1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This program is a utility that works like binutils "objdump", that is, it 10 // dumps out a plethora of information about an object file depending on the 11 // flags. 12 // 13 // The flags and output of this program should be near identical to those of 14 // binutils objdump. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm-objdump.h" 19 #include "COFFDump.h" 20 #include "ELFDump.h" 21 #include "MachODump.h" 22 #include "ObjdumpOptID.h" 23 #include "SourcePrinter.h" 24 #include "WasmDump.h" 25 #include "XCOFFDump.h" 26 #include "llvm/ADT/IndexedMap.h" 27 #include "llvm/ADT/Optional.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/ADT/StringSet.h" 33 #include "llvm/ADT/Triple.h" 34 #include "llvm/ADT/Twine.h" 35 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 36 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h" 37 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 38 #include "llvm/Demangle/Demangle.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/MCContext.h" 41 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 42 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 43 #include "llvm/MC/MCInst.h" 44 #include "llvm/MC/MCInstPrinter.h" 45 #include "llvm/MC/MCInstrAnalysis.h" 46 #include "llvm/MC/MCInstrInfo.h" 47 #include "llvm/MC/MCObjectFileInfo.h" 48 #include "llvm/MC/MCRegisterInfo.h" 49 #include "llvm/MC/MCSubtargetInfo.h" 50 #include "llvm/MC/MCTargetOptions.h" 51 #include "llvm/MC/TargetRegistry.h" 52 #include "llvm/Object/Archive.h" 53 #include "llvm/Object/COFF.h" 54 #include "llvm/Object/COFFImportFile.h" 55 #include "llvm/Object/ELFObjectFile.h" 56 #include "llvm/Object/FaultMapParser.h" 57 #include "llvm/Object/MachO.h" 58 #include "llvm/Object/MachOUniversal.h" 59 #include "llvm/Object/ObjectFile.h" 60 #include "llvm/Object/Wasm.h" 61 #include "llvm/Option/Arg.h" 62 #include "llvm/Option/ArgList.h" 63 #include "llvm/Option/Option.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Errc.h" 67 #include "llvm/Support/FileSystem.h" 68 #include "llvm/Support/Format.h" 69 #include "llvm/Support/FormatVariadic.h" 70 #include "llvm/Support/GraphWriter.h" 71 #include "llvm/Support/Host.h" 72 #include "llvm/Support/InitLLVM.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/SourceMgr.h" 75 #include "llvm/Support/StringSaver.h" 76 #include "llvm/Support/TargetSelect.h" 77 #include "llvm/Support/WithColor.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include <algorithm> 80 #include <cctype> 81 #include <cstring> 82 #include <system_error> 83 #include <unordered_map> 84 #include <utility> 85 86 using namespace llvm; 87 using namespace llvm::object; 88 using namespace llvm::objdump; 89 using namespace llvm::opt; 90 91 namespace { 92 93 class CommonOptTable : public opt::OptTable { 94 public: 95 CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage, 96 const char *Description) 97 : OptTable(OptionInfos), Usage(Usage), Description(Description) { 98 setGroupedShortOptions(true); 99 } 100 101 void printHelp(StringRef Argv0, bool ShowHidden = false) const { 102 Argv0 = sys::path::filename(Argv0); 103 opt::OptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), Description, 104 ShowHidden, ShowHidden); 105 // TODO Replace this with OptTable API once it adds extrahelp support. 106 outs() << "\nPass @FILE as argument to read options from FILE.\n"; 107 } 108 109 private: 110 const char *Usage; 111 const char *Description; 112 }; 113 114 // ObjdumpOptID is in ObjdumpOptID.h 115 116 #define PREFIX(NAME, VALUE) const char *const OBJDUMP_##NAME[] = VALUE; 117 #include "ObjdumpOpts.inc" 118 #undef PREFIX 119 120 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = { 121 #define OBJDUMP_nullptr nullptr 122 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 123 HELPTEXT, METAVAR, VALUES) \ 124 {OBJDUMP_##PREFIX, NAME, HELPTEXT, \ 125 METAVAR, OBJDUMP_##ID, opt::Option::KIND##Class, \ 126 PARAM, FLAGS, OBJDUMP_##GROUP, \ 127 OBJDUMP_##ALIAS, ALIASARGS, VALUES}, 128 #include "ObjdumpOpts.inc" 129 #undef OPTION 130 #undef OBJDUMP_nullptr 131 }; 132 133 class ObjdumpOptTable : public CommonOptTable { 134 public: 135 ObjdumpOptTable() 136 : CommonOptTable(ObjdumpInfoTable, " [options] <input object files>", 137 "llvm object file dumper") {} 138 }; 139 140 enum OtoolOptID { 141 OTOOL_INVALID = 0, // This is not an option ID. 142 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 143 HELPTEXT, METAVAR, VALUES) \ 144 OTOOL_##ID, 145 #include "OtoolOpts.inc" 146 #undef OPTION 147 }; 148 149 #define PREFIX(NAME, VALUE) const char *const OTOOL_##NAME[] = VALUE; 150 #include "OtoolOpts.inc" 151 #undef PREFIX 152 153 static constexpr opt::OptTable::Info OtoolInfoTable[] = { 154 #define OTOOL_nullptr nullptr 155 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 156 HELPTEXT, METAVAR, VALUES) \ 157 {OTOOL_##PREFIX, NAME, HELPTEXT, \ 158 METAVAR, OTOOL_##ID, opt::Option::KIND##Class, \ 159 PARAM, FLAGS, OTOOL_##GROUP, \ 160 OTOOL_##ALIAS, ALIASARGS, VALUES}, 161 #include "OtoolOpts.inc" 162 #undef OPTION 163 #undef OTOOL_nullptr 164 }; 165 166 class OtoolOptTable : public CommonOptTable { 167 public: 168 OtoolOptTable() 169 : CommonOptTable(OtoolInfoTable, " [option...] [file...]", 170 "Mach-O object file displaying tool") {} 171 }; 172 173 } // namespace 174 175 #define DEBUG_TYPE "objdump" 176 177 static uint64_t AdjustVMA; 178 static bool AllHeaders; 179 static std::string ArchName; 180 bool objdump::ArchiveHeaders; 181 bool objdump::Demangle; 182 bool objdump::Disassemble; 183 bool objdump::DisassembleAll; 184 bool objdump::SymbolDescription; 185 static std::vector<std::string> DisassembleSymbols; 186 static bool DisassembleZeroes; 187 static std::vector<std::string> DisassemblerOptions; 188 DIDumpType objdump::DwarfDumpType; 189 static bool DynamicRelocations; 190 static bool FaultMapSection; 191 static bool FileHeaders; 192 bool objdump::SectionContents; 193 static std::vector<std::string> InputFilenames; 194 bool objdump::PrintLines; 195 static bool MachOOpt; 196 std::string objdump::MCPU; 197 std::vector<std::string> objdump::MAttrs; 198 bool objdump::ShowRawInsn; 199 bool objdump::LeadingAddr; 200 static bool RawClangAST; 201 bool objdump::Relocations; 202 bool objdump::PrintImmHex; 203 bool objdump::PrivateHeaders; 204 std::vector<std::string> objdump::FilterSections; 205 bool objdump::SectionHeaders; 206 static bool ShowLMA; 207 bool objdump::PrintSource; 208 209 static uint64_t StartAddress; 210 static bool HasStartAddressFlag; 211 static uint64_t StopAddress = UINT64_MAX; 212 static bool HasStopAddressFlag; 213 214 bool objdump::SymbolTable; 215 static bool SymbolizeOperands; 216 static bool DynamicSymbolTable; 217 std::string objdump::TripleName; 218 bool objdump::UnwindInfo; 219 static bool Wide; 220 std::string objdump::Prefix; 221 uint32_t objdump::PrefixStrip; 222 223 DebugVarsFormat objdump::DbgVariables = DVDisabled; 224 225 int objdump::DbgIndent = 52; 226 227 static StringSet<> DisasmSymbolSet; 228 StringSet<> objdump::FoundSectionSet; 229 static StringRef ToolName; 230 231 namespace { 232 struct FilterResult { 233 // True if the section should not be skipped. 234 bool Keep; 235 236 // True if the index counter should be incremented, even if the section should 237 // be skipped. For example, sections may be skipped if they are not included 238 // in the --section flag, but we still want those to count toward the section 239 // count. 240 bool IncrementIndex; 241 }; 242 } // namespace 243 244 static FilterResult checkSectionFilter(object::SectionRef S) { 245 if (FilterSections.empty()) 246 return {/*Keep=*/true, /*IncrementIndex=*/true}; 247 248 Expected<StringRef> SecNameOrErr = S.getName(); 249 if (!SecNameOrErr) { 250 consumeError(SecNameOrErr.takeError()); 251 return {/*Keep=*/false, /*IncrementIndex=*/false}; 252 } 253 StringRef SecName = *SecNameOrErr; 254 255 // StringSet does not allow empty key so avoid adding sections with 256 // no name (such as the section with index 0) here. 257 if (!SecName.empty()) 258 FoundSectionSet.insert(SecName); 259 260 // Only show the section if it's in the FilterSections list, but always 261 // increment so the indexing is stable. 262 return {/*Keep=*/is_contained(FilterSections, SecName), 263 /*IncrementIndex=*/true}; 264 } 265 266 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O, 267 uint64_t *Idx) { 268 // Start at UINT64_MAX so that the first index returned after an increment is 269 // zero (after the unsigned wrap). 270 if (Idx) 271 *Idx = UINT64_MAX; 272 return SectionFilter( 273 [Idx](object::SectionRef S) { 274 FilterResult Result = checkSectionFilter(S); 275 if (Idx != nullptr && Result.IncrementIndex) 276 *Idx += 1; 277 return Result.Keep; 278 }, 279 O); 280 } 281 282 std::string objdump::getFileNameForError(const object::Archive::Child &C, 283 unsigned Index) { 284 Expected<StringRef> NameOrErr = C.getName(); 285 if (NameOrErr) 286 return std::string(NameOrErr.get()); 287 // If we have an error getting the name then we print the index of the archive 288 // member. Since we are already in an error state, we just ignore this error. 289 consumeError(NameOrErr.takeError()); 290 return "<file index: " + std::to_string(Index) + ">"; 291 } 292 293 void objdump::reportWarning(const Twine &Message, StringRef File) { 294 // Output order between errs() and outs() matters especially for archive 295 // files where the output is per member object. 296 outs().flush(); 297 WithColor::warning(errs(), ToolName) 298 << "'" << File << "': " << Message << "\n"; 299 } 300 301 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) { 302 outs().flush(); 303 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; 304 exit(1); 305 } 306 307 [[noreturn]] void objdump::reportError(Error E, StringRef FileName, 308 StringRef ArchiveName, 309 StringRef ArchitectureName) { 310 assert(E); 311 outs().flush(); 312 WithColor::error(errs(), ToolName); 313 if (ArchiveName != "") 314 errs() << ArchiveName << "(" << FileName << ")"; 315 else 316 errs() << "'" << FileName << "'"; 317 if (!ArchitectureName.empty()) 318 errs() << " (for architecture " << ArchitectureName << ")"; 319 errs() << ": "; 320 logAllUnhandledErrors(std::move(E), errs()); 321 exit(1); 322 } 323 324 static void reportCmdLineWarning(const Twine &Message) { 325 WithColor::warning(errs(), ToolName) << Message << "\n"; 326 } 327 328 [[noreturn]] static void reportCmdLineError(const Twine &Message) { 329 WithColor::error(errs(), ToolName) << Message << "\n"; 330 exit(1); 331 } 332 333 static void warnOnNoMatchForSections() { 334 SetVector<StringRef> MissingSections; 335 for (StringRef S : FilterSections) { 336 if (FoundSectionSet.count(S)) 337 return; 338 // User may specify a unnamed section. Don't warn for it. 339 if (!S.empty()) 340 MissingSections.insert(S); 341 } 342 343 // Warn only if no section in FilterSections is matched. 344 for (StringRef S : MissingSections) 345 reportCmdLineWarning("section '" + S + 346 "' mentioned in a -j/--section option, but not " 347 "found in any input file"); 348 } 349 350 static const Target *getTarget(const ObjectFile *Obj) { 351 // Figure out the target triple. 352 Triple TheTriple("unknown-unknown-unknown"); 353 if (TripleName.empty()) { 354 TheTriple = Obj->makeTriple(); 355 } else { 356 TheTriple.setTriple(Triple::normalize(TripleName)); 357 auto Arch = Obj->getArch(); 358 if (Arch == Triple::arm || Arch == Triple::armeb) 359 Obj->setARMSubArch(TheTriple); 360 } 361 362 // Get the target specific parser. 363 std::string Error; 364 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 365 Error); 366 if (!TheTarget) 367 reportError(Obj->getFileName(), "can't find target: " + Error); 368 369 // Update the triple name and return the found target. 