1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/IR/LLVMContext.h" 17 #include "llvm/ProfileData/InstrProfReader.h" 18 #include "llvm/ProfileData/InstrProfWriter.h" 19 #include "llvm/ProfileData/ProfileCommon.h" 20 #include "llvm/ProfileData/SampleProfReader.h" 21 #include "llvm/ProfileData/SampleProfWriter.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Errc.h" 24 #include "llvm/Support/FileSystem.h" 25 #include "llvm/Support/Format.h" 26 #include "llvm/Support/FormattedStream.h" 27 #include "llvm/Support/InitLLVM.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/ThreadPool.h" 31 #include "llvm/Support/Threading.h" 32 #include "llvm/Support/WithColor.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> 35 36 using namespace llvm; 37 38 enum ProfileFormat { 39 PF_None = 0, 40 PF_Text, 41 PF_Compact_Binary, 42 PF_Ext_Binary, 43 PF_GCC, 44 PF_Binary 45 }; 46 47 static void warn(Twine Message, std::string Whence = "", 48 std::string Hint = "") { 49 WithColor::warning(); 50 if (!Whence.empty()) 51 errs() << Whence << ": "; 52 errs() << Message << "\n"; 53 if (!Hint.empty()) 54 WithColor::note() << Hint << "\n"; 55 } 56 57 static void warn(Error E, StringRef Whence = "") { 58 if (E.isA<InstrProfError>()) { 59 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 60 warn(IPE.message(), std::string(Whence), std::string("")); 61 }); 62 } 63 } 64 65 static void exitWithError(Twine Message, std::string Whence = "", 66 std::string Hint = "") { 67 WithColor::error(); 68 if (!Whence.empty()) 69 errs() << Whence << ": "; 70 errs() << Message << "\n"; 71 if (!Hint.empty()) 72 WithColor::note() << Hint << "\n"; 73 ::exit(1); 74 } 75 76 static void exitWithError(Error E, StringRef Whence = "") { 77 if (E.isA<InstrProfError>()) { 78 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 79 instrprof_error instrError = IPE.get(); 80 StringRef Hint = ""; 81 if (instrError == instrprof_error::unrecognized_format) { 82 // Hint for common error of forgetting --sample for sample profiles. 83 Hint = "Perhaps you forgot to use the --sample option?"; 84 } 85 exitWithError(IPE.message(), std::string(Whence), std::string(Hint)); 86 }); 87 } 88 89 exitWithError(toString(std::move(E)), std::string(Whence)); 90 } 91 92 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 93 exitWithError(EC.message(), std::string(Whence)); 94 } 95 96 namespace { 97 enum ProfileKinds { instr, sample }; 98 enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid }; 99 } 100 101 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 102 StringRef Whence = "") { 103 if (FailMode == failIfAnyAreInvalid) 104 exitWithErrorCode(EC, Whence); 105 else 106 warn(EC.message(), std::string(Whence)); 107 } 108 109 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 110 StringRef WhenceFunction = "", 111 bool ShowHint = true) { 112 if (!WhenceFile.empty()) 113 errs() << WhenceFile << ": "; 114 if (!WhenceFunction.empty()) 115 errs() << WhenceFunction << ": "; 116 117 auto IPE = instrprof_error::success; 118 E = handleErrors(std::move(E), 119 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 120 IPE = E->get(); 121 return Error(std::move(E)); 122 }); 123 errs() << toString(std::move(E)) << "\n"; 124 125 if (ShowHint) { 126 StringRef Hint = ""; 127 if (IPE != instrprof_error::success) { 128 switch (IPE) { 129 case instrprof_error::hash_mismatch: 130 case instrprof_error::count_mismatch: 131 case instrprof_error::value_site_count_mismatch: 132 Hint = "Make sure that all profile data to be merged is generated " 133 "from the same binary."; 134 break; 135 default: 136 break; 137 } 138 } 139 140 if (!Hint.empty()) 141 errs() << Hint << "\n"; 142 } 143 } 144 145 namespace { 146 /// A remapper from original symbol names to new symbol names based on a file 147 /// containing a list of mappings from old name to new name. 148 class SymbolRemapper { 149 std::unique_ptr<MemoryBuffer> File; 150 DenseMap<StringRef, StringRef> RemappingTable; 151 152 public: 153 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 154 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 155 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 156 if (!BufOrError) 157 exitWithErrorCode(BufOrError.getError(), InputFile); 158 159 auto Remapper = std::make_unique<SymbolRemapper>(); 160 Remapper->File = std::move(BufOrError.get()); 161 162 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 163 !LineIt.is_at_eof(); ++LineIt) { 164 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 165 if (Parts.first.empty() || Parts.second.empty() || 166 Parts.second.count(' ')) { 167 exitWithError("unexpected line in remapping file", 168 (InputFile + ":" + Twine(LineIt.line_number())).str(), 169 "expected 'old_symbol new_symbol'"); 170 } 171 Remapper->RemappingTable.insert(Parts); 172 } 173 return Remapper; 174 } 175 176 /// Attempt to map the given old symbol into a new symbol. 177 /// 178 /// \return The new symbol, or \p Name if no such symbol was found. 179 StringRef operator()(StringRef Name) { 180 StringRef New = RemappingTable.lookup(Name); 181 return New.empty() ? Name : New; 182 } 183 }; 184 } 185 186 struct WeightedFile { 187 std::string Filename; 188 uint64_t Weight; 189 }; 190 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 191 192 /// Keep track of merged data and reported errors. 193 struct WriterContext { 194 std::mutex Lock; 195 InstrProfWriter Writer; 196 std::vector<std::pair<Error, std::string>> Errors; 197 std::mutex &ErrLock; 198 SmallSet<instrprof_error, 4> &WriterErrorCodes; 199 200 WriterContext(bool IsSparse, std::mutex &ErrLock, 201 SmallSet<instrprof_error, 4> &WriterErrorCodes) 202 : Lock(), Writer(IsSparse), Errors(), ErrLock(ErrLock), 203 WriterErrorCodes(WriterErrorCodes) {} 204 }; 205 206 /// Computer the overlap b/w profile BaseFilename and TestFileName, 207 /// and store the program level result to Overlap. 208 static void overlapInput(const std::string &BaseFilename, 209 const std::string &TestFilename, WriterContext *WC, 210 OverlapStats &Overlap, 211 const OverlapFuncFilters &FuncFilter, 212 raw_fd_ostream &OS, bool IsCS) { 213 auto ReaderOrErr = InstrProfReader::create(TestFilename); 214 if (Error E = ReaderOrErr.takeError()) { 215 // Skip the empty profiles by returning sliently. 216 instrprof_error IPE = InstrProfError::take(std::move(E)); 217 if (IPE != instrprof_error::empty_raw_profile) 218 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename); 219 return; 220 } 221 222 auto Reader = std::move(ReaderOrErr.get()); 223 for (auto &I : *Reader) { 224 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 225 FuncOverlap.setFuncInfo(I.Name, I.Hash); 226 227 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 228 FuncOverlap.dump(OS); 229 } 230 } 231 232 /// Load an input into a writer context. 233 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 234 WriterContext *WC) { 235 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 236 237 // Copy the filename, because llvm::ThreadPool copied the input "const 238 // WeightedFile &" by value, making a reference to the filename within it 239 // invalid outside of this packaged task. 240 std::string Filename = Input.Filename; 241 242 auto ReaderOrErr = InstrProfReader::create(Input.Filename); 243 if (Error E = ReaderOrErr.takeError()) { 244 // Skip the empty profiles by returning sliently. 245 instrprof_error IPE = InstrProfError::take(std::move(E)); 246 if (IPE != instrprof_error::empty_raw_profile) 247 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename); 248 return; 249 } 250 251 auto Reader = std::move(ReaderOrErr.get()); 252 bool IsIRProfile = Reader->isIRLevelProfile(); 253 bool HasCSIRProfile = Reader->hasCSIRLevelProfile(); 254 if (WC->Writer.setIsIRLevelProfile(IsIRProfile, HasCSIRProfile)) { 255 WC->Errors.emplace_back( 256 make_error<StringError>( 257 "Merge IR generated profile with Clang generated profile.", 258 std::error_code()), 259 Filename); 260 return; 261 } 262 WC->Writer.setInstrEntryBBEnabled(Reader->instrEntryBBEnabled()); 263 264 for (auto &I : *Reader) { 265 if (Remapper) 266 I.Name = (*Remapper)(I.Name); 267 const StringRef FuncName = I.Name; 268 bool Reported = false; 269 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 270 if (Reported) { 271 consumeError(std::move(E)); 272 return; 273 } 274 Reported = true; 275 // Only show hint the first time an error occurs. 276 instrprof_error IPE = InstrProfError::take(std::move(E)); 277 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 278 bool firstTime = WC->WriterErrorCodes.insert(IPE).second; 279 handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename, 280 FuncName, firstTime); 281 }); 282 } 283 if (Reader->hasError()) 284 if (Error E = Reader->getError()) 285 WC->Errors.emplace_back(std::move(E), Filename); 286 } 287 288 /// Merge the \p Src writer context into \p Dst. 289 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 290 for (auto &ErrorPair : Src->Errors) 291 Dst->Errors.push_back(std::move(ErrorPair)); 292 Src->Errors.clear(); 293 294 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 295 instrprof_error IPE = InstrProfError::take(std::move(E)); 296 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 297 bool firstTime = Dst->WriterErrorCodes.insert(IPE).second; 298 if (firstTime) 299 warn(toString(make_error<InstrProfError>(IPE))); 300 }); 301 } 302 303 static void writeInstrProfile(StringRef OutputFilename, 304 ProfileFormat OutputFormat, 305 InstrProfWriter &Writer) { 306 std::error_code EC; 307 raw_fd_ostream Output(OutputFilename.data(), EC, 308 OutputFormat == PF_Text ? sys::fs::OF_Text 309 : sys::fs::OF_None); 310 if (EC) 311 exitWithErrorCode(EC, OutputFilename); 312 313 if (OutputFormat == PF_Text) { 314 if (Error E = Writer.writeText(Output)) 315 warn(std::move(E)); 316 } else { 317 if (Error E = Writer.write(Output)) 318 warn(std::move(E)); 319 } 320 } 321 322 static void mergeInstrProfile(const WeightedFileVector &Inputs, 323 SymbolRemapper *Remapper, 324 StringRef OutputFilename, 325 ProfileFormat OutputFormat, bool OutputSparse, 326 unsigned NumThreads, FailureMode FailMode) { 327 if (OutputFilename.compare("-") == 0) 328 exitWithError("Cannot write indexed profdata format to stdout."); 329 330 if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary && 331 OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text) 332 exitWithError("Unknown format is specified."); 333 334 std::mutex ErrorLock; 335 SmallSet<instrprof_error, 4> WriterErrorCodes; 336 337 // If NumThreads is not specified, auto-detect a good default. 338 if (NumThreads == 0) 339 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 340 unsigned((Inputs.size() + 1) / 2)); 341 // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails 342 // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't 343 // merged, thus the emitted file ends up with a PF_Unknown kind. 344 345 // Initialize the writer contexts. 346 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 347 for (unsigned I = 0; I < NumThreads; ++I) 348 Contexts.emplace_back(std::make_unique<WriterContext>( 349 OutputSparse, ErrorLock, WriterErrorCodes)); 350 351 if (NumThreads == 1) { 352 for (const auto &Input : Inputs) 353 loadInput(Input, Remapper, Contexts[0].get()); 354 } else { 355 ThreadPool Pool(hardware_concurrency(NumThreads)); 356 357 // Load the inputs in parallel (N/NumThreads serial steps). 