unsigned I = 0; I < NumThreads; ++I) 349 Contexts.emplace_back(std::make_unique<WriterContext>( 350 OutputSparse, ErrorLock, WriterErrorCodes)); 351 352 if (NumThreads == 1) { 353 for (const auto &Input : Inputs) 354 loadInput(Input, Remapper, Contexts[0].get()); 355 } else { 356 ThreadPool Pool(hardware_concurrency(NumThreads)); 357 358 // Load the inputs in parallel (N/NumThreads serial steps). 359 unsigned Ctx = 0; 360 for (const auto &Input : Inputs) { 361 Pool.async(loadInput, Input, Remapper, Contexts[Ctx].get()); 362 Ctx = (Ctx + 1) % NumThreads; 363 } 364 Pool.wait(); 365 366 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 367 unsigned Mid = Contexts.size() / 2; 368 unsigned End = Contexts.size(); 369 assert(Mid > 0 && "Expected more than one context"); 370 do { 371 for (unsigned I = 0; I < Mid; ++I) 372 Pool.async(mergeWriterContexts, Contexts[I].get(), 373 Contexts[I + Mid].get()); 374 Pool.wait(); 375 if (End & 1) { 376 Pool.async(mergeWriterContexts, Contexts[0].get(), 377 Contexts[End - 1].get()); 378 Pool.wait(); 379 } 380 End = Mid; 381 Mid /= 2; 382 } while (Mid > 0); 383 } 384 385 // Handle deferred errors encountered during merging. If the number of errors 386 // is equal to the number of inputs the merge failed. 387 unsigned NumErrors = 0; 388 for (std::unique_ptr<WriterContext> &WC : Contexts) { 389 for (auto &ErrorPair : WC->Errors) { 390 ++NumErrors; 391 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 392 } 393 } 394 if (NumErrors == Inputs.size() || 395 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 396 exitWithError("No profiles could be merged."); 397 398 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 399 } 400 401 /// The profile entry for a function in instrumentation profile. 402 struct InstrProfileEntry { 403 uint64_t MaxCount = 0; 404 float ZeroCounterRatio = 0.0; 405 InstrProfRecord *ProfRecord; 406 InstrProfileEntry(InstrProfRecord *Record); 407 InstrProfileEntry() = default; 408 }; 409 410 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 411 ProfRecord = Record; 412 uint64_t CntNum = Record->Counts.size(); 413 uint64_t ZeroCntNum = 0; 414 for (size_t I = 0; I < CntNum; ++I) { 415 MaxCount = std::max(MaxCount, Record->Counts[I]); 416 ZeroCntNum += !Record->Counts[I]; 417 } 418 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 419 } 420 421 /// Either set all the counters in the instr profile entry \p IFE to -1 422 /// in order to drop the profile or scale up the counters in \p IFP to 423 /// be above hot threshold. We use the ratio of zero counters in the 424 /// profile of a function to decide the profile is helpful or harmful 425 /// for performance, and to choose whether to scale up or drop it. 426 static void updateInstrProfileEntry(InstrProfileEntry &IFE, 427 uint64_t HotInstrThreshold, 428 float ZeroCounterThreshold) { 429 InstrProfRecord *ProfRecord = IFE.ProfRecord; 430 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 431 // If all or most of the counters of the function are zero, the 432 // profile is unaccountable and shuld be dropped. Reset all the 433 // counters to be -1 and PGO profile-use will drop the profile. 434 // All counters being -1 also implies that the function is hot so 435 // PGO profile-use will also set the entry count metadata to be 436 // above hot threshold. 437 for (size_t I = 0; I < ProfRecord->Counts.size(); ++I) 438 ProfRecord->Counts[I] = -1; 439 return; 440 } 441 442 // Scale up the MaxCount to be multiple times above hot threshold. 443 const unsigned MultiplyFactor = 3; 444 uint64_t Numerator = HotInstrThreshold * MultiplyFactor; 445 uint64_t Denominator = IFE.MaxCount; 446 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 447 warn(toString(make_error<InstrProfError>(E))); 448 }); 449 } 450 451 const uint64_t ColdPercentileIdx = 15; 452 const uint64_t HotPercentileIdx = 11; 453 454 /// Adjust the instr profile in \p WC based on the sample profile in 455 /// \p Reader. 456 static void 457 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 458 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 459 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 460 unsigned InstrProfColdThreshold) { 461 // Function to its entry in instr profile. 462 StringMap<InstrProfileEntry> InstrProfileMap; 463 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 464 for (auto &PD : WC->Writer.getProfileData()) { 465 // Populate IPBuilder. 466 for (const auto &PDV : PD.getValue()) { 467 InstrProfRecord Record = PDV.second; 468 IPBuilder.addRecord(Record); 469 } 470 471 // If a function has multiple entries in instr profile, skip it. 472 if (PD.getValue().size() != 1) 473 continue; 474 475 // Initialize InstrProfileMap. 476 InstrProfRecord *R = &PD.getValue().begin()->second; 477 InstrProfileMap[PD.getKey()] = InstrProfileEntry(R); 478 } 479 480 ProfileSummary InstrPS = *IPBuilder.getSummary(); 481 ProfileSummary SamplePS = Reader->getSummary(); 482 483 // Compute cold thresholds for instr profile and sample profile. 484 uint64_t ColdSampleThreshold = 485 ProfileSummaryBuilder::getEntryForPercentile( 486 SamplePS.getDetailedSummary(), 487 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 488 .MinCount; 489 uint64_t HotInstrThreshold = 490 ProfileSummaryBuilder::getEntryForPercentile( 491 InstrPS.getDetailedSummary(), 492 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 493 .MinCount; 494 uint64_t ColdInstrThreshold = 495 InstrProfColdThreshold 496 ? InstrProfColdThreshold 497 : ProfileSummaryBuilder::getEntryForPercentile( 498 InstrPS.getDetailedSummary(), 499 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 500 .MinCount; 501 502 // Find hot/warm functions in sample profile which is cold in instr profile 503 // and adjust the profiles of those functions in the instr profile. 504 for (const auto &PD : Reader->getProfiles()) { 505 StringRef FName = PD.getKey(); 506 const sampleprof::FunctionSamples &FS = PD.getValue(); 507 auto It = InstrProfileMap.find(FName); 508 if (FS.getHeadSamples() > ColdSampleThreshold && 509 It != InstrProfileMap.end() && 510 It->second.MaxCount <= ColdInstrThreshold && 511 FS.getBodySamples().size() >= SupplMinSizeThreshold) { 512 updateInstrProfileEntry(It->second, HotInstrThreshold, 513 ZeroCounterThreshold); 514 } 515 } 516 } 517 518 /// The main function to supplement instr profile with sample profile. 519 /// \Inputs contains the instr profile. \p SampleFilename specifies the 520 /// sample profile. \p OutputFilename specifies the output profile name. 521 /// \p OutputFormat specifies the output profile format. \p OutputSparse 522 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 523 /// specifies the minimal size for the functions whose profile will be 524 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 525 /// a function contains too many zero counters and whether its profile 526 /// should be dropped. \p InstrProfColdThreshold is the user specified 527 /// cold threshold which will override the cold threshold got from the 528 /// instr profile summary. 529 static void supplementInstrProfile( 530 const WeightedFileVector &Inputs, StringRef SampleFilename, 531 StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse, 532 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 533 unsigned InstrProfColdThreshold) { 534 if (OutputFilename.compare("-") == 0) 535 exitWithError("Cannot write indexed profdata format to stdout."); 536 if (Inputs.size() != 1) 537 exitWithError("Expect one input to be an instr profile."); 538 if (Inputs[0].Weight != 1) 539 exitWithError("Expect instr profile doesn't have weight."); 540 541 StringRef InstrFilename = Inputs[0].Filename; 542 543 // Read sample profile. 544 LLVMContext Context; 545 auto ReaderOrErr = 546 sampleprof::SampleProfileReader::create(SampleFilename.str(), Context); 547 if (std::error_code EC = ReaderOrErr.getError()) 548 exitWithErrorCode(EC, SampleFilename); 549 auto Reader = std::move(ReaderOrErr.get()); 550 if (std::error_code EC = Reader->read()) 551 exitWithErrorCode(EC, SampleFilename); 552 553 // Read instr profile. 554 std::mutex ErrorLock; 555 SmallSet<instrprof_error, 4> WriterErrorCodes; 556 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 557 WriterErrorCodes); 558 loadInput(Inputs[0], nullptr, WC.get()); 559 if (WC->Errors.size() > 0) 560 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 561 562 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 563 InstrProfColdThreshold); 564 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 565 } 566 567 /// Make a copy of the given function samples with all symbol names remapped 568 /// by the provided symbol remapper. 569 static sampleprof::FunctionSamples 570 remapSamples(const sampleprof::FunctionSamples &Samples, 571 SymbolRemapper &Remapper, sampleprof_error &Error) { 572 sampleprof::FunctionSamples Result; 573 Result.setName(Remapper(Samples.getName())); 574 Result.addTotalSamples(Samples.getTotalSamples()); 575 Result.addHeadSamples(Samples.getHeadSamples()); 576 for (const auto &BodySample : Samples.getBodySamples()) { 577 Result.addBodySamples(BodySample.first.LineOffset, 578 BodySample.first.Discriminator, 579 BodySample.second.getSamples()); 580 for (const auto &Target : BodySample.second.getCallTargets()) { 581 Result.addCalledTargetSamples(BodySample.first.LineOffset, 582 BodySample.first.Discriminator, 583 Remapper(Target.first()), Target.second); 584 } 585 } 586 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 587 sampleprof::FunctionSamplesMap &Target = 588 Result.functionSamplesAt(CallsiteSamples.first); 589 for (const auto &Callsite : CallsiteSamples.second) { 590 sampleprof::FunctionSamples Remapped = 591 remapSamples(Callsite.second, Remapper, Error); 592 MergeResult(Error, 593 Target[std::string(Remapped.getName())].merge(Remapped)); 594 } 595 } 596 return Result; 597 } 598 599 static sampleprof::SampleProfileFormat FormatMap[] = { 600 sampleprof::SPF_None, 601 sampleprof::SPF_Text, 602 sampleprof::SPF_Compact_Binary, 603 sampleprof::SPF_Ext_Binary, 604 sampleprof::SPF_GCC, 605 sampleprof::SPF_Binary}; 606 607 static std::unique_ptr<MemoryBuffer> 608 getInputFileBuf(const StringRef &InputFile) { 609 if (InputFile == "") 610 return {}; 611 612 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 613 if (!BufOrError) 614 exitWithErrorCode(BufOrError.getError(), InputFile); 615 616 return std::move(*BufOrError); 617 } 618 619 static void