1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetOperations.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/CodeGen/FaultMaps.h"
27 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
28 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
29 #include "llvm/Demangle/Demangle.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCContext.h"
32 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
33 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/MC/MCInstPrinter.h"
36 #include "llvm/MC/MCInstrAnalysis.h"
37 #include "llvm/MC/MCInstrInfo.h"
38 #include "llvm/MC/MCObjectFileInfo.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/MC/MCSubtargetInfo.h"
41 #include "llvm/MC/MCTargetOptions.h"
42 #include "llvm/Object/Archive.h"
43 #include "llvm/Object/COFF.h"
44 #include "llvm/Object/COFFImportFile.h"
45 #include "llvm/Object/ELFObjectFile.h"
46 #include "llvm/Object/MachO.h"
47 #include "llvm/Object/MachOUniversal.h"
48 #include "llvm/Object/ObjectFile.h"
49 #include "llvm/Object/XCOFFObjectFile.h"
50 #include "llvm/Object/Wasm.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/Errc.h"
55 #include "llvm/Support/FileSystem.h"
56 #include "llvm/Support/Format.h"
57 #include "llvm/Support/FormatVariadic.h"
58 #include "llvm/Support/GraphWriter.h"
59 #include "llvm/Support/Host.h"
60 #include "llvm/Support/InitLLVM.h"
61 #include "llvm/Support/MemoryBuffer.h"
62 #include "llvm/Support/SourceMgr.h"
63 #include "llvm/Support/StringSaver.h"
64 #include "llvm/Support/TargetRegistry.h"
65 #include "llvm/Support/TargetSelect.h"
66 #include "llvm/Support/WithColor.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include <algorithm>
69 #include <cctype>
70 #include <cstring>
71 #include <system_error>
72 #include <unordered_map>
73 #include <utility>
74 
75 using namespace llvm::object;
76 using namespace llvm::objdump;
77 
78 namespace llvm {
79 
80 cl::OptionCategory ObjdumpCat("llvm-objdump Options");
81 
82 // MachO specific
83 extern cl::OptionCategory MachOCat;
84 extern cl::opt<bool> Bind;
85 extern cl::opt<bool> DataInCode;
86 extern cl::opt<bool> DylibsUsed;
87 extern cl::opt<bool> DylibId;
88 extern cl::opt<bool> ExportsTrie;
89 extern cl::opt<bool> FirstPrivateHeader;
90 extern cl::opt<bool> IndirectSymbols;
91 extern cl::opt<bool> InfoPlist;
92 extern cl::opt<bool> LazyBind;
93 extern cl::opt<bool> LinkOptHints;
94 extern cl::opt<bool> ObjcMetaData;
95 extern cl::opt<bool> Rebase;
96 extern cl::opt<bool> UniversalHeaders;
97 extern cl::opt<bool> WeakBind;
98 
99 static cl::opt<uint64_t> AdjustVMA(
100     "adjust-vma",
101     cl::desc("Increase the displayed address by the specified offset"),
102     cl::value_desc("offset"), cl::init(0), cl::cat(ObjdumpCat));
103 
104 static cl::opt<bool>
105     AllHeaders("all-headers",
106                cl::desc("Display all available header information"),
107                cl::cat(ObjdumpCat));
108 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
109                                  cl::NotHidden, cl::Grouping,
110                                  cl::aliasopt(AllHeaders));
111 
112 static cl::opt<std::string>
113     ArchName("arch-name",
114              cl::desc("Target arch to disassemble for, "
115                       "see -version for available targets"),
116              cl::cat(ObjdumpCat));
117 
118 cl::opt<bool> ArchiveHeaders("archive-headers",
119                              cl::desc("Display archive header information"),
120                              cl::cat(ObjdumpCat));
121 static cl::alias ArchiveHeadersShort("a",
122                                      cl::desc("Alias for --archive-headers"),
123                                      cl::NotHidden, cl::Grouping,
124                                      cl::aliasopt(ArchiveHeaders));
125 
126 cl::opt<bool> Demangle("demangle", cl::desc("Demangle symbols names"),
127                        cl::init(false), cl::cat(ObjdumpCat));
128 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
129                                cl::NotHidden, cl::Grouping,
130                                cl::aliasopt(Demangle));
131 
132 cl::opt<bool> Disassemble(
133     "disassemble",
134     cl::desc("Display assembler mnemonics for the machine instructions"),
135     cl::cat(ObjdumpCat));
136 static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"),
137                                   cl::NotHidden, cl::Grouping,
138                                   cl::aliasopt(Disassemble));
139 
140 cl::opt<bool> DisassembleAll(
141     "disassemble-all",
142     cl::desc("Display assembler mnemonics for the machine instructions"),
143     cl::cat(ObjdumpCat));
144 static cl::alias DisassembleAllShort("D",
145                                      cl::desc("Alias for --disassemble-all"),
146                                      cl::NotHidden, cl::Grouping,
147                                      cl::aliasopt(DisassembleAll));
148 
149 static cl::list<std::string>
150     DisassembleSymbols("disassemble-symbols", cl::CommaSeparated,
151                        cl::desc("List of symbols to disassemble. "
152                                 "Accept demangled names when --demangle is "
153                                 "specified, otherwise accept mangled names"),
154                        cl::cat(ObjdumpCat));
155 
156 static cl::opt<bool> DisassembleZeroes(
157     "disassemble-zeroes",
158     cl::desc("Do not skip blocks of zeroes when disassembling"),
159     cl::cat(ObjdumpCat));
160 static cl::alias
161     DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"),
162                            cl::NotHidden, cl::Grouping,
163                            cl::aliasopt(DisassembleZeroes));
164 
165 static cl::list<std::string>
166     DisassemblerOptions("disassembler-options",
167                         cl::desc("Pass target specific disassembler options"),
168                         cl::value_desc("options"), cl::CommaSeparated,
169                         cl::cat(ObjdumpCat));
170 static cl::alias
171     DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"),
172                              cl::NotHidden, cl::Grouping, cl::Prefix,
173                              cl::CommaSeparated,
174                              cl::aliasopt(DisassemblerOptions));
175 
176 cl::opt<DIDumpType> DwarfDumpType(
177     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
178     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")),
179     cl::cat(ObjdumpCat));
180 
181 static cl::opt<bool> DynamicRelocations(
182     "dynamic-reloc",
183     cl::desc("Display the dynamic relocation entries in the file"),
184     cl::cat(ObjdumpCat));
185 static cl::alias DynamicRelocationShort("R",
186                                         cl::desc("Alias for --dynamic-reloc"),
187                                         cl::NotHidden, cl::Grouping,
188                                         cl::aliasopt(DynamicRelocations));
189 
190 static cl::opt<bool>
191     FaultMapSection("fault-map-section",
192                     cl::desc("Display contents of faultmap section"),
193                     cl::cat(ObjdumpCat));
194 
195 static cl::opt<bool>
196     FileHeaders("file-headers",
197                 cl::desc("Display the contents of the overall file header"),
198                 cl::cat(ObjdumpCat));
199 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
200                                   cl::NotHidden, cl::Grouping,
201                                   cl::aliasopt(FileHeaders));
202 
203 cl::opt<bool> SectionContents("full-contents",
204                               cl::desc("Display the content of each section"),
205                               cl::cat(ObjdumpCat));
206 static cl::alias SectionContentsShort("s",
207                                       cl::desc("Alias for --full-contents"),
208                                       cl::NotHidden, cl::Grouping,
209                                       cl::aliasopt(SectionContents));
210 
211 static cl::list<std::string> InputFilenames(cl::Positional,
212                                             cl::desc("<input object files>"),
213                                             cl::ZeroOrMore,
214                                             cl::cat(ObjdumpCat));
215 
216 static cl::opt<bool>
217     PrintLines("line-numbers",
218                cl::desc("Display source line numbers with "
219                         "disassembly. Implies disassemble object"),
220                cl::cat(ObjdumpCat));
221 static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"),
222                                  cl::NotHidden, cl::Grouping,
223                                  cl::aliasopt(PrintLines));
224 
225 static cl::opt<bool> MachOOpt("macho",
226                               cl::desc("Use MachO specific object file parser"),
227                               cl::cat(ObjdumpCat));
228 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
229                         cl::Grouping, cl::aliasopt(MachOOpt));
230 
231 cl::opt<std::string>
232     MCPU("mcpu",
233          cl::desc("Target a specific cpu type (-mcpu=help for details)"),
234          cl::value_desc("cpu-name"), cl::init(""), cl::cat(ObjdumpCat));
235 
236 cl::list<std::string> MAttrs("mattr", cl::CommaSeparated,
237                              cl::desc("Target specific attributes"),
238                              cl::value_desc("a1,+a2,-a3,..."),
239                              cl::cat(ObjdumpCat));
240 
241 cl::opt<bool> NoShowRawInsn("no-show-raw-insn",
242                             cl::desc("When disassembling "
243                                      "instructions, do not print "
244                                      "the instruction bytes."),
245                             cl::cat(ObjdumpCat));
246 cl::opt<bool> NoLeadingAddr("no-leading-addr",
247                             cl::desc("Print no leading address"),
248                             cl::cat(ObjdumpCat));
249 
250 static cl::opt<bool> RawClangAST(
251     "raw-clang-ast",
252     cl::desc("Dump the raw binary contents of the clang AST section"),
253     cl::cat(ObjdumpCat));
254 
255 cl::opt<bool>
256     Relocations("reloc", cl::desc("Display the relocation entries in the file"),
257                 cl::cat(ObjdumpCat));
258 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
259                                   cl::NotHidden, cl::Grouping,
260                                   cl::aliasopt(Relocations));
261 
262 cl::opt<bool> PrintImmHex("print-imm-hex",
263                           cl::desc("Use hex format for immediate values"),
264                           cl::cat(ObjdumpCat));
265 
266 cl::opt<bool> PrivateHeaders("private-headers",
267                              cl::desc("Display format specific file headers"),
268                              cl::cat(ObjdumpCat));
269 static cl::alias PrivateHeadersShort("p",
270                                      cl::desc("Alias for --private-headers"),
271                                      cl::NotHidden, cl::Grouping,
272                                      cl::aliasopt(PrivateHeaders));
273 
274 cl::list<std::string>
275     FilterSections("section",
276                    cl::desc("Operate on the specified sections only. "
277                             "With -macho dump segment,section"),
278                    cl::cat(ObjdumpCat));
279 static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"),
280                                  cl::NotHidden, cl::Grouping, cl::Prefix,
281                                  cl::aliasopt(FilterSections));
282 
283 cl::opt<bool> SectionHeaders("section-headers",
284                              cl::desc("Display summaries of the "
285                                       "headers for each section."),
286                              cl::cat(ObjdumpCat));
287 static cl::alias SectionHeadersShort("headers",
288                                      cl::desc("Alias for --section-headers"),
289                                      cl::NotHidden,
290                                      cl::aliasopt(SectionHeaders));
291 static cl::alias SectionHeadersShorter("h",
292                                        cl::desc("Alias for --section-headers"),
293                                        cl::NotHidden, cl::Grouping,
294                                        cl::aliasopt(SectionHeaders));
295 
296 static cl::opt<bool>
297     ShowLMA("show-lma",
298             cl::desc("Display LMA column when dumping ELF section headers"),
299             cl::cat(ObjdumpCat));
300 
301 static cl::opt<bool> PrintSource(
302     "source",
303     cl::desc(
304         "Display source inlined with disassembly. Implies disassemble object"),
305     cl::cat(ObjdumpCat));
306 static cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
307                                   cl::NotHidden, cl::Grouping,
308                                   cl::aliasopt(PrintSource));
309 
310 static cl::opt<uint64_t>
311     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
312                  cl::value_desc("address"), cl::init(0), cl::cat(ObjdumpCat));
313 static cl::opt<uint64_t> StopAddress("stop-address",
314                                      cl::desc("Stop disassembly at address"),
315                                      cl::value_desc("address"),
316                                      cl::init(UINT64_MAX), cl::cat(ObjdumpCat));
317 
318 cl::opt<bool> SymbolTable("syms", cl::desc("Display the symbol table"),
319                           cl::cat(ObjdumpCat));
320 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
321                                   cl::NotHidden, cl::Grouping,
322                                   cl::aliasopt(SymbolTable));
323 
324 cl::opt<std::string> TripleName("triple",
325                                 cl::desc("Target triple to disassemble for, "
326                                          "see -version for available targets"),
327                                 cl::cat(ObjdumpCat));
328 
329 cl::opt<bool> UnwindInfo("unwind-info", cl::desc("Display unwind information"),
330                          cl::cat(ObjdumpCat));
331 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
332                                  cl::NotHidden, cl::Grouping,
333                                  cl::aliasopt(UnwindInfo));
334 
335 static cl::opt<bool>
336     Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"),
337          cl::cat(ObjdumpCat));
338 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide));
339 
340 static cl::extrahelp
341     HelpResponse("\nPass @FILE as argument to read options from FILE.\n");
342 
343 static StringSet<> DisasmSymbolSet;
344 StringSet<> FoundSectionSet;
345 static StringRef ToolName;
346 
347 namespace {
348 struct FilterResult {
349   // True if the section should not be skipped.
