1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/IR/LLVMContext.h" 17 #include "llvm/ProfileData/InstrProfReader.h" 18 #include "llvm/ProfileData/InstrProfWriter.h" 19 #include "llvm/ProfileData/ProfileCommon.h" 20 #include "llvm/ProfileData/SampleProfReader.h" 21 #include "llvm/ProfileData/SampleProfWriter.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Errc.h" 24 #include "llvm/Support/FileSystem.h" 25 #include "llvm/Support/Format.h" 26 #include "llvm/Support/FormattedStream.h" 27 #include "llvm/Support/InitLLVM.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/ThreadPool.h" 31 #include "llvm/Support/Threading.h" 32 #include "llvm/Support/WithColor.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> 35 36 using namespace llvm; 37 38 enum ProfileFormat { 39 PF_None = 0, 40 PF_Text, 41 PF_Compact_Binary, 42 PF_Ext_Binary, 43 PF_GCC, 44 PF_Binary 45 }; 46 47 static void warn(Twine Message, std::string Whence = "", 48 std::string Hint = "") { 49 WithColor::warning(); 50 if (!Whence.empty()) 51 errs() << Whence << ": "; 52 errs() << Message << "\n"; 53 if (!Hint.empty()) 54 WithColor::note() << Hint << "\n"; 55 } 56 57 static void warn(Error E, StringRef Whence = "") { 58 if (E.isA<InstrProfError>()) { 59 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 60 warn(IPE.message(), std::string(Whence), std::string("")); 61 }); 62 } 63 } 64 65 static void exitWithError(Twine Message, std::string Whence = "", 66 std::string Hint = "") { 67 WithColor::error(); 68 if (!Whence.empty()) 69 errs() << Whence << ": "; 70 errs() << Message << "\n"; 71 if (!Hint.empty()) 72 WithColor::note() << Hint << "\n"; 73 ::exit(1); 74 } 75 76 static void exitWithError(Error E, StringRef Whence = "") { 77 if (E.isA<InstrProfError>()) { 78 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 79 instrprof_error instrError = IPE.get(); 80 StringRef Hint = ""; 81 if (instrError == instrprof_error::unrecognized_format) { 82 // Hint for common error of forgetting --sample for sample profiles. 83 Hint = "Perhaps you forgot to use the --sample option?"; 84 } 85 exitWithError(IPE.message(), std::string(Whence), std::string(Hint)); 86 }); 87 } 88 89 exitWithError(toString(std::move(E)), std::string(Whence)); 90 } 91 92 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 93 exitWithError(EC.message(), std::string(Whence)); 94 } 95 96 namespace { 97 enum ProfileKinds { instr, sample }; 98 enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid }; 99 } 100 101 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 102 StringRef Whence = "") { 103 if (FailMode == failIfAnyAreInvalid) 104 exitWithErrorCode(EC, Whence); 105 else 106 warn(EC.message(), std::string(Whence)); 107 } 108 109 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 110 StringRef WhenceFunction = "", 111 bool ShowHint = true) { 112 if (!WhenceFile.empty()) 113 errs() << WhenceFile << ": "; 114 if (!WhenceFunction.empty()) 115 errs() << WhenceFunction << ": "; 116 117 auto IPE = instrprof_error::success; 118 E = handleErrors(std::move(E), 119 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 120 IPE = E->get(); 121 return Error(std::move(E)); 122 }); 123 errs() << toString(std::move(E)) << "\n"; 124 125 if (ShowHint) { 126 StringRef Hint = ""; 127 if (IPE != instrprof_error::success) { 128 switch (IPE) { 129 case instrprof_error::hash_mismatch: 130 case instrprof_error::count_mismatch: 131 case instrprof_error::value_site_count_mismatch: 132 Hint = "Make sure that all profile data to be merged is generated " 133 "from the same binary."; 134 break; 135 default: 136 break; 137 } 138 } 139 140 if (!Hint.empty()) 141 errs() << Hint << "\n"; 142 } 143 } 144 145 namespace { 146 /// A remapper from original symbol names to new symbol names based on a file 147 /// containing a list of mappings from old name to new name. 148 class SymbolRemapper { 149 std::unique_ptr<MemoryBuffer> File; 150 DenseMap<StringRef, StringRef> RemappingTable; 151 152 public: 153 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 154 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 155 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 156 if (!BufOrError) 157 exitWithErrorCode(BufOrError.getError(), InputFile); 158 159 auto Remapper = std::make_unique<SymbolRemapper>(); 160 Remapper->File = std::move(BufOrError.get()); 161 162 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 163 !LineIt.is_at_eof(); ++LineIt) { 164 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 165 if (Parts.first.empty() || Parts.second.empty() || 166 Parts.second.count(' ')) { 167 exitWithError("unexpected line in remapping file", 168 (InputFile + ":" + Twine(LineIt.line_number())).str(), 169 "expected 'old_symbol new_symbol'"); 170 } 171 Remapper->RemappingTable.insert(Parts); 172 } 173 return Remapper; 174 } 175 176 /// Attempt to map the given old symbol into a new symbol. 177 /// 178 /// \return The new symbol, or \p Name if no such symbol was found. 179 StringRef operator()(StringRef Name) { 180 StringRef New = RemappingTable.lookup(Name); 181 return New.empty() ? Name : New; 182 } 183 }; 184 } 185 186 struct WeightedFile { 187 std::string Filename; 188 uint64_t Weight; 189 }; 190 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 191 192 /// Keep track of merged data and reported errors. 193 struct WriterContext { 194 std::mutex Lock; 195 InstrProfWriter Writer; 196 std::vector<std::pair<Error, std::string>> Errors; 197 std::mutex &ErrLock; 198 SmallSet<instrprof_error, 4> &WriterErrorCodes; 199 200 WriterContext(bool IsSparse, std::mutex &ErrLock, 201 SmallSet<instrprof_error, 4> &WriterErrorCodes) 202 : Lock(), Writer(IsSparse), Errors(), ErrLock(ErrLock), 203 WriterErrorCodes(WriterErrorCodes) {} 204 }; 205 206 /// Computer the overlap b/w profile BaseFilename and TestFileName, 207 /// and store the program level result to Overlap. 208 static void overlapInput(const std::string &BaseFilename, 209 const std::string &TestFilename, WriterContext *WC, 210 OverlapStats &Overlap, 211 const OverlapFuncFilters &FuncFilter, 212 raw_fd_ostream &OS, bool IsCS) { 213 auto ReaderOrErr = InstrProfReader::create(TestFilename); 214 if (Error E = ReaderOrErr.takeError()) { 215 // Skip the empty profiles by returning sliently. 216 instrprof_error IPE = InstrProfError::take(std::move(E)); 217 if (IPE != instrprof_error::empty_raw_profile) 218 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename); 219 return; 220 } 221 222 auto Reader = std::move(ReaderOrErr.get()); 223 for (auto &I : *Reader) { 224 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 225 FuncOverlap.setFuncInfo(I.Name, I.Hash); 226 227 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 228 FuncOverlap.dump(OS); 229 } 230 } 231 232 /// Load an input into a writer context. 233 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 234 WriterContext *WC) { 235 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 236 237 // Copy the filename, because llvm::ThreadPool copied the input "const 238 // WeightedFile &" by value, making a reference to the filename within it 239 // invalid outside of this packaged task. 240 std::string Filename = Input.Filename; 241 242 auto ReaderOrErr = InstrProfReader::create(Input.Filename); 243 if (Error E = ReaderOrErr.takeError()) { 244 // Skip the empty profiles by returning sliently. 245 instrprof_error IPE = InstrProfError::take(std::move(E)); 246 if (IPE != instrprof_error::empty_raw_profile) 247 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename); 248 return; 249 } 250 251 auto Reader = std::move(ReaderOrErr.get()); 252 bool IsIRProfile = Reader->isIRLevelProfile(); 253 bool HasCSIRProfile = Reader->hasCSIRLevelProfile(); 254 if (WC->Writer.setIsIRLevelProfile(IsIRProfile, HasCSIRProfile)) { 255 WC->Errors.emplace_back( 256 make_error<StringError>( 257 "Merge IR generated profile with Clang generated profile.", 258 std::error_code()), 259 Filename); 260 return; 261 } 262 WC->Writer.setInstrEntryBBEnabled(Reader->instrEntryBBEnabled()); 263 264 for (auto &I : *Reader) { 265 if (Remapper) 266 I.Name = (*Remapper)(I.Name); 267 const StringRef FuncName = I.Name; 268 bool Reported = false; 269 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 270 if (Reported) { 271 consumeError(std::move(E)); 272 return; 273 } 274 Reported = true; 275 // Only show hint the first time an error occurs. 276 instrprof_error IPE = InstrProfError::take(std::move(E)); 277 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 278 bool firstTime = WC->WriterErrorCodes.insert(IPE).second; 279 handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename, 280 FuncName, firstTime); 281 }); 282 } 283 if (Reader->hasError()) 284 if (Error E = Reader->getError()) 285 WC->Errors.emplace_back(std::move(E), Filename); 286 } 287 288 /// Merge the \p Src writer context into \p Dst. 289 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 290 for (auto &ErrorPair : Src->Errors) 291 Dst->Errors.push_back(std::move(ErrorPair)); 292 Src->Errors.clear(); 293 294 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 295 instrprof_error IPE = InstrProfError::take(std::move(E)); 296 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 297 bool firstTime = Dst->WriterErrorCodes.insert(IPE).second; 298 if (firstTime) 299 warn(toString(make_error<InstrProfError>(IPE))); 300 }); 301 } 302 303 static void writeInstrProfile(StringRef OutputFilename, 304 ProfileFormat OutputFormat, 305 InstrProfWriter &Writer) { 306 std::error_code EC; 307 raw_fd_ostream Output(OutputFilename.data(), EC, 308 OutputFormat == PF_Text ? sys::fs::OF_Text 309 : sys::fs::OF_None); 310 if (EC) 311 exitWithErrorCode(EC, OutputFilename); 312 313 if (OutputFormat == PF_Text) { 314 if (Error E = Writer.writeText(Output)) 315 warn(std::move(E)); 316 } else { 317 if (Error E = Writer.write(Output)) 318 warn(std::move(E)); 319 } 320 } 321 322 static void mergeInstrProfile(const WeightedFileVector &Inputs, 323 SymbolRemapper *Remapper, 324 StringRef OutputFilename, 325 ProfileFormat OutputFormat, bool OutputSparse, 326 unsigned NumThreads, FailureMode FailMode) { 327 if (OutputFilename.compare("-") == 0) 328 exitWithError("Cannot write indexed profdata format to stdout."); 329 330 if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary && 331 OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text) 332 exitWithError("Unknown format is specified."); 333 334 std::mutex ErrorLock; 335 SmallSet<instrprof_error, 4> WriterErrorCodes; 336 337 // If NumThreads is not specified, auto-detect a good default. 338 if (NumThreads == 0) 339 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 340 unsigned((Inputs.size() + 1) / 2)); 341 // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails 342 // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't 343 // merged, thus the emitted file ends up with a PF_Unknown kind. 344 345 // Initialize the writer contexts. 346 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 347 for (unsigned I = 0; I < NumThreads; ++I) 348 Contexts.emplace_back(std::make_unique<WriterContext>( 349 OutputSparse, ErrorLock, WriterErrorCodes)); 350 351 if (NumThreads == 1) { 352 for (const auto &Input : Inputs) 353 loadInput(Input, Remapper, Contexts[0].get()); 354 } else { 355 ThreadPool Pool(hardware_concurrency(NumThreads)); 356 357 // Load the inputs in parallel (N/NumThreads serial steps). 