358 unsigned Ctx = 0; 359 for (const auto &Input : Inputs) { 360 Pool.async(loadInput, Input, Remapper, Contexts[Ctx].get()); 361 Ctx = (Ctx + 1) % NumThreads; 362 } 363 Pool.wait(); 364 365 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 366 unsigned Mid = Contexts.size() / 2; 367 unsigned End = Contexts.size(); 368 assert(Mid > 0 && "Expected more than one context"); 369 do { 370 for (unsigned I = 0; I < Mid; ++I) 371 Pool.async(mergeWriterContexts, Contexts[I].get(), 372 Contexts[I + Mid].get()); 373 Pool.wait(); 374 if (End & 1) { 375 Pool.async(mergeWriterContexts, Contexts[0].get(), 376 Contexts[End - 1].get()); 377 Pool.wait(); 378 } 379 End = Mid; 380 Mid /= 2; 381 } while (Mid > 0); 382 } 383 384 // Handle deferred errors encountered during merging. If the number of errors 385 // is equal to the number of inputs the merge failed. 386 unsigned NumErrors = 0; 387 for (std::unique_ptr<WriterContext> &WC : Contexts) { 388 for (auto &ErrorPair : WC->Errors) { 389 ++NumErrors; 390 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 391 } 392 } 393 if (NumErrors == Inputs.size() || 394 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 395 exitWithError("No profiles could be merged."); 396 397 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 398 } 399 400 /// The profile entry for a function in instrumentation profile. 401 struct InstrProfileEntry { 402 uint64_t MaxCount = 0; 403 float ZeroCounterRatio = 0.0; 404 InstrProfRecord *ProfRecord; 405 InstrProfileEntry(InstrProfRecord *Record); 406 InstrProfileEntry() = default; 407 }; 408 409 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 410 ProfRecord = Record; 411 uint64_t CntNum = Record->Counts.size(); 412 uint64_t ZeroCntNum = 0; 413 for (size_t I = 0; I < CntNum; ++I) { 414 MaxCount = std::max(MaxCount, Record->Counts[I]); 415 ZeroCntNum += !Record->Counts[I]; 416 } 417 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 418 } 419 420 /// Either set all the counters in the instr profile entry \p IFE to -1 421 /// in order to drop the profile or scale up the counters in \p IFP to 422 /// be above hot threshold. We use the ratio of zero counters in the 423 /// profile of a function to decide the profile is helpful or harmful 424 /// for performance, and to choose whether to scale up or drop it. 425 static void updateInstrProfileEntry(InstrProfileEntry &IFE, 426 uint64_t HotInstrThreshold, 427 float ZeroCounterThreshold) { 428 InstrProfRecord *ProfRecord = IFE.ProfRecord; 429 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 430 // If all or most of the counters of the function are zero, the 431 // profile is unaccountable and shuld be dropped. Reset all the 432 // counters to be -1 and PGO profile-use will drop the profile. 433 // All counters being -1 also implies that the function is hot so 434 // PGO profile-use will also set the entry count metadata to be 435 // above hot threshold. 436 for (size_t I = 0; I < ProfRecord->Counts.size(); ++I) 437 ProfRecord->Counts[I] = -1; 438 return; 439 } 440 441 // Scale up the MaxCount to be multiple times above hot threshold. 442 const unsigned MultiplyFactor = 3; 443 uint64_t Numerator = HotInstrThreshold * MultiplyFactor; 444 uint64_t Denominator = IFE.MaxCount; 445 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 446 warn(toString(make_error<InstrProfError>(E))); 447 }); 448 } 449 450 const uint64_t ColdPercentileIdx = 15; 451 const uint64_t HotPercentileIdx = 11; 452 453 /// Adjust the instr profile in \p WC based on the sample profile in 454 /// \p Reader. 455 static void 456 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 457 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 458 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 459 unsigned InstrProfColdThreshold) { 460 // Function to its entry in instr profile. 461 StringMap<InstrProfileEntry> InstrProfileMap; 462 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 463 for (auto &PD : WC->Writer.getProfileData()) { 464 // Populate IPBuilder. 465 for (const auto &PDV : PD.getValue()) { 466 InstrProfRecord Record = PDV.second; 467 IPBuilder.addRecord(Record); 468 } 469 470 // If a function has multiple entries in instr profile, skip it. 471 if (PD.getValue().size() != 1) 472 continue; 473 474 // Initialize InstrProfileMap. 475 InstrProfRecord *R = &PD.getValue().begin()->second; 476 InstrProfileMap[PD.getKey()] = InstrProfileEntry(R); 477 } 478 479 ProfileSummary InstrPS = *IPBuilder.getSummary(); 480 ProfileSummary SamplePS = Reader->getSummary(); 481 482 // Compute cold thresholds for instr profile and sample profile. 483 uint64_t ColdSampleThreshold = 484 ProfileSummaryBuilder::getEntryForPercentile( 485 SamplePS.getDetailedSummary(), 486 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 487 .MinCount; 488 uint64_t HotInstrThreshold = 489 ProfileSummaryBuilder::getEntryForPercentile( 490 InstrPS.getDetailedSummary(), 491 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 492 .MinCount; 493 uint64_t ColdInstrThreshold = 494 InstrProfColdThreshold 495 ? InstrProfColdThreshold 496 : ProfileSummaryBuilder::getEntryForPercentile( 497 InstrPS.getDetailedSummary(), 498 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 499 .MinCount; 500 501 // Find hot/warm functions in sample profile which is cold in instr profile 502 // and adjust the profiles of those functions in the instr profile. 503 for (const auto &PD : Reader->getProfiles()) { 504 StringRef FName = PD.getKey(); 505 const sampleprof::FunctionSamples &FS = PD.getValue(); 506 auto It = InstrProfileMap.find(FName); 507 if (FS.getHeadSamples() > ColdSampleThreshold && 508 It != InstrProfileMap.end() && 509 It->second.MaxCount <= ColdInstrThreshold && 510 FS.getBodySamples().size() >= SupplMinSizeThreshold) { 511 updateInstrProfileEntry(It->second, HotInstrThreshold, 512 ZeroCounterThreshold); 513 } 514 } 515 } 516 517 /// The main function to supplement instr profile with sample profile. 518 /// \Inputs contains the instr profile. \p SampleFilename specifies the 519 /// sample profile. \p OutputFilename specifies the output profile name. 520 /// \p OutputFormat specifies the output profile format. \p OutputSparse 521 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 522 /// specifies the minimal size for the functions whose profile will be 523 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 524 /// a function contains too many zero counters and whether its profile 525 /// should be dropped. \p InstrProfColdThreshold is the user specified 526 /// cold threshold which will override the cold threshold got from the 527 /// instr profile summary. 528 static void supplementInstrProfile( 529 const WeightedFileVector &Inputs, StringRef SampleFilename, 530 StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse, 531 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 532 unsigned InstrProfColdThreshold) { 533 if (OutputFilename.compare("-") == 0) 534 exitWithError("Cannot write indexed profdata format to stdout."); 535 if (Inputs.size() != 1) 536 exitWithError("Expect one input to be an instr profile."); 537 if (Inputs[0].Weight != 1) 538 exitWithError("Expect instr profile doesn't have weight."); 539 540 StringRef InstrFilename = Inputs[0].Filename; 541 542 // Read sample profile. 543 LLVMContext Context; 544 auto ReaderOrErr = 545 sampleprof::SampleProfileReader::create(SampleFilename.str(), Context); 546 if (std::error_code EC = ReaderOrErr.getError()) 547 exitWithErrorCode(EC, SampleFilename); 548 auto Reader = std::move(ReaderOrErr.get()); 549 if (std::error_code EC = Reader->read()) 550 exitWithErrorCode(EC, SampleFilename); 551 552 // Read instr profile. 553 std::mutex ErrorLock; 554 SmallSet<instrprof_error, 4> WriterErrorCodes; 555 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 556 WriterErrorCodes); 557 loadInput(Inputs[0], nullptr, WC.get()); 558 if (WC->Errors.size() > 0) 559 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 560 561 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 562 InstrProfColdThreshold); 563 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 564 } 565 566 /// Make a copy of the given function samples with all symbol names remapped 567 /// by the provided symbol remapper. 568 static sampleprof::FunctionSamples 569 remapSamples(const sampleprof::FunctionSamples &Samples, 570 SymbolRemapper &Remapper, sampleprof_error &Error) { 571 sampleprof::FunctionSamples Result; 572 Result.setName(Remapper(Samples.getName())); 573 Result.addTotalSamples(Samples.getTotalSamples()); 574 Result.addHeadSamples(Samples.getHeadSamples()); 575 for (const auto &BodySample : Samples.getBodySamples()) { 576 Result.addBodySamples(BodySample.first.LineOffset, 577 BodySample.first.Discriminator, 578 BodySample.second.getSamples()); 579 for (const auto &Target : BodySample.second.getCallTargets()) { 580 Result.addCalledTargetSamples(BodySample.first.LineOffset, 581 BodySample.first.Discriminator, 582 Remapper(Target.first()), Target.second); 583 } 584 } 585 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 586 sampleprof::FunctionSamplesMap &Target = 587 Result.functionSamplesAt(CallsiteSamples.first); 588 for (const auto &Callsite : CallsiteSamples.second) { 589 sampleprof::FunctionSamples Remapped = 590 remapSamples(Callsite.second, Remapper, Error); 591 MergeResult(Error, 592 Target[std::string(Remapped.getName())].merge(Remapped)); 593 } 594 } 595 return Result; 596 } 597 598 static sampleprof::SampleProfileFormat FormatMap[] = { 599 sampleprof::SPF_None, 600 sampleprof::SPF_Text, 601 sampleprof::SPF_Compact_Binary, 602 sampleprof::SPF_Ext_Binary, 603 sampleprof::SPF_GCC, 604 sampleprof::SPF_Binary}; 605 606 static std::unique_ptr<MemoryBuffer> 607 getInputFileBuf(const StringRef &InputFile) { 608 if (InputFile == "") 609 return {}; 610 611 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 612 if (!BufOrError) 613 exitWithErrorCode(BufOrError.getError(), InputFile); 614 615 return std::move(*BufOrError); 616 } 617 618 static void populateProfileSymbolList(MemoryBuffer *Buffer, 619 sampleprof::ProfileSymbolList &PSL) { 620 if (!Buffer) 621 return; 622 623 SmallVector<StringRef, 32> SymbolVec; 624 StringRef Data = Buffer->getBuffer(); 625 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 626 627 for (StringRef symbol : SymbolVec) 628 PSL.add(symbol); 629 } 630 631 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 632 ProfileFormat OutputFormat, 633 MemoryBuffer *Buffer, 634 sampleprof::ProfileSymbolList &WriterList, 635 bool CompressAllSections, bool UseMD5, 636 bool GenPartialProfile) { 637 populateProfileSymbolList(Buffer, WriterList); 638 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 639 warn("Profile Symbol list is not empty but the output format is not " 640 "ExtBinary format. The list will be lost in the output. "); 641 642 Writer.setProfileSymbolList(&WriterList); 643 644 if (CompressAllSections) { 645 if (OutputFormat != PF_Ext_Binary) 646 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 647 else 648 Writer.setToCompressAllSections(); 649 } 650 if (UseMD5) { 651 if (OutputFormat != PF_Ext_Binary) 652 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 653 else 654 Writer.setUseMD5(); 655 } 656 if (GenPartialProfile) { 657 if (OutputFormat != PF_Ext_Binary) 658 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 659 else 660 Writer.setPartialProfile(); 661 } 662 } 663 664 static void 665 mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper, 666 StringRef OutputFilename, ProfileFormat OutputFormat, 667 StringRef ProfileSymbolListFile, bool CompressAllSections, 668 bool UseMD5, bool GenPartialProfile, FailureMode FailMode) { 669 using namespace sampleprof; 670 StringMap<FunctionSamples> ProfileMap; 671 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 672 LLVMContext Context; 673 sampleprof::ProfileSymbolList WriterList; 674 Optional<bool> ProfileIsProbeBased; 675 Optional<bool> ProfileIsCS; 676 for (const auto &Input : Inputs) { 677 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context); 678 if (std::error_code EC = ReaderOrErr.getError()) { 679 warnOrExitGivenError(FailMode, EC, Input.Filename); 680 continue; 681 } 682 683 // We need to keep the readers