1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/IR/LLVMContext.h" 17 #include "llvm/ProfileData/InstrProfReader.h" 18 #include "llvm/ProfileData/InstrProfWriter.h" 19 #include "llvm/ProfileData/ProfileCommon.h" 20 #include "llvm/ProfileData/SampleProfReader.h" 21 #include "llvm/ProfileData/SampleProfWriter.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Errc.h" 24 #include "llvm/Support/FileSystem.h" 25 #include "llvm/Support/Format.h" 26 #include "llvm/Support/FormattedStream.h" 27 #include "llvm/Support/InitLLVM.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/ThreadPool.h" 31 #include "llvm/Support/Threading.h" 32 #include "llvm/Support/WithColor.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> 35 36 using namespace llvm; 37 38 enum ProfileFormat { 39 PF_None = 0, 40 PF_Text, 41 PF_Compact_Binary, 42 PF_Ext_Binary, 43 PF_GCC, 44 PF_Binary 45 }; 46 47 static void warn(Twine Message, std::string Whence = "", 48 std::string Hint = "") { 49 WithColor::warning(); 50 if (!Whence.empty()) 51 errs() << Whence << ": "; 52 errs() << Message << "\n"; 53 if (!Hint.empty()) 54 WithColor::note() << Hint << "\n"; 55 } 56 57 static void exitWithError(Twine Message, std::string Whence = "", 58 std::string Hint = "") { 59 WithColor::error(); 60 if (!Whence.empty()) 61 errs() << Whence << ": "; 62 errs() << Message << "\n"; 63 if (!Hint.empty()) 64 WithColor::note() << Hint << "\n"; 65 ::exit(1); 66 } 67 68 static void exitWithError(Error E, StringRef Whence = "") { 69 if (E.isA<InstrProfError>()) { 70 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 71 instrprof_error instrError = IPE.get(); 72 StringRef Hint = ""; 73 if (instrError == instrprof_error::unrecognized_format) { 74 // Hint for common error of forgetting --sample for sample profiles. 75 Hint = "Perhaps you forgot to use the --sample option?"; 76 } 77 exitWithError(IPE.message(), std::string(Whence), std::string(Hint)); 78 }); 79 } 80 81 exitWithError(toString(std::move(E)), std::string(Whence)); 82 } 83 84 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 85 exitWithError(EC.message(), std::string(Whence)); 86 } 87 88 namespace { 89 enum ProfileKinds { instr, sample }; 90 enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid }; 91 } 92 93 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 94 StringRef Whence = "") { 95 if (FailMode == failIfAnyAreInvalid) 96 exitWithErrorCode(EC, Whence); 97 else 98 warn(EC.message(), std::string(Whence)); 99 } 100 101 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 102 StringRef WhenceFunction = "", 103 bool ShowHint = true) { 104 if (!WhenceFile.empty()) 105 errs() << WhenceFile << ": "; 106 if (!WhenceFunction.empty()) 107 errs() << WhenceFunction << ": "; 108 109 auto IPE = instrprof_error::success; 110 E = handleErrors(std::move(E), 111 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 112 IPE = E->get(); 113 return Error(std::move(E)); 114 }); 115 errs() << toString(std::move(E)) << "\n"; 116 117 if (ShowHint) { 118 StringRef Hint = ""; 119 if (IPE != instrprof_error::success) { 120 switch (IPE) { 121 case instrprof_error::hash_mismatch: 122 case instrprof_error::count_mismatch: 123 case instrprof_error::value_site_count_mismatch: 124 Hint = "Make sure that all profile data to be merged is generated " 125 "from the same binary."; 126 break; 127 default: 128 break; 129 } 130 } 131 132 if (!Hint.empty()) 133 errs() << Hint << "\n"; 134 } 135 } 136 137 namespace { 138 /// A remapper from original symbol names to new symbol names based on a file 139 /// containing a list of mappings from old name to new name. 140 class SymbolRemapper { 141 std::unique_ptr<MemoryBuffer> File; 142 DenseMap<StringRef, StringRef> RemappingTable; 143 144 public: 145 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 146 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 147 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 148 if (!BufOrError) 149 exitWithErrorCode(BufOrError.getError(), InputFile); 150 151 auto Remapper = std::make_unique<SymbolRemapper>(); 152 Remapper->File = std::move(BufOrError.get()); 153 154 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 155 !LineIt.is_at_eof(); ++LineIt) { 156 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 157 if (Parts.first.empty() || Parts.second.empty() || 158 Parts.second.count(' ')) { 159 exitWithError("unexpected line in remapping file", 160 (InputFile + ":" + Twine(LineIt.line_number())).str(), 161 "expected 'old_symbol new_symbol'"); 162 } 163 Remapper->RemappingTable.insert(Parts); 164 } 165 return Remapper; 166 } 167 168 /// Attempt to map the given old symbol into a new symbol. 169 /// 170 /// \return The new symbol, or \p Name if no such symbol was found. 171 StringRef operator()(StringRef Name) { 172 StringRef New = RemappingTable.lookup(Name); 173 return New.empty() ? Name : New; 174 } 175 }; 176 } 177 178 struct WeightedFile { 179 std::string Filename; 180 uint64_t Weight; 181 }; 182 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 183 184 /// Keep track of merged data and reported errors. 185 struct WriterContext { 186 std::mutex Lock; 187 InstrProfWriter Writer; 188 std::vector<std::pair<Error, std::string>> Errors; 189 std::mutex &ErrLock; 190 SmallSet<instrprof_error, 4> &WriterErrorCodes; 191 192 WriterContext(bool IsSparse, std::mutex &ErrLock, 193 SmallSet<instrprof_error, 4> &WriterErrorCodes) 194 : Lock(), Writer(IsSparse), Errors(), ErrLock(ErrLock), 195 WriterErrorCodes(WriterErrorCodes) {} 196 }; 197 198 /// Computer the overlap b/w profile BaseFilename and TestFileName, 199 /// and store the program level result to Overlap. 200 static void overlapInput(const std::string &BaseFilename, 201 const std::string &TestFilename, WriterContext *WC, 202 OverlapStats &Overlap, 203 const OverlapFuncFilters &FuncFilter, 204 raw_fd_ostream &OS, bool IsCS) { 205 auto ReaderOrErr = InstrProfReader::create(TestFilename); 206 if (Error E = ReaderOrErr.takeError()) { 207 // Skip the empty profiles by returning sliently. 208 instrprof_error IPE = InstrProfError::take(std::move(E)); 209 if (IPE != instrprof_error::empty_raw_profile) 210 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename); 211 return; 212 } 213 214 auto Reader = std::move(ReaderOrErr.get()); 215 for (auto &I : *Reader) { 216 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 217 FuncOverlap.setFuncInfo(I.Name, I.Hash); 218 219 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 220 FuncOverlap.dump(OS); 221 } 222 } 223 224 /// Load an input into a writer context. 225 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 226 WriterContext *WC) { 227 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 228 229 // Copy the filename, because llvm::ThreadPool copied the input "const 230 // WeightedFile &" by value, making a reference to the filename within it 231 // invalid outside of this packaged task. 232 std::string Filename = Input.Filename; 233 234 auto ReaderOrErr = InstrProfReader::create(Input.Filename); 235 if (Error E = ReaderOrErr.takeError()) { 236 // Skip the empty profiles by returning sliently. 237 instrprof_error IPE = InstrProfError::take(std::move(E)); 238 if (IPE != instrprof_error::empty_raw_profile) 239 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename); 240 return; 241 } 242 243 auto Reader = std::move(ReaderOrErr.get()); 244 bool IsIRProfile = Reader->isIRLevelProfile(); 245 bool HasCSIRProfile = Reader->hasCSIRLevelProfile(); 246 if (WC->Writer.setIsIRLevelProfile(IsIRProfile, HasCSIRProfile)) { 247 WC->Errors.emplace_back( 248 make_error<StringError>( 249 "Merge IR generated profile with Clang generated profile.", 250 std::error_code()), 251 Filename); 252 return; 253 } 254 WC->Writer.setInstrEntryBBEnabled(Reader->instrEntryBBEnabled()); 255 256 for (auto &I : *Reader) { 257 if (Remapper) 258 I.Name = (*Remapper)(I.Name); 259 const StringRef FuncName = I.Name; 260 bool Reported = false; 261 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 262 if (Reported) { 263 consumeError(std::move(E)); 264 return; 265 } 266 Reported = true; 267 // Only show hint the first time an error occurs. 268 instrprof_error IPE = InstrProfError::take(std::move(E)); 269 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 270 bool firstTime = WC->WriterErrorCodes.insert(IPE).second; 271 handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename, 272 FuncName, firstTime); 273 }); 274 } 275 if (Reader->hasError()) 276 if (Error E = Reader->getError()) 277 WC->Errors.emplace_back(std::move(E), Filename); 278 } 279 280 /// Merge the \p Src writer context into \p Dst. 281 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 282 for (auto &ErrorPair : Src->Errors) 283 Dst->Errors.push_back(std::move(ErrorPair)); 284 Src->Errors.clear(); 285 286 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 287 instrprof_error IPE = InstrProfError::take(std::move(E)); 288 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 289 bool firstTime = Dst->WriterErrorCodes.insert(IPE).second; 290 if (firstTime) 291 warn(toString(make_error<InstrProfError>(IPE))); 292 }); 293 } 294 295 static void writeInstrProfile(StringRef OutputFilename, 296 ProfileFormat OutputFormat, 297 InstrProfWriter &Writer) { 298 std::error_code EC; 299 raw_fd_ostream Output(OutputFilename.data(), EC, sys::fs::OF_None); 300 if (EC) 301 exitWithErrorCode(EC, OutputFilename); 302 303 if (OutputFormat == PF_Text) { 304 if (Error E = Writer.writeText(Output)) 305 exitWithError(std::move(E)); 306 } else { 307 Writer.write(Output); 308 } 309 } 310 311 static void mergeInstrProfile(const WeightedFileVector &Inputs, 312 SymbolRemapper *Remapper, 313 StringRef OutputFilename, 314 ProfileFormat OutputFormat, bool OutputSparse, 315 unsigned NumThreads, FailureMode FailMode) { 316 if (OutputFilename.compare("-") == 0) 317 exitWithError("Cannot write indexed profdata format to stdout."); 318 319 if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary && 320 OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text) 321 exitWithError("Unknown format is specified."); 322 323 std::mutex ErrorLock; 324 SmallSet<instrprof_error, 4> WriterErrorCodes; 325 326 // If NumThreads is not specified, auto-detect a good default. 327 if (NumThreads == 0) 328 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 329 unsigned((Inputs.size() + 1) / 2)); 330 // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails 331 // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't 332 // merged, thus the emitted file ends up with a PF_Unknown kind. 333 334 // Initialize the writer contexts. 335 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 336 for (unsigned I = 0; I < NumThreads; ++I) 337 Contexts.emplace_back(std::make_unique<WriterContext>( 338 OutputSparse, ErrorLock, WriterErrorCodes)); 339 340 if (NumThreads == 1) { 341 for (const auto &Input : Inputs) 342 loadInput(Input, Remapper, Contexts[0].get()); 343 } else { 344 ThreadPool Pool(hardware_concurrency(NumThreads)); 345 346 // Load the inputs in parallel (N/NumThreads serial steps). 347 unsigned Ctx = 0; 348 for (const auto &Input : Inputs) { 349 Pool.async(loadInput, Input, Remapper, Contexts[Ctx].get()); 350 Ctx = (Ctx + 1) % NumThreads; 351 } 352 Pool.wait(); 353 354 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 355 unsigned Mid = Contexts.size() / 2; 356 unsigned End = Contexts.size(); 357 assert(Mid > 0 && "Expected more than one context"); 358 do { 359 for (unsigned I = 0; I < Mid; ++I) 360 Pool.async(mergeWriterContexts, Contexts[I].get(), 361 Contexts[I + Mid].get()); 362 Pool.wait(); 363 if (End & 1) { 364 Pool.async(mergeWriterContexts, Contexts[0].get(), 365 Contexts[End - 1].get()); 366 Pool.wait(); 367 } 368 End = Mid; 369 Mid /= 2; 370 } while (Mid > 0); 371 } 372 373 // Handle deferred errors encountered during merging. If the number of errors 374 // is equal to the number of inputs the merge failed. 