358 unsigned Ctx = 0; 359 for (const auto &Input : Inputs) { 360 Pool.async(loadInput, Input, Remapper, Contexts[Ctx].get()); 361 Ctx = (Ctx + 1) % NumThreads; 362 } 363 Pool.wait(); 364 365 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 366 unsigned Mid = Contexts.size() / 2; 367 unsigned End = Contexts.size(); 368 assert(Mid > 0 && "Expected more than one context"); 369 do { 370 for (unsigned I = 0; I < Mid; ++I) 371 Pool.async(mergeWriterContexts, Contexts[I].get(), 372 Contexts[I + Mid].get()); 373 Pool.wait(); 374 if (End & 1) { 375 Pool.async(mergeWriterContexts, Contexts[0].get(), 376 Contexts[End - 1].get()); 377 Pool.wait(); 378 } 379 End = Mid; 380 Mid /= 2; 381 } while (Mid > 0); 382 } 383 384 // Handle deferred errors encountered during merging. If the number of errors 385 // is equal to the number of inputs the merge failed. 386 unsigned NumErrors = 0; 387 for (std::unique_ptr<WriterContext> &WC : Contexts) { 388 for (auto &ErrorPair : WC->Errors) { 389 ++NumErrors; 390 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 391 } 392 } 393 if (NumErrors == Inputs.size() || 394 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 395 exitWithError("No profiles could be merged."); 396 397 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 398 } 399 400 /// The profile entry for a function in instrumentation profile. 401 struct InstrProfileEntry { 402 uint64_t MaxCount = 0; 403 float ZeroCounterRatio = 0.0; 404 InstrProfRecord *ProfRecord; 405 InstrProfileEntry(InstrProfRecord *Record); 406 InstrProfileEntry() = default; 407 }; 408 409 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 410 ProfRecord = Record; 411 uint64_t CntNum = Record->Counts.size(); 412 uint64_t ZeroCntNum = 0; 413 for (size_t I = 0; I < CntNum; ++I) { 414 MaxCount = std::max(MaxCount, Record->Counts[I]); 415 ZeroCntNum += !Record->Counts[I]; 416 } 417 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 418 } 419 420 /// Either set all the counters in the instr profile entry \p IFE to -1 421 /// in order to drop the profile or scale up the counters in \p IFP to 422 /// be above hot threshold. We use the ratio of zero counters in the 423 /// profile of a function to decide the profile is helpful or harmful 424 /// for performance, and to choose whether to scale up or drop it. 425 static void updateInstrProfileEntry(InstrProfileEntry &IFE, 426 uint64_t HotInstrThreshold, 427 float ZeroCounterThreshold) { 428 InstrProfRecord *ProfRecord = IFE.ProfRecord; 429 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 430 // If all or most of the counters of the function are zero, the 431 // profile is unaccountable and shuld be dropped. Reset all the 432 // counters to be -1 and PGO profile-use will drop the profile. 433 // All counters being -1 also implies that the function is hot so 434 // PGO profile-use will also set the entry count metadata to be 435 // above hot threshold. 436 for (size_t I = 0; I < ProfRecord->Counts.size(); ++I) 437 ProfRecord->Counts[I] = -1; 438 return; 439 } 440 441 // Scale up the MaxCount to be multiple times above hot threshold. 442 const unsigned MultiplyFactor = 3; 443 uint64_t Numerator = HotInstrThreshold * MultiplyFactor; 444 uint64_t Denominator = IFE.MaxCount; 445 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 446 warn(toString(make_error<InstrProfError>(E))); 447 }); 448 } 449 450 const uint64_t ColdPercentileIdx = 15; 451 const uint64_t HotPercentileIdx = 11; 452 453 /// Adjust the instr profile in \p WC based on the sample profile in 454 /// \p Reader. 455 static void 456 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 457 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 458 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 459 unsigned InstrProfColdThreshold) { 460 // Function to its entry in instr profile. 461 StringMap<InstrProfileEntry> InstrProfileMap; 462 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 463 for (auto &PD : WC->Writer.getProfileData()) { 464 // Populate IPBuilder. 465 for (const auto &PDV : PD.getValue()) { 466 InstrProfRecord Record = PDV.second; 467 IPBuilder.addRecord(Record); 468 } 469 470 // If a function has multiple entries in instr profile, skip it. 471 if (PD.getValue().size() != 1) 472 continue; 473 474 // Initialize InstrProfileMap. 475 InstrProfRecord *R = &PD.getValue().begin()->second; 476 InstrProfileMap[PD.getKey()] = InstrProfileEntry(R); 477 } 478 479 ProfileSummary InstrPS = *IPBuilder.getSummary(); 480 ProfileSummary SamplePS = Reader->getSummary(); 481 482 // Compute cold thresholds for instr profile and sample profile. 483 uint64_t ColdSampleThreshold = 484 ProfileSummaryBuilder::getEntryForPercentile( 485 SamplePS.getDetailedSummary(), 486 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 487 .MinCount; 488 uint64_t HotInstrThreshold = 489 ProfileSummaryBuilder::getEntryForPercentile( 490 InstrPS.getDetailedSummary(), 491 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 492 .MinCount; 493 uint64_t ColdInstrThreshold = 494 InstrProfColdThreshold 495 ? InstrProfColdThreshold 496 : ProfileSummaryBuilder::getEntryForPercentile( 497 InstrPS.getDetailedSummary(), 498 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 499 .MinCount; 500 501 // Find hot/warm functions in sample profile which is cold in instr profile 502 // and adjust the profiles of those functions in the instr profile. 503 for (const auto &PD : Reader->getProfiles()) { 504 StringRef FName = PD.getKey(); 505 const sampleprof::FunctionSamples &FS = PD.getValue(); 506 auto It = InstrProfileMap.find(FName); 507 if (FS.getHeadSamples() > ColdSampleThreshold && 508 It != InstrProfileMap.end() && 509 It->second.MaxCount <= ColdInstrThreshold && 510 FS.getBodySamples().size() >= SupplMinSizeThreshold) { 511 updateInstrProfileEntry(It->second, HotInstrThreshold, 512 ZeroCounterThreshold); 513 } 514 } 515 } 516 517 /// The main function to supplement instr profile with sample profile. 518 /// \Inputs contains the instr profile. \p SampleFilename specifies the 519 /// sample profile. \p OutputFilename specifies the output profile name. 520 /// \p OutputFormat specifies the output profile format. \p OutputSparse 521 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 522 /// specifies the minimal size for the functions whose profile will be 523 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 524 /// a function contains too many zero counters and whether its profile 525 /// should be dropped. \p InstrProfColdThreshold is the user specified 526 /// cold threshold which will override the cold threshold got from the 527 /// instr profile summary. 528 static void supplementInstrProfile( 529 const WeightedFileVector &Inputs, StringRef SampleFilename, 530 StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse, 531 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 532 unsigned InstrProfColdThreshold) { 533 if (OutputFilename.compare("-") == 0) 534 exitWithError("Cannot write indexed profdata format to stdout."); 535 if (Inputs.size() != 1) 536 exitWithError("Expect one input to be an instr profile."); 537 if (Inputs[0].Weight != 1) 538 exitWithError("Expect instr profile doesn't have weight."); 539 540 StringRef InstrFilename = Inputs[0].Filename; 541 542 // Read sample profile. 543 LLVMContext Context; 544 auto ReaderOrErr = 545 sampleprof::SampleProfileReader::create(SampleFilename.str(), Context); 546 if (std::error_code EC = ReaderOrErr.getError()) 547 exitWithErrorCode(EC, SampleFilename); 548 auto Reader = std::move(ReaderOrErr.get()); 549 if (std::error_code EC = Reader->read()) 550 exitWithErrorCode(EC, SampleFilename); 551 552 // Read instr profile. 553 std::mutex ErrorLock; 554 SmallSet<instrprof_error, 4> WriterErrorCodes; 555 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 556 WriterErrorCodes); 557 loadInput(Inputs[0], nullptr, WC.get()); 558 if (WC->Errors.size() > 0) 559 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 560 561 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 562 InstrProfColdThreshold); 563 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 564 } 565 566 /// Make a copy of the given function samples with all symbol names remapped 567 /// by the provided symbol remapper. 568 static sampleprof::FunctionSamples 569 remapSamples(const sampleprof::FunctionSamples &Samples, 570 SymbolRemapper &Remapper, sampleprof_error &Error) { 571 sampleprof::FunctionSamples Result; 572 Result.setName(Remapper(Samples.getName())); 573 Result.addTotalSamples(Samples.getTotalSamples()); 574 Result.addHeadSamples(Samples.getHeadSamples()); 575 for (const auto &BodySample : Samples.getBodySamples()) { 576 Result.addBodySamples(BodySample.first.LineOffset, 577 BodySample.first.Discriminator, 578 BodySample.second.getSamples()); 579 for (const auto &Target : BodySample.second.getCallTargets()) { 580 Result.addCalledTargetSamples(BodySample.first.LineOffset, 581 BodySample.first.Discriminator, 582 Remapper(Target.first()), Target.second); 583 } 584 } 585 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 586 sampleprof::FunctionSamplesMap &Target = 587 Result.functionSamplesAt(CallsiteSamples.first); 588 for (const auto &Callsite : CallsiteSamples.second) { 589 sampleprof::FunctionSamples Remapped = 590 remapSamples(Callsite.second, Remapper, Error); 591 MergeResult(Error, 592 Target[std::string(Remapped.getName())].merge(Remapped)); 593 } 594 } 595 return Result; 596 } 597 598 static sampleprof::SampleProfileFormat FormatMap[] = { 599 sampleprof::SPF_None, 600 sampleprof::SPF_Text, 601 sampleprof::SPF_Compact_Binary, 602 sampleprof::SPF_Ext_Binary, 603 sampleprof::SPF_GCC, 604 sampleprof::SPF_Binary}; 605 606 static std::unique_ptr<MemoryBuffer> 607 getInputFileBuf(const StringRef &InputFile) { 608 if (InputFile == "") 609 return {}; 610 611 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 612 if (!BufOrError) 613 exitWithErrorCode(BufOrError.getError(), InputFile); 614 615 return std::move(*BufOrError); 616 } 617 618 static void populateProfileSymbolList(MemoryBuffer *Buffer, 619 sampleprof::ProfileSymbolList &PSL) { 620 if (!Buffer) 621 return; 622 623 SmallVector<StringRef, 32> SymbolVec; 624 StringRef Data = Buffer->getBuffer(); 625 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 626 627 for (StringRef symbol : SymbolVec) 628 PSL.add(symbol); 629 } 630 631 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 632 ProfileFormat OutputFormat, 633 MemoryBuffer *Buffer, 634 sampleprof::ProfileSymbolList &WriterList, 635 bool CompressAllSections, bool UseMD5, 636 bool GenPartialProfile) { 637 populateProfileSymbolList(Buffer, WriterList); 638 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 639 warn("Profile Symbol list is not empty but the output format is not " 640 "ExtBinary format. The list will be lost in the output. "); 641 642 Writer.setProfileSymbolList(&WriterList); 643 644 if (CompressAllSections) { 645 if (OutputFormat != PF_Ext_Binary) 646 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 647 else 648 Writer.setToCompressAllSections(); 649 } 650 if (UseMD5) { 651 if (OutputFormat != PF_Ext_Binary) 652 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 653 else 654 Writer.setUseMD5(); 655 } 656 if (GenPartialProfile) { 657 if (OutputFormat != PF_Ext_Binary) 658 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 659 else 660 Writer.setPartialProfile(); 661 } 662 } 663 664 static void 665 mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper, 666 StringRef OutputFilename, ProfileFormat OutputFormat, 667 StringRef ProfileSymbolListFile, bool CompressAllSections, 668 bool UseMD5, bool GenPartialProfile, FailureMode FailMode) { 669 using namespace sampleprof; 670 StringMap<FunctionSamples> ProfileMap; 671 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 672 LLVMContext Context; 673 sampleprof::ProfileSymbolList WriterList; 674 Optional<bool> ProfileIsProbeBased; 675 for (const auto &Input : Inputs) { 676 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context); 677 if (std::error_code EC = ReaderOrErr.getError()) { 