1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // llvm-profdata merges .profdata files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/SmallSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
17 #include "llvm/IR/LLVMContext.h"
18 #include "llvm/Object/Binary.h"
19 #include "llvm/ProfileData/InstrProfCorrelator.h"
20 #include "llvm/ProfileData/InstrProfReader.h"
21 #include "llvm/ProfileData/InstrProfWriter.h"
22 #include "llvm/ProfileData/MemProf.h"
23 #include "llvm/ProfileData/ProfileCommon.h"
24 #include "llvm/ProfileData/RawMemProfReader.h"
25 #include "llvm/ProfileData/SampleProfReader.h"
26 #include "llvm/ProfileData/SampleProfWriter.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Discriminator.h"
29 #include "llvm/Support/Errc.h"
30 #include "llvm/Support/FileSystem.h"
31 #include "llvm/Support/Format.h"
32 #include "llvm/Support/FormattedStream.h"
33 #include "llvm/Support/InitLLVM.h"
34 #include "llvm/Support/MemoryBuffer.h"
35 #include "llvm/Support/Path.h"
36 #include "llvm/Support/ThreadPool.h"
37 #include "llvm/Support/Threading.h"
38 #include "llvm/Support/WithColor.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 
42 using namespace llvm;
43 
44 enum ProfileFormat {
45   PF_None = 0,
46   PF_Text,
47   PF_Compact_Binary,
48   PF_Ext_Binary,
49   PF_GCC,
50   PF_Binary
51 };
52 
53 static void warn(Twine Message, std::string Whence = "",
54                  std::string Hint = "") {
55   WithColor::warning();
56   if (!Whence.empty())
57     errs() << Whence << ": ";
58   errs() << Message << "\n";
59   if (!Hint.empty())
60     WithColor::note() << Hint << "\n";
61 }
62 
63 static void warn(Error E, StringRef Whence = "") {
64   if (E.isA<InstrProfError>()) {
65     handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
66       warn(IPE.message(), std::string(Whence), std::string(""));
67     });
68   }
69 }
70 
71 static void exitWithError(Twine Message, std::string Whence = "",
72                           std::string Hint = "") {
73   WithColor::error();
74   if (!Whence.empty())
75     errs() << Whence << ": ";
76   errs() << Message << "\n";
77   if (!Hint.empty())
78     WithColor::note() << Hint << "\n";
79   ::exit(1);
80 }
81 
82 static void exitWithError(Error E, StringRef Whence = "") {
83   if (E.isA<InstrProfError>()) {
84     handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
85       instrprof_error instrError = IPE.get();
86       StringRef Hint = "";
87       if (instrError == instrprof_error::unrecognized_format) {
88         // Hint in case user missed specifying the profile type.
89         Hint = "Perhaps you forgot to use the --sample or --memory option?";
90       }
91       exitWithError(IPE.message(), std::string(Whence), std::string(Hint));
92     });
93   }
94 
95   exitWithError(toString(std::move(E)), std::string(Whence));
96 }
97 
98 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") {
99   exitWithError(EC.message(), std::string(Whence));
100 }
101 
102 namespace {
103 enum ProfileKinds { instr, sample, memory };
104 enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid };
105 }
106 
107 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC,
108                                  StringRef Whence = "") {
109   if (FailMode == failIfAnyAreInvalid)
110     exitWithErrorCode(EC, Whence);
111   else
112     warn(EC.message(), std::string(Whence));
113 }
114 
115 static void handleMergeWriterError(Error E, StringRef WhenceFile = "",
116                                    StringRef WhenceFunction = "",
117                                    bool ShowHint = true) {
118   if (!WhenceFile.empty())
119     errs() << WhenceFile << ": ";
120   if (!WhenceFunction.empty())
121     errs() << WhenceFunction << ": ";
122 
123   auto IPE = instrprof_error::success;
124   E = handleErrors(std::move(E),
125                    [&IPE](std::unique_ptr<InstrProfError> E) -> Error {
126                      IPE = E->get();
127                      return Error(std::move(E));
128                    });
129   errs() << toString(std::move(E)) << "\n";
130 
131   if (ShowHint) {
132     StringRef Hint = "";
133     if (IPE != instrprof_error::success) {
134       switch (IPE) {
135       case instrprof_error::hash_mismatch:
136       case instrprof_error::count_mismatch:
137       case instrprof_error::value_site_count_mismatch:
138         Hint = "Make sure that all profile data to be merged is generated "
139                "from the same binary.";
140         break;
141       default:
142         break;
143       }
144     }
145 
146     if (!Hint.empty())
147       errs() << Hint << "\n";
148   }
149 }
150 
151 namespace {
152 /// A remapper from original symbol names to new symbol names based on a file
153 /// containing a list of mappings from old name to new name.
154 class SymbolRemapper {
155   std::unique_ptr<MemoryBuffer> File;
156   DenseMap<StringRef, StringRef> RemappingTable;
157 
158 public:
159   /// Build a SymbolRemapper from a file containing a list of old/new symbols.
160   static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) {
161     auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
162     if (!BufOrError)
163       exitWithErrorCode(BufOrError.getError(), InputFile);
164 
165     auto Remapper = std::make_unique<SymbolRemapper>();
166     Remapper->File = std::move(BufOrError.get());
167 
168     for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#');
169          !LineIt.is_at_eof(); ++LineIt) {
170       std::pair<StringRef, StringRef> Parts = LineIt->split(' ');
171       if (Parts.first.empty() || Parts.second.empty() ||
172           Parts.second.count(' ')) {
173         exitWithError("unexpected line in remapping file",
174                       (InputFile + ":" + Twine(LineIt.line_number())).str(),
175                       "expected 'old_symbol new_symbol'");
176       }
177       Remapper->RemappingTable.insert(Parts);
178     }
179     return Remapper;
180   }
181 
182   /// Attempt to map the given old symbol into a new symbol.
183   ///
184   /// \return The new symbol, or \p Name if no such symbol was found.
185   StringRef operator()(StringRef Name) {
186     StringRef New = RemappingTable.lookup(Name);
187     return New.empty() ? Name : New;
188   }
189 };
190 }
191 
192 struct WeightedFile {
193   std::string Filename;
194   uint64_t Weight;
195 };
196 typedef SmallVector<WeightedFile, 5> WeightedFileVector;
197 
198 /// Keep track of merged data and reported errors.
199 struct WriterContext {
200   std::mutex Lock;
201   InstrProfWriter Writer;
202   std::vector<std::pair<Error, std::string>> Errors;
203   std::mutex &ErrLock;
204   SmallSet<instrprof_error, 4> &WriterErrorCodes;
205 
206   WriterContext(bool IsSparse, std::mutex &ErrLock,
207                 SmallSet<instrprof_error, 4> &WriterErrorCodes)
208       : Writer(IsSparse), ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) {
209   }
210 };
211 
212 /// Computer the overlap b/w profile BaseFilename and TestFileName,
213 /// and store the program level result to Overlap.
214 static void overlapInput(const std::string &BaseFilename,
215                          const std::string &TestFilename, WriterContext *WC,
216                          OverlapStats &Overlap,
217                          const OverlapFuncFilters &FuncFilter,
218                          raw_fd_ostream &OS, bool IsCS) {
219   auto ReaderOrErr = InstrProfReader::create(TestFilename);
220   if (Error E = ReaderOrErr.takeError()) {
221     // Skip the empty profiles by returning sliently.
222     instrprof_error IPE = InstrProfError::take(std::move(E));
223     if (IPE != instrprof_error::empty_raw_profile)
224       WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename);
225     return;
226   }
227 
228   auto Reader = std::move(ReaderOrErr.get());
229   for (auto &I : *Reader) {
230     OverlapStats FuncOverlap(OverlapStats::FunctionLevel);
231     FuncOverlap.setFuncInfo(I.Name, I.Hash);
232 
233     WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter);
234     FuncOverlap.dump(OS);
235   }
236 }
237 
238 /// Load an input into a writer context.
239 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper,
240                       const InstrProfCorrelator *Correlator,
241                       WriterContext *WC) {
242   std::unique_lock<std::mutex> CtxGuard{WC->Lock};
243 
244   // Copy the filename, because llvm::ThreadPool copied the input "const
245   // WeightedFile &" by value, making a reference to the filename within it
246   // invalid outside of this packaged task.
247   std::string Filename = Input.Filename;
248 
249   auto ReaderOrErr = InstrProfReader::create(Input.Filename, Correlator);
250   if (Error E = ReaderOrErr.takeError()) {
251     // Skip the empty profiles by returning sliently.
252     instrprof_error IPE = InstrProfError::take(std::move(E));
253     if (IPE != instrprof_error::empty_raw_profile)
254       WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename);
255     return;
256   }
257 
258   auto Reader = std::move(ReaderOrErr.get());
259   if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) {
260     consumeError(std::move(E));
261     WC->Errors.emplace_back(
262         make_error<StringError>(
263             "Merge IR generated profile with Clang generated profile.",
264             std::error_code()),
265         Filename);
266     return;
267   }
268 
269   for (auto &I : *Reader) {
270     if (Remapper)
271       I.Name = (*Remapper)(I.Name);
272     const StringRef FuncName = I.Name;
273     bool Reported = false;
274     WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) {
275       if (Reported) {
276         consumeError(std::move(E));
277         return;
278       }
279       Reported = true;
280       // Only show hint the first time an error occurs.
281       instrprof_error IPE = InstrProfError::take(std::move(E));
282       std::unique_lock<std::mutex> ErrGuard{WC->ErrLock};
283       bool firstTime = WC->WriterErrorCodes.insert(IPE).second;
284       handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename,
285                              FuncName, firstTime);
286     });
287   }
288   if (Reader->hasError())
289     if (Error E = Reader->getError())
290       WC->Errors.emplace_back(std::move(E), Filename);
291 }
292 
293 /// Merge the \p Src writer context into \p Dst.
294 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) {
295   for (auto &ErrorPair : Src->Errors)
296     Dst->Errors.push_back(std::move(ErrorPair));
297   Src->Errors.clear();
298 
299   Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) {
300     instrprof_error IPE = InstrProfError::take(std::move(E));
301     std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock};
302     bool firstTime = Dst->WriterErrorCodes.insert(IPE).second;
303     if (firstTime)
304       warn(toString(make_error<InstrProfError>(IPE)));
305   });
306 }
307 
308 static void writeInstrProfile(StringRef OutputFilename,
309                               ProfileFormat OutputFormat,
310                               InstrProfWriter &Writer) {
311   std::error_code EC;
312   raw_fd_ostream Output(OutputFilename.data(), EC,
313                         OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF
314                                                 : sys::fs::OF_None);
315   if (EC)
316     exitWithErrorCode(EC, OutputFilename);
317 
318   if (OutputFormat == PF_Text) {
319     if (Error E = Writer.writeText(Output))
320       warn(std::move(E));
321   } else {
322     if (Output.is_displayed())
323       exitWithError("cannot write a non-text format profile to the terminal");
324     if (Error E = Writer.write(Output))
325       warn(std::move(E));
326   }
327 }
328 
329 static void mergeInstrProfile(const WeightedFileVector &Inputs,
330                               StringRef DebugInfoFilename,
331                               SymbolRemapper *Remapper,
332                               StringRef OutputFilename,
333                               ProfileFormat OutputFormat, bool OutputSparse,
334                               unsigned NumThreads, FailureMode FailMode) {
335   if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary &&
336       OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text)
337     exitWithError("unknown format is specified");
338 
339   std::unique_ptr<InstrProfCorrelator> Correlator;
340   if (!DebugInfoFilename.empty()) {
341     if (auto Err =
342             InstrProfCorrelator::get(DebugInfoFilename).moveInto(Correlator))
343       exitWithError(std::move(Err), DebugInfoFilename);
344     if (auto Err = Correlator->correlateProfileData())
345       exitWithError(std::move(Err), DebugInfoFilename);
346   }
347 
348   std::mutex ErrorLock;
349   SmallSet<instrprof_error, 4> WriterErrorCodes;
350 
351   // If NumThreads is not specified, auto-detect a good default.
352   if (NumThreads == 0)
353     NumThreads = std::min(hardware_concurrency().compute_thread_count(),
354                           unsigned((Inputs.size() + 1) / 2));
355   // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails
356   // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't
357   // merged, thus the emitted file ends up with a PF_Unknown kind.
358 
359   // Initialize the writer contexts.
360   SmallVector<std::unique_ptr<WriterContext>, 4> Contexts;
361   for (unsigned I = 0; I < NumThreads; ++I)
362     Contexts.emplace_back(std::make_unique<WriterContext>(
363         OutputSparse, ErrorLock, WriterErrorCodes));
364 
365   if (NumThreads == 1) {
366     for (const auto &Input : Inputs)
367       loadInput(Input, Remapper, Correlator.get(), Contexts[0].get());
368   } else {
369     ThreadPool Pool(hardware_concurrency(NumThreads));
370 
371     // Load the inputs in parallel (N/NumThreads serial steps).
372     unsigned Ctx = 0;
373     for (const auto &Input : Inputs) {
374       Pool.async(loadInput, Input, Remapper, Correlator.get(),
375                  Contexts[Ctx].get());
376       Ctx = (Ctx + 1) % NumThreads;
377     }
378     Pool.wait();
379 
380     // Merge the writer contexts together (~ lg(NumThreads) serial steps).
381     unsigned Mid = Contexts.size() / 2;
382     unsigned End = Contexts.size();
383     assert(Mid > 0 && "Expected more than one context");
384     do {
385       for (unsigned I = 0; I < Mid; ++I)
386         Pool.async(mergeWriterContexts, Contexts[I].get(),
387                    Contexts[I + Mid].get());
388       Pool.wait();
389       if (End & 1) {
390         Pool.async(mergeWriterContexts, Contexts[0].get(),
391                    Contexts[End - 1].get());
392         Pool.wait();
393       }
394       End = Mid;
395       Mid /= 2;
396     } while (Mid > 0);
397   }
398 
399   // Handle deferred errors encountered during merging. If the number of errors
400   // is equal to the number of inputs the merge failed.