375 unsigned NumErrors = 0; 376 for (std::unique_ptr<WriterContext> &WC : Contexts) { 377 for (auto &ErrorPair : WC->Errors) { 378 ++NumErrors; 379 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 380 } 381 } 382 if (NumErrors == Inputs.size() || 383 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 384 exitWithError("No profiles could be merged."); 385 386 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 387 } 388 389 /// The profile entry for a function in instrumentation profile. 390 struct InstrProfileEntry { 391 uint64_t MaxCount = 0; 392 float ZeroCounterRatio = 0.0; 393 InstrProfRecord *ProfRecord; 394 InstrProfileEntry(InstrProfRecord *Record); 395 InstrProfileEntry() = default; 396 }; 397 398 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 399 ProfRecord = Record; 400 uint64_t CntNum = Record->Counts.size(); 401 uint64_t ZeroCntNum = 0; 402 for (size_t I = 0; I < CntNum; ++I) { 403 MaxCount = std::max(MaxCount, Record->Counts[I]); 404 ZeroCntNum += !Record->Counts[I]; 405 } 406 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 407 } 408 409 /// Either set all the counters in the instr profile entry \p IFE to -1 410 /// in order to drop the profile or scale up the counters in \p IFP to 411 /// be above hot threshold. We use the ratio of zero counters in the 412 /// profile of a function to decide the profile is helpful or harmful 413 /// for performance, and to choose whether to scale up or drop it. 414 static void updateInstrProfileEntry(InstrProfileEntry &IFE, 415 uint64_t HotInstrThreshold, 416 float ZeroCounterThreshold) { 417 InstrProfRecord *ProfRecord = IFE.ProfRecord; 418 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 419 // If all or most of the counters of the function are zero, the 420 // profile is unaccountable and shuld be dropped. Reset all the 421 // counters to be -1 and PGO profile-use will drop the profile. 422 // All counters being -1 also implies that the function is hot so 423 // PGO profile-use will also set the entry count metadata to be 424 // above hot threshold. 425 for (size_t I = 0; I < ProfRecord->Counts.size(); ++I) 426 ProfRecord->Counts[I] = -1; 427 return; 428 } 429 430 // Scale up the MaxCount to be multiple times above hot threshold. 431 const unsigned MultiplyFactor = 3; 432 uint64_t Numerator = HotInstrThreshold * MultiplyFactor; 433 uint64_t Denominator = IFE.MaxCount; 434 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 435 warn(toString(make_error<InstrProfError>(E))); 436 }); 437 } 438 439 const uint64_t ColdPercentileIdx = 15; 440 const uint64_t HotPercentileIdx = 11; 441 442 /// Adjust the instr profile in \p WC based on the sample profile in 443 /// \p Reader. 444 static void 445 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 446 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 447 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 448 unsigned InstrProfColdThreshold) { 449 // Function to its entry in instr profile. 450 StringMap<InstrProfileEntry> InstrProfileMap; 451 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 452 for (auto &PD : WC->Writer.getProfileData()) { 453 // Populate IPBuilder. 454 for (const auto &PDV : PD.getValue()) { 455 InstrProfRecord Record = PDV.second; 456 IPBuilder.addRecord(Record); 457 } 458 459 // If a function has multiple entries in instr profile, skip it. 460 if (PD.getValue().size() != 1) 461 continue; 462 463 // Initialize InstrProfileMap. 464 InstrProfRecord *R = &PD.getValue().begin()->second; 465 InstrProfileMap[PD.getKey()] = InstrProfileEntry(R); 466 } 467 468 ProfileSummary InstrPS = *IPBuilder.getSummary(); 469 ProfileSummary SamplePS = Reader->getSummary(); 470 471 // Compute cold thresholds for instr profile and sample profile. 472 uint64_t ColdSampleThreshold = 473 ProfileSummaryBuilder::getEntryForPercentile( 474 SamplePS.getDetailedSummary(), 475 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 476 .MinCount; 477 uint64_t HotInstrThreshold = 478 ProfileSummaryBuilder::getEntryForPercentile( 479 InstrPS.getDetailedSummary(), 480 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 481 .MinCount; 482 uint64_t ColdInstrThreshold = 483 InstrProfColdThreshold 484 ? InstrProfColdThreshold 485 : ProfileSummaryBuilder::getEntryForPercentile( 486 InstrPS.getDetailedSummary(), 487 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 488 .MinCount; 489 490 // Find hot/warm functions in sample profile which is cold in instr profile 491 // and adjust the profiles of those functions in the instr profile. 492 for (const auto &PD : Reader->getProfiles()) { 493 StringRef FName = PD.getKey(); 494 const sampleprof::FunctionSamples &FS = PD.getValue(); 495 auto It = InstrProfileMap.find(FName); 496 if (FS.getHeadSamples() > ColdSampleThreshold && 497 It != InstrProfileMap.end() && 498 It->second.MaxCount <= ColdInstrThreshold && 499 FS.getBodySamples().size() >= SupplMinSizeThreshold) { 500 updateInstrProfileEntry(It->second, HotInstrThreshold, 501 ZeroCounterThreshold); 502 } 503 } 504 } 505 506 /// The main function to supplement instr profile with sample profile. 507 /// \Inputs contains the instr profile. \p SampleFilename specifies the 508 /// sample profile. \p OutputFilename specifies the output profile name. 509 /// \p OutputFormat specifies the output profile format. \p OutputSparse 510 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 511 /// specifies the minimal size for the functions whose profile will be 512 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 513 /// a function contains too many zero counters and whether its profile 514 /// should be dropped. \p InstrProfColdThreshold is the user specified 515 /// cold threshold which will override the cold threshold got from the 516 /// instr profile summary. 517 static void supplementInstrProfile( 518 const WeightedFileVector &Inputs, StringRef SampleFilename, 519 StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse, 520 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 521 unsigned InstrProfColdThreshold) { 522 if (OutputFilename.compare("-") == 0) 523 exitWithError("Cannot write indexed profdata format to stdout."); 524 if (Inputs.size() != 1) 525 exitWithError("Expect one input to be an instr profile."); 526 if (Inputs[0].Weight != 1) 527 exitWithError("Expect instr profile doesn't have weight."); 528 529 StringRef InstrFilename = Inputs[0].Filename; 530 531 // Read sample profile. 532 LLVMContext Context; 533 auto ReaderOrErr = 534 sampleprof::SampleProfileReader::create(SampleFilename.str(), Context); 535 if (std::error_code EC = ReaderOrErr.getError()) 536 exitWithErrorCode(EC, SampleFilename); 537 auto Reader = std::move(ReaderOrErr.get()); 538 if (std::error_code EC = Reader->read()) 539 exitWithErrorCode(EC, SampleFilename); 540 541 // Read instr profile. 542 std::mutex ErrorLock; 543 SmallSet<instrprof_error, 4> WriterErrorCodes; 544 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 545 WriterErrorCodes); 546 loadInput(Inputs[0], nullptr, WC.get()); 547 if (WC->Errors.size() > 0) 548 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 549 550 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 551 InstrProfColdThreshold); 552 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 553 } 554 555 /// Make a copy of the given function samples with all symbol names remapped 556 /// by the provided symbol remapper. 557 static sampleprof::FunctionSamples 558 remapSamples(const sampleprof::FunctionSamples &Samples, 559 SymbolRemapper &Remapper, sampleprof_error &Error) { 560 sampleprof::FunctionSamples Result; 561 Result.setName(Remapper(Samples.getName())); 562 Result.addTotalSamples(Samples.getTotalSamples()); 563 Result.addHeadSamples(Samples.getHeadSamples()); 564 for (const auto &BodySample : Samples.getBodySamples()) { 565 Result.addBodySamples(BodySample.first.LineOffset, 566 BodySample.first.Discriminator, 567 BodySample.second.getSamples()); 568 for (const auto &Target : BodySample.second.getCallTargets()) { 569 Result.addCalledTargetSamples(BodySample.first.LineOffset, 570 BodySample.first.Discriminator, 571 Remapper(Target.first()), Target.second); 572 } 573 } 574 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 575 sampleprof::FunctionSamplesMap &Target = 576 Result.functionSamplesAt(CallsiteSamples.first); 577 for (const auto &Callsite : CallsiteSamples.second) { 578 sampleprof::FunctionSamples Remapped = 579 remapSamples(Callsite.second, Remapper, Error); 580 MergeResult(Error, 581 Target[std::string(Remapped.getName())].merge(Remapped)); 582 } 583 } 584 return Result; 585 } 586 587 static sampleprof::SampleProfileFormat FormatMap[] = { 588 sampleprof::SPF_None, 589 sampleprof::SPF_Text, 590 sampleprof::SPF_Compact_Binary, 591 sampleprof::SPF_Ext_Binary, 592 sampleprof::SPF_GCC, 593 sampleprof::SPF_Binary}; 594 595 static std::unique_ptr<MemoryBuffer> 596 getInputFileBuf(const StringRef &InputFile) { 597 if (InputFile == "") 598 return {}; 599 600 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 601 if (!BufOrError) 602 exitWithErrorCode(BufOrError.getError(), InputFile); 603 604 return std::move(*BufOrError); 605 } 606 607 static void populateProfileSymbolList(MemoryBuffer *Buffer, 608 sampleprof::ProfileSymbolList &PSL) { 609 if (!Buffer) 610 return; 611 612 SmallVector<StringRef, 32> SymbolVec; 613 StringRef Data = Buffer->getBuffer(); 614 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 615 616 for (StringRef symbol : SymbolVec) 617 PSL.add(symbol); 618 } 619 620 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 621 ProfileFormat OutputFormat, 622 MemoryBuffer *Buffer, 623 sampleprof::ProfileSymbolList &WriterList, 624 bool CompressAllSections, bool UseMD5, 625 bool GenPartialProfile) { 626 populateProfileSymbolList(Buffer, WriterList); 627 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 628 warn("Profile Symbol list is not empty but the output format is not " 629 "ExtBinary format. The list will be lost in the output. "); 630 631 Writer.setProfileSymbolList(&WriterList); 632 633 if (CompressAllSections) { 634 if (OutputFormat != PF_Ext_Binary) 635 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 636 else 637 Writer.setToCompressAllSections(); 638 } 639 if (UseMD5) { 640 if (OutputFormat != PF_Ext_Binary) 641 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 642 else 643 Writer.setUseMD5(); 644 } 645 if (GenPartialProfile) { 646 if (OutputFormat != PF_Ext_Binary) 647 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 648 else 649 Writer.setPartialProfile(); 650 } 651 } 652 653 static void 654 mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper, 655 StringRef OutputFilename, ProfileFormat OutputFormat, 656 StringRef ProfileSymbolListFile, bool CompressAllSections, 657 bool UseMD5, bool GenPartialProfile, FailureMode FailMode) { 658 using namespace sampleprof; 659 StringMap<FunctionSamples> ProfileMap; 660 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 661 LLVMContext Context; 662 sampleprof::ProfileSymbolList WriterList; 663 for (const auto &Input : Inputs) { 664 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context); 665 if (std::error_code EC = ReaderOrErr.getError()) { 666 warnOrExitGivenError(FailMode, EC, Input.Filename); 667 continue; 668 } 669 670 // We need to keep the readers around until after all the files are 671 // read so that we do not lose the function names stored in each 672 // reader's memory. The function names are needed to write out the 673 // merged profile map. 674 Readers.push_back(std::move(ReaderOrErr.get())); 675 const auto Reader = Readers.back().get(); 676 if (std::error_code EC = Reader->read()) { 677 warnOrExitGivenError(FailMode, EC, Input.Filename); 678 Readers.pop_back(); 679 continue; 680 } 681 682 StringMap<FunctionSamples> &Profiles = Reader->getProfiles(); 683 for (StringMap<FunctionSamples>::iterator I = Profiles.begin(), 684 E = Profiles.end(); 685 I != E; ++I) { 686 sampleprof_error Result = sampleprof_error::success; 687 FunctionSamples Remapped = 688 Remapper ? remapSamples(I->second, *Remapper, Result) 689 : FunctionSamples(); 690 FunctionSamples &Samples = Remapper ? Remapped : I->second; 691 StringRef FName = Samples.getName(); 692 MergeResult(Result, ProfileMap[FName].merge(Samples, Input.Weight)); 693 if (Result != sampleprof_error::success) { 694 std::error_code EC = make_error_code(Result); 695 handleMergeWriterError(errorCodeToError(EC), Input.Filename, FName); 696 } 697 } 698 699 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 700 Reader->getProfileSymbolList(); 701 if (ReaderList) 702 WriterList.merge(*ReaderList); 703 } 704 auto WriterOrErr = 705 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 706 if (std::error_code EC = WriterOrErr.getError()) 707 exitWithErrorCode(EC, OutputFilename); 708 709 auto Writer = std::move(WriterOrErr.get()); 710 // WriterList will have StringRef refering to string in Buffer. 