1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 17 #include "llvm/IR/LLVMContext.h" 18 #include "llvm/Object/Binary.h" 19 #include "llvm/ProfileData/InstrProfCorrelator.h" 20 #include "llvm/ProfileData/InstrProfReader.h" 21 #include "llvm/ProfileData/InstrProfWriter.h" 22 #include "llvm/ProfileData/MemProf.h" 23 #include "llvm/ProfileData/ProfileCommon.h" 24 #include "llvm/ProfileData/RawMemProfReader.h" 25 #include "llvm/ProfileData/SampleProfReader.h" 26 #include "llvm/ProfileData/SampleProfWriter.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Discriminator.h" 29 #include "llvm/Support/Errc.h" 30 #include "llvm/Support/FileSystem.h" 31 #include "llvm/Support/Format.h" 32 #include "llvm/Support/FormattedStream.h" 33 #include "llvm/Support/InitLLVM.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/Path.h" 36 #include "llvm/Support/ThreadPool.h" 37 #include "llvm/Support/Threading.h" 38 #include "llvm/Support/WithColor.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <algorithm> 41 42 using namespace llvm; 43 44 enum ProfileFormat { 45 PF_None = 0, 46 PF_Text, 47 PF_Compact_Binary, 48 PF_Ext_Binary, 49 PF_GCC, 50 PF_Binary 51 }; 52 53 static void warn(Twine Message, std::string Whence = "", 54 std::string Hint = "") { 55 WithColor::warning(); 56 if (!Whence.empty()) 57 errs() << Whence << ": "; 58 errs() << Message << "\n"; 59 if (!Hint.empty()) 60 WithColor::note() << Hint << "\n"; 61 } 62 63 static void warn(Error E, StringRef Whence = "") { 64 if (E.isA<InstrProfError>()) { 65 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 66 warn(IPE.message(), std::string(Whence), std::string("")); 67 }); 68 } 69 } 70 71 static void exitWithError(Twine Message, std::string Whence = "", 72 std::string Hint = "") { 73 WithColor::error(); 74 if (!Whence.empty()) 75 errs() << Whence << ": "; 76 errs() << Message << "\n"; 77 if (!Hint.empty()) 78 WithColor::note() << Hint << "\n"; 79 ::exit(1); 80 } 81 82 static void exitWithError(Error E, StringRef Whence = "") { 83 if (E.isA<InstrProfError>()) { 84 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 85 instrprof_error instrError = IPE.get(); 86 StringRef Hint = ""; 87 if (instrError == instrprof_error::unrecognized_format) { 88 // Hint in case user missed specifying the profile type. 89 Hint = "Perhaps you forgot to use the --sample or --memory option?"; 90 } 91 exitWithError(IPE.message(), std::string(Whence), std::string(Hint)); 92 }); 93 return; 94 } 95 96 exitWithError(toString(std::move(E)), std::string(Whence)); 97 } 98 99 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 100 exitWithError(EC.message(), std::string(Whence)); 101 } 102 103 namespace { 104 enum ProfileKinds { instr, sample, memory }; 105 enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid }; 106 } 107 108 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 109 StringRef Whence = "") { 110 if (FailMode == failIfAnyAreInvalid) 111 exitWithErrorCode(EC, Whence); 112 else 113 warn(EC.message(), std::string(Whence)); 114 } 115 116 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 117 StringRef WhenceFunction = "", 118 bool ShowHint = true) { 119 if (!WhenceFile.empty()) 120 errs() << WhenceFile << ": "; 121 if (!WhenceFunction.empty()) 122 errs() << WhenceFunction << ": "; 123 124 auto IPE = instrprof_error::success; 125 E = handleErrors(std::move(E), 126 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 127 IPE = E->get(); 128 return Error(std::move(E)); 129 }); 130 errs() << toString(std::move(E)) << "\n"; 131 132 if (ShowHint) { 133 StringRef Hint = ""; 134 if (IPE != instrprof_error::success) { 135 switch (IPE) { 136 case instrprof_error::hash_mismatch: 137 case instrprof_error::count_mismatch: 138 case instrprof_error::value_site_count_mismatch: 139 Hint = "Make sure that all profile data to be merged is generated " 140 "from the same binary."; 141 break; 142 default: 143 break; 144 } 145 } 146 147 if (!Hint.empty()) 148 errs() << Hint << "\n"; 149 } 150 } 151 152 namespace { 153 /// A remapper from original symbol names to new symbol names based on a file 154 /// containing a list of mappings from old name to new name. 155 class SymbolRemapper { 156 std::unique_ptr<MemoryBuffer> File; 157 DenseMap<StringRef, StringRef> RemappingTable; 158 159 public: 160 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 161 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 162 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 163 if (!BufOrError) 164 exitWithErrorCode(BufOrError.getError(), InputFile); 165 166 auto Remapper = std::make_unique<SymbolRemapper>(); 167 Remapper->File = std::move(BufOrError.get()); 168 169 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 170 !LineIt.is_at_eof(); ++LineIt) { 171 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 172 if (Parts.first.empty() || Parts.second.empty() || 173 Parts.second.count(' ')) { 174 exitWithError("unexpected line in remapping file", 175 (InputFile + ":" + Twine(LineIt.line_number())).str(), 176 "expected 'old_symbol new_symbol'"); 177 } 178 Remapper->RemappingTable.insert(Parts); 179 } 180 return Remapper; 181 } 182 183 /// Attempt to map the given old symbol into a new symbol. 184 /// 185 /// \return The new symbol, or \p Name if no such symbol was found. 186 StringRef operator()(StringRef Name) { 187 StringRef New = RemappingTable.lookup(Name); 188 return New.empty() ? Name : New; 189 } 190 }; 191 } 192 193 struct WeightedFile { 194 std::string Filename; 195 uint64_t Weight; 196 }; 197 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 198 199 /// Keep track of merged data and reported errors. 200 struct WriterContext { 201 std::mutex Lock; 202 InstrProfWriter Writer; 203 std::vector<std::pair<Error, std::string>> Errors; 204 std::mutex &ErrLock; 205 SmallSet<instrprof_error, 4> &WriterErrorCodes; 206 207 WriterContext(bool IsSparse, std::mutex &ErrLock, 208 SmallSet<instrprof_error, 4> &WriterErrorCodes) 209 : Writer(IsSparse), ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) { 210 } 211 }; 212 213 /// Computer the overlap b/w profile BaseFilename and TestFileName, 214 /// and store the program level result to Overlap. 215 static void overlapInput(const std::string &BaseFilename, 216 const std::string &TestFilename, WriterContext *WC, 217 OverlapStats &Overlap, 218 const OverlapFuncFilters &FuncFilter, 219 raw_fd_ostream &OS, bool IsCS) { 220 auto ReaderOrErr = InstrProfReader::create(TestFilename); 221 if (Error E = ReaderOrErr.takeError()) { 222 // Skip the empty profiles by returning sliently. 223 instrprof_error IPE = InstrProfError::take(std::move(E)); 224 if (IPE != instrprof_error::empty_raw_profile) 225 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename); 226 return; 227 } 228 229 auto Reader = std::move(ReaderOrErr.get()); 230 for (auto &I : *Reader) { 231 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 232 FuncOverlap.setFuncInfo(I.Name, I.Hash); 233 234 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 235 FuncOverlap.dump(OS); 236 } 237 } 238 239 /// Load an input into a writer context. 240 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 241 const InstrProfCorrelator *Correlator, 242 WriterContext *WC) { 243 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 244 245 // Copy the filename, because llvm::ThreadPool copied the input "const 246 // WeightedFile &" by value, making a reference to the filename within it 247 // invalid outside of this packaged task. 248 std::string Filename = Input.Filename; 249 250 auto ReaderOrErr = InstrProfReader::create(Input.Filename, Correlator); 251 if (Error E = ReaderOrErr.takeError()) { 252 // Skip the empty profiles by returning sliently. 253 instrprof_error IPE = InstrProfError::take(std::move(E)); 254 if (IPE != instrprof_error::empty_raw_profile) 255 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename); 256 return; 257 } 258 259 auto Reader = std::move(ReaderOrErr.get()); 260 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 261 consumeError(std::move(E)); 262 WC->Errors.emplace_back( 263 make_error<StringError>( 264 "Merge IR generated profile with Clang generated profile.", 265 std::error_code()), 266 Filename); 267 return; 268 } 269 270 for (auto &I : *Reader) { 271 if (Remapper) 272 I.Name = (*Remapper)(I.Name); 273 const StringRef FuncName = I.Name; 274 bool Reported = false; 275 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 276 if (Reported) { 277 consumeError(std::move(E)); 278 return; 279 } 280 Reported = true; 281 // Only show hint the first time an error occurs. 282 instrprof_error IPE = InstrProfError::take(std::move(E)); 283 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 284 bool firstTime = WC->WriterErrorCodes.insert(IPE).second; 285 handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename, 286 FuncName, firstTime); 287 }); 288 } 289 if (Reader->hasError()) 290 if (Error E = Reader->getError()) 291 WC->Errors.emplace_back(std::move(E), Filename); 292 } 293 294 /// Merge the \p Src writer context into \p Dst. 295 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 296 for (auto &ErrorPair : Src->Errors) 297 Dst->Errors.push_back(std::move(ErrorPair)); 298 Src->Errors.clear(); 299 300 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 301 instrprof_error IPE = InstrProfError::take(std::move(E)); 302 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 303 bool firstTime = Dst->WriterErrorCodes.insert(IPE).second; 304 if (firstTime) 305 warn(toString(make_error<InstrProfError>(IPE))); 306 }); 307 } 308 309 static void writeInstrProfile(StringRef OutputFilename, 310 ProfileFormat OutputFormat, 311 InstrProfWriter &Writer) { 312 std::error_code EC; 313 raw_fd_ostream Output(OutputFilename.data(), EC, 314 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF 315 : sys::fs::OF_None); 316 if (EC) 317 exitWithErrorCode(EC, OutputFilename); 318 319 if (OutputFormat == PF_Text) { 320 if (Error E = Writer.writeText(Output)) 321 warn(std::move(E)); 322 } else { 323 if (Output.is_displayed()) 324 exitWithError("cannot write a non-text format profile to the terminal"); 325 if (Error E = Writer.write(Output)) 326 warn(std::move(E)); 327 } 328 } 329 330 static void mergeInstrProfile(const WeightedFileVector &Inputs, 331 StringRef DebugInfoFilename, 332 SymbolRemapper *Remapper, 333 StringRef OutputFilename, 334 ProfileFormat OutputFormat, bool OutputSparse, 335 unsigned NumThreads, FailureMode FailMode) { 336 if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary && 337 OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text) 338 exitWithError("unknown format is specified"); 339 340 std::unique_ptr<InstrProfCorrelator> Correlator; 341 if (!DebugInfoFilename.empty()) { 342 if (auto Err = 343 InstrProfCorrelator::get(DebugInfoFilename).moveInto(Correlator)) 344 exitWithError(std::move(Err), DebugInfoFilename); 345 if (auto Err = Correlator->correlateProfileData()) 346 exitWithError(std::move(Err), DebugInfoFilename); 347 } 348 349 std::mutex ErrorLock; 350 SmallSet<instrprof_error, 4> WriterErrorCodes; 351 352 // If NumThreads is not specified, auto-detect a good default. 353 if (NumThreads == 0) 354 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 355 unsigned((Inputs.size() + 1) / 2)); 356 // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails 357 // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't 358 // merged, thus the emitted file ends up with a PF_Unknown kind. 359 360 // Initialize the writer contexts. 361 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 362 for (unsigned I = 0; I < NumThreads; ++I) 363 Contexts.emplace_back(std::make_unique<WriterContext>( 364 OutputSparse, ErrorLock, WriterErrorCodes)); 365 366 if (NumThreads == 1) { 367 for (const auto &Input : Inputs) 368 loadInput(Input, Remapper, Correlator.get(), Contexts[0].get()); 369 } else { 370 ThreadPool Pool(hardware_concurrency(NumThreads)); 371 372 // Load the inputs in parallel (N/NumThreads serial steps). 373 unsigned Ctx = 0; 374 for (const auto &Input : Inputs) { 375 Pool.async(loadInput, Input, Remapper, Correlator.get(), 376 Contexts[Ctx].get()); 377 Ctx = (Ctx + 1) % NumThreads; 378 } 379 Pool.wait(); 380 381 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 382 unsigned Mid = Contexts.size() / 2; 383 unsigned End = Contexts.size(); 384 assert(Mid > 0 && "Expected more than one context"); 385 do { 386 for (unsigned I = 0; I < Mid; ++I) 387 Pool.async(mergeWriterContexts, Contexts[I].get(), 388 Contexts[I + Mid].get()); 389 Pool.wait(); 390 if (End & 1) { 391 Pool.async(mergeWriterContexts, Contexts[0].get(), 392 Contexts[End - 1].get()); 393 Pool.wait(); 394 } 395 End = Mid; 396 Mid /= 2; 397 } while (Mid > 0); 398 } 399 400 // Handle deferred errors encountered during merging. If the number of errors 401 // is equal to the number of inputs the merge failed. 