370 TripleName = TheTriple.getTriple(); 371 return TheTarget; 372 } 373 374 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) { 375 return A.getOffset() < B.getOffset(); 376 } 377 378 static Error getRelocationValueString(const RelocationRef &Rel, 379 SmallVectorImpl<char> &Result) { 380 const ObjectFile *Obj = Rel.getObject(); 381 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 382 return getELFRelocationValueString(ELF, Rel, Result); 383 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 384 return getCOFFRelocationValueString(COFF, Rel, Result); 385 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 386 return getWasmRelocationValueString(Wasm, Rel, Result); 387 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 388 return getMachORelocationValueString(MachO, Rel, Result); 389 if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj)) 390 return getXCOFFRelocationValueString(XCOFF, Rel, Result); 391 llvm_unreachable("unknown object file format"); 392 } 393 394 /// Indicates whether this relocation should hidden when listing 395 /// relocations, usually because it is the trailing part of a multipart 396 /// relocation that will be printed as part of the leading relocation. 397 static bool getHidden(RelocationRef RelRef) { 398 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); 399 if (!MachO) 400 return false; 401 402 unsigned Arch = MachO->getArch(); 403 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 404 uint64_t Type = MachO->getRelocationType(Rel); 405 406 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 407 // is always hidden. 408 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) 409 return Type == MachO::GENERIC_RELOC_PAIR; 410 411 if (Arch == Triple::x86_64) { 412 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 413 // an X86_64_RELOC_SUBTRACTOR. 414 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 415 DataRefImpl RelPrev = Rel; 416 RelPrev.d.a--; 417 uint64_t PrevType = MachO->getRelocationType(RelPrev); 418 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 419 return true; 420 } 421 } 422 423 return false; 424 } 425 426 namespace { 427 428 /// Get the column at which we want to start printing the instruction 429 /// disassembly, taking into account anything which appears to the left of it. 430 unsigned getInstStartColumn(const MCSubtargetInfo &STI) { 431 return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24; 432 } 433 434 static bool isAArch64Elf(const ObjectFile *Obj) { 435 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 436 return Elf && Elf->getEMachine() == ELF::EM_AARCH64; 437 } 438 439 static bool isArmElf(const ObjectFile *Obj) { 440 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 441 return Elf && Elf->getEMachine() == ELF::EM_ARM; 442 } 443 444 static bool isCSKYElf(const ObjectFile *Obj) { 445 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 446 return Elf && Elf->getEMachine() == ELF::EM_CSKY; 447 } 448 449 static bool hasMappingSymbols(const ObjectFile *Obj) { 450 return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ; 451 } 452 453 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName, 454 const RelocationRef &Rel, uint64_t Address, 455 bool Is64Bits) { 456 StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ": " : "\t\t\t%08" PRIx64 ": "; 457 SmallString<16> Name; 458 SmallString<32> Val; 459 Rel.getTypeName(Name); 460 if (Error E = getRelocationValueString(Rel, Val)) 461 reportError(std::move(E), FileName); 462 OS << format(Fmt.data(), Address) << Name << "\t" << Val; 463 } 464 465 class PrettyPrinter { 466 public: 467 virtual ~PrettyPrinter() = default; 468 virtual void 469 printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 470 object::SectionedAddress Address, formatted_raw_ostream &OS, 471 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 472 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 473 LiveVariablePrinter &LVP) { 474 if (SP && (PrintSource || PrintLines)) 475 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 476 LVP.printBetweenInsts(OS, false); 477 478 size_t Start = OS.tell(); 479 if (LeadingAddr) 480 OS << format("%8" PRIx64 ":", Address.Address); 481 if (ShowRawInsn) { 482 OS << ' '; 483 dumpBytes(Bytes, OS); 484 } 485 486 // The output of printInst starts with a tab. Print some spaces so that 487 // the tab has 1 column and advances to the target tab stop. 488 unsigned TabStop = getInstStartColumn(STI); 489 unsigned Column = OS.tell() - Start; 490 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); 491 492 if (MI) { 493 // See MCInstPrinter::printInst. On targets where a PC relative immediate 494 // is relative to the next instruction and the length of a MCInst is 495 // difficult to measure (x86), this is the address of the next 496 // instruction. 497 uint64_t Addr = 498 Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0); 499 IP.printInst(MI, Addr, "", STI, OS); 500 } else 501 OS << "\t<unknown>"; 502 } 503 }; 504 PrettyPrinter PrettyPrinterInst; 505 506 class HexagonPrettyPrinter : public PrettyPrinter { 507 public: 508 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 509 formatted_raw_ostream &OS) { 510 uint32_t opcode = 511 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 512 if (LeadingAddr) 513 OS << format("%8" PRIx64 ":", Address); 514 if (ShowRawInsn) { 515 OS << "\t"; 516 dumpBytes(Bytes.slice(0, 4), OS); 517 OS << format("\t%08" PRIx32, opcode); 518 } 519 } 520 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 521 object::SectionedAddress Address, formatted_raw_ostream &OS, 522 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 523 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 524 LiveVariablePrinter &LVP) override { 525 if (SP && (PrintSource || PrintLines)) 526 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 527 if (!MI) { 528 printLead(Bytes, Address.Address, OS); 529 OS << " <unknown>"; 530 return; 531 } 532 std::string Buffer; 533 { 534 raw_string_ostream TempStream(Buffer); 535 IP.printInst(MI, Address.Address, "", STI, TempStream); 536 } 537 StringRef Contents(Buffer); 538 // Split off bundle attributes 539 auto PacketBundle = Contents.rsplit('\n'); 540 // Split off first instruction from the rest 541 auto HeadTail = PacketBundle.first.split('\n'); 542 auto Preamble = " { "; 543 auto Separator = ""; 544 545 // Hexagon's packets require relocations to be inline rather than 546 // clustered at the end of the packet. 547 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); 548 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); 549 auto PrintReloc = [&]() -> void { 550 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { 551 if (RelCur->getOffset() == Address.Address) { 552 printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false); 553 return; 554 } 555 ++RelCur; 556 } 557 }; 558 559 while (!HeadTail.first.empty()) { 560 OS << Separator; 561 Separator = "\n"; 562 if (SP && (PrintSource || PrintLines)) 563 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 564 printLead(Bytes, Address.Address, OS); 565 OS << Preamble; 566 Preamble = " "; 567 StringRef Inst; 568 auto Duplex = HeadTail.first.split('\v'); 569 if (!Duplex.second.empty()) { 570 OS << Duplex.first; 571 OS << "; "; 572 Inst = Duplex.second; 573 } 574 else 575 Inst = HeadTail.first; 576 OS << Inst; 577 HeadTail = HeadTail.second.split('\n'); 578 if (HeadTail.first.empty()) 579 OS << " } " << PacketBundle.second; 580 PrintReloc(); 581 Bytes = Bytes.slice(4); 582 Address.Address += 4; 583 } 584 } 585 }; 586 HexagonPrettyPrinter HexagonPrettyPrinterInst; 587 588 class AMDGCNPrettyPrinter : public PrettyPrinter { 589 public: 590 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 591 object::SectionedAddress Address, formatted_raw_ostream &OS, 592 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 593 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 594 LiveVariablePrinter &LVP) override { 595 if (SP && (PrintSource || PrintLines)) 596 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 597 598 if (MI) { 599 SmallString<40> InstStr; 600 raw_svector_ostream IS(InstStr); 601 602 IP.printInst(MI, Address.Address, "", STI, IS); 603 604 OS << left_justify(IS.str(), 60); 605 } else { 606 // an unrecognized encoding - this is probably data so represent it 607 // using the .long directive, or .byte directive if fewer than 4 bytes 608 // remaining 609 if (Bytes.size() >= 4) { 610 OS << format("\t.long 0x%08" PRIx32 " ", 611 support::endian::read32<support::little>(Bytes.data())); 612 OS.indent(42); 613 } else { 614 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 615 for (unsigned int i = 1; i < Bytes.size(); i++) 616 OS << format(", 0x%02" PRIx8, Bytes[i]); 617 OS.indent(55 - (6 * Bytes.size())); 618 } 619 } 620 621 OS << format("// %012" PRIX64 ":", Address.Address); 622 if (Bytes.size() >= 4) { 623 // D should be casted to uint32_t here as it is passed by format to 624 // snprintf as vararg. 625 for (uint32_t D : makeArrayRef( 626 reinterpret_cast<const support::little32_t *>(Bytes.data()), 627 Bytes.size() / 4)) 628 OS << format(" %08" PRIX32, D); 629 } else { 630 for (unsigned char B : Bytes) 631 OS << format(" %02" PRIX8, B); 632 } 633 634 if (!Annot.empty()) 635 OS << " // " << Annot; 636 } 637 }; 638 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 639 640 class BPFPrettyPrinter : public PrettyPrinter { 641 public: 642 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 643 object::SectionedAddress Address, formatted_raw_ostream &OS, 644 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 645 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 646 LiveVariablePrinter &LVP) override { 647 if (SP && (PrintSource || PrintLines)) 648 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 649 if (LeadingAddr) 650 OS << format("%8" PRId64 ":", Address.Address / 8); 651 if (ShowRawInsn) { 652 OS << "\t"; 653 dumpBytes(Bytes, OS); 654 } 655 if (MI) 656 IP.printInst(MI, Address.Address, "", STI, OS); 657 else 658 OS << "\t<unknown>"; 659 } 660 }; 661 BPFPrettyPrinter BPFPrettyPrinterInst; 662 663 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 664 switch(Triple.getArch()) { 665 default: 666 return PrettyPrinterInst; 667 case Triple::hexagon: 668 return HexagonPrettyPrinterInst; 669 case Triple::amdgcn: 670 return AMDGCNPrettyPrinterInst; 671 case Triple::bpfel: 672 case Triple::bpfeb: 673 return BPFPrettyPrinterInst; 674 } 675 } 676 } 677 678 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) { 679 assert(Obj->isELF()); 680 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 681 return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()), 682 Obj->getFileName()) 683 ->getType(); 684 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 685 return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()), 686 Obj->getFileName()) 687 ->getType(); 688 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 689 return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()), 690 Obj->getFileName()) 691 ->getType(); 692 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 693 return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()), 694 Obj->getFileName()) 695 ->getType(); 696 llvm_unreachable("Unsupported binary format"); 697 } 698 699 template <class ELFT> static void 700 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj, 701 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 702 for (auto Symbol : Obj->getDynamicSymbolIterators()) { 703 uint8_t SymbolType = Symbol.getELFType(); 704 if (SymbolType == ELF::STT_SECTION) 705 continue; 706 707 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName()); 708 // ELFSymbolRef::getAddress() returns size instead of value for common 709 // symbols which is not desirable for disassembly output. Overriding. 