350   bool Keep;
351 
352   // True if the index counter should be incremented, even if the section should
353   // be skipped. For example, sections may be skipped if they are not included
354   // in the --section flag, but we still want those to count toward the section
355   // count.
356   bool IncrementIndex;
357 };
358 } // namespace
359 
360 static FilterResult checkSectionFilter(object::SectionRef S) {
361   if (FilterSections.empty())
362     return {/*Keep=*/true, /*IncrementIndex=*/true};
363 
364   Expected<StringRef> SecNameOrErr = S.getName();
365   if (!SecNameOrErr) {
366     consumeError(SecNameOrErr.takeError());
367     return {/*Keep=*/false, /*IncrementIndex=*/false};
368   }
369   StringRef SecName = *SecNameOrErr;
370 
371   // StringSet does not allow empty key so avoid adding sections with
372   // no name (such as the section with index 0) here.
373   if (!SecName.empty())
374     FoundSectionSet.insert(SecName);
375 
376   // Only show the section if it's in the FilterSections list, but always
377   // increment so the indexing is stable.
378   return {/*Keep=*/is_contained(FilterSections, SecName),
379           /*IncrementIndex=*/true};
380 }
381 
382 SectionFilter ToolSectionFilter(object::ObjectFile const &O, uint64_t *Idx) {
383   // Start at UINT64_MAX so that the first index returned after an increment is
384   // zero (after the unsigned wrap).
385   if (Idx)
386     *Idx = UINT64_MAX;
387   return SectionFilter(
388       [Idx](object::SectionRef S) {
389         FilterResult Result = checkSectionFilter(S);
390         if (Idx != nullptr && Result.IncrementIndex)
391           *Idx += 1;
392         return Result.Keep;
393       },
394       O);
395 }
396 
397 std::string getFileNameForError(const object::Archive::Child &C,
398                                 unsigned Index) {
399   Expected<StringRef> NameOrErr = C.getName();
400   if (NameOrErr)
401     return std::string(NameOrErr.get());
402   // If we have an error getting the name then we print the index of the archive
403   // member. Since we are already in an error state, we just ignore this error.
404   consumeError(NameOrErr.takeError());
405   return "<file index: " + std::to_string(Index) + ">";
406 }
407 
408 void reportWarning(Twine Message, StringRef File) {
409   // Output order between errs() and outs() matters especially for archive
410   // files where the output is per member object.
411   outs().flush();
412   WithColor::warning(errs(), ToolName)
413       << "'" << File << "': " << Message << "\n";
414   errs().flush();
415 }
416 
417 LLVM_ATTRIBUTE_NORETURN void reportError(StringRef File, Twine Message) {
418   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
419   exit(1);
420 }
421 
422 LLVM_ATTRIBUTE_NORETURN void reportError(Error E, StringRef FileName,
423                                          StringRef ArchiveName,
424                                          StringRef ArchitectureName) {
425   assert(E);
426   WithColor::error(errs(), ToolName);
427   if (ArchiveName != "")
428     errs() << ArchiveName << "(" << FileName << ")";
429   else
430     errs() << "'" << FileName << "'";
431   if (!ArchitectureName.empty())
432     errs() << " (for architecture " << ArchitectureName << ")";
433   std::string Buf;
434   raw_string_ostream OS(Buf);
435   logAllUnhandledErrors(std::move(E), OS);
436   OS.flush();
437   errs() << ": " << Buf;
438   exit(1);
439 }
440 
441 static void reportCmdLineWarning(Twine Message) {
442   WithColor::warning(errs(), ToolName) << Message << "\n";
443 }
444 
445 LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(Twine Message) {
446   WithColor::error(errs(), ToolName) << Message << "\n";
447   exit(1);
448 }
449 
450 static void warnOnNoMatchForSections() {
451   SetVector<StringRef> MissingSections;
452   for (StringRef S : FilterSections) {
453     if (FoundSectionSet.count(S))
454       return;
455     // User may specify a unnamed section. Don't warn for it.
456     if (!S.empty())
457       MissingSections.insert(S);
458   }
459 
460   // Warn only if no section in FilterSections is matched.
461   for (StringRef S : MissingSections)
462     reportCmdLineWarning("section '" + S +
463                          "' mentioned in a -j/--section option, but not "
464                          "found in any input file");
465 }
466 
467 static const Target *getTarget(const ObjectFile *Obj) {
468   // Figure out the target triple.
469   Triple TheTriple("unknown-unknown-unknown");
470   if (TripleName.empty()) {
471     TheTriple = Obj->makeTriple();
472   } else {
473     TheTriple.setTriple(Triple::normalize(TripleName));
474     auto Arch = Obj->getArch();
475     if (Arch == Triple::arm || Arch == Triple::armeb)
476       Obj->setARMSubArch(TheTriple);
477   }
478 
479   // Get the target specific parser.
480   std::string Error;
481   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
482                                                          Error);
483   if (!TheTarget)
484     reportError(Obj->getFileName(), "can't find target: " + Error);
485 
486   // Update the triple name and return the found target.
487   TripleName = TheTriple.getTriple();
488   return TheTarget;
489 }
490 
491 bool isRelocAddressLess(RelocationRef A, RelocationRef B) {
492   return A.getOffset() < B.getOffset();
493 }
494 
495 static Error getRelocationValueString(const RelocationRef &Rel,
496                                       SmallVectorImpl<char> &Result) {
497   const ObjectFile *Obj = Rel.getObject();
498   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
499     return getELFRelocationValueString(ELF, Rel, Result);
500   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
501     return getCOFFRelocationValueString(COFF, Rel, Result);
502   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
503     return getWasmRelocationValueString(Wasm, Rel, Result);
504   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
505     return getMachORelocationValueString(MachO, Rel, Result);
506   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
507     return getXCOFFRelocationValueString(XCOFF, Rel, Result);
508   llvm_unreachable("unknown object file format");
509 }
510 
511 /// Indicates whether this relocation should hidden when listing
512 /// relocations, usually because it is the trailing part of a multipart
513 /// relocation that will be printed as part of the leading relocation.
514 static bool getHidden(RelocationRef RelRef) {
515   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
516   if (!MachO)
517     return false;
518 
519   unsigned Arch = MachO->getArch();
520   DataRefImpl Rel = RelRef.getRawDataRefImpl();
521   uint64_t Type = MachO->getRelocationType(Rel);
522 
523   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
524   // is always hidden.
525   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
526     return Type == MachO::GENERIC_RELOC_PAIR;
527 
528   if (Arch == Triple::x86_64) {
529     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
530     // an X86_64_RELOC_SUBTRACTOR.
531     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
532       DataRefImpl RelPrev = Rel;
533       RelPrev.d.a--;
534       uint64_t PrevType = MachO->getRelocationType(RelPrev);
535       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
536         return true;
537     }
538   }
539 
540   return false;
541 }
542 
543 namespace {
544 class SourcePrinter {
545 protected:
546   DILineInfo OldLineInfo;
547   const ObjectFile *Obj = nullptr;
548   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
549   // File name to file contents of source.
550   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
551   // Mark the line endings of the cached source.
552   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
553   // Keep track of missing sources.
554   StringSet<> MissingSources;
555   // Only emit 'no debug info' warning once.