401   unsigned NumErrors = 0;
402   for (std::unique_ptr<WriterContext> &WC : Contexts) {
403     for (auto &ErrorPair : WC->Errors) {
404       ++NumErrors;
405       warn(toString(std::move(ErrorPair.first)), ErrorPair.second);
406     }
407   }
408   if (NumErrors == Inputs.size() ||
409       (NumErrors > 0 && FailMode == failIfAnyAreInvalid))
410     exitWithError("no profile can be merged");
411 
412   writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer);
413 }
414 
415 /// The profile entry for a function in instrumentation profile.
416 struct InstrProfileEntry {
417   uint64_t MaxCount = 0;
418   float ZeroCounterRatio = 0.0;
419   InstrProfRecord *ProfRecord;
420   InstrProfileEntry(InstrProfRecord *Record);
421   InstrProfileEntry() = default;
422 };
423 
424 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) {
425   ProfRecord = Record;
426   uint64_t CntNum = Record->Counts.size();
427   uint64_t ZeroCntNum = 0;
428   for (size_t I = 0; I < CntNum; ++I) {
429     MaxCount = std::max(MaxCount, Record->Counts[I]);
430     ZeroCntNum += !Record->Counts[I];
431   }
432   ZeroCounterRatio = (float)ZeroCntNum / CntNum;
433 }
434 
435 /// Either set all the counters in the instr profile entry \p IFE to -1
436 /// in order to drop the profile or scale up the counters in \p IFP to
437 /// be above hot threshold. We use the ratio of zero counters in the
438 /// profile of a function to decide the profile is helpful or harmful
439 /// for performance, and to choose whether to scale up or drop it.
440 static void updateInstrProfileEntry(InstrProfileEntry &IFE,
441                                     uint64_t HotInstrThreshold,
442                                     float ZeroCounterThreshold) {
443   InstrProfRecord *ProfRecord = IFE.ProfRecord;
444   if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) {
445     // If all or most of the counters of the function are zero, the
446     // profile is unaccountable and shuld be dropped. Reset all the
447     // counters to be -1 and PGO profile-use will drop the profile.
448     // All counters being -1 also implies that the function is hot so
449     // PGO profile-use will also set the entry count metadata to be
450     // above hot threshold.
451     for (size_t I = 0; I < ProfRecord->Counts.size(); ++I)
452       ProfRecord->Counts[I] = -1;
453     return;
454   }
455 
456   // Scale up the MaxCount to be multiple times above hot threshold.
457   const unsigned MultiplyFactor = 3;
458   uint64_t Numerator = HotInstrThreshold * MultiplyFactor;
459   uint64_t Denominator = IFE.MaxCount;
460   ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) {
461     warn(toString(make_error<InstrProfError>(E)));
462   });
463 }
464 
465 const uint64_t ColdPercentileIdx = 15;
466 const uint64_t HotPercentileIdx = 11;
467 
468 using sampleprof::FSDiscriminatorPass;
469 
470 // Internal options to set FSDiscriminatorPass. Used in merge and show
471 // commands.
472 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption(
473     "fs-discriminator-pass", cl::init(PassLast), cl::Hidden,
474     cl::desc("Zero out the discriminator bits for the FS discrimiantor "
475              "pass beyond this value. The enum values are defined in "
476              "Support/Discriminator.h"),
477     cl::values(clEnumVal(Base, "Use base discriminators only"),
478                clEnumVal(Pass1, "Use base and pass 1 discriminators"),
479                clEnumVal(Pass2, "Use base and pass 1-2 discriminators"),
480                clEnumVal(Pass3, "Use base and pass 1-3 discriminators"),
481                clEnumVal(PassLast, "Use all discriminator bits (default)")));
482 
483 static unsigned getDiscriminatorMask() {
484   return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue()));
485 }
486 
487 /// Adjust the instr profile in \p WC based on the sample profile in
488 /// \p Reader.
489 static void
490 adjustInstrProfile(std::unique_ptr<WriterContext> &WC,
491                    std::unique_ptr<sampleprof::SampleProfileReader> &Reader,
492                    unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
493                    unsigned InstrProfColdThreshold) {
494   // Function to its entry in instr profile.
495   StringMap<InstrProfileEntry> InstrProfileMap;
496   InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs);
497   for (auto &PD : WC->Writer.getProfileData()) {
498     // Populate IPBuilder.
499     for (const auto &PDV : PD.getValue()) {
500       InstrProfRecord Record = PDV.second;
501       IPBuilder.addRecord(Record);
502     }
503 
504     // If a function has multiple entries in instr profile, skip it.
505     if (PD.getValue().size() != 1)
506       continue;
507 
508     // Initialize InstrProfileMap.
509     InstrProfRecord *R = &PD.getValue().begin()->second;
510     InstrProfileMap[PD.getKey()] = InstrProfileEntry(R);
511   }
512 
513   ProfileSummary InstrPS = *IPBuilder.getSummary();
514   ProfileSummary SamplePS = Reader->getSummary();
515 
516   // Compute cold thresholds for instr profile and sample profile.
517   uint64_t ColdSampleThreshold =
518       ProfileSummaryBuilder::getEntryForPercentile(
519           SamplePS.getDetailedSummary(),
520           ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
521           .MinCount;
522   uint64_t HotInstrThreshold =
523       ProfileSummaryBuilder::getEntryForPercentile(
524           InstrPS.getDetailedSummary(),
525           ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
526           .MinCount;
527   uint64_t ColdInstrThreshold =
528       InstrProfColdThreshold
529           ? InstrProfColdThreshold
530           : ProfileSummaryBuilder::getEntryForPercentile(
531                 InstrPS.getDetailedSummary(),
532                 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
533                 .MinCount;
534 
535   // Find hot/warm functions in sample profile which is cold in instr profile
536   // and adjust the profiles of those functions in the instr profile.
537   for (const auto &PD : Reader->getProfiles()) {
538     auto &FContext = PD.first;
539     const sampleprof::FunctionSamples &FS = PD.second;
540     auto It = InstrProfileMap.find(FContext.toString());
541     if (FS.getHeadSamples() > ColdSampleThreshold &&
542         It != InstrProfileMap.end() &&
543         It->second.MaxCount <= ColdInstrThreshold &&
544         FS.getBodySamples().size() >= SupplMinSizeThreshold) {
545       updateInstrProfileEntry(It->second, HotInstrThreshold,
546                               ZeroCounterThreshold);
547     }
548   }
549 }
550 
551 /// The main function to supplement instr profile with sample profile.
552 /// \Inputs contains the instr profile. \p SampleFilename specifies the
553 /// sample profile. \p OutputFilename specifies the output profile name.
554 /// \p OutputFormat specifies the output profile format. \p OutputSparse
555 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold
556 /// specifies the minimal size for the functions whose profile will be
557 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether
558 /// a function contains too many zero counters and whether its profile
559 /// should be dropped. \p InstrProfColdThreshold is the user specified
560 /// cold threshold which will override the cold threshold got from the
561 /// instr profile summary.
562 static void supplementInstrProfile(
563     const WeightedFileVector &Inputs, StringRef SampleFilename,
564     StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse,
565     unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
566     unsigned InstrProfColdThreshold) {
567   if (OutputFilename.compare("-") == 0)
568     exitWithError("cannot write indexed profdata format to stdout");
569   if (Inputs.size() != 1)
570     exitWithError("expect one input to be an instr profile");
571   if (Inputs[0].Weight != 1)
572     exitWithError("expect instr profile doesn't have weight");
573 
574   StringRef InstrFilename = Inputs[0].Filename;
575 
576   // Read sample profile.
577   LLVMContext Context;
578   auto ReaderOrErr = sampleprof::SampleProfileReader::create(
579       SampleFilename.str(), Context, FSDiscriminatorPassOption);
580   if (std::error_code EC = ReaderOrErr.getError())
581     exitWithErrorCode(EC, SampleFilename);
582   auto Reader = std::move(ReaderOrErr.get());
583   if (std::error_code EC = Reader->read())
584     exitWithErrorCode(EC, SampleFilename);
585 
586   // Read instr profile.
587   std::mutex ErrorLock;
588   SmallSet<instrprof_error, 4> WriterErrorCodes;
589   auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock,
590                                             WriterErrorCodes);
591   loadInput(Inputs[0], nullptr, nullptr, WC.get());
592   if (WC->Errors.size() > 0)
593     exitWithError(std::move(WC->Errors[0].first), InstrFilename);
594 
595   adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold,
596                      InstrProfColdThreshold);
597   writeInstrProfile(OutputFilename, OutputFormat, WC->Writer);
598 }
599 
600 /// Make a copy of the given function samples with all symbol names remapped
601 /// by the provided symbol remapper.
602 static sampleprof::FunctionSamples
603 remapSamples(const sampleprof::FunctionSamples &Samples,
604              SymbolRemapper &Remapper, sampleprof_error &Error) {
605   sampleprof::FunctionSamples Result;
606   Result.setName(Remapper(Samples.getName()));
607   Result.addTotalSamples(Samples.getTotalSamples());
608   Result.addHeadSamples(Samples.getHeadSamples());
609   for (const auto &BodySample : Samples.getBodySamples()) {
610     uint32_t MaskedDiscriminator =
611         BodySample.first.Discriminator & getDiscriminatorMask();
612     Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator,
613                           BodySample.second.getSamples());
614     for (const auto &Target : BodySample.second.getCallTargets()) {
615       Result.addCalledTargetSamples(BodySample.first.LineOffset,
616                                     MaskedDiscriminator,
617                                     Remapper(Target.first()), Target.second);
618     }
619   }
620   for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) {
621     sampleprof::FunctionSamplesMap &Target =
622         Result.functionSamplesAt(CallsiteSamples.first);
623     for (const auto &Callsite : CallsiteSamples.second) {
624       sampleprof::FunctionSamples Remapped =
625           remapSamples(Callsite.second, Remapper, Error);
626       MergeResult(Error,
627                   Target[std::string(Remapped.getName())].merge(Remapped));
628     }
629   }
630   return Result;
631 }
632 
633 static sampleprof::SampleProfileFormat FormatMap[] = {
634     sampleprof::SPF_None,
635     sampleprof::SPF_Text,
636     sampleprof::SPF_Compact_Binary,
637     sampleprof::SPF_Ext_Binary,
638     sampleprof::SPF_GCC,
639     sampleprof::SPF_Binary};
640 
641 static std::unique_ptr<MemoryBuffer>
642 getInputFileBuf(const StringRef &InputFile) {
643   if (InputFile == "")
644     return {};
645 
646   auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
647   if (!BufOrError)
648     exitWithErrorCode(BufOrError.getError(), InputFile);
649 
650   return std::move(*BufOrError);
651 }
652 
653 static void populateProfileSymbolList(MemoryBuffer *Buffer,
654                                       sampleprof::ProfileSymbolList &PSL) {
655   if (!Buffer)
656     return;
657 
658   SmallVector<StringRef, 32> SymbolVec;
659   StringRef Data = Buffer->getBuffer();
660   Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
661 
662   for (StringRef SymbolStr : SymbolVec)
663     PSL.add(SymbolStr.trim());
664 }
665 
666 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer,
667                                   ProfileFormat OutputFormat,
668                                   MemoryBuffer *Buffer,
669                                   sampleprof::ProfileSymbolList &WriterList,
670                                   bool CompressAllSections, bool UseMD5,
671                                   bool GenPartialProfile) {
672   populateProfileSymbolList(Buffer, WriterList);
673   if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary)
674     warn("Profile Symbol list is not empty but the output format is not "
675          "ExtBinary format. The list will be lost in the output. ");
676 
677   Writer.setProfileSymbolList(&WriterList);
678 
679   if (CompressAllSections) {
680     if (OutputFormat != PF_Ext_Binary)
681       warn("-compress-all-section is ignored. Specify -extbinary to enable it");
682     else
683       Writer.setToCompressAllSections();
684   }
685   if (UseMD5) {
686     if (OutputFormat != PF_Ext_Binary)
687       warn("-use-md5 is ignored. Specify -extbinary to enable it");
688     else
689       Writer.setUseMD5();
690   }
691   if (GenPartialProfile) {
692     if (OutputFormat != PF_Ext_Binary)
693       warn("-gen-partial-profile is ignored. Specify -extbinary to enable it");
694     else
695       Writer.setPartialProfile();
696   }
697 }
698 
699 static void
700 mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper,
701                    StringRef OutputFilename, ProfileFormat OutputFormat,
702                    StringRef ProfileSymbolListFile, bool CompressAllSections,
703                    bool UseMD5, bool GenPartialProfile, bool GenCSNestedProfile,
704                    bool SampleMergeColdContext, bool SampleTrimColdContext,
705                    bool SampleColdContextFrameDepth, FailureMode FailMode) {
706   using namespace sampleprof;
707   SampleProfileMap ProfileMap;
708   SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers;
709   LLVMContext Context;
710   sampleprof::ProfileSymbolList WriterList;
711   Optional<bool> ProfileIsProbeBased;
712   Optional<bool> ProfileIsCSFlat;
713   for (const auto &Input : Inputs) {
714     auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context,
715                                                    FSDiscriminatorPassOption);
716     if (std::error_code EC = ReaderOrErr.getError()) {
717       warnOrExitGivenError(FailMode, EC, Input.Filename);
718       continue;
719     }
720 
721     // We need to keep the readers around until after all the files are
722     // read so that we do not lose the function names stored in each
723     // reader's memory. The function names are needed to write out the
724     // merged profile map.