populateProfileSymbolList(MemoryBuffer *Buffer, 620 sampleprof::ProfileSymbolList &PSL) { 621 if (!Buffer) 622 return; 623 624 SmallVector<StringRef, 32> SymbolVec; 625 StringRef Data = Buffer->getBuffer(); 626 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 627 628 for (StringRef symbol : SymbolVec) 629 PSL.add(symbol); 630 } 631 632 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 633 ProfileFormat OutputFormat, 634 MemoryBuffer *Buffer, 635 sampleprof::ProfileSymbolList &WriterList, 636 bool CompressAllSections, bool UseMD5, 637 bool GenPartialProfile) { 638 populateProfileSymbolList(Buffer, WriterList); 639 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 640 warn("Profile Symbol list is not empty but the output format is not " 641 "ExtBinary format. The list will be lost in the output. "); 642 643 Writer.setProfileSymbolList(&WriterList); 644 645 if (CompressAllSections) { 646 if (OutputFormat != PF_Ext_Binary) 647 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 648 else 649 Writer.setToCompressAllSections(); 650 } 651 if (UseMD5) { 652 if (OutputFormat != PF_Ext_Binary) 653 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 654 else 655 Writer.setUseMD5(); 656 } 657 if (GenPartialProfile) { 658 if (OutputFormat != PF_Ext_Binary) 659 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 660 else 661 Writer.setPartialProfile(); 662 } 663 } 664 665 static void 666 mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper, 667 StringRef OutputFilename, ProfileFormat OutputFormat, 668 StringRef ProfileSymbolListFile, bool CompressAllSections, 669 bool UseMD5, bool GenPartialProfile, FailureMode FailMode) { 670 using namespace sampleprof; 671 StringMap<FunctionSamples> ProfileMap; 672 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 673 LLVMContext Context; 674 sampleprof::ProfileSymbolList WriterList; 675 Optional<bool> ProfileIsProbeBased; 676 Optional<bool> ProfileIsCS; 677 for (const auto &Input : Inputs) { 678 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context); 679 if (std::error_code EC = ReaderOrErr.getError()) { 680 warnOrExitGivenError(FailMode, EC, Input.Filename); 681 continue; 682 } 683 684 // We need to keep the readers around until after all the files are 685 // read so that we do not lose the function names stored in each 686 // reader's memory. The function names are needed to write out the 687 // merged profile map. 688 Readers.push_back(std::move(ReaderOrErr.get())); 689 const auto Reader = Readers.back().get(); 690 if (std::error_code EC = Reader->read()) { 691 warnOrExitGivenError(FailMode, EC, Input.Filename); 692 Readers.pop_back(); 693 continue; 694 } 695 696 StringMap<FunctionSamples> &Profiles = Reader->getProfiles(); 697 if (ProfileIsProbeBased.hasValue() && 698 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) 699 exitWithError( 700 "cannot merge probe-based profile with non-probe-based profile"); 701 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; 702 if (ProfileIsCS.hasValue() && ProfileIsCS != FunctionSamples::ProfileIsCS) 703 exitWithError("cannot merge CS profile with non-CS profile"); 704 ProfileIsCS = FunctionSamples::ProfileIsCS; 705 for (StringMap<FunctionSamples>::iterator I = Profiles.begin(), 706 E = Profiles.end(); 707 I != E; ++I) { 708 sampleprof_error Result = sampleprof_error::success; 709 FunctionSamples Remapped = 710 Remapper ? remapSamples(I->second, *Remapper, Result) 711 : FunctionSamples(); 712 FunctionSamples &Samples = Remapper ? Remapped : I->second; 713 StringRef FName = Samples.getNameWithContext(true); 714 MergeResult(Result, ProfileMap[FName].merge(Samples, Input.Weight)); 715 if (Result != sampleprof_error::success) { 716 std::error_code EC = make_error_code(Result); 717 handleMergeWriterError(errorCodeToError(EC), Input.Filename, FName); 718 } 719 } 720 721 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 722 Reader->getProfileSymbolList(); 723 if (ReaderList) 724 WriterList.merge(*ReaderList); 725 } 726 auto WriterOrErr = 727 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 728 if (std::error_code EC = WriterOrErr.getError()) 729 exitWithErrorCode(EC, OutputFilename); 730 731 auto Writer = std::move(WriterOrErr.get()); 732 // WriterList will have StringRef refering to string in Buffer. 733 // Make sure Buffer lives as long as WriterList. 734 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 735 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 736 CompressAllSections, UseMD5, GenPartialProfile); 737 Writer->write(ProfileMap); 738 } 739 740 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 741 StringRef WeightStr, FileName; 742 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 743 744 uint64_t Weight; 745 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 746 exitWithError("Input weight must be a positive integer."); 747 748 return {std::string(FileName), Weight}; 749 } 750 751 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 752 StringRef Filename = WF.Filename; 753 uint64_t Weight = WF.Weight; 754 755 // If it's STDIN just pass it on. 756 if (Filename == "-") { 757 WNI.push_back({std::string(Filename), Weight}); 758 return; 759 } 760 761 llvm::sys::fs::file_status Status; 762 llvm::sys::fs::status(Filename, Status); 763 if (!llvm::sys::fs::exists(Status)) 764 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 765 Filename); 766 // If it's a source file, collect it. 767 if (llvm::sys::fs::is_regular_file(Status)) { 768 WNI.push_back({std::string(Filename), Weight}); 769 return; 770 } 771 772 if (llvm::sys::fs::is_directory(Status)) { 773 std::error_code EC; 774 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 775 F != E && !EC; F.increment(EC)) { 776 if (llvm::sys::fs::is_regular_file(F->path())) { 777 addWeightedInput(WNI, {F->path(), Weight}); 778 } 779 } 780 if (EC) 781 exitWithErrorCode(EC, Filename); 782 } 783 } 784 785 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 786 WeightedFileVector &WFV) { 787 if (!Buffer) 788 return; 789 790 SmallVector<StringRef, 8> Entries; 791 StringRef Data = Buffer->getBuffer(); 792 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 793 for (const StringRef &FileWeightEntry : Entries) { 794 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 795 // Skip comments. 796 if (SanitizedEntry.startswith("#")) 797 continue; 798 // If there's no comma, it's an unweighted profile. 799 else if (SanitizedEntry.find(',') == StringRef::npos) 800 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 801 else 802 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 803 } 804 } 805 806 static int merge_main(int argc, const char *argv[]) { 807 cl::list<std::string> InputFilenames(cl::Positional, 808 cl::desc("<filename...>")); 809 cl::list<std::string> WeightedInputFilenames("weighted-input", 810 cl::desc("<weight>,<filename>")); 811 cl::opt<std::string> InputFilenamesFile( 812 "input-files", cl::init(""), 813 cl::desc("Path to file containing newline-separated " 814 "[<weight>,]<filename> entries")); 815 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 816 cl::aliasopt(InputFilenamesFile)); 817 cl::opt<bool> DumpInputFileList( 818 "dump-input-file-list", cl::init(false), cl::Hidden, 819 cl::desc("Dump the list of input files and their weights, then exit")); 820 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 821 cl::desc("Symbol remapping file")); 822 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 823 cl::aliasopt(RemappingFile)); 824 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 825 cl::init("-"), cl::Required, 826 cl::desc("Output file")); 827 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 828 cl::aliasopt(OutputFilename)); 829 cl::opt<ProfileKinds> ProfileKind( 830 cl::desc("Profile kind:"), cl::init(instr), 831 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 832 clEnumVal(sample, "Sample profile"))); 833 cl::opt<ProfileFormat> OutputFormat( 834 cl::desc("Format of output profile"), cl::init(PF_Binary), 835 cl::values( 836 clEnumValN(PF_Binary, "binary", "Binary encoding (default)"), 837 clEnumValN(PF_Compact_Binary, "compbinary", 838 "Compact binary encoding"), 839 clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"), 840 clEnumValN(PF_Text, "text", "Text encoding"), 841 clEnumValN(PF_GCC, "gcc", 842 "GCC encoding (only meaningful for -sample)"))); 843 cl::opt<FailureMode> FailureMode( 844 "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"), 845 cl::values(clEnumValN(failIfAnyAreInvalid, "any", 846 "Fail if any profile is invalid."), 847 clEnumValN(failIfAllAreInvalid, "all", 848 "Fail only if all profiles are invalid."))); 849 cl::opt<bool> OutputSparse("sparse", cl::init(false), 850 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 851 cl::opt<unsigned> NumThreads( 852 "num-threads", cl::init(0), 853 cl::desc("Number of merge threads to use (default: autodetect)")); 854 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 855 cl::aliasopt(NumThreads)); 856 cl::opt<std::string> ProfileSymbolListFile( 857 "prof-sym-list", cl::init(""), 858 cl::desc("Path to file containing the list of function symbols " 859 "used to populate profile symbol list")); 860 cl::opt<bool> CompressAllSections( 861 "compress-all-sections", cl::init(false), cl::Hidden, 862 cl::desc("Compress all sections when writing the profile (only " 863 "meaningful for -extbinary)")); 864 cl::opt<bool> UseMD5( 865 "use-md5", cl::init(false), cl::Hidden, 866 cl::desc("Choose to use MD5 to represent string in name table (only " 867 "meaningful for -extbinary)")); 868 cl::opt<bool> GenPartialProfile( 869 "gen-partial-profile", cl::init(false), cl::Hidden, 870 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 871 cl::opt<std::string> SupplInstrWithSample( 872 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 873 cl::desc("Supplement an instr profile with sample profile, to correct " 874 "the profile unrepresentativeness issue. The sample " 875 "profile is the input of the flag. Output will be in instr " 876 "format (The flag only works with -instr)")); 877 cl::opt<float> ZeroCounterThreshold( 878 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 879 cl::desc("For the function which is cold in instr profile but hot in " 880 "sample profile, if the ratio of the number of zero counters " 881 "divided by the the total number of counters is above the " 882 "threshold, the profile of the function will be regarded as " 883 "being harmful for performance and will be dropped. ")); 884 cl::opt<unsigned> SupplMinSizeThreshold( 885 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 886 cl::desc("If the size of a function is smaller than the threshold, " 887 "assume it can be inlined by PGO early inliner and it won't " 888 "be adjusted based on sample profile. ")); 889 cl::opt<unsigned> InstrProfColdThreshold( 890 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 891 cl::desc("User specified cold threshold for instr profile which will " 892 "override the cold threshold got from profile summary. ")); 893 894 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n"); 895 896 WeightedFileVector WeightedInputs; 897 for (StringRef Filename : InputFilenames) 898 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 899 for (StringRef WeightedFilename : WeightedInputFilenames) 900 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 901 902 // Make sure that the file buffer stays alive for the duration of the 903 // weighted input vector's lifetime. 