556   bool WarnedNoDebugInfo;
557 
558 private:
559   bool cacheSource(const DILineInfo& LineInfoFile);
560 
561   void printLines(raw_ostream &OS, const DILineInfo &LineInfo,
562                   StringRef Delimiter);
563 
564   void printSources(raw_ostream &OS, const DILineInfo &LineInfo,
565                     StringRef ObjectFilename, StringRef Delimiter);
566 
567 public:
568   SourcePrinter() = default;
569   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch)
570       : Obj(Obj), WarnedNoDebugInfo(false) {
571     symbolize::LLVMSymbolizer::Options SymbolizerOpts;
572     SymbolizerOpts.PrintFunctions =
573         DILineInfoSpecifier::FunctionNameKind::LinkageName;
574     SymbolizerOpts.Demangle = Demangle;
575     SymbolizerOpts.DefaultArch = std::string(DefaultArch);
576     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
577   }
578   virtual ~SourcePrinter() = default;
579   virtual void printSourceLine(raw_ostream &OS,
580                                object::SectionedAddress Address,
581                                StringRef ObjectFilename,
582                                StringRef Delimiter = "; ");
583 };
584 
585 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
586   std::unique_ptr<MemoryBuffer> Buffer;
587   if (LineInfo.Source) {
588     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
589   } else {
590     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
591     if (!BufferOrError) {
592       if (MissingSources.insert(LineInfo.FileName).second)
593         reportWarning("failed to find source " + LineInfo.FileName,
594                       Obj->getFileName());
595       return false;
596     }
597     Buffer = std::move(*BufferOrError);
598   }
599   // Chomp the file to get lines
600   const char *BufferStart = Buffer->getBufferStart(),
601              *BufferEnd = Buffer->getBufferEnd();
602   std::vector<StringRef> &Lines = LineCache[LineInfo.FileName];
603   const char *Start = BufferStart;
604   for (const char *I = BufferStart; I != BufferEnd; ++I)
605     if (*I == '\n') {
606       Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r'));
607       Start = I + 1;
608     }
609   if (Start < BufferEnd)
610     Lines.emplace_back(Start, BufferEnd - Start);
611   SourceCache[LineInfo.FileName] = std::move(Buffer);
612   return true;
613 }
614 
615 void SourcePrinter::printSourceLine(raw_ostream &OS,
616                                     object::SectionedAddress Address,
617                                     StringRef ObjectFilename,
618                                     StringRef Delimiter) {
619   if (!Symbolizer)
620     return;
621 
622   DILineInfo LineInfo = DILineInfo();
623   auto ExpectedLineInfo = Symbolizer->symbolizeCode(*Obj, Address);
624   std::string ErrorMessage;
625   if (!ExpectedLineInfo)
626     ErrorMessage = toString(ExpectedLineInfo.takeError());
627   else
628     LineInfo = *ExpectedLineInfo;
629 
630   if (LineInfo.FileName == DILineInfo::BadString) {
631     if (!WarnedNoDebugInfo) {
632       std::string Warning =
633           "failed to parse debug information for " + ObjectFilename.str();
634       if (!ErrorMessage.empty())
635         Warning += ": " + ErrorMessage;
636       reportWarning(Warning, ObjectFilename);
637       WarnedNoDebugInfo = true;
638     }
639   }
640 
641   if (PrintLines)
642     printLines(OS, LineInfo, Delimiter);
643   if (PrintSource)
644     printSources(OS, LineInfo, ObjectFilename, Delimiter);
645   OldLineInfo = LineInfo;
646 }
647 
648 void SourcePrinter::printLines(raw_ostream &OS, const DILineInfo &LineInfo,
649                                StringRef Delimiter) {
650   bool PrintFunctionName = LineInfo.FunctionName != DILineInfo::BadString &&
651                            LineInfo.FunctionName != OldLineInfo.FunctionName;
652   if (PrintFunctionName) {
653     OS << Delimiter << LineInfo.FunctionName;
654     // If demangling is successful, FunctionName will end with "()". Print it
655     // only if demangling did not run or was unsuccessful.
656     if (!StringRef(LineInfo.FunctionName).endswith("()"))
657       OS << "()";
658     OS << ":\n";
659   }
660   if (LineInfo.FileName != DILineInfo::BadString && LineInfo.Line != 0 &&
661       (OldLineInfo.Line != LineInfo.Line ||
662        OldLineInfo.FileName != LineInfo.FileName || PrintFunctionName))
663     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
664 }
665 
666 void SourcePrinter::printSources(raw_ostream &OS, const DILineInfo &LineInfo,
667                                  StringRef ObjectFilename,
668                                  StringRef Delimiter) {
669   if (LineInfo.FileName == DILineInfo::BadString || LineInfo.Line == 0 ||
670       (OldLineInfo.Line == LineInfo.Line &&
671        OldLineInfo.FileName == LineInfo.FileName))
672     return;
673 
674   if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
675     if (!cacheSource(LineInfo))
676       return;
677   auto LineBuffer = LineCache.find(LineInfo.FileName);
678   if (LineBuffer != LineCache.end()) {
679     if (LineInfo.Line > LineBuffer->second.size()) {
680       reportWarning(
681           formatv(
682               "debug info line number {0} exceeds the number of lines in {1}",
683               LineInfo.Line, LineInfo.FileName),
684           ObjectFilename);
685       return;
686     }
687     // Vector begins at 0, line numbers are non-zero
688     OS << Delimiter << LineBuffer->second[LineInfo.Line - 1] << '\n';
689   }
690 }
691 
692 static bool isAArch64Elf(const ObjectFile *Obj) {
693   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
694   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
695 }
696 
697 static bool isArmElf(const ObjectFile *Obj) {
698   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
699   return Elf && Elf->getEMachine() == ELF::EM_ARM;
700 }
701 
702 static bool hasMappingSymbols(const ObjectFile *Obj) {
703   return isArmElf(Obj) || isAArch64Elf(Obj);
704 }
705 
706 static void printRelocation(StringRef FileName, const RelocationRef &Rel,
707                             uint64_t Address, bool Is64Bits) {
708   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
709   SmallString<16> Name;
710   SmallString<32> Val;
711   Rel.getTypeName(Name);
712   if (Error E = getRelocationValueString(Rel, Val))
713     reportError(std::move(E), FileName);
714   outs() << format(Fmt.data(), Address) << Name << "\t" << Val << "\n";
715 }
716 
717 class PrettyPrinter {
718 public:
719   virtual ~PrettyPrinter() = default;
720   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
721                          ArrayRef<uint8_t> Bytes,
722                          object::SectionedAddress Address, raw_ostream &OS,
723                          StringRef Annot, MCSubtargetInfo const &STI,
724                          SourcePrinter *SP, StringRef ObjectFilename,
725                          std::vector<RelocationRef> *Rels = nullptr) {
726     if (SP && (PrintSource || PrintLines))
727       SP->printSourceLine(OS, Address, ObjectFilename);
728 
729     size_t Start = OS.tell();
730     if (!NoLeadingAddr)
731       OS << format("%8" PRIx64 ":", Address.Address);
732     if (!NoShowRawInsn) {
733       OS << ' ';
734       dumpBytes(Bytes, OS);
735     }
736 
737     // The output of printInst starts with a tab. Print some spaces so that
738     // the tab has 1 column and advances to the target tab stop.
739     unsigned TabStop = NoShowRawInsn ? 16 : 40;
740     unsigned Column = OS.tell() - Start;
741     OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
742 
743     if (MI) {
744       // See MCInstPrinter::printInst. On targets where a PC relative immediate
745       // is relative to the next instruction and the length of a MCInst is
746       // difficult to measure (x86), this is the address of the next
747       // instruction.
748       uint64_t Addr =
749           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
750       IP.printInst(MI, Addr, "", STI, OS);
751     } else
752       OS << "\t<unknown>";
753   }
754 };
755 PrettyPrinter PrettyPrinterInst;
756 
757 class HexagonPrettyPrinter : public PrettyPrinter {
758 public:
759   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
760                  raw_ostream &OS) {
761     uint32_t opcode =
762       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
763     if (!NoLeadingAddr)
764       OS << format("%8" PRIx64 ":", Address);
765     if (!NoShowRawInsn) {
766       OS << "\t";
767       dumpBytes(Bytes.slice(0, 4), OS);
768       OS << format("\t%08" PRIx32, opcode);
769     }
770   }
771   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
772                  object::SectionedAddress Address, raw_ostream &OS,
773                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
774                  StringRef ObjectFilename,
775                  std::vector<RelocationRef> *Rels) override {
776     if (SP && (PrintSource || PrintLines))
777       SP->printSourceLine(OS, Address, ObjectFilename, "");
778     if (!MI) {
779       printLead(Bytes, Address.Address, OS);
780       OS << " <unknown>";
781       return;
782     }
783     std::string Buffer;
784     {
785       raw_string_ostream TempStream(Buffer);
786       IP.printInst(MI, Address.Address, "", STI, TempStream);
787     }
788     StringRef Contents(Buffer);
789     // Split off bundle attributes
790     auto PacketBundle = Contents.rsplit('\n');
791     // Split off first instruction from the rest
792     auto HeadTail = PacketBundle.first.split('\n');
793     auto Preamble = " { ";
794     auto Separator = "";
795 
796     // Hexagon's packets require relocations to be inline rather than
797     // clustered at the end of the packet.
798     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
799     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
800     auto PrintReloc = [&]() -> void {
801       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
802         if (RelCur->getOffset() == Address.Address) {
803           printRelocation(ObjectFilename, *RelCur, Address.Address, false);
804           return;
805         }
806         ++RelCur;
807       }
808     };
809 
810     while (!HeadTail.first.empty()) {
811       OS << Separator;
812       Separator = "\n";
813       if (SP && (PrintSource || PrintLines))
814         SP->printSourceLine(OS, Address, ObjectFilename, "");
815       printLead(Bytes, Address.Address, OS);
816       OS << Preamble;
817       Preamble = "   ";
818       StringRef Inst;
819       auto Duplex = HeadTail.first.split('\v');
820       if (!Duplex.second.empty()) {
821         OS << Duplex.first;
822         OS << "; ";
823         Inst = Duplex.second;
824       }
825       else
826         Inst = HeadTail.first;
827       OS << Inst;
828       HeadTail = HeadTail.second.split('\n');
829       if (HeadTail.first.empty())
830         OS << " } " << PacketBundle.second;
831       PrintReloc();
832       Bytes = Bytes.slice(4);
833       Address.Address += 4;
834     }
835   }
836 };
837 HexagonPrettyPrinter HexagonPrettyPrinterInst;
838 
839 class AMDGCNPrettyPrinter : public PrettyPrinter {
840 public:
841   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
842                  object::SectionedAddress Address, raw_ostream &OS,
843                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
844                  StringRef ObjectFilename,
845                  std::vector<RelocationRef> *Rels) override {
846     if (SP && (PrintSource || PrintLines))
847       SP->printSourceLine(OS, Address, ObjectFilename);
848 
849     if (MI) {
850       SmallString<40> InstStr;
851       raw_svector_ostream IS(InstStr);
852 
853       IP.printInst(MI, Address.Address, "", STI, IS);
854 
855       OS << left_justify(IS.str(), 60);
856     } else {
857       // an unrecognized encoding - this is probably data so represent it
858       // using the .long directive, or .byte directive if fewer than 4 bytes
859       // remaining
860       if (Bytes.size() >= 4) {
861         OS << format("\t.long 0x%08" PRIx32 " ",
862                      support::endian::read32<support::little>(Bytes.data()));
863         OS.indent(42);
864       } else {
865           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
866           for (unsigned int i = 1; i < Bytes.size(); i++)
867             OS << format(", 0x%02" PRIx8, Bytes[i]);
868           OS.indent(55 - (6 * Bytes.size()));
869       }
870     }
871 
872     OS << format("// %012" PRIX64 ":", Address.Address);
873     if (Bytes.size() >= 4) {
874       // D should be casted to uint32_t here as it is passed by format to
875       // snprintf as vararg.