402 unsigned NumErrors = 0; 403 for (std::unique_ptr<WriterContext> &WC : Contexts) { 404 for (auto &ErrorPair : WC->Errors) { 405 ++NumErrors; 406 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 407 } 408 } 409 if (NumErrors == Inputs.size() || 410 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 411 exitWithError("no profile can be merged"); 412 413 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 414 } 415 416 /// The profile entry for a function in instrumentation profile. 417 struct InstrProfileEntry { 418 uint64_t MaxCount = 0; 419 float ZeroCounterRatio = 0.0; 420 InstrProfRecord *ProfRecord; 421 InstrProfileEntry(InstrProfRecord *Record); 422 InstrProfileEntry() = default; 423 }; 424 425 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 426 ProfRecord = Record; 427 uint64_t CntNum = Record->Counts.size(); 428 uint64_t ZeroCntNum = 0; 429 for (size_t I = 0; I < CntNum; ++I) { 430 MaxCount = std::max(MaxCount, Record->Counts[I]); 431 ZeroCntNum += !Record->Counts[I]; 432 } 433 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 434 } 435 436 /// Either set all the counters in the instr profile entry \p IFE to -1 437 /// in order to drop the profile or scale up the counters in \p IFP to 438 /// be above hot threshold. We use the ratio of zero counters in the 439 /// profile of a function to decide the profile is helpful or harmful 440 /// for performance, and to choose whether to scale up or drop it. 441 static void updateInstrProfileEntry(InstrProfileEntry &IFE, 442 uint64_t HotInstrThreshold, 443 float ZeroCounterThreshold) { 444 InstrProfRecord *ProfRecord = IFE.ProfRecord; 445 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 446 // If all or most of the counters of the function are zero, the 447 // profile is unaccountable and shuld be dropped. Reset all the 448 // counters to be -1 and PGO profile-use will drop the profile. 449 // All counters being -1 also implies that the function is hot so 450 // PGO profile-use will also set the entry count metadata to be 451 // above hot threshold. 452 for (size_t I = 0; I < ProfRecord->Counts.size(); ++I) 453 ProfRecord->Counts[I] = -1; 454 return; 455 } 456 457 // Scale up the MaxCount to be multiple times above hot threshold. 458 const unsigned MultiplyFactor = 3; 459 uint64_t Numerator = HotInstrThreshold * MultiplyFactor; 460 uint64_t Denominator = IFE.MaxCount; 461 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 462 warn(toString(make_error<InstrProfError>(E))); 463 }); 464 } 465 466 const uint64_t ColdPercentileIdx = 15; 467 const uint64_t HotPercentileIdx = 11; 468 469 using sampleprof::FSDiscriminatorPass; 470 471 // Internal options to set FSDiscriminatorPass. Used in merge and show 472 // commands. 473 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption( 474 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden, 475 cl::desc("Zero out the discriminator bits for the FS discrimiantor " 476 "pass beyond this value. The enum values are defined in " 477 "Support/Discriminator.h"), 478 cl::values(clEnumVal(Base, "Use base discriminators only"), 479 clEnumVal(Pass1, "Use base and pass 1 discriminators"), 480 clEnumVal(Pass2, "Use base and pass 1-2 discriminators"), 481 clEnumVal(Pass3, "Use base and pass 1-3 discriminators"), 482 clEnumVal(PassLast, "Use all discriminator bits (default)"))); 483 484 static unsigned getDiscriminatorMask() { 485 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue())); 486 } 487 488 /// Adjust the instr profile in \p WC based on the sample profile in 489 /// \p Reader. 490 static void 491 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 492 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 493 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 494 unsigned InstrProfColdThreshold) { 495 // Function to its entry in instr profile. 496 StringMap<InstrProfileEntry> InstrProfileMap; 497 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 498 for (auto &PD : WC->Writer.getProfileData()) { 499 // Populate IPBuilder. 500 for (const auto &PDV : PD.getValue()) { 501 InstrProfRecord Record = PDV.second; 502 IPBuilder.addRecord(Record); 503 } 504 505 // If a function has multiple entries in instr profile, skip it. 506 if (PD.getValue().size() != 1) 507 continue; 508 509 // Initialize InstrProfileMap. 510 InstrProfRecord *R = &PD.getValue().begin()->second; 511 InstrProfileMap[PD.getKey()] = InstrProfileEntry(R); 512 } 513 514 ProfileSummary InstrPS = *IPBuilder.getSummary(); 515 ProfileSummary SamplePS = Reader->getSummary(); 516 517 // Compute cold thresholds for instr profile and sample profile. 518 uint64_t ColdSampleThreshold = 519 ProfileSummaryBuilder::getEntryForPercentile( 520 SamplePS.getDetailedSummary(), 521 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 522 .MinCount; 523 uint64_t HotInstrThreshold = 524 ProfileSummaryBuilder::getEntryForPercentile( 525 InstrPS.getDetailedSummary(), 526 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 527 .MinCount; 528 uint64_t ColdInstrThreshold = 529 InstrProfColdThreshold 530 ? InstrProfColdThreshold 531 : ProfileSummaryBuilder::getEntryForPercentile( 532 InstrPS.getDetailedSummary(), 533 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 534 .MinCount; 535 536 // Find hot/warm functions in sample profile which is cold in instr profile 537 // and adjust the profiles of those functions in the instr profile. 538 for (const auto &PD : Reader->getProfiles()) { 539 auto &FContext = PD.first; 540 const sampleprof::FunctionSamples &FS = PD.second; 541 auto It = InstrProfileMap.find(FContext.toString()); 542 if (FS.getHeadSamples() > ColdSampleThreshold && 543 It != InstrProfileMap.end() && 544 It->second.MaxCount <= ColdInstrThreshold && 545 FS.getBodySamples().size() >= SupplMinSizeThreshold) { 546 updateInstrProfileEntry(It->second, HotInstrThreshold, 547 ZeroCounterThreshold); 548 } 549 } 550 } 551 552 /// The main function to supplement instr profile with sample profile. 553 /// \Inputs contains the instr profile. \p SampleFilename specifies the 554 /// sample profile. \p OutputFilename specifies the output profile name. 555 /// \p OutputFormat specifies the output profile format. \p OutputSparse 556 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 557 /// specifies the minimal size for the functions whose profile will be 558 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 559 /// a function contains too many zero counters and whether its profile 560 /// should be dropped. \p InstrProfColdThreshold is the user specified 561 /// cold threshold which will override the cold threshold got from the 562 /// instr profile summary. 563 static void supplementInstrProfile( 564 const WeightedFileVector &Inputs, StringRef SampleFilename, 565 StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse, 566 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 567 unsigned InstrProfColdThreshold) { 568 if (OutputFilename.compare("-") == 0) 569 exitWithError("cannot write indexed profdata format to stdout"); 570 if (Inputs.size() != 1) 571 exitWithError("expect one input to be an instr profile"); 572 if (Inputs[0].Weight != 1) 573 exitWithError("expect instr profile doesn't have weight"); 574 575 StringRef InstrFilename = Inputs[0].Filename; 576 577 // Read sample profile. 578 LLVMContext Context; 579 auto ReaderOrErr = sampleprof::SampleProfileReader::create( 580 SampleFilename.str(), Context, FSDiscriminatorPassOption); 581 if (std::error_code EC = ReaderOrErr.getError()) 582 exitWithErrorCode(EC, SampleFilename); 583 auto Reader = std::move(ReaderOrErr.get()); 584 if (std::error_code EC = Reader->read()) 585 exitWithErrorCode(EC, SampleFilename); 586 587 // Read instr profile. 588 std::mutex ErrorLock; 589 SmallSet<instrprof_error, 4> WriterErrorCodes; 590 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 591 WriterErrorCodes); 592 loadInput(Inputs[0], nullptr, nullptr, WC.get()); 593 if (WC->Errors.size() > 0) 594 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 595 596 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 597 InstrProfColdThreshold); 598 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 599 } 600 601 /// Make a copy of the given function samples with all symbol names remapped 602 /// by the provided symbol remapper. 603 static sampleprof::FunctionSamples 604 remapSamples(const sampleprof::FunctionSamples &Samples, 605 SymbolRemapper &Remapper, sampleprof_error &Error) { 606 sampleprof::FunctionSamples Result; 607 Result.setName(Remapper(Samples.getName())); 608 Result.addTotalSamples(Samples.getTotalSamples()); 609 Result.addHeadSamples(Samples.getHeadSamples()); 610 for (const auto &BodySample : Samples.getBodySamples()) { 611 uint32_t MaskedDiscriminator = 612 BodySample.first.Discriminator & getDiscriminatorMask(); 613 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator, 614 BodySample.second.getSamples()); 615 for (const auto &Target : BodySample.second.getCallTargets()) { 616 Result.addCalledTargetSamples(BodySample.first.LineOffset, 617 MaskedDiscriminator, 618 Remapper(Target.first()), Target.second); 619 } 620 } 621 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 622 sampleprof::FunctionSamplesMap &Target = 623 Result.functionSamplesAt(CallsiteSamples.first); 624 for (const auto &Callsite : CallsiteSamples.second) { 625 sampleprof::FunctionSamples Remapped = 626 remapSamples(Callsite.second, Remapper, Error); 627 MergeResult(Error, 628 Target[std::string(Remapped.getName())].merge(Remapped)); 629 } 630 } 631 return Result; 632 } 633 634 static sampleprof::SampleProfileFormat FormatMap[] = { 635 sampleprof::SPF_None, 636 sampleprof::SPF_Text, 637 sampleprof::SPF_Compact_Binary, 638 sampleprof::SPF_Ext_Binary, 639 sampleprof::SPF_GCC, 640 sampleprof::SPF_Binary}; 641 642 static std::unique_ptr<MemoryBuffer> 643 getInputFileBuf(const StringRef &InputFile) { 644 if (InputFile == "") 645 return {}; 646 647 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 648 if (!BufOrError) 649 exitWithErrorCode(BufOrError.getError(), InputFile); 650 651 return std::move(*BufOrError); 652 } 653 654 static void populateProfileSymbolList(MemoryBuffer *Buffer, 655 sampleprof::ProfileSymbolList &PSL) { 656 if (!Buffer) 657 return; 658 659 SmallVector<StringRef, 32> SymbolVec; 660 StringRef Data = Buffer->getBuffer(); 661 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 662 663 for (StringRef SymbolStr : SymbolVec) 664 PSL.add(SymbolStr.trim()); 665 } 666 667 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 668 ProfileFormat OutputFormat, 669 MemoryBuffer *Buffer, 670 sampleprof::ProfileSymbolList &WriterList, 671 bool CompressAllSections, bool UseMD5, 672 bool GenPartialProfile) { 673 populateProfileSymbolList(Buffer, WriterList); 674 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 675 warn("Profile Symbol list is not empty but the output format is not " 676 "ExtBinary format. The list will be lost in the output. "); 677 678 Writer.setProfileSymbolList(&WriterList); 679 680 if (CompressAllSections) { 681 if (OutputFormat != PF_Ext_Binary) 682 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 683 else 684 Writer.setToCompressAllSections(); 685 } 686 if (UseMD5) { 687 if (OutputFormat != PF_Ext_Binary) 688 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 689 else 690 Writer.setUseMD5(); 691 } 692 if (GenPartialProfile) { 693 if (OutputFormat != PF_Ext_Binary) 694 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 695 else 696 Writer.setPartialProfile(); 697 } 698 } 699 700 static void 701 mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper, 702 StringRef OutputFilename, ProfileFormat OutputFormat, 703 StringRef ProfileSymbolListFile, bool CompressAllSections, 704 bool UseMD5, bool GenPartialProfile, bool GenCSNestedProfile, 705 bool SampleMergeColdContext, bool SampleTrimColdContext, 706 bool SampleColdContextFrameDepth, FailureMode FailMode) { 707 using namespace sampleprof; 708 SampleProfileMap ProfileMap; 709 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 710 LLVMContext Context; 711 sampleprof::ProfileSymbolList WriterList; 712 Optional<bool> ProfileIsProbeBased; 713 Optional<bool> ProfileIsCSFlat; 714 for (const auto &Input : Inputs) { 715 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context, 716 FSDiscriminatorPassOption); 717 if (std::error_code EC = ReaderOrErr.getError()) { 718 warnOrExitGivenError(FailMode, EC, Input.Filename); 719 continue; 720 } 721 722 // We need to keep the readers around