904 auto Buffer = getInputFileBuf(InputFilenamesFile); 905 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 906 907 if (WeightedInputs.empty()) 908 exitWithError("No input files specified. See " + 909 sys::path::filename(argv[0]) + " -help"); 910 911 if (DumpInputFileList) { 912 for (auto &WF : WeightedInputs) 913 outs() << WF.Weight << "," << WF.Filename << "\n"; 914 return 0; 915 } 916 917 std::unique_ptr<SymbolRemapper> Remapper; 918 if (!RemappingFile.empty()) 919 Remapper = SymbolRemapper::create(RemappingFile); 920 921 if (!SupplInstrWithSample.empty()) { 922 if (ProfileKind != instr) 923 exitWithError( 924 "-supplement-instr-with-sample can only work with -instr. "); 925 926 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename, 927 OutputFormat, OutputSparse, SupplMinSizeThreshold, 928 ZeroCounterThreshold, InstrProfColdThreshold); 929 return 0; 930 } 931 932 if (ProfileKind == instr) 933 mergeInstrProfile(WeightedInputs, Remapper.get(), OutputFilename, 934 OutputFormat, OutputSparse, NumThreads, FailureMode); 935 else 936 mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename, 937 OutputFormat, ProfileSymbolListFile, CompressAllSections, 938 UseMD5, GenPartialProfile, FailureMode); 939 940 return 0; 941 } 942 943 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 944 static void overlapInstrProfile(const std::string &BaseFilename, 945 const std::string &TestFilename, 946 const OverlapFuncFilters &FuncFilter, 947 raw_fd_ostream &OS, bool IsCS) { 948 std::mutex ErrorLock; 949 SmallSet<instrprof_error, 4> WriterErrorCodes; 950 WriterContext Context(false, ErrorLock, WriterErrorCodes); 951 WeightedFile WeightedInput{BaseFilename, 1}; 952 OverlapStats Overlap; 953 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 954 if (E) 955 exitWithError(std::move(E), "Error in getting profile count sums"); 956 if (Overlap.Base.CountSum < 1.0f) { 957 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 958 exit(0); 959 } 960 if (Overlap.Test.CountSum < 1.0f) { 961 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 962 exit(0); 963 } 964 loadInput(WeightedInput, nullptr, &Context); 965 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 966 IsCS); 967 Overlap.dump(OS); 968 } 969 970 namespace { 971 struct SampleOverlapStats { 972 StringRef BaseName; 973 StringRef TestName; 974 // Number of overlap units 975 uint64_t OverlapCount; 976 // Total samples of overlap units 977 uint64_t OverlapSample; 978 // Number of and total samples of units that only present in base or test 979 // profile 980 uint64_t BaseUniqueCount; 981 uint64_t BaseUniqueSample; 982 uint64_t TestUniqueCount; 983 uint64_t TestUniqueSample; 984 // Number of units and total samples in base or test profile 985 uint64_t BaseCount; 986 uint64_t BaseSample; 987 uint64_t TestCount; 988 uint64_t TestSample; 989 // Number of and total samples of units that present in at least one profile 990 uint64_t UnionCount; 991 uint64_t UnionSample; 992 // Weighted similarity 993 double Similarity; 994 // For SampleOverlapStats instances representing functions, weights of the 995 // function in base and test profiles 996 double BaseWeight; 997 double TestWeight; 998 999 SampleOverlapStats() 1000 : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0), 1001 BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0), 1002 BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0), 1003 UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {} 1004 }; 1005 } // end anonymous namespace 1006 1007 namespace { 1008 struct FuncSampleStats { 1009 uint64_t SampleSum; 1010 uint64_t MaxSample; 1011 uint64_t HotBlockCount; 1012 FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {} 1013 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 1014 uint64_t HotBlockCount) 1015 : SampleSum(SampleSum), MaxSample(MaxSample), 1016 HotBlockCount(HotBlockCount) {} 1017 }; 1018 } // end anonymous namespace 1019 1020 namespace { 1021 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1022 1023 // Class for updating merging steps for two sorted maps. The class should be 1024 // instantiated with a map iterator type. 1025 template <class T> class MatchStep { 1026 public: 1027 MatchStep() = delete; 1028 1029 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1030 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1031 SecondEnd(SecondEnd), Status(MS_None) {} 1032 1033 bool areBothFinished() const { 1034 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1035 } 1036 1037 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1038 1039 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1040 1041 /// Advance one step based on the previous match status unless the previous 1042 /// status is MS_None. Then update Status based on the comparison between two 1043 /// container iterators at the current step. If the previous status is 1044 /// MS_None, it means two iterators are at the beginning and no comparison has 1045 /// been made, so we simply update Status without advancing the iterators. 1046 void updateOneStep(); 1047 1048 T getFirstIter() const { return FirstIter; } 1049 1050 T getSecondIter() const { return SecondIter; } 1051 1052 MatchStatus getMatchStatus() const { return Status; } 1053 1054 private: 1055 // Current iterator and end iterator of the first container. 1056 T FirstIter; 1057 T FirstEnd; 1058 // Current iterator and end iterator of the second container. 1059 T SecondIter; 1060 T SecondEnd; 1061 // Match status of the current step. 1062 MatchStatus Status; 1063 }; 1064 } // end anonymous namespace 1065 1066 template <class T> void MatchStep<T>::updateOneStep() { 1067 switch (Status) { 1068 case MS_Match: 1069 ++FirstIter; 1070 ++SecondIter; 1071 break; 1072 case MS_FirstUnique: 1073 ++FirstIter; 1074 break; 1075 case MS_SecondUnique: 1076 ++SecondIter; 1077 break; 1078 case MS_None: 1079 break; 1080 } 1081 1082 // Update Status according to iterators at the current step. 1083 if (areBothFinished()) 1084 return; 1085 if (FirstIter != FirstEnd && 1086 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1087 Status = MS_FirstUnique; 1088 else if (SecondIter != SecondEnd && 1089 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1090 Status = MS_SecondUnique; 1091 else 1092 Status = MS_Match; 1093 } 1094 1095 // Return the sum of line/block samples, the max line/block sample, and the 1096 // number of line/block samples above the given threshold in a function 1097 // including its inlinees. 1098 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1099 FuncSampleStats &FuncStats, 1100 uint64_t HotThreshold) { 1101 for (const auto &L : Func.getBodySamples()) { 1102 uint64_t Sample = L.second.getSamples(); 1103 FuncStats.SampleSum += Sample; 1104 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1105 if (Sample >= HotThreshold) 1106 ++FuncStats.HotBlockCount; 1107 } 1108 1109 for (const auto &C : Func.getCallsiteSamples()) { 1110 for (const auto &F : C.second) 1111 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1112 } 1113 } 1114 1115 /// Predicate that determines if a function is hot with a given threshold. We 1116 /// keep it separate from its callsites for possible extension in the future. 1117 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1118 uint64_t HotThreshold) { 1119 // We intentionally compare the maximum sample count in a function with the 1120 // HotThreshold to get an approximate determination on hot functions. 1121 return (FuncStats.MaxSample >= HotThreshold); 1122 } 1123 1124 namespace { 1125 class SampleOverlapAggregator { 1126 public: 1127 SampleOverlapAggregator(const std::string &BaseFilename, 1128 const std::string &TestFilename, 1129 double LowSimilarityThreshold, double Epsilon, 1130 const OverlapFuncFilters &FuncFilter) 1131 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1132 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1133 FuncFilter(FuncFilter) {} 1134 1135 /// Detect 0-sample input profile and report to output stream. This interface 1136 /// should be called after loadProfiles(). 1137 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1138 1139 /// Write out function-level similarity statistics for functions specified by 1140 /// options --function, --value-cutoff, and --similarity-cutoff. 1141 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1142 1143 /// Write out program-level similarity and overlap statistics. 1144 void dumpProgramSummary(raw_fd_ostream &OS) const; 1145 1146 /// Write out hot-function and hot-block statistics for base_profile, 1147 /// test_profile, and their overlap. For both cases, the overlap HO is 1148 /// calculated as follows: 1149 /// Given the number of functions (or blocks) that are hot in both profiles 1150 /// HCommon and the number of functions (or blocks) that are hot in at 1151 /// least one profile HUnion, HO = HCommon / HUnion. 1152 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 1153 1154 /// This function tries matching functions in base and test profiles. For each 1155 /// pair of matched functions, it aggregates the function-level 1156 /// similarity into a profile-level similarity. It also dump function-level 1157 /// similarity information of functions specified by --function, 1158 /// --value-cutoff, and --similarity-cutoff options. The program-level 1159 /// similarity PS is computed as follows: 1160 /// Given function-level similarity FS(A) for all function A, the 1161 /// weight of function A in base profile WB(A), and the weight of function 1162 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 1163 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 1164 /// meaning no-overlap. 