around until after all the files are 684 // read so that we do not lose the function names stored in each 685 // reader's memory. The function names are needed to write out the 686 // merged profile map. 687 Readers.push_back(std::move(ReaderOrErr.get())); 688 const auto Reader = Readers.back().get(); 689 if (std::error_code EC = Reader->read()) { 690 warnOrExitGivenError(FailMode, EC, Input.Filename); 691 Readers.pop_back(); 692 continue; 693 } 694 695 StringMap<FunctionSamples> &Profiles = Reader->getProfiles(); 696 if (ProfileIsProbeBased.hasValue() && 697 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) 698 exitWithError( 699 "cannot merge probe-based profile with non-probe-based profile"); 700 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; 701 if (ProfileIsCS.hasValue() && ProfileIsCS != FunctionSamples::ProfileIsCS) 702 exitWithError("cannot merge CS profile with non-CS profile"); 703 ProfileIsCS = FunctionSamples::ProfileIsCS; 704 for (StringMap<FunctionSamples>::iterator I = Profiles.begin(), 705 E = Profiles.end(); 706 I != E; ++I) { 707 sampleprof_error Result = sampleprof_error::success; 708 FunctionSamples Remapped = 709 Remapper ? remapSamples(I->second, *Remapper, Result) 710 : FunctionSamples(); 711 FunctionSamples &Samples = Remapper ? Remapped : I->second; 712 StringRef FName = Samples.getNameWithContext(true); 713 MergeResult(Result, ProfileMap[FName].merge(Samples, Input.Weight)); 714 if (Result != sampleprof_error::success) { 715 std::error_code EC = make_error_code(Result); 716 handleMergeWriterError(errorCodeToError(EC), Input.Filename, FName); 717 } 718 } 719 720 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 721 Reader->getProfileSymbolList(); 722 if (ReaderList) 723 WriterList.merge(*ReaderList); 724 } 725 auto WriterOrErr = 726 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 727 if (std::error_code EC = WriterOrErr.getError()) 728 exitWithErrorCode(EC, OutputFilename); 729 730 auto Writer = std::move(WriterOrErr.get()); 731 // WriterList will have StringRef refering to string in Buffer. 732 // Make sure Buffer lives as long as WriterList. 733 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 734 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 735 CompressAllSections, UseMD5, GenPartialProfile); 736 Writer->write(ProfileMap); 737 } 738 739 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 740 StringRef WeightStr, FileName; 741 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 742 743 uint64_t Weight; 744 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 745 exitWithError("Input weight must be a positive integer."); 746 747 return {std::string(FileName), Weight}; 748 } 749 750 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 751 StringRef Filename = WF.Filename; 752 uint64_t Weight = WF.Weight; 753 754 // If it's STDIN just pass it on. 755 if (Filename == "-") { 756 WNI.push_back({std::string(Filename), Weight}); 757 return; 758 } 759 760 llvm::sys::fs::file_status Status; 761 llvm::sys::fs::status(Filename, Status); 762 if (!llvm::sys::fs::exists(Status)) 763 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 764 Filename); 765 // If it's a source file, collect it. 766 if (llvm::sys::fs::is_regular_file(Status)) { 767 WNI.push_back({std::string(Filename), Weight}); 768 return; 769 } 770 771 if (llvm::sys::fs::is_directory(Status)) { 772 std::error_code EC; 773 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 774 F != E && !EC; F.increment(EC)) { 775 if (llvm::sys::fs::is_regular_file(F->path())) { 776 addWeightedInput(WNI, {F->path(), Weight}); 777 } 778 } 779 if (EC) 780 exitWithErrorCode(EC, Filename); 781 } 782 } 783 784 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 785 WeightedFileVector &WFV) { 786 if (!Buffer) 787 return; 788 789 SmallVector<StringRef, 8> Entries; 790 StringRef Data = Buffer->getBuffer(); 791 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 792 for (const StringRef &FileWeightEntry : Entries) { 793 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 794 // Skip comments. 795 if (SanitizedEntry.startswith("#")) 796 continue; 797 // If there's no comma, it's an unweighted profile. 798 else if (SanitizedEntry.find(',') == StringRef::npos) 799 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 800 else 801 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 802 } 803 } 804 805 static int merge_main(int argc, const char *argv[]) { 806 cl::list<std::string> InputFilenames(cl::Positional, 807 cl::desc("<filename...>")); 808 cl::list<std::string> WeightedInputFilenames("weighted-input", 809 cl::desc("<weight>,<filename>")); 810 cl::opt<std::string> InputFilenamesFile( 811 "input-files", cl::init(""), 812 cl::desc("Path to file containing newline-separated " 813 "[<weight>,]<filename> entries")); 814 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 815 cl::aliasopt(InputFilenamesFile)); 816 cl::opt<bool> DumpInputFileList( 817 "dump-input-file-list", cl::init(false), cl::Hidden, 818 cl::desc("Dump the list of input files and their weights, then exit")); 819 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 820 cl::desc("Symbol remapping file")); 821 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 822 cl::aliasopt(RemappingFile)); 823 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 824 cl::init("-"), cl::Required, 825 cl::desc("Output file")); 826 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 827 cl::aliasopt(OutputFilename)); 828 cl::opt<ProfileKinds> ProfileKind( 829 cl::desc("Profile kind:"), cl::init(instr), 830 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 831 clEnumVal(sample, "Sample profile"))); 832 cl::opt<ProfileFormat> OutputFormat( 833 cl::desc("Format of output profile"), cl::init(PF_Binary), 834 cl::values( 835 clEnumValN(PF_Binary, "binary", "Binary encoding (default)"), 836 clEnumValN(PF_Compact_Binary, "compbinary", 837 "Compact binary encoding"), 838 clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"), 839 clEnumValN(PF_Text, "text", "Text encoding"), 840 clEnumValN(PF_GCC, "gcc", 841 "GCC encoding (only meaningful for -sample)"))); 842 cl::opt<FailureMode> FailureMode( 843 "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"), 844 cl::values(clEnumValN(failIfAnyAreInvalid, "any", 845 "Fail if any profile is invalid."), 846 clEnumValN(failIfAllAreInvalid, "all", 847 "Fail only if all profiles are invalid."))); 848 cl::opt<bool> OutputSparse("sparse", cl::init(false), 849 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 850 cl::opt<unsigned> NumThreads( 851 "num-threads", cl::init(0), 852 cl::desc("Number of merge threads to use (default: autodetect)")); 853 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 854 cl::aliasopt(NumThreads)); 855 cl::opt<std::string> ProfileSymbolListFile( 856 "prof-sym-list", cl::init(""), 857 cl::desc("Path to file containing the list of function symbols " 858 "used to populate profile symbol list")); 859 cl::opt<bool> CompressAllSections( 860 "compress-all-sections", cl::init(false), cl::Hidden, 861 cl::desc("Compress all sections when writing the profile (only " 862 "meaningful for -extbinary)")); 863 cl::opt<bool> UseMD5( 864 "use-md5", cl::init(false), cl::Hidden, 865 cl::desc("Choose to use MD5 to represent string in name table (only " 866 "meaningful for -extbinary)")); 867 cl::opt<bool> GenPartialProfile( 868 "gen-partial-profile", cl::init(false), cl::Hidden, 869 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 870 cl::opt<std::string> SupplInstrWithSample( 871 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 872 cl::desc("Supplement an instr profile with sample profile, to correct " 873 "the profile unrepresentativeness issue. The sample " 874 "profile is the input of the flag. Output will be in instr " 875 "format (The flag only works with -instr)")); 876 cl::opt<float> ZeroCounterThreshold( 877 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 878 cl::desc("For the function which is cold in instr profile but hot in " 879 "sample profile, if the ratio of the number of zero counters " 880 "divided by the the total number of counters is above the " 881 "threshold, the profile of the function will be regarded as " 882 "being harmful for performance and will be dropped. ")); 883 cl::opt<unsigned> SupplMinSizeThreshold( 884 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 885 cl::desc("If the size of a function is smaller than the threshold, " 886 "assume it can be inlined by PGO early inliner and it won't " 887 "be adjusted based on sample profile. ")); 888 cl::opt<unsigned> InstrProfColdThreshold( 889 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 890 cl::desc("User specified cold threshold for instr profile which will " 891 "override the cold threshold got from profile summary. ")); 892 893 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n"); 894 895 WeightedFileVector WeightedInputs; 896 for (StringRef Filename : InputFilenames) 897 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 898 for (StringRef WeightedFilename : WeightedInputFilenames) 899 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 900 901 // Make sure that the file buffer stays alive for the duration of the 902 // weighted input vector's lifetime. 903 auto Buffer = getInputFileBuf(InputFilenamesFile); 904 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 905 906 if (WeightedInputs.empty()) 907 exitWithError("No input files specified. See " + 908 sys::path::filename(argv[0]) + " -help"); 909 910 if (DumpInputFileList) { 911 for (auto &WF : WeightedInputs) 912 outs() << WF.Weight << "," << WF.Filename << "\n"; 913 return 0; 914 } 915 916 std::unique_ptr<SymbolRemapper> Remapper; 917 if (!RemappingFile.empty()) 918 Remapper = SymbolRemapper::create(RemappingFile); 919 920 if (!SupplInstrWithSample.empty()) { 921 if (ProfileKind != instr) 922 exitWithError( 923 "-supplement-instr-with-sample can only work with -instr. "); 924 925 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename, 926 OutputFormat, OutputSparse, SupplMinSizeThreshold, 927 ZeroCounterThreshold, InstrProfColdThreshold); 928 return 0; 929 } 930 931 if (ProfileKind == instr) 932 mergeInstrProfile(WeightedInputs, Remapper.get(), OutputFilename, 933 OutputFormat, OutputSparse, NumThreads, FailureMode); 934 else 935 mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename, 936 OutputFormat, ProfileSymbolListFile, CompressAllSections, 937 UseMD5, GenPartialProfile, FailureMode); 938 939 return 0; 940 } 941 942 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 943 static void overlapInstrProfile(const std::string &BaseFilename, 944 const std::string &TestFilename, 945 const OverlapFuncFilters &FuncFilter, 946 raw_fd_ostream &OS, bool IsCS) { 947 std::mutex ErrorLock; 948 SmallSet<instrprof_error, 4> WriterErrorCodes; 949 WriterContext Context(false, ErrorLock, WriterErrorCodes); 950 WeightedFile WeightedInput{BaseFilename, 1}; 951 OverlapStats Overlap; 952 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 953 if (E) 954 exitWithError(std::move(E), "Error in getting profile count sums"); 955 if (Overlap.Base.CountSum < 1.0f) { 956 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 957 exit(0); 958 } 959 if (Overlap.Test.CountSum < 1.0f) { 960 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 961 exit(0); 962 } 963 loadInput(WeightedInput, nullptr, &Context); 964 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 965 IsCS); 966 Overlap.dump(OS); 967 } 968 969 namespace { 970 struct SampleOverlapStats { 971 StringRef BaseName; 972 StringRef TestName; 973 // Number of overlap units 974 uint64_t OverlapCount; 975 // Total samples of overlap units 976 uint64_t OverlapSample; 977 // Number of and total samples of units that only present in base or test 978 // profile 979 