725     Readers.push_back(std::move(ReaderOrErr.get()));
726     const auto Reader = Readers.back().get();
727     if (std::error_code EC = Reader->read()) {
728       warnOrExitGivenError(FailMode, EC, Input.Filename);
729       Readers.pop_back();
730       continue;
731     }
732 
733     SampleProfileMap &Profiles = Reader->getProfiles();
734     if (ProfileIsProbeBased.hasValue() &&
735         ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased)
736       exitWithError(
737           "cannot merge probe-based profile with non-probe-based profile");
738     ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased;
739     if (ProfileIsCSFlat.hasValue() &&
740         ProfileIsCSFlat != FunctionSamples::ProfileIsCSFlat)
741       exitWithError("cannot merge CS profile with non-CS profile");
742     ProfileIsCSFlat = FunctionSamples::ProfileIsCSFlat;
743     for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end();
744          I != E; ++I) {
745       sampleprof_error Result = sampleprof_error::success;
746       FunctionSamples Remapped =
747           Remapper ? remapSamples(I->second, *Remapper, Result)
748                    : FunctionSamples();
749       FunctionSamples &Samples = Remapper ? Remapped : I->second;
750       SampleContext FContext = Samples.getContext();
751       MergeResult(Result, ProfileMap[FContext].merge(Samples, Input.Weight));
752       if (Result != sampleprof_error::success) {
753         std::error_code EC = make_error_code(Result);
754         handleMergeWriterError(errorCodeToError(EC), Input.Filename,
755                                FContext.toString());
756       }
757     }
758 
759     std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
760         Reader->getProfileSymbolList();
761     if (ReaderList)
762       WriterList.merge(*ReaderList);
763   }
764 
765   if (ProfileIsCSFlat && (SampleMergeColdContext || SampleTrimColdContext)) {
766     // Use threshold calculated from profile summary unless specified.
767     SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
768     auto Summary = Builder.computeSummaryForProfiles(ProfileMap);
769     uint64_t SampleProfColdThreshold =
770         ProfileSummaryBuilder::getColdCountThreshold(
771             (Summary->getDetailedSummary()));
772 
773     // Trim and merge cold context profile using cold threshold above;
774     SampleContextTrimmer(ProfileMap)
775         .trimAndMergeColdContextProfiles(
776             SampleProfColdThreshold, SampleTrimColdContext,
777             SampleMergeColdContext, SampleColdContextFrameDepth, false);
778   }
779 
780   if (ProfileIsCSFlat && GenCSNestedProfile) {
781     CSProfileConverter CSConverter(ProfileMap);
782     CSConverter.convertProfiles();
783     ProfileIsCSFlat = FunctionSamples::ProfileIsCSFlat = false;
784   }
785 
786   auto WriterOrErr =
787       SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]);
788   if (std::error_code EC = WriterOrErr.getError())
789     exitWithErrorCode(EC, OutputFilename);
790 
791   auto Writer = std::move(WriterOrErr.get());
792   // WriterList will have StringRef refering to string in Buffer.
793   // Make sure Buffer lives as long as WriterList.
794   auto Buffer = getInputFileBuf(ProfileSymbolListFile);
795   handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList,
796                         CompressAllSections, UseMD5, GenPartialProfile);
797   if (std::error_code EC = Writer->write(ProfileMap))
798     exitWithErrorCode(std::move(EC));
799 }
800 
801 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) {
802   StringRef WeightStr, FileName;
803   std::tie(WeightStr, FileName) = WeightedFilename.split(',');
804 
805   uint64_t Weight;
806   if (WeightStr.getAsInteger(10, Weight) || Weight < 1)
807     exitWithError("input weight must be a positive integer");
808 
809   return {std::string(FileName), Weight};
810 }
811 
812 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) {
813   StringRef Filename = WF.Filename;
814   uint64_t Weight = WF.Weight;
815 
816   // If it's STDIN just pass it on.
817   if (Filename == "-") {
818     WNI.push_back({std::string(Filename), Weight});
819     return;
820   }
821 
822   llvm::sys::fs::file_status Status;
823   llvm::sys::fs::status(Filename, Status);
824   if (!llvm::sys::fs::exists(Status))
825     exitWithErrorCode(make_error_code(errc::no_such_file_or_directory),
826                       Filename);
827   // If it's a source file, collect it.
828   if (llvm::sys::fs::is_regular_file(Status)) {
829     WNI.push_back({std::string(Filename), Weight});
830     return;
831   }
832 
833   if (llvm::sys::fs::is_directory(Status)) {
834     std::error_code EC;
835     for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E;
836          F != E && !EC; F.increment(EC)) {
837       if (llvm::sys::fs::is_regular_file(F->path())) {
838         addWeightedInput(WNI, {F->path(), Weight});
839       }
840     }
841     if (EC)
842       exitWithErrorCode(EC, Filename);
843   }
844 }
845 
846 static void parseInputFilenamesFile(MemoryBuffer *Buffer,
847                                     WeightedFileVector &WFV) {
848   if (!Buffer)
849     return;
850 
851   SmallVector<StringRef, 8> Entries;
852   StringRef Data = Buffer->getBuffer();
853   Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
854   for (const StringRef &FileWeightEntry : Entries) {
855     StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r");
856     // Skip comments.
857     if (SanitizedEntry.startswith("#"))
858       continue;
859     // If there's no comma, it's an unweighted profile.
860     else if (!SanitizedEntry.contains(','))
861       addWeightedInput(WFV, {std::string(SanitizedEntry), 1});
862     else
863       addWeightedInput(WFV, parseWeightedFile(SanitizedEntry));
864   }
865 }
866 
867 static int merge_main(int argc, const char *argv[]) {
868   cl::list<std::string> InputFilenames(cl::Positional,
869                                        cl::desc("<filename...>"));
870   cl::list<std::string> WeightedInputFilenames("weighted-input",
871                                                cl::desc("<weight>,<filename>"));
872   cl::opt<std::string> InputFilenamesFile(
873       "input-files", cl::init(""),
874       cl::desc("Path to file containing newline-separated "
875                "[<weight>,]<filename> entries"));
876   cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"),
877                                 cl::aliasopt(InputFilenamesFile));
878   cl::opt<bool> DumpInputFileList(
879       "dump-input-file-list", cl::init(false), cl::Hidden,
880       cl::desc("Dump the list of input files and their weights, then exit"));
881   cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"),
882                                      cl::desc("Symbol remapping file"));
883   cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"),
884                            cl::aliasopt(RemappingFile));
885   cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
886                                       cl::init("-"), cl::desc("Output file"));
887   cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
888                             cl::aliasopt(OutputFilename));
889   cl::opt<ProfileKinds> ProfileKind(
890       cl::desc("Profile kind:"), cl::init(instr),
891       cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
892                  clEnumVal(sample, "Sample profile")));
893   cl::opt<ProfileFormat> OutputFormat(
894       cl::desc("Format of output profile"), cl::init(PF_Binary),
895       cl::values(
896           clEnumValN(PF_Binary, "binary", "Binary encoding (default)"),
897           clEnumValN(PF_Compact_Binary, "compbinary",
898                      "Compact binary encoding"),
899           clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"),
900           clEnumValN(PF_Text, "text", "Text encoding"),
901           clEnumValN(PF_GCC, "gcc",
902                      "GCC encoding (only meaningful for -sample)")));
903   cl::opt<FailureMode> FailureMode(
904       "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"),
905       cl::values(clEnumValN(failIfAnyAreInvalid, "any",
906                             "Fail if any profile is invalid."),
907                  clEnumValN(failIfAllAreInvalid, "all",
908                             "Fail only if all profiles are invalid.")));
909   cl::opt<bool> OutputSparse("sparse", cl::init(false),
910       cl::desc("Generate a sparse profile (only meaningful for -instr)"));
911   cl::opt<unsigned> NumThreads(
912       "num-threads", cl::init(0),
913       cl::desc("Number of merge threads to use (default: autodetect)"));
914   cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"),
915                         cl::aliasopt(NumThreads));
916   cl::opt<std::string> ProfileSymbolListFile(
917       "prof-sym-list", cl::init(""),
918       cl::desc("Path to file containing the list of function symbols "
919                "used to populate profile symbol list"));
920   cl::opt<bool> CompressAllSections(
921       "compress-all-sections", cl::init(false), cl::Hidden,
922       cl::desc("Compress all sections when writing the profile (only "
923                "meaningful for -extbinary)"));
924   cl::opt<bool> UseMD5(
925       "use-md5", cl::init(false), cl::Hidden,
926       cl::desc("Choose to use MD5 to represent string in name table (only "
927                "meaningful for -extbinary)"));
928   cl::opt<bool> SampleMergeColdContext(
929       "sample-merge-cold-context", cl::init(false), cl::Hidden,
930       cl::desc(
931           "Merge context sample profiles whose count is below cold threshold"));
932   cl::opt<bool> SampleTrimColdContext(
933       "sample-trim-cold-context", cl::init(false), cl::Hidden,
934       cl::desc(
935           "Trim context sample profiles whose count is below cold threshold"));
936   cl::opt<uint32_t> SampleColdContextFrameDepth(
937       "sample-frame-depth-for-cold-context", cl::init(1), cl::ZeroOrMore,
938       cl::desc("Keep the last K frames while merging cold profile. 1 means the "
939                "context-less base profile"));
940   cl::opt<bool> GenPartialProfile(
941       "gen-partial-profile", cl::init(false), cl::Hidden,
942       cl::desc("Generate a partial profile (only meaningful for -extbinary)"));
943   cl::opt<std::string> SupplInstrWithSample(
944       "supplement-instr-with-sample", cl::init(""), cl::Hidden,
945       cl::desc("Supplement an instr profile with sample profile, to correct "
946                "the profile unrepresentativeness issue. The sample "
947                "profile is the input of the flag. Output will be in instr "
948                "format (The flag only works with -instr)"));
949   cl::opt<float> ZeroCounterThreshold(
950       "zero-counter-threshold", cl::init(0.7), cl::Hidden,
951       cl::desc("For the function which is cold in instr profile but hot in "
952                "sample profile, if the ratio of the number of zero counters "
953                "divided by the the total number of counters is above the "
954                "threshold, the profile of the function will be regarded as "
955                "being harmful for performance and will be dropped."));
956   cl::opt<unsigned> SupplMinSizeThreshold(
957       "suppl-min-size-threshold", cl::init(10), cl::Hidden,
958       cl::desc("If the size of a function is smaller than the threshold, "
959                "assume it can be inlined by PGO early inliner and it won't "
960                "be adjusted based on sample profile."));
961   cl::opt<unsigned> InstrProfColdThreshold(
962       "instr-prof-cold-threshold", cl::init(0), cl::Hidden,
963       cl::desc("User specified cold threshold for instr profile which will "
964                "override the cold threshold got from profile summary. "));
965   cl::opt<bool> GenCSNestedProfile(
966       "gen-cs-nested-profile", cl::Hidden, cl::init(false),
967       cl::desc("Generate nested function profiles for CSSPGO"));
968   cl::opt<std::string> DebugInfoFilename(
969       "debug-info", cl::init(""),
970       cl::desc("Use the provided debug info to correlate the raw profile."));
971 
972   cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n");
973 
974   WeightedFileVector WeightedInputs;
975   for (StringRef Filename : InputFilenames)
976     addWeightedInput(WeightedInputs, {std::string(Filename), 1});
977   for (StringRef WeightedFilename : WeightedInputFilenames)
978     addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename));
979 
980   // Make sure that the file buffer stays alive for the duration of the
981   // weighted input vector's lifetime.
982   auto Buffer = getInputFileBuf(InputFilenamesFile);
983   parseInputFilenamesFile(Buffer.get(), WeightedInputs);
984 
985   if (WeightedInputs.empty())
986     exitWithError("no input files specified. See " +
987                   sys::path::filename(argv[0]) + " -help");
988 
989   if (DumpInputFileList) {
990     for (auto &WF : WeightedInputs)
991       outs() << WF.Weight << "," << WF.Filename << "\n";
992     return 0;
993   }
994 
995   std::unique_ptr<SymbolRemapper> Remapper;
996   if (!RemappingFile.empty())
997     Remapper = SymbolRemapper::create(RemappingFile);
998 
999   if (!SupplInstrWithSample.empty()) {
1000     if (ProfileKind != instr)
1001       exitWithError(
1002           "-supplement-instr-with-sample can only work with -instr. ");
1003 
1004     supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename,
1005                            OutputFormat, OutputSparse, SupplMinSizeThreshold,
1006                            ZeroCounterThreshold, InstrProfColdThreshold);
1007     return 0;
1008   }
1009 
1010   if (ProfileKind == instr)
1011     mergeInstrProfile(WeightedInputs, DebugInfoFilename, Remapper.get(),
1012                       OutputFilename, OutputFormat, OutputSparse, NumThreads,
1013                       FailureMode);
1014   else
1015     mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename,
1016                        OutputFormat, ProfileSymbolListFile, CompressAllSections,
1017                        UseMD5, GenPartialProfile, GenCSNestedProfile,
1018                        SampleMergeColdContext, SampleTrimColdContext,
1019                        SampleColdContextFrameDepth, FailureMode);
1020   return 0;
1021 }
1022 
1023 /// Computer the overlap b/w profile BaseFilename and profile TestFilename.