876       for (uint32_t D : makeArrayRef(
877                reinterpret_cast<const support::little32_t *>(Bytes.data()),
878                Bytes.size() / 4))
879         OS << format(" %08" PRIX32, D);
880     } else {
881       for (unsigned char B : Bytes)
882         OS << format(" %02" PRIX8, B);
883     }
884 
885     if (!Annot.empty())
886       OS << " // " << Annot;
887   }
888 };
889 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
890 
891 class BPFPrettyPrinter : public PrettyPrinter {
892 public:
893   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
894                  object::SectionedAddress Address, raw_ostream &OS,
895                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
896                  StringRef ObjectFilename,
897                  std::vector<RelocationRef> *Rels) override {
898     if (SP && (PrintSource || PrintLines))
899       SP->printSourceLine(OS, Address, ObjectFilename);
900     if (!NoLeadingAddr)
901       OS << format("%8" PRId64 ":", Address.Address / 8);
902     if (!NoShowRawInsn) {
903       OS << "\t";
904       dumpBytes(Bytes, OS);
905     }
906     if (MI)
907       IP.printInst(MI, Address.Address, "", STI, OS);
908     else
909       OS << "\t<unknown>";
910   }
911 };
912 BPFPrettyPrinter BPFPrettyPrinterInst;
913 
914 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
915   switch(Triple.getArch()) {
916   default:
917     return PrettyPrinterInst;
918   case Triple::hexagon:
919     return HexagonPrettyPrinterInst;
920   case Triple::amdgcn:
921     return AMDGCNPrettyPrinterInst;
922   case Triple::bpfel:
923   case Triple::bpfeb:
924     return BPFPrettyPrinterInst;
925   }
926 }
927 }
928 
929 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
930   assert(Obj->isELF());
931   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
932     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
933   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
934     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
935   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
936     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
937   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
938     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
939   llvm_unreachable("Unsupported binary format");
940 }
941 
942 template <class ELFT> static void
943 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
944                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
945   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
946     uint8_t SymbolType = Symbol.getELFType();
947     if (SymbolType == ELF::STT_SECTION)
948       continue;
949 
950     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
951     // ELFSymbolRef::getAddress() returns size instead of value for common
952     // symbols which is not desirable for disassembly output. Overriding.
953     if (SymbolType == ELF::STT_COMMON)
954       Address = Obj->getSymbol(Symbol.getRawDataRefImpl())->st_value;
955 
956     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
957     if (Name.empty())
958       continue;
959 
960     section_iterator SecI =
961         unwrapOrError(Symbol.getSection(), Obj->getFileName());
962     if (SecI == Obj->section_end())
963       continue;
964 
965     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
966   }
967 }
968 
969 static void
970 addDynamicElfSymbols(const ObjectFile *Obj,
971                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
972   assert(Obj->isELF());
973   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
974     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
975   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
976     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
977   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
978     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
979   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
980     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
981   else
982     llvm_unreachable("Unsupported binary format");
983 }
984 
985 static void addPltEntries(const ObjectFile *Obj,
986                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
987                           StringSaver &Saver) {
988   Optional<SectionRef> Plt = None;
989   for (const SectionRef &Section : Obj->sections()) {
990     Expected<StringRef> SecNameOrErr = Section.getName();
991     if (!SecNameOrErr) {
992       consumeError(SecNameOrErr.takeError());
993       continue;
994     }
995     if (*SecNameOrErr == ".plt")
996       Plt = Section;
997   }
998   if (!Plt)
999     return;
1000   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
1001     for (auto PltEntry : ElfObj->getPltAddresses()) {
1002       SymbolRef Symbol(PltEntry.first, ElfObj);
1003       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
1004 
1005       StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
1006       if (!Name.empty())
1007         AllSymbols[*Plt].emplace_back(
1008             PltEntry.second, Saver.save((Name + "@plt").str()), SymbolType);
1009     }
1010   }
1011 }
1012 
1013 // Normally the disassembly output will skip blocks of zeroes. This function
1014 // returns the number of zero bytes that can be skipped when dumping the
1015 // disassembly of the instructions in Buf.
1016 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
1017   // Find the number of leading zeroes.
1018   size_t N = 0;
1019   while (N < Buf.size() && !Buf[N])
1020     ++N;
1021 
1022   // We may want to skip blocks of zero bytes, but unless we see
1023   // at least 8 of them in a row.
1024   if (N < 8)
1025     return 0;
1026 
1027   // We skip zeroes in multiples of 4 because do not want to truncate an
1028   // instruction if it starts with a zero byte.
1029   return N & ~0x3;
1030 }
1031 
1032 // Returns a map from sections to their relocations.
1033 static std::map<SectionRef, std::vector<RelocationRef>>
1034 getRelocsMap(object::ObjectFile const &Obj) {
1035   std::map<SectionRef, std::vector<RelocationRef>> Ret;
1036   uint64_t I = (uint64_t)-1;
1037   for (SectionRef Sec : Obj.sections()) {
1038     ++I;
1039     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
1040     if (!RelocatedOrErr)
1041       reportError(Obj.getFileName(),
1042                   "section (" + Twine(I) +
1043                       "): failed to get a relocated section: " +
1044                       toString(RelocatedOrErr.takeError()));
1045 
1046     section_iterator Relocated = *RelocatedOrErr;
1047     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
1048       continue;
1049     std::vector<RelocationRef> &V = Ret[*Relocated];
1050     for (const RelocationRef &R : Sec.relocations())
1051       V.push_back(R);
1052     // Sort relocations by address.
1053     llvm::stable_sort(V, isRelocAddressLess);
1054   }
1055   return Ret;
1056 }
1057 
1058 // Used for --adjust-vma to check if address should be adjusted by the
1059 // specified value for a given section.
1060 // For ELF we do not adjust non-allocatable sections like debug ones,
1061 // because they are not loadable.
1062 // TODO: implement for other file formats.
1063 static bool shouldAdjustVA(const SectionRef &Section) {
1064   const ObjectFile *Obj = Section.getObject();
1065   if (isa<object::ELFObjectFileBase>(Obj))
1066     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1067   return false;
1068 }
1069 
1070 
1071 typedef std::pair<uint64_t, char> MappingSymbolPair;
1072 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1073                                  uint64_t Address) {
1074   auto It =
1075       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1076         return Val.first <= Address;
1077       });
1078   // Return zero for any address before the first mapping symbol; this means
1079   // we should use the default disassembly mode, depending on the target.
1080   if (It == MappingSymbols.begin())
1081     return '\x00';
1082   return (It - 1)->second;
1083 }
1084 
1085 static uint64_t
1086 dumpARMELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1087                const ObjectFile *Obj, ArrayRef<uint8_t> Bytes,
1088                ArrayRef<MappingSymbolPair> MappingSymbols) {
1089   support::endianness Endian =
1090       Obj->isLittleEndian() ? support::little : support::big;
1091   while (Index < End) {
1092     outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1093     outs() << "\t";
1094     if (Index + 4 <= End) {
1095       dumpBytes(Bytes.slice(Index, 4), outs());
1096       outs() << "\t.word\t"
1097              << format_hex(
1098                     support::endian::read32(Bytes.data() + Index, Endian), 10);
1099       Index += 4;
1100     } else if (Index + 2 <= End) {
1101       dumpBytes(Bytes.slice(Index, 2), outs());
1102       outs() << "\t\t.short\t"
1103              << format_hex(
1104                     support::endian::read16(Bytes.data() + Index, Endian), 6);
1105       Index += 2;
1106     } else {
1107       dumpBytes(Bytes.slice(Index, 1), outs());
1108       outs() << "\t\t.byte\t" << format_hex(Bytes[0], 4);
1109       ++Index;
1110     }
1111     outs() << "\n";
1112     if (getMappingSymbolKind(MappingSymbols, Index) != 'd')
1113       break;
1114   }
1115   return Index;
1116 }
1117 
1118 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1119                         ArrayRef<uint8_t> Bytes) {
1120   // print out data up to 8 bytes at a time in hex and ascii
1121   uint8_t AsciiData[9] = {'\0'};
1122   uint8_t Byte;
1123   int NumBytes = 0;
1124 
1125   for (; Index < End; ++Index) {
1126     if (NumBytes == 0)
1127       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1128     Byte = Bytes.slice(Index)[0];
1129     outs() << format(" %02x", Byte);
1130     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1131 
1132     uint8_t IndentOffset = 0;
1133     NumBytes++;
1134     if (Index == End - 1 || NumBytes > 8) {
1135       // Indent the space for less than 8 bytes data.
1136       // 2 spaces for byte and one for space between bytes
1137       IndentOffset = 3 * (8 - NumBytes);
1138       for (int Excess = NumBytes; Excess < 8; Excess++)
1139         AsciiData[Excess] = '\0';
1140       NumBytes = 8;
1141     }
1142     if (NumBytes == 8) {
1143       AsciiData[8] = '\0';
1144       outs() << std::string(IndentOffset, ' ') << "         ";
1145       outs() << reinterpret_cast<char *>(AsciiData);
1146       outs() << '\n';
1147       NumBytes = 0;
1148     }
1149   }
1150 }
1151 
1152 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1153                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1154                               MCDisassembler *SecondaryDisAsm,
1155                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1156                               const MCSubtargetInfo *PrimarySTI,
1157                               const MCSubtargetInfo *SecondarySTI,
1158                               PrettyPrinter &PIP,
1159                               SourcePrinter &SP, bool InlineRelocs) {
1160   const MCSubtargetInfo *STI = PrimarySTI;
1161   MCDisassembler *DisAsm = PrimaryDisAsm;
1162   bool PrimaryIsThumb = false;
1163   if (isArmElf(Obj))
1164     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1165 
1166   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1167   if (InlineRelocs)
1168     RelocMap = getRelocsMap(*Obj);
1169   bool Is64Bits = Obj->getBytesInAddress() > 4;
1170 
1171   // Create a mapping from virtual address to symbol name.  This is used to
1172   // pretty print the symbols while disassembling.