uint64_t BaseUniqueCount; 980 uint64_t BaseUniqueSample; 981 uint64_t TestUniqueCount; 982 uint64_t TestUniqueSample; 983 // Number of units and total samples in base or test profile 984 uint64_t BaseCount; 985 uint64_t BaseSample; 986 uint64_t TestCount; 987 uint64_t TestSample; 988 // Number of and total samples of units that present in at least one profile 989 uint64_t UnionCount; 990 uint64_t UnionSample; 991 // Weighted similarity 992 double Similarity; 993 // For SampleOverlapStats instances representing functions, weights of the 994 // function in base and test profiles 995 double BaseWeight; 996 double TestWeight; 997 998 SampleOverlapStats() 999 : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0), 1000 BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0), 1001 BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0), 1002 UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {} 1003 }; 1004 } // end anonymous namespace 1005 1006 namespace { 1007 struct FuncSampleStats { 1008 uint64_t SampleSum; 1009 uint64_t MaxSample; 1010 uint64_t HotBlockCount; 1011 FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {} 1012 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 1013 uint64_t HotBlockCount) 1014 : SampleSum(SampleSum), MaxSample(MaxSample), 1015 HotBlockCount(HotBlockCount) {} 1016 }; 1017 } // end anonymous namespace 1018 1019 namespace { 1020 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1021 1022 // Class for updating merging steps for two sorted maps. The class should be 1023 // instantiated with a map iterator type. 1024 template <class T> class MatchStep { 1025 public: 1026 MatchStep() = delete; 1027 1028 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1029 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1030 SecondEnd(SecondEnd), Status(MS_None) {} 1031 1032 bool areBothFinished() const { 1033 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1034 } 1035 1036 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1037 1038 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1039 1040 /// Advance one step based on the previous match status unless the previous 1041 /// status is MS_None. Then update Status based on the comparison between two 1042 /// container iterators at the current step. If the previous status is 1043 /// MS_None, it means two iterators are at the beginning and no comparison has 1044 /// been made, so we simply update Status without advancing the iterators. 1045 void updateOneStep(); 1046 1047 T getFirstIter() const { return FirstIter; } 1048 1049 T getSecondIter() const { return SecondIter; } 1050 1051 MatchStatus getMatchStatus() const { return Status; } 1052 1053 private: 1054 // Current iterator and end iterator of the first container. 1055 T FirstIter; 1056 T FirstEnd; 1057 // Current iterator and end iterator of the second container. 1058 T SecondIter; 1059 T SecondEnd; 1060 // Match status of the current step. 1061 MatchStatus Status; 1062 }; 1063 } // end anonymous namespace 1064 1065 template <class T> void MatchStep<T>::updateOneStep() { 1066 switch (Status) { 1067 case MS_Match: 1068 ++FirstIter; 1069 ++SecondIter; 1070 break; 1071 case MS_FirstUnique: 1072 ++FirstIter; 1073 break; 1074 case MS_SecondUnique: 1075 ++SecondIter; 1076 break; 1077 case MS_None: 1078 break; 1079 } 1080 1081 // Update Status according to iterators at the current step. 1082 if (areBothFinished()) 1083 return; 1084 if (FirstIter != FirstEnd && 1085 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1086 Status = MS_FirstUnique; 1087 else if (SecondIter != SecondEnd && 1088 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1089 Status = MS_SecondUnique; 1090 else 1091 Status = MS_Match; 1092 } 1093 1094 // Return the sum of line/block samples, the max line/block sample, and the 1095 // number of line/block samples above the given threshold in a function 1096 // including its inlinees. 1097 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1098 FuncSampleStats &FuncStats, 1099 uint64_t HotThreshold) { 1100 for (const auto &L : Func.getBodySamples()) { 1101 uint64_t Sample = L.second.getSamples(); 1102 FuncStats.SampleSum += Sample; 1103 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1104 if (Sample >= HotThreshold) 1105 ++FuncStats.HotBlockCount; 1106 } 1107 1108 for (const auto &C : Func.getCallsiteSamples()) { 1109 for (const auto &F : C.second) 1110 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1111 } 1112 } 1113 1114 /// Predicate that determines if a function is hot with a given threshold. We 1115 /// keep it separate from its callsites for possible extension in the future. 1116 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1117 uint64_t HotThreshold) { 1118 // We intentionally compare the maximum sample count in a function with the 1119 // HotThreshold to get an approximate determination on hot functions. 1120 return (FuncStats.MaxSample >= HotThreshold); 1121 } 1122 1123 namespace { 1124 class SampleOverlapAggregator { 1125 public: 1126 SampleOverlapAggregator(const std::string &BaseFilename, 1127 const std::string &TestFilename, 1128 double LowSimilarityThreshold, double Epsilon, 1129 const OverlapFuncFilters &FuncFilter) 1130 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1131 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1132 FuncFilter(FuncFilter) {} 1133 1134 /// Detect 0-sample input profile and report to output stream. This interface 1135 /// should be called after loadProfiles(). 1136 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1137 1138 /// Write out function-level similarity statistics for functions specified by 1139 /// options --function, --value-cutoff, and --similarity-cutoff. 1140 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1141 1142 /// Write out program-level similarity and overlap statistics. 1143 void dumpProgramSummary(raw_fd_ostream &OS) const; 1144 1145 /// Write out hot-function and hot-block statistics for base_profile, 1146 /// test_profile, and their overlap. For both cases, the overlap HO is 1147 /// calculated as follows: 1148 /// Given the number of functions (or blocks) that are hot in both profiles 1149 /// HCommon and the number of functions (or blocks) that are hot in at 1150 /// least one profile HUnion, HO = HCommon / HUnion. 1151 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 1152 1153 /// This function tries matching functions in base and test profiles. For each 1154 /// pair of matched functions, it aggregates the function-level 1155 /// similarity into a profile-level similarity. It also dump function-level 1156 /// similarity information of functions specified by --function, 1157 /// --value-cutoff, and --similarity-cutoff options. The program-level 1158 /// similarity PS is computed as follows: 1159 /// Given function-level similarity FS(A) for all function A, the 1160 /// weight of function A in base profile WB(A), and the weight of function 1161 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 1162 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 1163 /// meaning no-overlap. 1164 void computeSampleProfileOverlap(raw_fd_ostream &OS); 1165 1166 /// Initialize ProfOverlap with the sum of samples in base and test 1167 /// profiles. This function also computes and keeps the sum of samples and 1168 /// max sample counts of each function in BaseStats and TestStats for later 1169 /// use to avoid re-computations. 1170 void initializeSampleProfileOverlap(); 1171 1172 /// Load profiles specified by BaseFilename and TestFilename. 1173 std::error_code loadProfiles(); 1174 1175 private: 1176 SampleOverlapStats ProfOverlap; 1177 SampleOverlapStats HotFuncOverlap; 1178 SampleOverlapStats HotBlockOverlap; 1179 std::string BaseFilename; 1180 std::string TestFilename; 1181 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 1182 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 1183 // BaseStats and TestStats hold FuncSampleStats for each function, with 1184 // function name as the key. 1185 StringMap<FuncSampleStats> BaseStats; 1186 StringMap<FuncSampleStats> TestStats; 1187 // Low similarity threshold in floating point number 1188 double LowSimilarityThreshold; 1189 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 1190 // for tracking hot blocks. 1191 uint64_t BaseHotThreshold; 1192 uint64_t TestHotThreshold; 1193 // A small threshold used to round the results of floating point accumulations 1194 // to resolve imprecision. 1195 const double Epsilon; 1196 std::multimap<double, SampleOverlapStats, std::greater<double>> 1197 FuncSimilarityDump; 1198 // FuncFilter carries specifications in options --value-cutoff and 1199 // --function. 1200 OverlapFuncFilters FuncFilter; 1201 // Column offsets for printing the function-level details table. 1202 static const unsigned int TestWeightCol = 15; 1203 static const unsigned int SimilarityCol = 30; 1204 static const unsigned int OverlapCol = 43; 1205 static const unsigned int BaseUniqueCol = 53; 1206 static const unsigned int TestUniqueCol = 67; 1207 static const unsigned int BaseSampleCol = 81; 1208 static const unsigned int TestSampleCol = 96; 1209 static const unsigned int FuncNameCol = 111; 1210 1211 /// Return a similarity of two line/block sample counters in the same 1212 /// function in base and test profiles. The line/block-similarity BS(i) is 1213 /// computed as follows: 1214 /// For an offsets i, given the sample count at i in base profile BB(i), 1215 /// the sample count at i in test profile BT(i), the sum of sample counts 1216 /// in this function in base profile SB, and the sum of sample counts in 1217 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 1218 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 1219 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 1220 const SampleOverlapStats &FuncOverlap) const; 1221 1222 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 1223 uint64_t HotBlockCount); 1224 1225 void getHotFunctions(const StringMap<FuncSampleStats> &ProfStats, 1226 StringMap<FuncSampleStats> &HotFunc, 1227 uint64_t HotThreshold) const; 1228 1229 void computeHotFuncOverlap(); 1230 1231 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1232 /// Difference for two sample units in a matched function according to the 1233 /// given match status. 1234 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 1235 uint64_t HotBlockCount, 1236 SampleOverlapStats &FuncOverlap, 1237 double &Difference, MatchStatus Status); 1238 1239 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1240 /// Difference for unmatched callees that only present in one profile in a 1241 /// matched caller function. 1242 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 1243 SampleOverlapStats &FuncOverlap, 1244 double &Difference, MatchStatus Status); 1245 1246 /// This function updates sample overlap statistics of an overlap function in 1247 /// base and test profile. It also calculates a function-internal similarity 1248 /// FIS as follows: 1249 /// For offsets i that have samples in at least one profile in this 1250 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 1251 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 1252 /// 0.0 meaning no overlap. 1253 double computeSampleFunctionInternalOverlap( 1254 const sampleprof::FunctionSamples &BaseFunc, 1255 const sampleprof::FunctionSamples &TestFunc, 1256 SampleOverlapStats &FuncOverlap); 1257 1258 /// Function-level similarity (FS) is a weighted value over function internal 1259 /// similarity (FIS). This function computes a function's FS from its FIS by 1260 /// applying the weight. 