1024 static void overlapInstrProfile(const std::string &BaseFilename,
1025                                 const std::string &TestFilename,
1026                                 const OverlapFuncFilters &FuncFilter,
1027                                 raw_fd_ostream &OS, bool IsCS) {
1028   std::mutex ErrorLock;
1029   SmallSet<instrprof_error, 4> WriterErrorCodes;
1030   WriterContext Context(false, ErrorLock, WriterErrorCodes);
1031   WeightedFile WeightedInput{BaseFilename, 1};
1032   OverlapStats Overlap;
1033   Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS);
1034   if (E)
1035     exitWithError(std::move(E), "error in getting profile count sums");
1036   if (Overlap.Base.CountSum < 1.0f) {
1037     OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n";
1038     exit(0);
1039   }
1040   if (Overlap.Test.CountSum < 1.0f) {
1041     OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n";
1042     exit(0);
1043   }
1044   loadInput(WeightedInput, nullptr, nullptr, &Context);
1045   overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS,
1046                IsCS);
1047   Overlap.dump(OS);
1048 }
1049 
1050 namespace {
1051 struct SampleOverlapStats {
1052   SampleContext BaseName;
1053   SampleContext TestName;
1054   // Number of overlap units
1055   uint64_t OverlapCount;
1056   // Total samples of overlap units
1057   uint64_t OverlapSample;
1058   // Number of and total samples of units that only present in base or test
1059   // profile
1060   uint64_t BaseUniqueCount;
1061   uint64_t BaseUniqueSample;
1062   uint64_t TestUniqueCount;
1063   uint64_t TestUniqueSample;
1064   // Number of units and total samples in base or test profile
1065   uint64_t BaseCount;
1066   uint64_t BaseSample;
1067   uint64_t TestCount;
1068   uint64_t TestSample;
1069   // Number of and total samples of units that present in at least one profile
1070   uint64_t UnionCount;
1071   uint64_t UnionSample;
1072   // Weighted similarity
1073   double Similarity;
1074   // For SampleOverlapStats instances representing functions, weights of the
1075   // function in base and test profiles
1076   double BaseWeight;
1077   double TestWeight;
1078 
1079   SampleOverlapStats()
1080       : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0),
1081         BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0),
1082         BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0),
1083         UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {}
1084 };
1085 } // end anonymous namespace
1086 
1087 namespace {
1088 struct FuncSampleStats {
1089   uint64_t SampleSum;
1090   uint64_t MaxSample;
1091   uint64_t HotBlockCount;
1092   FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {}
1093   FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample,
1094                   uint64_t HotBlockCount)
1095       : SampleSum(SampleSum), MaxSample(MaxSample),
1096         HotBlockCount(HotBlockCount) {}
1097 };
1098 } // end anonymous namespace
1099 
1100 namespace {
1101 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None };
1102 
1103 // Class for updating merging steps for two sorted maps. The class should be
1104 // instantiated with a map iterator type.
1105 template <class T> class MatchStep {
1106 public:
1107   MatchStep() = delete;
1108 
1109   MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd)
1110       : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter),
1111         SecondEnd(SecondEnd), Status(MS_None) {}
1112 
1113   bool areBothFinished() const {
1114     return (FirstIter == FirstEnd && SecondIter == SecondEnd);
1115   }
1116 
1117   bool isFirstFinished() const { return FirstIter == FirstEnd; }
1118 
1119   bool isSecondFinished() const { return SecondIter == SecondEnd; }
1120 
1121   /// Advance one step based on the previous match status unless the previous
1122   /// status is MS_None. Then update Status based on the comparison between two
1123   /// container iterators at the current step. If the previous status is
1124   /// MS_None, it means two iterators are at the beginning and no comparison has
1125   /// been made, so we simply update Status without advancing the iterators.
1126   void updateOneStep();
1127 
1128   T getFirstIter() const { return FirstIter; }
1129 
1130   T getSecondIter() const { return SecondIter; }
1131 
1132   MatchStatus getMatchStatus() const { return Status; }
1133 
1134 private:
1135   // Current iterator and end iterator of the first container.
1136   T FirstIter;
1137   T FirstEnd;
1138   // Current iterator and end iterator of the second container.
1139   T SecondIter;
1140   T SecondEnd;
1141   // Match status of the current step.
1142   MatchStatus Status;
1143 };
1144 } // end anonymous namespace
1145 
1146 template <class T> void MatchStep<T>::updateOneStep() {
1147   switch (Status) {
1148   case MS_Match:
1149     ++FirstIter;
1150     ++SecondIter;
1151     break;
1152   case MS_FirstUnique:
1153     ++FirstIter;
1154     break;
1155   case MS_SecondUnique:
1156     ++SecondIter;
1157     break;
1158   case MS_None:
1159     break;
1160   }
1161 
1162   // Update Status according to iterators at the current step.
1163   if (areBothFinished())
1164     return;
1165   if (FirstIter != FirstEnd &&
1166       (SecondIter == SecondEnd || FirstIter->first < SecondIter->first))
1167     Status = MS_FirstUnique;
1168   else if (SecondIter != SecondEnd &&
1169            (FirstIter == FirstEnd || SecondIter->first < FirstIter->first))
1170     Status = MS_SecondUnique;
1171   else
1172     Status = MS_Match;
1173 }
1174 
1175 // Return the sum of line/block samples, the max line/block sample, and the
1176 // number of line/block samples above the given threshold in a function
1177 // including its inlinees.
1178 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func,
1179                                FuncSampleStats &FuncStats,
1180                                uint64_t HotThreshold) {
1181   for (const auto &L : Func.getBodySamples()) {
1182     uint64_t Sample = L.second.getSamples();
1183     FuncStats.SampleSum += Sample;
1184     FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample);
1185     if (Sample >= HotThreshold)
1186       ++FuncStats.HotBlockCount;
1187   }
1188 
1189   for (const auto &C : Func.getCallsiteSamples()) {
1190     for (const auto &F : C.second)
1191       getFuncSampleStats(F.second, FuncStats, HotThreshold);
1192   }
1193 }
1194 
1195 /// Predicate that determines if a function is hot with a given threshold. We
1196 /// keep it separate from its callsites for possible extension in the future.
1197 static bool isFunctionHot(const FuncSampleStats &FuncStats,
1198                           uint64_t HotThreshold) {
1199   // We intentionally compare the maximum sample count in a function with the
1200   // HotThreshold to get an approximate determination on hot functions.
1201   return (FuncStats.MaxSample >= HotThreshold);
1202 }
1203 
1204 namespace {
1205 class SampleOverlapAggregator {
1206 public:
1207   SampleOverlapAggregator(const std::string &BaseFilename,
1208                           const std::string &TestFilename,
1209                           double LowSimilarityThreshold, double Epsilon,
1210                           const OverlapFuncFilters &FuncFilter)
1211       : BaseFilename(BaseFilename), TestFilename(TestFilename),
1212         LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon),
1213         FuncFilter(FuncFilter) {}
1214 
1215   /// Detect 0-sample input profile and report to output stream. This interface
1216   /// should be called after loadProfiles().
1217   bool detectZeroSampleProfile(raw_fd_ostream &OS) const;
1218 
1219   /// Write out function-level similarity statistics for functions specified by
1220   /// options --function, --value-cutoff, and --similarity-cutoff.
1221   void dumpFuncSimilarity(raw_fd_ostream &OS) const;
1222 
1223   /// Write out program-level similarity and overlap statistics.
1224   void dumpProgramSummary(raw_fd_ostream &OS) const;
1225 
1226   /// Write out hot-function and hot-block statistics for base_profile,
1227   /// test_profile, and their overlap. For both cases, the overlap HO is
1228   /// calculated as follows:
1229   ///    Given the number of functions (or blocks) that are hot in both profiles
1230   ///    HCommon and the number of functions (or blocks) that are hot in at
1231   ///    least one profile HUnion, HO = HCommon / HUnion.
1232   void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const;
1233 
1234   /// This function tries matching functions in base and test profiles. For each
1235   /// pair of matched functions, it aggregates the function-level
1236   /// similarity into a profile-level similarity. It also dump function-level
1237   /// similarity information of functions specified by --function,
1238   /// --value-cutoff, and --similarity-cutoff options. The program-level
1239   /// similarity PS is computed as follows:
1240   ///     Given function-level similarity FS(A) for all function A, the
1241   ///     weight of function A in base profile WB(A), and the weight of function
1242   ///     A in test profile WT(A), compute PS(base_profile, test_profile) =
1243   ///     sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0
1244   ///     meaning no-overlap.
1245   void computeSampleProfileOverlap(raw_fd_ostream &OS);
1246 
1247   /// Initialize ProfOverlap with the sum of samples in base and test
1248   /// profiles. This function also computes and keeps the sum of samples and
1249   /// max sample counts of each function in BaseStats and TestStats for later
1250   /// use to avoid re-computations.
1251   void initializeSampleProfileOverlap();
1252 
1253   /// Load profiles specified by BaseFilename and TestFilename.
1254   std::error_code loadProfiles();
1255 
1256   using FuncSampleStatsMap =
1257       std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>;
1258 
1259 private:
1260   SampleOverlapStats ProfOverlap;
1261   SampleOverlapStats HotFuncOverlap;
1262   SampleOverlapStats HotBlockOverlap;
1263   std::string BaseFilename;
1264   std::string TestFilename;
1265   std::unique_ptr<sampleprof::SampleProfileReader> BaseReader;
1266   std::unique_ptr<sampleprof::SampleProfileReader> TestReader;
1267   // BaseStats and TestStats hold FuncSampleStats for each function, with
1268   // function name as the key.
1269   FuncSampleStatsMap BaseStats;
1270   FuncSampleStatsMap TestStats;
1271   // Low similarity threshold in floating point number
1272   double LowSimilarityThreshold;
1273   // Block samples above BaseHotThreshold or TestHotThreshold are considered hot
1274   // for tracking hot blocks.
1275   uint64_t BaseHotThreshold;
1276   uint64_t TestHotThreshold;
1277   // A small threshold used to round the results of floating point accumulations
1278   // to resolve imprecision.
1279   const double Epsilon;
1280   std::multimap<double, SampleOverlapStats, std::greater<double>>
1281       FuncSimilarityDump;
1282   // FuncFilter carries specifications in options --value-cutoff and
1283   // --function.
1284   OverlapFuncFilters FuncFilter;
1285   // Column offsets for printing the function-level details table.
1286   static const unsigned int TestWeightCol = 15;
1287   static const unsigned int SimilarityCol = 30;
1288   static const unsigned int OverlapCol = 43;
1289   static const unsigned int BaseUniqueCol = 53;
1290   static const unsigned int TestUniqueCol = 67;
1291   static const unsigned int BaseSampleCol = 81;
1292   static const unsigned int TestSampleCol = 96;
1293   static const unsigned int FuncNameCol = 111;
1294 
1295   /// Return a similarity of two line/block sample counters in the same
1296   /// function in base and test profiles. The line/block-similarity BS(i) is
1297   /// computed as follows:
1298   ///    For an offsets i, given the sample count at i in base profile BB(i),
1299   ///    the sample count at i in test profile BT(i), the sum of sample counts
1300   ///    in this function in base profile SB, and the sum of sample counts in
1301   ///    this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB -
1302   ///    BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap.
1303   double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample,
1304                                 const SampleOverlapStats &FuncOverlap) const;
1305 
1306   void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample,
1307                              uint64_t HotBlockCount);
1308 
1309   void getHotFunctions(const FuncSampleStatsMap &ProfStats,
1310                        FuncSampleStatsMap &HotFunc,
1311                        uint64_t HotThreshold) const;
1312 
1313   void computeHotFuncOverlap();
1314 
1315   /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
1316   /// Difference for two sample units in a matched function according to the
1317   /// given match status.
1318   void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample,
1319                                      uint64_t HotBlockCount,
1320                                      SampleOverlapStats &FuncOverlap,
1321                                      double &Difference, MatchStatus Status);
1322 
1323   /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
1324   /// Difference for unmatched callees that only present in one profile in a
1325   /// matched caller function.
1326   void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func,
1327                                 SampleOverlapStats &FuncOverlap,
1328                                 double &Difference, MatchStatus Status);
1329 
1330   /// This function updates sample overlap statistics of an overlap function in
1331   /// base and test profile. It also calculates a function-internal similarity
1332   /// FIS as follows:
1333   ///    For offsets i that have samples in at least one profile in this
1334   ///    function A, given BS(i) returned by computeBlockSimilarity(), compute
1335   ///    FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with
1336   ///    0.0 meaning no overlap.
1337   double computeSampleFunctionInternalOverlap(
1338       const sampleprof::FunctionSamples &BaseFunc,
1339       const sampleprof::FunctionSamples &TestFunc,
1340       SampleOverlapStats &FuncOverlap);
1341 
1342   /// Function-level similarity (FS) is a weighted value over function internal
1343   /// similarity (FIS). This function computes a function's FS from its FIS by
1344   /// applying the weight.
1345   double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample,
1346                                  uint64_t TestFuncSample) const;
1347 
1348   /// The function-level similarity FS(A) for a function A is computed as
1349   /// follows:
1350   ///     Compute a function-internal similarity FIS(A) by
1351   ///     computeSampleFunctionInternalOverlap(). Then, with the weight of
1352   ///     function A in base profile WB(A), and the weight of function A in test
1353   ///     profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A)))
1354   ///     ranging in [0.0f to 1.0f] with 0.0 meaning no overlap.
1355   double
1356   computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc,
1357                                const sampleprof::FunctionSamples *TestFunc,
1358                                SampleOverlapStats *FuncOverlap,
1359                                uint64_t BaseFuncSample,
1360                                uint64_t TestFuncSample);
1361 
1362   /// Profile-level similarity (PS) is a weighted aggregate over function-level
1363   /// similarities (FS). This method weights the FS value by the function
1364   /// weights in the base and test profiles for the aggregation.