1173   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1174   SectionSymbolsTy AbsoluteSymbols;
1175   const StringRef FileName = Obj->getFileName();
1176   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1177   for (const SymbolRef &Symbol : Obj->symbols()) {
1178     uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName);
1179 
1180     StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1181     if (Name.empty())
1182       continue;
1183 
1184     uint8_t SymbolType = ELF::STT_NOTYPE;
1185     if (Obj->isELF()) {
1186       SymbolType = getElfSymbolType(Obj, Symbol);
1187       if (SymbolType == ELF::STT_SECTION)
1188         continue;
1189     }
1190 
1191     // Don't ask a Mach-O STAB symbol for its section unless you know that
1192     // STAB symbol's section field refers to a valid section index. Otherwise
1193     // the symbol may error trying to load a section that does not exist.
1194     if (MachO) {
1195       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1196       uint8_t NType = (MachO->is64Bit() ?
1197                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1198                        MachO->getSymbolTableEntry(SymDRI).n_type);
1199       if (NType & MachO::N_STAB)
1200         continue;
1201     }
1202 
1203     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1204     if (SecI != Obj->section_end())
1205       AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1206     else
1207       AbsoluteSymbols.emplace_back(Address, Name, SymbolType);
1208   }
1209   if (AllSymbols.empty() && Obj->isELF())
1210     addDynamicElfSymbols(Obj, AllSymbols);
1211 
1212   BumpPtrAllocator A;
1213   StringSaver Saver(A);
1214   addPltEntries(Obj, AllSymbols, Saver);
1215 
1216   // Create a mapping from virtual address to section. An empty section can
1217   // cause more than one section at the same address. Use a stable sort to
1218   // stabilize the output.
1219   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1220   for (SectionRef Sec : Obj->sections())
1221     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1222   stable_sort(SectionAddresses);
1223 
1224   // Linked executables (.exe and .dll files) typically don't include a real
1225   // symbol table but they might contain an export table.
1226   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1227     for (const auto &ExportEntry : COFFObj->export_directories()) {
1228       StringRef Name;
1229       if (std::error_code EC = ExportEntry.getSymbolName(Name))
1230         reportError(errorCodeToError(EC), Obj->getFileName());
1231       if (Name.empty())
1232         continue;
1233 
1234       uint32_t RVA;
1235       if (std::error_code EC = ExportEntry.getExportRVA(RVA))
1236         reportError(errorCodeToError(EC), Obj->getFileName());
1237 
1238       uint64_t VA = COFFObj->getImageBase() + RVA;
1239       auto Sec = partition_point(
1240           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1241             return O.first <= VA;
1242           });
1243       if (Sec != SectionAddresses.begin()) {
1244         --Sec;
1245         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1246       } else
1247         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1248     }
1249   }
1250 
1251   // Sort all the symbols, this allows us to use a simple binary search to find
1252   // Multiple symbols can have the same address. Use a stable sort to stabilize
1253   // the output.
1254   StringSet<> FoundDisasmSymbolSet;
1255   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1256     stable_sort(SecSyms.second);
1257   stable_sort(AbsoluteSymbols);
1258 
1259   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1260     if (FilterSections.empty() && !DisassembleAll &&
1261         (!Section.isText() || Section.isVirtual()))
1262       continue;
1263 
1264     uint64_t SectionAddr = Section.getAddress();
1265     uint64_t SectSize = Section.getSize();
1266     if (!SectSize)
1267       continue;
1268 
1269     // Get the list of all the symbols in this section.
1270     SectionSymbolsTy &Symbols = AllSymbols[Section];
1271     std::vector<MappingSymbolPair> MappingSymbols;
1272     if (hasMappingSymbols(Obj)) {
1273       for (const auto &Symb : Symbols) {
1274         uint64_t Address = Symb.Addr;
1275         StringRef Name = Symb.Name;
1276         if (Name.startswith("$d"))
1277           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1278         if (Name.startswith("$x"))
1279           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1280         if (Name.startswith("$a"))
1281           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1282         if (Name.startswith("$t"))
1283           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1284       }
1285     }
1286 
1287     llvm::sort(MappingSymbols);
1288 
1289     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1290       // AMDGPU disassembler uses symbolizer for printing labels
1291       std::unique_ptr<MCRelocationInfo> RelInfo(
1292         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1293       if (RelInfo) {
1294         std::unique_ptr<MCSymbolizer> Symbolizer(
1295           TheTarget->createMCSymbolizer(
1296             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1297         DisAsm->setSymbolizer(std::move(Symbolizer));
1298       }
1299     }
1300 
1301     StringRef SegmentName = "";
1302     if (MachO) {
1303       DataRefImpl DR = Section.getRawDataRefImpl();
1304       SegmentName = MachO->getSectionFinalSegmentName(DR);
1305     }
1306 
1307     StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName());
1308     // If the section has no symbol at the start, just insert a dummy one.
1309     if (Symbols.empty() || Symbols[0].Addr != 0) {
1310       Symbols.insert(
1311           Symbols.begin(),
1312            SymbolInfoTy(SectionAddr, SectionName,
1313                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1314     }
1315 
1316     SmallString<40> Comments;
1317     raw_svector_ostream CommentStream(Comments);
1318 
1319     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1320         unwrapOrError(Section.getContents(), Obj->getFileName()));
1321 
1322     uint64_t VMAAdjustment = 0;
1323     if (shouldAdjustVA(Section))
1324       VMAAdjustment = AdjustVMA;
1325 
1326     uint64_t Size;
1327     uint64_t Index;
1328     bool PrintedSection = false;
1329     std::vector<RelocationRef> Rels = RelocMap[Section];
1330     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1331     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1332     // Disassemble symbol by symbol.
1333     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1334       std::string SymbolName = Symbols[SI].Name.str();
1335       if (Demangle)
1336         SymbolName = demangle(SymbolName);
1337 
1338       // Skip if --disassemble-symbols is not empty and the symbol is not in
1339       // the list.
1340       if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName))
1341         continue;
1342 
1343       uint64_t Start = Symbols[SI].Addr;
1344       if (Start < SectionAddr || StopAddress <= Start)
1345         continue;
1346       else
1347         FoundDisasmSymbolSet.insert(SymbolName);
1348 
1349       // The end is the section end, the beginning of the next symbol, or
1350       // --stop-address.
1351       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1352       if (SI + 1 < SE)
1353         End = std::min(End, Symbols[SI + 1].Addr);
1354       if (Start >= End || End <= StartAddress)
1355         continue;
1356       Start -= SectionAddr;
1357       End -= SectionAddr;
1358 
1359       if (!PrintedSection) {
1360         PrintedSection = true;
1361         outs() << "\nDisassembly of section ";
1362         if (!SegmentName.empty())
1363           outs() << SegmentName << ",";
1364         outs() << SectionName << ":\n";
1365       }
1366 
1367       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1368         if (Symbols[SI].Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1369           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1370           Start += 256;
1371         }
1372         if (SI == SE - 1 ||
1373             Symbols[SI + 1].Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1374           // cut trailing zeroes at the end of kernel
1375           // cut up to 256 bytes
1376           const uint64_t EndAlign = 256;
1377           const auto Limit = End - (std::min)(EndAlign, End - Start);
1378           while (End > Limit &&
1379             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1380             End -= 4;
1381         }
1382       }
1383 
1384       outs() << '\n';
1385       if (!NoLeadingAddr)
1386         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1387                          SectionAddr + Start + VMAAdjustment);
1388 
1389       outs() << '<' << SymbolName << ">:\n";
1390 
1391       // Don't print raw contents of a virtual section. A virtual section
1392       // doesn't have any contents in the file.
1393       if (Section.isVirtual()) {
1394         outs() << "...\n";
1395         continue;
1396       }
1397 
1398       // Some targets (like WebAssembly) have a special prelude at the start
1399       // of each symbol.
1400       DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start),
1401                             SectionAddr + Start, CommentStream);
1402       Start += Size;
1403 
1404       Index = Start;
1405       if (SectionAddr < StartAddress)
1406         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1407 
1408       // If there is a data/common symbol inside an ELF text section and we are
1409       // only disassembling text (applicable all architectures), we are in a
1410       // situation where we must print the data and not disassemble it.
1411       if (Obj->isELF() && !DisassembleAll && Section.isText()) {
1412         uint8_t SymTy = Symbols[SI].Type;
1413         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1414           dumpELFData(SectionAddr, Index, End, Bytes);
1415           Index = End;
1416         }
1417       }
1418 
1419       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1420                              Symbols[SI].Type != ELF::STT_OBJECT &&
1421                              !DisassembleAll;
1422       while (Index < End) {
1423         // ARM and AArch64 ELF binaries can interleave data and text in the
1424         // same section. We rely on the markers introduced to understand what
1425         // we need to dump. If the data marker is within a function, it is
1426         // denoted as a word/short etc.
1427         if (CheckARMELFData &&
1428             getMappingSymbolKind(MappingSymbols, Index) == 'd') {
1429           Index = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1430                                  MappingSymbols);
1431           continue;
1432         }
1433 
1434         // When -z or --disassemble-zeroes are given we always dissasemble
1435         // them. Otherwise we might want to skip zero bytes we see.
1436         if (!DisassembleZeroes) {
1437           uint64_t MaxOffset = End - Index;
1438           // For --reloc: print zero blocks patched by relocations, so that
1439           // relocations can be shown in the dump.
1440           if (RelCur != RelEnd)
1441             MaxOffset = RelCur->getOffset() - Index;
1442 
1443           if (size_t N =
1444                   countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1445             outs() << "\t\t..." << '\n';
1446             Index += N;
1447             continue;
1448           }
1449         }
1450 
1451         if (SecondarySTI) {
1452           if (getMappingSymbolKind(MappingSymbols, Index) == 'a') {
1453             STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1454             DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1455           } else if (getMappingSymbolKind(MappingSymbols, Index) == 't') {
1456             STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1457             DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1458           }
1459         }
1460 
1461         // Disassemble a real instruction or a data when disassemble all is
1462         // provided
1463         MCInst Inst;
1464         bool Disassembled = DisAsm->getInstruction(
1465             Inst, Size, Bytes.slice(Index), SectionAddr + Index, CommentStream);
1466         if (Size == 0)
1467           Size = 1;
1468 
1469         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1470                       Bytes.slice(Index, Size),
1471                       {SectionAddr + Index + VMAAdjustment, Section.getIndex()},
1472                       outs(), "", *STI, &SP, Obj->getFileName(), &Rels);
1473         outs() << CommentStream.str();
1474         Comments.clear();
1475 
1476         // If disassembly has failed, continue with the next instruction, to
1477         // avoid analysing invalid/incomplete instruction information.