1165 void computeSampleProfileOverlap(raw_fd_ostream &OS); 1166 1167 /// Initialize ProfOverlap with the sum of samples in base and test 1168 /// profiles. This function also computes and keeps the sum of samples and 1169 /// max sample counts of each function in BaseStats and TestStats for later 1170 /// use to avoid re-computations. 1171 void initializeSampleProfileOverlap(); 1172 1173 /// Load profiles specified by BaseFilename and TestFilename. 1174 std::error_code loadProfiles(); 1175 1176 private: 1177 SampleOverlapStats ProfOverlap; 1178 SampleOverlapStats HotFuncOverlap; 1179 SampleOverlapStats HotBlockOverlap; 1180 std::string BaseFilename; 1181 std::string TestFilename; 1182 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 1183 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 1184 // BaseStats and TestStats hold FuncSampleStats for each function, with 1185 // function name as the key. 1186 StringMap<FuncSampleStats> BaseStats; 1187 StringMap<FuncSampleStats> TestStats; 1188 // Low similarity threshold in floating point number 1189 double LowSimilarityThreshold; 1190 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 1191 // for tracking hot blocks. 1192 uint64_t BaseHotThreshold; 1193 uint64_t TestHotThreshold; 1194 // A small threshold used to round the results of floating point accumulations 1195 // to resolve imprecision. 1196 const double Epsilon; 1197 std::multimap<double, SampleOverlapStats, std::greater<double>> 1198 FuncSimilarityDump; 1199 // FuncFilter carries specifications in options --value-cutoff and 1200 // --function. 1201 OverlapFuncFilters FuncFilter; 1202 // Column offsets for printing the function-level details table. 1203 static const unsigned int TestWeightCol = 15; 1204 static const unsigned int SimilarityCol = 30; 1205 static const unsigned int OverlapCol = 43; 1206 static const unsigned int BaseUniqueCol = 53; 1207 static const unsigned int TestUniqueCol = 67; 1208 static const unsigned int BaseSampleCol = 81; 1209 static const unsigned int TestSampleCol = 96; 1210 static const unsigned int FuncNameCol = 111; 1211 1212 /// Return a similarity of two line/block sample counters in the same 1213 /// function in base and test profiles. The line/block-similarity BS(i) is 1214 /// computed as follows: 1215 /// For an offsets i, given the sample count at i in base profile BB(i), 1216 /// the sample count at i in test profile BT(i), the sum of sample counts 1217 /// in this function in base profile SB, and the sum of sample counts in 1218 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 1219 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 1220 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 1221 const SampleOverlapStats &FuncOverlap) const; 1222 1223 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 1224 uint64_t HotBlockCount); 1225 1226 void getHotFunctions(const StringMap<FuncSampleStats> &ProfStats, 1227 StringMap<FuncSampleStats> &HotFunc, 1228 uint64_t HotThreshold) const; 1229 1230 void computeHotFuncOverlap(); 1231 1232 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1233 /// Difference for two sample units in a matched function according to the 1234 /// given match status. 1235 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 1236 uint64_t HotBlockCount, 1237 SampleOverlapStats &FuncOverlap, 1238 double &Difference, MatchStatus Status); 1239 1240 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1241 /// Difference for unmatched callees that only present in one profile in a 1242 /// matched caller function. 1243 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 1244 SampleOverlapStats &FuncOverlap, 1245 double &Difference, MatchStatus Status); 1246 1247 /// This function updates sample overlap statistics of an overlap function in 1248 /// base and test profile. It also calculates a function-internal similarity 1249 /// FIS as follows: 1250 /// For offsets i that have samples in at least one profile in this 1251 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 1252 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 1253 /// 0.0 meaning no overlap. 1254 double computeSampleFunctionInternalOverlap( 1255 const sampleprof::FunctionSamples &BaseFunc, 1256 const sampleprof::FunctionSamples &TestFunc, 1257 SampleOverlapStats &FuncOverlap); 1258 1259 /// Function-level similarity (FS) is a weighted value over function internal 1260 /// similarity (FIS). This function computes a function's FS from its FIS by 1261 /// applying the weight. 1262 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 1263 uint64_t TestFuncSample) const; 1264 1265 /// The function-level similarity FS(A) for a function A is computed as 1266 /// follows: 1267 /// Compute a function-internal similarity FIS(A) by 1268 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 1269 /// function A in base profile WB(A), and the weight of function A in test 1270 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 1271 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 1272 double 1273 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 1274 const sampleprof::FunctionSamples *TestFunc, 1275 SampleOverlapStats *FuncOverlap, 1276 uint64_t BaseFuncSample, 1277 uint64_t TestFuncSample); 1278 1279 /// Profile-level similarity (PS) is a weighted aggregate over function-level 1280 /// similarities (FS). This method weights the FS value by the function 1281 /// weights in the base and test profiles for the aggregation. 1282 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 1283 uint64_t TestFuncSample) const; 1284 }; 1285 } // end anonymous namespace 1286 1287 bool SampleOverlapAggregator::detectZeroSampleProfile( 1288 raw_fd_ostream &OS) const { 1289 bool HaveZeroSample = false; 1290 if (ProfOverlap.BaseSample == 0) { 1291 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 1292 HaveZeroSample = true; 1293 } 1294 if (ProfOverlap.TestSample == 0) { 1295 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 1296 HaveZeroSample = true; 1297 } 1298 return HaveZeroSample; 1299 } 1300 1301 double SampleOverlapAggregator::computeBlockSimilarity( 1302 uint64_t BaseSample, uint64_t TestSample, 1303 const SampleOverlapStats &FuncOverlap) const { 1304 double BaseFrac = 0.0; 1305 double TestFrac = 0.0; 1306 if (FuncOverlap.BaseSample > 0) 1307 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 1308 if (FuncOverlap.TestSample > 0) 1309 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 1310 return 1.0 - std::fabs(BaseFrac - TestFrac); 1311 } 1312 1313 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 1314 uint64_t TestSample, 1315 uint64_t HotBlockCount) { 1316 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 1317 bool IsTestHot = (TestSample >= TestHotThreshold); 1318 if (!IsBaseHot && !IsTestHot) 1319 return; 1320 1321 HotBlockOverlap.UnionCount += HotBlockCount; 1322 if (IsBaseHot) 1323 HotBlockOverlap.BaseCount += HotBlockCount; 1324 if (IsTestHot) 1325 HotBlockOverlap.TestCount += HotBlockCount; 1326 if (IsBaseHot && IsTestHot) 1327 HotBlockOverlap.OverlapCount += HotBlockCount; 1328 } 1329 1330 void SampleOverlapAggregator::getHotFunctions( 1331 const StringMap<FuncSampleStats> &ProfStats, 1332 StringMap<FuncSampleStats> &HotFunc, uint64_t HotThreshold) const { 1333 for (const auto &F : ProfStats) { 1334 if (isFunctionHot(F.second, HotThreshold)) 1335 HotFunc.try_emplace(F.first(), F.second); 1336 } 1337 } 1338 1339 void SampleOverlapAggregator::computeHotFuncOverlap() { 1340 StringMap<FuncSampleStats> BaseHotFunc; 1341 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 1342 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 1343 1344 StringMap<FuncSampleStats> TestHotFunc; 1345 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 1346 HotFuncOverlap.TestCount = TestHotFunc.size(); 1347 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 1348 1349 for (const auto &F : BaseHotFunc) { 1350 if (TestHotFunc.count(F.first())) 1351 ++HotFuncOverlap.OverlapCount; 1352 else 1353 ++HotFuncOverlap.UnionCount; 1354 } 1355 } 1356 1357 void SampleOverlapAggregator::updateOverlapStatsForFunction( 1358 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 1359 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 1360 assert(Status != MS_None && 1361 "Match status should be updated before updating overlap statistics"); 1362 if (Status == MS_FirstUnique) { 1363 TestSample = 0; 1364 FuncOverlap.BaseUniqueSample += BaseSample; 1365 } else if (Status == MS_SecondUnique) { 1366 BaseSample = 0; 1367 FuncOverlap.TestUniqueSample += TestSample; 1368 } else { 1369 ++FuncOverlap.OverlapCount; 1370 } 1371 1372 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 1373 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 1374 Difference += 1375 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 1376 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 1377 } 1378 1379 void SampleOverlapAggregator::updateForUnmatchedCallee( 1380 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 1381 double &Difference, MatchStatus Status) { 1382 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 1383 "Status must be either of the two unmatched cases"); 1384 FuncSampleStats FuncStats; 1385 if (Status == MS_FirstUnique) { 1386 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 1387 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 1388 FuncStats.HotBlockCount, FuncOverlap, 1389 Difference, Status); 1390 } else { 1391 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 1392 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 1393 FuncStats.HotBlockCount, FuncOverlap, 1394 Difference, Status); 1395 } 1396 } 1397 1398 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 1399 const sampleprof::FunctionSamples &BaseFunc, 1400 const sampleprof::FunctionSamples &TestFunc, 1401 SampleOverlapStats &FuncOverlap) { 1402 1403 using namespace sampleprof; 1404 1405 double Difference = 0; 1406 1407 // Accumulate Difference for regular line/block samples in the function. 1408 // We match them through sort-merge join algorithm because 1409 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 1410 // by their offsets. 