until after all the files are 723 // read so that we do not lose the function names stored in each 724 // reader's memory. The function names are needed to write out the 725 // merged profile map. 726 Readers.push_back(std::move(ReaderOrErr.get())); 727 const auto Reader = Readers.back().get(); 728 if (std::error_code EC = Reader->read()) { 729 warnOrExitGivenError(FailMode, EC, Input.Filename); 730 Readers.pop_back(); 731 continue; 732 } 733 734 SampleProfileMap &Profiles = Reader->getProfiles(); 735 if (ProfileIsProbeBased.hasValue() && 736 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) 737 exitWithError( 738 "cannot merge probe-based profile with non-probe-based profile"); 739 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; 740 if (ProfileIsCSFlat.hasValue() && 741 ProfileIsCSFlat != FunctionSamples::ProfileIsCSFlat) 742 exitWithError("cannot merge CS profile with non-CS profile"); 743 ProfileIsCSFlat = FunctionSamples::ProfileIsCSFlat; 744 for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end(); 745 I != E; ++I) { 746 sampleprof_error Result = sampleprof_error::success; 747 FunctionSamples Remapped = 748 Remapper ? remapSamples(I->second, *Remapper, Result) 749 : FunctionSamples(); 750 FunctionSamples &Samples = Remapper ? Remapped : I->second; 751 SampleContext FContext = Samples.getContext(); 752 MergeResult(Result, ProfileMap[FContext].merge(Samples, Input.Weight)); 753 if (Result != sampleprof_error::success) { 754 std::error_code EC = make_error_code(Result); 755 handleMergeWriterError(errorCodeToError(EC), Input.Filename, 756 FContext.toString()); 757 } 758 } 759 760 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 761 Reader->getProfileSymbolList(); 762 if (ReaderList) 763 WriterList.merge(*ReaderList); 764 } 765 766 if (ProfileIsCSFlat && (SampleMergeColdContext || SampleTrimColdContext)) { 767 // Use threshold calculated from profile summary unless specified. 768 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 769 auto Summary = Builder.computeSummaryForProfiles(ProfileMap); 770 uint64_t SampleProfColdThreshold = 771 ProfileSummaryBuilder::getColdCountThreshold( 772 (Summary->getDetailedSummary())); 773 774 // Trim and merge cold context profile using cold threshold above; 775 SampleContextTrimmer(ProfileMap) 776 .trimAndMergeColdContextProfiles( 777 SampleProfColdThreshold, SampleTrimColdContext, 778 SampleMergeColdContext, SampleColdContextFrameDepth, false); 779 } 780 781 if (ProfileIsCSFlat && GenCSNestedProfile) { 782 CSProfileConverter CSConverter(ProfileMap); 783 CSConverter.convertProfiles(); 784 ProfileIsCSFlat = FunctionSamples::ProfileIsCSFlat = false; 785 } 786 787 auto WriterOrErr = 788 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 789 if (std::error_code EC = WriterOrErr.getError()) 790 exitWithErrorCode(EC, OutputFilename); 791 792 auto Writer = std::move(WriterOrErr.get()); 793 // WriterList will have StringRef refering to string in Buffer. 794 // Make sure Buffer lives as long as WriterList. 795 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 796 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 797 CompressAllSections, UseMD5, GenPartialProfile); 798 if (std::error_code EC = Writer->write(ProfileMap)) 799 exitWithErrorCode(std::move(EC)); 800 } 801 802 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 803 StringRef WeightStr, FileName; 804 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 805 806 uint64_t Weight; 807 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 808 exitWithError("input weight must be a positive integer"); 809 810 return {std::string(FileName), Weight}; 811 } 812 813 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 814 StringRef Filename = WF.Filename; 815 uint64_t Weight = WF.Weight; 816 817 // If it's STDIN just pass it on. 818 if (Filename == "-") { 819 WNI.push_back({std::string(Filename), Weight}); 820 return; 821 } 822 823 llvm::sys::fs::file_status Status; 824 llvm::sys::fs::status(Filename, Status); 825 if (!llvm::sys::fs::exists(Status)) 826 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 827 Filename); 828 // If it's a source file, collect it. 829 if (llvm::sys::fs::is_regular_file(Status)) { 830 WNI.push_back({std::string(Filename), Weight}); 831 return; 832 } 833 834 if (llvm::sys::fs::is_directory(Status)) { 835 std::error_code EC; 836 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 837 F != E && !EC; F.increment(EC)) { 838 if (llvm::sys::fs::is_regular_file(F->path())) { 839 addWeightedInput(WNI, {F->path(), Weight}); 840 } 841 } 842 if (EC) 843 exitWithErrorCode(EC, Filename); 844 } 845 } 846 847 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 848 WeightedFileVector &WFV) { 849 if (!Buffer) 850 return; 851 852 SmallVector<StringRef, 8> Entries; 853 StringRef Data = Buffer->getBuffer(); 854 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 855 for (const StringRef &FileWeightEntry : Entries) { 856 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 857 // Skip comments. 858 if (SanitizedEntry.startswith("#")) 859 continue; 860 // If there's no comma, it's an unweighted profile. 861 else if (!SanitizedEntry.contains(',')) 862 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 863 else 864 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 865 } 866 } 867 868 static int merge_main(int argc, const char *argv[]) { 869 cl::list<std::string> InputFilenames(cl::Positional, 870 cl::desc("<filename...>")); 871 cl::list<std::string> WeightedInputFilenames("weighted-input", 872 cl::desc("<weight>,<filename>")); 873 cl::opt<std::string> InputFilenamesFile( 874 "input-files", cl::init(""), 875 cl::desc("Path to file containing newline-separated " 876 "[<weight>,]<filename> entries")); 877 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 878 cl::aliasopt(InputFilenamesFile)); 879 cl::opt<bool> DumpInputFileList( 880 "dump-input-file-list", cl::init(false), cl::Hidden, 881 cl::desc("Dump the list of input files and their weights, then exit")); 882 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 883 cl::desc("Symbol remapping file")); 884 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 885 cl::aliasopt(RemappingFile)); 886 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 887 cl::init("-"), cl::desc("Output file")); 888 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 889 cl::aliasopt(OutputFilename)); 890 cl::opt<ProfileKinds> ProfileKind( 891 cl::desc("Profile kind:"), cl::init(instr), 892 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 893 clEnumVal(sample, "Sample profile"))); 894 cl::opt<ProfileFormat> OutputFormat( 895 cl::desc("Format of output profile"), cl::init(PF_Binary), 896 cl::values( 897 clEnumValN(PF_Binary, "binary", "Binary encoding (default)"), 898 clEnumValN(PF_Compact_Binary, "compbinary", 899 "Compact binary encoding"), 900 clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"), 901 clEnumValN(PF_Text, "text", "Text encoding"), 902 clEnumValN(PF_GCC, "gcc", 903 "GCC encoding (only meaningful for -sample)"))); 904 cl::opt<FailureMode> FailureMode( 905 "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"), 906 cl::values(clEnumValN(failIfAnyAreInvalid, "any", 907 "Fail if any profile is invalid."), 908 clEnumValN(failIfAllAreInvalid, "all", 909 "Fail only if all profiles are invalid."))); 910 cl::opt<bool> OutputSparse("sparse", cl::init(false), 911 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 912 cl::opt<unsigned> NumThreads( 913 "num-threads", cl::init(0), 914 cl::desc("Number of merge threads to use (default: autodetect)")); 915 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 916 cl::aliasopt(NumThreads)); 917 cl::opt<std::string> ProfileSymbolListFile( 918 "prof-sym-list", cl::init(""), 919 cl::desc("Path to file containing the list of function symbols " 920 "used to populate profile symbol list")); 921 cl::opt<bool> CompressAllSections( 922 "compress-all-sections", cl::init(false), cl::Hidden, 923 cl::desc("Compress all sections when writing the profile (only " 924 "meaningful for -extbinary)")); 925 cl::opt<bool> UseMD5( 926 "use-md5", cl::init(false), cl::Hidden, 927 cl::desc("Choose to use MD5 to represent string in name table (only " 928 "meaningful for -extbinary)")); 929 cl::opt<bool> SampleMergeColdContext( 930 "sample-merge-cold-context", cl::init(false), cl::Hidden, 931 cl::desc( 932 "Merge context sample profiles whose count is below cold threshold")); 933 cl::opt<bool> SampleTrimColdContext( 934 "sample-trim-cold-context", cl::init(false), cl::Hidden, 935 cl::desc( 936 "Trim context sample profiles whose count is below cold threshold")); 937 cl::opt<uint32_t> SampleColdContextFrameDepth( 938 "sample-frame-depth-for-cold-context", cl::init(1), cl::ZeroOrMore, 939 cl::desc("Keep the last K frames while merging cold profile. 1 means the " 940 "context-less base profile")); 941 cl::opt<bool> GenPartialProfile( 942 "gen-partial-profile", cl::init(false), cl::Hidden, 943 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 944 cl::opt<std::string> SupplInstrWithSample( 945 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 946 cl::desc("Supplement an instr profile with sample profile, to correct " 947 "the profile unrepresentativeness issue. The sample " 948 "profile is the input of the flag. Output will be in instr " 949 "format (The flag only works with -instr)")); 950 cl::opt<float> ZeroCounterThreshold( 951 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 952 cl::desc("For the function which is cold in instr profile but hot in " 953 "sample profile, if the ratio of the number of zero counters " 954 "divided by the the total number of counters is above the " 955 "threshold, the profile of the function will be regarded as " 956 "being harmful for performance and will be dropped.")); 957 cl::opt<unsigned> SupplMinSizeThreshold( 958 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 959 cl::desc("If the size of a function is smaller than the threshold, " 960 "assume it can be inlined by PGO early inliner and it won't " 961 "be adjusted based on sample profile.")); 962 cl::opt<unsigned> InstrProfColdThreshold( 963 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 964 cl::desc("User specified cold threshold for instr profile which will " 965 "override the cold threshold got from profile summary. ")); 966 cl::opt<bool> GenCSNestedProfile( 967 "gen-cs-nested-profile", cl::Hidden, cl::init(false), 968 cl::desc("Generate nested function profiles for CSSPGO")); 969 cl::opt<std::string> DebugInfoFilename( 970 "debug-info", cl::init(""), 971 cl::desc("Use the provided debug info to correlate the raw profile.")); 972 973 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n"); 974 975 WeightedFileVector WeightedInputs; 976 for (StringRef Filename : InputFilenames) 977 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 978 for (StringRef WeightedFilename : WeightedInputFilenames) 979 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 980 981 // Make sure that the file buffer stays alive for the duration of the 982 // weighted input vector's lifetime. 