678 warnOrExitGivenError(FailMode, EC, Input.Filename); 679 continue; 680 } 681 682 // We need to keep the readers around until after all the files are 683 // read so that we do not lose the function names stored in each 684 // reader's memory. The function names are needed to write out the 685 // merged profile map. 686 Readers.push_back(std::move(ReaderOrErr.get())); 687 const auto Reader = Readers.back().get(); 688 if (std::error_code EC = Reader->read()) { 689 warnOrExitGivenError(FailMode, EC, Input.Filename); 690 Readers.pop_back(); 691 continue; 692 } 693 694 StringMap<FunctionSamples> &Profiles = Reader->getProfiles(); 695 if (ProfileIsProbeBased && 696 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) 697 exitWithError( 698 "cannot merge probe-based profile with non-probe-based profile"); 699 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; 700 for (StringMap<FunctionSamples>::iterator I = Profiles.begin(), 701 E = Profiles.end(); 702 I != E; ++I) { 703 sampleprof_error Result = sampleprof_error::success; 704 FunctionSamples Remapped = 705 Remapper ? remapSamples(I->second, *Remapper, Result) 706 : FunctionSamples(); 707 FunctionSamples &Samples = Remapper ? Remapped : I->second; 708 StringRef FName = Samples.getNameWithContext(true); 709 MergeResult(Result, ProfileMap[FName].merge(Samples, Input.Weight)); 710 if (Result != sampleprof_error::success) { 711 std::error_code EC = make_error_code(Result); 712 handleMergeWriterError(errorCodeToError(EC), Input.Filename, FName); 713 } 714 } 715 716 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 717 Reader->getProfileSymbolList(); 718 if (ReaderList) 719 WriterList.merge(*ReaderList); 720 } 721 auto WriterOrErr = 722 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 723 if (std::error_code EC = WriterOrErr.getError()) 724 exitWithErrorCode(EC, OutputFilename); 725 726 auto Writer = std::move(WriterOrErr.get()); 727 // WriterList will have StringRef refering to string in Buffer. 728 // Make sure Buffer lives as long as WriterList. 729 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 730 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 731 CompressAllSections, UseMD5, GenPartialProfile); 732 Writer->write(ProfileMap); 733 } 734 735 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 736 StringRef WeightStr, FileName; 737 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 738 739 uint64_t Weight; 740 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 741 exitWithError("Input weight must be a positive integer."); 742 743 return {std::string(FileName), Weight}; 744 } 745 746 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 747 StringRef Filename = WF.Filename; 748 uint64_t Weight = WF.Weight; 749 750 // If it's STDIN just pass it on. 751 if (Filename == "-") { 752 WNI.push_back({std::string(Filename), Weight}); 753 return; 754 } 755 756 llvm::sys::fs::file_status Status; 757 llvm::sys::fs::status(Filename, Status); 758 if (!llvm::sys::fs::exists(Status)) 759 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 760 Filename); 761 // If it's a source file, collect it. 762 if (llvm::sys::fs::is_regular_file(Status)) { 763 WNI.push_back({std::string(Filename), Weight}); 764 return; 765 } 766 767 if (llvm::sys::fs::is_directory(Status)) { 768 std::error_code EC; 769 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 770 F != E && !EC; F.increment(EC)) { 771 if (llvm::sys::fs::is_regular_file(F->path())) { 772 addWeightedInput(WNI, {F->path(), Weight}); 773 } 774 } 775 if (EC) 776 exitWithErrorCode(EC, Filename); 777 } 778 } 779 780 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 781 WeightedFileVector &WFV) { 782 if (!Buffer) 783 return; 784 785 SmallVector<StringRef, 8> Entries; 786 StringRef Data = Buffer->getBuffer(); 787 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 788 for (const StringRef &FileWeightEntry : Entries) { 789 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 790 // Skip comments. 791 if (SanitizedEntry.startswith("#")) 792 continue; 793 // If there's no comma, it's an unweighted profile. 794 else if (SanitizedEntry.find(',') == StringRef::npos) 795 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 796 else 797 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 798 } 799 } 800 801 static int merge_main(int argc, const char *argv[]) { 802 cl::list<std::string> InputFilenames(cl::Positional, 803 cl::desc("<filename...>")); 804 cl::list<std::string> WeightedInputFilenames("weighted-input", 805 cl::desc("<weight>,<filename>")); 806 cl::opt<std::string> InputFilenamesFile( 807 "input-files", cl::init(""), 808 cl::desc("Path to file containing newline-separated " 809 "[<weight>,]<filename> entries")); 810 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 811 cl::aliasopt(InputFilenamesFile)); 812 cl::opt<bool> DumpInputFileList( 813 "dump-input-file-list", cl::init(false), cl::Hidden, 814 cl::desc("Dump the list of input files and their weights, then exit")); 815 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 816 cl::desc("Symbol remapping file")); 817 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 818 cl::aliasopt(RemappingFile)); 819 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 820 cl::init("-"), cl::Required, 821 cl::desc("Output file")); 822 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 823 cl::aliasopt(OutputFilename)); 824 cl::opt<ProfileKinds> ProfileKind( 825 cl::desc("Profile kind:"), cl::init(instr), 826 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 827 clEnumVal(sample, "Sample profile"))); 828 cl::opt<ProfileFormat> OutputFormat( 829 cl::desc("Format of output profile"), cl::init(PF_Binary), 830 cl::values( 831 clEnumValN(PF_Binary, "binary", "Binary encoding (default)"), 832 clEnumValN(PF_Compact_Binary, "compbinary", 833 "Compact binary encoding"), 834 clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"), 835 clEnumValN(PF_Text, "text", "Text encoding"), 836 clEnumValN(PF_GCC, "gcc", 837 "GCC encoding (only meaningful for -sample)"))); 838 cl::opt<FailureMode> FailureMode( 839 "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"), 840 cl::values(clEnumValN(failIfAnyAreInvalid, "any", 841 "Fail if any profile is invalid."), 842 clEnumValN(failIfAllAreInvalid, "all", 843 "Fail only if all profiles are invalid."))); 844 cl::opt<bool> OutputSparse("sparse", cl::init(false), 845 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 846 cl::opt<unsigned> NumThreads( 847 "num-threads", cl::init(0), 848 cl::desc("Number of merge threads to use (default: autodetect)")); 849 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 850 cl::aliasopt(NumThreads)); 851 cl::opt<std::string> ProfileSymbolListFile( 852 "prof-sym-list", cl::init(""), 853 cl::desc("Path to file containing the list of function symbols " 854 "used to populate profile symbol list")); 855 cl::opt<bool> CompressAllSections( 856 "compress-all-sections", cl::init(false), cl::Hidden, 857 cl::desc("Compress all sections when writing the profile (only " 858 "meaningful for -extbinary)")); 859 cl::opt<bool> UseMD5( 860 "use-md5", cl::init(false), cl::Hidden, 861 cl::desc("Choose to use MD5 to represent string in name table (only " 862 "meaningful for -extbinary)")); 863 cl::opt<bool> GenPartialProfile( 864 "gen-partial-profile", cl::init(false), cl::Hidden, 865 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 866 cl::opt<std::string> SupplInstrWithSample( 867 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 868 cl::desc("Supplement an instr profile with sample profile, to correct " 869 "the profile unrepresentativeness issue. The sample " 870 "profile is the input of the flag. Output will be in instr " 871 "format (The flag only works with -instr)")); 872 cl::opt<float> ZeroCounterThreshold( 873 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 874 cl::desc("For the function which is cold in instr profile but hot in " 875 "sample profile, if the ratio of the number of zero counters " 876 "divided by the the total number of counters is above the " 877 "threshold, the profile of the function will be regarded as " 878 "being harmful for performance and will be dropped. ")); 879 cl::opt<unsigned> SupplMinSizeThreshold( 880 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 881 cl::desc("If the size of a function is smaller than the threshold, " 882 "assume it can be inlined by PGO early inliner and it won't " 883 "be adjusted based on sample profile. ")); 884 cl::opt<unsigned> InstrProfColdThreshold( 885 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 886 cl::desc("User specified cold threshold for instr profile which will " 887 "override the cold threshold got from profile summary. ")); 888 889 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n"); 890 891 WeightedFileVector WeightedInputs; 892 for (StringRef Filename : InputFilenames) 893 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 894 for (StringRef WeightedFilename : WeightedInputFilenames) 895 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 896 897 // Make sure that the file buffer stays alive for the duration of the 898 // weighted input vector's lifetime. 899 auto Buffer = getInputFileBuf(InputFilenamesFile); 900 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 901 902 if (WeightedInputs.empty()) 903 exitWithError("No input files specified. See " + 904 sys::path::filename(argv[0]) + " -help"); 905 906 if (DumpInputFileList) { 907 for (auto &WF : WeightedInputs) 908 outs() << WF.Weight << "," << WF.Filename << "\n"; 909 return 0; 910 } 911 912 std::unique_ptr<SymbolRemapper> Remapper; 913 if (!RemappingFile.empty()) 914 Remapper = SymbolRemapper::create(RemappingFile); 915 916 if (!SupplInstrWithSample.empty()) { 917 if (ProfileKind != instr) 918 exitWithError( 919 "-supplement-instr-with-sample can only work with -instr. "); 920 921 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename, 922 OutputFormat, OutputSparse, SupplMinSizeThreshold, 923 ZeroCounterThreshold, InstrProfColdThreshold); 924 return 0; 925 } 926 927 if (ProfileKind == instr) 928 mergeInstrProfile(WeightedInputs, Remapper.get(), OutputFilename, 929 OutputFormat, OutputSparse, NumThreads, FailureMode); 930 else 931 mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename, 932 OutputFormat, ProfileSymbolListFile, CompressAllSections, 933 UseMD5, GenPartialProfile, FailureMode); 934 935 return 0; 936 } 937 938 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 939 static void overlapInstrProfile(const std::string &BaseFilename, 940 const std::string &TestFilename, 941 const OverlapFuncFilters &FuncFilter, 942 raw_fd_ostream &OS, bool IsCS) { 943 std::mutex ErrorLock; 944 SmallSet<instrprof_error, 4> WriterErrorCodes; 945 WriterContext Context(false, ErrorLock, WriterErrorCodes); 946 WeightedFile WeightedInput{BaseFilename, 1}; 947 OverlapStats Overlap; 948 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 949 if (E) 950 exitWithError(std::move(E), "Error in getting profile count sums"); 951 if (Overlap.Base.CountSum < 1.0f) { 952 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 953 exit(0); 954 } 955 if (Overlap.Test.CountSum < 1.0f) { 956 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 957 exit(0); 958 } 959 loadInput(WeightedInput, nullptr, &Context); 960 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 961 IsCS); 962 Overlap.dump(OS); 963 } 964 965 namespace { 966 struct SampleOverlapStats { 967 StringRef BaseName; 968 StringRef TestName; 969 // Number of overlap units 970 uint64_t OverlapCount; 971 // Total samples of overlap units 972 uint64_t OverlapSample; 973 // Number of and total samples of units that only present in base or test 974 // profile 975 