1411 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 1412 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 1413 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 1414 BlockIterStep.updateOneStep(); 1415 while (!BlockIterStep.areBothFinished()) { 1416 uint64_t BaseSample = 1417 BlockIterStep.isFirstFinished() 1418 ? 0 1419 : BlockIterStep.getFirstIter()->second.getSamples(); 1420 uint64_t TestSample = 1421 BlockIterStep.isSecondFinished() 1422 ? 0 1423 : BlockIterStep.getSecondIter()->second.getSamples(); 1424 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 1425 Difference, BlockIterStep.getMatchStatus()); 1426 1427 BlockIterStep.updateOneStep(); 1428 } 1429 1430 // Accumulate Difference for callsite lines in the function. We match 1431 // them through sort-merge algorithm because 1432 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 1433 // ordered by their offsets. 1434 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 1435 BaseFunc.getCallsiteSamples().cbegin(), 1436 BaseFunc.getCallsiteSamples().cend(), 1437 TestFunc.getCallsiteSamples().cbegin(), 1438 TestFunc.getCallsiteSamples().cend()); 1439 CallsiteIterStep.updateOneStep(); 1440 while (!CallsiteIterStep.areBothFinished()) { 1441 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 1442 assert(CallsiteStepStatus != MS_None && 1443 "Match status should be updated before entering loop body"); 1444 1445 if (CallsiteStepStatus != MS_Match) { 1446 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 1447 ? CallsiteIterStep.getFirstIter() 1448 : CallsiteIterStep.getSecondIter(); 1449 for (const auto &F : Callsite->second) 1450 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 1451 CallsiteStepStatus); 1452 } else { 1453 // There may be multiple inlinees at the same offset, so we need to try 1454 // matching all of them. This match is implemented through sort-merge 1455 // algorithm because callsite records at the same offset are ordered by 1456 // function names. 1457 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 1458 CallsiteIterStep.getFirstIter()->second.cbegin(), 1459 CallsiteIterStep.getFirstIter()->second.cend(), 1460 CallsiteIterStep.getSecondIter()->second.cbegin(), 1461 CallsiteIterStep.getSecondIter()->second.cend()); 1462 CalleeIterStep.updateOneStep(); 1463 while (!CalleeIterStep.areBothFinished()) { 1464 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 1465 if (CalleeStepStatus != MS_Match) { 1466 auto Callee = (CalleeStepStatus == MS_FirstUnique) 1467 ? CalleeIterStep.getFirstIter() 1468 : CalleeIterStep.getSecondIter(); 1469 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 1470 CalleeStepStatus); 1471 } else { 1472 // An inlined function can contain other inlinees inside, so compute 1473 // the Difference recursively. 1474 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 1475 CalleeIterStep.getFirstIter()->second, 1476 CalleeIterStep.getSecondIter()->second, 1477 FuncOverlap); 1478 } 1479 CalleeIterStep.updateOneStep(); 1480 } 1481 } 1482 CallsiteIterStep.updateOneStep(); 1483 } 1484 1485 // Difference reflects the total differences of line/block samples in this 1486 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 1487 // reflect the similarity between function profiles in [0.0f to 1.0f]. 1488 return (2.0 - Difference) / 2; 1489 } 1490 1491 double SampleOverlapAggregator::weightForFuncSimilarity( 1492 double FuncInternalSimilarity, uint64_t BaseFuncSample, 1493 uint64_t TestFuncSample) const { 1494 // Compute the weight as the distance between the function weights in two 1495 // profiles. 1496 double BaseFrac = 0.0; 1497 double TestFrac = 0.0; 1498 assert(ProfOverlap.BaseSample > 0 && 1499 "Total samples in base profile should be greater than 0"); 1500 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 1501 assert(ProfOverlap.TestSample > 0 && 1502 "Total samples in test profile should be greater than 0"); 1503 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 1504 double WeightDistance = std::fabs(BaseFrac - TestFrac); 1505 1506 // Take WeightDistance into the similarity. 1507 return FuncInternalSimilarity * (1 - WeightDistance); 1508 } 1509 1510 double 1511 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 1512 uint64_t BaseFuncSample, 1513 uint64_t TestFuncSample) const { 1514 1515 double BaseFrac = 0.0; 1516 double TestFrac = 0.0; 1517 assert(ProfOverlap.BaseSample > 0 && 1518 "Total samples in base profile should be greater than 0"); 1519 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 1520 assert(ProfOverlap.TestSample > 0 && 1521 "Total samples in test profile should be greater than 0"); 1522 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 1523 return FuncSimilarity * (BaseFrac + TestFrac); 1524 } 1525 1526 double SampleOverlapAggregator::computeSampleFunctionOverlap( 1527 const sampleprof::FunctionSamples *BaseFunc, 1528 const sampleprof::FunctionSamples *TestFunc, 1529 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 1530 uint64_t TestFuncSample) { 1531 // Default function internal similarity before weighted, meaning two functions 1532 // has no overlap. 1533 const double DefaultFuncInternalSimilarity = 0; 1534 double FuncSimilarity; 1535 double FuncInternalSimilarity; 1536 1537 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 1538 // In this case, we use DefaultFuncInternalSimilarity as the function internal 1539 // similarity. 1540 if (!BaseFunc || !TestFunc) { 1541 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 1542 } else { 1543 assert(FuncOverlap != nullptr && 1544 "FuncOverlap should be provided in this case"); 1545 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 1546 *BaseFunc, *TestFunc, *FuncOverlap); 1547 // Now, FuncInternalSimilarity may be a little less than 0 due to 1548 // imprecision of floating point accumulations. Make it zero if the 1549 // difference is below Epsilon. 1550 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 1551 ? 0 1552 : FuncInternalSimilarity; 1553 } 1554 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 1555 BaseFuncSample, TestFuncSample); 1556 return FuncSimilarity; 1557 } 1558 1559 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 1560 using namespace sampleprof; 1561 1562 StringMap<const FunctionSamples *> BaseFuncProf; 1563 const auto &BaseProfiles = BaseReader->getProfiles(); 1564 for (const auto &BaseFunc : BaseProfiles) { 1565 BaseFuncProf.try_emplace(BaseFunc.second.getNameWithContext(), 1566 &(BaseFunc.second)); 1567 } 1568 ProfOverlap.UnionCount = BaseFuncProf.size(); 1569 1570 const auto &TestProfiles = TestReader->getProfiles(); 1571 for (const auto &TestFunc : TestProfiles) { 1572 SampleOverlapStats FuncOverlap; 1573 FuncOverlap.TestName = TestFunc.second.getNameWithContext(); 1574 assert(TestStats.count(FuncOverlap.TestName) && 1575 "TestStats should have records for all functions in test profile " 1576 "except inlinees"); 1577 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 1578 1579 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 1580 if (Match == BaseFuncProf.end()) { 1581 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 1582 ++ProfOverlap.TestUniqueCount; 1583 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 1584 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 1585 1586 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 1587 1588 double FuncSimilarity = computeSampleFunctionOverlap( 1589 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 1590 ProfOverlap.Similarity += 1591 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 1592 1593 ++ProfOverlap.UnionCount; 1594 ProfOverlap.UnionSample += FuncStats.SampleSum; 1595 } else { 1596 ++ProfOverlap.OverlapCount; 1597 1598 // Two functions match with each other. Compute function-level overlap and 1599 // aggregate them into profile-level overlap. 1600 FuncOverlap.BaseName = Match->second->getNameWithContext(); 1601 assert(BaseStats.count(FuncOverlap.BaseName) && 1602 "BaseStats should have records for all functions in base profile " 1603 "except inlinees"); 1604 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 1605 1606 FuncOverlap.Similarity = computeSampleFunctionOverlap( 1607 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 1608 FuncOverlap.TestSample); 1609 ProfOverlap.Similarity += 1610 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 1611 FuncOverlap.TestSample); 1612 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 1613 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 1614 1615 // Accumulate the percentage of base unique and test unique samples into 1616 // ProfOverlap. 1617 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 1618 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 1619 1620 // Remove matched base functions for later reporting functions not found 1621 // in test profile. 1622 BaseFuncProf.erase(Match); 1623 } 1624 1625 // Print function-level similarity information if specified by options. 1626 assert(TestStats.count(FuncOverlap.TestName) && 1627 "TestStats should have records for all functions in test profile " 1628 "except inlinees"); 1629 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 1630 (Match != BaseFuncProf.end() && 1631 FuncOverlap.Similarity < LowSimilarityThreshold) || 1632 (Match != BaseFuncProf.end() && !FuncFilter.NameFilter.empty() && 1633 FuncOverlap.BaseName.find(FuncFilter.NameFilter) != 1634 FuncOverlap.BaseName.npos)) { 1635 assert(ProfOverlap.BaseSample > 0 && 1636 "Total samples in base profile should be greater than 0"); 1637 FuncOverlap.BaseWeight = 1638 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 1639 assert(ProfOverlap.TestSample > 0 && 1640 "Total samples in test profile should be greater than 0"); 1641 FuncOverlap.TestWeight = 1642 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 1643 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 1644 } 1645 } 1646 1647 // Traverse through functions in base profile but not in test profile. 1648 for (const auto &F : BaseFuncProf) { 1649 assert(BaseStats.count(F.second->getNameWithContext()) && 1650 "BaseStats should have records for all functions in base profile " 1651 "except inlinees"); 1652 const FuncSampleStats &FuncStats = 1653 BaseStats[F.second->getNameWithContext()]; 1654 ++ProfOverlap.BaseUniqueCount; 1655 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 1656 1657 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 1658 1659 double FuncSimilarity = computeSampleFunctionOverlap( 1660 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 1661 ProfOverlap.Similarity += 1662 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 1663 1664 ProfOverlap.UnionSample += FuncStats.SampleSum; 1665 } 1666 1667 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 1668 // of floating point accumulations. Make it 1.0 if the difference is below 1669 // Epsilon. 