711 // Make sure Buffer lives as long as WriterList. 712 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 713 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 714 CompressAllSections, UseMD5, GenPartialProfile); 715 Writer->write(ProfileMap); 716 } 717 718 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 719 StringRef WeightStr, FileName; 720 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 721 722 uint64_t Weight; 723 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 724 exitWithError("Input weight must be a positive integer."); 725 726 return {std::string(FileName), Weight}; 727 } 728 729 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 730 StringRef Filename = WF.Filename; 731 uint64_t Weight = WF.Weight; 732 733 // If it's STDIN just pass it on. 734 if (Filename == "-") { 735 WNI.push_back({std::string(Filename), Weight}); 736 return; 737 } 738 739 llvm::sys::fs::file_status Status; 740 llvm::sys::fs::status(Filename, Status); 741 if (!llvm::sys::fs::exists(Status)) 742 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 743 Filename); 744 // If it's a source file, collect it. 745 if (llvm::sys::fs::is_regular_file(Status)) { 746 WNI.push_back({std::string(Filename), Weight}); 747 return; 748 } 749 750 if (llvm::sys::fs::is_directory(Status)) { 751 std::error_code EC; 752 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 753 F != E && !EC; F.increment(EC)) { 754 if (llvm::sys::fs::is_regular_file(F->path())) { 755 addWeightedInput(WNI, {F->path(), Weight}); 756 } 757 } 758 if (EC) 759 exitWithErrorCode(EC, Filename); 760 } 761 } 762 763 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 764 WeightedFileVector &WFV) { 765 if (!Buffer) 766 return; 767 768 SmallVector<StringRef, 8> Entries; 769 StringRef Data = Buffer->getBuffer(); 770 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 771 for (const StringRef &FileWeightEntry : Entries) { 772 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 773 // Skip comments. 774 if (SanitizedEntry.startswith("#")) 775 continue; 776 // If there's no comma, it's an unweighted profile. 777 else if (SanitizedEntry.find(',') == StringRef::npos) 778 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 779 else 780 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 781 } 782 } 783 784 static int merge_main(int argc, const char *argv[]) { 785 cl::list<std::string> InputFilenames(cl::Positional, 786 cl::desc("<filename...>")); 787 cl::list<std::string> WeightedInputFilenames("weighted-input", 788 cl::desc("<weight>,<filename>")); 789 cl::opt<std::string> InputFilenamesFile( 790 "input-files", cl::init(""), 791 cl::desc("Path to file containing newline-separated " 792 "[<weight>,]<filename> entries")); 793 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 794 cl::aliasopt(InputFilenamesFile)); 795 cl::opt<bool> DumpInputFileList( 796 "dump-input-file-list", cl::init(false), cl::Hidden, 797 cl::desc("Dump the list of input files and their weights, then exit")); 798 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 799 cl::desc("Symbol remapping file")); 800 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 801 cl::aliasopt(RemappingFile)); 802 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 803 cl::init("-"), cl::Required, 804 cl::desc("Output file")); 805 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 806 cl::aliasopt(OutputFilename)); 807 cl::opt<ProfileKinds> ProfileKind( 808 cl::desc("Profile kind:"), cl::init(instr), 809 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 810 clEnumVal(sample, "Sample profile"))); 811 cl::opt<ProfileFormat> OutputFormat( 812 cl::desc("Format of output profile"), cl::init(PF_Binary), 813 cl::values( 814 clEnumValN(PF_Binary, "binary", "Binary encoding (default)"), 815 clEnumValN(PF_Compact_Binary, "compbinary", 816 "Compact binary encoding"), 817 clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"), 818 clEnumValN(PF_Text, "text", "Text encoding"), 819 clEnumValN(PF_GCC, "gcc", 820 "GCC encoding (only meaningful for -sample)"))); 821 cl::opt<FailureMode> FailureMode( 822 "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"), 823 cl::values(clEnumValN(failIfAnyAreInvalid, "any", 824 "Fail if any profile is invalid."), 825 clEnumValN(failIfAllAreInvalid, "all", 826 "Fail only if all profiles are invalid."))); 827 cl::opt<bool> OutputSparse("sparse", cl::init(false), 828 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 829 cl::opt<unsigned> NumThreads( 830 "num-threads", cl::init(0), 831 cl::desc("Number of merge threads to use (default: autodetect)")); 832 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 833 cl::aliasopt(NumThreads)); 834 cl::opt<std::string> ProfileSymbolListFile( 835 "prof-sym-list", cl::init(""), 836 cl::desc("Path to file containing the list of function symbols " 837 "used to populate profile symbol list")); 838 cl::opt<bool> CompressAllSections( 839 "compress-all-sections", cl::init(false), cl::Hidden, 840 cl::desc("Compress all sections when writing the profile (only " 841 "meaningful for -extbinary)")); 842 cl::opt<bool> UseMD5( 843 "use-md5", cl::init(false), cl::Hidden, 844 cl::desc("Choose to use MD5 to represent string in name table (only " 845 "meaningful for -extbinary)")); 846 cl::opt<bool> GenPartialProfile( 847 "gen-partial-profile", cl::init(false), cl::Hidden, 848 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 849 cl::opt<std::string> SupplInstrWithSample( 850 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 851 cl::desc("Supplement an instr profile with sample profile, to correct " 852 "the profile unrepresentativeness issue. The sample " 853 "profile is the input of the flag. Output will be in instr " 854 "format (The flag only works with -instr)")); 855 cl::opt<float> ZeroCounterThreshold( 856 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 857 cl::desc("For the function which is cold in instr profile but hot in " 858 "sample profile, if the ratio of the number of zero counters " 859 "divided by the the total number of counters is above the " 860 "threshold, the profile of the function will be regarded as " 861 "being harmful for performance and will be dropped. ")); 862 cl::opt<unsigned> SupplMinSizeThreshold( 863 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 864 cl::desc("If the size of a function is smaller than the threshold, " 865 "assume it can be inlined by PGO early inliner and it won't " 866 "be adjusted based on sample profile. ")); 867 cl::opt<unsigned> InstrProfColdThreshold( 868 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 869 cl::desc("User specified cold threshold for instr profile which will " 870 "override the cold threshold got from profile summary. ")); 871 872 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n"); 873 874 WeightedFileVector WeightedInputs; 875 for (StringRef Filename : InputFilenames) 876 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 877 for (StringRef WeightedFilename : WeightedInputFilenames) 878 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 879 880 // Make sure that the file buffer stays alive for the duration of the 881 // weighted input vector's lifetime. 882 auto Buffer = getInputFileBuf(InputFilenamesFile); 883 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 884 885 if (WeightedInputs.empty()) 886 exitWithError("No input files specified. See " + 887 sys::path::filename(argv[0]) + " -help"); 888 889 if (DumpInputFileList) { 890 for (auto &WF : WeightedInputs) 891 outs() << WF.Weight << "," << WF.Filename << "\n"; 892 return 0; 893 } 894 895 std::unique_ptr<SymbolRemapper> Remapper; 896 if (!RemappingFile.empty()) 897 Remapper = SymbolRemapper::create(RemappingFile); 898 899 if (!SupplInstrWithSample.empty()) { 900 if (ProfileKind != instr) 901 exitWithError( 902 "-supplement-instr-with-sample can only work with -instr. "); 903 904 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename, 905 OutputFormat, OutputSparse, SupplMinSizeThreshold, 906 ZeroCounterThreshold, InstrProfColdThreshold); 907 return 0; 908 } 909 910 if (ProfileKind == instr) 911 mergeInstrProfile(WeightedInputs, Remapper.get(), OutputFilename, 912 OutputFormat, OutputSparse, NumThreads, FailureMode); 913 else 914 mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename, 915 OutputFormat, ProfileSymbolListFile, CompressAllSections, 916 UseMD5, GenPartialProfile, FailureMode); 917 918 return 0; 919 } 920 921 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 922 static void overlapInstrProfile(const std::string &BaseFilename, 923 const std::string &TestFilename, 924 const OverlapFuncFilters &FuncFilter, 925 raw_fd_ostream &OS, bool IsCS) { 926 std::mutex ErrorLock; 927 SmallSet<instrprof_error, 4> WriterErrorCodes; 928 WriterContext Context(false, ErrorLock, WriterErrorCodes); 929 WeightedFile WeightedInput{BaseFilename, 1}; 930 OverlapStats Overlap; 931 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 932 if (E) 933 exitWithError(std::move(E), "Error in getting profile count sums"); 934 if (Overlap.Base.CountSum < 1.0f) { 935 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 936 exit(0); 937 } 938 if (Overlap.Test.CountSum < 1.0f) { 939 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 940 exit(0); 941 } 942 loadInput(WeightedInput, nullptr, &Context); 943 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 944 IsCS); 945 Overlap.dump(OS); 946 } 947 948 namespace { 949 struct SampleOverlapStats { 950 StringRef BaseName; 951 StringRef TestName; 952 // Number of overlap units 953 uint64_t OverlapCount; 954 // Total samples of overlap units 955 uint64_t OverlapSample; 956 // Number of and total samples of units that only present in base or test 957 // profile 958 uint64_t BaseUniqueCount; 959 uint64_t BaseUniqueSample; 960 uint64_t TestUniqueCount; 961 uint64_t TestUniqueSample; 962 // Number of units and total samples in base or test profile 963 uint64_t BaseCount; 964 uint64_t BaseSample; 965 uint64_t TestCount; 966 uint64_t TestSample; 967 // Number of and total samples of units