uint64_t BaseUniqueCount; 976 uint64_t BaseUniqueSample; 977 uint64_t TestUniqueCount; 978 uint64_t TestUniqueSample; 979 // Number of units and total samples in base or test profile 980 uint64_t BaseCount; 981 uint64_t BaseSample; 982 uint64_t TestCount; 983 uint64_t TestSample; 984 // Number of and total samples of units that present in at least one profile 985 uint64_t UnionCount; 986 uint64_t UnionSample; 987 // Weighted similarity 988 double Similarity; 989 // For SampleOverlapStats instances representing functions, weights of the 990 // function in base and test profiles 991 double BaseWeight; 992 double TestWeight; 993 994 SampleOverlapStats() 995 : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0), 996 BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0), 997 BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0), 998 UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {} 999 }; 1000 } // end anonymous namespace 1001 1002 namespace { 1003 struct FuncSampleStats { 1004 uint64_t SampleSum; 1005 uint64_t MaxSample; 1006 uint64_t HotBlockCount; 1007 FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {} 1008 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 1009 uint64_t HotBlockCount) 1010 : SampleSum(SampleSum), MaxSample(MaxSample), 1011 HotBlockCount(HotBlockCount) {} 1012 }; 1013 } // end anonymous namespace 1014 1015 namespace { 1016 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1017 1018 // Class for updating merging steps for two sorted maps. The class should be 1019 // instantiated with a map iterator type. 1020 template <class T> class MatchStep { 1021 public: 1022 MatchStep() = delete; 1023 1024 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1025 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1026 SecondEnd(SecondEnd), Status(MS_None) {} 1027 1028 bool areBothFinished() const { 1029 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1030 } 1031 1032 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1033 1034 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1035 1036 /// Advance one step based on the previous match status unless the previous 1037 /// status is MS_None. Then update Status based on the comparison between two 1038 /// container iterators at the current step. If the previous status is 1039 /// MS_None, it means two iterators are at the beginning and no comparison has 1040 /// been made, so we simply update Status without advancing the iterators. 1041 void updateOneStep(); 1042 1043 T getFirstIter() const { return FirstIter; } 1044 1045 T getSecondIter() const { return SecondIter; } 1046 1047 MatchStatus getMatchStatus() const { return Status; } 1048 1049 private: 1050 // Current iterator and end iterator of the first container. 1051 T FirstIter; 1052 T FirstEnd; 1053 // Current iterator and end iterator of the second container. 1054 T SecondIter; 1055 T SecondEnd; 1056 // Match status of the current step. 1057 MatchStatus Status; 1058 }; 1059 } // end anonymous namespace 1060 1061 template <class T> void MatchStep<T>::updateOneStep() { 1062 switch (Status) { 1063 case MS_Match: 1064 ++FirstIter; 1065 ++SecondIter; 1066 break; 1067 case MS_FirstUnique: 1068 ++FirstIter; 1069 break; 1070 case MS_SecondUnique: 1071 ++SecondIter; 1072 break; 1073 case MS_None: 1074 break; 1075 } 1076 1077 // Update Status according to iterators at the current step. 1078 if (areBothFinished()) 1079 return; 1080 if (FirstIter != FirstEnd && 1081 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1082 Status = MS_FirstUnique; 1083 else if (SecondIter != SecondEnd && 1084 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1085 Status = MS_SecondUnique; 1086 else 1087 Status = MS_Match; 1088 } 1089 1090 // Return the sum of line/block samples, the max line/block sample, and the 1091 // number of line/block samples above the given threshold in a function 1092 // including its inlinees. 1093 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1094 FuncSampleStats &FuncStats, 1095 uint64_t HotThreshold) { 1096 for (const auto &L : Func.getBodySamples()) { 1097 uint64_t Sample = L.second.getSamples(); 1098 FuncStats.SampleSum += Sample; 1099 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1100 if (Sample >= HotThreshold) 1101 ++FuncStats.HotBlockCount; 1102 } 1103 1104 for (const auto &C : Func.getCallsiteSamples()) { 1105 for (const auto &F : C.second) 1106 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1107 } 1108 } 1109 1110 /// Predicate that determines if a function is hot with a given threshold. We 1111 /// keep it separate from its callsites for possible extension in the future. 1112 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1113 uint64_t HotThreshold) { 1114 // We intentionally compare the maximum sample count in a function with the 1115 // HotThreshold to get an approximate determination on hot functions. 1116 return (FuncStats.MaxSample >= HotThreshold); 1117 } 1118 1119 namespace { 1120 class SampleOverlapAggregator { 1121 public: 1122 SampleOverlapAggregator(const std::string &BaseFilename, 1123 const std::string &TestFilename, 1124 double LowSimilarityThreshold, double Epsilon, 1125 const OverlapFuncFilters &FuncFilter) 1126 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1127 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1128 FuncFilter(FuncFilter) {} 1129 1130 /// Detect 0-sample input profile and report to output stream. This interface 1131 /// should be called after loadProfiles(). 1132 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1133 1134 /// Write out function-level similarity statistics for functions specified by 1135 /// options --function, --value-cutoff, and --similarity-cutoff. 1136 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1137 1138 /// Write out program-level similarity and overlap statistics. 1139 void dumpProgramSummary(raw_fd_ostream &OS) const; 1140 1141 /// Write out hot-function and hot-block statistics for base_profile, 1142 /// test_profile, and their overlap. For both cases, the overlap HO is 1143 /// calculated as follows: 1144 /// Given the number of functions (or blocks) that are hot in both profiles 1145 /// HCommon and the number of functions (or blocks) that are hot in at 1146 /// least one profile HUnion, HO = HCommon / HUnion. 1147 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 1148 1149 /// This function tries matching functions in base and test profiles. For each 1150 /// pair of matched functions, it aggregates the function-level 1151 /// similarity into a profile-level similarity. It also dump function-level 1152 /// similarity information of functions specified by --function, 1153 /// --value-cutoff, and --similarity-cutoff options. The program-level 1154 /// similarity PS is computed as follows: 1155 /// Given function-level similarity FS(A) for all function A, the 1156 /// weight of function A in base profile WB(A), and the weight of function 1157 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 1158 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 1159 /// meaning no-overlap. 1160 void computeSampleProfileOverlap(raw_fd_ostream &OS); 1161 1162 /// Initialize ProfOverlap with the sum of samples in base and test 1163 /// profiles. This function also computes and keeps the sum of samples and 1164 /// max sample counts of each function in BaseStats and TestStats for later 1165 /// use to avoid re-computations. 1166 void initializeSampleProfileOverlap(); 1167 1168 /// Load profiles specified by BaseFilename and TestFilename. 1169 std::error_code loadProfiles(); 1170 1171 private: 1172 SampleOverlapStats ProfOverlap; 1173 SampleOverlapStats HotFuncOverlap; 1174 SampleOverlapStats HotBlockOverlap; 1175 std::string BaseFilename; 1176 std::string TestFilename; 1177 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 1178 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 1179 // BaseStats and TestStats hold FuncSampleStats for each function, with 1180 // function name as the key. 1181 StringMap<FuncSampleStats> BaseStats; 1182 StringMap<FuncSampleStats> TestStats; 1183 // Low similarity threshold in floating point number 1184 double LowSimilarityThreshold; 1185 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 1186 // for tracking hot blocks. 1187 uint64_t BaseHotThreshold; 1188 uint64_t TestHotThreshold; 1189 // A small threshold used to round the results of floating point accumulations 1190 // to resolve imprecision. 1191 const double Epsilon; 1192 std::multimap<double, SampleOverlapStats, std::greater<double>> 1193 FuncSimilarityDump; 1194 // FuncFilter carries specifications in options --value-cutoff and 1195 // --function. 1196 OverlapFuncFilters FuncFilter; 1197 // Column offsets for printing the function-level details table. 1198 static const unsigned int TestWeightCol = 15; 1199 static const unsigned int SimilarityCol = 30; 1200 static const unsigned int OverlapCol = 43; 1201 static const unsigned int BaseUniqueCol = 53; 1202 static const unsigned int TestUniqueCol = 67; 1203 static const unsigned int BaseSampleCol = 81; 1204 static const unsigned int TestSampleCol = 96; 1205 static const unsigned int FuncNameCol = 111; 1206 1207 /// Return a similarity of two line/block sample counters in the same 1208 /// function in base and test profiles. The line/block-similarity BS(i) is 1209 /// computed as follows: 1210 /// For an offsets i, given the sample count at i in base profile BB(i), 1211 /// the sample count at i in test profile BT(i), the sum of sample counts 1212 /// in this function in base profile SB, and the sum of sample counts in 1213 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 1214 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 1215 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 1216 const SampleOverlapStats &FuncOverlap) const; 1217 1218 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 1219 uint64_t HotBlockCount); 1220 1221 void getHotFunctions(const StringMap<FuncSampleStats> &ProfStats, 1222 StringMap<FuncSampleStats> &HotFunc, 1223 uint64_t HotThreshold) const; 1224 1225 void computeHotFuncOverlap(); 1226 1227 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1228 /// Difference for two sample units in a matched function according to the 1229 /// given match status. 1230 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 1231 uint64_t HotBlockCount, 1232 SampleOverlapStats &FuncOverlap, 1233 double &Difference, MatchStatus Status); 1234 1235 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1236 /// Difference for unmatched callees that only present in one profile in a 1237 /// matched caller function. 1238 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 1239 SampleOverlapStats &FuncOverlap, 1240 double &Difference, MatchStatus Status); 1241 1242 /// This function updates sample overlap statistics of an overlap function in 1243 /// base and test profile. It also calculates a function-internal similarity 1244 /// FIS as follows: 1245 /// For offsets i that have samples in at least one profile in this 1246 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 1247 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 1248 /// 0.0 meaning no overlap. 1249 double computeSampleFunctionInternalOverlap( 1250 const sampleprof::FunctionSamples &BaseFunc, 1251 const sampleprof::FunctionSamples &TestFunc, 1252 SampleOverlapStats &FuncOverlap); 1253 1254 /// Function-level similarity (FS) is a weighted value over function internal 1255 /// similarity (FIS). This function computes a function's FS from its FIS by 1256 /// applying the weight. 