710 if (SymbolType == ELF::STT_COMMON) 711 Address = unwrapOrError(Obj->getSymbol(Symbol.getRawDataRefImpl()), 712 Obj->getFileName()) 713 ->st_value; 714 715 StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName()); 716 if (Name.empty()) 717 continue; 718 719 section_iterator SecI = 720 unwrapOrError(Symbol.getSection(), Obj->getFileName()); 721 if (SecI == Obj->section_end()) 722 continue; 723 724 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 725 } 726 } 727 728 static void 729 addDynamicElfSymbols(const ObjectFile *Obj, 730 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 731 assert(Obj->isELF()); 732 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 733 addDynamicElfSymbols(Elf32LEObj, AllSymbols); 734 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 735 addDynamicElfSymbols(Elf64LEObj, AllSymbols); 736 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 737 addDynamicElfSymbols(Elf32BEObj, AllSymbols); 738 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 739 addDynamicElfSymbols(Elf64BEObj, AllSymbols); 740 else 741 llvm_unreachable("Unsupported binary format"); 742 } 743 744 static Optional<SectionRef> getWasmCodeSection(const WasmObjectFile *Obj) { 745 for (auto SecI : Obj->sections()) { 746 const WasmSection &Section = Obj->getWasmSection(SecI); 747 if (Section.Type == wasm::WASM_SEC_CODE) 748 return SecI; 749 } 750 return None; 751 } 752 753 static void 754 addMissingWasmCodeSymbols(const WasmObjectFile *Obj, 755 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 756 Optional<SectionRef> Section = getWasmCodeSection(Obj); 757 if (!Section) 758 return; 759 SectionSymbolsTy &Symbols = AllSymbols[*Section]; 760 761 std::set<uint64_t> SymbolAddresses; 762 for (const auto &Sym : Symbols) 763 SymbolAddresses.insert(Sym.Addr); 764 765 for (const wasm::WasmFunction &Function : Obj->functions()) { 766 uint64_t Address = Function.CodeSectionOffset; 767 // Only add fallback symbols for functions not already present in the symbol 768 // table. 769 if (SymbolAddresses.count(Address)) 770 continue; 771 // This function has no symbol, so it should have no SymbolName. 772 assert(Function.SymbolName.empty()); 773 // We use DebugName for the name, though it may be empty if there is no 774 // "name" custom section, or that section is missing a name for this 775 // function. 776 StringRef Name = Function.DebugName; 777 Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE); 778 } 779 } 780 781 static void addPltEntries(const ObjectFile *Obj, 782 std::map<SectionRef, SectionSymbolsTy> &AllSymbols, 783 StringSaver &Saver) { 784 Optional<SectionRef> Plt = None; 785 for (const SectionRef &Section : Obj->sections()) { 786 Expected<StringRef> SecNameOrErr = Section.getName(); 787 if (!SecNameOrErr) { 788 consumeError(SecNameOrErr.takeError()); 789 continue; 790 } 791 if (*SecNameOrErr == ".plt") 792 Plt = Section; 793 } 794 if (!Plt) 795 return; 796 if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) { 797 for (auto PltEntry : ElfObj->getPltAddresses()) { 798 if (PltEntry.first) { 799 SymbolRef Symbol(*PltEntry.first, ElfObj); 800 uint8_t SymbolType = getElfSymbolType(Obj, Symbol); 801 if (Expected<StringRef> NameOrErr = Symbol.getName()) { 802 if (!NameOrErr->empty()) 803 AllSymbols[*Plt].emplace_back( 804 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()), 805 SymbolType); 806 continue; 807 } else { 808 // The warning has been reported in disassembleObject(). 809 consumeError(NameOrErr.takeError()); 810 } 811 } 812 reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) + 813 " references an invalid symbol", 814 Obj->getFileName()); 815 } 816 } 817 } 818 819 // Normally the disassembly output will skip blocks of zeroes. This function 820 // returns the number of zero bytes that can be skipped when dumping the 821 // disassembly of the instructions in Buf. 822 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { 823 // Find the number of leading zeroes. 824 size_t N = 0; 825 while (N < Buf.size() && !Buf[N]) 826 ++N; 827 828 // We may want to skip blocks of zero bytes, but unless we see 829 // at least 8 of them in a row. 830 if (N < 8) 831 return 0; 832 833 // We skip zeroes in multiples of 4 because do not want to truncate an 834 // instruction if it starts with a zero byte. 835 return N & ~0x3; 836 } 837 838 // Returns a map from sections to their relocations. 839 static std::map<SectionRef, std::vector<RelocationRef>> 840 getRelocsMap(object::ObjectFile const &Obj) { 841 std::map<SectionRef, std::vector<RelocationRef>> Ret; 842 uint64_t I = (uint64_t)-1; 843 for (SectionRef Sec : Obj.sections()) { 844 ++I; 845 Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); 846 if (!RelocatedOrErr) 847 reportError(Obj.getFileName(), 848 "section (" + Twine(I) + 849 "): failed to get a relocated section: " + 850 toString(RelocatedOrErr.takeError())); 851 852 section_iterator Relocated = *RelocatedOrErr; 853 if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep) 854 continue; 855 std::vector<RelocationRef> &V = Ret[*Relocated]; 856 append_range(V, Sec.relocations()); 857 // Sort relocations by address. 858 llvm::stable_sort(V, isRelocAddressLess); 859 } 860 return Ret; 861 } 862 863 // Used for --adjust-vma to check if address should be adjusted by the 864 // specified value for a given section. 865 // For ELF we do not adjust non-allocatable sections like debug ones, 866 // because they are not loadable. 867 // TODO: implement for other file formats. 868 static bool shouldAdjustVA(const SectionRef &Section) { 869 const ObjectFile *Obj = Section.getObject(); 870 if (Obj->isELF()) 871 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 872 return false; 873 } 874 875 876 typedef std::pair<uint64_t, char> MappingSymbolPair; 877 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, 878 uint64_t Address) { 879 auto It = 880 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { 881 return Val.first <= Address; 882 }); 883 // Return zero for any address before the first mapping symbol; this means 884 // we should use the default disassembly mode, depending on the target. 885 if (It == MappingSymbols.begin()) 886 return '\x00'; 887 return (It - 1)->second; 888 } 889 890 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index, 891 uint64_t End, const ObjectFile *Obj, 892 ArrayRef<uint8_t> Bytes, 893 ArrayRef<MappingSymbolPair> MappingSymbols, 894 raw_ostream &OS) { 895 support::endianness Endian = 896 Obj->isLittleEndian() ? support::little : support::big; 897 OS << format("%8" PRIx64 ":\t", SectionAddr + Index); 898 if (Index + 4 <= End) { 899 dumpBytes(Bytes.slice(Index, 4), OS); 900 OS << "\t.word\t" 901 << format_hex(support::endian::read32(Bytes.data() + Index, Endian), 902 10); 903 return 4; 904 } 905 if (Index + 2 <= End) { 906 dumpBytes(Bytes.slice(Index, 2), OS); 907 OS << "\t\t.short\t" 908 << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 909 6); 910 return 2; 911 } 912 dumpBytes(Bytes.slice(Index, 1), OS); 913 OS << "\t\t.byte\t" << format_hex(Bytes[0], 4); 914 return 1; 915 } 916 917 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 918 ArrayRef<uint8_t> Bytes) { 919 // print out data up to 8 bytes at a time in hex and ascii 920 uint8_t AsciiData[9] = {'\0'}; 921 uint8_t Byte; 922 int NumBytes = 0; 923 924 for (; Index < End; ++Index) { 925 if (NumBytes == 0) 926 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 927 Byte = Bytes.slice(Index)[0]; 928 outs() << format(" %02x", Byte); 929 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; 930 931 uint8_t IndentOffset = 0; 932 NumBytes++; 933 if (Index == End - 1 || NumBytes > 8) { 934 // Indent the space for less than 8 bytes data. 935 // 2 spaces for byte and one for space between bytes 936 IndentOffset = 3 * (8 - NumBytes); 937 for (int Excess = NumBytes; Excess < 8; Excess++) 938 AsciiData[Excess] = '\0'; 939 NumBytes = 8; 940 } 941 if (NumBytes == 8) { 942 AsciiData[8] = '\0'; 943 outs() << std::string(IndentOffset, ' ') << " "; 944 outs() << reinterpret_cast<char *>(AsciiData); 945 outs() << '\n'; 946 NumBytes = 0; 947 } 948 } 949 } 950 951 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile *Obj, 952 const SymbolRef &Symbol) { 953 const StringRef FileName = Obj->getFileName(); 954 const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName); 955 const StringRef Name = unwrapOrError(Symbol.getName(), FileName); 956 957 if (Obj->isXCOFF() && SymbolDescription) { 958 const auto *XCOFFObj = cast<XCOFFObjectFile>(Obj); 959 DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl(); 960 961 const uint32_t SymbolIndex = XCOFFObj->getSymbolIndex(SymbolDRI.p); 962 Optional<XCOFF::StorageMappingClass> Smc = 963 getXCOFFSymbolCsectSMC(XCOFFObj, Symbol); 964 return SymbolInfoTy(Addr, Name, Smc, SymbolIndex, 965 isLabel(XCOFFObj, Symbol)); 966 } else if (Obj->isXCOFF()) { 967 const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName); 968 return SymbolInfoTy(Addr, Name, SymType, true); 969 } else 970 return SymbolInfoTy(Addr, Name, 971 Obj->isELF() ? getElfSymbolType(Obj, Symbol) 972 : (uint8_t)ELF::STT_NOTYPE); 973 } 974 975 static SymbolInfoTy createDummySymbolInfo(const ObjectFile *Obj, 976 const uint64_t Addr, StringRef &Name, 977 uint8_t Type) { 978 if (Obj->isXCOFF() && SymbolDescription) 979 return SymbolInfoTy(Addr, Name, None, None, false); 980 else 981 return SymbolInfoTy(Addr, Name, Type); 982 } 983 984 static void 985 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, 986 MCDisassembler *DisAsm, MCInstPrinter *IP, 987 const MCSubtargetInfo *STI, uint64_t SectionAddr, 988 uint64_t Start, uint64_t End, 989 std::unordered_map<uint64_t, std::string> &Labels) { 990 // So far only supports PowerPC and X86. 991 if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86()) 992 return; 993 994 Labels.clear(); 995 unsigned LabelCount = 0; 996 Start += SectionAddr; 997 End += SectionAddr; 998 uint64_t Index = Start; 999 while (Index < End) { 1000 // Disassemble a real instruction and record function-local branch labels. 1001 MCInst Inst; 1002 uint64_t Size; 1003 bool Disassembled = DisAsm->getInstruction( 1004 Inst, Size, Bytes.slice(Index - SectionAddr), Index, nulls()); 1005 if (Size == 0) 1006 Size = 1; 1007 1008 if (Disassembled && MIA) { 1009 uint64_t Target; 1010 bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target); 1011 // On PowerPC, if the address of a branch is the same as the target, it 1012 // means that it's a function call. Do not mark the label for this case. 1013 if (TargetKnown && (Target >= Start && Target < End) && 1014 !Labels.count(Target) && 1015 !(STI->getTargetTriple().isPPC() && Target == Index)) 1016 Labels[Target] = ("L" + Twine(LabelCount++)).str(); 1017 } 1018 1019 Index += Size; 1020 } 1021 } 1022 1023 // Create an MCSymbolizer for the target and add it to the MCDisassembler. 1024 // This is currently only used on AMDGPU, and assumes the format of the 1025 // void * argument passed to AMDGPU's createMCSymbolizer. 1026 static void addSymbolizer( 1027 MCContext &Ctx, const Target *Target, StringRef TripleName, 1028 MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes, 1029 SectionSymbolsTy &Symbols, 1030 std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) { 1031 1032 std::unique_ptr<MCRelocationInfo> RelInfo( 1033 Target->createMCRelocationInfo(TripleName, Ctx)); 1034 if (!RelInfo) 1035 return; 1036 std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer( 1037 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1038 MCSymbolizer *SymbolizerPtr = &*Symbolizer; 1039 DisAsm->setSymbolizer(std::move(Symbolizer)); 1040 1041 if (!SymbolizeOperands) 1042 return; 1043 1044 // Synthesize labels referenced by branch instructions by 1045 // disassembling, discarding the output, and collecting the referenced 1046 // addresses from the symbolizer. 1047 for (size_t Index = 0; Index != Bytes.size();) { 1048 MCInst Inst; 1049 uint64_t Size; 1050 DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), SectionAddr + Index, 1051 nulls()); 1052 if (Size == 0) 1053 Size = 1; 1054 Index += Size; 1055 } 1056 ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses(); 1057 // Copy and sort to remove duplicates. 1058 std::vector<uint64_t> LabelAddrs; 1059 LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(), 1060 LabelAddrsRef.end()); 1061 llvm::sort(LabelAddrs); 1062 LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) - 1063 LabelAddrs.begin()); 1064 // Add the labels. 