that present in at least one profile 968 uint64_t UnionCount; 969 uint64_t UnionSample; 970 // Weighted similarity 971 double Similarity; 972 // For SampleOverlapStats instances representing functions, weights of the 973 // function in base and test profiles 974 double BaseWeight; 975 double TestWeight; 976 977 SampleOverlapStats() 978 : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0), 979 BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0), 980 BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0), 981 UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {} 982 }; 983 } // end anonymous namespace 984 985 namespace { 986 struct FuncSampleStats { 987 uint64_t SampleSum; 988 uint64_t MaxSample; 989 uint64_t HotBlockCount; 990 FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {} 991 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 992 uint64_t HotBlockCount) 993 : SampleSum(SampleSum), MaxSample(MaxSample), 994 HotBlockCount(HotBlockCount) {} 995 }; 996 } // end anonymous namespace 997 998 namespace { 999 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1000 1001 // Class for updating merging steps for two sorted maps. The class should be 1002 // instantiated with a map iterator type. 1003 template <class T> class MatchStep { 1004 public: 1005 MatchStep() = delete; 1006 1007 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1008 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1009 SecondEnd(SecondEnd), Status(MS_None) {} 1010 1011 bool areBothFinished() const { 1012 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1013 } 1014 1015 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1016 1017 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1018 1019 /// Advance one step based on the previous match status unless the previous 1020 /// status is MS_None. Then update Status based on the comparison between two 1021 /// container iterators at the current step. If the previous status is 1022 /// MS_None, it means two iterators are at the beginning and no comparison has 1023 /// been made, so we simply update Status without advancing the iterators. 1024 void updateOneStep(); 1025 1026 T getFirstIter() const { return FirstIter; } 1027 1028 T getSecondIter() const { return SecondIter; } 1029 1030 MatchStatus getMatchStatus() const { return Status; } 1031 1032 private: 1033 // Current iterator and end iterator of the first container. 1034 T FirstIter; 1035 T FirstEnd; 1036 // Current iterator and end iterator of the second container. 1037 T SecondIter; 1038 T SecondEnd; 1039 // Match status of the current step. 1040 MatchStatus Status; 1041 }; 1042 } // end anonymous namespace 1043 1044 template <class T> void MatchStep<T>::updateOneStep() { 1045 switch (Status) { 1046 case MS_Match: 1047 ++FirstIter; 1048 ++SecondIter; 1049 break; 1050 case MS_FirstUnique: 1051 ++FirstIter; 1052 break; 1053 case MS_SecondUnique: 1054 ++SecondIter; 1055 break; 1056 case MS_None: 1057 break; 1058 } 1059 1060 // Update Status according to iterators at the current step. 1061 if (areBothFinished()) 1062 return; 1063 if (FirstIter != FirstEnd && 1064 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1065 Status = MS_FirstUnique; 1066 else if (SecondIter != SecondEnd && 1067 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1068 Status = MS_SecondUnique; 1069 else 1070 Status = MS_Match; 1071 } 1072 1073 // Return the sum of line/block samples, the max line/block sample, and the 1074 // number of line/block samples above the given threshold in a function 1075 // including its inlinees. 1076 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1077 FuncSampleStats &FuncStats, 1078 uint64_t HotThreshold) { 1079 for (const auto &L : Func.getBodySamples()) { 1080 uint64_t Sample = L.second.getSamples(); 1081 FuncStats.SampleSum += Sample; 1082 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1083 if (Sample >= HotThreshold) 1084 ++FuncStats.HotBlockCount; 1085 } 1086 1087 for (const auto &C : Func.getCallsiteSamples()) { 1088 for (const auto &F : C.second) 1089 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1090 } 1091 } 1092 1093 /// Predicate that determines if a function is hot with a given threshold. We 1094 /// keep it separate from its callsites for possible extension in the future. 1095 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1096 uint64_t HotThreshold) { 1097 // We intentionally compare the maximum sample count in a function with the 1098 // HotThreshold to get an approximate determination on hot functions. 1099 return (FuncStats.MaxSample >= HotThreshold); 1100 } 1101 1102 namespace { 1103 class SampleOverlapAggregator { 1104 public: 1105 SampleOverlapAggregator(const std::string &BaseFilename, 1106 const std::string &TestFilename, 1107 double LowSimilarityThreshold, double Epsilon, 1108 const OverlapFuncFilters &FuncFilter) 1109 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1110 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1111 FuncFilter(FuncFilter) {} 1112 1113 /// Detect 0-sample input profile and report to output stream. This interface 1114 /// should be called after loadProfiles(). 1115 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1116 1117 /// Write out function-level similarity statistics for functions specified by 1118 /// options --function, --value-cutoff, and --similarity-cutoff. 1119 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1120 1121 /// Write out program-level similarity and overlap statistics. 1122 void dumpProgramSummary(raw_fd_ostream &OS) const; 1123 1124 /// Write out hot-function and hot-block statistics for base_profile, 1125 /// test_profile, and their overlap. For both cases, the overlap HO is 1126 /// calculated as follows: 1127 /// Given the number of functions (or blocks) that are hot in both profiles 1128 /// HCommon and the number of functions (or blocks) that are hot in at 1129 /// least one profile HUnion, HO = HCommon / HUnion. 1130 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 1131 1132 /// This function tries matching functions in base and test profiles. For each 1133 /// pair of matched functions, it aggregates the function-level 1134 /// similarity into a profile-level similarity. It also dump function-level 1135 /// similarity information of functions specified by --function, 1136 /// --value-cutoff, and --similarity-cutoff options. The program-level 1137 /// similarity PS is computed as follows: 1138 /// Given function-level similarity FS(A) for all function A, the 1139 /// weight of function A in base profile WB(A), and the weight of function 1140 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 1141 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 1142 /// meaning no-overlap. 1143 void computeSampleProfileOverlap(raw_fd_ostream &OS); 1144 1145 /// Initialize ProfOverlap with the sum of samples in base and test 1146 /// profiles. This function also computes and keeps the sum of samples and 1147 /// max sample counts of each function in BaseStats and TestStats for later 1148 /// use to avoid re-computations. 1149 void initializeSampleProfileOverlap(); 1150 1151 /// Load profiles specified by BaseFilename and TestFilename. 1152 std::error_code loadProfiles(); 1153 1154 private: 1155 SampleOverlapStats ProfOverlap; 1156 SampleOverlapStats HotFuncOverlap; 1157 SampleOverlapStats HotBlockOverlap; 1158 std::string BaseFilename; 1159 std::string TestFilename; 1160 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 1161 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 1162 // BaseStats and TestStats hold FuncSampleStats for each function, with 1163 // function name as the key. 1164 StringMap<FuncSampleStats> BaseStats; 1165 StringMap<FuncSampleStats> TestStats; 1166 // Low similarity threshold in floating point number 1167 double LowSimilarityThreshold; 1168 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 1169 // for tracking hot blocks. 1170 uint64_t BaseHotThreshold; 1171 uint64_t TestHotThreshold; 1172 // A small threshold used to round the results of floating point accumulations 1173 // to resolve imprecision. 1174 const double Epsilon; 1175 std::multimap<double, SampleOverlapStats, std::greater<double>> 1176 FuncSimilarityDump; 1177 // FuncFilter carries specifications in options --value-cutoff and 1178 // --function. 1179 OverlapFuncFilters FuncFilter; 1180 // Column offsets for printing the function-level details table. 1181 static const unsigned int TestWeightCol = 15; 1182 static const unsigned int SimilarityCol = 30; 1183 static const unsigned int OverlapCol = 43; 1184 static const unsigned int BaseUniqueCol = 53; 1185 static const unsigned int TestUniqueCol = 67; 1186 static const unsigned int BaseSampleCol = 81; 1187 static const unsigned int TestSampleCol = 96; 1188 static const unsigned int FuncNameCol = 111; 1189 1190 /// Return a similarity of two line/block sample counters in the same 1191 /// function in base and test profiles. The line/block-similarity BS(i) is 1192 /// computed as follows: 1193 /// For an offsets i, given the sample count at i in base profile BB(i), 1194 /// the sample count at i in test profile BT(i), the sum of sample counts 1195 /// in this function in base profile SB, and the sum of sample counts in 1196 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 1197 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 1198 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 1199 const SampleOverlapStats &FuncOverlap) const; 1200 1201 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 1202 uint64_t HotBlockCount); 1203 1204 void getHotFunctions(const StringMap<FuncSampleStats> &ProfStats, 1205 StringMap<FuncSampleStats> &HotFunc, 1206 uint64_t HotThreshold) const; 1207 1208 void computeHotFuncOverlap(); 1209 1210 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1211 /// Difference for two sample units in a matched function according to the 1212 /// given match status. 1213 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 1214 uint64_t HotBlockCount, 1215 SampleOverlapStats &FuncOverlap, 1216 double &Difference, MatchStatus Status); 1217 1218 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1219 /// Difference for unmatched callees that only present in one profile in a 1220 /// matched caller function. 1221 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 1222 SampleOverlapStats &FuncOverlap, 1223 double &Difference, MatchStatus Status); 1224 1225 /// This function updates sample overlap statistics of an overlap function in 1226 /// base and test profile. It also calculates a function-internal similarity 1227 /// FIS as follows: 1228 /// For offsets i that have samples in at least one profile in this 1229 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 1230 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 1231 /// 0.0 meaning no overlap. 1232 double computeSampleFunctionInternalOverlap( 1233 const sampleprof::FunctionSamples &BaseFunc, 1234 const sampleprof::FunctionSamples &TestFunc, 1235 SampleOverlapStats &FuncOverlap); 1236 1237 /// Function-level similarity (FS) is a weighted value over function internal 1238 /// similarity (FIS). This function computes a function's FS from its FIS by 1239 /// applying the weight. 