1365   double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample,
1366                             uint64_t TestFuncSample) const;
1367 };
1368 } // end anonymous namespace
1369 
1370 bool SampleOverlapAggregator::detectZeroSampleProfile(
1371     raw_fd_ostream &OS) const {
1372   bool HaveZeroSample = false;
1373   if (ProfOverlap.BaseSample == 0) {
1374     OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n";
1375     HaveZeroSample = true;
1376   }
1377   if (ProfOverlap.TestSample == 0) {
1378     OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n";
1379     HaveZeroSample = true;
1380   }
1381   return HaveZeroSample;
1382 }
1383 
1384 double SampleOverlapAggregator::computeBlockSimilarity(
1385     uint64_t BaseSample, uint64_t TestSample,
1386     const SampleOverlapStats &FuncOverlap) const {
1387   double BaseFrac = 0.0;
1388   double TestFrac = 0.0;
1389   if (FuncOverlap.BaseSample > 0)
1390     BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample;
1391   if (FuncOverlap.TestSample > 0)
1392     TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample;
1393   return 1.0 - std::fabs(BaseFrac - TestFrac);
1394 }
1395 
1396 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample,
1397                                                     uint64_t TestSample,
1398                                                     uint64_t HotBlockCount) {
1399   bool IsBaseHot = (BaseSample >= BaseHotThreshold);
1400   bool IsTestHot = (TestSample >= TestHotThreshold);
1401   if (!IsBaseHot && !IsTestHot)
1402     return;
1403 
1404   HotBlockOverlap.UnionCount += HotBlockCount;
1405   if (IsBaseHot)
1406     HotBlockOverlap.BaseCount += HotBlockCount;
1407   if (IsTestHot)
1408     HotBlockOverlap.TestCount += HotBlockCount;
1409   if (IsBaseHot && IsTestHot)
1410     HotBlockOverlap.OverlapCount += HotBlockCount;
1411 }
1412 
1413 void SampleOverlapAggregator::getHotFunctions(
1414     const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc,
1415     uint64_t HotThreshold) const {
1416   for (const auto &F : ProfStats) {
1417     if (isFunctionHot(F.second, HotThreshold))
1418       HotFunc.emplace(F.first, F.second);
1419   }
1420 }
1421 
1422 void SampleOverlapAggregator::computeHotFuncOverlap() {
1423   FuncSampleStatsMap BaseHotFunc;
1424   getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold);
1425   HotFuncOverlap.BaseCount = BaseHotFunc.size();
1426 
1427   FuncSampleStatsMap TestHotFunc;
1428   getHotFunctions(TestStats, TestHotFunc, TestHotThreshold);
1429   HotFuncOverlap.TestCount = TestHotFunc.size();
1430   HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount;
1431 
1432   for (const auto &F : BaseHotFunc) {
1433     if (TestHotFunc.count(F.first))
1434       ++HotFuncOverlap.OverlapCount;
1435     else
1436       ++HotFuncOverlap.UnionCount;
1437   }
1438 }
1439 
1440 void SampleOverlapAggregator::updateOverlapStatsForFunction(
1441     uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount,
1442     SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) {
1443   assert(Status != MS_None &&
1444          "Match status should be updated before updating overlap statistics");
1445   if (Status == MS_FirstUnique) {
1446     TestSample = 0;
1447     FuncOverlap.BaseUniqueSample += BaseSample;
1448   } else if (Status == MS_SecondUnique) {
1449     BaseSample = 0;
1450     FuncOverlap.TestUniqueSample += TestSample;
1451   } else {
1452     ++FuncOverlap.OverlapCount;
1453   }
1454 
1455   FuncOverlap.UnionSample += std::max(BaseSample, TestSample);
1456   FuncOverlap.OverlapSample += std::min(BaseSample, TestSample);
1457   Difference +=
1458       1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap);
1459   updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount);
1460 }
1461 
1462 void SampleOverlapAggregator::updateForUnmatchedCallee(
1463     const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap,
1464     double &Difference, MatchStatus Status) {
1465   assert((Status == MS_FirstUnique || Status == MS_SecondUnique) &&
1466          "Status must be either of the two unmatched cases");
1467   FuncSampleStats FuncStats;
1468   if (Status == MS_FirstUnique) {
1469     getFuncSampleStats(Func, FuncStats, BaseHotThreshold);
1470     updateOverlapStatsForFunction(FuncStats.SampleSum, 0,
1471                                   FuncStats.HotBlockCount, FuncOverlap,
1472                                   Difference, Status);
1473   } else {
1474     getFuncSampleStats(Func, FuncStats, TestHotThreshold);
1475     updateOverlapStatsForFunction(0, FuncStats.SampleSum,
1476                                   FuncStats.HotBlockCount, FuncOverlap,
1477                                   Difference, Status);
1478   }
1479 }
1480 
1481 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap(
1482     const sampleprof::FunctionSamples &BaseFunc,
1483     const sampleprof::FunctionSamples &TestFunc,
1484     SampleOverlapStats &FuncOverlap) {
1485 
1486   using namespace sampleprof;
1487 
1488   double Difference = 0;
1489 
1490   // Accumulate Difference for regular line/block samples in the function.
1491   // We match them through sort-merge join algorithm because
1492   // FunctionSamples::getBodySamples() returns a map of sample counters ordered
1493   // by their offsets.
1494   MatchStep<BodySampleMap::const_iterator> BlockIterStep(
1495       BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(),
1496       TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend());
1497   BlockIterStep.updateOneStep();
1498   while (!BlockIterStep.areBothFinished()) {
1499     uint64_t BaseSample =
1500         BlockIterStep.isFirstFinished()
1501             ? 0
1502             : BlockIterStep.getFirstIter()->second.getSamples();
1503     uint64_t TestSample =
1504         BlockIterStep.isSecondFinished()
1505             ? 0
1506             : BlockIterStep.getSecondIter()->second.getSamples();
1507     updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap,
1508                                   Difference, BlockIterStep.getMatchStatus());
1509 
1510     BlockIterStep.updateOneStep();
1511   }
1512 
1513   // Accumulate Difference for callsite lines in the function. We match
1514   // them through sort-merge algorithm because
1515   // FunctionSamples::getCallsiteSamples() returns a map of callsite records
1516   // ordered by their offsets.
1517   MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep(
1518       BaseFunc.getCallsiteSamples().cbegin(),
1519       BaseFunc.getCallsiteSamples().cend(),
1520       TestFunc.getCallsiteSamples().cbegin(),
1521       TestFunc.getCallsiteSamples().cend());
1522   CallsiteIterStep.updateOneStep();
1523   while (!CallsiteIterStep.areBothFinished()) {
1524     MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus();
1525     assert(CallsiteStepStatus != MS_None &&
1526            "Match status should be updated before entering loop body");
1527 
1528     if (CallsiteStepStatus != MS_Match) {
1529       auto Callsite = (CallsiteStepStatus == MS_FirstUnique)
1530                           ? CallsiteIterStep.getFirstIter()
1531                           : CallsiteIterStep.getSecondIter();
1532       for (const auto &F : Callsite->second)
1533         updateForUnmatchedCallee(F.second, FuncOverlap, Difference,
1534                                  CallsiteStepStatus);
1535     } else {
1536       // There may be multiple inlinees at the same offset, so we need to try
1537       // matching all of them. This match is implemented through sort-merge
1538       // algorithm because callsite records at the same offset are ordered by
1539       // function names.
1540       MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep(
1541           CallsiteIterStep.getFirstIter()->second.cbegin(),
1542           CallsiteIterStep.getFirstIter()->second.cend(),
1543           CallsiteIterStep.getSecondIter()->second.cbegin(),
1544           CallsiteIterStep.getSecondIter()->second.cend());
1545       CalleeIterStep.updateOneStep();
1546       while (!CalleeIterStep.areBothFinished()) {
1547         MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus();
1548         if (CalleeStepStatus != MS_Match) {
1549           auto Callee = (CalleeStepStatus == MS_FirstUnique)
1550                             ? CalleeIterStep.getFirstIter()
1551                             : CalleeIterStep.getSecondIter();
1552           updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference,
1553                                    CalleeStepStatus);
1554         } else {
1555           // An inlined function can contain other inlinees inside, so compute
1556           // the Difference recursively.
1557           Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap(
1558                                       CalleeIterStep.getFirstIter()->second,
1559                                       CalleeIterStep.getSecondIter()->second,
1560                                       FuncOverlap);
1561         }
1562         CalleeIterStep.updateOneStep();
1563       }
1564     }
1565     CallsiteIterStep.updateOneStep();
1566   }
1567 
1568   // Difference reflects the total differences of line/block samples in this
1569   // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to
1570   // reflect the similarity between function profiles in [0.0f to 1.0f].
1571   return (2.0 - Difference) / 2;
1572 }
1573 
1574 double SampleOverlapAggregator::weightForFuncSimilarity(
1575     double FuncInternalSimilarity, uint64_t BaseFuncSample,
1576     uint64_t TestFuncSample) const {
1577   // Compute the weight as the distance between the function weights in two
1578   // profiles.
1579   double BaseFrac = 0.0;
1580   double TestFrac = 0.0;
1581   assert(ProfOverlap.BaseSample > 0 &&
1582          "Total samples in base profile should be greater than 0");
1583   BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample;
1584   assert(ProfOverlap.TestSample > 0 &&
1585          "Total samples in test profile should be greater than 0");
1586   TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample;
1587   double WeightDistance = std::fabs(BaseFrac - TestFrac);
1588 
1589   // Take WeightDistance into the similarity.
1590   return FuncInternalSimilarity * (1 - WeightDistance);
1591 }
1592 
1593 double
1594 SampleOverlapAggregator::weightByImportance(double FuncSimilarity,
1595                                             uint64_t BaseFuncSample,
1596                                             uint64_t TestFuncSample) const {
1597 
1598   double BaseFrac = 0.0;
1599   double TestFrac = 0.0;
1600   assert(ProfOverlap.BaseSample > 0 &&
1601          "Total samples in base profile should be greater than 0");
1602   BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0;
1603   assert(ProfOverlap.TestSample > 0 &&
1604          "Total samples in test profile should be greater than 0");
1605   TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0;
1606   return FuncSimilarity * (BaseFrac + TestFrac);
1607 }
1608 
1609 double SampleOverlapAggregator::computeSampleFunctionOverlap(
1610     const sampleprof::FunctionSamples *BaseFunc,
1611     const sampleprof::FunctionSamples *TestFunc,
1612     SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample,
1613     uint64_t TestFuncSample) {
1614   // Default function internal similarity before weighted, meaning two functions
1615   // has no overlap.
1616   const double DefaultFuncInternalSimilarity = 0;
1617   double FuncSimilarity;
1618   double FuncInternalSimilarity;
1619 
1620   // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap.
1621   // In this case, we use DefaultFuncInternalSimilarity as the function internal
1622   // similarity.
1623   if (!BaseFunc || !TestFunc) {
1624     FuncInternalSimilarity = DefaultFuncInternalSimilarity;
1625   } else {
1626     assert(FuncOverlap != nullptr &&
1627            "FuncOverlap should be provided in this case");
1628     FuncInternalSimilarity = computeSampleFunctionInternalOverlap(
1629         *BaseFunc, *TestFunc, *FuncOverlap);
1630     // Now, FuncInternalSimilarity may be a little less than 0 due to
1631     // imprecision of floating point accumulations. Make it zero if the
1632     // difference is below Epsilon.
1633     FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon)
1634                                  ? 0
1635                                  : FuncInternalSimilarity;
1636   }
1637   FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity,
1638                                            BaseFuncSample, TestFuncSample);
1639   return FuncSimilarity;
1640 }
1641 
1642 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) {
1643   using namespace sampleprof;
1644 
1645   std::unordered_map<SampleContext, const FunctionSamples *,
1646                      SampleContext::Hash>
1647       BaseFuncProf;
1648   const auto &BaseProfiles = BaseReader->getProfiles();
1649   for (const auto &BaseFunc : BaseProfiles) {
1650     BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second));
1651   }
1652   ProfOverlap.UnionCount = BaseFuncProf.size();
1653 
1654   const auto &TestProfiles = TestReader->getProfiles();
1655   for (const auto &TestFunc : TestProfiles) {
1656     SampleOverlapStats FuncOverlap;
1657     FuncOverlap.TestName = TestFunc.second.getContext();
1658     assert(TestStats.count(FuncOverlap.TestName) &&
1659            "TestStats should have records for all functions in test profile "
1660            "except inlinees");
1661     FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum;
1662 
1663     bool Matched = false;
1664     const auto Match = BaseFuncProf.find(FuncOverlap.TestName);
1665     if (Match == BaseFuncProf.end()) {
1666       const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName];
1667       ++ProfOverlap.TestUniqueCount;
1668       ProfOverlap.TestUniqueSample += FuncStats.SampleSum;
1669       FuncOverlap.TestUniqueSample = FuncStats.SampleSum;
1670 
1671       updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount);
1672 
1673       double FuncSimilarity = computeSampleFunctionOverlap(
1674           nullptr, nullptr, nullptr, 0, FuncStats.SampleSum);
1675       ProfOverlap.Similarity +=
1676           weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum);
1677 
1678       ++ProfOverlap.UnionCount;
1679       ProfOverlap.UnionSample += FuncStats.SampleSum;
1680     } else {
1681       ++ProfOverlap.OverlapCount;
1682 
1683       // Two functions match with each other. Compute function-level overlap and
1684       // aggregate them into profile-level overlap.