1670 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 1671 ? 1 1672 : ProfOverlap.Similarity; 1673 1674 computeHotFuncOverlap(); 1675 } 1676 1677 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 1678 const auto &BaseProf = BaseReader->getProfiles(); 1679 for (const auto &I : BaseProf) { 1680 ++ProfOverlap.BaseCount; 1681 FuncSampleStats FuncStats; 1682 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 1683 ProfOverlap.BaseSample += FuncStats.SampleSum; 1684 BaseStats.try_emplace(I.second.getNameWithContext(), FuncStats); 1685 } 1686 1687 const auto &TestProf = TestReader->getProfiles(); 1688 for (const auto &I : TestProf) { 1689 ++ProfOverlap.TestCount; 1690 FuncSampleStats FuncStats; 1691 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 1692 ProfOverlap.TestSample += FuncStats.SampleSum; 1693 TestStats.try_emplace(I.second.getNameWithContext(), FuncStats); 1694 } 1695 1696 ProfOverlap.BaseName = StringRef(BaseFilename); 1697 ProfOverlap.TestName = StringRef(TestFilename); 1698 } 1699 1700 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 1701 using namespace sampleprof; 1702 1703 if (FuncSimilarityDump.empty()) 1704 return; 1705 1706 formatted_raw_ostream FOS(OS); 1707 FOS << "Function-level details:\n"; 1708 FOS << "Base weight"; 1709 FOS.PadToColumn(TestWeightCol); 1710 FOS << "Test weight"; 1711 FOS.PadToColumn(SimilarityCol); 1712 FOS << "Similarity"; 1713 FOS.PadToColumn(OverlapCol); 1714 FOS << "Overlap"; 1715 FOS.PadToColumn(BaseUniqueCol); 1716 FOS << "Base unique"; 1717 FOS.PadToColumn(TestUniqueCol); 1718 FOS << "Test unique"; 1719 FOS.PadToColumn(BaseSampleCol); 1720 FOS << "Base samples"; 1721 FOS.PadToColumn(TestSampleCol); 1722 FOS << "Test samples"; 1723 FOS.PadToColumn(FuncNameCol); 1724 FOS << "Function name\n"; 1725 for (const auto &F : FuncSimilarityDump) { 1726 double OverlapPercent = 1727 F.second.UnionSample > 0 1728 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 1729 : 0; 1730 double BaseUniquePercent = 1731 F.second.BaseSample > 0 1732 ? static_cast<double>(F.second.BaseUniqueSample) / 1733 F.second.BaseSample 1734 : 0; 1735 double TestUniquePercent = 1736 F.second.TestSample > 0 1737 ? static_cast<double>(F.second.TestUniqueSample) / 1738 F.second.TestSample 1739 : 0; 1740 1741 FOS << format("%.2f%%", F.second.BaseWeight * 100); 1742 FOS.PadToColumn(TestWeightCol); 1743 FOS << format("%.2f%%", F.second.TestWeight * 100); 1744 FOS.PadToColumn(SimilarityCol); 1745 FOS << format("%.2f%%", F.second.Similarity * 100); 1746 FOS.PadToColumn(OverlapCol); 1747 FOS << format("%.2f%%", OverlapPercent * 100); 1748 FOS.PadToColumn(BaseUniqueCol); 1749 FOS << format("%.2f%%", BaseUniquePercent * 100); 1750 FOS.PadToColumn(TestUniqueCol); 1751 FOS << format("%.2f%%", TestUniquePercent * 100); 1752 FOS.PadToColumn(BaseSampleCol); 1753 FOS << F.second.BaseSample; 1754 FOS.PadToColumn(TestSampleCol); 1755 FOS << F.second.TestSample; 1756 FOS.PadToColumn(FuncNameCol); 1757 FOS << F.second.TestName << "\n"; 1758 } 1759 } 1760 1761 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 1762 OS << "Profile overlap infomation for base_profile: " << ProfOverlap.BaseName 1763 << " and test_profile: " << ProfOverlap.TestName << "\nProgram level:\n"; 1764 1765 OS << " Whole program profile similarity: " 1766 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 1767 1768 assert(ProfOverlap.UnionSample > 0 && 1769 "Total samples in two profile should be greater than 0"); 1770 double OverlapPercent = 1771 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 1772 assert(ProfOverlap.BaseSample > 0 && 1773 "Total samples in base profile should be greater than 0"); 1774 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 1775 ProfOverlap.BaseSample; 1776 assert(ProfOverlap.TestSample > 0 && 1777 "Total samples in test profile should be greater than 0"); 1778 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 1779 ProfOverlap.TestSample; 1780 1781 OS << " Whole program sample overlap: " 1782 << format("%.3f%%", OverlapPercent * 100) << "\n"; 1783 OS << " percentage of samples unique in base profile: " 1784 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 1785 OS << " percentage of samples unique in test profile: " 1786 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 1787 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 1788 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 1789 1790 assert(ProfOverlap.UnionCount > 0 && 1791 "There should be at least one function in two input profiles"); 1792 double FuncOverlapPercent = 1793 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 1794 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 1795 << "\n"; 1796 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 1797 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 1798 << "\n"; 1799 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 1800 << "\n"; 1801 } 1802 1803 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 1804 raw_fd_ostream &OS) const { 1805 assert(HotFuncOverlap.UnionCount > 0 && 1806 "There should be at least one hot function in two input profiles"); 1807 OS << " Hot-function overlap: " 1808 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 1809 HotFuncOverlap.UnionCount * 100) 1810 << "\n"; 1811 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 1812 OS << " hot functions unique in base profile: " 1813 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 1814 OS << " hot functions unique in test profile: " 1815 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 1816 1817 assert(HotBlockOverlap.UnionCount > 0 && 1818 "There should be at least one hot block in two input profiles"); 1819 OS << " Hot-block overlap: " 1820 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 1821 HotBlockOverlap.UnionCount * 100) 1822 << "\n"; 1823 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 1824 OS << " hot blocks unique in base profile: " 1825 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 1826 OS << " hot blocks unique in test profile: " 1827 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 1828 } 1829 1830 std::error_code SampleOverlapAggregator::loadProfiles() { 1831 using namespace sampleprof; 1832 1833 LLVMContext Context; 1834 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context); 1835 if (std::error_code EC = BaseReaderOrErr.getError()) 1836 exitWithErrorCode(EC, BaseFilename); 1837 1838 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context); 1839 if (std::error_code EC = TestReaderOrErr.getError()) 1840 exitWithErrorCode(EC, TestFilename); 1841 1842 BaseReader = std::move(BaseReaderOrErr.get()); 1843 TestReader = std::move(TestReaderOrErr.get()); 1844 1845 if (std::error_code EC = BaseReader->read()) 1846 exitWithErrorCode(EC, BaseFilename); 1847 if (std::error_code EC = TestReader->read()) 1848 exitWithErrorCode(EC, TestFilename); 1849 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) 1850 exitWithError( 1851 "cannot compare probe-based profile with non-probe-based profile"); 1852 if (BaseReader->profileIsCS() != TestReader->profileIsCS()) 1853 exitWithError("cannot compare CS profile with non-CS profile"); 1854 1855 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 1856 // profile summary. 1857 const uint64_t HotCutoff = 990000; 1858 ProfileSummary &BasePS = BaseReader->getSummary(); 1859 for (const auto &SummaryEntry : BasePS.getDetailedSummary()) { 1860 if (SummaryEntry.Cutoff == HotCutoff) { 1861 BaseHotThreshold = SummaryEntry.MinCount; 1862 break; 1863 } 1864 } 1865 1866 ProfileSummary &TestPS = TestReader->getSummary(); 1867 for (const auto &SummaryEntry : TestPS.getDetailedSummary()) { 1868 if (SummaryEntry.Cutoff == HotCutoff) { 1869 TestHotThreshold = SummaryEntry.MinCount; 1870 break; 1871 } 1872 } 1873 return std::error_code(); 1874 } 1875 1876 void overlapSampleProfile(const std::string &BaseFilename, 1877 const std::string &TestFilename, 1878 const OverlapFuncFilters &FuncFilter, 1879 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 1880 using namespace sampleprof; 1881 1882 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 1883 // report 2--3 places after decimal point in percentage numbers. 1884 SampleOverlapAggregator OverlapAggr( 1885 BaseFilename, TestFilename, 1886 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 1887 if (std::error_code EC = OverlapAggr.loadProfiles()) 1888 exitWithErrorCode(EC); 1889 1890 OverlapAggr.initializeSampleProfileOverlap(); 1891 if (OverlapAggr.detectZeroSampleProfile(OS)) 1892 return; 1893 1894 OverlapAggr.computeSampleProfileOverlap(OS); 1895 1896 OverlapAggr.dumpProgramSummary(OS); 1897 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 1898 OverlapAggr.dumpFuncSimilarity(OS); 1899 } 1900 1901 static int overlap_main(int argc, const char *argv[]) { 1902 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 1903 cl::desc("<base profile file>")); 1904 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 1905 cl::desc("<test profile file>")); 1906 cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"), 1907 cl::desc("Output file")); 1908 cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output)); 1909 cl::opt<bool> IsCS( 1910 "cs", cl::init(false), 1911 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO.")); 1912 cl::opt<unsigned long long> ValueCutoff( 1913 "value-cutoff", cl::init(-1), 1914 cl::desc( 1915 "Function level overlap information for every function (with calling " 1916 "context for csspgo) in test " 1917 "profile with max count value greater then the parameter value")); 1918 cl::opt<std::string> FuncNameFilter( 1919 "function", 1920 cl::desc("Function level overlap information for matching functions. For " 1921 "CSSPGO this takes a a function name with calling context")); 1922 cl::opt<unsigned long long> SimilarityCutoff( 1923 "similarity-cutoff", cl::init(0), 1924 cl::desc("For sample profiles, list function names (with calling context " 1925 "for csspgo) for overlapped functions " 1926 "with similarities below the cutoff (percentage times 10000).")); 1927 cl::opt<ProfileKinds> ProfileKind( 1928 cl::desc("Profile