1240 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 1241 uint64_t TestFuncSample) const; 1242 1243 /// The function-level similarity FS(A) for a function A is computed as 1244 /// follows: 1245 /// Compute a function-internal similarity FIS(A) by 1246 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 1247 /// function A in base profile WB(A), and the weight of function A in test 1248 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 1249 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 1250 double 1251 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 1252 const sampleprof::FunctionSamples *TestFunc, 1253 SampleOverlapStats *FuncOverlap, 1254 uint64_t BaseFuncSample, 1255 uint64_t TestFuncSample); 1256 1257 /// Profile-level similarity (PS) is a weighted aggregate over function-level 1258 /// similarities (FS). This method weights the FS value by the function 1259 /// weights in the base and test profiles for the aggregation. 1260 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 1261 uint64_t TestFuncSample) const; 1262 }; 1263 } // end anonymous namespace 1264 1265 bool SampleOverlapAggregator::detectZeroSampleProfile( 1266 raw_fd_ostream &OS) const { 1267 bool HaveZeroSample = false; 1268 if (ProfOverlap.BaseSample == 0) { 1269 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 1270 HaveZeroSample = true; 1271 } 1272 if (ProfOverlap.TestSample == 0) { 1273 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 1274 HaveZeroSample = true; 1275 } 1276 return HaveZeroSample; 1277 } 1278 1279 double SampleOverlapAggregator::computeBlockSimilarity( 1280 uint64_t BaseSample, uint64_t TestSample, 1281 const SampleOverlapStats &FuncOverlap) const { 1282 double BaseFrac = 0.0; 1283 double TestFrac = 0.0; 1284 if (FuncOverlap.BaseSample > 0) 1285 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 1286 if (FuncOverlap.TestSample > 0) 1287 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 1288 return 1.0 - std::fabs(BaseFrac - TestFrac); 1289 } 1290 1291 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 1292 uint64_t TestSample, 1293 uint64_t HotBlockCount) { 1294 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 1295 bool IsTestHot = (TestSample >= TestHotThreshold); 1296 if (!IsBaseHot && !IsTestHot) 1297 return; 1298 1299 HotBlockOverlap.UnionCount += HotBlockCount; 1300 if (IsBaseHot) 1301 HotBlockOverlap.BaseCount += HotBlockCount; 1302 if (IsTestHot) 1303 HotBlockOverlap.TestCount += HotBlockCount; 1304 if (IsBaseHot && IsTestHot) 1305 HotBlockOverlap.OverlapCount += HotBlockCount; 1306 } 1307 1308 void SampleOverlapAggregator::getHotFunctions( 1309 const StringMap<FuncSampleStats> &ProfStats, 1310 StringMap<FuncSampleStats> &HotFunc, uint64_t HotThreshold) const { 1311 for (const auto &F : ProfStats) { 1312 if (isFunctionHot(F.second, HotThreshold)) 1313 HotFunc.try_emplace(F.first(), F.second); 1314 } 1315 } 1316 1317 void SampleOverlapAggregator::computeHotFuncOverlap() { 1318 StringMap<FuncSampleStats> BaseHotFunc; 1319 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 1320 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 1321 1322 StringMap<FuncSampleStats> TestHotFunc; 1323 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 1324 HotFuncOverlap.TestCount = TestHotFunc.size(); 1325 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 1326 1327 for (const auto &F : BaseHotFunc) { 1328 if (TestHotFunc.count(F.first())) 1329 ++HotFuncOverlap.OverlapCount; 1330 else 1331 ++HotFuncOverlap.UnionCount; 1332 } 1333 } 1334 1335 void SampleOverlapAggregator::updateOverlapStatsForFunction( 1336 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 1337 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 1338 assert(Status != MS_None && 1339 "Match status should be updated before updating overlap statistics"); 1340 if (Status == MS_FirstUnique) { 1341 TestSample = 0; 1342 FuncOverlap.BaseUniqueSample += BaseSample; 1343 } else if (Status == MS_SecondUnique) { 1344 BaseSample = 0; 1345 FuncOverlap.TestUniqueSample += TestSample; 1346 } else { 1347 ++FuncOverlap.OverlapCount; 1348 } 1349 1350 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 1351 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 1352 Difference += 1353 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 1354 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 1355 } 1356 1357 void SampleOverlapAggregator::updateForUnmatchedCallee( 1358 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 1359 double &Difference, MatchStatus Status) { 1360 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 1361 "Status must be either of the two unmatched cases"); 1362 FuncSampleStats FuncStats; 1363 if (Status == MS_FirstUnique) { 1364 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 1365 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 1366 FuncStats.HotBlockCount, FuncOverlap, 1367 Difference, Status); 1368 } else { 1369 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 1370 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 1371 FuncStats.HotBlockCount, FuncOverlap, 1372 Difference, Status); 1373 } 1374 } 1375 1376 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 1377 const sampleprof::FunctionSamples &BaseFunc, 1378 const sampleprof::FunctionSamples &TestFunc, 1379 SampleOverlapStats &FuncOverlap) { 1380 1381 using namespace sampleprof; 1382 1383 double Difference = 0; 1384 1385 // Accumulate Difference for regular line/block samples in the function. 1386 // We match them through sort-merge join algorithm because 1387 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 1388 // by their offsets. 1389 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 1390 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 1391 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 1392 BlockIterStep.updateOneStep(); 1393 while (!BlockIterStep.areBothFinished()) { 1394 uint64_t BaseSample = 1395 BlockIterStep.isFirstFinished() 1396 ? 0 1397 : BlockIterStep.getFirstIter()->second.getSamples(); 1398 uint64_t TestSample = 1399 BlockIterStep.isSecondFinished() 1400 ? 0 1401 : BlockIterStep.getSecondIter()->second.getSamples(); 1402 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 1403 Difference, BlockIterStep.getMatchStatus()); 1404 1405 BlockIterStep.updateOneStep(); 1406 } 1407 1408 // Accumulate Difference for callsite lines in the function. We match 1409 // them through sort-merge algorithm because 1410 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 1411 // ordered by their offsets. 1412 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 1413 BaseFunc.getCallsiteSamples().cbegin(), 1414 BaseFunc.getCallsiteSamples().cend(), 1415 TestFunc.getCallsiteSamples().cbegin(), 1416 TestFunc.getCallsiteSamples().cend()); 1417 CallsiteIterStep.updateOneStep(); 1418 while (!CallsiteIterStep.areBothFinished()) { 1419 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 1420 assert(CallsiteStepStatus != MS_None && 1421 "Match status should be updated before entering loop body"); 1422 1423 if (CallsiteStepStatus != MS_Match) { 1424 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 1425 ? CallsiteIterStep.getFirstIter() 1426 : CallsiteIterStep.getSecondIter(); 1427 for (const auto &F : Callsite->second) 1428 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 1429 CallsiteStepStatus); 1430 } else { 1431 // There may be multiple inlinees at the same offset, so we need to try 1432 // matching all of them. This match is implemented through sort-merge 1433 // algorithm because callsite records at the same offset are ordered by 1434 // function names. 1435 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 1436 CallsiteIterStep.getFirstIter()->second.cbegin(), 1437 CallsiteIterStep.getFirstIter()->second.cend(), 1438 CallsiteIterStep.getSecondIter()->second.cbegin(), 1439 CallsiteIterStep.getSecondIter()->second.cend()); 1440 CalleeIterStep.updateOneStep(); 1441 while (!CalleeIterStep.areBothFinished()) { 1442 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 1443 if (CalleeStepStatus != MS_Match) { 1444 auto Callee = (CalleeStepStatus == MS_FirstUnique) 1445 ? CalleeIterStep.getFirstIter() 1446 : CalleeIterStep.getSecondIter(); 1447 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 1448 CalleeStepStatus); 1449 } else { 1450 // An inlined function can contain other inlinees inside, so compute 1451 // the Difference recursively. 1452 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 1453 CalleeIterStep.getFirstIter()->second, 1454 CalleeIterStep.getSecondIter()->second, 1455 FuncOverlap); 1456 } 1457 CalleeIterStep.updateOneStep(); 1458 } 1459 } 1460 CallsiteIterStep.updateOneStep(); 1461 } 1462 1463 // Difference reflects the total differences of line/block samples in this 1464 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 1465 // reflect the similarity between function profiles in [0.0f to 1.0f]. 1466 return (2.0 - Difference) / 2; 1467 } 1468 1469 double SampleOverlapAggregator::weightForFuncSimilarity( 1470 double FuncInternalSimilarity, uint64_t BaseFuncSample, 1471 uint64_t TestFuncSample) const { 1472 // Compute the weight as the distance between the function weights in two 1473 // profiles. 1474 double BaseFrac = 0.0; 1475 double TestFrac = 0.0; 1476 assert(ProfOverlap.BaseSample > 0 && 1477 "Total samples in base profile should be greater than 0"); 1478 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 1479 assert(ProfOverlap.TestSample > 0 && 1480 "Total samples in test profile should be greater than 0"); 1481 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 1482 double WeightDistance = std::fabs(BaseFrac - TestFrac); 1483 1484 // Take WeightDistance into the similarity. 1485 return FuncInternalSimilarity * (1 - WeightDistance); 1486 } 1487 1488 double 1489 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 1490 uint64_t BaseFuncSample, 1491 uint64_t TestFuncSample) const { 1492 1493 double BaseFrac = 0.0; 1494 double TestFrac = 0.0; 1495 assert(ProfOverlap.BaseSample > 0 && 1496 "Total samples in base profile should be greater than 0"); 1497 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 1498 assert(ProfOverlap.TestSample > 0 && 1499 "Total samples in test profile should be greater than 0"); 1500 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 1501 return FuncSimilarity * (BaseFrac + TestFrac); 1502 } 1503 1504 double SampleOverlapAggregator::computeSampleFunctionOverlap( 1505 const sampleprof::FunctionSamples *BaseFunc, 1506 const sampleprof::FunctionSamples *TestFunc, 1507 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 1508 uint64_t TestFuncSample) { 1509 // Default function internal similarity before weighted, meaning two functions 1510 // has no overlap. 1511 const double DefaultFuncInternalSimilarity = 0; 1512 double FuncSimilarity; 1513 double FuncInternalSimilarity; 1514 1515 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 1516 // In this case, we use DefaultFuncInternalSimilarity as the function internal 1517 // similarity. 1518 if (!BaseFunc || !TestFunc) { 1519 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 1520 } else { 1521 assert(FuncOverlap != nullptr && 1522 "FuncOverlap should be provided in this case"); 1523 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 1524 *BaseFunc, *TestFunc, *FuncOverlap); 1525 // Now, FuncInternalSimilarity may be a little less than 0 due to 1526 // imprecision of floating point accumulations. Make it zero if the 1527 // difference is below Epsilon. 1528 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 1529 ? 