1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/IR/LLVMContext.h" 17 #include "llvm/ProfileData/InstrProfReader.h" 18 #include "llvm/ProfileData/InstrProfWriter.h" 19 #include "llvm/ProfileData/ProfileCommon.h" 20 #include "llvm/ProfileData/SampleProfReader.h" 21 #include "llvm/ProfileData/SampleProfWriter.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Errc.h" 24 #include "llvm/Support/FileSystem.h" 25 #include "llvm/Support/Format.h" 26 #include "llvm/Support/FormattedStream.h" 27 #include "llvm/Support/InitLLVM.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/ThreadPool.h" 31 #include "llvm/Support/Threading.h" 32 #include "llvm/Support/WithColor.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> 35 36 using namespace llvm; 37 38 enum ProfileFormat { 39 PF_None = 0, 40 PF_Text, 41 PF_Compact_Binary, 42 PF_Ext_Binary, 43 PF_GCC, 44 PF_Binary 45 }; 46 47 static void warn(Twine Message, std::string Whence = "", 48 std::string Hint = "") { 49 WithColor::warning(); 50 if (!Whence.empty()) 51 errs() << Whence << ": "; 52 errs() << Message << "\n"; 53 if (!Hint.empty()) 54 WithColor::note() << Hint << "\n"; 55 } 56 57 static void warn(Error E, StringRef Whence = "") { 58 if (E.isA<InstrProfError>()) { 59 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 60 warn(IPE.message(), std::string(Whence), std::string("")); 61 }); 62 } 63 } 64 65 static void exitWithError(Twine Message, std::string Whence = "", 66 std::string Hint = "") { 67 WithColor::error(); 68 if (!Whence.empty()) 69 errs() << Whence << ": "; 70 errs() << Message << "\n"; 71 if (!Hint.empty()) 72 WithColor::note() << Hint << "\n"; 73 ::exit(1); 74 } 75 76 static void exitWithError(Error E, StringRef Whence = "") { 77 if (E.isA<InstrProfError>()) { 78 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 79 instrprof_error instrError = IPE.get(); 80 StringRef Hint = ""; 81 if (instrError == instrprof_error::unrecognized_format) { 82 // Hint for common error of forgetting --sample for sample profiles. 83 Hint = "Perhaps you forgot to use the --sample option?"; 84 } 85 exitWithError(IPE.message(), std::string(Whence), std::string(Hint)); 86 }); 87 } 88 89 exitWithError(toString(std::move(E)), std::string(Whence)); 90 } 91 92 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 93 exitWithError(EC.message(), std::string(Whence)); 94 } 95 96 namespace { 97 enum ProfileKinds { instr, sample }; 98 enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid }; 99 } 100 101 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 102 StringRef Whence = "") { 103 if (FailMode == failIfAnyAreInvalid) 104 exitWithErrorCode(EC, Whence); 105 else 106 warn(EC.message(), std::string(Whence)); 107 } 108 109 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 110 StringRef WhenceFunction = "", 111 bool ShowHint = true) { 112 if (!WhenceFile.empty()) 113 errs() << WhenceFile << ": "; 114 if (!WhenceFunction.empty()) 115 errs() << WhenceFunction << ": "; 116 117 auto IPE = instrprof_error::success; 118 E = handleErrors(std::move(E), 119 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 120 IPE = E->get(); 121 return Error(std::move(E)); 122 }); 123 errs() << toString(std::move(E)) << "\n"; 124 125 if (ShowHint) { 126 StringRef Hint = ""; 127 if (IPE != instrprof_error::success) { 128 switch (IPE) { 129 case instrprof_error::hash_mismatch: 130 case instrprof_error::count_mismatch: 131 case instrprof_error::value_site_count_mismatch: 132 Hint = "Make sure that all profile data to be merged is generated " 133 "from the same binary."; 134 break; 135 default: 136 break; 137 } 138 } 139 140 if (!Hint.empty()) 141 errs() << Hint << "\n"; 142 } 143 } 144 145 namespace { 146 /// A remapper from original symbol names to new symbol names based on a file 147 /// containing a list of mappings from old name to new name. 148 class SymbolRemapper { 149 std::unique_ptr<MemoryBuffer> File; 150 DenseMap<StringRef, StringRef> RemappingTable; 151 152 public: 153 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 154 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 155 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 156 if (!BufOrError) 157 exitWithErrorCode(BufOrError.getError(), InputFile); 158 159 auto Remapper = std::make_unique<SymbolRemapper>(); 160 Remapper->File = std::move(BufOrError.get()); 161 162 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 163 !LineIt.is_at_eof(); ++LineIt) { 164 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 165 if (Parts.first.empty() || Parts.second.empty() || 166 Parts.second.count(' ')) { 167 exitWithError("unexpected line in remapping file", 168 (InputFile + ":" + Twine(LineIt.line_number())).str(), 169 "expected 'old_symbol new_symbol'"); 170 } 171 Remapper->RemappingTable.insert(Parts); 172 } 173 return Remapper; 174 } 175 176 /// Attempt to map the given old symbol into a new symbol. 177 /// 178 /// \return The new symbol, or \p Name if no such symbol was found. 179 StringRef operator()(StringRef Name) { 180 StringRef New = RemappingTable.lookup(Name); 181 return New.empty() ? Name : New; 182 } 183 }; 184 } 185 186 struct WeightedFile { 187 std::string Filename; 188 uint64_t Weight; 189 }; 190 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 191 192 /// Keep track of merged data and reported errors. 193 struct WriterContext { 194 std::mutex Lock; 195 InstrProfWriter Writer; 196 std::vector<std::pair<Error, std::string>> Errors; 197 std::mutex &ErrLock; 198 SmallSet<instrprof_error, 4> &WriterErrorCodes; 199 200 WriterContext(bool IsSparse, std::mutex &ErrLock, 201 SmallSet<instrprof_error, 4> &WriterErrorCodes) 202 : Lock(), Writer(IsSparse), Errors(), ErrLock(ErrLock), 203 WriterErrorCodes(WriterErrorCodes) {} 204 }; 205 206 /// Computer the overlap b/w profile BaseFilename and TestFileName, 207 /// and store the program level result to Overlap. 208 static void overlapInput(const std::string &BaseFilename, 209 const std::string &TestFilename, WriterContext *WC, 210 OverlapStats &Overlap, 211 const OverlapFuncFilters &FuncFilter, 212 raw_fd_ostream &OS, bool IsCS) { 213 auto ReaderOrErr = InstrProfReader::create(TestFilename); 214 if (Error E = ReaderOrErr.takeError()) { 215 // Skip the empty profiles by returning sliently. 216 instrprof_error IPE = InstrProfError::take(std::move(E)); 217 if (IPE != instrprof_error::empty_raw_profile) 218 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename); 219 return; 220 } 221 222 auto Reader = std::move(ReaderOrErr.get()); 223 for (auto &I : *Reader) { 224 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 225 FuncOverlap.setFuncInfo(I.Name, I.Hash); 226 227 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 228 FuncOverlap.dump(OS); 229 } 230 } 231 232 /// Load an input into a writer context. 233 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 234 WriterContext *WC) { 235 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 236 237 // Copy the filename, because llvm::ThreadPool copied the input "const 238 // WeightedFile &" by value, making a reference to the filename within it 239 // invalid outside of this packaged task. 240 std::string Filename = Input.Filename; 241 242 auto ReaderOrErr = InstrProfReader::create(Input.Filename); 243 if (Error E = ReaderOrErr.takeError()) { 244 // Skip the empty profiles by returning sliently. 245 instrprof_error IPE = InstrProfError::take(std::move(E)); 246 if (IPE != instrprof_error::empty_raw_profile) 247 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename); 248 return; 249 } 250 251 auto Reader = std::move(ReaderOrErr.get()); 252 bool IsIRProfile = Reader->isIRLevelProfile(); 253 bool HasCSIRProfile = Reader->hasCSIRLevelProfile(); 254 if (Error E = WC->Writer.setIsIRLevelProfile(IsIRProfile, HasCSIRProfile)) { 255 consumeError(std::move(E)); 256 WC->Errors.emplace_back( 257 make_error<StringError>( 258 "Merge IR generated profile with Clang generated profile.", 259 std::error_code()), 260 Filename); 261 return; 262 } 263 WC->Writer.setInstrEntryBBEnabled(Reader->instrEntryBBEnabled()); 264 265 for (auto &I : *Reader) { 266 if (Remapper) 267 I.Name = (*Remapper)(I.Name); 268 const StringRef FuncName = I.Name; 269 bool Reported = false; 270 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 271 if (Reported) { 272 consumeError(std::move(E)); 273 return; 274 } 275 Reported = true; 276 // Only show hint the first time an error occurs. 277 instrprof_error IPE = InstrProfError::take(std::move(E)); 278 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 279 bool firstTime = WC->WriterErrorCodes.insert(IPE).second; 280 handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename, 281 FuncName, firstTime); 282 }); 283 } 284 if (Reader->hasError()) 285 if (Error E = Reader->getError()) 286 WC->Errors.emplace_back(std::move(E), Filename); 287 } 288 289 /// Merge the \p Src writer context into \p Dst. 290 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 291 for (auto &ErrorPair : Src->Errors) 292 Dst->Errors.push_back(std::move(ErrorPair)); 293 Src->Errors.clear(); 294 295 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 296 instrprof_error IPE = InstrProfError::take(std::move(E)); 297 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 298 bool firstTime = Dst->WriterErrorCodes.insert(IPE).second; 299 if (firstTime) 300 warn(toString(make_error<InstrProfError>(IPE))); 301 }); 302 } 303 304 static void writeInstrProfile(StringRef OutputFilename, 305 ProfileFormat OutputFormat, 306 InstrProfWriter &Writer) { 307 std::error_code EC; 308 raw_fd_ostream Output(OutputFilename.data(), EC, 309 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF 310 : sys::fs::OF_None); 311 if (EC) 312 exitWithErrorCode(EC, OutputFilename); 313 314 if (OutputFormat == PF_Text) { 315 if (Error E = Writer.writeText(Output)) 316 warn(std::move(E)); 317 } else { 318 if (Error E = Writer.write(Output)) 319 warn(std::move(E)); 320 } 321 } 322 323 static void mergeInstrProfile(const WeightedFileVector &Inputs, 324 SymbolRemapper *Remapper, 325 StringRef OutputFilename, 326 ProfileFormat OutputFormat, bool OutputSparse, 327 unsigned NumThreads, FailureMode FailMode) { 328 if (OutputFilename.compare("-") == 0) 329 exitWithError("Cannot write indexed profdata format to stdout."); 330 331 if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary && 332 OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text) 333 exitWithError("Unknown format is specified."); 334 335 std::mutex ErrorLock; 336 SmallSet<instrprof_error, 4> WriterErrorCodes; 337 338 // If NumThreads is not specified, auto-detect a good default. 339 if (NumThreads == 0) 340 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 341 unsigned((Inputs.size() + 1) / 2)); 342 // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails 343 // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't 344 // merged, thus the emitted file ends up with a PF_Unknown kind. 345 346 // Initialize the writer contexts. 347 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 348 for (unsigned I = 0; I < NumThreads; ++I) 349 Contexts.emplace_back(std::make_unique<WriterContext>( 350 OutputSparse, ErrorLock, WriterErrorCodes)); 351 352 if (NumThreads == 1) { 353 for (const auto &Input : Inputs) 354 loadInput(Input, Remapper, Contexts[0].get()); 355 } else { 356 ThreadPool Pool(hardware_concurrency(NumThreads)); 357 358 // Load the inputs in parallel (N/NumThreads serial steps). 