1065 for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) { 1066 auto Name = std::make_unique<std::string>(); 1067 *Name = (Twine("L") + Twine(LabelNum)).str(); 1068 SynthesizedLabelNames.push_back(std::move(Name)); 1069 Symbols.push_back(SymbolInfoTy( 1070 LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE)); 1071 } 1072 llvm::stable_sort(Symbols); 1073 // Recreate the symbolizer with the new symbols list. 1074 RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx)); 1075 Symbolizer.reset(Target->createMCSymbolizer( 1076 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1077 DisAsm->setSymbolizer(std::move(Symbolizer)); 1078 } 1079 1080 static StringRef getSegmentName(const MachOObjectFile *MachO, 1081 const SectionRef &Section) { 1082 if (MachO) { 1083 DataRefImpl DR = Section.getRawDataRefImpl(); 1084 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 1085 return SegmentName; 1086 } 1087 return ""; 1088 } 1089 1090 static void emitPostInstructionInfo(formatted_raw_ostream &FOS, 1091 const MCAsmInfo &MAI, 1092 const MCSubtargetInfo &STI, 1093 StringRef Comments, 1094 LiveVariablePrinter &LVP) { 1095 do { 1096 if (!Comments.empty()) { 1097 // Emit a line of comments. 1098 StringRef Comment; 1099 std::tie(Comment, Comments) = Comments.split('\n'); 1100 // MAI.getCommentColumn() assumes that instructions are printed at the 1101 // position of 8, while getInstStartColumn() returns the actual position. 1102 unsigned CommentColumn = 1103 MAI.getCommentColumn() - 8 + getInstStartColumn(STI); 1104 FOS.PadToColumn(CommentColumn); 1105 FOS << MAI.getCommentString() << ' ' << Comment; 1106 } 1107 LVP.printAfterInst(FOS); 1108 FOS << '\n'; 1109 } while (!Comments.empty()); 1110 FOS.flush(); 1111 } 1112 1113 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj, 1114 MCContext &Ctx, MCDisassembler *PrimaryDisAsm, 1115 MCDisassembler *SecondaryDisAsm, 1116 const MCInstrAnalysis *MIA, MCInstPrinter *IP, 1117 const MCSubtargetInfo *PrimarySTI, 1118 const MCSubtargetInfo *SecondarySTI, 1119 PrettyPrinter &PIP, 1120 SourcePrinter &SP, bool InlineRelocs) { 1121 const MCSubtargetInfo *STI = PrimarySTI; 1122 MCDisassembler *DisAsm = PrimaryDisAsm; 1123 bool PrimaryIsThumb = false; 1124 if (isArmElf(Obj)) 1125 PrimaryIsThumb = STI->checkFeatures("+thumb-mode"); 1126 1127 std::map<SectionRef, std::vector<RelocationRef>> RelocMap; 1128 if (InlineRelocs) 1129 RelocMap = getRelocsMap(*Obj); 1130 bool Is64Bits = Obj->getBytesInAddress() > 4; 1131 1132 // Create a mapping from virtual address to symbol name. This is used to 1133 // pretty print the symbols while disassembling. 1134 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1135 SectionSymbolsTy AbsoluteSymbols; 1136 const StringRef FileName = Obj->getFileName(); 1137 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); 1138 for (const SymbolRef &Symbol : Obj->symbols()) { 1139 Expected<StringRef> NameOrErr = Symbol.getName(); 1140 if (!NameOrErr) { 1141 reportWarning(toString(NameOrErr.takeError()), FileName); 1142 continue; 1143 } 1144 if (NameOrErr->empty() && !(Obj->isXCOFF() && SymbolDescription)) 1145 continue; 1146 1147 if (Obj->isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION) 1148 continue; 1149 1150 if (MachO) { 1151 // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special 1152 // symbols that support MachO header introspection. They do not bind to 1153 // code locations and are irrelevant for disassembly. 1154 if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header")) 1155 continue; 1156 // Don't ask a Mach-O STAB symbol for its section unless you know that 1157 // STAB symbol's section field refers to a valid section index. Otherwise 1158 // the symbol may error trying to load a section that does not exist. 1159 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1160 uint8_t NType = (MachO->is64Bit() ? 1161 MachO->getSymbol64TableEntry(SymDRI).n_type: 1162 MachO->getSymbolTableEntry(SymDRI).n_type); 1163 if (NType & MachO::N_STAB) 1164 continue; 1165 } 1166 1167 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1168 if (SecI != Obj->section_end()) 1169 AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol)); 1170 else 1171 AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol)); 1172 } 1173 1174 if (AllSymbols.empty() && Obj->isELF()) 1175 addDynamicElfSymbols(Obj, AllSymbols); 1176 1177 if (Obj->isWasm()) 1178 addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols); 1179 1180 BumpPtrAllocator A; 1181 StringSaver Saver(A); 1182 addPltEntries(Obj, AllSymbols, Saver); 1183 1184 // Create a mapping from virtual address to section. An empty section can 1185 // cause more than one section at the same address. Sort such sections to be 1186 // before same-addressed non-empty sections so that symbol lookups prefer the 1187 // non-empty section. 1188 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1189 for (SectionRef Sec : Obj->sections()) 1190 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1191 llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) { 1192 if (LHS.first != RHS.first) 1193 return LHS.first < RHS.first; 1194 return LHS.second.getSize() < RHS.second.getSize(); 1195 }); 1196 1197 // Linked executables (.exe and .dll files) typically don't include a real 1198 // symbol table but they might contain an export table. 1199 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) { 1200 for (const auto &ExportEntry : COFFObj->export_directories()) { 1201 StringRef Name; 1202 if (Error E = ExportEntry.getSymbolName(Name)) 1203 reportError(std::move(E), Obj->getFileName()); 1204 if (Name.empty()) 1205 continue; 1206 1207 uint32_t RVA; 1208 if (Error E = ExportEntry.getExportRVA(RVA)) 1209 reportError(std::move(E), Obj->getFileName()); 1210 1211 uint64_t VA = COFFObj->getImageBase() + RVA; 1212 auto Sec = partition_point( 1213 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { 1214 return O.first <= VA; 1215 }); 1216 if (Sec != SectionAddresses.begin()) { 1217 --Sec; 1218 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1219 } else 1220 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1221 } 1222 } 1223 1224 // Sort all the symbols, this allows us to use a simple binary search to find 1225 // Multiple symbols can have the same address. Use a stable sort to stabilize 1226 // the output. 1227 StringSet<> FoundDisasmSymbolSet; 1228 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1229 llvm::stable_sort(SecSyms.second); 1230 llvm::stable_sort(AbsoluteSymbols); 1231 1232 std::unique_ptr<DWARFContext> DICtx; 1233 LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI); 1234 1235 if (DbgVariables != DVDisabled) { 1236 DICtx = DWARFContext::create(*Obj); 1237 for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units()) 1238 LVP.addCompileUnit(CU->getUnitDIE(false)); 1239 } 1240 1241 LLVM_DEBUG(LVP.dump()); 1242 1243 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1244 if (FilterSections.empty() && !DisassembleAll && 1245 (!Section.isText() || Section.isVirtual())) 1246 continue; 1247 1248 uint64_t SectionAddr = Section.getAddress(); 1249 uint64_t SectSize = Section.getSize(); 1250 if (!SectSize) 1251 continue; 1252 1253 // Get the list of all the symbols in this section. 1254 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1255 std::vector<MappingSymbolPair> MappingSymbols; 1256 if (hasMappingSymbols(Obj)) { 1257 for (const auto &Symb : Symbols) { 1258 uint64_t Address = Symb.Addr; 1259 StringRef Name = Symb.Name; 1260 if (Name.startswith("$d")) 1261 MappingSymbols.emplace_back(Address - SectionAddr, 'd'); 1262 if (Name.startswith("$x")) 1263 MappingSymbols.emplace_back(Address - SectionAddr, 'x'); 1264 if (Name.startswith("$a")) 1265 MappingSymbols.emplace_back(Address - SectionAddr, 'a'); 1266 if (Name.startswith("$t")) 1267 MappingSymbols.emplace_back(Address - SectionAddr, 't'); 1268 } 1269 } 1270 1271 llvm::sort(MappingSymbols); 1272 1273 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( 1274 unwrapOrError(Section.getContents(), Obj->getFileName())); 1275 1276 std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames; 1277 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1278 // AMDGPU disassembler uses symbolizer for printing labels 1279 addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes, 1280 Symbols, SynthesizedLabelNames); 1281 } 1282 1283 StringRef SegmentName = getSegmentName(MachO, Section); 1284 StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName()); 1285 // If the section has no symbol at the start, just insert a dummy one. 1286 if (Symbols.empty() || Symbols[0].Addr != 0) { 1287 Symbols.insert(Symbols.begin(), 1288 createDummySymbolInfo(Obj, SectionAddr, SectionName, 1289 Section.isText() ? ELF::STT_FUNC 1290 : ELF::STT_OBJECT)); 1291 } 1292 1293 SmallString<40> Comments; 1294 raw_svector_ostream CommentStream(Comments); 1295 1296 uint64_t VMAAdjustment = 0; 1297 if (shouldAdjustVA(Section)) 1298 VMAAdjustment = AdjustVMA; 1299 1300 // In executable and shared objects, r_offset holds a virtual address. 1301 // Subtract SectionAddr from the r_offset field of a relocation to get 1302 // the section offset. 1303 uint64_t RelAdjustment = Obj->isRelocatableObject() ? 0 : SectionAddr; 1304 uint64_t Size; 1305 uint64_t Index; 1306 bool PrintedSection = false; 1307 std::vector<RelocationRef> Rels = RelocMap[Section]; 1308 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); 1309 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); 1310 // Disassemble symbol by symbol. 1311 for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) { 1312 std::string SymbolName = Symbols[SI].Name.str(); 1313 if (Demangle) 1314 SymbolName = demangle(SymbolName); 1315 1316 // Skip if --disassemble-symbols is not empty and the symbol is not in 1317 // the list. 1318 if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName)) 1319 continue; 1320 1321 uint64_t Start = Symbols[SI].Addr; 1322 if (Start < SectionAddr || StopAddress <= Start) 1323 continue; 1324 else 1325 FoundDisasmSymbolSet.insert(SymbolName); 1326 1327 // The end is the section end, the beginning of the next symbol, or 1328 // --stop-address. 1329 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); 1330 if (SI + 1 < SE) 1331 End = std::min(End, Symbols[SI + 1].Addr); 1332 if (Start >= End || End <= StartAddress) 1333 continue; 1334 Start -= SectionAddr; 1335 End -= SectionAddr; 1336 1337 if (!PrintedSection) { 1338 PrintedSection = true; 1339 outs() << "\nDisassembly of section "; 1340 if (!SegmentName.empty()) 1341 outs() << SegmentName << ","; 1342 outs() << SectionName << ":\n"; 1343 } 1344 1345 outs() << '\n'; 1346 if (LeadingAddr) 1347 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", 1348 SectionAddr + Start + VMAAdjustment); 1349 if (Obj->isXCOFF() && SymbolDescription) { 1350 outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n"; 1351 } else 1352 outs() << '<' << SymbolName << ">:\n"; 1353 1354 // Don't print raw contents of a virtual section. A virtual section 1355 // doesn't have any contents in the file. 1356 if (Section.isVirtual()) { 1357 outs() << "...\n"; 1358 continue; 1359 } 1360 1361 auto Status = DisAsm->onSymbolStart(Symbols[SI], Size, 1362 Bytes.slice(Start, End - Start), 1363 SectionAddr + Start, CommentStream); 1364 // To have round trippable disassembly, we fall back to decoding the 1365 // remaining bytes as instructions. 1366 // 1367 // If there is a failure, we disassemble the failed region as bytes before 1368 // falling back. The target is expected to print nothing in this case. 1369 // 1370 // If there is Success or SoftFail i.e no 'real' failure, we go ahead by 1371 // Size bytes before falling back. 1372 // So if the entire symbol is 'eaten' by the target: 1373 // Start += Size // Now Start = End and we will never decode as 1374 // // instructions 1375 // 1376 // Right now, most targets return None i.e ignore to treat a symbol 1377 // separately. But WebAssembly decodes preludes for some symbols. 1378 // 1379 if (Status.hasValue()) { 1380 if (Status.getValue() == MCDisassembler::Fail) { 1381 outs() << "// Error in decoding " << SymbolName 1382 << " : Decoding failed region as bytes.