1261 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 1262 uint64_t TestFuncSample) const; 1263 1264 /// The function-level similarity FS(A) for a function A is computed as 1265 /// follows: 1266 /// Compute a function-internal similarity FIS(A) by 1267 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 1268 /// function A in base profile WB(A), and the weight of function A in test 1269 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 1270 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 1271 double 1272 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 1273 const sampleprof::FunctionSamples *TestFunc, 1274 SampleOverlapStats *FuncOverlap, 1275 uint64_t BaseFuncSample, 1276 uint64_t TestFuncSample); 1277 1278 /// Profile-level similarity (PS) is a weighted aggregate over function-level 1279 /// similarities (FS). This method weights the FS value by the function 1280 /// weights in the base and test profiles for the aggregation. 1281 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 1282 uint64_t TestFuncSample) const; 1283 }; 1284 } // end anonymous namespace 1285 1286 bool SampleOverlapAggregator::detectZeroSampleProfile( 1287 raw_fd_ostream &OS) const { 1288 bool HaveZeroSample = false; 1289 if (ProfOverlap.BaseSample == 0) { 1290 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 1291 HaveZeroSample = true; 1292 } 1293 if (ProfOverlap.TestSample == 0) { 1294 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 1295 HaveZeroSample = true; 1296 } 1297 return HaveZeroSample; 1298 } 1299 1300 double SampleOverlapAggregator::computeBlockSimilarity( 1301 uint64_t BaseSample, uint64_t TestSample, 1302 const SampleOverlapStats &FuncOverlap) const { 1303 double BaseFrac = 0.0; 1304 double TestFrac = 0.0; 1305 if (FuncOverlap.BaseSample > 0) 1306 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 1307 if (FuncOverlap.TestSample > 0) 1308 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 1309 return 1.0 - std::fabs(BaseFrac - TestFrac); 1310 } 1311 1312 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 1313 uint64_t TestSample, 1314 uint64_t HotBlockCount) { 1315 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 1316 bool IsTestHot = (TestSample >= TestHotThreshold); 1317 if (!IsBaseHot && !IsTestHot) 1318 return; 1319 1320 HotBlockOverlap.UnionCount += HotBlockCount; 1321 if (IsBaseHot) 1322 HotBlockOverlap.BaseCount += HotBlockCount; 1323 if (IsTestHot) 1324 HotBlockOverlap.TestCount += HotBlockCount; 1325 if (IsBaseHot && IsTestHot) 1326 HotBlockOverlap.OverlapCount += HotBlockCount; 1327 } 1328 1329 void SampleOverlapAggregator::getHotFunctions( 1330 const StringMap<FuncSampleStats> &ProfStats, 1331 StringMap<FuncSampleStats> &HotFunc, uint64_t HotThreshold) const { 1332 for (const auto &F : ProfStats) { 1333 if (isFunctionHot(F.second, HotThreshold)) 1334 HotFunc.try_emplace(F.first(), F.second); 1335 } 1336 } 1337 1338 void SampleOverlapAggregator::computeHotFuncOverlap() { 1339 StringMap<FuncSampleStats> BaseHotFunc; 1340 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 1341 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 1342 1343 StringMap<FuncSampleStats> TestHotFunc; 1344 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 1345 HotFuncOverlap.TestCount = TestHotFunc.size(); 1346 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 1347 1348 for (const auto &F : BaseHotFunc) { 1349 if (TestHotFunc.count(F.first())) 1350 ++HotFuncOverlap.OverlapCount; 1351 else 1352 ++HotFuncOverlap.UnionCount; 1353 } 1354 } 1355 1356 void SampleOverlapAggregator::updateOverlapStatsForFunction( 1357 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 1358 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 1359 assert(Status != MS_None && 1360 "Match status should be updated before updating overlap statistics"); 1361 if (Status == MS_FirstUnique) { 1362 TestSample = 0; 1363 FuncOverlap.BaseUniqueSample += BaseSample; 1364 } else if (Status == MS_SecondUnique) { 1365 BaseSample = 0; 1366 FuncOverlap.TestUniqueSample += TestSample; 1367 } else { 1368 ++FuncOverlap.OverlapCount; 1369 } 1370 1371 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 1372 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 1373 Difference += 1374 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 1375 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 1376 } 1377 1378 void SampleOverlapAggregator::updateForUnmatchedCallee( 1379 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 1380 double &Difference, MatchStatus Status) { 1381 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 1382 "Status must be either of the two unmatched cases"); 1383 FuncSampleStats FuncStats; 1384 if (Status == MS_FirstUnique) { 1385 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 1386 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 1387 FuncStats.HotBlockCount, FuncOverlap, 1388 Difference, Status); 1389 } else { 1390 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 1391 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 1392 FuncStats.HotBlockCount, FuncOverlap, 1393 Difference, Status); 1394 } 1395 } 1396 1397 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 1398 const sampleprof::FunctionSamples &BaseFunc, 1399 const sampleprof::FunctionSamples &TestFunc, 1400 SampleOverlapStats &FuncOverlap) { 1401 1402 using namespace sampleprof; 1403 1404 double Difference = 0; 1405 1406 // Accumulate Difference for regular line/block samples in the function. 1407 // We match them through sort-merge join algorithm because 1408 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 1409 // by their offsets. 1410 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 1411 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 1412 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 1413 BlockIterStep.updateOneStep(); 1414 while (!BlockIterStep.areBothFinished()) { 1415 uint64_t BaseSample = 1416 BlockIterStep.isFirstFinished() 1417 ? 0 1418 : BlockIterStep.getFirstIter()->second.getSamples(); 1419 uint64_t TestSample = 1420 BlockIterStep.isSecondFinished() 1421 ? 0 1422 : BlockIterStep.getSecondIter()->second.getSamples(); 1423 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 1424 Difference, BlockIterStep.getMatchStatus()); 1425 1426 BlockIterStep.updateOneStep(); 1427 } 1428 1429 // Accumulate Difference for callsite lines in the function. We match 1430 // them through sort-merge algorithm because 1431 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 1432 // ordered by their offsets. 1433 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 1434 BaseFunc.getCallsiteSamples().cbegin(), 1435 BaseFunc.getCallsiteSamples().cend(), 1436 TestFunc.getCallsiteSamples().cbegin(), 1437 TestFunc.getCallsiteSamples().cend()); 1438 CallsiteIterStep.updateOneStep(); 1439 while (!CallsiteIterStep.areBothFinished()) { 1440 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 1441 assert(CallsiteStepStatus != MS_None && 1442 "Match status should be updated before entering loop body"); 1443 1444 if (CallsiteStepStatus != MS_Match) { 1445 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 1446 ? CallsiteIterStep.getFirstIter() 1447 : CallsiteIterStep.getSecondIter(); 1448 for (const auto &F : Callsite->second) 1449 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 1450 CallsiteStepStatus); 1451 } else { 1452 // There may be multiple inlinees at the same offset, so we need to try 1453 // matching all of them. This match is implemented through sort-merge 1454 // algorithm because callsite records at the same offset are ordered by 1455 // function names. 1456 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 1457 CallsiteIterStep.getFirstIter()->second.cbegin(), 1458 CallsiteIterStep.getFirstIter()->second.cend(), 1459 CallsiteIterStep.getSecondIter()->second.cbegin(), 1460 CallsiteIterStep.getSecondIter()->second.cend()); 1461 CalleeIterStep.updateOneStep(); 1462 while (!CalleeIterStep.areBothFinished()) { 1463 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 1464 if (CalleeStepStatus != MS_Match) { 1465 auto Callee = (CalleeStepStatus == MS_FirstUnique) 1466 ? CalleeIterStep.getFirstIter() 1467 : CalleeIterStep.getSecondIter(); 1468 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 1469 CalleeStepStatus); 1470 } else { 1471 // An inlined function can contain other inlinees inside, so compute 1472 // the Difference recursively. 1473 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 1474 CalleeIterStep.getFirstIter()->second, 1475 CalleeIterStep.getSecondIter()->second, 1476 FuncOverlap); 1477 } 1478 CalleeIterStep.updateOneStep(); 1479 } 1480 } 1481 CallsiteIterStep.updateOneStep(); 1482 } 1483 1484 // Difference reflects the total differences of line/block samples in this 1485 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 1486 // reflect the similarity between function profiles in [0.0f to 1.0f]. 1487 return (2.0 - Difference) / 2; 1488 } 1489 1490 double SampleOverlapAggregator::weightForFuncSimilarity( 1491 double FuncInternalSimilarity, uint64_t BaseFuncSample, 1492 uint64_t TestFuncSample) const { 1493 // Compute the weight as the distance between the function weights in two 1494 // profiles. 1495 double BaseFrac = 0.0; 1496 double TestFrac = 0.0; 1497 assert(ProfOverlap.BaseSample > 0 && 1498 "Total samples in base profile should be greater than 0"); 1499 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 1500 assert(ProfOverlap.TestSample > 0 && 1501 "Total samples in test profile should be greater than 0"); 1502 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 1503 double WeightDistance = std::fabs(BaseFrac - TestFrac); 1504 1505 // Take WeightDistance into the similarity. 1506 return FuncInternalSimilarity * (1 - WeightDistance); 1507 } 1508 1509 double 1510 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 1511 uint64_t BaseFuncSample, 1512 uint64_t TestFuncSample) const { 1513 1514 double BaseFrac = 0.0; 1515 double TestFrac = 0.0; 1516 assert(ProfOverlap.BaseSample > 0 && 1517 "Total samples in base profile should be greater than 0"); 1518 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 1519 assert(ProfOverlap.TestSample > 0 && 1520 "Total samples in test profile should be greater than 0"); 1521 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 1522 return FuncSimilarity * (BaseFrac + TestFrac); 1523 } 1524 1525 double SampleOverlapAggregator::computeSampleFunctionOverlap( 1526 const sampleprof::FunctionSamples *BaseFunc, 1527 const sampleprof::FunctionSamples *TestFunc, 1528 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 1529 uint64_t TestFuncSample) { 1530 // Default function internal similarity before weighted, meaning two functions 1531 // has no overlap. 1532 const double DefaultFuncInternalSimilarity = 0; 1533 double FuncSimilarity; 1534 double FuncInternalSimilarity; 1535 1536 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 1537 // In this case, we use DefaultFuncInternalSimilarity as the function internal 1538 // similarity. 1539 if (!BaseFunc || !TestFunc) { 1540 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 1541 } else { 1542 assert(FuncOverlap != nullptr && 1543 "FuncOverlap should be provided in this case"); 1544 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 1545 *BaseFunc, *TestFunc, *FuncOverlap); 1546 // Now, FuncInternalSimilarity may be a little less than 0 due to 1547 // imprecision of floating point accumulations. Make it zero if the 1548 // difference is below Epsilon. 1549 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 1550 ? 