359 unsigned Ctx = 0; 360 for (const auto &Input : Inputs) { 361 Pool.async(loadInput, Input, Remapper, Contexts[Ctx].get()); 362 Ctx = (Ctx + 1) % NumThreads; 363 } 364 Pool.wait(); 365 366 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 367 unsigned Mid = Contexts.size() / 2; 368 unsigned End = Contexts.size(); 369 assert(Mid > 0 && "Expected more than one context"); 370 do { 371 for (unsigned I = 0; I < Mid; ++I) 372 Pool.async(mergeWriterContexts, Contexts[I].get(), 373 Contexts[I + Mid].get()); 374 Pool.wait(); 375 if (End & 1) { 376 Pool.async(mergeWriterContexts, Contexts[0].get(), 377 Contexts[End - 1].get()); 378 Pool.wait(); 379 } 380 End = Mid; 381 Mid /= 2; 382 } while (Mid > 0); 383 } 384 385 // Handle deferred errors encountered during merging. If the number of errors 386 // is equal to the number of inputs the merge failed. 387 unsigned NumErrors = 0; 388 for (std::unique_ptr<WriterContext> &WC : Contexts) { 389 for (auto &ErrorPair : WC->Errors) { 390 ++NumErrors; 391 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 392 } 393 } 394 if (NumErrors == Inputs.size() || 395 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 396 exitWithError("No profiles could be merged."); 397 398 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 399 } 400 401 /// The profile entry for a function in instrumentation profile. 402 struct InstrProfileEntry { 403 uint64_t MaxCount = 0; 404 float ZeroCounterRatio = 0.0; 405 InstrProfRecord *ProfRecord; 406 InstrProfileEntry(InstrProfRecord *Record); 407 InstrProfileEntry() = default; 408 }; 409 410 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 411 ProfRecord = Record; 412 uint64_t CntNum = Record->Counts.size(); 413 uint64_t ZeroCntNum = 0; 414 for (size_t I = 0; I < CntNum; ++I) { 415 MaxCount = std::max(MaxCount, Record->Counts[I]); 416 ZeroCntNum += !Record->Counts[I]; 417 } 418 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 419 } 420 421 /// Either set all the counters in the instr profile entry \p IFE to -1 422 /// in order to drop the profile or scale up the counters in \p IFP to 423 /// be above hot threshold. We use the ratio of zero counters in the 424 /// profile of a function to decide the profile is helpful or harmful 425 /// for performance, and to choose whether to scale up or drop it. 426 static void updateInstrProfileEntry(InstrProfileEntry &IFE, 427 uint64_t HotInstrThreshold, 428 float ZeroCounterThreshold) { 429 InstrProfRecord *ProfRecord = IFE.ProfRecord; 430 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 431 // If all or most of the counters of the function are zero, the 432 // profile is unaccountable and shuld be dropped. Reset all the 433 // counters to be -1 and PGO profile-use will drop the profile. 434 // All counters being -1 also implies that the function is hot so 435 // PGO profile-use will also set the entry count metadata to be 436 // above hot threshold. 437 for (size_t I = 0; I < ProfRecord->Counts.size(); ++I) 438 ProfRecord->Counts[I] = -1; 439 return; 440 } 441 442 // Scale up the MaxCount to be multiple times above hot threshold. 443 const unsigned MultiplyFactor = 3; 444 uint64_t Numerator = HotInstrThreshold * MultiplyFactor; 445 uint64_t Denominator = IFE.MaxCount; 446 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 447 warn(toString(make_error<InstrProfError>(E))); 448 }); 449 } 450 451 const uint64_t ColdPercentileIdx = 15; 452 const uint64_t HotPercentileIdx = 11; 453 454 /// Adjust the instr profile in \p WC based on the sample profile in 455 /// \p Reader. 456 static void 457 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 458 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 459 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 460 unsigned InstrProfColdThreshold) { 461 // Function to its entry in instr profile. 462 StringMap<InstrProfileEntry> InstrProfileMap; 463 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 464 for (auto &PD : WC->Writer.getProfileData()) { 465 // Populate IPBuilder. 466 for (const auto &PDV : PD.getValue()) { 467 InstrProfRecord Record = PDV.second; 468 IPBuilder.addRecord(Record); 469 } 470 471 // If a function has multiple entries in instr profile, skip it. 472 if (PD.getValue().size() != 1) 473 continue; 474 475 // Initialize InstrProfileMap. 476 InstrProfRecord *R = &PD.getValue().begin()->second; 477 InstrProfileMap[PD.getKey()] = InstrProfileEntry(R); 478 } 479 480 ProfileSummary InstrPS = *IPBuilder.getSummary(); 481 ProfileSummary SamplePS = Reader->getSummary(); 482 483 // Compute cold thresholds for instr profile and sample profile. 484 uint64_t ColdSampleThreshold = 485 ProfileSummaryBuilder::getEntryForPercentile( 486 SamplePS.getDetailedSummary(), 487 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 488 .MinCount; 489 uint64_t HotInstrThreshold = 490 ProfileSummaryBuilder::getEntryForPercentile( 491 InstrPS.getDetailedSummary(), 492 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 493 .MinCount; 494 uint64_t ColdInstrThreshold = 495 InstrProfColdThreshold 496 ? InstrProfColdThreshold 497 : ProfileSummaryBuilder::getEntryForPercentile( 498 InstrPS.getDetailedSummary(), 499 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 500 .MinCount; 501 502 // Find hot/warm functions in sample profile which is cold in instr profile 503 // and adjust the profiles of those functions in the instr profile. 504 for (const auto &PD : Reader->getProfiles()) { 505 StringRef FName = PD.getKey(); 506 const sampleprof::FunctionSamples &FS = PD.getValue(); 507 auto It = InstrProfileMap.find(FName); 508 if (FS.getHeadSamples() > ColdSampleThreshold && 509 It != InstrProfileMap.end() && 510 It->second.MaxCount <= ColdInstrThreshold && 511 FS.getBodySamples().size() >= SupplMinSizeThreshold) { 512 updateInstrProfileEntry(It->second, HotInstrThreshold, 513 ZeroCounterThreshold); 514 } 515 } 516 } 517 518 /// The main function to supplement instr profile with sample profile. 519 /// \Inputs contains the instr profile. \p SampleFilename specifies the 520 /// sample profile. \p OutputFilename specifies the output profile name. 521 /// \p OutputFormat specifies the output profile format. \p OutputSparse 522 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 523 /// specifies the minimal size for the functions whose profile will be 524 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 525 /// a function contains too many zero counters and whether its profile 526 /// should be dropped. \p InstrProfColdThreshold is the user specified 527 /// cold threshold which will override the cold threshold got from the 528 /// instr profile summary. 529 static void supplementInstrProfile( 530 const WeightedFileVector &Inputs, StringRef SampleFilename, 531 StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse, 532 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 533 unsigned InstrProfColdThreshold) { 534 if (OutputFilename.compare("-") == 0) 535 exitWithError("Cannot write indexed profdata format to stdout."); 536 if (Inputs.size() != 1) 537 exitWithError("Expect one input to be an instr profile."); 538 if (Inputs[0].Weight != 1) 539 exitWithError("Expect instr profile doesn't have weight."); 540 541 StringRef InstrFilename = Inputs[0].Filename; 542 543 // Read sample profile. 544 LLVMContext Context; 545 auto ReaderOrErr = 546 sampleprof::SampleProfileReader::create(SampleFilename.str(), Context); 547 if (std::error_code EC = ReaderOrErr.getError()) 548 exitWithErrorCode(EC, SampleFilename); 549 auto Reader = std::move(ReaderOrErr.get()); 550 if (std::error_code EC = Reader->read()) 551 exitWithErrorCode(EC, SampleFilename); 552 553 // Read instr profile. 554 std::mutex ErrorLock; 555 SmallSet<instrprof_error, 4> WriterErrorCodes; 556 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 557 WriterErrorCodes); 558 loadInput(Inputs[0], nullptr, WC.get()); 559 if (WC->Errors.size() > 0) 560 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 561 562 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 563 InstrProfColdThreshold); 564 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 565 } 566 567 /// Make a copy of the given function samples with all symbol names remapped 568 /// by the provided symbol remapper. 569 static sampleprof::FunctionSamples 570 remapSamples(const sampleprof::FunctionSamples &Samples, 571 SymbolRemapper &Remapper, sampleprof_error &Error) { 572 sampleprof::FunctionSamples Result; 573 Result.setName(Remapper(Samples.getName())); 574 Result.addTotalSamples(Samples.getTotalSamples()); 575 Result.addHeadSamples(Samples.getHeadSamples()); 576 for (const auto &BodySample : Samples.getBodySamples()) { 577 Result.addBodySamples(BodySample.first.LineOffset, 578 BodySample.first.Discriminator, 579 BodySample.second.getSamples()); 580 for (const auto &Target : BodySample.second.getCallTargets()) { 581 Result.addCalledTargetSamples(BodySample.first.LineOffset, 582 BodySample.first.Discriminator, 583 Remapper(Target.first()), Target.second); 584 } 585 } 586 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 587 sampleprof::FunctionSamplesMap &Target = 588 Result.functionSamplesAt(CallsiteSamples.first); 589 for (const auto &Callsite : CallsiteSamples.second) { 590 sampleprof::FunctionSamples Remapped = 591 remapSamples(Callsite.second, Remapper, Error); 592 MergeResult(Error, 593 Target[std::string(Remapped.getName())].merge(Remapped)); 594 } 595 } 596 return Result; 597 } 598 599 static sampleprof::SampleProfileFormat FormatMap[] = { 600 sampleprof::SPF_None, 601 sampleprof::SPF_Text, 602 sampleprof::SPF_Compact_Binary, 603 sampleprof::SPF_Ext_Binary, 604 sampleprof::SPF_GCC, 605 sampleprof::SPF_Binary}; 606 607 static std::unique_ptr<MemoryBuffer> 608 getInputFileBuf(const StringRef &InputFile) { 609 if (InputFile == "") 610 return {}; 611 612 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 613 if (!BufOrError) 614 exitWithErrorCode(BufOrError.getError(), InputFile); 615 616 return std::move(*BufOrError); 617 } 618 619 static void populateProfileSymbolList(MemoryBuffer *Buffer, 620 sampleprof::ProfileSymbolList &PSL) { 621 if (!Buffer) 622 return; 623 624 SmallVector<StringRef, 32> SymbolVec; 625 StringRef Data = Buffer->getBuffer(); 626 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 627 628 for (StringRef symbol : SymbolVec) 629 PSL.add(symbol); 630 } 631 632 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 633 ProfileFormat OutputFormat, 634 MemoryBuffer *Buffer, 635 sampleprof::ProfileSymbolList &WriterList, 636 bool CompressAllSections, bool UseMD5, 637 bool GenPartialProfile) { 638 populateProfileSymbolList(Buffer, WriterList); 639 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 640 warn("Profile Symbol list is not empty but the output format is not " 641 "ExtBinary format. The list will be lost in the output. "); 642 643 Writer.setProfileSymbolList(&WriterList); 644 645 if (CompressAllSections) { 646 if (OutputFormat != PF_Ext_Binary) 647 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 648 else 649 Writer.setToCompressAllSections(); 650 } 651 if (UseMD5) { 652 if (OutputFormat != PF_Ext_Binary) 653 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 654 else 655 Writer.setUseMD5(); 656 } 657 if (GenPartialProfile) { 658 if (OutputFormat != PF_Ext_Binary) 659 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 660 else 661 Writer.setPartialProfile(); 662 } 663 } 664 665 static void 666 mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper, 667 StringRef OutputFilename, ProfileFormat OutputFormat, 668 StringRef ProfileSymbolListFile, bool CompressAllSections, 669 bool UseMD5, bool GenPartialProfile, FailureMode FailMode) { 670 using namespace sampleprof; 671 StringMap<FunctionSamples> ProfileMap; 672 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 673 LLVMContext Context; 674 sampleprof::ProfileSymbolList WriterList; 675 Optional<bool> ProfileIsProbeBased; 676 Optional<bool> ProfileIsCS; 677 for (const auto &Input : Inputs) { 678 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context); 679 if (std::error_code EC = ReaderOrErr.getError()) { 680 warnOrExitGivenError(FailMode, EC, Input.Filename); 681 continue; 682 } 683 684 // We need