1257 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 1258 uint64_t TestFuncSample) const; 1259 1260 /// The function-level similarity FS(A) for a function A is computed as 1261 /// follows: 1262 /// Compute a function-internal similarity FIS(A) by 1263 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 1264 /// function A in base profile WB(A), and the weight of function A in test 1265 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 1266 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 1267 double 1268 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 1269 const sampleprof::FunctionSamples *TestFunc, 1270 SampleOverlapStats *FuncOverlap, 1271 uint64_t BaseFuncSample, 1272 uint64_t TestFuncSample); 1273 1274 /// Profile-level similarity (PS) is a weighted aggregate over function-level 1275 /// similarities (FS). This method weights the FS value by the function 1276 /// weights in the base and test profiles for the aggregation. 1277 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 1278 uint64_t TestFuncSample) const; 1279 }; 1280 } // end anonymous namespace 1281 1282 bool SampleOverlapAggregator::detectZeroSampleProfile( 1283 raw_fd_ostream &OS) const { 1284 bool HaveZeroSample = false; 1285 if (ProfOverlap.BaseSample == 0) { 1286 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 1287 HaveZeroSample = true; 1288 } 1289 if (ProfOverlap.TestSample == 0) { 1290 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 1291 HaveZeroSample = true; 1292 } 1293 return HaveZeroSample; 1294 } 1295 1296 double SampleOverlapAggregator::computeBlockSimilarity( 1297 uint64_t BaseSample, uint64_t TestSample, 1298 const SampleOverlapStats &FuncOverlap) const { 1299 double BaseFrac = 0.0; 1300 double TestFrac = 0.0; 1301 if (FuncOverlap.BaseSample > 0) 1302 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 1303 if (FuncOverlap.TestSample > 0) 1304 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 1305 return 1.0 - std::fabs(BaseFrac - TestFrac); 1306 } 1307 1308 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 1309 uint64_t TestSample, 1310 uint64_t HotBlockCount) { 1311 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 1312 bool IsTestHot = (TestSample >= TestHotThreshold); 1313 if (!IsBaseHot && !IsTestHot) 1314 return; 1315 1316 HotBlockOverlap.UnionCount += HotBlockCount; 1317 if (IsBaseHot) 1318 HotBlockOverlap.BaseCount += HotBlockCount; 1319 if (IsTestHot) 1320 HotBlockOverlap.TestCount += HotBlockCount; 1321 if (IsBaseHot && IsTestHot) 1322 HotBlockOverlap.OverlapCount += HotBlockCount; 1323 } 1324 1325 void SampleOverlapAggregator::getHotFunctions( 1326 const StringMap<FuncSampleStats> &ProfStats, 1327 StringMap<FuncSampleStats> &HotFunc, uint64_t HotThreshold) const { 1328 for (const auto &F : ProfStats) { 1329 if (isFunctionHot(F.second, HotThreshold)) 1330 HotFunc.try_emplace(F.first(), F.second); 1331 } 1332 } 1333 1334 void SampleOverlapAggregator::computeHotFuncOverlap() { 1335 StringMap<FuncSampleStats> BaseHotFunc; 1336 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 1337 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 1338 1339 StringMap<FuncSampleStats> TestHotFunc; 1340 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 1341 HotFuncOverlap.TestCount = TestHotFunc.size(); 1342 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 1343 1344 for (const auto &F : BaseHotFunc) { 1345 if (TestHotFunc.count(F.first())) 1346 ++HotFuncOverlap.OverlapCount; 1347 else 1348 ++HotFuncOverlap.UnionCount; 1349 } 1350 } 1351 1352 void SampleOverlapAggregator::updateOverlapStatsForFunction( 1353 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 1354 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 1355 assert(Status != MS_None && 1356 "Match status should be updated before updating overlap statistics"); 1357 if (Status == MS_FirstUnique) { 1358 TestSample = 0; 1359 FuncOverlap.BaseUniqueSample += BaseSample; 1360 } else if (Status == MS_SecondUnique) { 1361 BaseSample = 0; 1362 FuncOverlap.TestUniqueSample += TestSample; 1363 } else { 1364 ++FuncOverlap.OverlapCount; 1365 } 1366 1367 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 1368 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 1369 Difference += 1370 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 1371 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 1372 } 1373 1374 void SampleOverlapAggregator::updateForUnmatchedCallee( 1375 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 1376 double &Difference, MatchStatus Status) { 1377 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 1378 "Status must be either of the two unmatched cases"); 1379 FuncSampleStats FuncStats; 1380 if (Status == MS_FirstUnique) { 1381 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 1382 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 1383 FuncStats.HotBlockCount, FuncOverlap, 1384 Difference, Status); 1385 } else { 1386 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 1387 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 1388 FuncStats.HotBlockCount, FuncOverlap, 1389 Difference, Status); 1390 } 1391 } 1392 1393 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 1394 const sampleprof::FunctionSamples &BaseFunc, 1395 const sampleprof::FunctionSamples &TestFunc, 1396 SampleOverlapStats &FuncOverlap) { 1397 1398 using namespace sampleprof; 1399 1400 double Difference = 0; 1401 1402 // Accumulate Difference for regular line/block samples in the function. 1403 // We match them through sort-merge join algorithm because 1404 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 1405 // by their offsets. 1406 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 1407 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 1408 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 1409 BlockIterStep.updateOneStep(); 1410 while (!BlockIterStep.areBothFinished()) { 1411 uint64_t BaseSample = 1412 BlockIterStep.isFirstFinished() 1413 ? 0 1414 : BlockIterStep.getFirstIter()->second.getSamples(); 1415 uint64_t TestSample = 1416 BlockIterStep.isSecondFinished() 1417 ? 0 1418 : BlockIterStep.getSecondIter()->second.getSamples(); 1419 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 1420 Difference, BlockIterStep.getMatchStatus()); 1421 1422 BlockIterStep.updateOneStep(); 1423 } 1424 1425 // Accumulate Difference for callsite lines in the function. We match 1426 // them through sort-merge algorithm because 1427 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 1428 // ordered by their offsets. 1429 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 1430 BaseFunc.getCallsiteSamples().cbegin(), 1431 BaseFunc.getCallsiteSamples().cend(), 1432 TestFunc.getCallsiteSamples().cbegin(), 1433 TestFunc.getCallsiteSamples().cend()); 1434 CallsiteIterStep.updateOneStep(); 1435 while (!CallsiteIterStep.areBothFinished()) { 1436 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 1437 assert(CallsiteStepStatus != MS_None && 1438 "Match status should be updated before entering loop body"); 1439 1440 if (CallsiteStepStatus != MS_Match) { 1441 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 1442 ? CallsiteIterStep.getFirstIter() 1443 : CallsiteIterStep.getSecondIter(); 1444 for (const auto &F : Callsite->second) 1445 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 1446 CallsiteStepStatus); 1447 } else { 1448 // There may be multiple inlinees at the same offset, so we need to try 1449 // matching all of them. This match is implemented through sort-merge 1450 // algorithm because callsite records at the same offset are ordered by 1451 // function names. 1452 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 1453 CallsiteIterStep.getFirstIter()->second.cbegin(), 1454 CallsiteIterStep.getFirstIter()->second.cend(), 1455 CallsiteIterStep.getSecondIter()->second.cbegin(), 1456 CallsiteIterStep.getSecondIter()->second.cend()); 1457 CalleeIterStep.updateOneStep(); 1458 while (!CalleeIterStep.areBothFinished()) { 1459 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 1460 if (CalleeStepStatus != MS_Match) { 1461 auto Callee = (CalleeStepStatus == MS_FirstUnique) 1462 ? CalleeIterStep.getFirstIter() 1463 : CalleeIterStep.getSecondIter(); 1464 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 1465 CalleeStepStatus); 1466 } else { 1467 // An inlined function can contain other inlinees inside, so compute 1468 // the Difference recursively. 1469 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 1470 CalleeIterStep.getFirstIter()->second, 1471 CalleeIterStep.getSecondIter()->second, 1472 FuncOverlap); 1473 } 1474 CalleeIterStep.updateOneStep(); 1475 } 1476 } 1477 CallsiteIterStep.updateOneStep(); 1478 } 1479 1480 // Difference reflects the total differences of line/block samples in this 1481 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 1482 // reflect the similarity between function profiles in [0.0f to 1.0f]. 1483 return (2.0 - Difference) / 2; 1484 } 1485 1486 double SampleOverlapAggregator::weightForFuncSimilarity( 1487 double FuncInternalSimilarity, uint64_t BaseFuncSample, 1488 uint64_t TestFuncSample) const { 1489 // Compute the weight as the distance between the function weights in two 1490 // profiles. 1491 double BaseFrac = 0.0; 1492 double TestFrac = 0.0; 1493 assert(ProfOverlap.BaseSample > 0 && 1494 "Total samples in base profile should be greater than 0"); 1495 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 1496 assert(ProfOverlap.TestSample > 0 && 1497 "Total samples in test profile should be greater than 0"); 1498 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 1499 double WeightDistance = std::fabs(BaseFrac - TestFrac); 1500 1501 // Take WeightDistance into the similarity. 1502 return FuncInternalSimilarity * (1 - WeightDistance); 1503 } 1504 1505 double 1506 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 1507 uint64_t BaseFuncSample, 1508 uint64_t TestFuncSample) const { 1509 1510 double BaseFrac = 0.0; 1511 double TestFrac = 0.0; 1512 assert(ProfOverlap.BaseSample > 0 && 1513 "Total samples in base profile should be greater than 0"); 1514 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 1515 assert(ProfOverlap.TestSample > 0 && 1516 "Total samples in test profile should be greater than 0"); 1517 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 1518 return FuncSimilarity * (BaseFrac + TestFrac); 1519 } 1520 1521 double SampleOverlapAggregator::computeSampleFunctionOverlap( 1522 const sampleprof::FunctionSamples *BaseFunc, 1523 const sampleprof::FunctionSamples *TestFunc, 1524 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 1525 uint64_t TestFuncSample) { 1526 // Default function internal similarity before weighted, meaning two functions 1527 // has no overlap. 1528 const double DefaultFuncInternalSimilarity = 0; 1529 double FuncSimilarity; 1530 double FuncInternalSimilarity; 1531 1532 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 1533 // In this case, we use DefaultFuncInternalSimilarity as the function internal 1534 // similarity. 1535 if (!BaseFunc || !TestFunc) { 1536 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 1537 } else { 1538 assert(FuncOverlap != nullptr && 1539 "FuncOverlap should be provided in this case"); 1540 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 1541 *BaseFunc, *TestFunc, *FuncOverlap); 1542 // Now, FuncInternalSimilarity may be a little less than 0 due to 1543 // imprecision of floating point accumulations. Make it zero if the 1544 // difference is below Epsilon. 1545 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 1546 ? 