0 1530 : FuncInternalSimilarity; 1531 } 1532 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 1533 BaseFuncSample, TestFuncSample); 1534 return FuncSimilarity; 1535 } 1536 1537 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 1538 using namespace sampleprof; 1539 1540 StringMap<const FunctionSamples *> BaseFuncProf; 1541 const auto &BaseProfiles = BaseReader->getProfiles(); 1542 for (const auto &BaseFunc : BaseProfiles) { 1543 BaseFuncProf.try_emplace(BaseFunc.second.getName(), &(BaseFunc.second)); 1544 } 1545 ProfOverlap.UnionCount = BaseFuncProf.size(); 1546 1547 const auto &TestProfiles = TestReader->getProfiles(); 1548 for (const auto &TestFunc : TestProfiles) { 1549 SampleOverlapStats FuncOverlap; 1550 FuncOverlap.TestName = TestFunc.second.getName(); 1551 assert(TestStats.count(FuncOverlap.TestName) && 1552 "TestStats should have records for all functions in test profile " 1553 "except inlinees"); 1554 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 1555 1556 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 1557 if (Match == BaseFuncProf.end()) { 1558 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 1559 ++ProfOverlap.TestUniqueCount; 1560 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 1561 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 1562 1563 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 1564 1565 double FuncSimilarity = computeSampleFunctionOverlap( 1566 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 1567 ProfOverlap.Similarity += 1568 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 1569 1570 ++ProfOverlap.UnionCount; 1571 ProfOverlap.UnionSample += FuncStats.SampleSum; 1572 } else { 1573 ++ProfOverlap.OverlapCount; 1574 1575 // Two functions match with each other. Compute function-level overlap and 1576 // aggregate them into profile-level overlap. 1577 FuncOverlap.BaseName = Match->second->getName(); 1578 assert(BaseStats.count(FuncOverlap.BaseName) && 1579 "BaseStats should have records for all functions in base profile " 1580 "except inlinees"); 1581 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 1582 1583 FuncOverlap.Similarity = computeSampleFunctionOverlap( 1584 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 1585 FuncOverlap.TestSample); 1586 ProfOverlap.Similarity += 1587 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 1588 FuncOverlap.TestSample); 1589 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 1590 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 1591 1592 // Accumulate the percentage of base unique and test unique samples into 1593 // ProfOverlap. 1594 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 1595 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 1596 1597 // Remove matched base functions for later reporting functions not found 1598 // in test profile. 1599 BaseFuncProf.erase(Match); 1600 } 1601 1602 // Print function-level similarity information if specified by options. 1603 assert(TestStats.count(FuncOverlap.TestName) && 1604 "TestStats should have records for all functions in test profile " 1605 "except inlinees"); 1606 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 1607 (Match != BaseFuncProf.end() && 1608 FuncOverlap.Similarity < LowSimilarityThreshold) || 1609 (Match != BaseFuncProf.end() && !FuncFilter.NameFilter.empty() && 1610 FuncOverlap.BaseName.find(FuncFilter.NameFilter) != 1611 FuncOverlap.BaseName.npos)) { 1612 assert(ProfOverlap.BaseSample > 0 && 1613 "Total samples in base profile should be greater than 0"); 1614 FuncOverlap.BaseWeight = 1615 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 1616 assert(ProfOverlap.TestSample > 0 && 1617 "Total samples in test profile should be greater than 0"); 1618 FuncOverlap.TestWeight = 1619 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 1620 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 1621 } 1622 } 1623 1624 // Traverse through functions in base profile but not in test profile. 1625 for (const auto &F : BaseFuncProf) { 1626 assert(BaseStats.count(F.second->getName()) && 1627 "BaseStats should have records for all functions in base profile " 1628 "except inlinees"); 1629 const FuncSampleStats &FuncStats = BaseStats[F.second->getName()]; 1630 ++ProfOverlap.BaseUniqueCount; 1631 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 1632 1633 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 1634 1635 double FuncSimilarity = computeSampleFunctionOverlap( 1636 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 1637 ProfOverlap.Similarity += 1638 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 1639 1640 ProfOverlap.UnionSample += FuncStats.SampleSum; 1641 } 1642 1643 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 1644 // of floating point accumulations. Make it 1.0 if the difference is below 1645 // Epsilon. 1646 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 1647 ? 1 1648 : ProfOverlap.Similarity; 1649 1650 computeHotFuncOverlap(); 1651 } 1652 1653 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 1654 const auto &BaseProf = BaseReader->getProfiles(); 1655 for (const auto &I : BaseProf) { 1656 ++ProfOverlap.BaseCount; 1657 FuncSampleStats FuncStats; 1658 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 1659 ProfOverlap.BaseSample += FuncStats.SampleSum; 1660 BaseStats.try_emplace(I.second.getName(), FuncStats); 1661 } 1662 1663 const auto &TestProf = TestReader->getProfiles(); 1664 for (const auto &I : TestProf) { 1665 ++ProfOverlap.TestCount; 1666 FuncSampleStats FuncStats; 1667 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 1668 ProfOverlap.TestSample += FuncStats.SampleSum; 1669 TestStats.try_emplace(I.second.getName(), FuncStats); 1670 } 1671 1672 ProfOverlap.BaseName = StringRef(BaseFilename); 1673 ProfOverlap.TestName = StringRef(TestFilename); 1674 } 1675 1676 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 1677 using namespace sampleprof; 1678 1679 if (FuncSimilarityDump.empty()) 1680 return; 1681 1682 formatted_raw_ostream FOS(OS); 1683 FOS << "Function-level details:\n"; 1684 FOS << "Base weight"; 1685 FOS.PadToColumn(TestWeightCol); 1686 FOS << "Test weight"; 1687 FOS.PadToColumn(SimilarityCol); 1688 FOS << "Similarity"; 1689 FOS.PadToColumn(OverlapCol); 1690 FOS << "Overlap"; 1691 FOS.PadToColumn(BaseUniqueCol); 1692 FOS << "Base unique"; 1693 FOS.PadToColumn(TestUniqueCol); 1694 FOS << "Test unique"; 1695 FOS.PadToColumn(BaseSampleCol); 1696 FOS << "Base samples"; 1697 FOS.PadToColumn(TestSampleCol); 1698 FOS << "Test samples"; 1699 FOS.PadToColumn(FuncNameCol); 1700 FOS << "Function name\n"; 1701 for (const auto &F : FuncSimilarityDump) { 1702 double OverlapPercent = 1703 F.second.UnionSample > 0 1704 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 1705 : 0; 1706 double BaseUniquePercent = 1707 F.second.BaseSample > 0 1708 ? static_cast<double>(F.second.BaseUniqueSample) / 1709 F.second.BaseSample 1710 : 0; 1711 double TestUniquePercent = 1712 F.second.TestSample > 0 1713 ? static_cast<double>(F.second.TestUniqueSample) / 1714 F.second.TestSample 1715 : 0; 1716 1717 FOS << format("%.2f%%", F.second.BaseWeight * 100); 1718 FOS.PadToColumn(TestWeightCol); 1719 FOS << format("%.2f%%", F.second.TestWeight * 100); 1720 FOS.PadToColumn(SimilarityCol); 1721 FOS << format("%.2f%%", F.second.Similarity * 100); 1722 FOS.PadToColumn(OverlapCol); 1723 FOS << format("%.2f%%", OverlapPercent * 100); 1724 FOS.PadToColumn(BaseUniqueCol); 1725 FOS << format("%.2f%%", BaseUniquePercent * 100); 1726 FOS.PadToColumn(TestUniqueCol); 1727 FOS << format("%.2f%%", TestUniquePercent * 100); 1728 FOS.PadToColumn(BaseSampleCol); 1729 FOS << F.second.BaseSample; 1730 FOS.PadToColumn(TestSampleCol); 1731 FOS << F.second.TestSample; 1732 FOS.PadToColumn(FuncNameCol); 1733 FOS << F.second.TestName << "\n"; 1734 } 1735 } 1736 1737 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 1738 OS << "Profile overlap infomation for base_profile: " << ProfOverlap.BaseName 1739 << " and test_profile: " << ProfOverlap.TestName << "\nProgram level:\n"; 1740 1741 OS << " Whole program profile similarity: " 1742 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 1743 1744 assert(ProfOverlap.UnionSample > 0 && 1745 "Total samples in two profile should be greater than 0"); 1746 double OverlapPercent = 1747 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 1748 assert(ProfOverlap.BaseSample > 0 && 1749 "Total samples in base profile should be greater than 0"); 1750 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 1751 ProfOverlap.BaseSample; 1752 assert(ProfOverlap.TestSample > 0 && 1753 "Total samples in test profile should be greater than 0"); 1754 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 1755 ProfOverlap.TestSample; 1756 1757 OS << " Whole program sample overlap: " 1758 << format("%.3f%%", OverlapPercent * 100) << "\n"; 1759 OS << " percentage of samples unique in base profile: " 1760 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 1761 OS << " percentage of samples unique in test profile: " 1762 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 1763 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 1764 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 1765 1766 assert(ProfOverlap.UnionCount > 0 && 1767 "There should be at least one function in two input profiles"); 1768 double FuncOverlapPercent = 1769 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 1770 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 1771 << "\n"; 1772 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 1773 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 1774 << "\n"; 1775 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 1776 << "\n"; 1777 } 1778 1779 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 1780 raw_fd_ostream &OS) const { 1781 assert(HotFuncOverlap.UnionCount > 0 && 1782 "There should be at least one hot function in two input profiles"); 1783 OS << " Hot-function overlap: " 1784 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 1785 HotFuncOverlap.UnionCount * 100) 1786 << "\n"; 1787 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 1788 OS << " hot functions unique in base profile: " 1789 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 1790 OS << " hot functions unique in test profile: " 1791 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 1792 1793 assert(HotBlockOverlap.UnionCount > 0 && 1794 "There should be at least one hot block in two input profiles"); 1795 OS << " Hot-block overlap: " 1796 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 1797 HotBlockOverlap.UnionCount * 100) 1798 << "\n"; 1799 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 1800 OS << " hot blocks unique in base profile: " 1801 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 1802 OS << " hot blocks unique in test profile: " 1803 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 1804 } 1805 1806 std::error_code SampleOverlapAggregator::loadProfiles() { 1807 using namespace sampleprof; 1808 1809 LLVMContext Context; 1810 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context); 1811 if (std::error_code EC = BaseReaderOrErr.getError()) 1812 exitWithErrorCode(EC, BaseFilename); 1813 1814 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context); 1815 if (std::error_code EC = TestReaderOrErr.getError()) 1816 exitWithErrorCode(EC, TestFilename); 1817 1818 BaseReader = std::move(BaseReaderOrErr.get()); 1819 TestReader = std::move(TestReaderOrErr.get()); 1820 1821 if (std::error_code EC = BaseReader->read()) 1822 exitWithErrorCode(EC, BaseFilename); 1823 if (std::error_code EC = TestReader->read()) 1824 exitWithErrorCode(EC, TestFilename); 1825 1826 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 1827 // profile summary. 