\n"; 1383 for (uint64_t I = 0; I < Size; ++I) { 1384 outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true) 1385 << "\n"; 1386 } 1387 } 1388 } else { 1389 Size = 0; 1390 } 1391 1392 Start += Size; 1393 1394 Index = Start; 1395 if (SectionAddr < StartAddress) 1396 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); 1397 1398 // If there is a data/common symbol inside an ELF text section and we are 1399 // only disassembling text (applicable all architectures), we are in a 1400 // situation where we must print the data and not disassemble it. 1401 if (Obj->isELF() && !DisassembleAll && Section.isText()) { 1402 uint8_t SymTy = Symbols[SI].Type; 1403 if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) { 1404 dumpELFData(SectionAddr, Index, End, Bytes); 1405 Index = End; 1406 } 1407 } 1408 1409 bool CheckARMELFData = hasMappingSymbols(Obj) && 1410 Symbols[SI].Type != ELF::STT_OBJECT && 1411 !DisassembleAll; 1412 bool DumpARMELFData = false; 1413 formatted_raw_ostream FOS(outs()); 1414 1415 std::unordered_map<uint64_t, std::string> AllLabels; 1416 if (SymbolizeOperands) 1417 collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI, 1418 SectionAddr, Index, End, AllLabels); 1419 1420 while (Index < End) { 1421 // ARM and AArch64 ELF binaries can interleave data and text in the 1422 // same section. We rely on the markers introduced to understand what 1423 // we need to dump. If the data marker is within a function, it is 1424 // denoted as a word/short etc. 1425 if (CheckARMELFData) { 1426 char Kind = getMappingSymbolKind(MappingSymbols, Index); 1427 DumpARMELFData = Kind == 'd'; 1428 if (SecondarySTI) { 1429 if (Kind == 'a') { 1430 STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI; 1431 DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm; 1432 } else if (Kind == 't') { 1433 STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI; 1434 DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm; 1435 } 1436 } 1437 } 1438 1439 if (DumpARMELFData) { 1440 Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, 1441 MappingSymbols, FOS); 1442 } else { 1443 // When -z or --disassemble-zeroes are given we always dissasemble 1444 // them. Otherwise we might want to skip zero bytes we see. 1445 if (!DisassembleZeroes) { 1446 uint64_t MaxOffset = End - Index; 1447 // For --reloc: print zero blocks patched by relocations, so that 1448 // relocations can be shown in the dump. 1449 if (RelCur != RelEnd) 1450 MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index, 1451 MaxOffset); 1452 1453 if (size_t N = 1454 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { 1455 FOS << "\t\t..." << '\n'; 1456 Index += N; 1457 continue; 1458 } 1459 } 1460 1461 // Print local label if there's any. 1462 auto Iter = AllLabels.find(SectionAddr + Index); 1463 if (Iter != AllLabels.end()) 1464 FOS << "<" << Iter->second << ">:\n"; 1465 1466 // Disassemble a real instruction or a data when disassemble all is 1467 // provided 1468 MCInst Inst; 1469 bool Disassembled = 1470 DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), 1471 SectionAddr + Index, CommentStream); 1472 if (Size == 0) 1473 Size = 1; 1474 1475 LVP.update({Index, Section.getIndex()}, 1476 {Index + Size, Section.getIndex()}, Index + Size != End); 1477 1478 IP->setCommentStream(CommentStream); 1479 1480 PIP.printInst( 1481 *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size), 1482 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS, 1483 "", *STI, &SP, Obj->getFileName(), &Rels, LVP); 1484 1485 IP->setCommentStream(llvm::nulls()); 1486 1487 // If disassembly has failed, avoid analysing invalid/incomplete 1488 // instruction information. Otherwise, try to resolve the target 1489 // address (jump target or memory operand address) and print it on the 1490 // right of the instruction. 1491 if (Disassembled && MIA) { 1492 // Branch targets are printed just after the instructions. 1493 llvm::raw_ostream *TargetOS = &FOS; 1494 uint64_t Target; 1495 bool PrintTarget = 1496 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target); 1497 if (!PrintTarget) 1498 if (Optional<uint64_t> MaybeTarget = 1499 MIA->evaluateMemoryOperandAddress( 1500 Inst, STI, SectionAddr + Index, Size)) { 1501 Target = *MaybeTarget; 1502 PrintTarget = true; 1503 // Do not print real address when symbolizing. 1504 if (!SymbolizeOperands) { 1505 // Memory operand addresses are printed as comments. 1506 TargetOS = &CommentStream; 1507 *TargetOS << "0x" << Twine::utohexstr(Target); 1508 } 1509 } 1510 if (PrintTarget) { 1511 // In a relocatable object, the target's section must reside in 1512 // the same section as the call instruction or it is accessed 1513 // through a relocation. 1514 // 1515 // In a non-relocatable object, the target may be in any section. 1516 // In that case, locate the section(s) containing the target 1517 // address and find the symbol in one of those, if possible. 1518 // 1519 // N.B. We don't walk the relocations in the relocatable case yet. 1520 std::vector<const SectionSymbolsTy *> TargetSectionSymbols; 1521 if (!Obj->isRelocatableObject()) { 1522 auto It = llvm::partition_point( 1523 SectionAddresses, 1524 [=](const std::pair<uint64_t, SectionRef> &O) { 1525 return O.first <= Target; 1526 }); 1527 uint64_t TargetSecAddr = 0; 1528 while (It != SectionAddresses.begin()) { 1529 --It; 1530 if (TargetSecAddr == 0) 1531 TargetSecAddr = It->first; 1532 if (It->first != TargetSecAddr) 1533 break; 1534 TargetSectionSymbols.push_back(&AllSymbols[It->second]); 1535 } 1536 } else { 1537 TargetSectionSymbols.push_back(&Symbols); 1538 } 1539 TargetSectionSymbols.push_back(&AbsoluteSymbols); 1540 1541 // Find the last symbol in the first candidate section whose 1542 // offset is less than or equal to the target. If there are no 1543 // such symbols, try in the next section and so on, before finally 1544 // using the nearest preceding absolute symbol (if any), if there 1545 // are no other valid symbols. 1546 const SymbolInfoTy *TargetSym = nullptr; 1547 for (const SectionSymbolsTy *TargetSymbols : 1548 TargetSectionSymbols) { 1549 auto It = llvm::partition_point( 1550 *TargetSymbols, 1551 [=](const SymbolInfoTy &O) { return O.Addr <= Target; }); 1552 if (It != TargetSymbols->begin()) { 1553 TargetSym = &*(It - 1); 1554 break; 1555 } 1556 } 1557 1558 // Print the labels corresponding to the target if there's any. 1559 bool LabelAvailable = AllLabels.count(Target); 1560 if (TargetSym != nullptr) { 1561 uint64_t TargetAddress = TargetSym->Addr; 1562 uint64_t Disp = Target - TargetAddress; 1563 std::string TargetName = TargetSym->Name.str(); 1564 if (Demangle) 1565 TargetName = demangle(TargetName); 1566 1567 *TargetOS << " <"; 1568 if (!Disp) { 1569 // Always Print the binary symbol precisely corresponding to 1570 // the target address. 1571 *TargetOS << TargetName; 1572 } else if (!LabelAvailable) { 1573 // Always Print the binary symbol plus an offset if there's no 1574 // local label corresponding to the target address. 1575 *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp); 1576 } else { 1577 *TargetOS << AllLabels[Target]; 1578 } 1579 *TargetOS << ">"; 1580 } else if (LabelAvailable) { 1581 *TargetOS << " <" << AllLabels[Target] << ">"; 1582 } 1583 // By convention, each record in the comment stream should be 1584 // terminated. 1585 if (TargetOS == &CommentStream) 1586 *TargetOS << "\n"; 1587 } 1588 } 1589 } 1590 1591 assert(Ctx.getAsmInfo()); 1592 emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI, 1593 CommentStream.str(), LVP); 1594 Comments.clear(); 1595 1596 // Hexagon does this in pretty printer 1597 if (Obj->getArch() != Triple::hexagon) { 1598 // Print relocation for instruction and data. 1599 while (RelCur != RelEnd) { 1600 uint64_t Offset = RelCur->getOffset() - RelAdjustment; 1601 // If this relocation is hidden, skip it. 1602 if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) { 1603 ++RelCur; 1604 continue; 1605 } 1606 1607 // Stop when RelCur's offset is past the disassembled 1608 // instruction/data. Note that it's possible the disassembled data 1609 // is not the complete data: we might see the relocation printed in 1610 // the middle of the data, but this matches the binutils objdump 1611 // output. 1612 if (Offset >= Index + Size) 1613 break; 1614 1615 // When --adjust-vma is used, update the address printed. 1616 if (RelCur->getSymbol() != Obj->symbol_end()) { 1617 Expected<section_iterator> SymSI = 1618 RelCur->getSymbol()->getSection(); 1619 if (SymSI && *SymSI != Obj->section_end() && 1620 shouldAdjustVA(**SymSI)) 1621 Offset += AdjustVMA; 1622 } 1623 1624 printRelocation(FOS, Obj->getFileName(), *RelCur, 1625 SectionAddr + Offset, Is64Bits); 1626 LVP.printAfterOtherLine(FOS, true); 1627 ++RelCur; 1628 } 1629 } 1630 1631 Index += Size; 1632 } 1633 } 1634 } 1635 StringSet<> MissingDisasmSymbolSet = 1636 set_difference(DisasmSymbolSet, FoundDisasmSymbolSet); 1637 for (StringRef Sym : MissingDisasmSymbolSet.keys()) 1638 reportWarning("failed to disassemble missing symbol " + Sym, FileName); 1639 } 1640 1641 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) { 1642 const Target *TheTarget = getTarget(Obj); 1643 1644 // Package up features to be passed to target/subtarget 1645 SubtargetFeatures Features = Obj->getFeatures(); 1646 if (!MAttrs.empty()) 1647 for (unsigned I = 0; I != MAttrs.size(); ++I) 1648 Features.AddFeature(MAttrs[I]); 1649 1650 std::unique_ptr<const MCRegisterInfo> MRI( 1651 TheTarget->createMCRegInfo(TripleName)); 1652 if (!MRI) 1653 reportError(Obj->getFileName(), 1654 "no register info for target " + TripleName); 1655 1656 // Set up disassembler. 1657 MCTargetOptions MCOptions; 1658 std::unique_ptr<const MCAsmInfo> AsmInfo( 1659 TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions)); 1660 if (!AsmInfo) 1661 reportError(Obj->getFileName(), 1662 "no assembly info for target " + TripleName); 1663 1664 if (MCPU.empty()) 1665 MCPU = Obj->tryGetCPUName().getValueOr("").str(); 1666 1667 std::unique_ptr<const MCSubtargetInfo> STI( 1668 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 1669 if (!STI) 1670 reportError(Obj->getFileName(), 1671 "no subtarget info for target " + TripleName); 1672 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 1673 if (!MII) 1674 reportError(Obj->getFileName(), 1675 "no instruction info for target " + TripleName); 1676 MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get()); 1677 // FIXME: for now initialize MCObjectFileInfo with default values 1678 std::unique_ptr<MCObjectFileInfo> MOFI( 1679 TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false)); 1680 Ctx.setObjectFileInfo(MOFI.get()); 1681 1682 std::unique_ptr<MCDisassembler> DisAsm( 1683 TheTarget->createMCDisassembler(*STI, Ctx)); 1684 if (!DisAsm) 1685 reportError(Obj->getFileName(), "no disassembler for target " + TripleName); 1686 1687 // If we have an ARM object file, we need a second disassembler, because 1688 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. 1689 // We use mapping symbols to switch between the two assemblers, where 1690 // appropriate. 1691 std::unique_ptr<MCDisassembler> SecondaryDisAsm; 1692 std::unique_ptr<const MCSubtargetInfo> SecondarySTI; 1693 if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) { 1694 if (STI->checkFeatures("+thumb-mode")) 1695 Features.AddFeature("-thumb-mode"); 1696 else 1697 Features.AddFeature("+thumb-mode"); 1698 SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU, 1699 Features.getString())); 1700 SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx)); 1701 } 1702 1703 std::unique_ptr<const MCInstrAnalysis> MIA( 1704 TheTarget->createMCInstrAnalysis(MII.get())); 1705 1706 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 1707 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( 1708 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); 1709 if (!IP) 1710 reportError(Obj->getFileName(), 1711 "no instruction printer for target " + TripleName); 1712 IP->setPrintImmHex(PrintImmHex); 1713 IP->setPrintBranchImmAsAddress(true); 1714 IP->setSymbolizeOperands(SymbolizeOperands); 1715 IP->setMCInstrAnalysis(MIA.get()); 1716 1717 PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); 1718 SourcePrinter SP(Obj, TheTarget->getName()); 1719 1720 for (StringRef Opt : DisassemblerOptions) 1721 if (!IP->applyTargetSpecificCLOption(Opt)) 1722 reportError(Obj->getFileName(), 1723 "Unrecognized disassembler option: " + Opt); 1724 1725 disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(), 1726 MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP, 1727 SP, InlineRelocs); 1728 } 1729 1730 void objdump::printRelocations(const ObjectFile *Obj) { 1731 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : 1732 "%08" PRIx64; 1733 // Regular objdump doesn't print relocations in non-relocatable object 1734 // files. 