1685       FuncOverlap.BaseName = Match->second->getContext();
1686       assert(BaseStats.count(FuncOverlap.BaseName) &&
1687              "BaseStats should have records for all functions in base profile "
1688              "except inlinees");
1689       FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum;
1690 
1691       FuncOverlap.Similarity = computeSampleFunctionOverlap(
1692           Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample,
1693           FuncOverlap.TestSample);
1694       ProfOverlap.Similarity +=
1695           weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample,
1696                              FuncOverlap.TestSample);
1697       ProfOverlap.OverlapSample += FuncOverlap.OverlapSample;
1698       ProfOverlap.UnionSample += FuncOverlap.UnionSample;
1699 
1700       // Accumulate the percentage of base unique and test unique samples into
1701       // ProfOverlap.
1702       ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample;
1703       ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample;
1704 
1705       // Remove matched base functions for later reporting functions not found
1706       // in test profile.
1707       BaseFuncProf.erase(Match);
1708       Matched = true;
1709     }
1710 
1711     // Print function-level similarity information if specified by options.
1712     assert(TestStats.count(FuncOverlap.TestName) &&
1713            "TestStats should have records for all functions in test profile "
1714            "except inlinees");
1715     if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff ||
1716         (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) ||
1717         (Matched && !FuncFilter.NameFilter.empty() &&
1718          FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) !=
1719              std::string::npos)) {
1720       assert(ProfOverlap.BaseSample > 0 &&
1721              "Total samples in base profile should be greater than 0");
1722       FuncOverlap.BaseWeight =
1723           static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample;
1724       assert(ProfOverlap.TestSample > 0 &&
1725              "Total samples in test profile should be greater than 0");
1726       FuncOverlap.TestWeight =
1727           static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample;
1728       FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap);
1729     }
1730   }
1731 
1732   // Traverse through functions in base profile but not in test profile.
1733   for (const auto &F : BaseFuncProf) {
1734     assert(BaseStats.count(F.second->getContext()) &&
1735            "BaseStats should have records for all functions in base profile "
1736            "except inlinees");
1737     const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()];
1738     ++ProfOverlap.BaseUniqueCount;
1739     ProfOverlap.BaseUniqueSample += FuncStats.SampleSum;
1740 
1741     updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount);
1742 
1743     double FuncSimilarity = computeSampleFunctionOverlap(
1744         nullptr, nullptr, nullptr, FuncStats.SampleSum, 0);
1745     ProfOverlap.Similarity +=
1746         weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0);
1747 
1748     ProfOverlap.UnionSample += FuncStats.SampleSum;
1749   }
1750 
1751   // Now, ProfSimilarity may be a little greater than 1 due to imprecision
1752   // of floating point accumulations. Make it 1.0 if the difference is below
1753   // Epsilon.
1754   ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon)
1755                                ? 1
1756                                : ProfOverlap.Similarity;
1757 
1758   computeHotFuncOverlap();
1759 }
1760 
1761 void SampleOverlapAggregator::initializeSampleProfileOverlap() {
1762   const auto &BaseProf = BaseReader->getProfiles();
1763   for (const auto &I : BaseProf) {
1764     ++ProfOverlap.BaseCount;
1765     FuncSampleStats FuncStats;
1766     getFuncSampleStats(I.second, FuncStats, BaseHotThreshold);
1767     ProfOverlap.BaseSample += FuncStats.SampleSum;
1768     BaseStats.emplace(I.second.getContext(), FuncStats);
1769   }
1770 
1771   const auto &TestProf = TestReader->getProfiles();
1772   for (const auto &I : TestProf) {
1773     ++ProfOverlap.TestCount;
1774     FuncSampleStats FuncStats;
1775     getFuncSampleStats(I.second, FuncStats, TestHotThreshold);
1776     ProfOverlap.TestSample += FuncStats.SampleSum;
1777     TestStats.emplace(I.second.getContext(), FuncStats);
1778   }
1779 
1780   ProfOverlap.BaseName = StringRef(BaseFilename);
1781   ProfOverlap.TestName = StringRef(TestFilename);
1782 }
1783 
1784 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const {
1785   using namespace sampleprof;
1786 
1787   if (FuncSimilarityDump.empty())
1788     return;
1789 
1790   formatted_raw_ostream FOS(OS);
1791   FOS << "Function-level details:\n";
1792   FOS << "Base weight";
1793   FOS.PadToColumn(TestWeightCol);
1794   FOS << "Test weight";
1795   FOS.PadToColumn(SimilarityCol);
1796   FOS << "Similarity";
1797   FOS.PadToColumn(OverlapCol);
1798   FOS << "Overlap";
1799   FOS.PadToColumn(BaseUniqueCol);
1800   FOS << "Base unique";
1801   FOS.PadToColumn(TestUniqueCol);
1802   FOS << "Test unique";
1803   FOS.PadToColumn(BaseSampleCol);
1804   FOS << "Base samples";
1805   FOS.PadToColumn(TestSampleCol);
1806   FOS << "Test samples";
1807   FOS.PadToColumn(FuncNameCol);
1808   FOS << "Function name\n";
1809   for (const auto &F : FuncSimilarityDump) {
1810     double OverlapPercent =
1811         F.second.UnionSample > 0
1812             ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample
1813             : 0;
1814     double BaseUniquePercent =
1815         F.second.BaseSample > 0
1816             ? static_cast<double>(F.second.BaseUniqueSample) /
1817                   F.second.BaseSample
1818             : 0;
1819     double TestUniquePercent =
1820         F.second.TestSample > 0
1821             ? static_cast<double>(F.second.TestUniqueSample) /
1822                   F.second.TestSample
1823             : 0;
1824 
1825     FOS << format("%.2f%%", F.second.BaseWeight * 100);
1826     FOS.PadToColumn(TestWeightCol);
1827     FOS << format("%.2f%%", F.second.TestWeight * 100);
1828     FOS.PadToColumn(SimilarityCol);
1829     FOS << format("%.2f%%", F.second.Similarity * 100);
1830     FOS.PadToColumn(OverlapCol);
1831     FOS << format("%.2f%%", OverlapPercent * 100);
1832     FOS.PadToColumn(BaseUniqueCol);
1833     FOS << format("%.2f%%", BaseUniquePercent * 100);
1834     FOS.PadToColumn(TestUniqueCol);
1835     FOS << format("%.2f%%", TestUniquePercent * 100);
1836     FOS.PadToColumn(BaseSampleCol);
1837     FOS << F.second.BaseSample;
1838     FOS.PadToColumn(TestSampleCol);
1839     FOS << F.second.TestSample;
1840     FOS.PadToColumn(FuncNameCol);
1841     FOS << F.second.TestName.toString() << "\n";
1842   }
1843 }
1844 
1845 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const {
1846   OS << "Profile overlap infomation for base_profile: "
1847      << ProfOverlap.BaseName.toString()
1848      << " and test_profile: " << ProfOverlap.TestName.toString()
1849      << "\nProgram level:\n";
1850 
1851   OS << "  Whole program profile similarity: "
1852      << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n";
1853 
1854   assert(ProfOverlap.UnionSample > 0 &&
1855          "Total samples in two profile should be greater than 0");
1856   double OverlapPercent =
1857       static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample;
1858   assert(ProfOverlap.BaseSample > 0 &&
1859          "Total samples in base profile should be greater than 0");
1860   double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) /
1861                              ProfOverlap.BaseSample;
1862   assert(ProfOverlap.TestSample > 0 &&
1863          "Total samples in test profile should be greater than 0");
1864   double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) /
1865                              ProfOverlap.TestSample;
1866 
1867   OS << "  Whole program sample overlap: "
1868      << format("%.3f%%", OverlapPercent * 100) << "\n";
1869   OS << "    percentage of samples unique in base profile: "
1870      << format("%.3f%%", BaseUniquePercent * 100) << "\n";
1871   OS << "    percentage of samples unique in test profile: "
1872      << format("%.3f%%", TestUniquePercent * 100) << "\n";
1873   OS << "    total samples in base profile: " << ProfOverlap.BaseSample << "\n"
1874      << "    total samples in test profile: " << ProfOverlap.TestSample << "\n";
1875 
1876   assert(ProfOverlap.UnionCount > 0 &&
1877          "There should be at least one function in two input profiles");
1878   double FuncOverlapPercent =
1879       static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount;
1880   OS << "  Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100)
1881      << "\n";
1882   OS << "    overlap functions: " << ProfOverlap.OverlapCount << "\n";
1883   OS << "    functions unique in base profile: " << ProfOverlap.BaseUniqueCount
1884      << "\n";
1885   OS << "    functions unique in test profile: " << ProfOverlap.TestUniqueCount
1886      << "\n";
1887 }
1888 
1889 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap(
1890     raw_fd_ostream &OS) const {
1891   assert(HotFuncOverlap.UnionCount > 0 &&
1892          "There should be at least one hot function in two input profiles");
1893   OS << "  Hot-function overlap: "
1894      << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) /
1895                              HotFuncOverlap.UnionCount * 100)
1896      << "\n";
1897   OS << "    overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n";
1898   OS << "    hot functions unique in base profile: "
1899      << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n";
1900   OS << "    hot functions unique in test profile: "
1901      << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n";
1902 
1903   assert(HotBlockOverlap.UnionCount > 0 &&
1904          "There should be at least one hot block in two input profiles");
1905   OS << "  Hot-block overlap: "
1906      << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) /
1907                              HotBlockOverlap.UnionCount * 100)
1908      << "\n";
1909   OS << "    overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n";
1910   OS << "    hot blocks unique in base profile: "
1911      << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n";
1912   OS << "    hot blocks unique in test profile: "
1913      << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n";
1914 }
1915 
1916 std::error_code SampleOverlapAggregator::loadProfiles() {
1917   using namespace sampleprof;
1918 
1919   LLVMContext Context;
1920   auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context,
1921                                                      FSDiscriminatorPassOption);
1922   if (std::error_code EC = BaseReaderOrErr.getError())
1923     exitWithErrorCode(EC, BaseFilename);
1924 
1925   auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context,
1926                                                      FSDiscriminatorPassOption);
1927   if (std::error_code EC = TestReaderOrErr.getError())
1928     exitWithErrorCode(EC, TestFilename);
1929 
1930   BaseReader = std::move(BaseReaderOrErr.get());
1931   TestReader = std::move(TestReaderOrErr.get());
1932 
1933   if (std::error_code EC = BaseReader->read())
1934     exitWithErrorCode(EC, BaseFilename);
1935   if (std::error_code EC = TestReader->read())
1936     exitWithErrorCode(EC, TestFilename);
1937   if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased())
1938     exitWithError(
1939         "cannot compare probe-based profile with non-probe-based profile");
1940   if (BaseReader->profileIsCSFlat() != TestReader->profileIsCSFlat())
1941     exitWithError("cannot compare CS profile with non-CS profile");
1942 
1943   // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in
1944   // profile summary.
1945   ProfileSummary &BasePS = BaseReader->getSummary();
1946   ProfileSummary &TestPS = TestReader->getSummary();
1947   BaseHotThreshold =
1948       ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary());
1949   TestHotThreshold =
1950       ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary());
1951 
1952   return std::error_code();
1953 }
1954 
1955 void overlapSampleProfile(const std::string &BaseFilename,
1956                           const std::string &TestFilename,
1957                           const OverlapFuncFilters &FuncFilter,
1958                           uint64_t SimilarityCutoff, raw_fd_ostream &OS) {
1959   using namespace sampleprof;
1960 
1961   // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics
1962   // report 2--3 places after decimal point in percentage numbers.