1478         if (!Disassembled) {
1479           outs() << "\n";
1480           Index += Size;
1481           continue;
1482         }
1483 
1484         // Try to resolve the target of a call, tail call, etc. to a specific
1485         // symbol.
1486         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1487                     MIA->isConditionalBranch(Inst))) {
1488           uint64_t Target;
1489           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1490             // In a relocatable object, the target's section must reside in
1491             // the same section as the call instruction or it is accessed
1492             // through a relocation.
1493             //
1494             // In a non-relocatable object, the target may be in any section.
1495             //
1496             // N.B. We don't walk the relocations in the relocatable case yet.
1497             auto *TargetSectionSymbols = &Symbols;
1498             if (!Obj->isRelocatableObject()) {
1499               auto It = partition_point(
1500                   SectionAddresses,
1501                   [=](const std::pair<uint64_t, SectionRef> &O) {
1502                     return O.first <= Target;
1503                   });
1504               if (It != SectionAddresses.begin()) {
1505                 --It;
1506                 TargetSectionSymbols = &AllSymbols[It->second];
1507               } else {
1508                 TargetSectionSymbols = &AbsoluteSymbols;
1509               }
1510             }
1511 
1512             // Find the last symbol in the section whose offset is less than
1513             // or equal to the target. If there isn't a section that contains
1514             // the target, find the nearest preceding absolute symbol.
1515             auto TargetSym = partition_point(
1516                 *TargetSectionSymbols,
1517                 [=](const SymbolInfoTy &O) {
1518                   return O.Addr <= Target;
1519                 });
1520             if (TargetSym == TargetSectionSymbols->begin()) {
1521               TargetSectionSymbols = &AbsoluteSymbols;
1522               TargetSym = partition_point(
1523                   AbsoluteSymbols,
1524                   [=](const SymbolInfoTy &O) {
1525                     return O.Addr <= Target;
1526                   });
1527             }
1528             if (TargetSym != TargetSectionSymbols->begin()) {
1529               --TargetSym;
1530               uint64_t TargetAddress = TargetSym->Addr;
1531               StringRef TargetName = TargetSym->Name;
1532               outs() << " <" << TargetName;
1533               uint64_t Disp = Target - TargetAddress;
1534               if (Disp)
1535                 outs() << "+0x" << Twine::utohexstr(Disp);
1536               outs() << '>';
1537             }
1538           }
1539         }
1540         outs() << "\n";
1541 
1542         // Hexagon does this in pretty printer
1543         if (Obj->getArch() != Triple::hexagon) {
1544           // Print relocation for instruction.
1545           while (RelCur != RelEnd) {
1546             uint64_t Offset = RelCur->getOffset();
1547             // If this relocation is hidden, skip it.
1548             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1549               ++RelCur;
1550               continue;
1551             }
1552 
1553             // Stop when RelCur's offset is past the current instruction.
1554             if (Offset >= Index + Size)
1555               break;
1556 
1557             // When --adjust-vma is used, update the address printed.
1558             if (RelCur->getSymbol() != Obj->symbol_end()) {
1559               Expected<section_iterator> SymSI =
1560                   RelCur->getSymbol()->getSection();
1561               if (SymSI && *SymSI != Obj->section_end() &&
1562                   shouldAdjustVA(**SymSI))
1563                 Offset += AdjustVMA;
1564             }
1565 
1566             printRelocation(Obj->getFileName(), *RelCur, SectionAddr + Offset,
1567                             Is64Bits);
1568             ++RelCur;
1569           }
1570         }
1571 
1572         Index += Size;
1573       }
1574     }
1575   }
1576   StringSet<> MissingDisasmSymbolSet =
1577       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
1578   for (StringRef Sym : MissingDisasmSymbolSet.keys())
1579     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
1580 }
1581 
1582 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1583   const Target *TheTarget = getTarget(Obj);
1584 
1585   // Package up features to be passed to target/subtarget
1586   SubtargetFeatures Features = Obj->getFeatures();
1587   if (!MAttrs.empty())
1588     for (unsigned I = 0; I != MAttrs.size(); ++I)
1589       Features.AddFeature(MAttrs[I]);
1590 
1591   std::unique_ptr<const MCRegisterInfo> MRI(
1592       TheTarget->createMCRegInfo(TripleName));
1593   if (!MRI)
1594     reportError(Obj->getFileName(),
1595                 "no register info for target " + TripleName);
1596 
1597   // Set up disassembler.
1598   MCTargetOptions MCOptions;
1599   std::unique_ptr<const MCAsmInfo> AsmInfo(
1600       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
1601   if (!AsmInfo)
1602     reportError(Obj->getFileName(),
1603                 "no assembly info for target " + TripleName);
1604   std::unique_ptr<const MCSubtargetInfo> STI(
1605       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1606   if (!STI)
1607     reportError(Obj->getFileName(),
1608                 "no subtarget info for target " + TripleName);
1609   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1610   if (!MII)
1611     reportError(Obj->getFileName(),
1612                 "no instruction info for target " + TripleName);
1613   MCObjectFileInfo MOFI;
1614   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1615   // FIXME: for now initialize MCObjectFileInfo with default values
1616   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1617 
1618   std::unique_ptr<MCDisassembler> DisAsm(
1619       TheTarget->createMCDisassembler(*STI, Ctx));
1620   if (!DisAsm)
1621     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
1622 
1623   // If we have an ARM object file, we need a second disassembler, because
1624   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
1625   // We use mapping symbols to switch between the two assemblers, where
1626   // appropriate.
1627   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
1628   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
1629   if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
1630     if (STI->checkFeatures("+thumb-mode"))
1631       Features.AddFeature("-thumb-mode");
1632     else
1633       Features.AddFeature("+thumb-mode");
1634     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1635                                                         Features.getString()));
1636     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
1637   }
1638 
1639   std::unique_ptr<const MCInstrAnalysis> MIA(
1640       TheTarget->createMCInstrAnalysis(MII.get()));
1641 
1642   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1643   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1644       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1645   if (!IP)
1646     reportError(Obj->getFileName(),
1647                 "no instruction printer for target " + TripleName);
1648   IP->setPrintImmHex(PrintImmHex);
1649   IP->setPrintBranchImmAsAddress(true);
1650 
1651   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1652   SourcePrinter SP(Obj, TheTarget->getName());
1653 
1654   for (StringRef Opt : DisassemblerOptions)
1655     if (!IP->applyTargetSpecificCLOption(Opt))
1656       reportError(Obj->getFileName(),
1657                   "Unrecognized disassembler option: " + Opt);
1658 
1659   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
1660                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
1661                     SP, InlineRelocs);
1662 }
1663 
1664 void printRelocations(const ObjectFile *Obj) {
1665   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1666                                                  "%08" PRIx64;
1667   // Regular objdump doesn't print relocations in non-relocatable object
1668   // files.
1669   if (!Obj->isRelocatableObject())
1670     return;
1671 
1672   // Build a mapping from relocation target to a vector of relocation
1673   // sections. Usually, there is an only one relocation section for
1674   // each relocated section.
1675   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
1676   uint64_t Ndx;
1677   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
1678     if (Section.relocation_begin() == Section.relocation_end())
1679       continue;
1680     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
1681     if (!SecOrErr)
1682       reportError(Obj->getFileName(),
1683                   "section (" + Twine(Ndx) +
1684                       "): unable to get a relocation target: " +
1685                       toString(SecOrErr.takeError()));
1686     SecToRelSec[**SecOrErr].push_back(Section);
1687   }
1688 
1689   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
1690     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
1691     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
1692     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
1693     uint32_t TypePadding = 24;
1694     outs() << left_justify("OFFSET", OffsetPadding) << " "
1695            << left_justify("TYPE", TypePadding) << " "
1696            << "VALUE\n";
1697 
1698     for (SectionRef Section : P.second) {
1699       for (const RelocationRef &Reloc : Section.relocations()) {
1700         uint64_t Address = Reloc.getOffset();
1701         SmallString<32> RelocName;
1702         SmallString<32> ValueStr;
1703         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1704           continue;
1705         Reloc.getTypeName(RelocName);
1706         if (Error E = getRelocationValueString(Reloc, ValueStr))
1707           reportError(std::move(E), Obj->getFileName());
1708 
1709         outs() << format(Fmt.data(), Address) << " "
1710                << left_justify(RelocName, TypePadding) << " " << ValueStr
1711                << "\n";
1712       }
1713     }
1714     outs() << "\n";
1715   }
1716 }
1717 
1718 void printDynamicRelocations(const ObjectFile *Obj) {
1719   // For the moment, this option is for ELF only
1720   if (!Obj->isELF())
1721     return;
1722 
1723   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1724   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1725     reportError(Obj->getFileName(), "not a dynamic object");
1726     return;
1727   }
1728 
1729   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1730   if (DynRelSec.empty())
1731     return;
1732 
1733   outs() << "DYNAMIC RELOCATION RECORDS\n";
1734   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1735   for (const SectionRef &Section : DynRelSec)
1736     for (const RelocationRef &Reloc : Section.relocations()) {
1737       uint64_t Address = Reloc.getOffset();
1738       SmallString<32> RelocName;
1739       SmallString<32> ValueStr;
1740       Reloc.getTypeName(RelocName);
1741       if (Error E = getRelocationValueString(Reloc, ValueStr))
1742         reportError(std::move(E), Obj->getFileName());
1743       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1744              << ValueStr << "\n";
1745     }
1746 }
1747 
1748 // Returns true if we need to show LMA column when dumping section headers. We
1749 // show it only when the platform is ELF and either we have at least one section
1750 // whose VMA and LMA are different and/or when --show-lma flag is used.
1751 static bool shouldDisplayLMA(const ObjectFile *Obj) {
1752   if (!Obj->isELF())
1753     return false;
1754   for (const SectionRef &S : ToolSectionFilter(*Obj))
1755     if (S.getAddress() != getELFSectionLMA(S))
1756       return true;
1757   return ShowLMA;
1758 }
1759 
1760 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) {
1761   // Default column width for names is 13 even if no names are that long.