0 1547 : FuncInternalSimilarity; 1548 } 1549 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 1550 BaseFuncSample, TestFuncSample); 1551 return FuncSimilarity; 1552 } 1553 1554 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 1555 using namespace sampleprof; 1556 1557 StringMap<const FunctionSamples *> BaseFuncProf; 1558 const auto &BaseProfiles = BaseReader->getProfiles(); 1559 for (const auto &BaseFunc : BaseProfiles) { 1560 BaseFuncProf.try_emplace(BaseFunc.second.getName(), &(BaseFunc.second)); 1561 } 1562 ProfOverlap.UnionCount = BaseFuncProf.size(); 1563 1564 const auto &TestProfiles = TestReader->getProfiles(); 1565 for (const auto &TestFunc : TestProfiles) { 1566 SampleOverlapStats FuncOverlap; 1567 FuncOverlap.TestName = TestFunc.second.getName(); 1568 assert(TestStats.count(FuncOverlap.TestName) && 1569 "TestStats should have records for all functions in test profile " 1570 "except inlinees"); 1571 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 1572 1573 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 1574 if (Match == BaseFuncProf.end()) { 1575 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 1576 ++ProfOverlap.TestUniqueCount; 1577 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 1578 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 1579 1580 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 1581 1582 double FuncSimilarity = computeSampleFunctionOverlap( 1583 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 1584 ProfOverlap.Similarity += 1585 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 1586 1587 ++ProfOverlap.UnionCount; 1588 ProfOverlap.UnionSample += FuncStats.SampleSum; 1589 } else { 1590 ++ProfOverlap.OverlapCount; 1591 1592 // Two functions match with each other. Compute function-level overlap and 1593 // aggregate them into profile-level overlap. 1594 FuncOverlap.BaseName = Match->second->getName(); 1595 assert(BaseStats.count(FuncOverlap.BaseName) && 1596 "BaseStats should have records for all functions in base profile " 1597 "except inlinees"); 1598 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 1599 1600 FuncOverlap.Similarity = computeSampleFunctionOverlap( 1601 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 1602 FuncOverlap.TestSample); 1603 ProfOverlap.Similarity += 1604 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 1605 FuncOverlap.TestSample); 1606 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 1607 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 1608 1609 // Accumulate the percentage of base unique and test unique samples into 1610 // ProfOverlap. 1611 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 1612 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 1613 1614 // Remove matched base functions for later reporting functions not found 1615 // in test profile. 1616 BaseFuncProf.erase(Match); 1617 } 1618 1619 // Print function-level similarity information if specified by options. 1620 assert(TestStats.count(FuncOverlap.TestName) && 1621 "TestStats should have records for all functions in test profile " 1622 "except inlinees"); 1623 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 1624 (Match != BaseFuncProf.end() && 1625 FuncOverlap.Similarity < LowSimilarityThreshold) || 1626 (Match != BaseFuncProf.end() && !FuncFilter.NameFilter.empty() && 1627 FuncOverlap.BaseName.find(FuncFilter.NameFilter) != 1628 FuncOverlap.BaseName.npos)) { 1629 assert(ProfOverlap.BaseSample > 0 && 1630 "Total samples in base profile should be greater than 0"); 1631 FuncOverlap.BaseWeight = 1632 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 1633 assert(ProfOverlap.TestSample > 0 && 1634 "Total samples in test profile should be greater than 0"); 1635 FuncOverlap.TestWeight = 1636 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 1637 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 1638 } 1639 } 1640 1641 // Traverse through functions in base profile but not in test profile. 1642 for (const auto &F : BaseFuncProf) { 1643 assert(BaseStats.count(F.second->getName()) && 1644 "BaseStats should have records for all functions in base profile " 1645 "except inlinees"); 1646 const FuncSampleStats &FuncStats = BaseStats[F.second->getName()]; 1647 ++ProfOverlap.BaseUniqueCount; 1648 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 1649 1650 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 1651 1652 double FuncSimilarity = computeSampleFunctionOverlap( 1653 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 1654 ProfOverlap.Similarity += 1655 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 1656 1657 ProfOverlap.UnionSample += FuncStats.SampleSum; 1658 } 1659 1660 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 1661 // of floating point accumulations. Make it 1.0 if the difference is below 1662 // Epsilon. 1663 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 1664 ? 1 1665 : ProfOverlap.Similarity; 1666 1667 computeHotFuncOverlap(); 1668 } 1669 1670 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 1671 const auto &BaseProf = BaseReader->getProfiles(); 1672 for (const auto &I : BaseProf) { 1673 ++ProfOverlap.BaseCount; 1674 FuncSampleStats FuncStats; 1675 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 1676 ProfOverlap.BaseSample += FuncStats.SampleSum; 1677 BaseStats.try_emplace(I.second.getName(), FuncStats); 1678 } 1679 1680 const auto &TestProf = TestReader->getProfiles(); 1681 for (const auto &I : TestProf) { 1682 ++ProfOverlap.TestCount; 1683 FuncSampleStats FuncStats; 1684 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 1685 ProfOverlap.TestSample += FuncStats.SampleSum; 1686 TestStats.try_emplace(I.second.getName(), FuncStats); 1687 } 1688 1689 ProfOverlap.BaseName = StringRef(BaseFilename); 1690 ProfOverlap.TestName = StringRef(TestFilename); 1691 } 1692 1693 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 1694 using namespace sampleprof; 1695 1696 if (FuncSimilarityDump.empty()) 1697 return; 1698 1699 formatted_raw_ostream FOS(OS); 1700 FOS << "Function-level details:\n"; 1701 FOS << "Base weight"; 1702 FOS.PadToColumn(TestWeightCol); 1703 FOS << "Test weight"; 1704 FOS.PadToColumn(SimilarityCol); 1705 FOS << "Similarity"; 1706 FOS.PadToColumn(OverlapCol); 1707 FOS << "Overlap"; 1708 FOS.PadToColumn(BaseUniqueCol); 1709 FOS << "Base unique"; 1710 FOS.PadToColumn(TestUniqueCol); 1711 FOS << "Test unique"; 1712 FOS.PadToColumn(BaseSampleCol); 1713 FOS << "Base samples"; 1714 FOS.PadToColumn(TestSampleCol); 1715 FOS << "Test samples"; 1716 FOS.PadToColumn(FuncNameCol); 1717 FOS << "Function name\n"; 1718 for (const auto &F : FuncSimilarityDump) { 1719 double OverlapPercent = 1720 F.second.UnionSample > 0 1721 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 1722 : 0; 1723 double BaseUniquePercent = 1724 F.second.BaseSample > 0 1725 ? static_cast<double>(F.second.BaseUniqueSample) / 1726 F.second.BaseSample 1727 : 0; 1728 double TestUniquePercent = 1729 F.second.TestSample > 0 1730 ? static_cast<double>(F.second.TestUniqueSample) / 1731 F.second.TestSample 1732 : 0; 1733 1734 FOS << format("%.2f%%", F.second.BaseWeight * 100); 1735 FOS.PadToColumn(TestWeightCol); 1736 FOS << format("%.2f%%", F.second.TestWeight * 100); 1737 FOS.PadToColumn(SimilarityCol); 1738 FOS << format("%.2f%%", F.second.Similarity * 100); 1739 FOS.PadToColumn(OverlapCol); 1740 FOS << format("%.2f%%", OverlapPercent * 100); 1741 FOS.PadToColumn(BaseUniqueCol); 1742 FOS << format("%.2f%%", BaseUniquePercent * 100); 1743 FOS.PadToColumn(TestUniqueCol); 1744 FOS << format("%.2f%%", TestUniquePercent * 100); 1745 FOS.PadToColumn(BaseSampleCol); 1746 FOS << F.second.BaseSample; 1747 FOS.PadToColumn(TestSampleCol); 1748 FOS << F.second.TestSample; 1749 FOS.PadToColumn(FuncNameCol); 1750 FOS << F.second.TestName << "\n"; 1751 } 1752 } 1753 1754 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 1755 OS << "Profile overlap infomation for base_profile: " << ProfOverlap.BaseName 1756 << " and test_profile: " << ProfOverlap.TestName << "\nProgram level:\n"; 1757 1758 OS << " Whole program profile similarity: " 1759 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 1760 1761 assert(ProfOverlap.UnionSample > 0 && 1762 "Total samples in two profile should be greater than 0"); 1763 double OverlapPercent = 1764 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 1765 assert(ProfOverlap.BaseSample > 0 && 1766 "Total samples in base profile should be greater than 0"); 1767 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 1768 ProfOverlap.BaseSample; 1769 assert(ProfOverlap.TestSample > 0 && 1770 "Total samples in test profile should be greater than 0"); 1771 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 1772 ProfOverlap.TestSample; 1773 1774 OS << " Whole program sample overlap: " 1775 << format("%.3f%%", OverlapPercent * 100) << "\n"; 1776 OS << " percentage of samples unique in base profile: " 1777 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 1778 OS << " percentage of samples unique in test profile: " 1779 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 1780 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 1781 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 1782 1783 assert(ProfOverlap.UnionCount > 0 && 1784 "There should be at least one function in two input profiles"); 1785 double FuncOverlapPercent = 1786 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 1787 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 1788 << "\n"; 1789 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 1790 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 1791 << "\n"; 1792 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 1793 << "\n"; 1794 } 1795 1796 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 1797 raw_fd_ostream &OS) const { 1798 assert(HotFuncOverlap.UnionCount > 0 && 1799 "There should be at least one hot function in two input profiles"); 1800 OS << " Hot-function overlap: " 1801 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 1802 HotFuncOverlap.UnionCount * 100) 1803 << "\n"; 1804 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 1805 OS << " hot functions unique in base profile: " 1806 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 1807 OS << " hot functions unique in test profile: " 1808 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 1809 1810 assert(HotBlockOverlap.UnionCount > 0 && 1811 "There should be at least one hot block in two input profiles"); 1812 OS << " Hot-block overlap: " 1813 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 1814 HotBlockOverlap.UnionCount * 100) 1815 << "\n"; 1816 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 1817 OS << " hot blocks unique in base profile: " 1818 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 1819 OS << " hot blocks unique in test profile: " 1820 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 1821 } 1822 1823 std::error_code SampleOverlapAggregator::loadProfiles() { 1824 using namespace sampleprof; 1825 1826 LLVMContext Context; 1827 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context); 1828 if (std::error_code EC = BaseReaderOrErr.getError()) 1829 exitWithErrorCode(EC, BaseFilename); 1830 1831 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context); 1832 if (std::error_code EC = TestReaderOrErr.getError()) 1833 exitWithErrorCode(EC, TestFilename); 1834 1835 BaseReader = std::move(BaseReaderOrErr.get()); 1836 TestReader = std::move(TestReaderOrErr.get()); 1837 1838 if (std::error_code EC = BaseReader->read()) 1839 exitWithErrorCode(EC, BaseFilename); 1840 if (std::error_code EC = TestReader->read()) 1841 exitWithErrorCode(EC, TestFilename); 1842 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) 1843 exitWithError( 1844 "cannot compare probe-based profile with non-probe-based profile"); 1845 1846 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 1847 // profile summary. 