to keep the readers around until after all the files are 685 // read so that we do not lose the function names stored in each 686 // reader's memory. The function names are needed to write out the 687 // merged profile map. 688 Readers.push_back(std::move(ReaderOrErr.get())); 689 const auto Reader = Readers.back().get(); 690 if (std::error_code EC = Reader->read()) { 691 warnOrExitGivenError(FailMode, EC, Input.Filename); 692 Readers.pop_back(); 693 continue; 694 } 695 696 StringMap<FunctionSamples> &Profiles = Reader->getProfiles(); 697 if (ProfileIsProbeBased.hasValue() && 698 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) 699 exitWithError( 700 "cannot merge probe-based profile with non-probe-based profile"); 701 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; 702 if (ProfileIsCS.hasValue() && ProfileIsCS != FunctionSamples::ProfileIsCS) 703 exitWithError("cannot merge CS profile with non-CS profile"); 704 ProfileIsCS = FunctionSamples::ProfileIsCS; 705 for (StringMap<FunctionSamples>::iterator I = Profiles.begin(), 706 E = Profiles.end(); 707 I != E; ++I) { 708 sampleprof_error Result = sampleprof_error::success; 709 FunctionSamples Remapped = 710 Remapper ? remapSamples(I->second, *Remapper, Result) 711 : FunctionSamples(); 712 FunctionSamples &Samples = Remapper ? Remapped : I->second; 713 StringRef FName = Samples.getNameWithContext(); 714 MergeResult(Result, ProfileMap[FName].merge(Samples, Input.Weight)); 715 if (Result != sampleprof_error::success) { 716 std::error_code EC = make_error_code(Result); 717 handleMergeWriterError(errorCodeToError(EC), Input.Filename, FName); 718 } 719 } 720 721 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 722 Reader->getProfileSymbolList(); 723 if (ReaderList) 724 WriterList.merge(*ReaderList); 725 } 726 auto WriterOrErr = 727 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 728 if (std::error_code EC = WriterOrErr.getError()) 729 exitWithErrorCode(EC, OutputFilename); 730 731 auto Writer = std::move(WriterOrErr.get()); 732 // WriterList will have StringRef refering to string in Buffer. 733 // Make sure Buffer lives as long as WriterList. 734 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 735 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 736 CompressAllSections, UseMD5, GenPartialProfile); 737 if (std::error_code EC = Writer->write(ProfileMap)) 738 exitWithErrorCode(std::move(EC)); 739 } 740 741 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 742 StringRef WeightStr, FileName; 743 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 744 745 uint64_t Weight; 746 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 747 exitWithError("Input weight must be a positive integer."); 748 749 return {std::string(FileName), Weight}; 750 } 751 752 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 753 StringRef Filename = WF.Filename; 754 uint64_t Weight = WF.Weight; 755 756 // If it's STDIN just pass it on. 757 if (Filename == "-") { 758 WNI.push_back({std::string(Filename), Weight}); 759 return; 760 } 761 762 llvm::sys::fs::file_status Status; 763 llvm::sys::fs::status(Filename, Status); 764 if (!llvm::sys::fs::exists(Status)) 765 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 766 Filename); 767 // If it's a source file, collect it. 768 if (llvm::sys::fs::is_regular_file(Status)) { 769 WNI.push_back({std::string(Filename), Weight}); 770 return; 771 } 772 773 if (llvm::sys::fs::is_directory(Status)) { 774 std::error_code EC; 775 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 776 F != E && !EC; F.increment(EC)) { 777 if (llvm::sys::fs::is_regular_file(F->path())) { 778 addWeightedInput(WNI, {F->path(), Weight}); 779 } 780 } 781 if (EC) 782 exitWithErrorCode(EC, Filename); 783 } 784 } 785 786 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 787 WeightedFileVector &WFV) { 788 if (!Buffer) 789 return; 790 791 SmallVector<StringRef, 8> Entries; 792 StringRef Data = Buffer->getBuffer(); 793 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 794 for (const StringRef &FileWeightEntry : Entries) { 795 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 796 // Skip comments. 797 if (SanitizedEntry.startswith("#")) 798 continue; 799 // If there's no comma, it's an unweighted profile. 800 else if (SanitizedEntry.find(',') == StringRef::npos) 801 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 802 else 803 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 804 } 805 } 806 807 static int merge_main(int argc, const char *argv[]) { 808 cl::list<std::string> InputFilenames(cl::Positional, 809 cl::desc("<filename...>")); 810 cl::list<std::string> WeightedInputFilenames("weighted-input", 811 cl::desc("<weight>,<filename>")); 812 cl::opt<std::string> InputFilenamesFile( 813 "input-files", cl::init(""), 814 cl::desc("Path to file containing newline-separated " 815 "[<weight>,]<filename> entries")); 816 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 817 cl::aliasopt(InputFilenamesFile)); 818 cl::opt<bool> DumpInputFileList( 819 "dump-input-file-list", cl::init(false), cl::Hidden, 820 cl::desc("Dump the list of input files and their weights, then exit")); 821 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 822 cl::desc("Symbol remapping file")); 823 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 824 cl::aliasopt(RemappingFile)); 825 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 826 cl::init("-"), cl::Required, 827 cl::desc("Output file")); 828 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 829 cl::aliasopt(OutputFilename)); 830 cl::opt<ProfileKinds> ProfileKind( 831 cl::desc("Profile kind:"), cl::init(instr), 832 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 833 clEnumVal(sample, "Sample profile"))); 834 cl::opt<ProfileFormat> OutputFormat( 835 cl::desc("Format of output profile"), cl::init(PF_Binary), 836 cl::values( 837 clEnumValN(PF_Binary, "binary", "Binary encoding (default)"), 838 clEnumValN(PF_Compact_Binary, "compbinary", 839 "Compact binary encoding"), 840 clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"), 841 clEnumValN(PF_Text, "text", "Text encoding"), 842 clEnumValN(PF_GCC, "gcc", 843 "GCC encoding (only meaningful for -sample)"))); 844 cl::opt<FailureMode> FailureMode( 845 "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"), 846 cl::values(clEnumValN(failIfAnyAreInvalid, "any", 847 "Fail if any profile is invalid."), 848 clEnumValN(failIfAllAreInvalid, "all", 849 "Fail only if all profiles are invalid."))); 850 cl::opt<bool> OutputSparse("sparse", cl::init(false), 851 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 852 cl::opt<unsigned> NumThreads( 853 "num-threads", cl::init(0), 854 cl::desc("Number of merge threads to use (default: autodetect)")); 855 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 856 cl::aliasopt(NumThreads)); 857 cl::opt<std::string> ProfileSymbolListFile( 858 "prof-sym-list", cl::init(""), 859 cl::desc("Path to file containing the list of function symbols " 860 "used to populate profile symbol list")); 861 cl::opt<bool> CompressAllSections( 862 "compress-all-sections", cl::init(false), cl::Hidden, 863 cl::desc("Compress all sections when writing the profile (only " 864 "meaningful for -extbinary)")); 865 cl::opt<bool> UseMD5( 866 "use-md5", cl::init(false), cl::Hidden, 867 cl::desc("Choose to use MD5 to represent string in name table (only " 868 "meaningful for -extbinary)")); 869 cl::opt<bool> GenPartialProfile( 870 "gen-partial-profile", cl::init(false), cl::Hidden, 871 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 872 cl::opt<std::string> SupplInstrWithSample( 873 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 874 cl::desc("Supplement an instr profile with sample profile, to correct " 875 "the profile unrepresentativeness issue. The sample " 876 "profile is the input of the flag. Output will be in instr " 877 "format (The flag only works with -instr)")); 878 cl::opt<float> ZeroCounterThreshold( 879 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 880 cl::desc("For the function which is cold in instr profile but hot in " 881 "sample profile, if the ratio of the number of zero counters " 882 "divided by the the total number of counters is above the " 883 "threshold, the profile of the function will be regarded as " 884 "being harmful for performance and will be dropped. ")); 885 cl::opt<unsigned> SupplMinSizeThreshold( 886 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 887 cl::desc("If the size of a function is smaller than the threshold, " 888 "assume it can be inlined by PGO early inliner and it won't " 889 "be adjusted based on sample profile. ")); 890 cl::opt<unsigned> InstrProfColdThreshold( 891 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 892 cl::desc("User specified cold threshold for instr profile which will " 893 "override the cold threshold got from profile summary. ")); 894 895 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n"); 896 897 WeightedFileVector WeightedInputs; 898 for (StringRef Filename : InputFilenames) 899 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 900 for (StringRef WeightedFilename : WeightedInputFilenames) 901 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 902 903 // Make sure that the file buffer stays alive for the duration of the 904 // weighted input vector's lifetime. 905 auto Buffer = getInputFileBuf(InputFilenamesFile); 906 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 907 908 if (WeightedInputs.empty()) 909 exitWithError("No input files specified. See " + 910 sys::path::filename(argv[0]) + " -help"); 911 912 if (DumpInputFileList) { 913 for (auto &WF : WeightedInputs) 914 outs() << WF.Weight << "," << WF.Filename << "\n"; 915 return 0; 916 } 917 918 std::unique_ptr<SymbolRemapper> Remapper; 919 if (!RemappingFile.empty()) 920 Remapper = SymbolRemapper::create(RemappingFile); 921 922 if (!SupplInstrWithSample.empty()) { 923 if (ProfileKind != instr) 924 exitWithError( 925 "-supplement-instr-with-sample can only work with -instr. "); 926 927 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename, 928 OutputFormat, OutputSparse, SupplMinSizeThreshold, 929 ZeroCounterThreshold, InstrProfColdThreshold); 930 return 0; 931 } 932 933 if (ProfileKind == instr) 934 mergeInstrProfile(WeightedInputs, Remapper.get(), OutputFilename, 935 OutputFormat, OutputSparse, NumThreads, FailureMode); 936 else 937 mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename, 938 OutputFormat, ProfileSymbolListFile, CompressAllSections, 939 UseMD5, GenPartialProfile, FailureMode); 940 941 return 0; 942 } 943 944 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 945 static void overlapInstrProfile(const std::string &BaseFilename, 946 const std::string &TestFilename, 947 const OverlapFuncFilters &FuncFilter, 948 raw_fd_ostream &OS, bool IsCS) { 949 std::mutex ErrorLock; 950 SmallSet<instrprof_error, 4> WriterErrorCodes; 951 WriterContext Context(false, ErrorLock, WriterErrorCodes); 952 WeightedFile WeightedInput{BaseFilename, 1}; 953 OverlapStats Overlap; 954 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 955 if (E) 956 exitWithError(std::move(E), "Error in getting profile count sums"); 957 if (Overlap.Base.CountSum < 1.0f) { 958 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 959 exit(0); 960 } 961 if (Overlap.Test.CountSum < 1.0f) { 962 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 963 exit(0); 964 } 965 loadInput(WeightedInput, nullptr, &Context); 966 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 967 IsCS); 968 Overlap.dump(OS); 969 } 970 971 namespace { 972 struct SampleOverlapStats { 973 StringRef BaseName; 974 StringRef TestName; 975 // Number of overlap units 976 uint64_t OverlapCount; 977 // Total samples of overlap units 978 uint64_t OverlapSample; 979 // Number of and total samples