1828 const uint64_t HotCutoff = 990000; 1829 ProfileSummary &BasePS = BaseReader->getSummary(); 1830 for (const auto &SummaryEntry : BasePS.getDetailedSummary()) { 1831 if (SummaryEntry.Cutoff == HotCutoff) { 1832 BaseHotThreshold = SummaryEntry.MinCount; 1833 break; 1834 } 1835 } 1836 1837 ProfileSummary &TestPS = TestReader->getSummary(); 1838 for (const auto &SummaryEntry : TestPS.getDetailedSummary()) { 1839 if (SummaryEntry.Cutoff == HotCutoff) { 1840 TestHotThreshold = SummaryEntry.MinCount; 1841 break; 1842 } 1843 } 1844 return std::error_code(); 1845 } 1846 1847 void overlapSampleProfile(const std::string &BaseFilename, 1848 const std::string &TestFilename, 1849 const OverlapFuncFilters &FuncFilter, 1850 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 1851 using namespace sampleprof; 1852 1853 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 1854 // report 2--3 places after decimal point in percentage numbers. 1855 SampleOverlapAggregator OverlapAggr( 1856 BaseFilename, TestFilename, 1857 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 1858 if (std::error_code EC = OverlapAggr.loadProfiles()) 1859 exitWithErrorCode(EC); 1860 1861 OverlapAggr.initializeSampleProfileOverlap(); 1862 if (OverlapAggr.detectZeroSampleProfile(OS)) 1863 return; 1864 1865 OverlapAggr.computeSampleProfileOverlap(OS); 1866 1867 OverlapAggr.dumpProgramSummary(OS); 1868 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 1869 OverlapAggr.dumpFuncSimilarity(OS); 1870 } 1871 1872 static int overlap_main(int argc, const char *argv[]) { 1873 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 1874 cl::desc("<base profile file>")); 1875 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 1876 cl::desc("<test profile file>")); 1877 cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"), 1878 cl::desc("Output file")); 1879 cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output)); 1880 cl::opt<bool> IsCS("cs", cl::init(false), 1881 cl::desc("For context sensitive counts")); 1882 cl::opt<unsigned long long> ValueCutoff( 1883 "value-cutoff", cl::init(-1), 1884 cl::desc( 1885 "Function level overlap information for every function in test " 1886 "profile with max count value greater then the parameter value")); 1887 cl::opt<std::string> FuncNameFilter( 1888 "function", 1889 cl::desc("Function level overlap information for matching functions")); 1890 cl::opt<unsigned long long> SimilarityCutoff( 1891 "similarity-cutoff", cl::init(0), 1892 cl::desc( 1893 "For sample profiles, list function names for overlapped functions " 1894 "with similarities below the cutoff (percentage times 10000).")); 1895 cl::opt<ProfileKinds> ProfileKind( 1896 cl::desc("Profile kind:"), cl::init(instr), 1897 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 1898 clEnumVal(sample, "Sample profile"))); 1899 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n"); 1900 1901 std::error_code EC; 1902 raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_Text); 1903 if (EC) 1904 exitWithErrorCode(EC, Output); 1905 1906 if (ProfileKind == instr) 1907 overlapInstrProfile(BaseFilename, TestFilename, 1908 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS, 1909 IsCS); 1910 else 1911 overlapSampleProfile(BaseFilename, TestFilename, 1912 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, 1913 SimilarityCutoff, OS); 1914 1915 return 0; 1916 } 1917 1918 typedef struct ValueSitesStats { 1919 ValueSitesStats() 1920 : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0), 1921 TotalNumValues(0) {} 1922 uint64_t TotalNumValueSites; 1923 uint64_t TotalNumValueSitesWithValueProfile; 1924 uint64_t TotalNumValues; 1925 std::vector<unsigned> ValueSitesHistogram; 1926 } ValueSitesStats; 1927 1928 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 1929 ValueSitesStats &Stats, raw_fd_ostream &OS, 1930 InstrProfSymtab *Symtab) { 1931 uint32_t NS = Func.getNumValueSites(VK); 1932 Stats.TotalNumValueSites += NS; 1933 for (size_t I = 0; I < NS; ++I) { 1934 uint32_t NV = Func.getNumValueDataForSite(VK, I); 1935 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I); 1936 Stats.TotalNumValues += NV; 1937 if (NV) { 1938 Stats.TotalNumValueSitesWithValueProfile++; 1939 if (NV > Stats.ValueSitesHistogram.size()) 1940 Stats.ValueSitesHistogram.resize(NV, 0); 1941 Stats.ValueSitesHistogram[NV - 1]++; 1942 } 1943 1944 uint64_t SiteSum = 0; 1945 for (uint32_t V = 0; V < NV; V++) 1946 SiteSum += VD[V].Count; 1947 if (SiteSum == 0) 1948 SiteSum = 1; 1949 1950 for (uint32_t V = 0; V < NV; V++) { 1951 OS << "\t[ " << format("%2u", I) << ", "; 1952 if (Symtab == nullptr) 1953 OS << format("%4" PRIu64, VD[V].Value); 1954 else 1955 OS << Symtab->getFuncName(VD[V].Value); 1956 OS << ", " << format("%10" PRId64, VD[V].Count) << " ] (" 1957 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n"; 1958 } 1959 } 1960 } 1961 1962 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 1963 ValueSitesStats &Stats) { 1964 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 1965 OS << " Total number of sites with values: " 1966 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 1967 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 1968 1969 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 1970 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 1971 if (Stats.ValueSitesHistogram[I] > 0) 1972 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 1973 } 1974 } 1975 1976 static int showInstrProfile(const std::string &Filename, bool ShowCounts, 1977 uint32_t TopN, bool ShowIndirectCallTargets, 1978 bool ShowMemOPSizes, bool ShowDetailedSummary, 1979 std::vector<uint32_t> DetailedSummaryCutoffs, 1980 bool ShowAllFunctions, bool ShowCS, 1981 uint64_t ValueCutoff, bool OnlyListBelow, 1982 const std::string &ShowFunction, bool TextFormat, 1983 raw_fd_ostream &OS) { 1984 auto ReaderOrErr = InstrProfReader::create(Filename); 1985 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 1986 if (ShowDetailedSummary && Cutoffs.empty()) { 1987 Cutoffs = {800000, 900000, 950000, 990000, 999000, 999900, 999990}; 1988 } 1989 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 1990 if (Error E = ReaderOrErr.takeError()) 1991 exitWithError(std::move(E), Filename); 1992 1993 auto Reader = std::move(ReaderOrErr.get()); 1994 bool IsIRInstr = Reader->isIRLevelProfile(); 1995 size_t ShownFunctions = 0; 1996 size_t BelowCutoffFunctions = 0; 1997 int NumVPKind = IPVK_Last - IPVK_First + 1; 1998 std::vector<ValueSitesStats> VPStats(NumVPKind); 1999 2000 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2001 const std::pair<std::string, uint64_t> &v2) { 2002 return v1.second > v2.second; 2003 }; 2004 2005 std::priority_queue<std::pair<std::string, uint64_t>, 2006 std::vector<std::pair<std::string, uint64_t>>, 2007 decltype(MinCmp)> 2008 HottestFuncs(MinCmp); 2009 2010 if (!TextFormat && OnlyListBelow) { 2011 OS << "The list of functions with the maximum counter less than " 2012 << ValueCutoff << ":\n"; 2013 } 2014 2015 // Add marker so that IR-level instrumentation round-trips properly. 2016 if (TextFormat && IsIRInstr) 2017 OS << ":ir\n"; 2018 2019 for (const auto &Func : *Reader) { 2020 if (Reader->isIRLevelProfile()) { 2021 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2022 if (FuncIsCS != ShowCS) 2023 continue; 2024 } 2025 bool Show = 2026 ShowAllFunctions || (!ShowFunction.empty() && 2027 Func.Name.find(ShowFunction) != Func.Name.npos); 2028 2029 bool doTextFormatDump = (Show && TextFormat); 2030 2031 if (doTextFormatDump) { 2032 InstrProfSymtab &Symtab = Reader->getSymtab(); 2033 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2034 OS); 2035 continue; 2036 } 2037 2038 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2039 Builder.addRecord(Func); 2040 2041 uint64_t FuncMax = 0; 2042 uint64_t FuncSum = 0; 2043 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2044 if (Func.Counts[I] == (uint64_t)-1) 2045 continue; 2046 FuncMax = std::max(FuncMax, Func.Counts[I]); 2047 FuncSum += Func.Counts[I]; 2048 } 2049 2050 if (FuncMax < ValueCutoff) { 2051 ++BelowCutoffFunctions; 2052 if (OnlyListBelow) { 2053 OS << " " << Func.Name << ": (Max = " << FuncMax 2054 << " Sum = " << FuncSum << ")\n"; 2055 } 2056 continue; 2057 } else if (OnlyListBelow) 2058 continue; 2059 2060 if (TopN) { 2061 if (HottestFuncs.size() == TopN) { 2062 if (HottestFuncs.top().second < FuncMax) { 2063 HottestFuncs.pop(); 2064 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2065 } 2066 } else 2067 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2068 } 2069 2070 if (Show) { 2071 if (!ShownFunctions) 2072 OS << "Counters:\n"; 2073 2074 ++ShownFunctions; 2075 2076 OS << " " << Func.Name << ":\n" 2077 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2078 << " Counters: " << Func.Counts.size() << "\n"; 2079 if (!IsIRInstr) 2080 OS << " Function count: " << Func.Counts[0] << "\n"; 2081 2082 if (ShowIndirectCallTargets) 2083 OS << " Indirect Call Site Count: " 2084 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2085 2086 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2087 if (ShowMemOPSizes && NumMemOPCalls > 0) 2088 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2089 << "\n"; 2090 2091 if (ShowCounts) { 2092 OS << " Block counts: ["; 2093 size_t Start = (IsIRInstr ? 0 : 1); 2094 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2095 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2096 } 2097 OS << "]\n"; 2098 } 2099 2100 if (ShowIndirectCallTargets) { 2101 OS << " Indirect Target Results:\n"; 2102 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2103 VPStats[IPVK_IndirectCallTarget], OS, 2104 &(Reader->getSymtab())); 2105 } 2106 2107 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2108 OS << " Memory Intrinsic Size Results:\n"; 2109 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2110 nullptr); 2111 } 2112 } 2113 } 2114 if (Reader->hasError()) 2115 exitWithError(Reader->getError(), Filename); 2116 2117 if (TextFormat) 2118 return 0; 2119 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 2120 bool IsIR = Reader->isIRLevelProfile(); 2121 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 2122 if (IsIR) 2123 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 2124 OS << "\n"; 2125 if (ShowAllFunctions || !ShowFunction.empty()) 2126 OS << "Functions shown: " << ShownFunctions << "\n"; 2127 OS << "Total functions: " << PS->getNumFunctions() << "\n"; 2128 if (ValueCutoff > 0) { 2129 OS << "Number of functions with maximum count (< " << ValueCutoff 2130 << "): " << BelowCutoffFunctions << "\n"; 2131 OS << "Number of functions with maximum count (>= " << ValueCutoff 2132 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 2133 } 2134 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; 2135 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; 2136 2137 if (TopN) { 2138 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 2139 while (!HottestFuncs.empty()) { 2140 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 2141 HottestFuncs.pop(); 2142 } 2143 OS << "Top " << TopN 2144 << " functions with the largest internal block counts: \n"; 2145 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 2146 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 2147 } 2148 2149 if (ShownFunctions && ShowIndirectCallTargets) { 2150 OS << "Statistics for indirect call sites profile:\n"; 2151 showValueSitesStats(OS, IPVK_IndirectCallTarget, 2152 VPStats[IPVK_IndirectCallTarget]); 2153 } 2154 2155 if (ShownFunctions && ShowMemOPSizes) { 2156 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 2157 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 2158 } 2159 2160 if (ShowDetailedSummary) { 2161 OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; 2162 OS << "Total count: " << PS->getTotalCount() << "\n"; 2163 PS->printDetailedSummary(OS); 2164 } 2165 return 0; 2166 } 2167 2168 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 2169 raw_fd_ostream &OS) { 2170 if (!Reader->dumpSectionInfo(OS)) { 2171 WithColor::warning() << "-show-sec-info-only is only supported for " 2172 << "sample profile in extbinary format and is " 2173 << "ignored for other formats.