1848 const uint64_t HotCutoff = 990000; 1849 ProfileSummary &BasePS = BaseReader->getSummary(); 1850 for (const auto &SummaryEntry : BasePS.getDetailedSummary()) { 1851 if (SummaryEntry.Cutoff == HotCutoff) { 1852 BaseHotThreshold = SummaryEntry.MinCount; 1853 break; 1854 } 1855 } 1856 1857 ProfileSummary &TestPS = TestReader->getSummary(); 1858 for (const auto &SummaryEntry : TestPS.getDetailedSummary()) { 1859 if (SummaryEntry.Cutoff == HotCutoff) { 1860 TestHotThreshold = SummaryEntry.MinCount; 1861 break; 1862 } 1863 } 1864 return std::error_code(); 1865 } 1866 1867 void overlapSampleProfile(const std::string &BaseFilename, 1868 const std::string &TestFilename, 1869 const OverlapFuncFilters &FuncFilter, 1870 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 1871 using namespace sampleprof; 1872 1873 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 1874 // report 2--3 places after decimal point in percentage numbers. 1875 SampleOverlapAggregator OverlapAggr( 1876 BaseFilename, TestFilename, 1877 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 1878 if (std::error_code EC = OverlapAggr.loadProfiles()) 1879 exitWithErrorCode(EC); 1880 1881 OverlapAggr.initializeSampleProfileOverlap(); 1882 if (OverlapAggr.detectZeroSampleProfile(OS)) 1883 return; 1884 1885 OverlapAggr.computeSampleProfileOverlap(OS); 1886 1887 OverlapAggr.dumpProgramSummary(OS); 1888 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 1889 OverlapAggr.dumpFuncSimilarity(OS); 1890 } 1891 1892 static int overlap_main(int argc, const char *argv[]) { 1893 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 1894 cl::desc("<base profile file>")); 1895 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 1896 cl::desc("<test profile file>")); 1897 cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"), 1898 cl::desc("Output file")); 1899 cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output)); 1900 cl::opt<bool> IsCS("cs", cl::init(false), 1901 cl::desc("For context sensitive counts")); 1902 cl::opt<unsigned long long> ValueCutoff( 1903 "value-cutoff", cl::init(-1), 1904 cl::desc( 1905 "Function level overlap information for every function in test " 1906 "profile with max count value greater then the parameter value")); 1907 cl::opt<std::string> FuncNameFilter( 1908 "function", 1909 cl::desc("Function level overlap information for matching functions")); 1910 cl::opt<unsigned long long> SimilarityCutoff( 1911 "similarity-cutoff", cl::init(0), 1912 cl::desc( 1913 "For sample profiles, list function names for overlapped functions " 1914 "with similarities below the cutoff (percentage times 10000).")); 1915 cl::opt<ProfileKinds> ProfileKind( 1916 cl::desc("Profile kind:"), cl::init(instr), 1917 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 1918 clEnumVal(sample, "Sample profile"))); 1919 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n"); 1920 1921 std::error_code EC; 1922 raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_Text); 1923 if (EC) 1924 exitWithErrorCode(EC, Output); 1925 1926 if (ProfileKind == instr) 1927 overlapInstrProfile(BaseFilename, TestFilename, 1928 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS, 1929 IsCS); 1930 else 1931 overlapSampleProfile(BaseFilename, TestFilename, 1932 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, 1933 SimilarityCutoff, OS); 1934 1935 return 0; 1936 } 1937 1938 typedef struct ValueSitesStats { 1939 ValueSitesStats() 1940 : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0), 1941 TotalNumValues(0) {} 1942 uint64_t TotalNumValueSites; 1943 uint64_t TotalNumValueSitesWithValueProfile; 1944 uint64_t TotalNumValues; 1945 std::vector<unsigned> ValueSitesHistogram; 1946 } ValueSitesStats; 1947 1948 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 1949 ValueSitesStats &Stats, raw_fd_ostream &OS, 1950 InstrProfSymtab *Symtab) { 1951 uint32_t NS = Func.getNumValueSites(VK); 1952 Stats.TotalNumValueSites += NS; 1953 for (size_t I = 0; I < NS; ++I) { 1954 uint32_t NV = Func.getNumValueDataForSite(VK, I); 1955 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I); 1956 Stats.TotalNumValues += NV; 1957 if (NV) { 1958 Stats.TotalNumValueSitesWithValueProfile++; 1959 if (NV > Stats.ValueSitesHistogram.size()) 1960 Stats.ValueSitesHistogram.resize(NV, 0); 1961 Stats.ValueSitesHistogram[NV - 1]++; 1962 } 1963 1964 uint64_t SiteSum = 0; 1965 for (uint32_t V = 0; V < NV; V++) 1966 SiteSum += VD[V].Count; 1967 if (SiteSum == 0) 1968 SiteSum = 1; 1969 1970 for (uint32_t V = 0; V < NV; V++) { 1971 OS << "\t[ " << format("%2u", I) << ", "; 1972 if (Symtab == nullptr) 1973 OS << format("%4" PRIu64, VD[V].Value); 1974 else 1975 OS << Symtab->getFuncName(VD[V].Value); 1976 OS << ", " << format("%10" PRId64, VD[V].Count) << " ] (" 1977 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n"; 1978 } 1979 } 1980 } 1981 1982 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 1983 ValueSitesStats &Stats) { 1984 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 1985 OS << " Total number of sites with values: " 1986 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 1987 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 1988 1989 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 1990 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 1991 if (Stats.ValueSitesHistogram[I] > 0) 1992 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 1993 } 1994 } 1995 1996 static int showInstrProfile(const std::string &Filename, bool ShowCounts, 1997 uint32_t TopN, bool ShowIndirectCallTargets, 1998 bool ShowMemOPSizes, bool ShowDetailedSummary, 1999 std::vector<uint32_t> DetailedSummaryCutoffs, 2000 bool ShowAllFunctions, bool ShowCS, 2001 uint64_t ValueCutoff, bool OnlyListBelow, 2002 const std::string &ShowFunction, bool TextFormat, 2003 raw_fd_ostream &OS) { 2004 auto ReaderOrErr = InstrProfReader::create(Filename); 2005 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 2006 if (ShowDetailedSummary && Cutoffs.empty()) { 2007 Cutoffs = {800000, 900000, 950000, 990000, 999000, 999900, 999990}; 2008 } 2009 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 2010 if (Error E = ReaderOrErr.takeError()) 2011 exitWithError(std::move(E), Filename); 2012 2013 auto Reader = std::move(ReaderOrErr.get()); 2014 bool IsIRInstr = Reader->isIRLevelProfile(); 2015 size_t ShownFunctions = 0; 2016 size_t BelowCutoffFunctions = 0; 2017 int NumVPKind = IPVK_Last - IPVK_First + 1; 2018 std::vector<ValueSitesStats> VPStats(NumVPKind); 2019 2020 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2021 const std::pair<std::string, uint64_t> &v2) { 2022 return v1.second > v2.second; 2023 }; 2024 2025 std::priority_queue<std::pair<std::string, uint64_t>, 2026 std::vector<std::pair<std::string, uint64_t>>, 2027 decltype(MinCmp)> 2028 HottestFuncs(MinCmp); 2029 2030 if (!TextFormat && OnlyListBelow) { 2031 OS << "The list of functions with the maximum counter less than " 2032 << ValueCutoff << ":\n"; 2033 } 2034 2035 // Add marker so that IR-level instrumentation round-trips properly. 2036 if (TextFormat && IsIRInstr) 2037 OS << ":ir\n"; 2038 2039 for (const auto &Func : *Reader) { 2040 if (Reader->isIRLevelProfile()) { 2041 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2042 if (FuncIsCS != ShowCS) 2043 continue; 2044 } 2045 bool Show = 2046 ShowAllFunctions || (!ShowFunction.empty() && 2047 Func.Name.find(ShowFunction) != Func.Name.npos); 2048 2049 bool doTextFormatDump = (Show && TextFormat); 2050 2051 if (doTextFormatDump) { 2052 InstrProfSymtab &Symtab = Reader->getSymtab(); 2053 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2054 OS); 2055 continue; 2056 } 2057 2058 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2059 Builder.addRecord(Func); 2060 2061 uint64_t FuncMax = 0; 2062 uint64_t FuncSum = 0; 2063 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2064 if (Func.Counts[I] == (uint64_t)-1) 2065 continue; 2066 FuncMax = std::max(FuncMax, Func.Counts[I]); 2067 FuncSum += Func.Counts[I]; 2068 } 2069 2070 if (FuncMax < ValueCutoff) { 2071 ++BelowCutoffFunctions; 2072 if (OnlyListBelow) { 2073 OS << " " << Func.Name << ": (Max = " << FuncMax 2074 << " Sum = " << FuncSum << ")\n"; 2075 } 2076 continue; 2077 } else if (OnlyListBelow) 2078 continue; 2079 2080 if (TopN) { 2081 if (HottestFuncs.size() == TopN) { 2082 if (HottestFuncs.top().second < FuncMax) { 2083 HottestFuncs.pop(); 2084 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2085 } 2086 } else 2087 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2088 } 2089 2090 if (Show) { 2091 if (!ShownFunctions) 2092 OS << "Counters:\n"; 2093 2094 ++ShownFunctions; 2095 2096 OS << " " << Func.Name << ":\n" 2097 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2098 << " Counters: " << Func.Counts.size() << "\n"; 2099 if (!IsIRInstr) 2100 OS << " Function count: " << Func.Counts[0] << "\n"; 2101 2102 if (ShowIndirectCallTargets) 2103 OS << " Indirect Call Site Count: " 2104 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2105 2106 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2107 if (ShowMemOPSizes && NumMemOPCalls > 0) 2108 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2109 << "\n"; 2110 2111 if (ShowCounts) { 2112 OS << " Block counts: ["; 2113 size_t Start = (IsIRInstr ? 0 : 1); 2114 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2115 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2116 } 2117 OS << "]\n"; 2118 } 2119 2120 if (ShowIndirectCallTargets) { 2121 OS << " Indirect Target Results:\n"; 2122 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2123 VPStats[IPVK_IndirectCallTarget], OS, 2124 &(Reader->getSymtab())); 2125 } 2126 2127 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2128 OS << " Memory Intrinsic Size Results:\n"; 2129 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2130 nullptr); 2131 } 2132 } 2133 } 2134 if (Reader->hasError()) 2135 exitWithError(Reader->getError(), Filename); 2136 2137 if (TextFormat) 2138 return 0; 2139 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 2140 bool IsIR = Reader->isIRLevelProfile(); 2141 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 2142 if (IsIR) 2143 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 2144 OS << "\n"; 2145 if (ShowAllFunctions || !ShowFunction.empty()) 2146 OS << "Functions shown: " << ShownFunctions << "\n"; 2147 OS << "Total functions: " << PS->getNumFunctions() << "\n"; 2148 if (ValueCutoff > 0) { 2149 OS << "Number of functions with maximum count (< " << ValueCutoff 2150 << "): " << BelowCutoffFunctions << "\n"; 2151 OS << "Number of functions with maximum count (>= " << ValueCutoff 2152 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 2153 } 2154 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; 2155 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; 2156 2157 if (TopN) { 2158 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 2159 while (!HottestFuncs.empty()) { 2160 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 2161 HottestFuncs.pop(); 2162 } 2163 OS << "Top " << TopN 2164 << " functions with the largest internal block counts: \n"; 2165 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 2166 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 2167 } 2168 2169 if (ShownFunctions && ShowIndirectCallTargets) { 2170 OS << "Statistics for indirect call sites profile:\n"; 2171 showValueSitesStats(OS, IPVK_IndirectCallTarget, 2172 VPStats[IPVK_IndirectCallTarget]); 2173 } 2174 2175 if (ShownFunctions && ShowMemOPSizes) { 2176 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 2177 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 2178 } 2179 2180 if (ShowDetailedSummary) { 2181 OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; 2182 OS << "Total count: " << PS->getTotalCount() << "\n"; 2183 PS->printDetailedSummary(OS); 2184 } 2185 return 0; 2186 } 2187 2188 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 2189 raw_fd_ostream &OS) { 2190 if (!Reader->dumpSectionInfo(OS)) { 2191 WithColor::warning() << "-show-sec-info-only is only supported for " 2192 << "sample profile in extbinary format and is " 2193 << "ignored for other formats.