kind:"), cl::init(instr), 1929 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 1930 clEnumVal(sample, "Sample profile"))); 1931 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n"); 1932 1933 std::error_code EC; 1934 raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_Text); 1935 if (EC) 1936 exitWithErrorCode(EC, Output); 1937 1938 if (ProfileKind == instr) 1939 overlapInstrProfile(BaseFilename, TestFilename, 1940 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS, 1941 IsCS); 1942 else 1943 overlapSampleProfile(BaseFilename, TestFilename, 1944 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, 1945 SimilarityCutoff, OS); 1946 1947 return 0; 1948 } 1949 1950 typedef struct ValueSitesStats { 1951 ValueSitesStats() 1952 : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0), 1953 TotalNumValues(0) {} 1954 uint64_t TotalNumValueSites; 1955 uint64_t TotalNumValueSitesWithValueProfile; 1956 uint64_t TotalNumValues; 1957 std::vector<unsigned> ValueSitesHistogram; 1958 } ValueSitesStats; 1959 1960 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 1961 ValueSitesStats &Stats, raw_fd_ostream &OS, 1962 InstrProfSymtab *Symtab) { 1963 uint32_t NS = Func.getNumValueSites(VK); 1964 Stats.TotalNumValueSites += NS; 1965 for (size_t I = 0; I < NS; ++I) { 1966 uint32_t NV = Func.getNumValueDataForSite(VK, I); 1967 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I); 1968 Stats.TotalNumValues += NV; 1969 if (NV) { 1970 Stats.TotalNumValueSitesWithValueProfile++; 1971 if (NV > Stats.ValueSitesHistogram.size()) 1972 Stats.ValueSitesHistogram.resize(NV, 0); 1973 Stats.ValueSitesHistogram[NV - 1]++; 1974 } 1975 1976 uint64_t SiteSum = 0; 1977 for (uint32_t V = 0; V < NV; V++) 1978 SiteSum += VD[V].Count; 1979 if (SiteSum == 0) 1980 SiteSum = 1; 1981 1982 for (uint32_t V = 0; V < NV; V++) { 1983 OS << "\t[ " << format("%2u", I) << ", "; 1984 if (Symtab == nullptr) 1985 OS << format("%4" PRIu64, VD[V].Value); 1986 else 1987 OS << Symtab->getFuncName(VD[V].Value); 1988 OS << ", " << format("%10" PRId64, VD[V].Count) << " ] (" 1989 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n"; 1990 } 1991 } 1992 } 1993 1994 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 1995 ValueSitesStats &Stats) { 1996 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 1997 OS << " Total number of sites with values: " 1998 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 1999 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 2000 2001 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 2002 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 2003 if (Stats.ValueSitesHistogram[I] > 0) 2004 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 2005 } 2006 } 2007 2008 static int showInstrProfile(const std::string &Filename, bool ShowCounts, 2009 uint32_t TopN, bool ShowIndirectCallTargets, 2010 bool ShowMemOPSizes, bool ShowDetailedSummary, 2011 std::vector<uint32_t> DetailedSummaryCutoffs, 2012 bool ShowAllFunctions, bool ShowCS, 2013 uint64_t ValueCutoff, bool OnlyListBelow, 2014 const std::string &ShowFunction, bool TextFormat, 2015 raw_fd_ostream &OS) { 2016 auto ReaderOrErr = InstrProfReader::create(Filename); 2017 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 2018 if (ShowDetailedSummary && Cutoffs.empty()) { 2019 Cutoffs = {800000, 900000, 950000, 990000, 999000, 999900, 999990}; 2020 } 2021 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 2022 if (Error E = ReaderOrErr.takeError()) 2023 exitWithError(std::move(E), Filename); 2024 2025 auto Reader = std::move(ReaderOrErr.get()); 2026 bool IsIRInstr = Reader->isIRLevelProfile(); 2027 size_t ShownFunctions = 0; 2028 size_t BelowCutoffFunctions = 0; 2029 int NumVPKind = IPVK_Last - IPVK_First + 1; 2030 std::vector<ValueSitesStats> VPStats(NumVPKind); 2031 2032 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2033 const std::pair<std::string, uint64_t> &v2) { 2034 return v1.second > v2.second; 2035 }; 2036 2037 std::priority_queue<std::pair<std::string, uint64_t>, 2038 std::vector<std::pair<std::string, uint64_t>>, 2039 decltype(MinCmp)> 2040 HottestFuncs(MinCmp); 2041 2042 if (!TextFormat && OnlyListBelow) { 2043 OS << "The list of functions with the maximum counter less than " 2044 << ValueCutoff << ":\n"; 2045 } 2046 2047 // Add marker so that IR-level instrumentation round-trips properly. 2048 if (TextFormat && IsIRInstr) 2049 OS << ":ir\n"; 2050 2051 for (const auto &Func : *Reader) { 2052 if (Reader->isIRLevelProfile()) { 2053 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2054 if (FuncIsCS != ShowCS) 2055 continue; 2056 } 2057 bool Show = 2058 ShowAllFunctions || (!ShowFunction.empty() && 2059 Func.Name.find(ShowFunction) != Func.Name.npos); 2060 2061 bool doTextFormatDump = (Show && TextFormat); 2062 2063 if (doTextFormatDump) { 2064 InstrProfSymtab &Symtab = Reader->getSymtab(); 2065 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2066 OS); 2067 continue; 2068 } 2069 2070 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2071 Builder.addRecord(Func); 2072 2073 uint64_t FuncMax = 0; 2074 uint64_t FuncSum = 0; 2075 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2076 if (Func.Counts[I] == (uint64_t)-1) 2077 continue; 2078 FuncMax = std::max(FuncMax, Func.Counts[I]); 2079 FuncSum += Func.Counts[I]; 2080 } 2081 2082 if (FuncMax < ValueCutoff) { 2083 ++BelowCutoffFunctions; 2084 if (OnlyListBelow) { 2085 OS << " " << Func.Name << ": (Max = " << FuncMax 2086 << " Sum = " << FuncSum << ")\n"; 2087 } 2088 continue; 2089 } else if (OnlyListBelow) 2090 continue; 2091 2092 if (TopN) { 2093 if (HottestFuncs.size() == TopN) { 2094 if (HottestFuncs.top().second < FuncMax) { 2095 HottestFuncs.pop(); 2096 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2097 } 2098 } else 2099 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2100 } 2101 2102 if (Show) { 2103 if (!ShownFunctions) 2104 OS << "Counters:\n"; 2105 2106 ++ShownFunctions; 2107 2108 OS << " " << Func.Name << ":\n" 2109 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2110 << " Counters: " << Func.Counts.size() << "\n"; 2111 if (!IsIRInstr) 2112 OS << " Function count: " << Func.Counts[0] << "\n"; 2113 2114 if (ShowIndirectCallTargets) 2115 OS << " Indirect Call Site Count: " 2116 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2117 2118 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2119 if (ShowMemOPSizes && NumMemOPCalls > 0) 2120 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2121 << "\n"; 2122 2123 if (ShowCounts) { 2124 OS << " Block counts: ["; 2125 size_t Start = (IsIRInstr ? 0 : 1); 2126 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2127 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2128 } 2129 OS << "]\n"; 2130 } 2131 2132 if (ShowIndirectCallTargets) { 2133 OS << " Indirect Target Results:\n"; 2134 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2135 VPStats[IPVK_IndirectCallTarget], OS, 2136 &(Reader->getSymtab())); 2137 } 2138 2139 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2140 OS << " Memory Intrinsic Size Results:\n"; 2141 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2142 nullptr); 2143 } 2144 } 2145 } 2146 if (Reader->hasError()) 2147 exitWithError(Reader->getError(), Filename); 2148 2149 if (TextFormat) 2150 return 0; 2151 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 2152 bool IsIR = Reader->isIRLevelProfile(); 2153 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 2154 if (IsIR) 2155 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 2156 OS << "\n"; 2157 if (ShowAllFunctions || !ShowFunction.empty()) 2158 OS << "Functions shown: " << ShownFunctions << "\n"; 2159 OS << "Total functions: " << PS->getNumFunctions() << "\n"; 2160 if (ValueCutoff > 0) { 2161 OS << "Number of functions with maximum count (< " << ValueCutoff 2162 << "): " << BelowCutoffFunctions << "\n"; 2163 OS << "Number of functions with maximum count (>= " << ValueCutoff 2164 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 2165 } 2166 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; 2167 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; 2168 2169 if (TopN) { 2170 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 2171 while (!HottestFuncs.empty()) { 2172 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 2173 HottestFuncs.pop(); 2174 } 2175 OS << "Top " << TopN 2176 << " functions with the largest internal block counts: \n"; 2177 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 2178 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 2179 } 2180 2181 if (ShownFunctions && ShowIndirectCallTargets) { 2182 OS << "Statistics for indirect call sites profile:\n"; 2183 showValueSitesStats(OS, IPVK_IndirectCallTarget, 2184 VPStats[IPVK_IndirectCallTarget]); 2185 } 2186 2187 if (ShownFunctions && ShowMemOPSizes) { 2188 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 2189 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 2190 } 2191 2192 if (ShowDetailedSummary) { 2193 OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; 2194 OS << "Total count: " << PS->getTotalCount() << "\n"; 2195 PS->printDetailedSummary(OS); 2196 } 2197 return 0; 2198 } 2199 2200 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 2201 raw_fd_ostream &OS) { 2202 if (!Reader->dumpSectionInfo(OS)) { 2203 WithColor::warning() << "-show-sec-info-only is only supported for " 2204 << "sample profile in extbinary format and is " 2205 << "ignored for other formats.\n"; 2206 return; 2207 } 2208 } 2209 2210 namespace { 2211 struct HotFuncInfo { 2212 StringRef FuncName; 2213 uint64_t TotalCount; 2214 double TotalCountPercent; 2215 uint64_t MaxCount; 2216 uint64_t EntryCount; 2217 2218 HotFuncInfo() 2219 : FuncName(), TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), 2220 EntryCount(0) {} 2221 2222 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 2223 : FuncName(FN), TotalCount(TS), TotalCountPercent(TSP), MaxCount(MS), 2224 EntryCount(ES) {} 2225 }; 2226 } // namespace 2227 2228 // Print out detailed information about hot functions in PrintValues vector. 2229 // Users specify titles and offset of every columns through ColumnTitle and 2230 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 2231 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 2232 // print out or let it be an empty string. 