0 1551 : FuncInternalSimilarity; 1552 } 1553 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 1554 BaseFuncSample, TestFuncSample); 1555 return FuncSimilarity; 1556 } 1557 1558 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 1559 using namespace sampleprof; 1560 1561 StringMap<const FunctionSamples *> BaseFuncProf; 1562 const auto &BaseProfiles = BaseReader->getProfiles(); 1563 for (const auto &BaseFunc : BaseProfiles) { 1564 BaseFuncProf.try_emplace(BaseFunc.second.getNameWithContext(), 1565 &(BaseFunc.second)); 1566 } 1567 ProfOverlap.UnionCount = BaseFuncProf.size(); 1568 1569 const auto &TestProfiles = TestReader->getProfiles(); 1570 for (const auto &TestFunc : TestProfiles) { 1571 SampleOverlapStats FuncOverlap; 1572 FuncOverlap.TestName = TestFunc.second.getNameWithContext(); 1573 assert(TestStats.count(FuncOverlap.TestName) && 1574 "TestStats should have records for all functions in test profile " 1575 "except inlinees"); 1576 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 1577 1578 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 1579 if (Match == BaseFuncProf.end()) { 1580 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 1581 ++ProfOverlap.TestUniqueCount; 1582 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 1583 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 1584 1585 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 1586 1587 double FuncSimilarity = computeSampleFunctionOverlap( 1588 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 1589 ProfOverlap.Similarity += 1590 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 1591 1592 ++ProfOverlap.UnionCount; 1593 ProfOverlap.UnionSample += FuncStats.SampleSum; 1594 } else { 1595 ++ProfOverlap.OverlapCount; 1596 1597 // Two functions match with each other. Compute function-level overlap and 1598 // aggregate them into profile-level overlap. 1599 FuncOverlap.BaseName = Match->second->getNameWithContext(); 1600 assert(BaseStats.count(FuncOverlap.BaseName) && 1601 "BaseStats should have records for all functions in base profile " 1602 "except inlinees"); 1603 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 1604 1605 FuncOverlap.Similarity = computeSampleFunctionOverlap( 1606 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 1607 FuncOverlap.TestSample); 1608 ProfOverlap.Similarity += 1609 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 1610 FuncOverlap.TestSample); 1611 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 1612 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 1613 1614 // Accumulate the percentage of base unique and test unique samples into 1615 // ProfOverlap. 1616 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 1617 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 1618 1619 // Remove matched base functions for later reporting functions not found 1620 // in test profile. 1621 BaseFuncProf.erase(Match); 1622 } 1623 1624 // Print function-level similarity information if specified by options. 1625 assert(TestStats.count(FuncOverlap.TestName) && 1626 "TestStats should have records for all functions in test profile " 1627 "except inlinees"); 1628 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 1629 (Match != BaseFuncProf.end() && 1630 FuncOverlap.Similarity < LowSimilarityThreshold) || 1631 (Match != BaseFuncProf.end() && !FuncFilter.NameFilter.empty() && 1632 FuncOverlap.BaseName.find(FuncFilter.NameFilter) != 1633 FuncOverlap.BaseName.npos)) { 1634 assert(ProfOverlap.BaseSample > 0 && 1635 "Total samples in base profile should be greater than 0"); 1636 FuncOverlap.BaseWeight = 1637 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 1638 assert(ProfOverlap.TestSample > 0 && 1639 "Total samples in test profile should be greater than 0"); 1640 FuncOverlap.TestWeight = 1641 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 1642 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 1643 } 1644 } 1645 1646 // Traverse through functions in base profile but not in test profile. 1647 for (const auto &F : BaseFuncProf) { 1648 assert(BaseStats.count(F.second->getNameWithContext()) && 1649 "BaseStats should have records for all functions in base profile " 1650 "except inlinees"); 1651 const FuncSampleStats &FuncStats = 1652 BaseStats[F.second->getNameWithContext()]; 1653 ++ProfOverlap.BaseUniqueCount; 1654 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 1655 1656 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 1657 1658 double FuncSimilarity = computeSampleFunctionOverlap( 1659 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 1660 ProfOverlap.Similarity += 1661 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 1662 1663 ProfOverlap.UnionSample += FuncStats.SampleSum; 1664 } 1665 1666 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 1667 // of floating point accumulations. Make it 1.0 if the difference is below 1668 // Epsilon. 1669 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 1670 ? 1 1671 : ProfOverlap.Similarity; 1672 1673 computeHotFuncOverlap(); 1674 } 1675 1676 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 1677 const auto &BaseProf = BaseReader->getProfiles(); 1678 for (const auto &I : BaseProf) { 1679 ++ProfOverlap.BaseCount; 1680 FuncSampleStats FuncStats; 1681 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 1682 ProfOverlap.BaseSample += FuncStats.SampleSum; 1683 BaseStats.try_emplace(I.second.getNameWithContext(), FuncStats); 1684 } 1685 1686 const auto &TestProf = TestReader->getProfiles(); 1687 for (const auto &I : TestProf) { 1688 ++ProfOverlap.TestCount; 1689 FuncSampleStats FuncStats; 1690 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 1691 ProfOverlap.TestSample += FuncStats.SampleSum; 1692 TestStats.try_emplace(I.second.getNameWithContext(), FuncStats); 1693 } 1694 1695 ProfOverlap.BaseName = StringRef(BaseFilename); 1696 ProfOverlap.TestName = StringRef(TestFilename); 1697 } 1698 1699 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 1700 using namespace sampleprof; 1701 1702 if (FuncSimilarityDump.empty()) 1703 return; 1704 1705 formatted_raw_ostream FOS(OS); 1706 FOS << "Function-level details:\n"; 1707 FOS << "Base weight"; 1708 FOS.PadToColumn(TestWeightCol); 1709 FOS << "Test weight"; 1710 FOS.PadToColumn(SimilarityCol); 1711 FOS << "Similarity"; 1712 FOS.PadToColumn(OverlapCol); 1713 FOS << "Overlap"; 1714 FOS.PadToColumn(BaseUniqueCol); 1715 FOS << "Base unique"; 1716 FOS.PadToColumn(TestUniqueCol); 1717 FOS << "Test unique"; 1718 FOS.PadToColumn(BaseSampleCol); 1719 FOS << "Base samples"; 1720 FOS.PadToColumn(TestSampleCol); 1721 FOS << "Test samples"; 1722 FOS.PadToColumn(FuncNameCol); 1723 FOS << "Function name\n"; 1724 for (const auto &F : FuncSimilarityDump) { 1725 double OverlapPercent = 1726 F.second.UnionSample > 0 1727 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 1728 : 0; 1729 double BaseUniquePercent = 1730 F.second.BaseSample > 0 1731 ? static_cast<double>(F.second.BaseUniqueSample) / 1732 F.second.BaseSample 1733 : 0; 1734 double TestUniquePercent = 1735 F.second.TestSample > 0 1736 ? static_cast<double>(F.second.TestUniqueSample) / 1737 F.second.TestSample 1738 : 0; 1739 1740 FOS << format("%.2f%%", F.second.BaseWeight * 100); 1741 FOS.PadToColumn(TestWeightCol); 1742 FOS << format("%.2f%%", F.second.TestWeight * 100); 1743 FOS.PadToColumn(SimilarityCol); 1744 FOS << format("%.2f%%", F.second.Similarity * 100); 1745 FOS.PadToColumn(OverlapCol); 1746 FOS << format("%.2f%%", OverlapPercent * 100); 1747 FOS.PadToColumn(BaseUniqueCol); 1748 FOS << format("%.2f%%", BaseUniquePercent * 100); 1749 FOS.PadToColumn(TestUniqueCol); 1750 FOS << format("%.2f%%", TestUniquePercent * 100); 1751 FOS.PadToColumn(BaseSampleCol); 1752 FOS << F.second.BaseSample; 1753 FOS.PadToColumn(TestSampleCol); 1754 FOS << F.second.TestSample; 1755 FOS.PadToColumn(FuncNameCol); 1756 FOS << F.second.TestName << "\n"; 1757 } 1758 } 1759 1760 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 1761 OS << "Profile overlap infomation for base_profile: " << ProfOverlap.BaseName 1762 << " and test_profile: " << ProfOverlap.TestName << "\nProgram level:\n"; 1763 1764 OS << " Whole program profile similarity: " 1765 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 1766 1767 assert(ProfOverlap.UnionSample > 0 && 1768 "Total samples in two profile should be greater than 0"); 1769 double OverlapPercent = 1770 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 1771 assert(ProfOverlap.BaseSample > 0 && 1772 "Total samples in base profile should be greater than 0"); 1773 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 1774 ProfOverlap.BaseSample; 1775 assert(ProfOverlap.TestSample > 0 && 1776 "Total samples in test profile should be greater than 0"); 1777 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 1778 ProfOverlap.TestSample; 1779 1780 OS << " Whole program sample overlap: " 1781 << format("%.3f%%", OverlapPercent * 100) << "\n"; 1782 OS << " percentage of samples unique in base profile: " 1783 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 1784 OS << " percentage of samples unique in test profile: " 1785 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 1786 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 1787 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 1788 1789 assert(ProfOverlap.UnionCount > 0 && 1790 "There should be at least one function in two input profiles"); 1791 double FuncOverlapPercent = 1792 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 1793 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 1794 << "\n"; 1795 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 1796 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 1797 << "\n"; 1798 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 1799 << "\n"; 1800 } 1801 1802 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 1803 raw_fd_ostream &OS) const { 1804 assert(HotFuncOverlap.UnionCount > 0 && 1805 "There should be at least one hot function in two input profiles"); 1806 OS << " Hot-function overlap: " 1807 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 1808 HotFuncOverlap.UnionCount * 100) 1809 << "\n"; 1810 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 1811 OS << " hot functions unique in base profile: " 1812 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 1813 OS << " hot functions unique in test profile: " 1814 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 1815 1816 assert(HotBlockOverlap.UnionCount > 0 && 1817 "There should be at least one hot block in two input profiles"); 1818 OS << " Hot-block overlap: " 1819 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 1820 HotBlockOverlap.UnionCount * 100) 1821 << "\n"; 1822 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 1823 OS << " hot blocks unique in base profile: " 1824 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 1825 OS << " hot blocks unique in test profile: " 1826 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 1827 } 1828 1829 std::error_code SampleOverlapAggregator::loadProfiles() { 1830 using namespace sampleprof; 1831 1832 LLVMContext Context; 1833 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context); 1834 if (std::error_code EC = BaseReaderOrErr.getError()) 1835 exitWithErrorCode(EC, BaseFilename); 1836 1837 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context); 1838 if (std::error_code EC = TestReaderOrErr.getError()) 1839 exitWithErrorCode(EC, TestFilename); 1840 1841 BaseReader = std::move(BaseReaderOrErr.get()); 1842 TestReader = std::move(TestReaderOrErr.get()); 1843 1844 if (std::error_code EC = BaseReader->read()) 1845 exitWithErrorCode(EC, BaseFilename); 1846 if (std::error_code EC = TestReader->read()) 1847 exitWithErrorCode(EC, TestFilename); 1848 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) 1849 exitWithError( 1850 "cannot compare probe-based profile with non-probe-based profile"); 1851 if (BaseReader->profileIsCS() != TestReader->profileIsCS()) 1852 exitWithError("cannot compare CS profile with non-CS profile"); 1853 1854 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 1855 // profile summary. 