983 auto Buffer = getInputFileBuf(InputFilenamesFile); 984 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 985 986 if (WeightedInputs.empty()) 987 exitWithError("no input files specified. See " + 988 sys::path::filename(argv[0]) + " -help"); 989 990 if (DumpInputFileList) { 991 for (auto &WF : WeightedInputs) 992 outs() << WF.Weight << "," << WF.Filename << "\n"; 993 return 0; 994 } 995 996 std::unique_ptr<SymbolRemapper> Remapper; 997 if (!RemappingFile.empty()) 998 Remapper = SymbolRemapper::create(RemappingFile); 999 1000 if (!SupplInstrWithSample.empty()) { 1001 if (ProfileKind != instr) 1002 exitWithError( 1003 "-supplement-instr-with-sample can only work with -instr. "); 1004 1005 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename, 1006 OutputFormat, OutputSparse, SupplMinSizeThreshold, 1007 ZeroCounterThreshold, InstrProfColdThreshold); 1008 return 0; 1009 } 1010 1011 if (ProfileKind == instr) 1012 mergeInstrProfile(WeightedInputs, DebugInfoFilename, Remapper.get(), 1013 OutputFilename, OutputFormat, OutputSparse, NumThreads, 1014 FailureMode); 1015 else 1016 mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename, 1017 OutputFormat, ProfileSymbolListFile, CompressAllSections, 1018 UseMD5, GenPartialProfile, GenCSNestedProfile, 1019 SampleMergeColdContext, SampleTrimColdContext, 1020 SampleColdContextFrameDepth, FailureMode); 1021 return 0; 1022 } 1023 1024 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 1025 static void overlapInstrProfile(const std::string &BaseFilename, 1026 const std::string &TestFilename, 1027 const OverlapFuncFilters &FuncFilter, 1028 raw_fd_ostream &OS, bool IsCS) { 1029 std::mutex ErrorLock; 1030 SmallSet<instrprof_error, 4> WriterErrorCodes; 1031 WriterContext Context(false, ErrorLock, WriterErrorCodes); 1032 WeightedFile WeightedInput{BaseFilename, 1}; 1033 OverlapStats Overlap; 1034 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 1035 if (E) 1036 exitWithError(std::move(E), "error in getting profile count sums"); 1037 if (Overlap.Base.CountSum < 1.0f) { 1038 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 1039 exit(0); 1040 } 1041 if (Overlap.Test.CountSum < 1.0f) { 1042 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 1043 exit(0); 1044 } 1045 loadInput(WeightedInput, nullptr, nullptr, &Context); 1046 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 1047 IsCS); 1048 Overlap.dump(OS); 1049 } 1050 1051 namespace { 1052 struct SampleOverlapStats { 1053 SampleContext BaseName; 1054 SampleContext TestName; 1055 // Number of overlap units 1056 uint64_t OverlapCount; 1057 // Total samples of overlap units 1058 uint64_t OverlapSample; 1059 // Number of and total samples of units that only present in base or test 1060 // profile 1061 uint64_t BaseUniqueCount; 1062 uint64_t BaseUniqueSample; 1063 uint64_t TestUniqueCount; 1064 uint64_t TestUniqueSample; 1065 // Number of units and total samples in base or test profile 1066 uint64_t BaseCount; 1067 uint64_t BaseSample; 1068 uint64_t TestCount; 1069 uint64_t TestSample; 1070 // Number of and total samples of units that present in at least one profile 1071 uint64_t UnionCount; 1072 uint64_t UnionSample; 1073 // Weighted similarity 1074 double Similarity; 1075 // For SampleOverlapStats instances representing functions, weights of the 1076 // function in base and test profiles 1077 double BaseWeight; 1078 double TestWeight; 1079 1080 SampleOverlapStats() 1081 : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0), 1082 BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0), 1083 BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0), 1084 UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {} 1085 }; 1086 } // end anonymous namespace 1087 1088 namespace { 1089 struct FuncSampleStats { 1090 uint64_t SampleSum; 1091 uint64_t MaxSample; 1092 uint64_t HotBlockCount; 1093 FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {} 1094 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 1095 uint64_t HotBlockCount) 1096 : SampleSum(SampleSum), MaxSample(MaxSample), 1097 HotBlockCount(HotBlockCount) {} 1098 }; 1099 } // end anonymous namespace 1100 1101 namespace { 1102 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1103 1104 // Class for updating merging steps for two sorted maps. The class should be 1105 // instantiated with a map iterator type. 1106 template <class T> class MatchStep { 1107 public: 1108 MatchStep() = delete; 1109 1110 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1111 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1112 SecondEnd(SecondEnd), Status(MS_None) {} 1113 1114 bool areBothFinished() const { 1115 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1116 } 1117 1118 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1119 1120 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1121 1122 /// Advance one step based on the previous match status unless the previous 1123 /// status is MS_None. Then update Status based on the comparison between two 1124 /// container iterators at the current step. If the previous status is 1125 /// MS_None, it means two iterators are at the beginning and no comparison has 1126 /// been made, so we simply update Status without advancing the iterators. 1127 void updateOneStep(); 1128 1129 T getFirstIter() const { return FirstIter; } 1130 1131 T getSecondIter() const { return SecondIter; } 1132 1133 MatchStatus getMatchStatus() const { return Status; } 1134 1135 private: 1136 // Current iterator and end iterator of the first container. 1137 T FirstIter; 1138 T FirstEnd; 1139 // Current iterator and end iterator of the second container. 1140 T SecondIter; 1141 T SecondEnd; 1142 // Match status of the current step. 1143 MatchStatus Status; 1144 }; 1145 } // end anonymous namespace 1146 1147 template <class T> void MatchStep<T>::updateOneStep() { 1148 switch (Status) { 1149 case MS_Match: 1150 ++FirstIter; 1151 ++SecondIter; 1152 break; 1153 case MS_FirstUnique: 1154 ++FirstIter; 1155 break; 1156 case MS_SecondUnique: 1157 ++SecondIter; 1158 break; 1159 case MS_None: 1160 break; 1161 } 1162 1163 // Update Status according to iterators at the current step. 1164 if (areBothFinished()) 1165 return; 1166 if (FirstIter != FirstEnd && 1167 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1168 Status = MS_FirstUnique; 1169 else if (SecondIter != SecondEnd && 1170 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1171 Status = MS_SecondUnique; 1172 else 1173 Status = MS_Match; 1174 } 1175 1176 // Return the sum of line/block samples, the max line/block sample, and the 1177 // number of line/block samples above the given threshold in a function 1178 // including its inlinees. 1179 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1180 FuncSampleStats &FuncStats, 1181 uint64_t HotThreshold) { 1182 for (const auto &L : Func.getBodySamples()) { 1183 uint64_t Sample = L.second.getSamples(); 1184 FuncStats.SampleSum += Sample; 1185 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1186 if (Sample >= HotThreshold) 1187 ++FuncStats.HotBlockCount; 1188 } 1189 1190 for (const auto &C : Func.getCallsiteSamples()) { 1191 for (const auto &F : C.second) 1192 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1193 } 1194 } 1195 1196 /// Predicate that determines if a function is hot with a given threshold. We 1197 /// keep it separate from its callsites for possible extension in the future. 1198 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1199 uint64_t HotThreshold) { 1200 // We intentionally compare the maximum sample count in a function with the 1201 // HotThreshold to get an approximate determination on hot functions. 1202 return (FuncStats.MaxSample >= HotThreshold); 1203 } 1204 1205 namespace { 1206 class SampleOverlapAggregator { 1207 public: 1208 SampleOverlapAggregator(const std::string &BaseFilename, 1209 const std::string &TestFilename, 1210 double LowSimilarityThreshold, double Epsilon, 1211 const OverlapFuncFilters &FuncFilter) 1212 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1213 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1214 FuncFilter(FuncFilter) {} 1215 1216 /// Detect 0-sample input profile and report to output stream. This interface 1217 /// should be called after loadProfiles(). 1218 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1219 1220 /// Write out function-level similarity statistics for functions specified by 1221 /// options --function, --value-cutoff, and --similarity-cutoff. 1222 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1223 1224 /// Write out program-level similarity and overlap statistics. 1225 void dumpProgramSummary(raw_fd_ostream &OS) const; 1226 1227 /// Write out hot-function and hot-block statistics for base_profile, 1228 /// test_profile, and their overlap. For both cases, the overlap HO is 1229 /// calculated as follows: 1230 /// Given the number of functions (or blocks) that are hot in both profiles 1231 /// HCommon and the number of functions (or blocks) that are hot in at 1232 /// least one profile HUnion, HO = HCommon / HUnion. 1233 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 1234 1235 /// This function tries matching functions in base and test profiles. For each 1236 /// pair of matched functions, it aggregates the function-level 1237 /// similarity into a profile-level similarity. It also dump function-level 1238 /// similarity information of functions specified by --function, 1239 /// --value-cutoff, and --similarity-cutoff options. The program-level 1240 /// similarity PS is computed as follows: 1241 /// Given function-level similarity FS(A) for all function A, the 1242 /// weight of function A in base profile WB(A), and the weight of function 1243 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 1244 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 1245 /// meaning no-overlap. 1246 void computeSampleProfileOverlap(raw_fd_ostream &OS); 1247 1248 /// Initialize ProfOverlap with the sum of samples in base and test 1249 /// profiles. This function also computes and keeps the sum of samples and 1250 /// max sample counts of each function in BaseStats and TestStats for later 1251 /// use to avoid re-computations. 1252 void initializeSampleProfileOverlap(); 1253 1254 /// Load profiles specified by BaseFilename and TestFilename. 1255 std::error_code loadProfiles(); 1256 1257 using FuncSampleStatsMap = 1258 std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>; 1259 1260 private: 1261 SampleOverlapStats ProfOverlap; 1262 SampleOverlapStats HotFuncOverlap; 1263 SampleOverlapStats HotBlockOverlap; 1264 std::string BaseFilename; 1265 std::string TestFilename; 1266 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 1267 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 1268 // BaseStats and TestStats hold FuncSampleStats for each function, with 1269 // function name as the key. 1270 FuncSampleStatsMap BaseStats; 1271 FuncSampleStatsMap TestStats; 1272 // Low similarity threshold in floating point number 1273 double LowSimilarityThreshold; 1274 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 1275 // for tracking hot blocks. 1276 uint64_t BaseHotThreshold; 1277 uint64_t TestHotThreshold; 1278 // A small threshold used to round the results of floating point accumulations 1279 // to resolve imprecision. 1280 const double Epsilon; 1281 std::multimap<double, SampleOverlapStats, std::greater<double>> 1282 FuncSimilarityDump; 1283 // FuncFilter carries specifications in options --value-cutoff and 1284 // --function. 1285 OverlapFuncFilters FuncFilter; 1286 // Column offsets for printing the function-level details table. 1287 static const unsigned int TestWeightCol = 15; 1288 static const unsigned int SimilarityCol = 30; 1289 static const unsigned int OverlapCol = 43; 1290 static const unsigned int BaseUniqueCol = 53; 1291 static const unsigned int TestUniqueCol = 67; 1292 static const unsigned int BaseSampleCol = 81; 1293 static const unsigned int TestSampleCol = 96; 1294 static const unsigned int FuncNameCol = 111; 1295 1296 /// Return a similarity of two line/block sample counters in the same 1297 /// function in base and test profiles. The line/block-similarity BS(i) is 1298 /// computed as follows: 1299 /// For an offsets i, given the sample count at i in base profile BB(i), 1300 /// the sample count at i in test profile BT(i), the sum of sample counts 1301 /// in this function in base profile SB, and the sum of sample counts in 1302 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 1303 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 1304 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 1305 const SampleOverlapStats &FuncOverlap) const; 1306 1307 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 1308 uint64_t HotBlockCount); 1309 1310 void getHotFunctions(const FuncSampleStatsMap &ProfStats, 1311 FuncSampleStatsMap &HotFunc, 1312 uint64_t HotThreshold) const; 1313 1314 void computeHotFuncOverlap(); 1315 1316 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1317 /// Difference for two sample units in a matched function according to the 1318 /// given match status. 1319 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 1320 uint64_t HotBlockCount, 1321 SampleOverlapStats &FuncOverlap, 1322 double &Difference, MatchStatus Status); 1323 1324 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1325 /// Difference for unmatched callees that only present in one profile in a 1326 /// matched caller function. 1327 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 1328 SampleOverlapStats &FuncOverlap, 1329 double &Difference, MatchStatus Status); 1330 1331 /// This function updates sample overlap statistics of an overlap function in 1332 /// base and test profile. It also calculates a function-internal similarity 1333 /// FIS as follows: 1334 /// For offsets i that have samples in at least one profile in this 1335 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 1336 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 1337 /// 0.0 meaning no overlap. 1338 double computeSampleFunctionInternalOverlap( 1339 const sampleprof::FunctionSamples &BaseFunc, 1340 const sampleprof::FunctionSamples &TestFunc, 1341 SampleOverlapStats &FuncOverlap); 1342 1343 /// Function-level similarity (FS) is a weighted value over function internal 1344 /// similarity (FIS). This function computes a function's FS from its FIS by 1345 /// applying the weight. 