1762   size_t MaxWidth = 13;
1763   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1764     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1765     MaxWidth = std::max(MaxWidth, Name.size());
1766   }
1767   return MaxWidth;
1768 }
1769 
1770 void printSectionHeaders(const ObjectFile *Obj) {
1771   size_t NameWidth = getMaxSectionNameWidth(Obj);
1772   size_t AddressWidth = 2 * Obj->getBytesInAddress();
1773   bool HasLMAColumn = shouldDisplayLMA(Obj);
1774   if (HasLMAColumn)
1775     outs() << "Sections:\n"
1776               "Idx "
1777            << left_justify("Name", NameWidth) << " Size     "
1778            << left_justify("VMA", AddressWidth) << " "
1779            << left_justify("LMA", AddressWidth) << " Type\n";
1780   else
1781     outs() << "Sections:\n"
1782               "Idx "
1783            << left_justify("Name", NameWidth) << " Size     "
1784            << left_justify("VMA", AddressWidth) << " Type\n";
1785 
1786   uint64_t Idx;
1787   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) {
1788     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1789     uint64_t VMA = Section.getAddress();
1790     if (shouldAdjustVA(Section))
1791       VMA += AdjustVMA;
1792 
1793     uint64_t Size = Section.getSize();
1794 
1795     std::string Type = Section.isText() ? "TEXT" : "";
1796     if (Section.isData())
1797       Type += Type.empty() ? "DATA" : " DATA";
1798     if (Section.isBSS())
1799       Type += Type.empty() ? "BSS" : " BSS";
1800 
1801     if (HasLMAColumn)
1802       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1803                        Name.str().c_str(), Size)
1804              << format_hex_no_prefix(VMA, AddressWidth) << " "
1805              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
1806              << " " << Type << "\n";
1807     else
1808       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1809                        Name.str().c_str(), Size)
1810              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
1811   }
1812   outs() << "\n";
1813 }
1814 
1815 void printSectionContents(const ObjectFile *Obj) {
1816   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1817     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1818     uint64_t BaseAddr = Section.getAddress();
1819     uint64_t Size = Section.getSize();
1820     if (!Size)
1821       continue;
1822 
1823     outs() << "Contents of section " << Name << ":\n";
1824     if (Section.isBSS()) {
1825       outs() << format("<skipping contents of bss section at [%04" PRIx64
1826                        ", %04" PRIx64 ")>\n",
1827                        BaseAddr, BaseAddr + Size);
1828       continue;
1829     }
1830 
1831     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
1832 
1833     // Dump out the content as hex and printable ascii characters.
1834     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1835       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1836       // Dump line of hex.
1837       for (std::size_t I = 0; I < 16; ++I) {
1838         if (I != 0 && I % 4 == 0)
1839           outs() << ' ';
1840         if (Addr + I < End)
1841           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1842                  << hexdigit(Contents[Addr + I] & 0xF, true);
1843         else
1844           outs() << "  ";
1845       }
1846       // Print ascii.
1847       outs() << "  ";
1848       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1849         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1850           outs() << Contents[Addr + I];
1851         else
1852           outs() << ".";
1853       }
1854       outs() << "\n";
1855     }
1856   }
1857 }
1858 
1859 void printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1860                       StringRef ArchitectureName) {
1861   outs() << "SYMBOL TABLE:\n";
1862 
1863   if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) {
1864     printCOFFSymbolTable(Coff);
1865     return;
1866   }
1867 
1868   const StringRef FileName = O->getFileName();
1869   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O);
1870   for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) {
1871     const SymbolRef &Symbol = *I;
1872     uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
1873                                      ArchitectureName);
1874     if ((Address < StartAddress) || (Address > StopAddress))
1875       continue;
1876     SymbolRef::Type Type = unwrapOrError(Symbol.getType(), FileName,
1877                                          ArchiveName, ArchitectureName);
1878     uint32_t Flags = Symbol.getFlags();
1879 
1880     // Don't ask a Mach-O STAB symbol for its section unless you know that
1881     // STAB symbol's section field refers to a valid section index. Otherwise
1882     // the symbol may error trying to load a section that does not exist.
1883     bool isSTAB = false;
1884     if (MachO) {
1885       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1886       uint8_t NType = (MachO->is64Bit() ?
1887                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1888                        MachO->getSymbolTableEntry(SymDRI).n_type);
1889       if (NType & MachO::N_STAB)
1890         isSTAB = true;
1891     }
1892     section_iterator Section = isSTAB ? O->section_end() :
1893                                unwrapOrError(Symbol.getSection(), FileName,
1894                                              ArchiveName, ArchitectureName);
1895 
1896     StringRef Name;
1897     if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
1898       if (Expected<StringRef> NameOrErr = Section->getName())
1899         Name = *NameOrErr;
1900       else
1901         consumeError(NameOrErr.takeError());
1902 
1903     } else {
1904       Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
1905                            ArchitectureName);
1906     }
1907 
1908     bool Global = Flags & SymbolRef::SF_Global;
1909     bool Weak = Flags & SymbolRef::SF_Weak;
1910     bool Absolute = Flags & SymbolRef::SF_Absolute;
1911     bool Common = Flags & SymbolRef::SF_Common;
1912     bool Hidden = Flags & SymbolRef::SF_Hidden;
1913 
1914     char GlobLoc = ' ';
1915     if ((Section != O->section_end() || Absolute) && !Weak)
1916       GlobLoc = Global ? 'g' : 'l';
1917     char IFunc = ' ';
1918     if (isa<ELFObjectFileBase>(O)) {
1919       if (ELFSymbolRef(*I).getELFType() == ELF::STT_GNU_IFUNC)
1920         IFunc = 'i';
1921       if (ELFSymbolRef(*I).getBinding() == ELF::STB_GNU_UNIQUE)
1922         GlobLoc = 'u';
1923     }
1924     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1925                  ? 'd' : ' ';
1926     char FileFunc = ' ';
1927     if (Type == SymbolRef::ST_File)
1928       FileFunc = 'f';
1929     else if (Type == SymbolRef::ST_Function)
1930       FileFunc = 'F';
1931     else if (Type == SymbolRef::ST_Data)
1932       FileFunc = 'O';
1933 
1934     const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 :
1935                                                    "%08" PRIx64;
1936 
1937     outs() << format(Fmt, Address) << " "
1938            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1939            << (Weak ? 'w' : ' ') // Weak?
1940            << ' ' // Constructor. Not supported yet.
1941            << ' ' // Warning. Not supported yet.
1942            << IFunc
1943            << Debug // Debugging (d) or dynamic (D) symbol.
1944            << FileFunc // Name of function (F), file (f) or object (O).
1945            << ' ';
1946     if (Absolute) {
1947       outs() << "*ABS*";
1948     } else if (Common) {
1949       outs() << "*COM*";
1950     } else if (Section == O->section_end()) {
1951       outs() << "*UND*";
1952     } else {
1953       if (const MachOObjectFile *MachO =
1954           dyn_cast<const MachOObjectFile>(O)) {
1955         DataRefImpl DR = Section->getRawDataRefImpl();
1956         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1957         outs() << SegmentName << ",";
1958       }
1959       StringRef SectionName =
1960           unwrapOrError(Section->getName(), O->getFileName());
1961       outs() << SectionName;
1962     }
1963 
1964     if (Common || isa<ELFObjectFileBase>(O)) {
1965       uint64_t Val =
1966           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1967       outs() << '\t' << format(Fmt, Val);
1968     }
1969 
1970     if (isa<ELFObjectFileBase>(O)) {
1971       uint8_t Other = ELFSymbolRef(Symbol).getOther();
1972       switch (Other) {
1973       case ELF::STV_DEFAULT:
1974         break;
1975       case ELF::STV_INTERNAL:
1976         outs() << " .internal";
1977         break;
1978       case ELF::STV_HIDDEN:
1979         outs() << " .hidden";
1980         break;
1981       case ELF::STV_PROTECTED:
1982         outs() << " .protected";
1983         break;
1984       default:
1985         outs() << format(" 0x%02x", Other);
1986         break;
1987       }
1988     } else if (Hidden) {
1989       outs() << " .hidden";
1990     }
1991 
1992     if (Demangle)
1993       outs() << ' ' << demangle(std::string(Name)) << '\n';
1994     else
1995       outs() << ' ' << Name << '\n';
1996   }
1997 }
1998 
1999 static void printUnwindInfo(const ObjectFile *O) {
2000   outs() << "Unwind info:\n\n";
2001 
2002   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2003     printCOFFUnwindInfo(Coff);
2004   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2005     printMachOUnwindInfo(MachO);
2006   else
2007     // TODO: Extract DWARF dump tool to objdump.
2008     WithColor::error(errs(), ToolName)
2009         << "This operation is only currently supported "
2010            "for COFF and MachO object files.\n";
2011 }
2012 
2013 /// Dump the raw contents of the __clangast section so the output can be piped
2014 /// into llvm-bcanalyzer.