of units that only present in base or test 980 // profile 981 uint64_t BaseUniqueCount; 982 uint64_t BaseUniqueSample; 983 uint64_t TestUniqueCount; 984 uint64_t TestUniqueSample; 985 // Number of units and total samples in base or test profile 986 uint64_t BaseCount; 987 uint64_t BaseSample; 988 uint64_t TestCount; 989 uint64_t TestSample; 990 // Number of and total samples of units that present in at least one profile 991 uint64_t UnionCount; 992 uint64_t UnionSample; 993 // Weighted similarity 994 double Similarity; 995 // For SampleOverlapStats instances representing functions, weights of the 996 // function in base and test profiles 997 double BaseWeight; 998 double TestWeight; 999 1000 SampleOverlapStats() 1001 : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0), 1002 BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0), 1003 BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0), 1004 UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {} 1005 }; 1006 } // end anonymous namespace 1007 1008 namespace { 1009 struct FuncSampleStats { 1010 uint64_t SampleSum; 1011 uint64_t MaxSample; 1012 uint64_t HotBlockCount; 1013 FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {} 1014 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 1015 uint64_t HotBlockCount) 1016 : SampleSum(SampleSum), MaxSample(MaxSample), 1017 HotBlockCount(HotBlockCount) {} 1018 }; 1019 } // end anonymous namespace 1020 1021 namespace { 1022 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1023 1024 // Class for updating merging steps for two sorted maps. The class should be 1025 // instantiated with a map iterator type. 1026 template <class T> class MatchStep { 1027 public: 1028 MatchStep() = delete; 1029 1030 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1031 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1032 SecondEnd(SecondEnd), Status(MS_None) {} 1033 1034 bool areBothFinished() const { 1035 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1036 } 1037 1038 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1039 1040 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1041 1042 /// Advance one step based on the previous match status unless the previous 1043 /// status is MS_None. Then update Status based on the comparison between two 1044 /// container iterators at the current step. If the previous status is 1045 /// MS_None, it means two iterators are at the beginning and no comparison has 1046 /// been made, so we simply update Status without advancing the iterators. 1047 void updateOneStep(); 1048 1049 T getFirstIter() const { return FirstIter; } 1050 1051 T getSecondIter() const { return SecondIter; } 1052 1053 MatchStatus getMatchStatus() const { return Status; } 1054 1055 private: 1056 // Current iterator and end iterator of the first container. 1057 T FirstIter; 1058 T FirstEnd; 1059 // Current iterator and end iterator of the second container. 1060 T SecondIter; 1061 T SecondEnd; 1062 // Match status of the current step. 1063 MatchStatus Status; 1064 }; 1065 } // end anonymous namespace 1066 1067 template <class T> void MatchStep<T>::updateOneStep() { 1068 switch (Status) { 1069 case MS_Match: 1070 ++FirstIter; 1071 ++SecondIter; 1072 break; 1073 case MS_FirstUnique: 1074 ++FirstIter; 1075 break; 1076 case MS_SecondUnique: 1077 ++SecondIter; 1078 break; 1079 case MS_None: 1080 break; 1081 } 1082 1083 // Update Status according to iterators at the current step. 1084 if (areBothFinished()) 1085 return; 1086 if (FirstIter != FirstEnd && 1087 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1088 Status = MS_FirstUnique; 1089 else if (SecondIter != SecondEnd && 1090 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1091 Status = MS_SecondUnique; 1092 else 1093 Status = MS_Match; 1094 } 1095 1096 // Return the sum of line/block samples, the max line/block sample, and the 1097 // number of line/block samples above the given threshold in a function 1098 // including its inlinees. 1099 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1100 FuncSampleStats &FuncStats, 1101 uint64_t HotThreshold) { 1102 for (const auto &L : Func.getBodySamples()) { 1103 uint64_t Sample = L.second.getSamples(); 1104 FuncStats.SampleSum += Sample; 1105 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1106 if (Sample >= HotThreshold) 1107 ++FuncStats.HotBlockCount; 1108 } 1109 1110 for (const auto &C : Func.getCallsiteSamples()) { 1111 for (const auto &F : C.second) 1112 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1113 } 1114 } 1115 1116 /// Predicate that determines if a function is hot with a given threshold. We 1117 /// keep it separate from its callsites for possible extension in the future. 1118 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1119 uint64_t HotThreshold) { 1120 // We intentionally compare the maximum sample count in a function with the 1121 // HotThreshold to get an approximate determination on hot functions. 1122 return (FuncStats.MaxSample >= HotThreshold); 1123 } 1124 1125 namespace { 1126 class SampleOverlapAggregator { 1127 public: 1128 SampleOverlapAggregator(const std::string &BaseFilename, 1129 const std::string &TestFilename, 1130 double LowSimilarityThreshold, double Epsilon, 1131 const OverlapFuncFilters &FuncFilter) 1132 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1133 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1134 FuncFilter(FuncFilter) {} 1135 1136 /// Detect 0-sample input profile and report to output stream. This interface 1137 /// should be called after loadProfiles(). 1138 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1139 1140 /// Write out function-level similarity statistics for functions specified by 1141 /// options --function, --value-cutoff, and --similarity-cutoff. 1142 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1143 1144 /// Write out program-level similarity and overlap statistics. 1145 void dumpProgramSummary(raw_fd_ostream &OS) const; 1146 1147 /// Write out hot-function and hot-block statistics for base_profile, 1148 /// test_profile, and their overlap. For both cases, the overlap HO is 1149 /// calculated as follows: 1150 /// Given the number of functions (or blocks) that are hot in both profiles 1151 /// HCommon and the number of functions (or blocks) that are hot in at 1152 /// least one profile HUnion, HO = HCommon / HUnion. 1153 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 1154 1155 /// This function tries matching functions in base and test profiles. For each 1156 /// pair of matched functions, it aggregates the function-level 1157 /// similarity into a profile-level similarity. It also dump function-level 1158 /// similarity information of functions specified by --function, 1159 /// --value-cutoff, and --similarity-cutoff options. The program-level 1160 /// similarity PS is computed as follows: 1161 /// Given function-level similarity FS(A) for all function A, the 1162 /// weight of function A in base profile WB(A), and the weight of function 1163 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 1164 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 1165 /// meaning no-overlap. 1166 void computeSampleProfileOverlap(raw_fd_ostream &OS); 1167 1168 /// Initialize ProfOverlap with the sum of samples in base and test 1169 /// profiles. This function also computes and keeps the sum of samples and 1170 /// max sample counts of each function in BaseStats and TestStats for later 1171 /// use to avoid re-computations. 1172 void initializeSampleProfileOverlap(); 1173 1174 /// Load profiles specified by BaseFilename and TestFilename. 1175 std::error_code loadProfiles(); 1176 1177 private: 1178 SampleOverlapStats ProfOverlap; 1179 SampleOverlapStats HotFuncOverlap; 1180 SampleOverlapStats HotBlockOverlap; 1181 std::string BaseFilename; 1182 std::string TestFilename; 1183 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 1184 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 1185 // BaseStats and TestStats hold FuncSampleStats for each function, with 1186 // function name as the key. 1187 StringMap<FuncSampleStats> BaseStats; 1188 StringMap<FuncSampleStats> TestStats; 1189 // Low similarity threshold in floating point number 1190 double LowSimilarityThreshold; 1191 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 1192 // for tracking hot blocks. 1193 uint64_t BaseHotThreshold; 1194 uint64_t TestHotThreshold; 1195 // A small threshold used to round the results of floating point accumulations 1196 // to resolve imprecision. 1197 const double Epsilon; 1198 std::multimap<double, SampleOverlapStats, std::greater<double>> 1199 FuncSimilarityDump; 1200 // FuncFilter carries specifications in options --value-cutoff and 1201 // --function. 1202 OverlapFuncFilters FuncFilter; 1203 // Column offsets for printing the function-level details table. 1204 static const unsigned int TestWeightCol = 15; 1205 static const unsigned int SimilarityCol = 30; 1206 static const unsigned int OverlapCol = 43; 1207 static const unsigned int BaseUniqueCol = 53; 1208 static const unsigned int TestUniqueCol = 67; 1209 static const unsigned int BaseSampleCol = 81; 1210 static const unsigned int TestSampleCol = 96; 1211 static const unsigned int FuncNameCol = 111; 1212 1213 /// Return a similarity of two line/block sample counters in the same 1214 /// function in base and test profiles. The line/block-similarity BS(i) is 1215 /// computed as follows: 1216 /// For an offsets i, given the sample count at i in base profile BB(i), 1217 /// the sample count at i in test profile BT(i), the sum of sample counts 1218 /// in this function in base profile SB, and the sum of sample counts in 1219 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 1220 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 1221 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 1222 const SampleOverlapStats &FuncOverlap) const; 1223 1224 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 1225 uint64_t HotBlockCount); 1226 1227 void getHotFunctions(const StringMap<FuncSampleStats> &ProfStats, 1228 StringMap<FuncSampleStats> &HotFunc, 1229 uint64_t HotThreshold) const; 1230 1231 void computeHotFuncOverlap(); 1232 1233 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1234 /// Difference for two sample units in a matched function according to the 1235 /// given match status. 1236 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 1237 uint64_t HotBlockCount, 1238 SampleOverlapStats &FuncOverlap, 1239 double &Difference, MatchStatus Status); 1240 1241 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1242 /// Difference for unmatched callees that only present in one profile in a 1243 /// matched caller function. 1244 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 1245 SampleOverlapStats &FuncOverlap, 1246 double &Difference, MatchStatus Status); 1247 1248 /// This function updates sample overlap statistics of an overlap function in 1249 /// base and test profile. It also calculates a function-internal similarity 1250 /// FIS as follows: 1251 /// For offsets i that have samples in at least one profile in this 1252 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 1253 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 1254 /// 0.0 meaning no overlap. 1255 double computeSampleFunctionInternalOverlap( 1256 const sampleprof::FunctionSamples &BaseFunc, 1257 const sampleprof::FunctionSamples &TestFunc, 1258 SampleOverlapStats &FuncOverlap); 1259 1260 /// Function-level similarity (FS) is a weighted value over function internal 1261 /// similarity (FIS). This function computes a function's FS from its FIS by 1262 /// applying the weight. 