1963   SampleOverlapAggregator OverlapAggr(
1964       BaseFilename, TestFilename,
1965       static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter);
1966   if (std::error_code EC = OverlapAggr.loadProfiles())
1967     exitWithErrorCode(EC);
1968 
1969   OverlapAggr.initializeSampleProfileOverlap();
1970   if (OverlapAggr.detectZeroSampleProfile(OS))
1971     return;
1972 
1973   OverlapAggr.computeSampleProfileOverlap(OS);
1974 
1975   OverlapAggr.dumpProgramSummary(OS);
1976   OverlapAggr.dumpHotFuncAndBlockOverlap(OS);
1977   OverlapAggr.dumpFuncSimilarity(OS);
1978 }
1979 
1980 static int overlap_main(int argc, const char *argv[]) {
1981   cl::opt<std::string> BaseFilename(cl::Positional, cl::Required,
1982                                     cl::desc("<base profile file>"));
1983   cl::opt<std::string> TestFilename(cl::Positional, cl::Required,
1984                                     cl::desc("<test profile file>"));
1985   cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"),
1986                               cl::desc("Output file"));
1987   cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output));
1988   cl::opt<bool> IsCS(
1989       "cs", cl::init(false),
1990       cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."));
1991   cl::opt<unsigned long long> ValueCutoff(
1992       "value-cutoff", cl::init(-1),
1993       cl::desc(
1994           "Function level overlap information for every function (with calling "
1995           "context for csspgo) in test "
1996           "profile with max count value greater then the parameter value"));
1997   cl::opt<std::string> FuncNameFilter(
1998       "function",
1999       cl::desc("Function level overlap information for matching functions. For "
2000                "CSSPGO this takes a a function name with calling context"));
2001   cl::opt<unsigned long long> SimilarityCutoff(
2002       "similarity-cutoff", cl::init(0),
2003       cl::desc("For sample profiles, list function names (with calling context "
2004                "for csspgo) for overlapped functions "
2005                "with similarities below the cutoff (percentage times 10000)."));
2006   cl::opt<ProfileKinds> ProfileKind(
2007       cl::desc("Profile kind:"), cl::init(instr),
2008       cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
2009                  clEnumVal(sample, "Sample profile")));
2010   cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n");
2011 
2012   std::error_code EC;
2013   raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_TextWithCRLF);
2014   if (EC)
2015     exitWithErrorCode(EC, Output);
2016 
2017   if (ProfileKind == instr)
2018     overlapInstrProfile(BaseFilename, TestFilename,
2019                         OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS,
2020                         IsCS);
2021   else
2022     overlapSampleProfile(BaseFilename, TestFilename,
2023                          OverlapFuncFilters{ValueCutoff, FuncNameFilter},
2024                          SimilarityCutoff, OS);
2025 
2026   return 0;
2027 }
2028 
2029 namespace {
2030 struct ValueSitesStats {
2031   ValueSitesStats()
2032       : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0),
2033         TotalNumValues(0) {}
2034   uint64_t TotalNumValueSites;
2035   uint64_t TotalNumValueSitesWithValueProfile;
2036   uint64_t TotalNumValues;
2037   std::vector<unsigned> ValueSitesHistogram;
2038 };
2039 } // namespace
2040 
2041 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK,
2042                                   ValueSitesStats &Stats, raw_fd_ostream &OS,
2043                                   InstrProfSymtab *Symtab) {
2044   uint32_t NS = Func.getNumValueSites(VK);
2045   Stats.TotalNumValueSites += NS;
2046   for (size_t I = 0; I < NS; ++I) {
2047     uint32_t NV = Func.getNumValueDataForSite(VK, I);
2048     std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I);
2049     Stats.TotalNumValues += NV;
2050     if (NV) {
2051       Stats.TotalNumValueSitesWithValueProfile++;
2052       if (NV > Stats.ValueSitesHistogram.size())
2053         Stats.ValueSitesHistogram.resize(NV, 0);
2054       Stats.ValueSitesHistogram[NV - 1]++;
2055     }
2056 
2057     uint64_t SiteSum = 0;
2058     for (uint32_t V = 0; V < NV; V++)
2059       SiteSum += VD[V].Count;
2060     if (SiteSum == 0)
2061       SiteSum = 1;
2062 
2063     for (uint32_t V = 0; V < NV; V++) {
2064       OS << "\t[ " << format("%2u", I) << ", ";
2065       if (Symtab == nullptr)
2066         OS << format("%4" PRIu64, VD[V].Value);
2067       else
2068         OS << Symtab->getFuncName(VD[V].Value);
2069       OS << ", " << format("%10" PRId64, VD[V].Count) << " ] ("
2070          << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n";
2071     }
2072   }
2073 }
2074 
2075 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK,
2076                                 ValueSitesStats &Stats) {
2077   OS << "  Total number of sites: " << Stats.TotalNumValueSites << "\n";
2078   OS << "  Total number of sites with values: "
2079      << Stats.TotalNumValueSitesWithValueProfile << "\n";
2080   OS << "  Total number of profiled values: " << Stats.TotalNumValues << "\n";
2081 
2082   OS << "  Value sites histogram:\n\tNumTargets, SiteCount\n";
2083   for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) {
2084     if (Stats.ValueSitesHistogram[I] > 0)
2085       OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n";
2086   }
2087 }
2088 
2089 static int showInstrProfile(const std::string &Filename, bool ShowCounts,
2090                             uint32_t TopN, bool ShowIndirectCallTargets,
2091                             bool ShowMemOPSizes, bool ShowDetailedSummary,
2092                             std::vector<uint32_t> DetailedSummaryCutoffs,
2093                             bool ShowAllFunctions, bool ShowCS,
2094                             uint64_t ValueCutoff, bool OnlyListBelow,
2095                             const std::string &ShowFunction, bool TextFormat,
2096                             bool ShowBinaryIds, bool ShowCovered,
2097                             raw_fd_ostream &OS) {
2098   auto ReaderOrErr = InstrProfReader::create(Filename);
2099   std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs);
2100   if (ShowDetailedSummary && Cutoffs.empty()) {
2101     Cutoffs = {800000, 900000, 950000, 990000, 999000, 999900, 999990};
2102   }
2103   InstrProfSummaryBuilder Builder(std::move(Cutoffs));
2104   if (Error E = ReaderOrErr.takeError())
2105     exitWithError(std::move(E), Filename);
2106 
2107   auto Reader = std::move(ReaderOrErr.get());
2108   bool IsIRInstr = Reader->isIRLevelProfile();
2109   size_t ShownFunctions = 0;
2110   size_t BelowCutoffFunctions = 0;
2111   int NumVPKind = IPVK_Last - IPVK_First + 1;
2112   std::vector<ValueSitesStats> VPStats(NumVPKind);
2113 
2114   auto MinCmp = [](const std::pair<std::string, uint64_t> &v1,
2115                    const std::pair<std::string, uint64_t> &v2) {
2116     return v1.second > v2.second;
2117   };
2118 
2119   std::priority_queue<std::pair<std::string, uint64_t>,
2120                       std::vector<std::pair<std::string, uint64_t>>,
2121                       decltype(MinCmp)>
2122       HottestFuncs(MinCmp);
2123 
2124   if (!TextFormat && OnlyListBelow) {
2125     OS << "The list of functions with the maximum counter less than "
2126        << ValueCutoff << ":\n";
2127   }
2128 
2129   // Add marker so that IR-level instrumentation round-trips properly.
2130   if (TextFormat && IsIRInstr)
2131     OS << ":ir\n";
2132 
2133   for (const auto &Func : *Reader) {
2134     if (Reader->isIRLevelProfile()) {
2135       bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash);
2136       if (FuncIsCS != ShowCS)
2137         continue;
2138     }
2139     bool Show = ShowAllFunctions ||
2140                 (!ShowFunction.empty() && Func.Name.contains(ShowFunction));
2141 
2142     bool doTextFormatDump = (Show && TextFormat);
2143 
2144     if (doTextFormatDump) {
2145       InstrProfSymtab &Symtab = Reader->getSymtab();
2146       InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab,
2147                                          OS);
2148       continue;
2149     }
2150 
2151     assert(Func.Counts.size() > 0 && "function missing entry counter");
2152     Builder.addRecord(Func);
2153 
2154     if (ShowCovered) {
2155       if (std::any_of(Func.Counts.begin(), Func.Counts.end(),
2156                       [](uint64_t C) { return C; }))
2157         OS << Func.Name << "\n";
2158       continue;
2159     }
2160 
2161     uint64_t FuncMax = 0;
2162     uint64_t FuncSum = 0;
2163     for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) {
2164       if (Func.Counts[I] == (uint64_t)-1)
2165         continue;
2166       FuncMax = std::max(FuncMax, Func.Counts[I]);
2167       FuncSum += Func.Counts[I];
2168     }
2169 
2170     if (FuncMax < ValueCutoff) {
2171       ++BelowCutoffFunctions;
2172       if (OnlyListBelow) {
2173         OS << "  " << Func.Name << ": (Max = " << FuncMax
2174            << " Sum = " << FuncSum << ")\n";
2175       }
2176       continue;
2177     } else if (OnlyListBelow)
2178       continue;
2179 
2180     if (TopN) {
2181       if (HottestFuncs.size() == TopN) {
2182         if (HottestFuncs.top().second < FuncMax) {
2183           HottestFuncs.pop();
2184           HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2185         }
2186       } else
2187         HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2188     }
2189 
2190     if (Show) {
2191       if (!ShownFunctions)
2192         OS << "Counters:\n";
2193 
2194       ++ShownFunctions;
2195 
2196       OS << "  " << Func.Name << ":\n"
2197          << "    Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
2198          << "    Counters: " << Func.Counts.size() << "\n";
2199       if (!IsIRInstr)
2200         OS << "    Function count: " << Func.Counts[0] << "\n";
2201 
2202       if (ShowIndirectCallTargets)
2203         OS << "    Indirect Call Site Count: "
2204            << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n";
2205 
2206       uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize);
2207       if (ShowMemOPSizes && NumMemOPCalls > 0)
2208         OS << "    Number of Memory Intrinsics Calls: " << NumMemOPCalls
2209            << "\n";
2210 
2211       if (ShowCounts) {
2212         OS << "    Block counts: [";
2213         size_t Start = (IsIRInstr ? 0 : 1);
2214         for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) {
2215           OS << (I == Start ? "" : ", ") << Func.Counts[I];
2216         }
2217         OS << "]\n";
2218       }
2219 
2220       if (ShowIndirectCallTargets) {
2221         OS << "    Indirect Target Results:\n";
2222         traverseAllValueSites(Func, IPVK_IndirectCallTarget,
2223                               VPStats[IPVK_IndirectCallTarget], OS,
2224                               &(Reader->getSymtab()));
2225       }
2226 
2227       if (ShowMemOPSizes && NumMemOPCalls > 0) {
2228         OS << "    Memory Intrinsic Size Results:\n";
2229         traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS,
2230                               nullptr);
2231       }
2232     }
2233   }
2234   if (Reader->hasError())
2235     exitWithError(Reader->getError(), Filename);
2236 
2237   if (TextFormat || ShowCovered)
2238     return 0;
2239   std::unique_ptr<ProfileSummary> PS(Builder.getSummary());
2240   bool IsIR = Reader->isIRLevelProfile();
2241   OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end");
2242   if (IsIR)
2243     OS << "  entry_first = " << Reader->instrEntryBBEnabled();
2244   OS << "\n";
2245   if (ShowAllFunctions || !ShowFunction.empty())
2246     OS << "Functions shown: " << ShownFunctions << "\n";
2247   OS << "Total functions: " << PS->getNumFunctions() << "\n";
2248   if (ValueCutoff > 0) {
2249     OS << "Number of functions with maximum count (< " << ValueCutoff
2250        << "): " << BelowCutoffFunctions << "\n";
2251     OS << "Number of functions with maximum count (>= " << ValueCutoff
2252        << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n";
2253   }
2254   OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n";
2255   OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n";
2256 
2257   if (TopN) {
2258     std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs;
2259     while (!HottestFuncs.empty()) {
2260       SortedHottestFuncs.emplace_back(HottestFuncs.top());
2261       HottestFuncs.pop();
2262     }
2263     OS << "Top " << TopN
2264        << " functions with the largest internal block counts: \n";
2265     for (auto &hotfunc : llvm::reverse(SortedHottestFuncs))
2266       OS << "  " << hotfunc.first << ", max count = " << hotfunc.second << "\n";
2267   }
2268 
2269   if (ShownFunctions && ShowIndirectCallTargets) {
2270     OS << "Statistics for indirect call sites profile:\n";
2271     showValueSitesStats(OS, IPVK_IndirectCallTarget,
2272                         VPStats[IPVK_IndirectCallTarget]);
2273   }
2274 
2275   if (ShownFunctions && ShowMemOPSizes) {
2276     OS << "Statistics for memory intrinsic calls sizes profile:\n";
2277     showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]);
2278   }
2279 
2280   if (ShowDetailedSummary) {
2281     OS << "Total number of blocks: " << PS->getNumCounts() << "\n";
2282     OS << "Total count: " << PS->getTotalCount() << "\n";
2283     PS->printDetailedSummary(OS);
2284   }
2285 
2286   if (ShowBinaryIds)
2287     if (Error E = Reader->printBinaryIds(OS))
2288       exitWithError(std::move(E), Filename);
2289 
2290   return 0;
2291 }
2292 
2293 static void showSectionInfo(sampleprof::SampleProfileReader *Reader,
2294                             raw_fd_ostream &OS) {
2295   if (!Reader->dumpSectionInfo(OS)) {
2296     WithColor::warning() << "-show-sec-info-only is only supported for "
2297                          << "sample profile in extbinary format and is "
2298                          << "ignored for other formats.\n";
2299     return;
2300   }
2301 }
2302 
2303 namespace {
2304 struct HotFuncInfo {
2305   std::string FuncName;
2306   uint64_t TotalCount;
2307   double TotalCountPercent;
2308   uint64_t MaxCount;
2309   uint64_t EntryCount;
2310 
2311   HotFuncInfo()
2312       : TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), EntryCount(0) {}
2313 
2314   HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES)
2315       : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP),
2316         MaxCount(MS), EntryCount(ES) {}
2317 };
2318 } // namespace
2319 
2320 // Print out detailed information about hot functions in PrintValues vector.
2321 // Users specify titles and offset of every columns through ColumnTitle and
2322 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same
2323 // and at least 4. Besides, users can optionally give a HotFuncMetric string to
2324 // print out or let it be an empty string.
2325 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle,
2326                                 const std::vector<int> &ColumnOffset,
2327                                 const std::vector<HotFuncInfo> &PrintValues,
2328                                 uint64_t HotFuncCount, uint64_t TotalFuncCount,
2329                                 uint64_t HotProfCount, uint64_t TotalProfCount,
2330                                 const std::string &HotFuncMetric,
2331                                 uint32_t TopNFunctions, raw_fd_ostream &OS) {
2332   assert(ColumnOffset.size() == ColumnTitle.size() &&
2333          "ColumnOffset and ColumnTitle should have the same size");
2334   assert(ColumnTitle.size() >= 4 &&
2335          "ColumnTitle should have at least 4 elements");
2336   assert(TotalFuncCount > 0 &&
2337          "There should be at least one function in the profile");
2338   double TotalProfPercent = 0;
2339   if (TotalProfCount > 0)
2340     TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100;
2341 
2342   formatted_raw_ostream FOS(OS);
2343   FOS << HotFuncCount << " out of " << TotalFuncCount
2344       << " functions with profile ("
2345       << format("%.2f%%",
2346                 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100))
2347       << ") are considered hot functions";
2348   if (!HotFuncMetric.empty())
2349     FOS << " (" << HotFuncMetric << ")";
2350   FOS << ".\n";
2351   FOS << HotProfCount << " out of " << TotalProfCount << " profile counts ("
2352       << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n";
2353 
2354   for (size_t I = 0; I < ColumnTitle.size(); ++I) {
2355     FOS.PadToColumn(ColumnOffset[I]);
2356     FOS << ColumnTitle[I];
2357   }
2358   FOS << "\n";
2359 
2360   uint32_t Count = 0;
2361   for (const auto &R : PrintValues) {
2362     if (TopNFunctions && (Count++ == TopNFunctions))
2363       break;
2364     FOS.PadToColumn(ColumnOffset[0]);
2365     FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")";
2366     FOS.PadToColumn(ColumnOffset[1]);
2367     FOS << R.MaxCount;
2368     FOS.PadToColumn(ColumnOffset[2]);
2369     FOS << R.EntryCount;
2370     FOS.PadToColumn(ColumnOffset[3]);
2371     FOS << R.FuncName << "\n";
2372   }
2373 }
2374 
2375 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles,
2376                                ProfileSummary &PS, uint32_t TopN,
2377                                raw_fd_ostream &OS) {
2378   using namespace sampleprof;
2379 
2380   const uint32_t HotFuncCutoff = 990000;
2381   auto &SummaryVector = PS.getDetailedSummary();
2382   uint64_t MinCountThreshold = 0;
2383   for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) {
2384     if (SummaryEntry.Cutoff == HotFuncCutoff) {
2385       MinCountThreshold = SummaryEntry.MinCount;
2386       break;
2387     }
2388   }
2389 
2390   // Traverse all functions in the profile and keep only hot functions.