1856 const uint64_t HotCutoff = 990000; 1857 ProfileSummary &BasePS = BaseReader->getSummary(); 1858 for (const auto &SummaryEntry : BasePS.getDetailedSummary()) { 1859 if (SummaryEntry.Cutoff == HotCutoff) { 1860 BaseHotThreshold = SummaryEntry.MinCount; 1861 break; 1862 } 1863 } 1864 1865 ProfileSummary &TestPS = TestReader->getSummary(); 1866 for (const auto &SummaryEntry : TestPS.getDetailedSummary()) { 1867 if (SummaryEntry.Cutoff == HotCutoff) { 1868 TestHotThreshold = SummaryEntry.MinCount; 1869 break; 1870 } 1871 } 1872 return std::error_code(); 1873 } 1874 1875 void overlapSampleProfile(const std::string &BaseFilename, 1876 const std::string &TestFilename, 1877 const OverlapFuncFilters &FuncFilter, 1878 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 1879 using namespace sampleprof; 1880 1881 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 1882 // report 2--3 places after decimal point in percentage numbers. 1883 SampleOverlapAggregator OverlapAggr( 1884 BaseFilename, TestFilename, 1885 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 1886 if (std::error_code EC = OverlapAggr.loadProfiles()) 1887 exitWithErrorCode(EC); 1888 1889 OverlapAggr.initializeSampleProfileOverlap(); 1890 if (OverlapAggr.detectZeroSampleProfile(OS)) 1891 return; 1892 1893 OverlapAggr.computeSampleProfileOverlap(OS); 1894 1895 OverlapAggr.dumpProgramSummary(OS); 1896 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 1897 OverlapAggr.dumpFuncSimilarity(OS); 1898 } 1899 1900 static int overlap_main(int argc, const char *argv[]) { 1901 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 1902 cl::desc("<base profile file>")); 1903 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 1904 cl::desc("<test profile file>")); 1905 cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"), 1906 cl::desc("Output file")); 1907 cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output)); 1908 cl::opt<bool> IsCS( 1909 "cs", cl::init(false), 1910 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO.")); 1911 cl::opt<unsigned long long> ValueCutoff( 1912 "value-cutoff", cl::init(-1), 1913 cl::desc( 1914 "Function level overlap information for every function (with calling " 1915 "context for csspgo) in test " 1916 "profile with max count value greater then the parameter value")); 1917 cl::opt<std::string> FuncNameFilter( 1918 "function", 1919 cl::desc("Function level overlap information for matching functions. For " 1920 "CSSPGO this takes a a function name with calling context")); 1921 cl::opt<unsigned long long> SimilarityCutoff( 1922 "similarity-cutoff", cl::init(0), 1923 cl::desc("For sample profiles, list function names (with calling context " 1924 "for csspgo) for overlapped functions " 1925 "with similarities below the cutoff (percentage times 10000).")); 1926 cl::opt<ProfileKinds> ProfileKind( 1927 cl::desc("Profile kind:"), cl::init(instr), 1928 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 1929 clEnumVal(sample, "Sample profile"))); 1930 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n"); 1931 1932 std::error_code EC; 1933 raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_Text); 1934 if (EC) 1935 exitWithErrorCode(EC, Output); 1936 1937 if (ProfileKind == instr) 1938 overlapInstrProfile(BaseFilename, TestFilename, 1939 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS, 1940 IsCS); 1941 else 1942 overlapSampleProfile(BaseFilename, TestFilename, 1943 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, 1944 SimilarityCutoff, OS); 1945 1946 return 0; 1947 } 1948 1949 typedef struct ValueSitesStats { 1950 ValueSitesStats() 1951 : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0), 1952 TotalNumValues(0) {} 1953 uint64_t TotalNumValueSites; 1954 uint64_t TotalNumValueSitesWithValueProfile; 1955 uint64_t TotalNumValues; 1956 std::vector<unsigned> ValueSitesHistogram; 1957 } ValueSitesStats; 1958 1959 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 1960 ValueSitesStats &Stats, raw_fd_ostream &OS, 1961 InstrProfSymtab *Symtab) { 1962 uint32_t NS = Func.getNumValueSites(VK); 1963 Stats.TotalNumValueSites += NS; 1964 for (size_t I = 0; I < NS; ++I) { 1965 uint32_t NV = Func.getNumValueDataForSite(VK, I); 1966 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I); 1967 Stats.TotalNumValues += NV; 1968 if (NV) { 1969 Stats.TotalNumValueSitesWithValueProfile++; 1970 if (NV > Stats.ValueSitesHistogram.size()) 1971 Stats.ValueSitesHistogram.resize(NV, 0); 1972 Stats.ValueSitesHistogram[NV - 1]++; 1973 } 1974 1975 uint64_t SiteSum = 0; 1976 for (uint32_t V = 0; V < NV; V++) 1977 SiteSum += VD[V].Count; 1978 if (SiteSum == 0) 1979 SiteSum = 1; 1980 1981 for (uint32_t V = 0; V < NV; V++) { 1982 OS << "\t[ " << format("%2u", I) << ", "; 1983 if (Symtab == nullptr) 1984 OS << format("%4" PRIu64, VD[V].Value); 1985 else 1986 OS << Symtab->getFuncName(VD[V].Value); 1987 OS << ", " << format("%10" PRId64, VD[V].Count) << " ] (" 1988 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n"; 1989 } 1990 } 1991 } 1992 1993 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 1994 ValueSitesStats &Stats) { 1995 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 1996 OS << " Total number of sites with values: " 1997 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 1998 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 1999 2000 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 2001 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 2002 if (Stats.ValueSitesHistogram[I] > 0) 2003 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 2004 } 2005 } 2006 2007 static int showInstrProfile(const std::string &Filename, bool ShowCounts, 2008 uint32_t TopN, bool ShowIndirectCallTargets, 2009 bool ShowMemOPSizes, bool ShowDetailedSummary, 2010 std::vector<uint32_t> DetailedSummaryCutoffs, 2011 bool ShowAllFunctions, bool ShowCS, 2012 uint64_t ValueCutoff, bool OnlyListBelow, 2013 const std::string &ShowFunction, bool TextFormat, 2014 raw_fd_ostream &OS) { 2015 auto ReaderOrErr = InstrProfReader::create(Filename); 2016 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 2017 if (ShowDetailedSummary && Cutoffs.empty()) { 2018 Cutoffs = {800000, 900000, 950000, 990000, 999000, 999900, 999990}; 2019 } 2020 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 2021 if (Error E = ReaderOrErr.takeError()) 2022 exitWithError(std::move(E), Filename); 2023 2024 auto Reader = std::move(ReaderOrErr.get()); 2025 bool IsIRInstr = Reader->isIRLevelProfile(); 2026 size_t ShownFunctions = 0; 2027 size_t BelowCutoffFunctions = 0; 2028 int NumVPKind = IPVK_Last - IPVK_First + 1; 2029 std::vector<ValueSitesStats> VPStats(NumVPKind); 2030 2031 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2032 const std::pair<std::string, uint64_t> &v2) { 2033 return v1.second > v2.second; 2034 }; 2035 2036 std::priority_queue<std::pair<std::string, uint64_t>, 2037 std::vector<std::pair<std::string, uint64_t>>, 2038 decltype(MinCmp)> 2039 HottestFuncs(MinCmp); 2040 2041 if (!TextFormat && OnlyListBelow) { 2042 OS << "The list of functions with the maximum counter less than " 2043 << ValueCutoff << ":\n"; 2044 } 2045 2046 // Add marker so that IR-level instrumentation round-trips properly. 2047 if (TextFormat && IsIRInstr) 2048 OS << ":ir\n"; 2049 2050 for (const auto &Func : *Reader) { 2051 if (Reader->isIRLevelProfile()) { 2052 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2053 if (FuncIsCS != ShowCS) 2054 continue; 2055 } 2056 bool Show = 2057 ShowAllFunctions || (!ShowFunction.empty() && 2058 Func.Name.find(ShowFunction) != Func.Name.npos); 2059 2060 bool doTextFormatDump = (Show && TextFormat); 2061 2062 if (doTextFormatDump) { 2063 InstrProfSymtab &Symtab = Reader->getSymtab(); 2064 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2065 OS); 2066 continue; 2067 } 2068 2069 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2070 Builder.addRecord(Func); 2071 2072 uint64_t FuncMax = 0; 2073 uint64_t FuncSum = 0; 2074 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2075 if (Func.Counts[I] == (uint64_t)-1) 2076 continue; 2077 FuncMax = std::max(FuncMax, Func.Counts[I]); 2078 FuncSum += Func.Counts[I]; 2079 } 2080 2081 if (FuncMax < ValueCutoff) { 2082 ++BelowCutoffFunctions; 2083 if (OnlyListBelow) { 2084 OS << " " << Func.Name << ": (Max = " << FuncMax 2085 << " Sum = " << FuncSum << ")\n"; 2086 } 2087 continue; 2088 } else if (OnlyListBelow) 2089 continue; 2090 2091 if (TopN) { 2092 if (HottestFuncs.size() == TopN) { 2093 if (HottestFuncs.top().second < FuncMax) { 2094 HottestFuncs.pop(); 2095 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2096 } 2097 } else 2098 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2099 } 2100 2101 if (Show) { 2102 if (!ShownFunctions) 2103 OS << "Counters:\n"; 2104 2105 ++ShownFunctions; 2106 2107 OS << " " << Func.Name << ":\n" 2108 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2109 << " Counters: " << Func.Counts.size() << "\n"; 2110 if (!IsIRInstr) 2111 OS << " Function count: " << Func.Counts[0] << "\n"; 2112 2113 if (ShowIndirectCallTargets) 2114 OS << " Indirect Call Site Count: " 2115 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2116 2117 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2118 if (ShowMemOPSizes && NumMemOPCalls > 0) 2119 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2120 << "\n"; 2121 2122 if (ShowCounts) { 2123 OS << " Block counts: ["; 2124 size_t Start = (IsIRInstr ? 0 : 1); 2125 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2126 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2127 } 2128 OS << "]\n"; 2129 } 2130 2131 if (ShowIndirectCallTargets) { 2132 OS << " Indirect Target Results:\n"; 2133 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2134 VPStats[IPVK_IndirectCallTarget], OS, 2135 &(Reader->getSymtab())); 2136 } 2137 2138 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2139 OS << " Memory Intrinsic Size Results:\n"; 2140 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2141 nullptr); 2142 } 2143 } 2144 } 2145 if (Reader->hasError()) 2146 exitWithError(Reader->getError(), Filename); 2147 2148 if (TextFormat) 2149 return 0; 2150 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 2151 bool IsIR = Reader->isIRLevelProfile(); 2152 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 2153 if (IsIR) 2154 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 2155 OS << "\n"; 2156 if (ShowAllFunctions || !ShowFunction.empty()) 2157 OS << "Functions shown: " << ShownFunctions << "\n"; 2158 OS << "Total functions: " << PS->getNumFunctions() << "\n"; 2159 if (ValueCutoff > 0) { 2160 OS << "Number of functions with maximum count (< " << ValueCutoff 2161 << "): " << BelowCutoffFunctions << "\n"; 2162 OS << "Number of functions with maximum count (>= " << ValueCutoff 2163 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 2164 } 2165 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; 2166 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; 2167 2168 if (TopN) { 2169 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 2170 while (!HottestFuncs.empty()) { 2171 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 2172 HottestFuncs.pop(); 2173 } 2174 OS << "Top " << TopN 2175 << " functions with the largest internal block counts: \n"; 2176 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 2177 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 2178 } 2179 2180 if (ShownFunctions && ShowIndirectCallTargets) { 2181 OS << "Statistics for indirect call sites profile:\n"; 2182 showValueSitesStats(OS, IPVK_IndirectCallTarget, 2183 VPStats[IPVK_IndirectCallTarget]); 2184 } 2185 2186 if (ShownFunctions && ShowMemOPSizes) { 2187 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 2188 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 2189 } 2190 2191 if (ShowDetailedSummary) { 2192 OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; 2193 OS << "Total count: " << PS->getTotalCount() << "\n"; 2194 PS->printDetailedSummary(OS); 2195 } 2196 return 0; 2197 } 2198 2199 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 2200 raw_fd_ostream &OS) { 2201 if (!Reader->dumpSectionInfo(OS)) { 2202 WithColor::warning() << "-show-sec-info-only is only supported for " 2203 << "sample profile in extbinary format and is " 2204 << "ignored for other formats.