1735 if (!Obj->isRelocatableObject()) 1736 return; 1737 1738 // Build a mapping from relocation target to a vector of relocation 1739 // sections. Usually, there is an only one relocation section for 1740 // each relocated section. 1741 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; 1742 uint64_t Ndx; 1743 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) { 1744 if (Section.relocation_begin() == Section.relocation_end()) 1745 continue; 1746 Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); 1747 if (!SecOrErr) 1748 reportError(Obj->getFileName(), 1749 "section (" + Twine(Ndx) + 1750 "): unable to get a relocation target: " + 1751 toString(SecOrErr.takeError())); 1752 SecToRelSec[**SecOrErr].push_back(Section); 1753 } 1754 1755 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { 1756 StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName()); 1757 outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n"; 1758 uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); 1759 uint32_t TypePadding = 24; 1760 outs() << left_justify("OFFSET", OffsetPadding) << " " 1761 << left_justify("TYPE", TypePadding) << " " 1762 << "VALUE\n"; 1763 1764 for (SectionRef Section : P.second) { 1765 for (const RelocationRef &Reloc : Section.relocations()) { 1766 uint64_t Address = Reloc.getOffset(); 1767 SmallString<32> RelocName; 1768 SmallString<32> ValueStr; 1769 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) 1770 continue; 1771 Reloc.getTypeName(RelocName); 1772 if (Error E = getRelocationValueString(Reloc, ValueStr)) 1773 reportError(std::move(E), Obj->getFileName()); 1774 1775 outs() << format(Fmt.data(), Address) << " " 1776 << left_justify(RelocName, TypePadding) << " " << ValueStr 1777 << "\n"; 1778 } 1779 } 1780 } 1781 } 1782 1783 void objdump::printDynamicRelocations(const ObjectFile *Obj) { 1784 // For the moment, this option is for ELF only 1785 if (!Obj->isELF()) 1786 return; 1787 1788 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 1789 if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) { 1790 return Sec.getType() == ELF::SHT_DYNAMIC; 1791 })) { 1792 reportError(Obj->getFileName(), "not a dynamic object"); 1793 return; 1794 } 1795 1796 std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections(); 1797 if (DynRelSec.empty()) 1798 return; 1799 1800 outs() << "\nDYNAMIC RELOCATION RECORDS\n"; 1801 const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); 1802 const uint32_t TypePadding = 24; 1803 outs() << left_justify("OFFSET", OffsetPadding) << ' ' 1804 << left_justify("TYPE", TypePadding) << " VALUE\n"; 1805 1806 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 1807 for (const SectionRef &Section : DynRelSec) 1808 for (const RelocationRef &Reloc : Section.relocations()) { 1809 uint64_t Address = Reloc.getOffset(); 1810 SmallString<32> RelocName; 1811 SmallString<32> ValueStr; 1812 Reloc.getTypeName(RelocName); 1813 if (Error E = getRelocationValueString(Reloc, ValueStr)) 1814 reportError(std::move(E), Obj->getFileName()); 1815 outs() << format(Fmt.data(), Address) << ' ' 1816 << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n'; 1817 } 1818 } 1819 1820 // Returns true if we need to show LMA column when dumping section headers. We 1821 // show it only when the platform is ELF and either we have at least one section 1822 // whose VMA and LMA are different and/or when --show-lma flag is used. 1823 static bool shouldDisplayLMA(const ObjectFile *Obj) { 1824 if (!Obj->isELF()) 1825 return false; 1826 for (const SectionRef &S : ToolSectionFilter(*Obj)) 1827 if (S.getAddress() != getELFSectionLMA(S)) 1828 return true; 1829 return ShowLMA; 1830 } 1831 1832 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) { 1833 // Default column width for names is 13 even if no names are that long. 1834 size_t MaxWidth = 13; 1835 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1836 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1837 MaxWidth = std::max(MaxWidth, Name.size()); 1838 } 1839 return MaxWidth; 1840 } 1841 1842 void objdump::printSectionHeaders(const ObjectFile *Obj) { 1843 size_t NameWidth = getMaxSectionNameWidth(Obj); 1844 size_t AddressWidth = 2 * Obj->getBytesInAddress(); 1845 bool HasLMAColumn = shouldDisplayLMA(Obj); 1846 outs() << "\nSections:\n"; 1847 if (HasLMAColumn) 1848 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 1849 << left_justify("VMA", AddressWidth) << " " 1850 << left_justify("LMA", AddressWidth) << " Type\n"; 1851 else 1852 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 1853 << left_justify("VMA", AddressWidth) << " Type\n"; 1854 1855 uint64_t Idx; 1856 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) { 1857 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1858 uint64_t VMA = Section.getAddress(); 1859 if (shouldAdjustVA(Section)) 1860 VMA += AdjustVMA; 1861 1862 uint64_t Size = Section.getSize(); 1863 1864 std::string Type = Section.isText() ? "TEXT" : ""; 1865 if (Section.isData()) 1866 Type += Type.empty() ? "DATA" : ", DATA"; 1867 if (Section.isBSS()) 1868 Type += Type.empty() ? "BSS" : ", BSS"; 1869 if (Section.isDebugSection()) 1870 Type += Type.empty() ? "DEBUG" : ", DEBUG"; 1871 1872 if (HasLMAColumn) 1873 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 1874 Name.str().c_str(), Size) 1875 << format_hex_no_prefix(VMA, AddressWidth) << " " 1876 << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) 1877 << " " << Type << "\n"; 1878 else 1879 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 1880 Name.str().c_str(), Size) 1881 << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; 1882 } 1883 } 1884 1885 void objdump::printSectionContents(const ObjectFile *Obj) { 1886 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); 1887 1888 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1889 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1890 uint64_t BaseAddr = Section.getAddress(); 1891 uint64_t Size = Section.getSize(); 1892 if (!Size) 1893 continue; 1894 1895 outs() << "Contents of section "; 1896 StringRef SegmentName = getSegmentName(MachO, Section); 1897 if (!SegmentName.empty()) 1898 outs() << SegmentName << ","; 1899 outs() << Name << ":\n"; 1900 if (Section.isBSS()) { 1901 outs() << format("<skipping contents of bss section at [%04" PRIx64 1902 ", %04" PRIx64 ")>\n", 1903 BaseAddr, BaseAddr + Size); 1904 continue; 1905 } 1906 1907 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); 1908 1909 // Dump out the content as hex and printable ascii characters. 1910 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { 1911 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); 1912 // Dump line of hex. 1913 for (std::size_t I = 0; I < 16; ++I) { 1914 if (I != 0 && I % 4 == 0) 1915 outs() << ' '; 1916 if (Addr + I < End) 1917 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) 1918 << hexdigit(Contents[Addr + I] & 0xF, true); 1919 else 1920 outs() << " "; 1921 } 1922 // Print ascii. 1923 outs() << " "; 1924 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { 1925 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) 1926 outs() << Contents[Addr + I]; 1927 else 1928 outs() << "."; 1929 } 1930 outs() << "\n"; 1931 } 1932 } 1933 } 1934 1935 void objdump::printSymbolTable(const ObjectFile *O, StringRef ArchiveName, 1936 StringRef ArchitectureName, bool DumpDynamic) { 1937 if (O->isCOFF() && !DumpDynamic) { 1938 outs() << "\nSYMBOL TABLE:\n"; 1939 printCOFFSymbolTable(cast<const COFFObjectFile>(O)); 1940 return; 1941 } 1942 1943 const StringRef FileName = O->getFileName(); 1944 1945 if (!DumpDynamic) { 1946 outs() << "\nSYMBOL TABLE:\n"; 1947 for (auto I = O->symbol_begin(); I != O->symbol_end(); ++I) 1948 printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName, 1949 DumpDynamic); 1950 return; 1951 } 1952 1953 outs() << "\nDYNAMIC SYMBOL TABLE:\n"; 1954 if (!O->isELF()) { 1955 reportWarning( 1956 "this operation is not currently supported for this file format", 1957 FileName); 1958 return; 1959 } 1960 1961 const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(O); 1962 auto Symbols = ELF->getDynamicSymbolIterators(); 1963 Expected<std::vector<VersionEntry>> SymbolVersionsOrErr = 1964 ELF->readDynsymVersions(); 1965 if (!SymbolVersionsOrErr) { 1966 reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName); 1967 SymbolVersionsOrErr = std::vector<VersionEntry>(); 1968 (void)!SymbolVersionsOrErr; 1969 } 1970 for (auto &Sym : Symbols) 1971 printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName, 1972 ArchitectureName, DumpDynamic); 1973 } 1974 1975 void objdump::printSymbol(const ObjectFile *O, const SymbolRef &Symbol, 1976 ArrayRef<VersionEntry> SymbolVersions, 1977 StringRef FileName, StringRef ArchiveName, 1978 StringRef ArchitectureName, bool DumpDynamic) { 1979 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O); 1980 uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName, 1981 ArchitectureName); 1982 if ((Address < StartAddress) || (Address > StopAddress)) 1983 return; 1984 SymbolRef::Type Type = 1985 unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName); 1986 uint32_t Flags = 1987 unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName); 1988 1989 // Don't ask a Mach-O STAB symbol for its section unless you know that 1990 // STAB symbol's section field refers to a valid section index. Otherwise 1991 // the symbol may error trying to load a section that does not exist. 1992 bool IsSTAB = false; 1993 if (MachO) { 1994 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1995 uint8_t NType = 1996 (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type 1997 : MachO->getSymbolTableEntry(SymDRI).n_type); 1998 if (NType & MachO::N_STAB) 1999 IsSTAB = true; 2000 } 2001 section_iterator Section = IsSTAB 2002 ? O->section_end() 2003 : unwrapOrError(Symbol.getSection(), FileName, 2004 ArchiveName, ArchitectureName); 2005 2006 StringRef Name; 2007 if (Type == SymbolRef::ST_Debug && Section != O->section_end()) { 2008 if (Expected<StringRef> NameOrErr = Section->getName()) 2009 Name = *NameOrErr; 2010 else 2011 consumeError(NameOrErr.takeError()); 2012 2013 } else { 2014 Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName, 2015 ArchitectureName); 2016 } 2017 2018 bool Global = Flags & SymbolRef::SF_Global; 2019 bool Weak = Flags & SymbolRef::SF_Weak; 2020 bool Absolute = Flags & SymbolRef::SF_Absolute; 2021 bool Common = Flags & SymbolRef::SF_Common; 2022 bool Hidden = Flags & SymbolRef::SF_Hidden; 2023 2024 char GlobLoc = ' '; 2025 if ((Section != O->section_end() || Absolute) && !Weak) 2026 GlobLoc = Global ? 'g' : 'l'; 2027 char IFunc = ' '; 2028 if (O->isELF()) { 2029 if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC) 2030 IFunc = 'i'; 2031 if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE) 2032 GlobLoc = 'u'; 2033 } 2034 2035 char Debug = ' '; 2036 if (DumpDynamic) 2037 Debug = 'D'; 2038 else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 2039 Debug = 'd'; 2040 2041 char FileFunc = ' '; 2042 if (Type == SymbolRef::ST_File) 2043 FileFunc = 'f'; 2044 else if (Type == SymbolRef::ST_Function) 2045 FileFunc = 'F'; 2046 else if (Type == SymbolRef::ST_Data) 2047 FileFunc = 'O'; 2048 2049 const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2050 2051 outs() << format(Fmt, Address) << " " 2052 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 2053 << (Weak ? 'w' : ' ') // Weak? 2054 << ' ' // Constructor. Not supported yet. 2055 << ' ' // Warning. Not supported yet. 2056 << IFunc // Indirect reference to another symbol. 2057 << Debug // Debugging (d) or dynamic (D) symbol. 2058 << FileFunc // Name of function (F), file (f) or object (O). 