1346 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 1347 uint64_t TestFuncSample) const; 1348 1349 /// The function-level similarity FS(A) for a function A is computed as 1350 /// follows: 1351 /// Compute a function-internal similarity FIS(A) by 1352 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 1353 /// function A in base profile WB(A), and the weight of function A in test 1354 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 1355 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 1356 double 1357 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 1358 const sampleprof::FunctionSamples *TestFunc, 1359 SampleOverlapStats *FuncOverlap, 1360 uint64_t BaseFuncSample, 1361 uint64_t TestFuncSample); 1362 1363 /// Profile-level similarity (PS) is a weighted aggregate over function-level 1364 /// similarities (FS). This method weights the FS value by the function 1365 /// weights in the base and test profiles for the aggregation. 1366 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 1367 uint64_t TestFuncSample) const; 1368 }; 1369 } // end anonymous namespace 1370 1371 bool SampleOverlapAggregator::detectZeroSampleProfile( 1372 raw_fd_ostream &OS) const { 1373 bool HaveZeroSample = false; 1374 if (ProfOverlap.BaseSample == 0) { 1375 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 1376 HaveZeroSample = true; 1377 } 1378 if (ProfOverlap.TestSample == 0) { 1379 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 1380 HaveZeroSample = true; 1381 } 1382 return HaveZeroSample; 1383 } 1384 1385 double SampleOverlapAggregator::computeBlockSimilarity( 1386 uint64_t BaseSample, uint64_t TestSample, 1387 const SampleOverlapStats &FuncOverlap) const { 1388 double BaseFrac = 0.0; 1389 double TestFrac = 0.0; 1390 if (FuncOverlap.BaseSample > 0) 1391 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 1392 if (FuncOverlap.TestSample > 0) 1393 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 1394 return 1.0 - std::fabs(BaseFrac - TestFrac); 1395 } 1396 1397 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 1398 uint64_t TestSample, 1399 uint64_t HotBlockCount) { 1400 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 1401 bool IsTestHot = (TestSample >= TestHotThreshold); 1402 if (!IsBaseHot && !IsTestHot) 1403 return; 1404 1405 HotBlockOverlap.UnionCount += HotBlockCount; 1406 if (IsBaseHot) 1407 HotBlockOverlap.BaseCount += HotBlockCount; 1408 if (IsTestHot) 1409 HotBlockOverlap.TestCount += HotBlockCount; 1410 if (IsBaseHot && IsTestHot) 1411 HotBlockOverlap.OverlapCount += HotBlockCount; 1412 } 1413 1414 void SampleOverlapAggregator::getHotFunctions( 1415 const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc, 1416 uint64_t HotThreshold) const { 1417 for (const auto &F : ProfStats) { 1418 if (isFunctionHot(F.second, HotThreshold)) 1419 HotFunc.emplace(F.first, F.second); 1420 } 1421 } 1422 1423 void SampleOverlapAggregator::computeHotFuncOverlap() { 1424 FuncSampleStatsMap BaseHotFunc; 1425 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 1426 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 1427 1428 FuncSampleStatsMap TestHotFunc; 1429 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 1430 HotFuncOverlap.TestCount = TestHotFunc.size(); 1431 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 1432 1433 for (const auto &F : BaseHotFunc) { 1434 if (TestHotFunc.count(F.first)) 1435 ++HotFuncOverlap.OverlapCount; 1436 else 1437 ++HotFuncOverlap.UnionCount; 1438 } 1439 } 1440 1441 void SampleOverlapAggregator::updateOverlapStatsForFunction( 1442 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 1443 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 1444 assert(Status != MS_None && 1445 "Match status should be updated before updating overlap statistics"); 1446 if (Status == MS_FirstUnique) { 1447 TestSample = 0; 1448 FuncOverlap.BaseUniqueSample += BaseSample; 1449 } else if (Status == MS_SecondUnique) { 1450 BaseSample = 0; 1451 FuncOverlap.TestUniqueSample += TestSample; 1452 } else { 1453 ++FuncOverlap.OverlapCount; 1454 } 1455 1456 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 1457 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 1458 Difference += 1459 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 1460 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 1461 } 1462 1463 void SampleOverlapAggregator::updateForUnmatchedCallee( 1464 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 1465 double &Difference, MatchStatus Status) { 1466 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 1467 "Status must be either of the two unmatched cases"); 1468 FuncSampleStats FuncStats; 1469 if (Status == MS_FirstUnique) { 1470 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 1471 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 1472 FuncStats.HotBlockCount, FuncOverlap, 1473 Difference, Status); 1474 } else { 1475 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 1476 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 1477 FuncStats.HotBlockCount, FuncOverlap, 1478 Difference, Status); 1479 } 1480 } 1481 1482 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 1483 const sampleprof::FunctionSamples &BaseFunc, 1484 const sampleprof::FunctionSamples &TestFunc, 1485 SampleOverlapStats &FuncOverlap) { 1486 1487 using namespace sampleprof; 1488 1489 double Difference = 0; 1490 1491 // Accumulate Difference for regular line/block samples in the function. 1492 // We match them through sort-merge join algorithm because 1493 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 1494 // by their offsets. 1495 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 1496 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 1497 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 1498 BlockIterStep.updateOneStep(); 1499 while (!BlockIterStep.areBothFinished()) { 1500 uint64_t BaseSample = 1501 BlockIterStep.isFirstFinished() 1502 ? 0 1503 : BlockIterStep.getFirstIter()->second.getSamples(); 1504 uint64_t TestSample = 1505 BlockIterStep.isSecondFinished() 1506 ? 0 1507 : BlockIterStep.getSecondIter()->second.getSamples(); 1508 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 1509 Difference, BlockIterStep.getMatchStatus()); 1510 1511 BlockIterStep.updateOneStep(); 1512 } 1513 1514 // Accumulate Difference for callsite lines in the function. We match 1515 // them through sort-merge algorithm because 1516 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 1517 // ordered by their offsets. 1518 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 1519 BaseFunc.getCallsiteSamples().cbegin(), 1520 BaseFunc.getCallsiteSamples().cend(), 1521 TestFunc.getCallsiteSamples().cbegin(), 1522 TestFunc.getCallsiteSamples().cend()); 1523 CallsiteIterStep.updateOneStep(); 1524 while (!CallsiteIterStep.areBothFinished()) { 1525 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 1526 assert(CallsiteStepStatus != MS_None && 1527 "Match status should be updated before entering loop body"); 1528 1529 if (CallsiteStepStatus != MS_Match) { 1530 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 1531 ? CallsiteIterStep.getFirstIter() 1532 : CallsiteIterStep.getSecondIter(); 1533 for (const auto &F : Callsite->second) 1534 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 1535 CallsiteStepStatus); 1536 } else { 1537 // There may be multiple inlinees at the same offset, so we need to try 1538 // matching all of them. This match is implemented through sort-merge 1539 // algorithm because callsite records at the same offset are ordered by 1540 // function names. 1541 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 1542 CallsiteIterStep.getFirstIter()->second.cbegin(), 1543 CallsiteIterStep.getFirstIter()->second.cend(), 1544 CallsiteIterStep.getSecondIter()->second.cbegin(), 1545 CallsiteIterStep.getSecondIter()->second.cend()); 1546 CalleeIterStep.updateOneStep(); 1547 while (!CalleeIterStep.areBothFinished()) { 1548 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 1549 if (CalleeStepStatus != MS_Match) { 1550 auto Callee = (CalleeStepStatus == MS_FirstUnique) 1551 ? CalleeIterStep.getFirstIter() 1552 : CalleeIterStep.getSecondIter(); 1553 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 1554 CalleeStepStatus); 1555 } else { 1556 // An inlined function can contain other inlinees inside, so compute 1557 // the Difference recursively. 1558 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 1559 CalleeIterStep.getFirstIter()->second, 1560 CalleeIterStep.getSecondIter()->second, 1561 FuncOverlap); 1562 } 1563 CalleeIterStep.updateOneStep(); 1564 } 1565 } 1566 CallsiteIterStep.updateOneStep(); 1567 } 1568 1569 // Difference reflects the total differences of line/block samples in this 1570 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 1571 // reflect the similarity between function profiles in [0.0f to 1.0f]. 1572 return (2.0 - Difference) / 2; 1573 } 1574 1575 double SampleOverlapAggregator::weightForFuncSimilarity( 1576 double FuncInternalSimilarity, uint64_t BaseFuncSample, 1577 uint64_t TestFuncSample) const { 1578 // Compute the weight as the distance between the function weights in two 1579 // profiles. 1580 double BaseFrac = 0.0; 1581 double TestFrac = 0.0; 1582 assert(ProfOverlap.BaseSample > 0 && 1583 "Total samples in base profile should be greater than 0"); 1584 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 1585 assert(ProfOverlap.TestSample > 0 && 1586 "Total samples in test profile should be greater than 0"); 1587 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 1588 double WeightDistance = std::fabs(BaseFrac - TestFrac); 1589 1590 // Take WeightDistance into the similarity. 1591 return FuncInternalSimilarity * (1 - WeightDistance); 1592 } 1593 1594 double 1595 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 1596 uint64_t BaseFuncSample, 1597 uint64_t TestFuncSample) const { 1598 1599 double BaseFrac = 0.0; 1600 double TestFrac = 0.0; 1601 assert(ProfOverlap.BaseSample > 0 && 1602 "Total samples in base profile should be greater than 0"); 1603 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 1604 assert(ProfOverlap.TestSample > 0 && 1605 "Total samples in test profile should be greater than 0"); 1606 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 1607 return FuncSimilarity * (BaseFrac + TestFrac); 1608 } 1609 1610 double SampleOverlapAggregator::computeSampleFunctionOverlap( 1611 const sampleprof::FunctionSamples *BaseFunc, 1612 const sampleprof::FunctionSamples *TestFunc, 1613 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 1614 uint64_t TestFuncSample) { 1615 // Default function internal similarity before weighted, meaning two functions 1616 // has no overlap. 1617 const double DefaultFuncInternalSimilarity = 0; 1618 double FuncSimilarity; 1619 double FuncInternalSimilarity; 1620 1621 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 1622 // In this case, we use DefaultFuncInternalSimilarity as the function internal 1623 // similarity. 1624 if (!BaseFunc || !TestFunc) { 1625 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 1626 } else { 1627 assert(FuncOverlap != nullptr && 1628 "FuncOverlap should be provided in this case"); 1629 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 1630 *BaseFunc, *TestFunc, *FuncOverlap); 1631 // Now, FuncInternalSimilarity may be a little less than 0 due to 1632 // imprecision of floating point accumulations. Make it zero if the 1633 // difference is below Epsilon. 1634 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 1635 ? 0 1636 : FuncInternalSimilarity; 1637 } 1638 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 1639 BaseFuncSample, TestFuncSample); 1640 return FuncSimilarity; 1641 } 1642 1643 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 1644 using namespace sampleprof; 1645 1646 std::unordered_map<SampleContext, const FunctionSamples *, 1647 SampleContext::Hash> 1648 BaseFuncProf; 1649 const auto &BaseProfiles = BaseReader->getProfiles(); 1650 for (const auto &BaseFunc : BaseProfiles) { 1651 BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second)); 1652 } 1653 ProfOverlap.UnionCount = BaseFuncProf.size(); 1654 1655 const auto &TestProfiles = TestReader->getProfiles(); 1656 for (const auto &TestFunc : TestProfiles) { 1657 SampleOverlapStats FuncOverlap; 1658 FuncOverlap.TestName = TestFunc.second.getContext(); 1659 assert(TestStats.count(FuncOverlap.TestName) && 1660 "TestStats should have records for all functions in test profile " 1661 "except inlinees"); 1662 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 1663 1664 bool Matched = false; 1665 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 1666 if (Match == BaseFuncProf.end()) { 1667 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 1668 ++ProfOverlap.TestUniqueCount; 1669 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 1670 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 1671 1672 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 1673 1674 double FuncSimilarity = computeSampleFunctionOverlap( 1675 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 1676 ProfOverlap.Similarity += 1677 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 1678 1679 ++ProfOverlap.UnionCount; 1680 ProfOverlap.UnionSample += FuncStats.SampleSum; 1681 } else { 1682 ++ProfOverlap.OverlapCount; 1683 1684 // Two functions match with each other. Compute function-level overlap and 1685 // aggregate them into profile-level overlap. 