1263 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 1264 uint64_t TestFuncSample) const; 1265 1266 /// The function-level similarity FS(A) for a function A is computed as 1267 /// follows: 1268 /// Compute a function-internal similarity FIS(A) by 1269 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 1270 /// function A in base profile WB(A), and the weight of function A in test 1271 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 1272 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 1273 double 1274 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 1275 const sampleprof::FunctionSamples *TestFunc, 1276 SampleOverlapStats *FuncOverlap, 1277 uint64_t BaseFuncSample, 1278 uint64_t TestFuncSample); 1279 1280 /// Profile-level similarity (PS) is a weighted aggregate over function-level 1281 /// similarities (FS). This method weights the FS value by the function 1282 /// weights in the base and test profiles for the aggregation. 1283 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 1284 uint64_t TestFuncSample) const; 1285 }; 1286 } // end anonymous namespace 1287 1288 bool SampleOverlapAggregator::detectZeroSampleProfile( 1289 raw_fd_ostream &OS) const { 1290 bool HaveZeroSample = false; 1291 if (ProfOverlap.BaseSample == 0) { 1292 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 1293 HaveZeroSample = true; 1294 } 1295 if (ProfOverlap.TestSample == 0) { 1296 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 1297 HaveZeroSample = true; 1298 } 1299 return HaveZeroSample; 1300 } 1301 1302 double SampleOverlapAggregator::computeBlockSimilarity( 1303 uint64_t BaseSample, uint64_t TestSample, 1304 const SampleOverlapStats &FuncOverlap) const { 1305 double BaseFrac = 0.0; 1306 double TestFrac = 0.0; 1307 if (FuncOverlap.BaseSample > 0) 1308 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 1309 if (FuncOverlap.TestSample > 0) 1310 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 1311 return 1.0 - std::fabs(BaseFrac - TestFrac); 1312 } 1313 1314 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 1315 uint64_t TestSample, 1316 uint64_t HotBlockCount) { 1317 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 1318 bool IsTestHot = (TestSample >= TestHotThreshold); 1319 if (!IsBaseHot && !IsTestHot) 1320 return; 1321 1322 HotBlockOverlap.UnionCount += HotBlockCount; 1323 if (IsBaseHot) 1324 HotBlockOverlap.BaseCount += HotBlockCount; 1325 if (IsTestHot) 1326 HotBlockOverlap.TestCount += HotBlockCount; 1327 if (IsBaseHot && IsTestHot) 1328 HotBlockOverlap.OverlapCount += HotBlockCount; 1329 } 1330 1331 void SampleOverlapAggregator::getHotFunctions( 1332 const StringMap<FuncSampleStats> &ProfStats, 1333 StringMap<FuncSampleStats> &HotFunc, uint64_t HotThreshold) const { 1334 for (const auto &F : ProfStats) { 1335 if (isFunctionHot(F.second, HotThreshold)) 1336 HotFunc.try_emplace(F.first(), F.second); 1337 } 1338 } 1339 1340 void SampleOverlapAggregator::computeHotFuncOverlap() { 1341 StringMap<FuncSampleStats> BaseHotFunc; 1342 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 1343 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 1344 1345 StringMap<FuncSampleStats> TestHotFunc; 1346 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 1347 HotFuncOverlap.TestCount = TestHotFunc.size(); 1348 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 1349 1350 for (const auto &F : BaseHotFunc) { 1351 if (TestHotFunc.count(F.first())) 1352 ++HotFuncOverlap.OverlapCount; 1353 else 1354 ++HotFuncOverlap.UnionCount; 1355 } 1356 } 1357 1358 void SampleOverlapAggregator::updateOverlapStatsForFunction( 1359 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 1360 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 1361 assert(Status != MS_None && 1362 "Match status should be updated before updating overlap statistics"); 1363 if (Status == MS_FirstUnique) { 1364 TestSample = 0; 1365 FuncOverlap.BaseUniqueSample += BaseSample; 1366 } else if (Status == MS_SecondUnique) { 1367 BaseSample = 0; 1368 FuncOverlap.TestUniqueSample += TestSample; 1369 } else { 1370 ++FuncOverlap.OverlapCount; 1371 } 1372 1373 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 1374 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 1375 Difference += 1376 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 1377 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 1378 } 1379 1380 void SampleOverlapAggregator::updateForUnmatchedCallee( 1381 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 1382 double &Difference, MatchStatus Status) { 1383 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 1384 "Status must be either of the two unmatched cases"); 1385 FuncSampleStats FuncStats; 1386 if (Status == MS_FirstUnique) { 1387 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 1388 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 1389 FuncStats.HotBlockCount, FuncOverlap, 1390 Difference, Status); 1391 } else { 1392 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 1393 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 1394 FuncStats.HotBlockCount, FuncOverlap, 1395 Difference, Status); 1396 } 1397 } 1398 1399 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 1400 const sampleprof::FunctionSamples &BaseFunc, 1401 const sampleprof::FunctionSamples &TestFunc, 1402 SampleOverlapStats &FuncOverlap) { 1403 1404 using namespace sampleprof; 1405 1406 double Difference = 0; 1407 1408 // Accumulate Difference for regular line/block samples in the function. 1409 // We match them through sort-merge join algorithm because 1410 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 1411 // by their offsets. 1412 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 1413 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 1414 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 1415 BlockIterStep.updateOneStep(); 1416 while (!BlockIterStep.areBothFinished()) { 1417 uint64_t BaseSample = 1418 BlockIterStep.isFirstFinished() 1419 ? 0 1420 : BlockIterStep.getFirstIter()->second.getSamples(); 1421 uint64_t TestSample = 1422 BlockIterStep.isSecondFinished() 1423 ? 0 1424 : BlockIterStep.getSecondIter()->second.getSamples(); 1425 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 1426 Difference, BlockIterStep.getMatchStatus()); 1427 1428 BlockIterStep.updateOneStep(); 1429 } 1430 1431 // Accumulate Difference for callsite lines in the function. We match 1432 // them through sort-merge algorithm because 1433 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 1434 // ordered by their offsets. 1435 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 1436 BaseFunc.getCallsiteSamples().cbegin(), 1437 BaseFunc.getCallsiteSamples().cend(), 1438 TestFunc.getCallsiteSamples().cbegin(), 1439 TestFunc.getCallsiteSamples().cend()); 1440 CallsiteIterStep.updateOneStep(); 1441 while (!CallsiteIterStep.areBothFinished()) { 1442 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 1443 assert(CallsiteStepStatus != MS_None && 1444 "Match status should be updated before entering loop body"); 1445 1446 if (CallsiteStepStatus != MS_Match) { 1447 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 1448 ? CallsiteIterStep.getFirstIter() 1449 : CallsiteIterStep.getSecondIter(); 1450 for (const auto &F : Callsite->second) 1451 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 1452 CallsiteStepStatus); 1453 } else { 1454 // There may be multiple inlinees at the same offset, so we need to try 1455 // matching all of them. This match is implemented through sort-merge 1456 // algorithm because callsite records at the same offset are ordered by 1457 // function names. 1458 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 1459 CallsiteIterStep.getFirstIter()->second.cbegin(), 1460 CallsiteIterStep.getFirstIter()->second.cend(), 1461 CallsiteIterStep.getSecondIter()->second.cbegin(), 1462 CallsiteIterStep.getSecondIter()->second.cend()); 1463 CalleeIterStep.updateOneStep(); 1464 while (!CalleeIterStep.areBothFinished()) { 1465 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 1466 if (CalleeStepStatus != MS_Match) { 1467 auto Callee = (CalleeStepStatus == MS_FirstUnique) 1468 ? CalleeIterStep.getFirstIter() 1469 : CalleeIterStep.getSecondIter(); 1470 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 1471 CalleeStepStatus); 1472 } else { 1473 // An inlined function can contain other inlinees inside, so compute 1474 // the Difference recursively. 1475 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 1476 CalleeIterStep.getFirstIter()->second, 1477 CalleeIterStep.getSecondIter()->second, 1478 FuncOverlap); 1479 } 1480 CalleeIterStep.updateOneStep(); 1481 } 1482 } 1483 CallsiteIterStep.updateOneStep(); 1484 } 1485 1486 // Difference reflects the total differences of line/block samples in this 1487 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 1488 // reflect the similarity between function profiles in [0.0f to 1.0f]. 1489 return (2.0 - Difference) / 2; 1490 } 1491 1492 double SampleOverlapAggregator::weightForFuncSimilarity( 1493 double FuncInternalSimilarity, uint64_t BaseFuncSample, 1494 uint64_t TestFuncSample) const { 1495 // Compute the weight as the distance between the function weights in two 1496 // profiles. 1497 double BaseFrac = 0.0; 1498 double TestFrac = 0.0; 1499 assert(ProfOverlap.BaseSample > 0 && 1500 "Total samples in base profile should be greater than 0"); 1501 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 1502 assert(ProfOverlap.TestSample > 0 && 1503 "Total samples in test profile should be greater than 0"); 1504 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 1505 double WeightDistance = std::fabs(BaseFrac - TestFrac); 1506 1507 // Take WeightDistance into the similarity. 1508 return FuncInternalSimilarity * (1 - WeightDistance); 1509 } 1510 1511 double 1512 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 1513 uint64_t BaseFuncSample, 1514 uint64_t TestFuncSample) const { 1515 1516 double BaseFrac = 0.0; 1517 double TestFrac = 0.0; 1518 assert(ProfOverlap.BaseSample > 0 && 1519 "Total samples in base profile should be greater than 0"); 1520 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 1521 assert(ProfOverlap.TestSample > 0 && 1522 "Total samples in test profile should be greater than 0"); 1523 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 1524 return FuncSimilarity * (BaseFrac + TestFrac); 1525 } 1526 1527 double SampleOverlapAggregator::computeSampleFunctionOverlap( 1528 const sampleprof::FunctionSamples *BaseFunc, 1529 const sampleprof::FunctionSamples *TestFunc, 1530 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 1531 uint64_t TestFuncSample) { 1532 // Default function internal similarity before weighted, meaning two functions 1533 // has no overlap. 1534 const double DefaultFuncInternalSimilarity = 0; 1535 double FuncSimilarity; 1536 double FuncInternalSimilarity; 1537 1538 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 1539 // In this case, we use DefaultFuncInternalSimilarity as the function internal 1540 // similarity. 1541 if (!BaseFunc || !TestFunc) { 1542 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 1543 } else { 1544 assert(FuncOverlap != nullptr && 1545 "FuncOverlap should be provided in this case"); 1546 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 1547 *BaseFunc, *TestFunc, *FuncOverlap); 1548 // Now, FuncInternalSimilarity may be a little less than 0 due to 1549 // imprecision of floating point accumulations. Make it zero if the 1550 // difference is below Epsilon. 1551 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 1552 ? 