2233 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 2234 const std::vector<int> &ColumnOffset, 2235 const std::vector<HotFuncInfo> &PrintValues, 2236 uint64_t HotFuncCount, uint64_t TotalFuncCount, 2237 uint64_t HotProfCount, uint64_t TotalProfCount, 2238 const std::string &HotFuncMetric, 2239 raw_fd_ostream &OS) { 2240 assert(ColumnOffset.size() == ColumnTitle.size() && 2241 "ColumnOffset and ColumnTitle should have the same size"); 2242 assert(ColumnTitle.size() >= 4 && 2243 "ColumnTitle should have at least 4 elements"); 2244 assert(TotalFuncCount > 0 && 2245 "There should be at least one function in the profile"); 2246 double TotalProfPercent = 0; 2247 if (TotalProfCount > 0) 2248 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 2249 2250 formatted_raw_ostream FOS(OS); 2251 FOS << HotFuncCount << " out of " << TotalFuncCount 2252 << " functions with profile (" 2253 << format("%.2f%%", 2254 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 2255 << ") are considered hot functions"; 2256 if (!HotFuncMetric.empty()) 2257 FOS << " (" << HotFuncMetric << ")"; 2258 FOS << ".\n"; 2259 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 2260 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 2261 2262 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 2263 FOS.PadToColumn(ColumnOffset[I]); 2264 FOS << ColumnTitle[I]; 2265 } 2266 FOS << "\n"; 2267 2268 for (const HotFuncInfo &R : PrintValues) { 2269 FOS.PadToColumn(ColumnOffset[0]); 2270 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 2271 FOS.PadToColumn(ColumnOffset[1]); 2272 FOS << R.MaxCount; 2273 FOS.PadToColumn(ColumnOffset[2]); 2274 FOS << R.EntryCount; 2275 FOS.PadToColumn(ColumnOffset[3]); 2276 FOS << R.FuncName << "\n"; 2277 } 2278 } 2279 2280 static int 2281 showHotFunctionList(const StringMap<sampleprof::FunctionSamples> &Profiles, 2282 ProfileSummary &PS, raw_fd_ostream &OS) { 2283 using namespace sampleprof; 2284 2285 const uint32_t HotFuncCutoff = 990000; 2286 auto &SummaryVector = PS.getDetailedSummary(); 2287 uint64_t MinCountThreshold = 0; 2288 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 2289 if (SummaryEntry.Cutoff == HotFuncCutoff) { 2290 MinCountThreshold = SummaryEntry.MinCount; 2291 break; 2292 } 2293 } 2294 2295 // Traverse all functions in the profile and keep only hot functions. 2296 // The following loop also calculates the sum of total samples of all 2297 // functions. 2298 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 2299 std::greater<uint64_t>> 2300 HotFunc; 2301 uint64_t ProfileTotalSample = 0; 2302 uint64_t HotFuncSample = 0; 2303 uint64_t HotFuncCount = 0; 2304 2305 for (const auto &I : Profiles) { 2306 FuncSampleStats FuncStats; 2307 const FunctionSamples &FuncProf = I.second; 2308 ProfileTotalSample += FuncProf.getTotalSamples(); 2309 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 2310 2311 if (isFunctionHot(FuncStats, MinCountThreshold)) { 2312 HotFunc.emplace(FuncProf.getTotalSamples(), 2313 std::make_pair(&(I.second), FuncStats.MaxSample)); 2314 HotFuncSample += FuncProf.getTotalSamples(); 2315 ++HotFuncCount; 2316 } 2317 } 2318 2319 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 2320 "Entry sample", "Function name"}; 2321 std::vector<int> ColumnOffset{0, 24, 42, 58}; 2322 std::string Metric = 2323 std::string("max sample >= ") + std::to_string(MinCountThreshold); 2324 std::vector<HotFuncInfo> PrintValues; 2325 for (const auto &FuncPair : HotFunc) { 2326 const FunctionSamples &Func = *FuncPair.second.first; 2327 double TotalSamplePercent = 2328 (ProfileTotalSample > 0) 2329 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 2330 : 0; 2331 PrintValues.emplace_back(HotFuncInfo( 2332 Func.getNameWithContext(), Func.getTotalSamples(), TotalSamplePercent, 2333 FuncPair.second.second, Func.getEntrySamples())); 2334 } 2335 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 2336 Profiles.size(), HotFuncSample, ProfileTotalSample, 2337 Metric, OS); 2338 2339 return 0; 2340 } 2341 2342 static int showSampleProfile(const std::string &Filename, bool ShowCounts, 2343 bool ShowAllFunctions, bool ShowDetailedSummary, 2344 const std::string &ShowFunction, 2345 bool ShowProfileSymbolList, 2346 bool ShowSectionInfoOnly, bool ShowHotFuncList, 2347 raw_fd_ostream &OS) { 2348 using namespace sampleprof; 2349 LLVMContext Context; 2350 auto ReaderOrErr = SampleProfileReader::create(Filename, Context); 2351 if (std::error_code EC = ReaderOrErr.getError()) 2352 exitWithErrorCode(EC, Filename); 2353 2354 auto Reader = std::move(ReaderOrErr.get()); 2355 2356 if (ShowSectionInfoOnly) { 2357 showSectionInfo(Reader.get(), OS); 2358 return 0; 2359 } 2360 2361 if (std::error_code EC = Reader->read()) 2362 exitWithErrorCode(EC, Filename); 2363 2364 if (ShowAllFunctions || ShowFunction.empty()) 2365 Reader->dump(OS); 2366 else 2367 Reader->dumpFunctionProfile(ShowFunction, OS); 2368 2369 if (ShowProfileSymbolList) { 2370 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 2371 Reader->getProfileSymbolList(); 2372 ReaderList->dump(OS); 2373 } 2374 2375 if (ShowDetailedSummary) { 2376 auto &PS = Reader->getSummary(); 2377 PS.printSummary(OS); 2378 PS.printDetailedSummary(OS); 2379 } 2380 2381 if (ShowHotFuncList) 2382 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), OS); 2383 2384 return 0; 2385 } 2386 2387 static int show_main(int argc, const char *argv[]) { 2388 cl::opt<std::string> Filename(cl::Positional, cl::Required, 2389 cl::desc("<profdata-file>")); 2390 2391 cl::opt<bool> ShowCounts("counts", cl::init(false), 2392 cl::desc("Show counter values for shown functions")); 2393 cl::opt<bool> TextFormat( 2394 "text", cl::init(false), 2395 cl::desc("Show instr profile data in text dump format")); 2396 cl::opt<bool> ShowIndirectCallTargets( 2397 "ic-targets", cl::init(false), 2398 cl::desc("Show indirect call site target values for shown functions")); 2399 cl::opt<bool> ShowMemOPSizes( 2400 "memop-sizes", cl::init(false), 2401 cl::desc("Show the profiled sizes of the memory intrinsic calls " 2402 "for shown functions")); 2403 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 2404 cl::desc("Show detailed profile summary")); 2405 cl::list<uint32_t> DetailedSummaryCutoffs( 2406 cl::CommaSeparated, "detailed-summary-cutoffs", 2407 cl::desc( 2408 "Cutoff percentages (times 10000) for generating detailed summary"), 2409 cl::value_desc("800000,901000,999999")); 2410 cl::opt<bool> ShowHotFuncList( 2411 "hot-func-list", cl::init(false), 2412 cl::desc("Show profile summary of a list of hot functions")); 2413 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 2414 cl::desc("Details for every function")); 2415 cl::opt<bool> ShowCS("showcs", cl::init(false), 2416 cl::desc("Show context sensitive counts")); 2417 cl::opt<std::string> ShowFunction("function", 2418 cl::desc("Details for matching functions")); 2419 2420 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 2421 cl::init("-"), cl::desc("Output file")); 2422 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 2423 cl::aliasopt(OutputFilename)); 2424 cl::opt<ProfileKinds> ProfileKind( 2425 cl::desc("Profile kind:"), cl::init(instr), 2426 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 2427 clEnumVal(sample, "Sample profile"))); 2428 cl::opt<uint32_t> TopNFunctions( 2429 "topn", cl::init(0), 2430 cl::desc("Show the list of functions with the largest internal counts")); 2431 cl::opt<uint32_t> ValueCutoff( 2432 "value-cutoff", cl::init(0), 2433 cl::desc("Set the count value cutoff. Functions with the maximum count " 2434 "less than this value will not be printed out. (Default is 0)")); 2435 cl::opt<bool> OnlyListBelow( 2436 "list-below-cutoff", cl::init(false), 2437 cl::desc("Only output names of functions whose max count values are " 2438 "below the cutoff value")); 2439 cl::opt<bool> ShowProfileSymbolList( 2440 "show-prof-sym-list", cl::init(false), 2441 cl::desc("Show profile symbol list if it exists in the profile. ")); 2442 cl::opt<bool> ShowSectionInfoOnly( 2443 "show-sec-info-only", cl::init(false), 2444 cl::desc("Show the information of each section in the sample profile. " 2445 "The flag is only usable when the sample profile is in " 2446 "extbinary format")); 2447 2448 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n"); 2449 2450 if (OutputFilename.empty()) 2451 OutputFilename = "-"; 2452 2453 if (Filename == OutputFilename) { 2454 errs() << sys::path::filename(argv[0]) 2455 << ": Input file name cannot be the same as the output file name!\n"; 2456 return 1; 2457 } 2458 2459 std::error_code EC; 2460 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_Text); 2461 if (EC) 2462 exitWithErrorCode(EC, OutputFilename); 2463 2464 if (ShowAllFunctions && !ShowFunction.empty()) 2465 WithColor::warning() << "-function argument ignored: showing all functions\n"; 2466 2467 if (ProfileKind == instr) 2468 return showInstrProfile(Filename, ShowCounts, TopNFunctions, 2469 ShowIndirectCallTargets, ShowMemOPSizes, 2470 ShowDetailedSummary, DetailedSummaryCutoffs, 2471 ShowAllFunctions, ShowCS, ValueCutoff, 2472 OnlyListBelow, ShowFunction, TextFormat, OS); 2473 else 2474 return showSampleProfile(Filename, ShowCounts, ShowAllFunctions, 2475 ShowDetailedSummary, ShowFunction, 2476 ShowProfileSymbolList, ShowSectionInfoOnly, 2477 ShowHotFuncList, OS); 2478 } 2479 2480 int main(int argc, const char *argv[]) { 2481 InitLLVM X(argc, argv); 2482 2483 StringRef ProgName(sys::path::filename(argv[0])); 2484 if (argc > 1) { 2485 int (*func)(int, const char *[]) = nullptr; 2486 2487 if (strcmp(argv[1], "merge") == 0) 2488 func = merge_main; 2489 else if (strcmp(argv[1], "show") == 0) 2490 func = show_main; 2491 else if (strcmp(argv[1], "overlap") == 0) 2492 func = overlap_main; 2493 2494 if (func) { 2495 std::string Invocation(ProgName.str() + " " + argv[1]); 2496 argv[1] = Invocation.c_str(); 2497 return func(argc - 1, argv + 1); 2498 } 2499 2500 if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 || 2501 strcmp(argv[1], "--help") == 0) { 2502 2503 errs() << "OVERVIEW: LLVM profile data tools\n\n" 2504 << "USAGE: " << ProgName << " <command> [args...]\n" 2505 << "USAGE: " << ProgName << " <command> -help\n\n" 2506 << "See each individual command --help for more details.\n" 2507 << "Available commands: merge, show, overlap\n"; 2508 return 0; 2509 } 2510 } 2511 2512 if (argc < 2) 2513 errs() << ProgName << ": No command specified!\n"; 2514 else 2515 errs() << ProgName << ": Unknown command!\n"; 2516 2517 errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n"; 2518 return 1; 2519 } 2520