1686 FuncOverlap.BaseName = Match->second->getContext(); 1687 assert(BaseStats.count(FuncOverlap.BaseName) && 1688 "BaseStats should have records for all functions in base profile " 1689 "except inlinees"); 1690 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 1691 1692 FuncOverlap.Similarity = computeSampleFunctionOverlap( 1693 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 1694 FuncOverlap.TestSample); 1695 ProfOverlap.Similarity += 1696 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 1697 FuncOverlap.TestSample); 1698 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 1699 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 1700 1701 // Accumulate the percentage of base unique and test unique samples into 1702 // ProfOverlap. 1703 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 1704 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 1705 1706 // Remove matched base functions for later reporting functions not found 1707 // in test profile. 1708 BaseFuncProf.erase(Match); 1709 Matched = true; 1710 } 1711 1712 // Print function-level similarity information if specified by options. 1713 assert(TestStats.count(FuncOverlap.TestName) && 1714 "TestStats should have records for all functions in test profile " 1715 "except inlinees"); 1716 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 1717 (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) || 1718 (Matched && !FuncFilter.NameFilter.empty() && 1719 FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) != 1720 std::string::npos)) { 1721 assert(ProfOverlap.BaseSample > 0 && 1722 "Total samples in base profile should be greater than 0"); 1723 FuncOverlap.BaseWeight = 1724 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 1725 assert(ProfOverlap.TestSample > 0 && 1726 "Total samples in test profile should be greater than 0"); 1727 FuncOverlap.TestWeight = 1728 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 1729 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 1730 } 1731 } 1732 1733 // Traverse through functions in base profile but not in test profile. 1734 for (const auto &F : BaseFuncProf) { 1735 assert(BaseStats.count(F.second->getContext()) && 1736 "BaseStats should have records for all functions in base profile " 1737 "except inlinees"); 1738 const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()]; 1739 ++ProfOverlap.BaseUniqueCount; 1740 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 1741 1742 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 1743 1744 double FuncSimilarity = computeSampleFunctionOverlap( 1745 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 1746 ProfOverlap.Similarity += 1747 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 1748 1749 ProfOverlap.UnionSample += FuncStats.SampleSum; 1750 } 1751 1752 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 1753 // of floating point accumulations. Make it 1.0 if the difference is below 1754 // Epsilon. 1755 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 1756 ? 1 1757 : ProfOverlap.Similarity; 1758 1759 computeHotFuncOverlap(); 1760 } 1761 1762 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 1763 const auto &BaseProf = BaseReader->getProfiles(); 1764 for (const auto &I : BaseProf) { 1765 ++ProfOverlap.BaseCount; 1766 FuncSampleStats FuncStats; 1767 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 1768 ProfOverlap.BaseSample += FuncStats.SampleSum; 1769 BaseStats.emplace(I.second.getContext(), FuncStats); 1770 } 1771 1772 const auto &TestProf = TestReader->getProfiles(); 1773 for (const auto &I : TestProf) { 1774 ++ProfOverlap.TestCount; 1775 FuncSampleStats FuncStats; 1776 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 1777 ProfOverlap.TestSample += FuncStats.SampleSum; 1778 TestStats.emplace(I.second.getContext(), FuncStats); 1779 } 1780 1781 ProfOverlap.BaseName = StringRef(BaseFilename); 1782 ProfOverlap.TestName = StringRef(TestFilename); 1783 } 1784 1785 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 1786 using namespace sampleprof; 1787 1788 if (FuncSimilarityDump.empty()) 1789 return; 1790 1791 formatted_raw_ostream FOS(OS); 1792 FOS << "Function-level details:\n"; 1793 FOS << "Base weight"; 1794 FOS.PadToColumn(TestWeightCol); 1795 FOS << "Test weight"; 1796 FOS.PadToColumn(SimilarityCol); 1797 FOS << "Similarity"; 1798 FOS.PadToColumn(OverlapCol); 1799 FOS << "Overlap"; 1800 FOS.PadToColumn(BaseUniqueCol); 1801 FOS << "Base unique"; 1802 FOS.PadToColumn(TestUniqueCol); 1803 FOS << "Test unique"; 1804 FOS.PadToColumn(BaseSampleCol); 1805 FOS << "Base samples"; 1806 FOS.PadToColumn(TestSampleCol); 1807 FOS << "Test samples"; 1808 FOS.PadToColumn(FuncNameCol); 1809 FOS << "Function name\n"; 1810 for (const auto &F : FuncSimilarityDump) { 1811 double OverlapPercent = 1812 F.second.UnionSample > 0 1813 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 1814 : 0; 1815 double BaseUniquePercent = 1816 F.second.BaseSample > 0 1817 ? static_cast<double>(F.second.BaseUniqueSample) / 1818 F.second.BaseSample 1819 : 0; 1820 double TestUniquePercent = 1821 F.second.TestSample > 0 1822 ? static_cast<double>(F.second.TestUniqueSample) / 1823 F.second.TestSample 1824 : 0; 1825 1826 FOS << format("%.2f%%", F.second.BaseWeight * 100); 1827 FOS.PadToColumn(TestWeightCol); 1828 FOS << format("%.2f%%", F.second.TestWeight * 100); 1829 FOS.PadToColumn(SimilarityCol); 1830 FOS << format("%.2f%%", F.second.Similarity * 100); 1831 FOS.PadToColumn(OverlapCol); 1832 FOS << format("%.2f%%", OverlapPercent * 100); 1833 FOS.PadToColumn(BaseUniqueCol); 1834 FOS << format("%.2f%%", BaseUniquePercent * 100); 1835 FOS.PadToColumn(TestUniqueCol); 1836 FOS << format("%.2f%%", TestUniquePercent * 100); 1837 FOS.PadToColumn(BaseSampleCol); 1838 FOS << F.second.BaseSample; 1839 FOS.PadToColumn(TestSampleCol); 1840 FOS << F.second.TestSample; 1841 FOS.PadToColumn(FuncNameCol); 1842 FOS << F.second.TestName.toString() << "\n"; 1843 } 1844 } 1845 1846 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 1847 OS << "Profile overlap infomation for base_profile: " 1848 << ProfOverlap.BaseName.toString() 1849 << " and test_profile: " << ProfOverlap.TestName.toString() 1850 << "\nProgram level:\n"; 1851 1852 OS << " Whole program profile similarity: " 1853 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 1854 1855 assert(ProfOverlap.UnionSample > 0 && 1856 "Total samples in two profile should be greater than 0"); 1857 double OverlapPercent = 1858 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 1859 assert(ProfOverlap.BaseSample > 0 && 1860 "Total samples in base profile should be greater than 0"); 1861 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 1862 ProfOverlap.BaseSample; 1863 assert(ProfOverlap.TestSample > 0 && 1864 "Total samples in test profile should be greater than 0"); 1865 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 1866 ProfOverlap.TestSample; 1867 1868 OS << " Whole program sample overlap: " 1869 << format("%.3f%%", OverlapPercent * 100) << "\n"; 1870 OS << " percentage of samples unique in base profile: " 1871 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 1872 OS << " percentage of samples unique in test profile: " 1873 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 1874 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 1875 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 1876 1877 assert(ProfOverlap.UnionCount > 0 && 1878 "There should be at least one function in two input profiles"); 1879 double FuncOverlapPercent = 1880 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 1881 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 1882 << "\n"; 1883 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 1884 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 1885 << "\n"; 1886 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 1887 << "\n"; 1888 } 1889 1890 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 1891 raw_fd_ostream &OS) const { 1892 assert(HotFuncOverlap.UnionCount > 0 && 1893 "There should be at least one hot function in two input profiles"); 1894 OS << " Hot-function overlap: " 1895 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 1896 HotFuncOverlap.UnionCount * 100) 1897 << "\n"; 1898 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 1899 OS << " hot functions unique in base profile: " 1900 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 1901 OS << " hot functions unique in test profile: " 1902 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 1903 1904 assert(HotBlockOverlap.UnionCount > 0 && 1905 "There should be at least one hot block in two input profiles"); 1906 OS << " Hot-block overlap: " 1907 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 1908 HotBlockOverlap.UnionCount * 100) 1909 << "\n"; 1910 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 1911 OS << " hot blocks unique in base profile: " 1912 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 1913 OS << " hot blocks unique in test profile: " 1914 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 1915 } 1916 1917 std::error_code SampleOverlapAggregator::loadProfiles() { 1918 using namespace sampleprof; 1919 1920 LLVMContext Context; 1921 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context, 1922 FSDiscriminatorPassOption); 1923 if (std::error_code EC = BaseReaderOrErr.getError()) 1924 exitWithErrorCode(EC, BaseFilename); 1925 1926 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context, 1927 FSDiscriminatorPassOption); 1928 if (std::error_code EC = TestReaderOrErr.getError()) 1929 exitWithErrorCode(EC, TestFilename); 1930 1931 BaseReader = std::move(BaseReaderOrErr.get()); 1932 TestReader = std::move(TestReaderOrErr.get()); 1933 1934 if (std::error_code EC = BaseReader->read()) 1935 exitWithErrorCode(EC, BaseFilename); 1936 if (std::error_code EC = TestReader->read()) 1937 exitWithErrorCode(EC, TestFilename); 1938 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) 1939 exitWithError( 1940 "cannot compare probe-based profile with non-probe-based profile"); 1941 if (BaseReader->profileIsCSFlat() != TestReader->profileIsCSFlat()) 1942 exitWithError("cannot compare CS profile with non-CS profile"); 1943 1944 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 1945 // profile summary. 1946 ProfileSummary &BasePS = BaseReader->getSummary(); 1947 ProfileSummary &TestPS = TestReader->getSummary(); 1948 BaseHotThreshold = 1949 ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary()); 1950 TestHotThreshold = 1951 ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary()); 1952 1953 return std::error_code(); 1954 } 1955 1956 void overlapSampleProfile(const std::string &BaseFilename, 1957 const std::string &TestFilename, 1958 const OverlapFuncFilters &FuncFilter, 1959 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 1960 using namespace sampleprof; 1961 1962 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 1963 // report 2--3 places after decimal point in percentage numbers. 