\n"; 2194 return; 2195 } 2196 } 2197 2198 namespace { 2199 struct HotFuncInfo { 2200 StringRef FuncName; 2201 uint64_t TotalCount; 2202 double TotalCountPercent; 2203 uint64_t MaxCount; 2204 uint64_t EntryCount; 2205 2206 HotFuncInfo() 2207 : FuncName(), TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), 2208 EntryCount(0) {} 2209 2210 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 2211 : FuncName(FN), TotalCount(TS), TotalCountPercent(TSP), MaxCount(MS), 2212 EntryCount(ES) {} 2213 }; 2214 } // namespace 2215 2216 // Print out detailed information about hot functions in PrintValues vector. 2217 // Users specify titles and offset of every columns through ColumnTitle and 2218 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 2219 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 2220 // print out or let it be an empty string. 2221 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 2222 const std::vector<int> &ColumnOffset, 2223 const std::vector<HotFuncInfo> &PrintValues, 2224 uint64_t HotFuncCount, uint64_t TotalFuncCount, 2225 uint64_t HotProfCount, uint64_t TotalProfCount, 2226 const std::string &HotFuncMetric, 2227 raw_fd_ostream &OS) { 2228 assert(ColumnOffset.size() == ColumnTitle.size() && 2229 "ColumnOffset and ColumnTitle should have the same size"); 2230 assert(ColumnTitle.size() >= 4 && 2231 "ColumnTitle should have at least 4 elements"); 2232 assert(TotalFuncCount > 0 && 2233 "There should be at least one function in the profile"); 2234 double TotalProfPercent = 0; 2235 if (TotalProfCount > 0) 2236 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 2237 2238 formatted_raw_ostream FOS(OS); 2239 FOS << HotFuncCount << " out of " << TotalFuncCount 2240 << " functions with profile (" 2241 << format("%.2f%%", 2242 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 2243 << ") are considered hot functions"; 2244 if (!HotFuncMetric.empty()) 2245 FOS << " (" << HotFuncMetric << ")"; 2246 FOS << ".\n"; 2247 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 2248 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 2249 2250 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 2251 FOS.PadToColumn(ColumnOffset[I]); 2252 FOS << ColumnTitle[I]; 2253 } 2254 FOS << "\n"; 2255 2256 for (const HotFuncInfo &R : PrintValues) { 2257 FOS.PadToColumn(ColumnOffset[0]); 2258 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 2259 FOS.PadToColumn(ColumnOffset[1]); 2260 FOS << R.MaxCount; 2261 FOS.PadToColumn(ColumnOffset[2]); 2262 FOS << R.EntryCount; 2263 FOS.PadToColumn(ColumnOffset[3]); 2264 FOS << R.FuncName << "\n"; 2265 } 2266 } 2267 2268 static int 2269 showHotFunctionList(const StringMap<sampleprof::FunctionSamples> &Profiles, 2270 ProfileSummary &PS, raw_fd_ostream &OS) { 2271 using namespace sampleprof; 2272 2273 const uint32_t HotFuncCutoff = 990000; 2274 auto &SummaryVector = PS.getDetailedSummary(); 2275 uint64_t MinCountThreshold = 0; 2276 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 2277 if (SummaryEntry.Cutoff == HotFuncCutoff) { 2278 MinCountThreshold = SummaryEntry.MinCount; 2279 break; 2280 } 2281 } 2282 2283 // Traverse all functions in the profile and keep only hot functions. 2284 // The following loop also calculates the sum of total samples of all 2285 // functions. 2286 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 2287 std::greater<uint64_t>> 2288 HotFunc; 2289 uint64_t ProfileTotalSample = 0; 2290 uint64_t HotFuncSample = 0; 2291 uint64_t HotFuncCount = 0; 2292 2293 for (const auto &I : Profiles) { 2294 FuncSampleStats FuncStats; 2295 const FunctionSamples &FuncProf = I.second; 2296 ProfileTotalSample += FuncProf.getTotalSamples(); 2297 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 2298 2299 if (isFunctionHot(FuncStats, MinCountThreshold)) { 2300 HotFunc.emplace(FuncProf.getTotalSamples(), 2301 std::make_pair(&(I.second), FuncStats.MaxSample)); 2302 HotFuncSample += FuncProf.getTotalSamples(); 2303 ++HotFuncCount; 2304 } 2305 } 2306 2307 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 2308 "Entry sample", "Function name"}; 2309 std::vector<int> ColumnOffset{0, 24, 42, 58}; 2310 std::string Metric = 2311 std::string("max sample >= ") + std::to_string(MinCountThreshold); 2312 std::vector<HotFuncInfo> PrintValues; 2313 for (const auto &FuncPair : HotFunc) { 2314 const FunctionSamples &Func = *FuncPair.second.first; 2315 double TotalSamplePercent = 2316 (ProfileTotalSample > 0) 2317 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 2318 : 0; 2319 PrintValues.emplace_back( 2320 HotFuncInfo(Func.getName(), Func.getTotalSamples(), TotalSamplePercent, 2321 FuncPair.second.second, Func.getEntrySamples())); 2322 } 2323 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 2324 Profiles.size(), HotFuncSample, ProfileTotalSample, 2325 Metric, OS); 2326 2327 return 0; 2328 } 2329 2330 static int showSampleProfile(const std::string &Filename, bool ShowCounts, 2331 bool ShowAllFunctions, bool ShowDetailedSummary, 2332 const std::string &ShowFunction, 2333 bool ShowProfileSymbolList, 2334 bool ShowSectionInfoOnly, bool ShowHotFuncList, 2335 raw_fd_ostream &OS) { 2336 using namespace sampleprof; 2337 LLVMContext Context; 2338 auto ReaderOrErr = SampleProfileReader::create(Filename, Context); 2339 if (std::error_code EC = ReaderOrErr.getError()) 2340 exitWithErrorCode(EC, Filename); 2341 2342 auto Reader = std::move(ReaderOrErr.get()); 2343 2344 if (ShowSectionInfoOnly) { 2345 showSectionInfo(Reader.get(), OS); 2346 return 0; 2347 } 2348 2349 if (std::error_code EC = Reader->read()) 2350 exitWithErrorCode(EC, Filename); 2351 2352 if (ShowAllFunctions || ShowFunction.empty()) 2353 Reader->dump(OS); 2354 else 2355 Reader->dumpFunctionProfile(ShowFunction, OS); 2356 2357 if (ShowProfileSymbolList) { 2358 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 2359 Reader->getProfileSymbolList(); 2360 ReaderList->dump(OS); 2361 } 2362 2363 if (ShowDetailedSummary) { 2364 auto &PS = Reader->getSummary(); 2365 PS.printSummary(OS); 2366 PS.printDetailedSummary(OS); 2367 } 2368 2369 if (ShowHotFuncList) 2370 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), OS); 2371 2372 return 0; 2373 } 2374 2375 static int show_main(int argc, const char *argv[]) { 2376 cl::opt<std::string> Filename(cl::Positional, cl::Required, 2377 cl::desc("<profdata-file>")); 2378 2379 cl::opt<bool> ShowCounts("counts", cl::init(false), 2380 cl::desc("Show counter values for shown functions")); 2381 cl::opt<bool> TextFormat( 2382 "text", cl::init(false), 2383 cl::desc("Show instr profile data in text dump format")); 2384 cl::opt<bool> ShowIndirectCallTargets( 2385 "ic-targets", cl::init(false), 2386 cl::desc("Show indirect call site target values for shown functions")); 2387 cl::opt<bool> ShowMemOPSizes( 2388 "memop-sizes", cl::init(false), 2389 cl::desc("Show the profiled sizes of the memory intrinsic calls " 2390 "for shown functions")); 2391 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 2392 cl::desc("Show detailed profile summary")); 2393 cl::list<uint32_t> DetailedSummaryCutoffs( 2394 cl::CommaSeparated, "detailed-summary-cutoffs", 2395 cl::desc( 2396 "Cutoff percentages (times 10000) for generating detailed summary"), 2397 cl::value_desc("800000,901000,999999")); 2398 cl::opt<bool> ShowHotFuncList( 2399 "hot-func-list", cl::init(false), 2400 cl::desc("Show profile summary of a list of hot functions")); 2401 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 2402 cl::desc("Details for every function")); 2403 cl::opt<bool> ShowCS("showcs", cl::init(false), 2404 cl::desc("Show context sensitive counts")); 2405 cl::opt<std::string> ShowFunction("function", 2406 cl::desc("Details for matching functions")); 2407 2408 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 2409 cl::init("-"), cl::desc("Output file")); 2410 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 2411 cl::aliasopt(OutputFilename)); 2412 cl::opt<ProfileKinds> ProfileKind( 2413 cl::desc("Profile kind:"), cl::init(instr), 2414 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 2415 clEnumVal(sample, "Sample profile"))); 2416 cl::opt<uint32_t> TopNFunctions( 2417 "topn", cl::init(0), 2418 cl::desc("Show the list of functions with the largest internal counts")); 2419 cl::opt<uint32_t> ValueCutoff( 2420 "value-cutoff", cl::init(0), 2421 cl::desc("Set the count value cutoff. Functions with the maximum count " 2422 "less than this value will not be printed out. (Default is 0)")); 2423 cl::opt<bool> OnlyListBelow( 2424 "list-below-cutoff", cl::init(false), 2425 cl::desc("Only output names of functions whose max count values are " 2426 "below the cutoff value")); 2427 cl::opt<bool> ShowProfileSymbolList( 2428 "show-prof-sym-list", cl::init(false), 2429 cl::desc("Show profile symbol list if it exists in the profile. ")); 2430 cl::opt<bool> ShowSectionInfoOnly( 2431 "show-sec-info-only", cl::init(false), 2432 cl::desc("Show the information of each section in the sample profile. " 2433 "The flag is only usable when the sample profile is in " 2434 "extbinary format")); 2435 2436 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n"); 2437 2438 if (OutputFilename.empty()) 2439 OutputFilename = "-"; 2440 2441 if (Filename == OutputFilename) { 2442 errs() << sys::path::filename(argv[0]) 2443 << ": Input file name cannot be the same as the output file name!\n"; 2444 return 1; 2445 } 2446 2447 std::error_code EC; 2448 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_Text); 2449 if (EC) 2450 exitWithErrorCode(EC, OutputFilename); 2451 2452 if (ShowAllFunctions && !ShowFunction.empty()) 2453 WithColor::warning() << "-function argument ignored: showing all functions\n"; 2454 2455 if (ProfileKind == instr) 2456 return showInstrProfile(Filename, ShowCounts, TopNFunctions, 2457 ShowIndirectCallTargets, ShowMemOPSizes, 2458 ShowDetailedSummary, DetailedSummaryCutoffs, 2459 ShowAllFunctions, ShowCS, ValueCutoff, 2460 OnlyListBelow, ShowFunction, TextFormat, OS); 2461 else 2462 return showSampleProfile(Filename, ShowCounts, ShowAllFunctions, 2463 ShowDetailedSummary, ShowFunction, 2464 ShowProfileSymbolList, ShowSectionInfoOnly, 2465 ShowHotFuncList, OS); 2466 } 2467 2468 int main(int argc, const char *argv[]) { 2469 InitLLVM X(argc, argv); 2470 2471 StringRef ProgName(sys::path::filename(argv[0])); 2472 if (argc > 1) { 2473 int (*func)(int, const char *[]) = nullptr; 2474 2475 if (strcmp(argv[1], "merge") == 0) 2476 func = merge_main; 2477 else if (strcmp(argv[1], "show") == 0) 2478 func = show_main; 2479 else if (strcmp(argv[1], "overlap") == 0) 2480 func = overlap_main; 2481 2482 if (func) { 2483 std::string Invocation(ProgName.str() + " " + argv[1]); 2484 argv[1] = Invocation.c_str(); 2485 return func(argc - 1, argv + 1); 2486 } 2487 2488 if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 || 2489 strcmp(argv[1], "--help") == 0) { 2490 2491 errs() << "OVERVIEW: LLVM profile data tools\n\n" 2492 << "USAGE: " << ProgName << " <command> [args...]\n" 2493 << "USAGE: " << ProgName << " <command> -help\n\n" 2494 << "See each individual command --help for more details.\n" 2495 << "Available commands: merge, show, overlap\n"; 2496 return 0; 2497 } 2498 } 2499 2500 if (argc < 2) 2501 errs() << ProgName << ": No command specified!\n"; 2502 else 2503 errs() << ProgName << ": Unknown command!\n"; 2504 2505 errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n"; 2506 return 1; 2507 } 2508