0 1553 : FuncInternalSimilarity; 1554 } 1555 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 1556 BaseFuncSample, TestFuncSample); 1557 return FuncSimilarity; 1558 } 1559 1560 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 1561 using namespace sampleprof; 1562 1563 StringMap<const FunctionSamples *> BaseFuncProf; 1564 const auto &BaseProfiles = BaseReader->getProfiles(); 1565 for (const auto &BaseFunc : BaseProfiles) { 1566 BaseFuncProf.try_emplace(BaseFunc.second.getNameWithContext(), 1567 &(BaseFunc.second)); 1568 } 1569 ProfOverlap.UnionCount = BaseFuncProf.size(); 1570 1571 const auto &TestProfiles = TestReader->getProfiles(); 1572 for (const auto &TestFunc : TestProfiles) { 1573 SampleOverlapStats FuncOverlap; 1574 FuncOverlap.TestName = TestFunc.second.getNameWithContext(); 1575 assert(TestStats.count(FuncOverlap.TestName) && 1576 "TestStats should have records for all functions in test profile " 1577 "except inlinees"); 1578 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 1579 1580 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 1581 if (Match == BaseFuncProf.end()) { 1582 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 1583 ++ProfOverlap.TestUniqueCount; 1584 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 1585 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 1586 1587 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 1588 1589 double FuncSimilarity = computeSampleFunctionOverlap( 1590 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 1591 ProfOverlap.Similarity += 1592 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 1593 1594 ++ProfOverlap.UnionCount; 1595 ProfOverlap.UnionSample += FuncStats.SampleSum; 1596 } else { 1597 ++ProfOverlap.OverlapCount; 1598 1599 // Two functions match with each other. Compute function-level overlap and 1600 // aggregate them into profile-level overlap. 1601 FuncOverlap.BaseName = Match->second->getNameWithContext(); 1602 assert(BaseStats.count(FuncOverlap.BaseName) && 1603 "BaseStats should have records for all functions in base profile " 1604 "except inlinees"); 1605 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 1606 1607 FuncOverlap.Similarity = computeSampleFunctionOverlap( 1608 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 1609 FuncOverlap.TestSample); 1610 ProfOverlap.Similarity += 1611 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 1612 FuncOverlap.TestSample); 1613 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 1614 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 1615 1616 // Accumulate the percentage of base unique and test unique samples into 1617 // ProfOverlap. 1618 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 1619 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 1620 1621 // Remove matched base functions for later reporting functions not found 1622 // in test profile. 1623 BaseFuncProf.erase(Match); 1624 } 1625 1626 // Print function-level similarity information if specified by options. 1627 assert(TestStats.count(FuncOverlap.TestName) && 1628 "TestStats should have records for all functions in test profile " 1629 "except inlinees"); 1630 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 1631 (Match != BaseFuncProf.end() && 1632 FuncOverlap.Similarity < LowSimilarityThreshold) || 1633 (Match != BaseFuncProf.end() && !FuncFilter.NameFilter.empty() && 1634 FuncOverlap.BaseName.find(FuncFilter.NameFilter) != 1635 FuncOverlap.BaseName.npos)) { 1636 assert(ProfOverlap.BaseSample > 0 && 1637 "Total samples in base profile should be greater than 0"); 1638 FuncOverlap.BaseWeight = 1639 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 1640 assert(ProfOverlap.TestSample > 0 && 1641 "Total samples in test profile should be greater than 0"); 1642 FuncOverlap.TestWeight = 1643 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 1644 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 1645 } 1646 } 1647 1648 // Traverse through functions in base profile but not in test profile. 1649 for (const auto &F : BaseFuncProf) { 1650 assert(BaseStats.count(F.second->getNameWithContext()) && 1651 "BaseStats should have records for all functions in base profile " 1652 "except inlinees"); 1653 const FuncSampleStats &FuncStats = 1654 BaseStats[F.second->getNameWithContext()]; 1655 ++ProfOverlap.BaseUniqueCount; 1656 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 1657 1658 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 1659 1660 double FuncSimilarity = computeSampleFunctionOverlap( 1661 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 1662 ProfOverlap.Similarity += 1663 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 1664 1665 ProfOverlap.UnionSample += FuncStats.SampleSum; 1666 } 1667 1668 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 1669 // of floating point accumulations. Make it 1.0 if the difference is below 1670 // Epsilon. 1671 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 1672 ? 1 1673 : ProfOverlap.Similarity; 1674 1675 computeHotFuncOverlap(); 1676 } 1677 1678 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 1679 const auto &BaseProf = BaseReader->getProfiles(); 1680 for (const auto &I : BaseProf) { 1681 ++ProfOverlap.BaseCount; 1682 FuncSampleStats FuncStats; 1683 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 1684 ProfOverlap.BaseSample += FuncStats.SampleSum; 1685 BaseStats.try_emplace(I.second.getNameWithContext(), FuncStats); 1686 } 1687 1688 const auto &TestProf = TestReader->getProfiles(); 1689 for (const auto &I : TestProf) { 1690 ++ProfOverlap.TestCount; 1691 FuncSampleStats FuncStats; 1692 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 1693 ProfOverlap.TestSample += FuncStats.SampleSum; 1694 TestStats.try_emplace(I.second.getNameWithContext(), FuncStats); 1695 } 1696 1697 ProfOverlap.BaseName = StringRef(BaseFilename); 1698 ProfOverlap.TestName = StringRef(TestFilename); 1699 } 1700 1701 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 1702 using namespace sampleprof; 1703 1704 if (FuncSimilarityDump.empty()) 1705 return; 1706 1707 formatted_raw_ostream FOS(OS); 1708 FOS << "Function-level details:\n"; 1709 FOS << "Base weight"; 1710 FOS.PadToColumn(TestWeightCol); 1711 FOS << "Test weight"; 1712 FOS.PadToColumn(SimilarityCol); 1713 FOS << "Similarity"; 1714 FOS.PadToColumn(OverlapCol); 1715 FOS << "Overlap"; 1716 FOS.PadToColumn(BaseUniqueCol); 1717 FOS << "Base unique"; 1718 FOS.PadToColumn(TestUniqueCol); 1719 FOS << "Test unique"; 1720 FOS.PadToColumn(BaseSampleCol); 1721 FOS << "Base samples"; 1722 FOS.PadToColumn(TestSampleCol); 1723 FOS << "Test samples"; 1724 FOS.PadToColumn(FuncNameCol); 1725 FOS << "Function name\n"; 1726 for (const auto &F : FuncSimilarityDump) { 1727 double OverlapPercent = 1728 F.second.UnionSample > 0 1729 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 1730 : 0; 1731 double BaseUniquePercent = 1732 F.second.BaseSample > 0 1733 ? static_cast<double>(F.second.BaseUniqueSample) / 1734 F.second.BaseSample 1735 : 0; 1736 double TestUniquePercent = 1737 F.second.TestSample > 0 1738 ? static_cast<double>(F.second.TestUniqueSample) / 1739 F.second.TestSample 1740 : 0; 1741 1742 FOS << format("%.2f%%", F.second.BaseWeight * 100); 1743 FOS.PadToColumn(TestWeightCol); 1744 FOS << format("%.2f%%", F.second.TestWeight * 100); 1745 FOS.PadToColumn(SimilarityCol); 1746 FOS << format("%.2f%%", F.second.Similarity * 100); 1747 FOS.PadToColumn(OverlapCol); 1748 FOS << format("%.2f%%", OverlapPercent * 100); 1749 FOS.PadToColumn(BaseUniqueCol); 1750 FOS << format("%.2f%%", BaseUniquePercent * 100); 1751 FOS.PadToColumn(TestUniqueCol); 1752 FOS << format("%.2f%%", TestUniquePercent * 100); 1753 FOS.PadToColumn(BaseSampleCol); 1754 FOS << F.second.BaseSample; 1755 FOS.PadToColumn(TestSampleCol); 1756 FOS << F.second.TestSample; 1757 FOS.PadToColumn(FuncNameCol); 1758 FOS << F.second.TestName << "\n"; 1759 } 1760 } 1761 1762 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 1763 OS << "Profile overlap infomation for base_profile: " << ProfOverlap.BaseName 1764 << " and test_profile: " << ProfOverlap.TestName << "\nProgram level:\n"; 1765 1766 OS << " Whole program profile similarity: " 1767 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 1768 1769 assert(ProfOverlap.UnionSample > 0 && 1770 "Total samples in two profile should be greater than 0"); 1771 double OverlapPercent = 1772 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 1773 assert(ProfOverlap.BaseSample > 0 && 1774 "Total samples in base profile should be greater than 0"); 1775 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 1776 ProfOverlap.BaseSample; 1777 assert(ProfOverlap.TestSample > 0 && 1778 "Total samples in test profile should be greater than 0"); 1779 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 1780 ProfOverlap.TestSample; 1781 1782 OS << " Whole program sample overlap: " 1783 << format("%.3f%%", OverlapPercent * 100) << "\n"; 1784 OS << " percentage of samples unique in base profile: " 1785 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 1786 OS << " percentage of samples unique in test profile: " 1787 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 1788 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 1789 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 1790 1791 assert(ProfOverlap.UnionCount > 0 && 1792 "There should be at least one function in two input profiles"); 1793 double FuncOverlapPercent = 1794 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 1795 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 1796 << "\n"; 1797 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 1798 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 1799 << "\n"; 1800 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 1801 << "\n"; 1802 } 1803 1804 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 1805 raw_fd_ostream &OS) const { 1806 assert(HotFuncOverlap.UnionCount > 0 && 1807 "There should be at least one hot function in two input profiles"); 1808 OS << " Hot-function overlap: " 1809 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 1810 HotFuncOverlap.UnionCount * 100) 1811 << "\n"; 1812 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 1813 OS << " hot functions unique in base profile: " 1814 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 1815 OS << " hot functions unique in test profile: " 1816 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 1817 1818 assert(HotBlockOverlap.UnionCount > 0 && 1819 "There should be at least one hot block in two input profiles"); 1820 OS << " Hot-block overlap: " 1821 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 1822 HotBlockOverlap.UnionCount * 100) 1823 << "\n"; 1824 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 1825 OS << " hot blocks unique in base profile: " 1826 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 1827 OS << " hot blocks unique in test profile: " 1828 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 1829 } 1830 1831 std::error_code SampleOverlapAggregator::loadProfiles() { 1832 using namespace sampleprof; 1833 1834 LLVMContext Context; 1835 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context); 1836 if (std::error_code EC = BaseReaderOrErr.getError()) 1837 exitWithErrorCode(EC, BaseFilename); 1838 1839 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context); 1840 if (std::error_code EC = TestReaderOrErr.getError()) 1841 exitWithErrorCode(EC, TestFilename); 1842 1843 BaseReader = std::move(BaseReaderOrErr.get()); 1844 TestReader = std::move(TestReaderOrErr.get()); 1845 1846 if (std::error_code EC = BaseReader->read()) 1847 exitWithErrorCode(EC, BaseFilename); 1848 if (std::error_code EC = TestReader->read()) 1849 exitWithErrorCode(EC, TestFilename); 1850 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) 1851 exitWithError( 1852 "cannot compare probe-based profile with non-probe-based profile"); 1853 if (BaseReader->profileIsCS() != TestReader->profileIsCS()) 1854 exitWithError("cannot compare CS profile with non-CS profile"); 1855 1856 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 1857 // profile summary. 