\n"; 2205 return; 2206 } 2207 } 2208 2209 namespace { 2210 struct HotFuncInfo { 2211 StringRef FuncName; 2212 uint64_t TotalCount; 2213 double TotalCountPercent; 2214 uint64_t MaxCount; 2215 uint64_t EntryCount; 2216 2217 HotFuncInfo() 2218 : FuncName(), TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), 2219 EntryCount(0) {} 2220 2221 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 2222 : FuncName(FN), TotalCount(TS), TotalCountPercent(TSP), MaxCount(MS), 2223 EntryCount(ES) {} 2224 }; 2225 } // namespace 2226 2227 // Print out detailed information about hot functions in PrintValues vector. 2228 // Users specify titles and offset of every columns through ColumnTitle and 2229 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 2230 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 2231 // print out or let it be an empty string. 2232 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 2233 const std::vector<int> &ColumnOffset, 2234 const std::vector<HotFuncInfo> &PrintValues, 2235 uint64_t HotFuncCount, uint64_t TotalFuncCount, 2236 uint64_t HotProfCount, uint64_t TotalProfCount, 2237 const std::string &HotFuncMetric, 2238 raw_fd_ostream &OS) { 2239 assert(ColumnOffset.size() == ColumnTitle.size() && 2240 "ColumnOffset and ColumnTitle should have the same size"); 2241 assert(ColumnTitle.size() >= 4 && 2242 "ColumnTitle should have at least 4 elements"); 2243 assert(TotalFuncCount > 0 && 2244 "There should be at least one function in the profile"); 2245 double TotalProfPercent = 0; 2246 if (TotalProfCount > 0) 2247 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 2248 2249 formatted_raw_ostream FOS(OS); 2250 FOS << HotFuncCount << " out of " << TotalFuncCount 2251 << " functions with profile (" 2252 << format("%.2f%%", 2253 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 2254 << ") are considered hot functions"; 2255 if (!HotFuncMetric.empty()) 2256 FOS << " (" << HotFuncMetric << ")"; 2257 FOS << ".\n"; 2258 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 2259 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 2260 2261 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 2262 FOS.PadToColumn(ColumnOffset[I]); 2263 FOS << ColumnTitle[I]; 2264 } 2265 FOS << "\n"; 2266 2267 for (const HotFuncInfo &R : PrintValues) { 2268 FOS.PadToColumn(ColumnOffset[0]); 2269 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 2270 FOS.PadToColumn(ColumnOffset[1]); 2271 FOS << R.MaxCount; 2272 FOS.PadToColumn(ColumnOffset[2]); 2273 FOS << R.EntryCount; 2274 FOS.PadToColumn(ColumnOffset[3]); 2275 FOS << R.FuncName << "\n"; 2276 } 2277 } 2278 2279 static int 2280 showHotFunctionList(const StringMap<sampleprof::FunctionSamples> &Profiles, 2281 ProfileSummary &PS, raw_fd_ostream &OS) { 2282 using namespace sampleprof; 2283 2284 const uint32_t HotFuncCutoff = 990000; 2285 auto &SummaryVector = PS.getDetailedSummary(); 2286 uint64_t MinCountThreshold = 0; 2287 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 2288 if (SummaryEntry.Cutoff == HotFuncCutoff) { 2289 MinCountThreshold = SummaryEntry.MinCount; 2290 break; 2291 } 2292 } 2293 2294 // Traverse all functions in the profile and keep only hot functions. 2295 // The following loop also calculates the sum of total samples of all 2296 // functions. 2297 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 2298 std::greater<uint64_t>> 2299 HotFunc; 2300 uint64_t ProfileTotalSample = 0; 2301 uint64_t HotFuncSample = 0; 2302 uint64_t HotFuncCount = 0; 2303 2304 for (const auto &I : Profiles) { 2305 FuncSampleStats FuncStats; 2306 const FunctionSamples &FuncProf = I.second; 2307 ProfileTotalSample += FuncProf.getTotalSamples(); 2308 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 2309 2310 if (isFunctionHot(FuncStats, MinCountThreshold)) { 2311 HotFunc.emplace(FuncProf.getTotalSamples(), 2312 std::make_pair(&(I.second), FuncStats.MaxSample)); 2313 HotFuncSample += FuncProf.getTotalSamples(); 2314 ++HotFuncCount; 2315 } 2316 } 2317 2318 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 2319 "Entry sample", "Function name"}; 2320 std::vector<int> ColumnOffset{0, 24, 42, 58}; 2321 std::string Metric = 2322 std::string("max sample >= ") + std::to_string(MinCountThreshold); 2323 std::vector<HotFuncInfo> PrintValues; 2324 for (const auto &FuncPair : HotFunc) { 2325 const FunctionSamples &Func = *FuncPair.second.first; 2326 double TotalSamplePercent = 2327 (ProfileTotalSample > 0) 2328 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 2329 : 0; 2330 PrintValues.emplace_back(HotFuncInfo( 2331 Func.getNameWithContext(), Func.getTotalSamples(), TotalSamplePercent, 2332 FuncPair.second.second, Func.getEntrySamples())); 2333 } 2334 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 2335 Profiles.size(), HotFuncSample, ProfileTotalSample, 2336 Metric, OS); 2337 2338 return 0; 2339 } 2340 2341 static int showSampleProfile(const std::string &Filename, bool ShowCounts, 2342 bool ShowAllFunctions, bool ShowDetailedSummary, 2343 const std::string &ShowFunction, 2344 bool ShowProfileSymbolList, 2345 bool ShowSectionInfoOnly, bool ShowHotFuncList, 2346 raw_fd_ostream &OS) { 2347 using namespace sampleprof; 2348 LLVMContext Context; 2349 auto ReaderOrErr = SampleProfileReader::create(Filename, Context); 2350 if (std::error_code EC = ReaderOrErr.getError()) 2351 exitWithErrorCode(EC, Filename); 2352 2353 auto Reader = std::move(ReaderOrErr.get()); 2354 2355 if (ShowSectionInfoOnly) { 2356 showSectionInfo(Reader.get(), OS); 2357 return 0; 2358 } 2359 2360 if (std::error_code EC = Reader->read()) 2361 exitWithErrorCode(EC, Filename); 2362 2363 if (ShowAllFunctions || ShowFunction.empty()) 2364 Reader->dump(OS); 2365 else 2366 Reader->dumpFunctionProfile(ShowFunction, OS); 2367 2368 if (ShowProfileSymbolList) { 2369 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 2370 Reader->getProfileSymbolList(); 2371 ReaderList->dump(OS); 2372 } 2373 2374 if (ShowDetailedSummary) { 2375 auto &PS = Reader->getSummary(); 2376 PS.printSummary(OS); 2377 PS.printDetailedSummary(OS); 2378 } 2379 2380 if (ShowHotFuncList) 2381 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), OS); 2382 2383 return 0; 2384 } 2385 2386 static int show_main(int argc, const char *argv[]) { 2387 cl::opt<std::string> Filename(cl::Positional, cl::Required, 2388 cl::desc("<profdata-file>")); 2389 2390 cl::opt<bool> ShowCounts("counts", cl::init(false), 2391 cl::desc("Show counter values for shown functions")); 2392 cl::opt<bool> TextFormat( 2393 "text", cl::init(false), 2394 cl::desc("Show instr profile data in text dump format")); 2395 cl::opt<bool> ShowIndirectCallTargets( 2396 "ic-targets", cl::init(false), 2397 cl::desc("Show indirect call site target values for shown functions")); 2398 cl::opt<bool> ShowMemOPSizes( 2399 "memop-sizes", cl::init(false), 2400 cl::desc("Show the profiled sizes of the memory intrinsic calls " 2401 "for shown functions")); 2402 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 2403 cl::desc("Show detailed profile summary")); 2404 cl::list<uint32_t> DetailedSummaryCutoffs( 2405 cl::CommaSeparated, "detailed-summary-cutoffs", 2406 cl::desc( 2407 "Cutoff percentages (times 10000) for generating detailed summary"), 2408 cl::value_desc("800000,901000,999999")); 2409 cl::opt<bool> ShowHotFuncList( 2410 "hot-func-list", cl::init(false), 2411 cl::desc("Show profile summary of a list of hot functions")); 2412 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 2413 cl::desc("Details for every function")); 2414 cl::opt<bool> ShowCS("showcs", cl::init(false), 2415 cl::desc("Show context sensitive counts")); 2416 cl::opt<std::string> ShowFunction("function", 2417 cl::desc("Details for matching functions")); 2418 2419 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 2420 cl::init("-"), cl::desc("Output file")); 2421 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 2422 cl::aliasopt(OutputFilename)); 2423 cl::opt<ProfileKinds> ProfileKind( 2424 cl::desc("Profile kind:"), cl::init(instr), 2425 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 2426 clEnumVal(sample, "Sample profile"))); 2427 cl::opt<uint32_t> TopNFunctions( 2428 "topn", cl::init(0), 2429 cl::desc("Show the list of functions with the largest internal counts")); 2430 cl::opt<uint32_t> ValueCutoff( 2431 "value-cutoff", cl::init(0), 2432 cl::desc("Set the count value cutoff. Functions with the maximum count " 2433 "less than this value will not be printed out. (Default is 0)")); 2434 cl::opt<bool> OnlyListBelow( 2435 "list-below-cutoff", cl::init(false), 2436 cl::desc("Only output names of functions whose max count values are " 2437 "below the cutoff value")); 2438 cl::opt<bool> ShowProfileSymbolList( 2439 "show-prof-sym-list", cl::init(false), 2440 cl::desc("Show profile symbol list if it exists in the profile. ")); 2441 cl::opt<bool> ShowSectionInfoOnly( 2442 "show-sec-info-only", cl::init(false), 2443 cl::desc("Show the information of each section in the sample profile. " 2444 "The flag is only usable when the sample profile is in " 2445 "extbinary format")); 2446 2447 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n"); 2448 2449 if (OutputFilename.empty()) 2450 OutputFilename = "-"; 2451 2452 if (Filename == OutputFilename) { 2453 errs() << sys::path::filename(argv[0]) 2454 << ": Input file name cannot be the same as the output file name!\n"; 2455 return 1; 2456 } 2457 2458 std::error_code EC; 2459 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_Text); 2460 if (EC) 2461 exitWithErrorCode(EC, OutputFilename); 2462 2463 if (ShowAllFunctions && !ShowFunction.empty()) 2464 WithColor::warning() << "-function argument ignored: showing all functions\n"; 2465 2466 if (ProfileKind == instr) 2467 return showInstrProfile(Filename, ShowCounts, TopNFunctions, 2468 ShowIndirectCallTargets, ShowMemOPSizes, 2469 ShowDetailedSummary, DetailedSummaryCutoffs, 2470 ShowAllFunctions, ShowCS, ValueCutoff, 2471 OnlyListBelow, ShowFunction, TextFormat, OS); 2472 else 2473 return showSampleProfile(Filename, ShowCounts, ShowAllFunctions, 2474 ShowDetailedSummary, ShowFunction, 2475 ShowProfileSymbolList, ShowSectionInfoOnly, 2476 ShowHotFuncList, OS); 2477 } 2478 2479 int main(int argc, const char *argv[]) { 2480 InitLLVM X(argc, argv); 2481 2482 StringRef ProgName(sys::path::filename(argv[0])); 2483 if (argc > 1) { 2484 int (*func)(int, const char *[]) = nullptr; 2485 2486 if (strcmp(argv[1], "merge") == 0) 2487 func = merge_main; 2488 else if (strcmp(argv[1], "show") == 0) 2489 func = show_main; 2490 else if (strcmp(argv[1], "overlap") == 0) 2491 func = overlap_main; 2492 2493 if (func) { 2494 std::string Invocation(ProgName.str() + " " + argv[1]); 2495 argv[1] = Invocation.c_str(); 2496 return func(argc - 1, argv + 1); 2497 } 2498 2499 if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 || 2500 strcmp(argv[1], "--help") == 0) { 2501 2502 errs() << "OVERVIEW: LLVM profile data tools\n\n" 2503 << "USAGE: " << ProgName << " <command> [args...]\n" 2504 << "USAGE: " << ProgName << " <command> -help\n\n" 2505 << "See each individual command --help for more details.\n" 2506 << "Available commands: merge, show, overlap\n"; 2507 return 0; 2508 } 2509 } 2510 2511 if (argc < 2) 2512 errs() << ProgName << ": No command specified!\n"; 2513 else 2514 errs() << ProgName << ": Unknown command!\n"; 2515 2516 errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n"; 2517 return 1; 2518 } 2519