1964 SampleOverlapAggregator OverlapAggr( 1965 BaseFilename, TestFilename, 1966 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 1967 if (std::error_code EC = OverlapAggr.loadProfiles()) 1968 exitWithErrorCode(EC); 1969 1970 OverlapAggr.initializeSampleProfileOverlap(); 1971 if (OverlapAggr.detectZeroSampleProfile(OS)) 1972 return; 1973 1974 OverlapAggr.computeSampleProfileOverlap(OS); 1975 1976 OverlapAggr.dumpProgramSummary(OS); 1977 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 1978 OverlapAggr.dumpFuncSimilarity(OS); 1979 } 1980 1981 static int overlap_main(int argc, const char *argv[]) { 1982 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 1983 cl::desc("<base profile file>")); 1984 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 1985 cl::desc("<test profile file>")); 1986 cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"), 1987 cl::desc("Output file")); 1988 cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output)); 1989 cl::opt<bool> IsCS( 1990 "cs", cl::init(false), 1991 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO.")); 1992 cl::opt<unsigned long long> ValueCutoff( 1993 "value-cutoff", cl::init(-1), 1994 cl::desc( 1995 "Function level overlap information for every function (with calling " 1996 "context for csspgo) in test " 1997 "profile with max count value greater then the parameter value")); 1998 cl::opt<std::string> FuncNameFilter( 1999 "function", 2000 cl::desc("Function level overlap information for matching functions. For " 2001 "CSSPGO this takes a a function name with calling context")); 2002 cl::opt<unsigned long long> SimilarityCutoff( 2003 "similarity-cutoff", cl::init(0), 2004 cl::desc("For sample profiles, list function names (with calling context " 2005 "for csspgo) for overlapped functions " 2006 "with similarities below the cutoff (percentage times 10000).")); 2007 cl::opt<ProfileKinds> ProfileKind( 2008 cl::desc("Profile kind:"), cl::init(instr), 2009 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 2010 clEnumVal(sample, "Sample profile"))); 2011 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n"); 2012 2013 std::error_code EC; 2014 raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_TextWithCRLF); 2015 if (EC) 2016 exitWithErrorCode(EC, Output); 2017 2018 if (ProfileKind == instr) 2019 overlapInstrProfile(BaseFilename, TestFilename, 2020 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS, 2021 IsCS); 2022 else 2023 overlapSampleProfile(BaseFilename, TestFilename, 2024 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, 2025 SimilarityCutoff, OS); 2026 2027 return 0; 2028 } 2029 2030 namespace { 2031 struct ValueSitesStats { 2032 ValueSitesStats() 2033 : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0), 2034 TotalNumValues(0) {} 2035 uint64_t TotalNumValueSites; 2036 uint64_t TotalNumValueSitesWithValueProfile; 2037 uint64_t TotalNumValues; 2038 std::vector<unsigned> ValueSitesHistogram; 2039 }; 2040 } // namespace 2041 2042 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 2043 ValueSitesStats &Stats, raw_fd_ostream &OS, 2044 InstrProfSymtab *Symtab) { 2045 uint32_t NS = Func.getNumValueSites(VK); 2046 Stats.TotalNumValueSites += NS; 2047 for (size_t I = 0; I < NS; ++I) { 2048 uint32_t NV = Func.getNumValueDataForSite(VK, I); 2049 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I); 2050 Stats.TotalNumValues += NV; 2051 if (NV) { 2052 Stats.TotalNumValueSitesWithValueProfile++; 2053 if (NV > Stats.ValueSitesHistogram.size()) 2054 Stats.ValueSitesHistogram.resize(NV, 0); 2055 Stats.ValueSitesHistogram[NV - 1]++; 2056 } 2057 2058 uint64_t SiteSum = 0; 2059 for (uint32_t V = 0; V < NV; V++) 2060 SiteSum += VD[V].Count; 2061 if (SiteSum == 0) 2062 SiteSum = 1; 2063 2064 for (uint32_t V = 0; V < NV; V++) { 2065 OS << "\t[ " << format("%2u", I) << ", "; 2066 if (Symtab == nullptr) 2067 OS << format("%4" PRIu64, VD[V].Value); 2068 else 2069 OS << Symtab->getFuncName(VD[V].Value); 2070 OS << ", " << format("%10" PRId64, VD[V].Count) << " ] (" 2071 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n"; 2072 } 2073 } 2074 } 2075 2076 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 2077 ValueSitesStats &Stats) { 2078 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 2079 OS << " Total number of sites with values: " 2080 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 2081 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 2082 2083 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 2084 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 2085 if (Stats.ValueSitesHistogram[I] > 0) 2086 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 2087 } 2088 } 2089 2090 static int showInstrProfile(const std::string &Filename, bool ShowCounts, 2091 uint32_t TopN, bool ShowIndirectCallTargets, 2092 bool ShowMemOPSizes, bool ShowDetailedSummary, 2093 std::vector<uint32_t> DetailedSummaryCutoffs, 2094 bool ShowAllFunctions, bool ShowCS, 2095 uint64_t ValueCutoff, bool OnlyListBelow, 2096 const std::string &ShowFunction, bool TextFormat, 2097 bool ShowBinaryIds, bool ShowCovered, 2098 raw_fd_ostream &OS) { 2099 auto ReaderOrErr = InstrProfReader::create(Filename); 2100 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 2101 if (ShowDetailedSummary && Cutoffs.empty()) { 2102 Cutoffs = {800000, 900000, 950000, 990000, 999000, 999900, 999990}; 2103 } 2104 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 2105 if (Error E = ReaderOrErr.takeError()) 2106 exitWithError(std::move(E), Filename); 2107 2108 auto Reader = std::move(ReaderOrErr.get()); 2109 bool IsIRInstr = Reader->isIRLevelProfile(); 2110 size_t ShownFunctions = 0; 2111 size_t BelowCutoffFunctions = 0; 2112 int NumVPKind = IPVK_Last - IPVK_First + 1; 2113 std::vector<ValueSitesStats> VPStats(NumVPKind); 2114 2115 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2116 const std::pair<std::string, uint64_t> &v2) { 2117 return v1.second > v2.second; 2118 }; 2119 2120 std::priority_queue<std::pair<std::string, uint64_t>, 2121 std::vector<std::pair<std::string, uint64_t>>, 2122 decltype(MinCmp)> 2123 HottestFuncs(MinCmp); 2124 2125 if (!TextFormat && OnlyListBelow) { 2126 OS << "The list of functions with the maximum counter less than " 2127 << ValueCutoff << ":\n"; 2128 } 2129 2130 // Add marker so that IR-level instrumentation round-trips properly. 2131 if (TextFormat && IsIRInstr) 2132 OS << ":ir\n"; 2133 2134 for (const auto &Func : *Reader) { 2135 if (Reader->isIRLevelProfile()) { 2136 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2137 if (FuncIsCS != ShowCS) 2138 continue; 2139 } 2140 bool Show = ShowAllFunctions || 2141 (!ShowFunction.empty() && Func.Name.contains(ShowFunction)); 2142 2143 bool doTextFormatDump = (Show && TextFormat); 2144 2145 if (doTextFormatDump) { 2146 InstrProfSymtab &Symtab = Reader->getSymtab(); 2147 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2148 OS); 2149 continue; 2150 } 2151 2152 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2153 Builder.addRecord(Func); 2154 2155 if (ShowCovered) { 2156 if (std::any_of(Func.Counts.begin(), Func.Counts.end(), 2157 [](uint64_t C) { return C; })) 2158 OS << Func.Name << "\n"; 2159 continue; 2160 } 2161 2162 uint64_t FuncMax = 0; 2163 uint64_t FuncSum = 0; 2164 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2165 if (Func.Counts[I] == (uint64_t)-1) 2166 continue; 2167 FuncMax = std::max(FuncMax, Func.Counts[I]); 2168 FuncSum += Func.Counts[I]; 2169 } 2170 2171 if (FuncMax < ValueCutoff) { 2172 ++BelowCutoffFunctions; 2173 if (OnlyListBelow) { 2174 OS << " " << Func.Name << ": (Max = " << FuncMax 2175 << " Sum = " << FuncSum << ")\n"; 2176 } 2177 continue; 2178 } else if (OnlyListBelow) 2179 continue; 2180 2181 if (TopN) { 2182 if (HottestFuncs.size() == TopN) { 2183 if (HottestFuncs.top().second < FuncMax) { 2184 HottestFuncs.pop(); 2185 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2186 } 2187 } else 2188 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2189 } 2190 2191 if (Show) { 2192 if (!ShownFunctions) 2193 OS << "Counters:\n"; 2194 2195 ++ShownFunctions; 2196 2197 OS << " " << Func.Name << ":\n" 2198 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2199 << " Counters: " << Func.Counts.size() << "\n"; 2200 if (!IsIRInstr) 2201 OS << " Function count: " << Func.Counts[0] << "\n"; 2202 2203 if (ShowIndirectCallTargets) 2204 OS << " Indirect Call Site Count: " 2205 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2206 2207 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2208 if (ShowMemOPSizes && NumMemOPCalls > 0) 2209 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2210 << "\n"; 2211 2212 if (ShowCounts) { 2213 OS << " Block counts: ["; 2214 size_t Start = (IsIRInstr ? 0 : 1); 2215 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2216 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2217 } 2218 OS << "]\n"; 2219 } 2220 2221 if (ShowIndirectCallTargets) { 2222 OS << " Indirect Target Results:\n"; 2223 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2224 VPStats[IPVK_IndirectCallTarget], OS, 2225 &(Reader->getSymtab())); 2226 } 2227 2228 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2229 OS << " Memory Intrinsic Size Results:\n"; 2230 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2231 nullptr); 2232 } 2233 } 2234 } 2235 if (Reader->hasError()) 2236 exitWithError(Reader->getError(), Filename); 2237 2238 if (TextFormat || ShowCovered) 2239 return 0; 2240 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 2241 bool IsIR = Reader->isIRLevelProfile(); 2242 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 2243 if (IsIR) 2244 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 2245 OS << "\n"; 2246 if (ShowAllFunctions || !ShowFunction.empty()) 2247 OS << "Functions shown: " << ShownFunctions << "\n"; 2248 OS << "Total functions: " << PS->getNumFunctions() << "\n"; 2249 if (ValueCutoff > 0) { 2250 OS << "Number of functions with maximum count (< " << ValueCutoff 2251 << "): " << BelowCutoffFunctions << "\n"; 2252 OS << "Number of functions with maximum count (>= " << ValueCutoff 2253 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 2254 } 2255 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; 2256 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; 2257 2258 if (TopN) { 2259 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 2260 while (!HottestFuncs.empty()) { 2261 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 2262 HottestFuncs.pop(); 2263 } 2264 OS << "Top " << TopN 2265 << " functions with the largest internal block counts: \n"; 2266 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 2267 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 2268 } 2269 2270 if (ShownFunctions && ShowIndirectCallTargets) { 2271 OS << "Statistics for indirect call sites profile:\n"; 2272 showValueSitesStats(OS, IPVK_IndirectCallTarget, 2273 VPStats[IPVK_IndirectCallTarget]); 2274 } 2275 2276 if (ShownFunctions && ShowMemOPSizes) { 2277 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 2278 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 2279 } 2280 2281 if (ShowDetailedSummary) { 2282 OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; 2283 OS << "Total count: " << PS->getTotalCount() << "\n"; 2284 PS->printDetailedSummary(OS); 2285 } 2286 2287 if (ShowBinaryIds) 2288 if (Error E = Reader->printBinaryIds(OS)) 2289 exitWithError(std::move(E), Filename); 2290 2291 return 0; 2292 } 2293 2294 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 2295 raw_fd_ostream &OS) { 2296 if (!Reader->dumpSectionInfo(OS)) { 2297 WithColor::warning() << "-show-sec-info-only is only supported for " 2298 << "sample profile in extbinary format and is " 2299 << "ignored for other formats.\n"; 2300 return; 2301 } 2302 } 2303 2304 namespace { 2305 struct HotFuncInfo { 2306 std::string FuncName; 2307 uint64_t TotalCount; 2308 double TotalCountPercent; 2309 uint64_t MaxCount; 2310 uint64_t EntryCount; 2311 2312 HotFuncInfo() 2313 : TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), EntryCount(0) {} 2314 2315 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 2316 : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP), 2317 MaxCount(MS), EntryCount(ES) {} 2318 }; 2319 } // namespace 2320 2321 // Print out detailed information about hot functions in PrintValues vector. 2322 // Users specify titles and offset of every columns through ColumnTitle and 2323 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 2324 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 2325 // print out or let it be an empty string. 2326 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 2327 const std::vector<int> &ColumnOffset, 2328 const std::vector<HotFuncInfo> &PrintValues, 2329 uint64_t HotFuncCount, uint64_t TotalFuncCount, 2330 uint64_t HotProfCount, uint64_t TotalProfCount, 2331 const std::string &HotFuncMetric, 2332 uint32_t TopNFunctions, raw_fd_ostream &OS) { 2333 assert(ColumnOffset.size() == ColumnTitle.size() && 2334 "ColumnOffset and ColumnTitle should have the same size"); 2335 assert(ColumnTitle.size() >= 4 && 2336 "ColumnTitle should have at least 4 elements"); 2337 assert(TotalFuncCount > 0 && 2338 "There should be at least one function in the profile"); 2339 double TotalProfPercent = 0; 2340 if (TotalProfCount > 0) 2341 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 2342 2343 formatted_raw_ostream FOS(OS); 2344 FOS << HotFuncCount << " out of " << TotalFuncCount 2345 << " functions with profile (" 2346 << format("%.2f%%", 2347 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 2348 << ") are considered hot functions"; 2349 if (!HotFuncMetric.empty()) 2350 FOS << " (" << HotFuncMetric << ")"; 2351 FOS << ".