1858 const uint64_t HotCutoff = 990000; 1859 ProfileSummary &BasePS = BaseReader->getSummary(); 1860 for (const auto &SummaryEntry : BasePS.getDetailedSummary()) { 1861 if (SummaryEntry.Cutoff == HotCutoff) { 1862 BaseHotThreshold = SummaryEntry.MinCount; 1863 break; 1864 } 1865 } 1866 1867 ProfileSummary &TestPS = TestReader->getSummary(); 1868 for (const auto &SummaryEntry : TestPS.getDetailedSummary()) { 1869 if (SummaryEntry.Cutoff == HotCutoff) { 1870 TestHotThreshold = SummaryEntry.MinCount; 1871 break; 1872 } 1873 } 1874 return std::error_code(); 1875 } 1876 1877 void overlapSampleProfile(const std::string &BaseFilename, 1878 const std::string &TestFilename, 1879 const OverlapFuncFilters &FuncFilter, 1880 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 1881 using namespace sampleprof; 1882 1883 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 1884 // report 2--3 places after decimal point in percentage numbers. 1885 SampleOverlapAggregator OverlapAggr( 1886 BaseFilename, TestFilename, 1887 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 1888 if (std::error_code EC = OverlapAggr.loadProfiles()) 1889 exitWithErrorCode(EC); 1890 1891 OverlapAggr.initializeSampleProfileOverlap(); 1892 if (OverlapAggr.detectZeroSampleProfile(OS)) 1893 return; 1894 1895 OverlapAggr.computeSampleProfileOverlap(OS); 1896 1897 OverlapAggr.dumpProgramSummary(OS); 1898 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 1899 OverlapAggr.dumpFuncSimilarity(OS); 1900 } 1901 1902 static int overlap_main(int argc, const char *argv[]) { 1903 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 1904 cl::desc("<base profile file>")); 1905 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 1906 cl::desc("<test profile file>")); 1907 cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"), 1908 cl::desc("Output file")); 1909 cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output)); 1910 cl::opt<bool> IsCS( 1911 "cs", cl::init(false), 1912 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO.")); 1913 cl::opt<unsigned long long> ValueCutoff( 1914 "value-cutoff", cl::init(-1), 1915 cl::desc( 1916 "Function level overlap information for every function (with calling " 1917 "context for csspgo) in test " 1918 "profile with max count value greater then the parameter value")); 1919 cl::opt<std::string> FuncNameFilter( 1920 "function", 1921 cl::desc("Function level overlap information for matching functions. For " 1922 "CSSPGO this takes a a function name with calling context")); 1923 cl::opt<unsigned long long> SimilarityCutoff( 1924 "similarity-cutoff", cl::init(0), 1925 cl::desc("For sample profiles, list function names (with calling context " 1926 "for csspgo) for overlapped functions " 1927 "with similarities below the cutoff (percentage times 10000).")); 1928 cl::opt<ProfileKinds> ProfileKind( 1929 cl::desc("Profile kind:"), cl::init(instr), 1930 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 1931 clEnumVal(sample, "Sample profile"))); 1932 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n"); 1933 1934 std::error_code EC; 1935 raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_TextWithCRLF); 1936 if (EC) 1937 exitWithErrorCode(EC, Output); 1938 1939 if (ProfileKind == instr) 1940 overlapInstrProfile(BaseFilename, TestFilename, 1941 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS, 1942 IsCS); 1943 else 1944 overlapSampleProfile(BaseFilename, TestFilename, 1945 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, 1946 SimilarityCutoff, OS); 1947 1948 return 0; 1949 } 1950 1951 typedef struct ValueSitesStats { 1952 ValueSitesStats() 1953 : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0), 1954 TotalNumValues(0) {} 1955 uint64_t TotalNumValueSites; 1956 uint64_t TotalNumValueSitesWithValueProfile; 1957 uint64_t TotalNumValues; 1958 std::vector<unsigned> ValueSitesHistogram; 1959 } ValueSitesStats; 1960 1961 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 1962 ValueSitesStats &Stats, raw_fd_ostream &OS, 1963 InstrProfSymtab *Symtab) { 1964 uint32_t NS = Func.getNumValueSites(VK); 1965 Stats.TotalNumValueSites += NS; 1966 for (size_t I = 0; I < NS; ++I) { 1967 uint32_t NV = Func.getNumValueDataForSite(VK, I); 1968 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I); 1969 Stats.TotalNumValues += NV; 1970 if (NV) { 1971 Stats.TotalNumValueSitesWithValueProfile++; 1972 if (NV > Stats.ValueSitesHistogram.size()) 1973 Stats.ValueSitesHistogram.resize(NV, 0); 1974 Stats.ValueSitesHistogram[NV - 1]++; 1975 } 1976 1977 uint64_t SiteSum = 0; 1978 for (uint32_t V = 0; V < NV; V++) 1979 SiteSum += VD[V].Count; 1980 if (SiteSum == 0) 1981 SiteSum = 1; 1982 1983 for (uint32_t V = 0; V < NV; V++) { 1984 OS << "\t[ " << format("%2u", I) << ", "; 1985 if (Symtab == nullptr) 1986 OS << format("%4" PRIu64, VD[V].Value); 1987 else 1988 OS << Symtab->getFuncName(VD[V].Value); 1989 OS << ", " << format("%10" PRId64, VD[V].Count) << " ] (" 1990 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n"; 1991 } 1992 } 1993 } 1994 1995 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 1996 ValueSitesStats &Stats) { 1997 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 1998 OS << " Total number of sites with values: " 1999 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 2000 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 2001 2002 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 2003 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 2004 if (Stats.ValueSitesHistogram[I] > 0) 2005 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 2006 } 2007 } 2008 2009 static int showInstrProfile(const std::string &Filename, bool ShowCounts, 2010 uint32_t TopN, bool ShowIndirectCallTargets, 2011 bool ShowMemOPSizes, bool ShowDetailedSummary, 2012 std::vector<uint32_t> DetailedSummaryCutoffs, 2013 bool ShowAllFunctions, bool ShowCS, 2014 uint64_t ValueCutoff, bool OnlyListBelow, 2015 const std::string &ShowFunction, bool TextFormat, 2016 raw_fd_ostream &OS) { 2017 auto ReaderOrErr = InstrProfReader::create(Filename); 2018 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 2019 if (ShowDetailedSummary && Cutoffs.empty()) { 2020 Cutoffs = {800000, 900000, 950000, 990000, 999000, 999900, 999990}; 2021 } 2022 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 2023 if (Error E = ReaderOrErr.takeError()) 2024 exitWithError(std::move(E), Filename); 2025 2026 auto Reader = std::move(ReaderOrErr.get()); 2027 bool IsIRInstr = Reader->isIRLevelProfile(); 2028 size_t ShownFunctions = 0; 2029 size_t BelowCutoffFunctions = 0; 2030 int NumVPKind = IPVK_Last - IPVK_First + 1; 2031 std::vector<ValueSitesStats> VPStats(NumVPKind); 2032 2033 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2034 const std::pair<std::string, uint64_t> &v2) { 2035 return v1.second > v2.second; 2036 }; 2037 2038 std::priority_queue<std::pair<std::string, uint64_t>, 2039 std::vector<std::pair<std::string, uint64_t>>, 2040 decltype(MinCmp)> 2041 HottestFuncs(MinCmp); 2042 2043 if (!TextFormat && OnlyListBelow) { 2044 OS << "The list of functions with the maximum counter less than " 2045 << ValueCutoff << ":\n"; 2046 } 2047 2048 // Add marker so that IR-level instrumentation round-trips properly. 2049 if (TextFormat && IsIRInstr) 2050 OS << ":ir\n"; 2051 2052 for (const auto &Func : *Reader) { 2053 if (Reader->isIRLevelProfile()) { 2054 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2055 if (FuncIsCS != ShowCS) 2056 continue; 2057 } 2058 bool Show = 2059 ShowAllFunctions || (!ShowFunction.empty() && 2060 Func.Name.find(ShowFunction) != Func.Name.npos); 2061 2062 bool doTextFormatDump = (Show && TextFormat); 2063 2064 if (doTextFormatDump) { 2065 InstrProfSymtab &Symtab = Reader->getSymtab(); 2066 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2067 OS); 2068 continue; 2069 } 2070 2071 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2072 Builder.addRecord(Func); 2073 2074 uint64_t FuncMax = 0; 2075 uint64_t FuncSum = 0; 2076 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2077 if (Func.Counts[I] == (uint64_t)-1) 2078 continue; 2079 FuncMax = std::max(FuncMax, Func.Counts[I]); 2080 FuncSum += Func.Counts[I]; 2081 } 2082 2083 if (FuncMax < ValueCutoff) { 2084 ++BelowCutoffFunctions; 2085 if (OnlyListBelow) { 2086 OS << " " << Func.Name << ": (Max = " << FuncMax 2087 << " Sum = " << FuncSum << ")\n"; 2088 } 2089 continue; 2090 } else if (OnlyListBelow) 2091 continue; 2092 2093 if (TopN) { 2094 if (HottestFuncs.size() == TopN) { 2095 if (HottestFuncs.top().second < FuncMax) { 2096 HottestFuncs.pop(); 2097 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2098 } 2099 } else 2100 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2101 } 2102 2103 if (Show) { 2104 if (!ShownFunctions) 2105 OS << "Counters:\n"; 2106 2107 ++ShownFunctions; 2108 2109 OS << " " << Func.Name << ":\n" 2110 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2111 << " Counters: " << Func.Counts.size() << "\n"; 2112 if (!IsIRInstr) 2113 OS << " Function count: " << Func.Counts[0] << "\n"; 2114 2115 if (ShowIndirectCallTargets) 2116 OS << " Indirect Call Site Count: " 2117 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2118 2119 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2120 if (ShowMemOPSizes && NumMemOPCalls > 0) 2121 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2122 << "\n"; 2123 2124 if (ShowCounts) { 2125 OS << " Block counts: ["; 2126 size_t Start = (IsIRInstr ? 0 : 1); 2127 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2128 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2129 } 2130 OS << "]\n"; 2131 } 2132 2133 if (ShowIndirectCallTargets) { 2134 OS << " Indirect Target Results:\n"; 2135 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2136 VPStats[IPVK_IndirectCallTarget], OS, 2137 &(Reader->getSymtab())); 2138 } 2139 2140 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2141 OS << " Memory Intrinsic Size Results:\n"; 2142 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2143 nullptr); 2144 } 2145 } 2146 } 2147 if (Reader->hasError()) 2148 exitWithError(Reader->getError(), Filename); 2149 2150 if (TextFormat) 2151 return 0; 2152 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 2153 bool IsIR = Reader->isIRLevelProfile(); 2154 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 2155 if (IsIR) 2156 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 2157 OS << "\n"; 2158 if (ShowAllFunctions || !ShowFunction.empty()) 2159 OS << "Functions shown: " << ShownFunctions << "\n"; 2160 OS << "Total functions: " << PS->getNumFunctions() << "\n"; 2161 if (ValueCutoff > 0) { 2162 OS << "Number of functions with maximum count (< " << ValueCutoff 2163 << "): " << BelowCutoffFunctions << "\n"; 2164 OS << "Number of functions with maximum count (>= " << ValueCutoff 2165 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 2166 } 2167 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; 2168 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; 2169 2170 if (TopN) { 2171 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 2172 while (!HottestFuncs.empty()) { 2173 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 2174 HottestFuncs.pop(); 2175 } 2176 OS << "Top " << TopN 2177 << " functions with the largest internal block counts: \n"; 2178 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 2179 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 2180 } 2181 2182 if (ShownFunctions && ShowIndirectCallTargets) { 2183 OS << "Statistics for indirect call sites profile:\n"; 2184 showValueSitesStats(OS, IPVK_IndirectCallTarget, 2185 VPStats[IPVK_IndirectCallTarget]); 2186 } 2187 2188 if (ShownFunctions && ShowMemOPSizes) { 2189 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 2190 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 2191 } 2192 2193 if (ShowDetailedSummary) { 2194 OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; 2195 OS << "Total count: " << PS->getTotalCount() << "\n"; 2196 PS->printDetailedSummary(OS); 2197 } 2198 return 0; 2199 } 2200 2201 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 2202 raw_fd_ostream &OS) { 2203 if (!Reader->dumpSectionInfo(OS)) { 2204 WithColor::warning() << "-show-sec-info-only is only supported for " 2205 << "sample profile in extbinary format and is " 2206 << "ignored for other formats.