2015 void printRawClangAST(const ObjectFile *Obj) {
2016   if (outs().is_displayed()) {
2017     WithColor::error(errs(), ToolName)
2018         << "The -raw-clang-ast option will dump the raw binary contents of "
2019            "the clang ast section.\n"
2020            "Please redirect the output to a file or another program such as "
2021            "llvm-bcanalyzer.\n";
2022     return;
2023   }
2024 
2025   StringRef ClangASTSectionName("__clangast");
2026   if (isa<COFFObjectFile>(Obj)) {
2027     ClangASTSectionName = "clangast";
2028   }
2029 
2030   Optional<object::SectionRef> ClangASTSection;
2031   for (auto Sec : ToolSectionFilter(*Obj)) {
2032     StringRef Name;
2033     if (Expected<StringRef> NameOrErr = Sec.getName())
2034       Name = *NameOrErr;
2035     else
2036       consumeError(NameOrErr.takeError());
2037 
2038     if (Name == ClangASTSectionName) {
2039       ClangASTSection = Sec;
2040       break;
2041     }
2042   }
2043   if (!ClangASTSection)
2044     return;
2045 
2046   StringRef ClangASTContents = unwrapOrError(
2047       ClangASTSection.getValue().getContents(), Obj->getFileName());
2048   outs().write(ClangASTContents.data(), ClangASTContents.size());
2049 }
2050 
2051 static void printFaultMaps(const ObjectFile *Obj) {
2052   StringRef FaultMapSectionName;
2053 
2054   if (isa<ELFObjectFileBase>(Obj)) {
2055     FaultMapSectionName = ".llvm_faultmaps";
2056   } else if (isa<MachOObjectFile>(Obj)) {
2057     FaultMapSectionName = "__llvm_faultmaps";
2058   } else {
2059     WithColor::error(errs(), ToolName)
2060         << "This operation is only currently supported "
2061            "for ELF and Mach-O executable files.\n";
2062     return;
2063   }
2064 
2065   Optional<object::SectionRef> FaultMapSection;
2066 
2067   for (auto Sec : ToolSectionFilter(*Obj)) {
2068     StringRef Name;
2069     if (Expected<StringRef> NameOrErr = Sec.getName())
2070       Name = *NameOrErr;
2071     else
2072       consumeError(NameOrErr.takeError());
2073 
2074     if (Name == FaultMapSectionName) {
2075       FaultMapSection = Sec;
2076       break;
2077     }
2078   }
2079 
2080   outs() << "FaultMap table:\n";
2081 
2082   if (!FaultMapSection.hasValue()) {
2083     outs() << "<not found>\n";
2084     return;
2085   }
2086 
2087   StringRef FaultMapContents =
2088       unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
2089   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2090                      FaultMapContents.bytes_end());
2091 
2092   outs() << FMP;
2093 }
2094 
2095 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2096   if (O->isELF()) {
2097     printELFFileHeader(O);
2098     printELFDynamicSection(O);
2099     printELFSymbolVersionInfo(O);
2100     return;
2101   }
2102   if (O->isCOFF())
2103     return printCOFFFileHeader(O);
2104   if (O->isWasm())
2105     return printWasmFileHeader(O);
2106   if (O->isMachO()) {
2107     printMachOFileHeader(O);
2108     if (!OnlyFirst)
2109       printMachOLoadCommands(O);
2110     return;
2111   }
2112   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2113 }
2114 
2115 static void printFileHeaders(const ObjectFile *O) {
2116   if (!O->isELF() && !O->isCOFF())
2117     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2118 
2119   Triple::ArchType AT = O->getArch();
2120   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2121   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2122 
2123   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2124   outs() << "start address: "
2125          << "0x" << format(Fmt.data(), Address) << "\n\n";
2126 }
2127 
2128 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2129   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2130   if (!ModeOrErr) {
2131     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2132     consumeError(ModeOrErr.takeError());
2133     return;
2134   }
2135   sys::fs::perms Mode = ModeOrErr.get();
2136   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2137   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2138   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2139   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2140   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2141   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2142   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2143   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2144   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2145 
2146   outs() << " ";
2147 
2148   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2149                    unwrapOrError(C.getGID(), Filename),
2150                    unwrapOrError(C.getRawSize(), Filename));
2151 
2152   StringRef RawLastModified = C.getRawLastModified();
2153   unsigned Seconds;
2154   if (RawLastModified.getAsInteger(10, Seconds))
2155     outs() << "(date: \"" << RawLastModified
2156            << "\" contains non-decimal chars) ";
2157   else {
2158     // Since ctime(3) returns a 26 character string of the form:
2159     // "Sun Sep 16 01:03:52 1973\n\0"
2160     // just print 24 characters.
2161     time_t t = Seconds;
2162     outs() << format("%.24s ", ctime(&t));
2163   }
2164 
2165   StringRef Name = "";
2166   Expected<StringRef> NameOrErr = C.getName();
2167   if (!NameOrErr) {
2168     consumeError(NameOrErr.takeError());
2169     Name = unwrapOrError(C.getRawName(), Filename);
2170   } else {
2171     Name = NameOrErr.get();
2172   }
2173   outs() << Name << "\n";
2174 }
2175 
2176 // For ELF only now.
2177 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2178   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2179     if (Elf->getEType() != ELF::ET_REL)
2180       return true;
2181   }
2182   return false;
2183 }
2184 
2185 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2186                                             uint64_t Start, uint64_t Stop) {
2187   if (!shouldWarnForInvalidStartStopAddress(Obj))
2188     return;
2189 
2190   for (const SectionRef &Section : Obj->sections())
2191     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2192       uint64_t BaseAddr = Section.getAddress();
2193       uint64_t Size = Section.getSize();
2194       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2195         return;
2196     }
2197 
2198   if (StartAddress.getNumOccurrences() == 0)
2199     reportWarning("no section has address less than 0x" +
2200                       Twine::utohexstr(Stop) + " specified by --stop-address",
2201                   Obj->getFileName());
2202   else if (StopAddress.getNumOccurrences() == 0)
2203     reportWarning("no section has address greater than or equal to 0x" +
2204                       Twine::utohexstr(Start) + " specified by --start-address",
2205                   Obj->getFileName());
2206   else
2207     reportWarning("no section overlaps the range [0x" +
2208                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2209                       ") specified by --start-address/--stop-address",
2210                   Obj->getFileName());
2211 }
2212 
2213 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2214                        const Archive::Child *C = nullptr) {
2215   // Avoid other output when using a raw option.
2216   if (!RawClangAST) {
2217     outs() << '\n';
2218     if (A)
2219       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2220     else
2221       outs() << O->getFileName();
2222     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n\n";
2223   }
2224 
2225   if (StartAddress.getNumOccurrences() || StopAddress.getNumOccurrences())
2226     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2227 
2228   // Note: the order here matches GNU objdump for compatability.
2229   StringRef ArchiveName = A ? A->getFileName() : "";
2230   if (ArchiveHeaders && !MachOOpt && C)
2231     printArchiveChild(ArchiveName, *C);
2232   if (FileHeaders)
2233     printFileHeaders(O);
2234   if (PrivateHeaders || FirstPrivateHeader)
2235     printPrivateFileHeaders(O, FirstPrivateHeader);
2236   if (SectionHeaders)
2237     printSectionHeaders(O);
2238   if (SymbolTable)
2239     printSymbolTable(O, ArchiveName);
2240   if (DwarfDumpType != DIDT_Null) {
2241     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2242     // Dump the complete DWARF structure.
2243     DIDumpOptions DumpOpts;
2244     DumpOpts.DumpType = DwarfDumpType;
2245     DICtx->dump(outs(), DumpOpts);
2246   }
2247   if (Relocations && !Disassemble)
2248     printRelocations(O);
2249   if (DynamicRelocations)
2250     printDynamicRelocations(O);
2251   if (SectionContents)
2252     printSectionContents(O);
2253   if (Disassemble)
2254     disassembleObject(O, Relocations);
2255   if (UnwindInfo)
2256     printUnwindInfo(O);
2257 
2258   // Mach-O specific options:
2259   if (ExportsTrie)
2260     printExportsTrie(O);
2261   if (Rebase)
2262     printRebaseTable(O);
2263   if (Bind)
2264     printBindTable(O);
2265   if (LazyBind)
2266     printLazyBindTable(O);
2267   if (WeakBind)
2268     printWeakBindTable(O);
2269 
2270   // Other special sections:
2271   if (RawClangAST)
2272     printRawClangAST(O);
2273   if (FaultMapSection)
2274     printFaultMaps(O);
2275 }
2276 
2277 static void dumpObject(const COFFImportFile *I, const Archive *A,
2278                        const Archive::Child *C = nullptr) {
2279   StringRef ArchiveName = A ? A->getFileName() : "";
2280 
2281   // Avoid other output when using a raw option.
2282   if (!RawClangAST)
2283     outs() << '\n'
2284            << ArchiveName << "(" << I->getFileName() << ")"
2285            << ":\tfile format COFF-import-file"
2286            << "\n\n";
2287 
2288   if (ArchiveHeaders && !MachOOpt && C)
2289     printArchiveChild(ArchiveName, *C);
2290   if (SymbolTable)
2291     printCOFFSymbolTable(I);
2292 }
2293 
2294 /// Dump each object file in \a a;
2295 static void dumpArchive(const Archive *A) {
2296   Error Err = Error::success();
2297   unsigned I = -1;
2298   for (auto &C : A->children(Err)) {
2299     ++I;
2300     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2301     if (!ChildOrErr) {
2302       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2303         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2304       continue;
2305     }
2306     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2307       dumpObject(O, A, &C);
2308     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2309       dumpObject(I, A, &C);
2310     else
2311       reportError(errorCodeToError(object_error::invalid_file_type),
2312                   A->getFileName());
2313   }
2314   if (Err)
2315     reportError(std::move(Err), A->getFileName());
2316 }
2317 
2318 /// Open file and figure out how to dump it.
2319 static void dumpInput(StringRef file) {
2320   // If we are using the Mach-O specific object file parser, then let it parse
2321   // the file and process the command line options.  So the -arch flags can
2322   // be used to select specific slices, etc.
2323   if (MachOOpt) {
2324     parseInputMachO(file);
2325     return;
2326   }
2327 
2328   // Attempt to open the binary.
2329   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2330   Binary &Binary = *OBinary.getBinary();
2331 
2332   if (Archive *A = dyn_cast<Archive>(&Binary))
2333     dumpArchive(A);
2334   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2335     dumpObject(O);
2336   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2337     parseInputMachO(UB);
2338   else
2339     reportError(errorCodeToError(object_error::invalid_file_type), file);
2340 }
2341 } // namespace llvm
2342 
2343 int main(int argc, char **argv) {
2344   using namespace llvm;
2345   InitLLVM X(argc, argv);
2346   const cl::OptionCategory *OptionFilters[] = {&ObjdumpCat, &MachOCat};
2347   cl::HideUnrelatedOptions(OptionFilters);
2348 
2349   // Initialize targets and assembly printers/parsers.
2350   InitializeAllTargetInfos();
2351   InitializeAllTargetMCs();
2352   InitializeAllDisassemblers();
2353 
2354   // Register the target printer for --version.
2355   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2356 
2357   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n", nullptr,
2358                               /*EnvVar=*/nullptr,
2359                               /*LongOptionsUseDoubleDash=*/true);
2360 
2361   if (StartAddress >= StopAddress)
2362     reportCmdLineError("start address should be less than stop address");
2363 
2364   ToolName = argv[0];
2365 
2366   // Defaults to a.out if no filenames specified.
2367   if (InputFilenames.empty())
2368     InputFilenames.push_back("a.out");
2369 
2370   if (AllHeaders)
2371     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2372         SectionHeaders = SymbolTable = true;
2373 
2374   if (DisassembleAll || PrintSource || PrintLines ||
2375       !DisassembleSymbols.empty())
2376     Disassemble = true;
2377 
2378   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2379       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2380       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2381       !UnwindInfo && !FaultMapSection &&
2382       !(MachOOpt &&
2383         (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
2384          FirstPrivateHeader || IndirectSymbols || InfoPlist || LazyBind ||
2385          LinkOptHints || ObjcMetaData || Rebase || UniversalHeaders ||
2386          WeakBind || !FilterSections.empty()))) {
2387     cl::PrintHelpMessage();
2388     return 2;
2389   }
2390 
2391   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
2392 
2393   llvm::for_each(InputFilenames, dumpInput);
2394 
2395   warnOnNoMatchForSections();
2396 
2397   return EXIT_SUCCESS;
2398 }
2399