\n"; 2352 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 2353 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 2354 2355 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 2356 FOS.PadToColumn(ColumnOffset[I]); 2357 FOS << ColumnTitle[I]; 2358 } 2359 FOS << "\n"; 2360 2361 uint32_t Count = 0; 2362 for (const auto &R : PrintValues) { 2363 if (TopNFunctions && (Count++ == TopNFunctions)) 2364 break; 2365 FOS.PadToColumn(ColumnOffset[0]); 2366 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 2367 FOS.PadToColumn(ColumnOffset[1]); 2368 FOS << R.MaxCount; 2369 FOS.PadToColumn(ColumnOffset[2]); 2370 FOS << R.EntryCount; 2371 FOS.PadToColumn(ColumnOffset[3]); 2372 FOS << R.FuncName << "\n"; 2373 } 2374 } 2375 2376 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles, 2377 ProfileSummary &PS, uint32_t TopN, 2378 raw_fd_ostream &OS) { 2379 using namespace sampleprof; 2380 2381 const uint32_t HotFuncCutoff = 990000; 2382 auto &SummaryVector = PS.getDetailedSummary(); 2383 uint64_t MinCountThreshold = 0; 2384 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 2385 if (SummaryEntry.Cutoff == HotFuncCutoff) { 2386 MinCountThreshold = SummaryEntry.MinCount; 2387 break; 2388 } 2389 } 2390 2391 // Traverse all functions in the profile and keep only hot functions. 2392 // The following loop also calculates the sum of total samples of all 2393 // functions. 2394 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 2395 std::greater<uint64_t>> 2396 HotFunc; 2397 uint64_t ProfileTotalSample = 0; 2398 uint64_t HotFuncSample = 0; 2399 uint64_t HotFuncCount = 0; 2400 2401 for (const auto &I : Profiles) { 2402 FuncSampleStats FuncStats; 2403 const FunctionSamples &FuncProf = I.second; 2404 ProfileTotalSample += FuncProf.getTotalSamples(); 2405 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 2406 2407 if (isFunctionHot(FuncStats, MinCountThreshold)) { 2408 HotFunc.emplace(FuncProf.getTotalSamples(), 2409 std::make_pair(&(I.second), FuncStats.MaxSample)); 2410 HotFuncSample += FuncProf.getTotalSamples(); 2411 ++HotFuncCount; 2412 } 2413 } 2414 2415 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 2416 "Entry sample", "Function name"}; 2417 std::vector<int> ColumnOffset{0, 24, 42, 58}; 2418 std::string Metric = 2419 std::string("max sample >= ") + std::to_string(MinCountThreshold); 2420 std::vector<HotFuncInfo> PrintValues; 2421 for (const auto &FuncPair : HotFunc) { 2422 const FunctionSamples &Func = *FuncPair.second.first; 2423 double TotalSamplePercent = 2424 (ProfileTotalSample > 0) 2425 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 2426 : 0; 2427 PrintValues.emplace_back(HotFuncInfo( 2428 Func.getContext().toString(), Func.getTotalSamples(), 2429 TotalSamplePercent, FuncPair.second.second, Func.getEntrySamples())); 2430 } 2431 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 2432 Profiles.size(), HotFuncSample, ProfileTotalSample, 2433 Metric, TopN, OS); 2434 2435 return 0; 2436 } 2437 2438 static int showSampleProfile(const std::string &Filename, bool ShowCounts, 2439 uint32_t TopN, bool ShowAllFunctions, 2440 bool ShowDetailedSummary, 2441 const std::string &ShowFunction, 2442 bool ShowProfileSymbolList, 2443 bool ShowSectionInfoOnly, bool ShowHotFuncList, 2444 raw_fd_ostream &OS) { 2445 using namespace sampleprof; 2446 LLVMContext Context; 2447 auto ReaderOrErr = 2448 SampleProfileReader::create(Filename, Context, FSDiscriminatorPassOption); 2449 if (std::error_code EC = ReaderOrErr.getError()) 2450 exitWithErrorCode(EC, Filename); 2451 2452 auto Reader = std::move(ReaderOrErr.get()); 2453 if (ShowSectionInfoOnly) { 2454 showSectionInfo(Reader.get(), OS); 2455 return 0; 2456 } 2457 2458 if (std::error_code EC = Reader->read()) 2459 exitWithErrorCode(EC, Filename); 2460 2461 if (ShowAllFunctions || ShowFunction.empty()) 2462 Reader->dump(OS); 2463 else 2464 // TODO: parse context string to support filtering by contexts. 2465 Reader->dumpFunctionProfile(StringRef(ShowFunction), OS); 2466 2467 if (ShowProfileSymbolList) { 2468 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 2469 Reader->getProfileSymbolList(); 2470 ReaderList->dump(OS); 2471 } 2472 2473 if (ShowDetailedSummary) { 2474 auto &PS = Reader->getSummary(); 2475 PS.printSummary(OS); 2476 PS.printDetailedSummary(OS); 2477 } 2478 2479 if (ShowHotFuncList || TopN) 2480 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), TopN, OS); 2481 2482 return 0; 2483 } 2484 2485 static int showMemProfProfile(const std::string &Filename, 2486 const std::string &ProfiledBinary, 2487 raw_fd_ostream &OS) { 2488 auto ReaderOr = 2489 llvm::memprof::RawMemProfReader::create(Filename, ProfiledBinary); 2490 if (Error E = ReaderOr.takeError()) 2491 // Since the error can be related to the profile or the binary we do not 2492 // pass whence. Instead additional context is provided where necessary in 2493 // the error message. 2494 exitWithError(std::move(E), /*Whence*/ ""); 2495 2496 std::unique_ptr<llvm::memprof::RawMemProfReader> Reader( 2497 ReaderOr.get().release()); 2498 2499 Reader->printYAML(OS); 2500 return 0; 2501 } 2502 2503 static int showDebugInfoCorrelation(const std::string &Filename, 2504 bool ShowDetailedSummary, 2505 bool ShowProfileSymbolList, 2506 raw_fd_ostream &OS) { 2507 std::unique_ptr<InstrProfCorrelator> Correlator; 2508 if (auto Err = InstrProfCorrelator::get(Filename).moveInto(Correlator)) 2509 exitWithError(std::move(Err), Filename); 2510 if (auto Err = Correlator->correlateProfileData()) 2511 exitWithError(std::move(Err), Filename); 2512 2513 InstrProfSymtab Symtab; 2514 if (auto Err = Symtab.create( 2515 StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize()))) 2516 exitWithError(std::move(Err), Filename); 2517 2518 if (ShowProfileSymbolList) 2519 Symtab.dumpNames(OS); 2520 // TODO: Read "Profile Data Type" from debug info to compute and show how many 2521 // counters the section holds. 2522 if (ShowDetailedSummary) 2523 OS << "Counters section size: 0x" 2524 << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n"; 2525 OS << "Found " << Correlator->getDataSize() << " functions\n"; 2526 2527 return 0; 2528 } 2529 2530 static int show_main(int argc, const char *argv[]) { 2531 cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>")); 2532 2533 cl::opt<bool> ShowCounts("counts", cl::init(false), 2534 cl::desc("Show counter values for shown functions")); 2535 cl::opt<bool> TextFormat( 2536 "text", cl::init(false), 2537 cl::desc("Show instr profile data in text dump format")); 2538 cl::opt<bool> ShowIndirectCallTargets( 2539 "ic-targets", cl::init(false), 2540 cl::desc("Show indirect call site target values for shown functions")); 2541 cl::opt<bool> ShowMemOPSizes( 2542 "memop-sizes", cl::init(false), 2543 cl::desc("Show the profiled sizes of the memory intrinsic calls " 2544 "for shown functions")); 2545 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 2546 cl::desc("Show detailed profile summary")); 2547 cl::list<uint32_t> DetailedSummaryCutoffs( 2548 cl::CommaSeparated, "detailed-summary-cutoffs", 2549 cl::desc( 2550 "Cutoff percentages (times 10000) for generating detailed summary"), 2551 cl::value_desc("800000,901000,999999")); 2552 cl::opt<bool> ShowHotFuncList( 2553 "hot-func-list", cl::init(false), 2554 cl::desc("Show profile summary of a list of hot functions")); 2555 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 2556 cl::desc("Details for every function")); 2557 cl::opt<bool> ShowCS("showcs", cl::init(false), 2558 cl::desc("Show context sensitive counts")); 2559 cl::opt<std::string> ShowFunction("function", 2560 cl::desc("Details for matching functions")); 2561 2562 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 2563 cl::init("-"), cl::desc("Output file")); 2564 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 2565 cl::aliasopt(OutputFilename)); 2566 cl::opt<ProfileKinds> ProfileKind( 2567 cl::desc("Profile kind:"), cl::init(instr), 2568 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 2569 clEnumVal(sample, "Sample profile"), 2570 clEnumVal(memory, "MemProf memory access profile"))); 2571 cl::opt<uint32_t> TopNFunctions( 2572 "topn", cl::init(0), 2573 cl::desc("Show the list of functions with the largest internal counts")); 2574 cl::opt<uint32_t> ValueCutoff( 2575 "value-cutoff", cl::init(0), 2576 cl::desc("Set the count value cutoff. Functions with the maximum count " 2577 "less than this value will not be printed out. (Default is 0)")); 2578 cl::opt<bool> OnlyListBelow( 2579 "list-below-cutoff", cl::init(false), 2580 cl::desc("Only output names of functions whose max count values are " 2581 "below the cutoff value")); 2582 cl::opt<bool> ShowProfileSymbolList( 2583 "show-prof-sym-list", cl::init(false), 2584 cl::desc("Show profile symbol list if it exists in the profile. ")); 2585 cl::opt<bool> ShowSectionInfoOnly( 2586 "show-sec-info-only", cl::init(false), 2587 cl::desc("Show the information of each section in the sample profile. " 2588 "The flag is only usable when the sample profile is in " 2589 "extbinary format")); 2590 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false), 2591 cl::desc("Show binary ids in the profile. ")); 2592 cl::opt<std::string> DebugInfoFilename( 2593 "debug-info", cl::init(""), 2594 cl::desc("Read and extract profile metadata from debug info and show " 2595 "the functions it found.")); 2596 cl::opt<bool> ShowCovered( 2597 "covered", cl::init(false), 2598 cl::desc("Show only the functions that have been executed.")); 2599 cl::opt<std::string> ProfiledBinary( 2600 "profiled-binary", cl::init(""), 2601 cl::desc("Path to binary from which the profile was collected.")); 2602 2603 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n"); 2604 2605 if (Filename.empty() && DebugInfoFilename.empty()) 2606 exitWithError( 2607 "the positional argument '<profdata-file>' is required unless '--" + 2608 DebugInfoFilename.ArgStr + "' is provided"); 2609 2610 if (Filename == OutputFilename) { 2611 errs() << sys::path::filename(argv[0]) 2612 << ": Input file name cannot be the same as the output file name!\n"; 2613 return 1; 2614 } 2615 2616 std::error_code EC; 2617 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 2618 if (EC) 2619 exitWithErrorCode(EC, OutputFilename); 2620 2621 if (ShowAllFunctions && !ShowFunction.empty()) 2622 WithColor::warning() << "-function argument ignored: showing all functions\n"; 2623 2624 if (!DebugInfoFilename.empty()) 2625 return showDebugInfoCorrelation(DebugInfoFilename, ShowDetailedSummary, 2626 ShowProfileSymbolList, OS); 2627 2628 if (ProfileKind == instr) 2629 return showInstrProfile( 2630 Filename, ShowCounts, TopNFunctions, ShowIndirectCallTargets, 2631 ShowMemOPSizes, ShowDetailedSummary, DetailedSummaryCutoffs, 2632 ShowAllFunctions, ShowCS, ValueCutoff, OnlyListBelow, ShowFunction, 2633 TextFormat, ShowBinaryIds, ShowCovered, OS); 2634 if (ProfileKind == sample) 2635 return showSampleProfile(Filename, ShowCounts, TopNFunctions, 2636 ShowAllFunctions, ShowDetailedSummary, 2637 ShowFunction, ShowProfileSymbolList, 2638 ShowSectionInfoOnly, ShowHotFuncList, OS); 2639 return showMemProfProfile(Filename, ProfiledBinary, OS); 2640 } 2641 2642 int main(int argc, const char *argv[]) { 2643 InitLLVM X(argc, argv); 2644 2645 StringRef ProgName(sys::path::filename(argv[0])); 2646 if (argc > 1) { 2647 int (*func)(int, const char *[]) = nullptr; 2648 2649 if (strcmp(argv[1], "merge") == 0) 2650 func = merge_main; 2651 else if (strcmp(argv[1], "show") == 0) 2652 func = show_main; 2653 else if (strcmp(argv[1], "overlap") == 0) 2654 func = overlap_main; 2655 2656 if (func) { 2657 std::string Invocation(ProgName.str() + " " + argv[1]); 2658 argv[1] = Invocation.c_str(); 2659 return func(argc - 1, argv + 1); 2660 } 2661 2662 if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 || 2663 strcmp(argv[1], "--help") == 0) { 2664 2665 errs() << "OVERVIEW: LLVM profile data tools\n\n" 2666 << "USAGE: " << ProgName << " <command> [args...]\n" 2667 << "USAGE: " << ProgName << " <command> -help\n\n" 2668 << "See each individual command --help for more details.\n" 2669 << "Available commands: merge, show, overlap\n"; 2670 return 0; 2671 } 2672 } 2673 2674 if (argc < 2) 2675 errs() << ProgName << ": No command specified!\n"; 2676 else 2677 errs() << ProgName << ": Unknown command!\n"; 2678 2679 errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n"; 2680 return 1; 2681 } 2682