\n"; 2207 return; 2208 } 2209 } 2210 2211 namespace { 2212 struct HotFuncInfo { 2213 StringRef FuncName; 2214 uint64_t TotalCount; 2215 double TotalCountPercent; 2216 uint64_t MaxCount; 2217 uint64_t EntryCount; 2218 2219 HotFuncInfo() 2220 : FuncName(), TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), 2221 EntryCount(0) {} 2222 2223 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 2224 : FuncName(FN), TotalCount(TS), TotalCountPercent(TSP), MaxCount(MS), 2225 EntryCount(ES) {} 2226 }; 2227 } // namespace 2228 2229 // Print out detailed information about hot functions in PrintValues vector. 2230 // Users specify titles and offset of every columns through ColumnTitle and 2231 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 2232 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 2233 // print out or let it be an empty string. 2234 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 2235 const std::vector<int> &ColumnOffset, 2236 const std::vector<HotFuncInfo> &PrintValues, 2237 uint64_t HotFuncCount, uint64_t TotalFuncCount, 2238 uint64_t HotProfCount, uint64_t TotalProfCount, 2239 const std::string &HotFuncMetric, 2240 raw_fd_ostream &OS) { 2241 assert(ColumnOffset.size() == ColumnTitle.size() && 2242 "ColumnOffset and ColumnTitle should have the same size"); 2243 assert(ColumnTitle.size() >= 4 && 2244 "ColumnTitle should have at least 4 elements"); 2245 assert(TotalFuncCount > 0 && 2246 "There should be at least one function in the profile"); 2247 double TotalProfPercent = 0; 2248 if (TotalProfCount > 0) 2249 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 2250 2251 formatted_raw_ostream FOS(OS); 2252 FOS << HotFuncCount << " out of " << TotalFuncCount 2253 << " functions with profile (" 2254 << format("%.2f%%", 2255 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 2256 << ") are considered hot functions"; 2257 if (!HotFuncMetric.empty()) 2258 FOS << " (" << HotFuncMetric << ")"; 2259 FOS << ".\n"; 2260 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 2261 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 2262 2263 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 2264 FOS.PadToColumn(ColumnOffset[I]); 2265 FOS << ColumnTitle[I]; 2266 } 2267 FOS << "\n"; 2268 2269 for (const HotFuncInfo &R : PrintValues) { 2270 FOS.PadToColumn(ColumnOffset[0]); 2271 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 2272 FOS.PadToColumn(ColumnOffset[1]); 2273 FOS << R.MaxCount; 2274 FOS.PadToColumn(ColumnOffset[2]); 2275 FOS << R.EntryCount; 2276 FOS.PadToColumn(ColumnOffset[3]); 2277 FOS << R.FuncName << "\n"; 2278 } 2279 } 2280 2281 static int 2282 showHotFunctionList(const StringMap<sampleprof::FunctionSamples> &Profiles, 2283 ProfileSummary &PS, raw_fd_ostream &OS) { 2284 using namespace sampleprof; 2285 2286 const uint32_t HotFuncCutoff = 990000; 2287 auto &SummaryVector = PS.getDetailedSummary(); 2288 uint64_t MinCountThreshold = 0; 2289 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 2290 if (SummaryEntry.Cutoff == HotFuncCutoff) { 2291 MinCountThreshold = SummaryEntry.MinCount; 2292 break; 2293 } 2294 } 2295 2296 // Traverse all functions in the profile and keep only hot functions. 2297 // The following loop also calculates the sum of total samples of all 2298 // functions. 2299 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 2300 std::greater<uint64_t>> 2301 HotFunc; 2302 uint64_t ProfileTotalSample = 0; 2303 uint64_t HotFuncSample = 0; 2304 uint64_t HotFuncCount = 0; 2305 2306 for (const auto &I : Profiles) { 2307 FuncSampleStats FuncStats; 2308 const FunctionSamples &FuncProf = I.second; 2309 ProfileTotalSample += FuncProf.getTotalSamples(); 2310 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 2311 2312 if (isFunctionHot(FuncStats, MinCountThreshold)) { 2313 HotFunc.emplace(FuncProf.getTotalSamples(), 2314 std::make_pair(&(I.second), FuncStats.MaxSample)); 2315 HotFuncSample += FuncProf.getTotalSamples(); 2316 ++HotFuncCount; 2317 } 2318 } 2319 2320 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 2321 "Entry sample", "Function name"}; 2322 std::vector<int> ColumnOffset{0, 24, 42, 58}; 2323 std::string Metric = 2324 std::string("max sample >= ") + std::to_string(MinCountThreshold); 2325 std::vector<HotFuncInfo> PrintValues; 2326 for (const auto &FuncPair : HotFunc) { 2327 const FunctionSamples &Func = *FuncPair.second.first; 2328 double TotalSamplePercent = 2329 (ProfileTotalSample > 0) 2330 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 2331 : 0; 2332 PrintValues.emplace_back(HotFuncInfo( 2333 Func.getNameWithContext(), Func.getTotalSamples(), TotalSamplePercent, 2334 FuncPair.second.second, Func.getEntrySamples())); 2335 } 2336 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 2337 Profiles.size(), HotFuncSample, ProfileTotalSample, 2338 Metric, OS); 2339 2340 return 0; 2341 } 2342 2343 static int showSampleProfile(const std::string &Filename, bool ShowCounts, 2344 bool ShowAllFunctions, bool ShowDetailedSummary, 2345 const std::string &ShowFunction, 2346 bool ShowProfileSymbolList, 2347 bool ShowSectionInfoOnly, bool ShowHotFuncList, 2348 raw_fd_ostream &OS) { 2349 using namespace sampleprof; 2350 LLVMContext Context; 2351 auto ReaderOrErr = SampleProfileReader::create(Filename, Context); 2352 if (std::error_code EC = ReaderOrErr.getError()) 2353 exitWithErrorCode(EC, Filename); 2354 2355 auto Reader = std::move(ReaderOrErr.get()); 2356 2357 if (ShowSectionInfoOnly) { 2358 showSectionInfo(Reader.get(), OS); 2359 return 0; 2360 } 2361 2362 if (std::error_code EC = Reader->read()) 2363 exitWithErrorCode(EC, Filename); 2364 2365 if (ShowAllFunctions || ShowFunction.empty()) 2366 Reader->dump(OS); 2367 else 2368 Reader->dumpFunctionProfile(ShowFunction, OS); 2369 2370 if (ShowProfileSymbolList) { 2371 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 2372 Reader->getProfileSymbolList(); 2373 ReaderList->dump(OS); 2374 } 2375 2376 if (ShowDetailedSummary) { 2377 auto &PS = Reader->getSummary(); 2378 PS.printSummary(OS); 2379 PS.printDetailedSummary(OS); 2380 } 2381 2382 if (ShowHotFuncList) 2383 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), OS); 2384 2385 return 0; 2386 } 2387 2388 static int show_main(int argc, const char *argv[]) { 2389 cl::opt<std::string> Filename(cl::Positional, cl::Required, 2390 cl::desc("<profdata-file>")); 2391 2392 cl::opt<bool> ShowCounts("counts", cl::init(false), 2393 cl::desc("Show counter values for shown functions")); 2394 cl::opt<bool> TextFormat( 2395 "text", cl::init(false), 2396 cl::desc("Show instr profile data in text dump format")); 2397 cl::opt<bool> ShowIndirectCallTargets( 2398 "ic-targets", cl::init(false), 2399 cl::desc("Show indirect call site target values for shown functions")); 2400 cl::opt<bool> ShowMemOPSizes( 2401 "memop-sizes", cl::init(false), 2402 cl::desc("Show the profiled sizes of the memory intrinsic calls " 2403 "for shown functions")); 2404 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 2405 cl::desc("Show detailed profile summary")); 2406 cl::list<uint32_t> DetailedSummaryCutoffs( 2407 cl::CommaSeparated, "detailed-summary-cutoffs", 2408 cl::desc( 2409 "Cutoff percentages (times 10000) for generating detailed summary"), 2410 cl::value_desc("800000,901000,999999")); 2411 cl::opt<bool> ShowHotFuncList( 2412 "hot-func-list", cl::init(false), 2413 cl::desc("Show profile summary of a list of hot functions")); 2414 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 2415 cl::desc("Details for every function")); 2416 cl::opt<bool> ShowCS("showcs", cl::init(false), 2417 cl::desc("Show context sensitive counts")); 2418 cl::opt<std::string> ShowFunction("function", 2419 cl::desc("Details for matching functions")); 2420 2421 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 2422 cl::init("-"), cl::desc("Output file")); 2423 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 2424 cl::aliasopt(OutputFilename)); 2425 cl::opt<ProfileKinds> ProfileKind( 2426 cl::desc("Profile kind:"), cl::init(instr), 2427 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 2428 clEnumVal(sample, "Sample profile"))); 2429 cl::opt<uint32_t> TopNFunctions( 2430 "topn", cl::init(0), 2431 cl::desc("Show the list of functions with the largest internal counts")); 2432 cl::opt<uint32_t> ValueCutoff( 2433 "value-cutoff", cl::init(0), 2434 cl::desc("Set the count value cutoff. Functions with the maximum count " 2435 "less than this value will not be printed out. (Default is 0)")); 2436 cl::opt<bool> OnlyListBelow( 2437 "list-below-cutoff", cl::init(false), 2438 cl::desc("Only output names of functions whose max count values are " 2439 "below the cutoff value")); 2440 cl::opt<bool> ShowProfileSymbolList( 2441 "show-prof-sym-list", cl::init(false), 2442 cl::desc("Show profile symbol list if it exists in the profile. ")); 2443 cl::opt<bool> ShowSectionInfoOnly( 2444 "show-sec-info-only", cl::init(false), 2445 cl::desc("Show the information of each section in the sample profile. " 2446 "The flag is only usable when the sample profile is in " 2447 "extbinary format")); 2448 2449 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n"); 2450 2451 if (OutputFilename.empty()) 2452 OutputFilename = "-"; 2453 2454 if (Filename == OutputFilename) { 2455 errs() << sys::path::filename(argv[0]) 2456 << ": Input file name cannot be the same as the output file name!\n"; 2457 return 1; 2458 } 2459 2460 std::error_code EC; 2461 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 2462 if (EC) 2463 exitWithErrorCode(EC, OutputFilename); 2464 2465 if (ShowAllFunctions && !ShowFunction.empty()) 2466 WithColor::warning() << "-function argument ignored: showing all functions\n"; 2467 2468 if (ProfileKind == instr) 2469 return showInstrProfile(Filename, ShowCounts, TopNFunctions, 2470 ShowIndirectCallTargets, ShowMemOPSizes, 2471 ShowDetailedSummary, DetailedSummaryCutoffs, 2472 ShowAllFunctions, ShowCS, ValueCutoff, 2473 OnlyListBelow, ShowFunction, TextFormat, OS); 2474 else 2475 return showSampleProfile(Filename, ShowCounts, ShowAllFunctions, 2476 ShowDetailedSummary, ShowFunction, 2477 ShowProfileSymbolList, ShowSectionInfoOnly, 2478 ShowHotFuncList, OS); 2479 } 2480 2481 int main(int argc, const char *argv[]) { 2482 InitLLVM X(argc, argv); 2483 2484 StringRef ProgName(sys::path::filename(argv[0])); 2485 if (argc > 1) { 2486 int (*func)(int, const char *[]) = nullptr; 2487 2488 if (strcmp(argv[1], "merge") == 0) 2489 func = merge_main; 2490 else if (strcmp(argv[1], "show") == 0) 2491 func = show_main; 2492 else if (strcmp(argv[1], "overlap") == 0) 2493 func = overlap_main; 2494 2495 if (func) { 2496 std::string Invocation(ProgName.str() + " " + argv[1]); 2497 argv[1] = Invocation.c_str(); 2498 return func(argc - 1, argv + 1); 2499 } 2500 2501 if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 || 2502 strcmp(argv[1], "--help") == 0) { 2503 2504 errs() << "OVERVIEW: LLVM profile data tools\n\n" 2505 << "USAGE: " << ProgName << " <command> [args...]\n" 2506 << "USAGE: " << ProgName << " <command> -help\n\n" 2507 << "See each individual command --help for more details.\n" 2508 << "Available commands: merge, show, overlap\n"; 2509 return 0; 2510 } 2511 } 2512 2513 if (argc < 2) 2514 errs() << ProgName << ": No command specified!\n"; 2515 else 2516 errs() << ProgName << ": Unknown command!\n"; 2517 2518 errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n"; 2519 return 1; 2520 } 2521