\n"; 2174 return; 2175 } 2176 } 2177 2178 namespace { 2179 struct HotFuncInfo { 2180 StringRef FuncName; 2181 uint64_t TotalCount; 2182 double TotalCountPercent; 2183 uint64_t MaxCount; 2184 uint64_t EntryCount; 2185 2186 HotFuncInfo() 2187 : FuncName(), TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), 2188 EntryCount(0) {} 2189 2190 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 2191 : FuncName(FN), TotalCount(TS), TotalCountPercent(TSP), MaxCount(MS), 2192 EntryCount(ES) {} 2193 }; 2194 } // namespace 2195 2196 // Print out detailed information about hot functions in PrintValues vector. 2197 // Users specify titles and offset of every columns through ColumnTitle and 2198 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 2199 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 2200 // print out or let it be an empty string. 2201 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 2202 const std::vector<int> &ColumnOffset, 2203 const std::vector<HotFuncInfo> &PrintValues, 2204 uint64_t HotFuncCount, uint64_t TotalFuncCount, 2205 uint64_t HotProfCount, uint64_t TotalProfCount, 2206 const std::string &HotFuncMetric, 2207 raw_fd_ostream &OS) { 2208 assert(ColumnOffset.size() == ColumnTitle.size() && 2209 "ColumnOffset and ColumnTitle should have the same size"); 2210 assert(ColumnTitle.size() >= 4 && 2211 "ColumnTitle should have at least 4 elements"); 2212 assert(TotalFuncCount > 0 && 2213 "There should be at least one function in the profile"); 2214 double TotalProfPercent = 0; 2215 if (TotalProfCount > 0) 2216 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 2217 2218 formatted_raw_ostream FOS(OS); 2219 FOS << HotFuncCount << " out of " << TotalFuncCount 2220 << " functions with profile (" 2221 << format("%.2f%%", 2222 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 2223 << ") are considered hot functions"; 2224 if (!HotFuncMetric.empty()) 2225 FOS << " (" << HotFuncMetric << ")"; 2226 FOS << ".\n"; 2227 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 2228 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 2229 2230 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 2231 FOS.PadToColumn(ColumnOffset[I]); 2232 FOS << ColumnTitle[I]; 2233 } 2234 FOS << "\n"; 2235 2236 for (const HotFuncInfo &R : PrintValues) { 2237 FOS.PadToColumn(ColumnOffset[0]); 2238 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 2239 FOS.PadToColumn(ColumnOffset[1]); 2240 FOS << R.MaxCount; 2241 FOS.PadToColumn(ColumnOffset[2]); 2242 FOS << R.EntryCount; 2243 FOS.PadToColumn(ColumnOffset[3]); 2244 FOS << R.FuncName << "\n"; 2245 } 2246 return; 2247 } 2248 2249 static int 2250 showHotFunctionList(const StringMap<sampleprof::FunctionSamples> &Profiles, 2251 ProfileSummary &PS, raw_fd_ostream &OS) { 2252 using namespace sampleprof; 2253 2254 const uint32_t HotFuncCutoff = 990000; 2255 auto &SummaryVector = PS.getDetailedSummary(); 2256 uint64_t MinCountThreshold = 0; 2257 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 2258 if (SummaryEntry.Cutoff == HotFuncCutoff) { 2259 MinCountThreshold = SummaryEntry.MinCount; 2260 break; 2261 } 2262 } 2263 2264 // Traverse all functions in the profile and keep only hot functions. 2265 // The following loop also calculates the sum of total samples of all 2266 // functions. 2267 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 2268 std::greater<uint64_t>> 2269 HotFunc; 2270 uint64_t ProfileTotalSample = 0; 2271 uint64_t HotFuncSample = 0; 2272 uint64_t HotFuncCount = 0; 2273 2274 for (const auto &I : Profiles) { 2275 FuncSampleStats FuncStats; 2276 const FunctionSamples &FuncProf = I.second; 2277 ProfileTotalSample += FuncProf.getTotalSamples(); 2278 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 2279 2280 if (isFunctionHot(FuncStats, MinCountThreshold)) { 2281 HotFunc.emplace(FuncProf.getTotalSamples(), 2282 std::make_pair(&(I.second), FuncStats.MaxSample)); 2283 HotFuncSample += FuncProf.getTotalSamples(); 2284 ++HotFuncCount; 2285 } 2286 } 2287 2288 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 2289 "Entry sample", "Function name"}; 2290 std::vector<int> ColumnOffset{0, 24, 42, 58}; 2291 std::string Metric = 2292 std::string("max sample >= ") + std::to_string(MinCountThreshold); 2293 std::vector<HotFuncInfo> PrintValues; 2294 for (const auto &FuncPair : HotFunc) { 2295 const FunctionSamples &Func = *FuncPair.second.first; 2296 double TotalSamplePercent = 2297 (ProfileTotalSample > 0) 2298 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 2299 : 0; 2300 PrintValues.emplace_back( 2301 HotFuncInfo(Func.getName(), Func.getTotalSamples(), TotalSamplePercent, 2302 FuncPair.second.second, Func.getEntrySamples())); 2303 } 2304 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 2305 Profiles.size(), HotFuncSample, ProfileTotalSample, 2306 Metric, OS); 2307 2308 return 0; 2309 } 2310 2311 static int showSampleProfile(const std::string &Filename, bool ShowCounts, 2312 bool ShowAllFunctions, bool ShowDetailedSummary, 2313 const std::string &ShowFunction, 2314 bool ShowProfileSymbolList, 2315 bool ShowSectionInfoOnly, bool ShowHotFuncList, 2316 raw_fd_ostream &OS) { 2317 using namespace sampleprof; 2318 LLVMContext Context; 2319 auto ReaderOrErr = SampleProfileReader::create(Filename, Context); 2320 if (std::error_code EC = ReaderOrErr.getError()) 2321 exitWithErrorCode(EC, Filename); 2322 2323 auto Reader = std::move(ReaderOrErr.get()); 2324 2325 if (ShowSectionInfoOnly) { 2326 showSectionInfo(Reader.get(), OS); 2327 return 0; 2328 } 2329 2330 if (std::error_code EC = Reader->read()) 2331 exitWithErrorCode(EC, Filename); 2332 2333 if (ShowAllFunctions || ShowFunction.empty()) 2334 Reader->dump(OS); 2335 else 2336 Reader->dumpFunctionProfile(ShowFunction, OS); 2337 2338 if (ShowProfileSymbolList) { 2339 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 2340 Reader->getProfileSymbolList(); 2341 ReaderList->dump(OS); 2342 } 2343 2344 if (ShowDetailedSummary) { 2345 auto &PS = Reader->getSummary(); 2346 PS.printSummary(OS); 2347 PS.printDetailedSummary(OS); 2348 } 2349 2350 if (ShowHotFuncList) 2351 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), OS); 2352 2353 return 0; 2354 } 2355 2356 static int show_main(int argc, const char *argv[]) { 2357 cl::opt<std::string> Filename(cl::Positional, cl::Required, 2358 cl::desc("<profdata-file>")); 2359 2360 cl::opt<bool> ShowCounts("counts", cl::init(false), 2361 cl::desc("Show counter values for shown functions")); 2362 cl::opt<bool> TextFormat( 2363 "text", cl::init(false), 2364 cl::desc("Show instr profile data in text dump format")); 2365 cl::opt<bool> ShowIndirectCallTargets( 2366 "ic-targets", cl::init(false), 2367 cl::desc("Show indirect call site target values for shown functions")); 2368 cl::opt<bool> ShowMemOPSizes( 2369 "memop-sizes", cl::init(false), 2370 cl::desc("Show the profiled sizes of the memory intrinsic calls " 2371 "for shown functions")); 2372 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 2373 cl::desc("Show detailed profile summary")); 2374 cl::list<uint32_t> DetailedSummaryCutoffs( 2375 cl::CommaSeparated, "detailed-summary-cutoffs", 2376 cl::desc( 2377 "Cutoff percentages (times 10000) for generating detailed summary"), 2378 cl::value_desc("800000,901000,999999")); 2379 cl::opt<bool> ShowHotFuncList( 2380 "hot-func-list", cl::init(false), 2381 cl::desc("Show profile summary of a list of hot functions")); 2382 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 2383 cl::desc("Details for every function")); 2384 cl::opt<bool> ShowCS("showcs", cl::init(false), 2385 cl::desc("Show context sensitive counts")); 2386 cl::opt<std::string> ShowFunction("function", 2387 cl::desc("Details for matching functions")); 2388 2389 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 2390 cl::init("-"), cl::desc("Output file")); 2391 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 2392 cl::aliasopt(OutputFilename)); 2393 cl::opt<ProfileKinds> ProfileKind( 2394 cl::desc("Profile kind:"), cl::init(instr), 2395 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 2396 clEnumVal(sample, "Sample profile"))); 2397 cl::opt<uint32_t> TopNFunctions( 2398 "topn", cl::init(0), 2399 cl::desc("Show the list of functions with the largest internal counts")); 2400 cl::opt<uint32_t> ValueCutoff( 2401 "value-cutoff", cl::init(0), 2402 cl::desc("Set the count value cutoff. Functions with the maximum count " 2403 "less than this value will not be printed out. (Default is 0)")); 2404 cl::opt<bool> OnlyListBelow( 2405 "list-below-cutoff", cl::init(false), 2406 cl::desc("Only output names of functions whose max count values are " 2407 "below the cutoff value")); 2408 cl::opt<bool> ShowProfileSymbolList( 2409 "show-prof-sym-list", cl::init(false), 2410 cl::desc("Show profile symbol list if it exists in the profile. ")); 2411 cl::opt<bool> ShowSectionInfoOnly( 2412 "show-sec-info-only", cl::init(false), 2413 cl::desc("Show the information of each section in the sample profile. " 2414 "The flag is only usable when the sample profile is in " 2415 "extbinary format")); 2416 2417 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n"); 2418 2419 if (OutputFilename.empty()) 2420 OutputFilename = "-"; 2421 2422 if (!Filename.compare(OutputFilename)) { 2423 errs() << sys::path::filename(argv[0]) 2424 << ": Input file name cannot be the same as the output file name!\n"; 2425 return 1; 2426 } 2427 2428 std::error_code EC; 2429 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_Text); 2430 if (EC) 2431 exitWithErrorCode(EC, OutputFilename); 2432 2433 if (ShowAllFunctions && !ShowFunction.empty()) 2434 WithColor::warning() << "-function argument ignored: showing all functions\n"; 2435 2436 if (ProfileKind == instr) 2437 return showInstrProfile(Filename, ShowCounts, TopNFunctions, 2438 ShowIndirectCallTargets, ShowMemOPSizes, 2439 ShowDetailedSummary, DetailedSummaryCutoffs, 2440 ShowAllFunctions, ShowCS, ValueCutoff, 2441 OnlyListBelow, ShowFunction, TextFormat, OS); 2442 else 2443 return showSampleProfile(Filename, ShowCounts, ShowAllFunctions, 2444 ShowDetailedSummary, ShowFunction, 2445 ShowProfileSymbolList, ShowSectionInfoOnly, 2446 ShowHotFuncList, OS); 2447 } 2448 2449 int main(int argc, const char *argv[]) { 2450 InitLLVM X(argc, argv); 2451 2452 StringRef ProgName(sys::path::filename(argv[0])); 2453 if (argc > 1) { 2454 int (*func)(int, const char *[]) = nullptr; 2455 2456 if (strcmp(argv[1], "merge") == 0) 2457 func = merge_main; 2458 else if (strcmp(argv[1], "show") == 0) 2459 func = show_main; 2460 else if (strcmp(argv[1], "overlap") == 0) 2461 func = overlap_main; 2462 2463 if (func) { 2464 std::string Invocation(ProgName.str() + " " + argv[1]); 2465 argv[1] = Invocation.c_str(); 2466 return func(argc - 1, argv + 1); 2467 } 2468 2469 if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 || 2470 strcmp(argv[1], "--help") == 0) { 2471 2472 errs() << "OVERVIEW: LLVM profile data tools\n\n" 2473 << "USAGE: " << ProgName << " <command> [args...]\n" 2474 << "USAGE: " << ProgName << " <command> -help\n\n" 2475 << "See each individual command --help for more details.\n" 2476 << "Available commands: merge, show, overlap\n"; 2477 return 0; 2478 } 2479 } 2480 2481 if (argc < 2) 2482 errs() << ProgName << ": No command specified!\n"; 2483 else 2484 errs() << ProgName << ": Unknown command!\n"; 2485 2486 errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n"; 2487 return 1; 2488 } 2489