2059 << ' '; 2060 if (Absolute) { 2061 outs() << "*ABS*"; 2062 } else if (Common) { 2063 outs() << "*COM*"; 2064 } else if (Section == O->section_end()) { 2065 if (O->isXCOFF()) { 2066 XCOFFSymbolRef XCOFFSym = dyn_cast<const XCOFFObjectFile>(O)->toSymbolRef( 2067 Symbol.getRawDataRefImpl()); 2068 if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber()) 2069 outs() << "*DEBUG*"; 2070 else 2071 outs() << "*UND*"; 2072 } else 2073 outs() << "*UND*"; 2074 } else { 2075 StringRef SegmentName = getSegmentName(MachO, *Section); 2076 if (!SegmentName.empty()) 2077 outs() << SegmentName << ","; 2078 StringRef SectionName = unwrapOrError(Section->getName(), FileName); 2079 outs() << SectionName; 2080 if (O->isXCOFF()) { 2081 Optional<SymbolRef> SymRef = getXCOFFSymbolContainingSymbolRef( 2082 dyn_cast<const XCOFFObjectFile>(O), Symbol); 2083 if (SymRef) { 2084 2085 Expected<StringRef> NameOrErr = SymRef.getValue().getName(); 2086 2087 if (NameOrErr) { 2088 outs() << " (csect:"; 2089 std::string SymName(NameOrErr.get()); 2090 2091 if (Demangle) 2092 SymName = demangle(SymName); 2093 2094 if (SymbolDescription) 2095 SymName = getXCOFFSymbolDescription( 2096 createSymbolInfo(O, SymRef.getValue()), SymName); 2097 2098 outs() << ' ' << SymName; 2099 outs() << ") "; 2100 } else 2101 reportWarning(toString(NameOrErr.takeError()), FileName); 2102 } 2103 } 2104 } 2105 2106 if (Common) 2107 outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment())); 2108 else if (O->isXCOFF()) 2109 outs() << '\t' 2110 << format(Fmt, dyn_cast<const XCOFFObjectFile>(O)->getSymbolSize( 2111 Symbol.getRawDataRefImpl())); 2112 else if (O->isELF()) 2113 outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize()); 2114 2115 if (O->isELF()) { 2116 if (!SymbolVersions.empty()) { 2117 const VersionEntry &Ver = 2118 SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1]; 2119 std::string Str; 2120 if (!Ver.Name.empty()) 2121 Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')'; 2122 outs() << ' ' << left_justify(Str, 12); 2123 } 2124 2125 uint8_t Other = ELFSymbolRef(Symbol).getOther(); 2126 switch (Other) { 2127 case ELF::STV_DEFAULT: 2128 break; 2129 case ELF::STV_INTERNAL: 2130 outs() << " .internal"; 2131 break; 2132 case ELF::STV_HIDDEN: 2133 outs() << " .hidden"; 2134 break; 2135 case ELF::STV_PROTECTED: 2136 outs() << " .protected"; 2137 break; 2138 default: 2139 outs() << format(" 0x%02x", Other); 2140 break; 2141 } 2142 } else if (Hidden) { 2143 outs() << " .hidden"; 2144 } 2145 2146 std::string SymName(Name); 2147 if (Demangle) 2148 SymName = demangle(SymName); 2149 2150 if (O->isXCOFF() && SymbolDescription) 2151 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName); 2152 2153 outs() << ' ' << SymName << '\n'; 2154 } 2155 2156 static void printUnwindInfo(const ObjectFile *O) { 2157 outs() << "Unwind info:\n\n"; 2158 2159 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) 2160 printCOFFUnwindInfo(Coff); 2161 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) 2162 printMachOUnwindInfo(MachO); 2163 else 2164 // TODO: Extract DWARF dump tool to objdump. 2165 WithColor::error(errs(), ToolName) 2166 << "This operation is only currently supported " 2167 "for COFF and MachO object files.\n"; 2168 } 2169 2170 /// Dump the raw contents of the __clangast section so the output can be piped 2171 /// into llvm-bcanalyzer. 2172 static void printRawClangAST(const ObjectFile *Obj) { 2173 if (outs().is_displayed()) { 2174 WithColor::error(errs(), ToolName) 2175 << "The -raw-clang-ast option will dump the raw binary contents of " 2176 "the clang ast section.\n" 2177 "Please redirect the output to a file or another program such as " 2178 "llvm-bcanalyzer.\n"; 2179 return; 2180 } 2181 2182 StringRef ClangASTSectionName("__clangast"); 2183 if (Obj->isCOFF()) { 2184 ClangASTSectionName = "clangast"; 2185 } 2186 2187 Optional<object::SectionRef> ClangASTSection; 2188 for (auto Sec : ToolSectionFilter(*Obj)) { 2189 StringRef Name; 2190 if (Expected<StringRef> NameOrErr = Sec.getName()) 2191 Name = *NameOrErr; 2192 else 2193 consumeError(NameOrErr.takeError()); 2194 2195 if (Name == ClangASTSectionName) { 2196 ClangASTSection = Sec; 2197 break; 2198 } 2199 } 2200 if (!ClangASTSection) 2201 return; 2202 2203 StringRef ClangASTContents = unwrapOrError( 2204 ClangASTSection.getValue().getContents(), Obj->getFileName()); 2205 outs().write(ClangASTContents.data(), ClangASTContents.size()); 2206 } 2207 2208 static void printFaultMaps(const ObjectFile *Obj) { 2209 StringRef FaultMapSectionName; 2210 2211 if (Obj->isELF()) { 2212 FaultMapSectionName = ".llvm_faultmaps"; 2213 } else if (Obj->isMachO()) { 2214 FaultMapSectionName = "__llvm_faultmaps"; 2215 } else { 2216 WithColor::error(errs(), ToolName) 2217 << "This operation is only currently supported " 2218 "for ELF and Mach-O executable files.\n"; 2219 return; 2220 } 2221 2222 Optional<object::SectionRef> FaultMapSection; 2223 2224 for (auto Sec : ToolSectionFilter(*Obj)) { 2225 StringRef Name; 2226 if (Expected<StringRef> NameOrErr = Sec.getName()) 2227 Name = *NameOrErr; 2228 else 2229 consumeError(NameOrErr.takeError()); 2230 2231 if (Name == FaultMapSectionName) { 2232 FaultMapSection = Sec; 2233 break; 2234 } 2235 } 2236 2237 outs() << "FaultMap table:\n"; 2238 2239 if (!FaultMapSection.hasValue()) { 2240 outs() << "<not found>\n"; 2241 return; 2242 } 2243 2244 StringRef FaultMapContents = 2245 unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName()); 2246 FaultMapParser FMP(FaultMapContents.bytes_begin(), 2247 FaultMapContents.bytes_end()); 2248 2249 outs() << FMP; 2250 } 2251 2252 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) { 2253 if (O->isELF()) { 2254 printELFFileHeader(O); 2255 printELFDynamicSection(O); 2256 printELFSymbolVersionInfo(O); 2257 return; 2258 } 2259 if (O->isCOFF()) 2260 return printCOFFFileHeader(cast<object::COFFObjectFile>(*O)); 2261 if (O->isWasm()) 2262 return printWasmFileHeader(O); 2263 if (O->isMachO()) { 2264 printMachOFileHeader(O); 2265 if (!OnlyFirst) 2266 printMachOLoadCommands(O); 2267 return; 2268 } 2269 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2270 } 2271 2272 static void printFileHeaders(const ObjectFile *O) { 2273 if (!O->isELF() && !O->isCOFF()) 2274 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2275 2276 Triple::ArchType AT = O->getArch(); 2277 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 2278 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); 2279 2280 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2281 outs() << "start address: " 2282 << "0x" << format(Fmt.data(), Address) << "\n"; 2283 } 2284 2285 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 2286 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 2287 if (!ModeOrErr) { 2288 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; 2289 consumeError(ModeOrErr.takeError()); 2290 return; 2291 } 2292 sys::fs::perms Mode = ModeOrErr.get(); 2293 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 2294 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 2295 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 2296 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 2297 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 2298 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 2299 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 2300 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 2301 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 2302 2303 outs() << " "; 2304 2305 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename), 2306 unwrapOrError(C.getGID(), Filename), 2307 unwrapOrError(C.getRawSize(), Filename)); 2308 2309 StringRef RawLastModified = C.getRawLastModified(); 2310 unsigned Seconds; 2311 if (RawLastModified.getAsInteger(10, Seconds)) 2312 outs() << "(date: \"" << RawLastModified 2313 << "\" contains non-decimal chars) "; 2314 else { 2315 // Since ctime(3) returns a 26 character string of the form: 2316 // "Sun Sep 16 01:03:52 1973\n\0" 2317 // just print 24 characters. 2318 time_t t = Seconds; 2319 outs() << format("%.24s ", ctime(&t)); 2320 } 2321 2322 StringRef Name = ""; 2323 Expected<StringRef> NameOrErr = C.getName(); 2324 if (!NameOrErr) { 2325 consumeError(NameOrErr.takeError()); 2326 Name = unwrapOrError(C.getRawName(), Filename); 2327 } else { 2328 Name = NameOrErr.get(); 2329 } 2330 outs() << Name << "\n"; 2331 } 2332 2333 // For ELF only now. 2334 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { 2335 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { 2336 if (Elf->getEType() != ELF::ET_REL) 2337 return true; 2338 } 2339 return false; 2340 } 2341 2342 static void checkForInvalidStartStopAddress(ObjectFile *Obj, 2343 uint64_t Start, uint64_t Stop) { 2344 if (!shouldWarnForInvalidStartStopAddress(Obj)) 2345 return; 2346 2347 for (const SectionRef &Section : Obj->sections()) 2348 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { 2349 uint64_t BaseAddr = Section.getAddress(); 2350 uint64_t Size = Section.getSize(); 2351 if ((Start < BaseAddr + Size) && Stop > BaseAddr) 2352 return; 2353 } 2354 2355 if (!HasStartAddressFlag) 2356 reportWarning("no section has address less than 0x" + 2357 Twine::utohexstr(Stop) + " specified by --stop-address", 2358 Obj->getFileName()); 2359 else if (!HasStopAddressFlag) 2360 reportWarning("no section has address greater than or equal to 0x" + 2361 Twine::utohexstr(Start) + " specified by --start-address", 2362 Obj->getFileName()); 2363 else 2364 reportWarning("no section overlaps the range [0x" + 2365 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + 2366 ") specified by --start-address/--stop-address", 2367 Obj->getFileName()); 2368 } 2369 2370 static void dumpObject(ObjectFile *O, const Archive *A = nullptr, 2371 const Archive::Child *C = nullptr) { 2372 // Avoid other output when using a raw option. 2373 if (!RawClangAST) { 2374 outs() << '\n'; 2375 if (A) 2376 outs() << A->getFileName() << "(" << O->getFileName() << ")"; 2377 else 2378 outs() << O->getFileName(); 2379 outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n"; 2380 } 2381 2382 if (HasStartAddressFlag || HasStopAddressFlag) 2383 checkForInvalidStartStopAddress(O, StartAddress, StopAddress); 2384 2385 // Note: the order here matches GNU objdump for compatability. 2386 StringRef ArchiveName = A ? A->getFileName() : ""; 2387 if (ArchiveHeaders && !MachOOpt && C) 2388 printArchiveChild(ArchiveName, *C); 2389 if (FileHeaders) 2390 printFileHeaders(O); 2391 if (PrivateHeaders || FirstPrivateHeader) 2392 printPrivateFileHeaders(O, FirstPrivateHeader); 2393 if (SectionHeaders) 2394 printSectionHeaders(O); 2395 if (SymbolTable) 2396 printSymbolTable(O, ArchiveName); 2397 if (DynamicSymbolTable) 2398 printSymbolTable(O, ArchiveName, /*ArchitectureName=*/"", 2399 /*DumpDynamic=*/true); 2400 if (DwarfDumpType != DIDT_Null) { 2401 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); 2402 // Dump the complete DWARF structure. 2403 DIDumpOptions DumpOpts; 2404 DumpOpts.DumpType = DwarfDumpType; 2405 DICtx->dump(outs(), DumpOpts); 2406 } 2407 if (Relocations && !Disassemble) 2408 printRelocations(O); 2409 if (DynamicRelocations) 2410 printDynamicRelocations(O); 2411 if (SectionContents) 2412 printSectionContents(O); 2413 if (Disassemble) 2414 disassembleObject(O, Relocations); 2415 if (UnwindInfo) 2416 printUnwindInfo(O); 2417 2418 // Mach-O specific options: 2419 if (ExportsTrie) 2420 printExportsTrie(O); 2421 if (Rebase) 2422 printRebaseTable(O); 2423 if (Bind) 2424 printBindTable(O); 2425 if (LazyBind) 2426 printLazyBindTable(O); 2427 if (WeakBind) 2428 printWeakBindTable(O); 2429 2430 // Other special sections: 2431 if (RawClangAST) 2432 printRawClangAST(O); 2433 if (FaultMapSection) 2434 printFaultMaps(O); 2435 } 2436 2437 static void dumpObject(const COFFImportFile *I, const Archive *A, 2438 const Archive::Child *C = nullptr) { 2439 StringRef ArchiveName = A ? A->getFileName() : ""; 2440 2441 // Avoid other output when using a raw option. 