2391   // The following loop also calculates the sum of total samples of all
2392   // functions.
2393   std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>,
2394                 std::greater<uint64_t>>
2395       HotFunc;
2396   uint64_t ProfileTotalSample = 0;
2397   uint64_t HotFuncSample = 0;
2398   uint64_t HotFuncCount = 0;
2399 
2400   for (const auto &I : Profiles) {
2401     FuncSampleStats FuncStats;
2402     const FunctionSamples &FuncProf = I.second;
2403     ProfileTotalSample += FuncProf.getTotalSamples();
2404     getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold);
2405 
2406     if (isFunctionHot(FuncStats, MinCountThreshold)) {
2407       HotFunc.emplace(FuncProf.getTotalSamples(),
2408                       std::make_pair(&(I.second), FuncStats.MaxSample));
2409       HotFuncSample += FuncProf.getTotalSamples();
2410       ++HotFuncCount;
2411     }
2412   }
2413 
2414   std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample",
2415                                        "Entry sample", "Function name"};
2416   std::vector<int> ColumnOffset{0, 24, 42, 58};
2417   std::string Metric =
2418       std::string("max sample >= ") + std::to_string(MinCountThreshold);
2419   std::vector<HotFuncInfo> PrintValues;
2420   for (const auto &FuncPair : HotFunc) {
2421     const FunctionSamples &Func = *FuncPair.second.first;
2422     double TotalSamplePercent =
2423         (ProfileTotalSample > 0)
2424             ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample
2425             : 0;
2426     PrintValues.emplace_back(HotFuncInfo(
2427         Func.getContext().toString(), Func.getTotalSamples(),
2428         TotalSamplePercent, FuncPair.second.second, Func.getEntrySamples()));
2429   }
2430   dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount,
2431                       Profiles.size(), HotFuncSample, ProfileTotalSample,
2432                       Metric, TopN, OS);
2433 
2434   return 0;
2435 }
2436 
2437 static int showSampleProfile(const std::string &Filename, bool ShowCounts,
2438                              uint32_t TopN, bool ShowAllFunctions,
2439                              bool ShowDetailedSummary,
2440                              const std::string &ShowFunction,
2441                              bool ShowProfileSymbolList,
2442                              bool ShowSectionInfoOnly, bool ShowHotFuncList,
2443                              raw_fd_ostream &OS) {
2444   using namespace sampleprof;
2445   LLVMContext Context;
2446   auto ReaderOrErr =
2447       SampleProfileReader::create(Filename, Context, FSDiscriminatorPassOption);
2448   if (std::error_code EC = ReaderOrErr.getError())
2449     exitWithErrorCode(EC, Filename);
2450 
2451   auto Reader = std::move(ReaderOrErr.get());
2452   if (ShowSectionInfoOnly) {
2453     showSectionInfo(Reader.get(), OS);
2454     return 0;
2455   }
2456 
2457   if (std::error_code EC = Reader->read())
2458     exitWithErrorCode(EC, Filename);
2459 
2460   if (ShowAllFunctions || ShowFunction.empty())
2461     Reader->dump(OS);
2462   else
2463     // TODO: parse context string to support filtering by contexts.
2464     Reader->dumpFunctionProfile(StringRef(ShowFunction), OS);
2465 
2466   if (ShowProfileSymbolList) {
2467     std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
2468         Reader->getProfileSymbolList();
2469     ReaderList->dump(OS);
2470   }
2471 
2472   if (ShowDetailedSummary) {
2473     auto &PS = Reader->getSummary();
2474     PS.printSummary(OS);
2475     PS.printDetailedSummary(OS);
2476   }
2477 
2478   if (ShowHotFuncList || TopN)
2479     showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), TopN, OS);
2480 
2481   return 0;
2482 }
2483 
2484 static int showMemProfProfile(const std::string &Filename,
2485                               const std::string &ProfiledBinary,
2486                               raw_fd_ostream &OS) {
2487   auto ReaderOr =
2488       llvm::memprof::RawMemProfReader::create(Filename, ProfiledBinary);
2489   if (Error E = ReaderOr.takeError())
2490     // Since the error can be related to the profile or the binary we do not
2491     // pass whence. Instead additional context is provided where necessary in
2492     // the error message.
2493     exitWithError(std::move(E), /*Whence*/ "");
2494 
2495   std::unique_ptr<llvm::memprof::RawMemProfReader> Reader(
2496       ReaderOr.get().release());
2497 
2498   Reader->printYAML(OS);
2499   return 0;
2500 }
2501 
2502 static int showDebugInfoCorrelation(const std::string &Filename,
2503                                     bool ShowDetailedSummary,
2504                                     bool ShowProfileSymbolList,
2505                                     raw_fd_ostream &OS) {
2506   std::unique_ptr<InstrProfCorrelator> Correlator;
2507   if (auto Err = InstrProfCorrelator::get(Filename).moveInto(Correlator))
2508     exitWithError(std::move(Err), Filename);
2509   if (auto Err = Correlator->correlateProfileData())
2510     exitWithError(std::move(Err), Filename);
2511 
2512   InstrProfSymtab Symtab;
2513   if (auto Err = Symtab.create(
2514           StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize())))
2515     exitWithError(std::move(Err), Filename);
2516 
2517   if (ShowProfileSymbolList)
2518     Symtab.dumpNames(OS);
2519   // TODO: Read "Profile Data Type" from debug info to compute and show how many
2520   // counters the section holds.
2521   if (ShowDetailedSummary)
2522     OS << "Counters section size: 0x"
2523        << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n";
2524   OS << "Found " << Correlator->getDataSize() << " functions\n";
2525 
2526   return 0;
2527 }
2528 
2529 static int show_main(int argc, const char *argv[]) {
2530   cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>"));
2531 
2532   cl::opt<bool> ShowCounts("counts", cl::init(false),
2533                            cl::desc("Show counter values for shown functions"));
2534   cl::opt<bool> TextFormat(
2535       "text", cl::init(false),
2536       cl::desc("Show instr profile data in text dump format"));
2537   cl::opt<bool> ShowIndirectCallTargets(
2538       "ic-targets", cl::init(false),
2539       cl::desc("Show indirect call site target values for shown functions"));
2540   cl::opt<bool> ShowMemOPSizes(
2541       "memop-sizes", cl::init(false),
2542       cl::desc("Show the profiled sizes of the memory intrinsic calls "
2543                "for shown functions"));
2544   cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false),
2545                                     cl::desc("Show detailed profile summary"));
2546   cl::list<uint32_t> DetailedSummaryCutoffs(
2547       cl::CommaSeparated, "detailed-summary-cutoffs",
2548       cl::desc(
2549           "Cutoff percentages (times 10000) for generating detailed summary"),
2550       cl::value_desc("800000,901000,999999"));
2551   cl::opt<bool> ShowHotFuncList(
2552       "hot-func-list", cl::init(false),
2553       cl::desc("Show profile summary of a list of hot functions"));
2554   cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false),
2555                                  cl::desc("Details for every function"));
2556   cl::opt<bool> ShowCS("showcs", cl::init(false),
2557                        cl::desc("Show context sensitive counts"));
2558   cl::opt<std::string> ShowFunction("function",
2559                                     cl::desc("Details for matching functions"));
2560 
2561   cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
2562                                       cl::init("-"), cl::desc("Output file"));
2563   cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
2564                             cl::aliasopt(OutputFilename));
2565   cl::opt<ProfileKinds> ProfileKind(
2566       cl::desc("Profile kind:"), cl::init(instr),
2567       cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
2568                  clEnumVal(sample, "Sample profile"),
2569                  clEnumVal(memory, "MemProf memory access profile")));
2570   cl::opt<uint32_t> TopNFunctions(
2571       "topn", cl::init(0),
2572       cl::desc("Show the list of functions with the largest internal counts"));
2573   cl::opt<uint32_t> ValueCutoff(
2574       "value-cutoff", cl::init(0),
2575       cl::desc("Set the count value cutoff. Functions with the maximum count "
2576                "less than this value will not be printed out. (Default is 0)"));
2577   cl::opt<bool> OnlyListBelow(
2578       "list-below-cutoff", cl::init(false),
2579       cl::desc("Only output names of functions whose max count values are "
2580                "below the cutoff value"));
2581   cl::opt<bool> ShowProfileSymbolList(
2582       "show-prof-sym-list", cl::init(false),
2583       cl::desc("Show profile symbol list if it exists in the profile. "));
2584   cl::opt<bool> ShowSectionInfoOnly(
2585       "show-sec-info-only", cl::init(false),
2586       cl::desc("Show the information of each section in the sample profile. "
2587                "The flag is only usable when the sample profile is in "
2588                "extbinary format"));
2589   cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false),
2590                               cl::desc("Show binary ids in the profile. "));
2591   cl::opt<std::string> DebugInfoFilename(
2592       "debug-info", cl::init(""),
2593       cl::desc("Read and extract profile metadata from debug info and show "
2594                "the functions it found."));
2595   cl::opt<bool> ShowCovered(
2596       "covered", cl::init(false),
2597       cl::desc("Show only the functions that have been executed."));
2598   cl::opt<std::string> ProfiledBinary(
2599       "profiled-binary", cl::init(""),
2600       cl::desc("Path to binary from which the profile was collected."));
2601 
2602   cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n");
2603 
2604   if (Filename.empty() && DebugInfoFilename.empty())
2605     exitWithError(
2606         "the positional argument '<profdata-file>' is required unless '--" +
2607         DebugInfoFilename.ArgStr + "' is provided");
2608 
2609   if (Filename == OutputFilename) {
2610     errs() << sys::path::filename(argv[0])
2611            << ": Input file name cannot be the same as the output file name!\n";
2612     return 1;
2613   }
2614 
2615   std::error_code EC;
2616   raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
2617   if (EC)
2618     exitWithErrorCode(EC, OutputFilename);
2619 
2620   if (ShowAllFunctions && !ShowFunction.empty())
2621     WithColor::warning() << "-function argument ignored: showing all functions\n";
2622 
2623   if (!DebugInfoFilename.empty())
2624     return showDebugInfoCorrelation(DebugInfoFilename, ShowDetailedSummary,
2625                                     ShowProfileSymbolList, OS);
2626 
2627   if (ProfileKind == instr)
2628     return showInstrProfile(
2629         Filename, ShowCounts, TopNFunctions, ShowIndirectCallTargets,
2630         ShowMemOPSizes, ShowDetailedSummary, DetailedSummaryCutoffs,
2631         ShowAllFunctions, ShowCS, ValueCutoff, OnlyListBelow, ShowFunction,
2632         TextFormat, ShowBinaryIds, ShowCovered, OS);
2633   if (ProfileKind == sample)
2634     return showSampleProfile(Filename, ShowCounts, TopNFunctions,
2635                              ShowAllFunctions, ShowDetailedSummary,
2636                              ShowFunction, ShowProfileSymbolList,
2637                              ShowSectionInfoOnly, ShowHotFuncList, OS);
2638   return showMemProfProfile(Filename, ProfiledBinary, OS);
2639 }
2640 
2641 int main(int argc, const char *argv[]) {
2642   InitLLVM X(argc, argv);
2643 
2644   StringRef ProgName(sys::path::filename(argv[0]));
2645   if (argc > 1) {
2646     int (*func)(int, const char *[]) = nullptr;
2647 
2648     if (strcmp(argv[1], "merge") == 0)
2649       func = merge_main;
2650     else if (strcmp(argv[1], "show") == 0)
2651       func = show_main;
2652     else if (strcmp(argv[1], "overlap") == 0)
2653       func = overlap_main;
2654 
2655     if (func) {
2656       std::string Invocation(ProgName.str() + " " + argv[1]);
2657       argv[1] = Invocation.c_str();
2658       return func(argc - 1, argv + 1);
2659     }
2660 
2661     if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 ||
2662         strcmp(argv[1], "--help") == 0) {
2663 
2664       errs() << "OVERVIEW: LLVM profile data tools\n\n"
2665              << "USAGE: " << ProgName << " <command> [args...]\n"
2666              << "USAGE: " << ProgName << " <command> -help\n\n"
2667              << "See each individual command --help for more details.\n"
2668              << "Available commands: merge, show, overlap\n";
2669       return 0;
2670     }
2671   }
2672 
2673   if (argc < 2)
2674     errs() << ProgName << ": No command specified!\n";
2675   else
2676     errs() << ProgName << ": Unknown command!\n";
2677 
2678   errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n";
2679   return 1;
2680 }
2681