2442 if (!RawClangAST) 2443 outs() << '\n' 2444 << ArchiveName << "(" << I->getFileName() << ")" 2445 << ":\tfile format COFF-import-file" 2446 << "\n\n"; 2447 2448 if (ArchiveHeaders && !MachOOpt && C) 2449 printArchiveChild(ArchiveName, *C); 2450 if (SymbolTable) 2451 printCOFFSymbolTable(I); 2452 } 2453 2454 /// Dump each object file in \a a; 2455 static void dumpArchive(const Archive *A) { 2456 Error Err = Error::success(); 2457 unsigned I = -1; 2458 for (auto &C : A->children(Err)) { 2459 ++I; 2460 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 2461 if (!ChildOrErr) { 2462 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 2463 reportError(std::move(E), getFileNameForError(C, I), A->getFileName()); 2464 continue; 2465 } 2466 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 2467 dumpObject(O, A, &C); 2468 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 2469 dumpObject(I, A, &C); 2470 else 2471 reportError(errorCodeToError(object_error::invalid_file_type), 2472 A->getFileName()); 2473 } 2474 if (Err) 2475 reportError(std::move(Err), A->getFileName()); 2476 } 2477 2478 /// Open file and figure out how to dump it. 2479 static void dumpInput(StringRef file) { 2480 // If we are using the Mach-O specific object file parser, then let it parse 2481 // the file and process the command line options. So the -arch flags can 2482 // be used to select specific slices, etc. 2483 if (MachOOpt) { 2484 parseInputMachO(file); 2485 return; 2486 } 2487 2488 // Attempt to open the binary. 2489 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); 2490 Binary &Binary = *OBinary.getBinary(); 2491 2492 if (Archive *A = dyn_cast<Archive>(&Binary)) 2493 dumpArchive(A); 2494 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) 2495 dumpObject(O); 2496 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) 2497 parseInputMachO(UB); 2498 else 2499 reportError(errorCodeToError(object_error::invalid_file_type), file); 2500 } 2501 2502 template <typename T> 2503 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID, 2504 T &Value) { 2505 if (const opt::Arg *A = InputArgs.getLastArg(ID)) { 2506 StringRef V(A->getValue()); 2507 if (!llvm::to_integer(V, Value, 0)) { 2508 reportCmdLineError(A->getSpelling() + 2509 ": expected a non-negative integer, but got '" + V + 2510 "'"); 2511 } 2512 } 2513 } 2514 2515 static void invalidArgValue(const opt::Arg *A) { 2516 reportCmdLineError("'" + StringRef(A->getValue()) + 2517 "' is not a valid value for '" + A->getSpelling() + "'"); 2518 } 2519 2520 static std::vector<std::string> 2521 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) { 2522 std::vector<std::string> Values; 2523 for (StringRef Value : InputArgs.getAllArgValues(ID)) { 2524 llvm::SmallVector<StringRef, 2> SplitValues; 2525 llvm::SplitString(Value, SplitValues, ","); 2526 for (StringRef SplitValue : SplitValues) 2527 Values.push_back(SplitValue.str()); 2528 } 2529 return Values; 2530 } 2531 2532 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) { 2533 MachOOpt = true; 2534 FullLeadingAddr = true; 2535 PrintImmHex = true; 2536 2537 ArchName = InputArgs.getLastArgValue(OTOOL_arch).str(); 2538 LinkOptHints = InputArgs.hasArg(OTOOL_C); 2539 if (InputArgs.hasArg(OTOOL_d)) 2540 FilterSections.push_back("__DATA,__data"); 2541 DylibId = InputArgs.hasArg(OTOOL_D); 2542 UniversalHeaders = InputArgs.hasArg(OTOOL_f); 2543 DataInCode = InputArgs.hasArg(OTOOL_G); 2544 FirstPrivateHeader = InputArgs.hasArg(OTOOL_h); 2545 IndirectSymbols = InputArgs.hasArg(OTOOL_I); 2546 ShowRawInsn = InputArgs.hasArg(OTOOL_j); 2547 PrivateHeaders = InputArgs.hasArg(OTOOL_l); 2548 DylibsUsed = InputArgs.hasArg(OTOOL_L); 2549 MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str(); 2550 ObjcMetaData = InputArgs.hasArg(OTOOL_o); 2551 DisSymName = InputArgs.getLastArgValue(OTOOL_p).str(); 2552 InfoPlist = InputArgs.hasArg(OTOOL_P); 2553 Relocations = InputArgs.hasArg(OTOOL_r); 2554 if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) { 2555 auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str(); 2556 FilterSections.push_back(Filter); 2557 } 2558 if (InputArgs.hasArg(OTOOL_t)) 2559 FilterSections.push_back("__TEXT,__text"); 2560 Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) || 2561 InputArgs.hasArg(OTOOL_o); 2562 SymbolicOperands = InputArgs.hasArg(OTOOL_V); 2563 if (InputArgs.hasArg(OTOOL_x)) 2564 FilterSections.push_back(",__text"); 2565 LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X); 2566 2567 InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT); 2568 if (InputFilenames.empty()) 2569 reportCmdLineError("no input file"); 2570 2571 for (const Arg *A : InputArgs) { 2572 const Option &O = A->getOption(); 2573 if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) { 2574 reportCmdLineWarning(O.getPrefixedName() + 2575 " is obsolete and not implemented"); 2576 } 2577 } 2578 } 2579 2580 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) { 2581 parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA); 2582 AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers); 2583 ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str(); 2584 ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers); 2585 Demangle = InputArgs.hasArg(OBJDUMP_demangle); 2586 Disassemble = InputArgs.hasArg(OBJDUMP_disassemble); 2587 DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all); 2588 SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description); 2589 DisassembleSymbols = 2590 commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ); 2591 DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes); 2592 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) { 2593 DwarfDumpType = StringSwitch<DIDumpType>(A->getValue()) 2594 .Case("frames", DIDT_DebugFrame) 2595 .Default(DIDT_Null); 2596 if (DwarfDumpType == DIDT_Null) 2597 invalidArgValue(A); 2598 } 2599 DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc); 2600 FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section); 2601 FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers); 2602 SectionContents = InputArgs.hasArg(OBJDUMP_full_contents); 2603 PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers); 2604 InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT); 2605 MachOOpt = InputArgs.hasArg(OBJDUMP_macho); 2606 MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str(); 2607 MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ); 2608 ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn); 2609 LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr); 2610 RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast); 2611 Relocations = InputArgs.hasArg(OBJDUMP_reloc); 2612 PrintImmHex = 2613 InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, false); 2614 PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers); 2615 FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ); 2616 SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers); 2617 ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma); 2618 PrintSource = InputArgs.hasArg(OBJDUMP_source); 2619 parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress); 2620 HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ); 2621 parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress); 2622 HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ); 2623 SymbolTable = InputArgs.hasArg(OBJDUMP_syms); 2624 SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands); 2625 DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms); 2626 TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str(); 2627 UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info); 2628 Wide = InputArgs.hasArg(OBJDUMP_wide); 2629 Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str(); 2630 parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip); 2631 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) { 2632 DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue()) 2633 .Case("ascii", DVASCII) 2634 .Case("unicode", DVUnicode) 2635 .Default(DVInvalid); 2636 if (DbgVariables == DVInvalid) 2637 invalidArgValue(A); 2638 } 2639 parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent); 2640 2641 parseMachOOptions(InputArgs); 2642 2643 // Parse -M (--disassembler-options) and deprecated 2644 // --x86-asm-syntax={att,intel}. 2645 // 2646 // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the 2647 // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is 2648 // called too late. For now we have to use the internal cl::opt option. 2649 const char *AsmSyntax = nullptr; 2650 for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ, 2651 OBJDUMP_x86_asm_syntax_att, 2652 OBJDUMP_x86_asm_syntax_intel)) { 2653 switch (A->getOption().getID()) { 2654 case OBJDUMP_x86_asm_syntax_att: 2655 AsmSyntax = "--x86-asm-syntax=att"; 2656 continue; 2657 case OBJDUMP_x86_asm_syntax_intel: 2658 AsmSyntax = "--x86-asm-syntax=intel"; 2659 continue; 2660 } 2661 2662 SmallVector<StringRef, 2> Values; 2663 llvm::SplitString(A->getValue(), Values, ","); 2664 for (StringRef V : Values) { 2665 if (V == "att") 2666 AsmSyntax = "--x86-asm-syntax=att"; 2667 else if (V == "intel") 2668 AsmSyntax = "--x86-asm-syntax=intel"; 2669 else 2670 DisassemblerOptions.push_back(V.str()); 2671 } 2672 } 2673 if (AsmSyntax) { 2674 const char *Argv[] = {"llvm-objdump", AsmSyntax}; 2675 llvm::cl::ParseCommandLineOptions(2, Argv); 2676 } 2677 2678 // objdump defaults to a.out if no filenames specified. 2679 if (InputFilenames.empty()) 2680 InputFilenames.push_back("a.out"); 2681 } 2682 2683 int main(int argc, char **argv) { 2684 using namespace llvm; 2685 InitLLVM X(argc, argv); 2686 2687 ToolName = argv[0]; 2688 std::unique_ptr<CommonOptTable> T; 2689 OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag; 2690 2691 StringRef Stem = sys::path::stem(ToolName); 2692 auto Is = [=](StringRef Tool) { 2693 // We need to recognize the following filenames: 2694 // 2695 // llvm-objdump -> objdump 2696 // llvm-otool-10.exe -> otool 2697 // powerpc64-unknown-freebsd13-objdump -> objdump 2698 auto I = Stem.rfind_insensitive(Tool); 2699 return I != StringRef::npos && 2700 (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()])); 2701 }; 2702 if (Is("otool")) { 2703 T = std::make_unique<OtoolOptTable>(); 2704 Unknown = OTOOL_UNKNOWN; 2705 HelpFlag = OTOOL_help; 2706 HelpHiddenFlag = OTOOL_help_hidden; 2707 VersionFlag = OTOOL_version; 2708 } else { 2709 T = std::make_unique<ObjdumpOptTable>(); 2710 Unknown = OBJDUMP_UNKNOWN; 2711 HelpFlag = OBJDUMP_help; 2712 HelpHiddenFlag = OBJDUMP_help_hidden; 2713 VersionFlag = OBJDUMP_version; 2714 } 2715 2716 BumpPtrAllocator A; 2717 StringSaver Saver(A); 2718 opt::InputArgList InputArgs = 2719 T->parseArgs(argc, argv, Unknown, Saver, 2720 [&](StringRef Msg) { reportCmdLineError(Msg); }); 2721 2722 if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) { 2723 T->printHelp(ToolName); 2724 return 0; 2725 } 2726 if (InputArgs.hasArg(HelpHiddenFlag)) { 2727 T->printHelp(ToolName, /*ShowHidden=*/true); 2728 return 0; 2729 } 2730 2731 // Initialize targets and assembly printers/parsers. 2732 InitializeAllTargetInfos(); 2733 InitializeAllTargetMCs(); 2734 InitializeAllDisassemblers(); 2735 2736 if (InputArgs.hasArg(VersionFlag)) { 2737 cl::PrintVersionMessage(); 2738 if (!Is("otool")) { 2739 outs() << '\n'; 2740 TargetRegistry::printRegisteredTargetsForVersion(outs()); 2741 } 2742 return 0; 2743 } 2744 2745 if (Is("otool")) 2746 parseOtoolOptions(InputArgs); 2747 else 2748 parseObjdumpOptions(InputArgs); 2749 2750 if (StartAddress >= StopAddress) 2751 reportCmdLineError("start address should be less than stop address"); 2752 2753 // Removes trailing separators from prefix. 2754 while (!Prefix.empty() && sys::path::is_separator(Prefix.back())) 2755 Prefix.pop_back(); 2756 2757 if (AllHeaders) 2758 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = 2759 SectionHeaders = SymbolTable = true; 2760 2761 if (DisassembleAll || PrintSource || PrintLines || 2762 !DisassembleSymbols.empty()) 2763 Disassemble = true; 2764 2765 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && 2766 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && 2767 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && 2768 !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && 2769 !(MachOOpt && (Bind || DataInCode || DyldInfo || DylibId || DylibsUsed || 2770 ExportsTrie || FirstPrivateHeader || FunctionStarts || 2771 IndirectSymbols || InfoPlist || LazyBind || LinkOptHints || 2772 ObjcMetaData || Rebase || Rpaths || UniversalHeaders || 2773 WeakBind || !FilterSections.empty()))) { 2774 T->printHelp(ToolName); 2775 return 2; 2776 } 2777 2778 DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end()); 2779 2780 llvm::for_each(InputFilenames, dumpInput); 2781 2782 warnOnNoMatchForSections(); 2783 2784 return EXIT_SUCCESS; 2785 } 2786