1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/Demangle/Demangle.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCInstPrinter.h"
35 #include "llvm/MC/MCInstrAnalysis.h"
36 #include "llvm/MC/MCInstrInfo.h"
37 #include "llvm/MC/MCObjectFileInfo.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/MC/MCSubtargetInfo.h"
40 #include "llvm/MC/MCTargetOptions.h"
41 #include "llvm/Object/Archive.h"
42 #include "llvm/Object/COFF.h"
43 #include "llvm/Object/COFFImportFile.h"
44 #include "llvm/Object/ELFObjectFile.h"
45 #include "llvm/Object/MachO.h"
46 #include "llvm/Object/MachOUniversal.h"
47 #include "llvm/Object/ObjectFile.h"
48 #include "llvm/Object/Wasm.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/Errc.h"
53 #include "llvm/Support/FileSystem.h"
54 #include "llvm/Support/Format.h"
55 #include "llvm/Support/FormatVariadic.h"
56 #include "llvm/Support/GraphWriter.h"
57 #include "llvm/Support/Host.h"
58 #include "llvm/Support/InitLLVM.h"
59 #include "llvm/Support/MemoryBuffer.h"
60 #include "llvm/Support/SourceMgr.h"
61 #include "llvm/Support/StringSaver.h"
62 #include "llvm/Support/TargetRegistry.h"
63 #include "llvm/Support/TargetSelect.h"
64 #include "llvm/Support/WithColor.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include <algorithm>
67 #include <cctype>
68 #include <cstring>
69 #include <system_error>
70 #include <unordered_map>
71 #include <utility>
72 
73 using namespace llvm::object;
74 
75 namespace llvm {
76 
77 cl::OptionCategory ObjdumpCat("llvm-objdump Options");
78 
79 // MachO specific
80 extern cl::OptionCategory MachOCat;
81 extern cl::opt<bool> Bind;
82 extern cl::opt<bool> DataInCode;
83 extern cl::opt<bool> DylibsUsed;
84 extern cl::opt<bool> DylibId;
85 extern cl::opt<bool> ExportsTrie;
86 extern cl::opt<bool> FirstPrivateHeader;
87 extern cl::opt<bool> IndirectSymbols;
88 extern cl::opt<bool> InfoPlist;
89 extern cl::opt<bool> LazyBind;
90 extern cl::opt<bool> LinkOptHints;
91 extern cl::opt<bool> ObjcMetaData;
92 extern cl::opt<bool> Rebase;
93 extern cl::opt<bool> UniversalHeaders;
94 extern cl::opt<bool> WeakBind;
95 
96 static cl::opt<uint64_t> AdjustVMA(
97     "adjust-vma",
98     cl::desc("Increase the displayed address by the specified offset"),
99     cl::value_desc("offset"), cl::init(0), cl::cat(ObjdumpCat));
100 
101 static cl::opt<bool>
102     AllHeaders("all-headers",
103                cl::desc("Display all available header information"),
104                cl::cat(ObjdumpCat));
105 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
106                                  cl::NotHidden, cl::Grouping,
107                                  cl::aliasopt(AllHeaders));
108 
109 static cl::opt<std::string>
110     ArchName("arch-name",
111              cl::desc("Target arch to disassemble for, "
112                       "see -version for available targets"),
113              cl::cat(ObjdumpCat));
114 
115 cl::opt<bool> ArchiveHeaders("archive-headers",
116                              cl::desc("Display archive header information"),
117                              cl::cat(ObjdumpCat));
118 static cl::alias ArchiveHeadersShort("a",
119                                      cl::desc("Alias for --archive-headers"),
120                                      cl::NotHidden, cl::Grouping,
121                                      cl::aliasopt(ArchiveHeaders));
122 
123 cl::opt<bool> Demangle("demangle", cl::desc("Demangle symbols names"),
124                        cl::init(false), cl::cat(ObjdumpCat));
125 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
126                                cl::NotHidden, cl::Grouping,
127                                cl::aliasopt(Demangle));
128 
129 cl::opt<bool> Disassemble(
130     "disassemble",
131     cl::desc("Display assembler mnemonics for the machine instructions"),
132     cl::cat(ObjdumpCat));
133 static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"),
134                                   cl::NotHidden, cl::Grouping,
135                                   cl::aliasopt(Disassemble));
136 
137 cl::opt<bool> DisassembleAll(
138     "disassemble-all",
139     cl::desc("Display assembler mnemonics for the machine instructions"),
140     cl::cat(ObjdumpCat));
141 static cl::alias DisassembleAllShort("D",
142                                      cl::desc("Alias for --disassemble-all"),
143                                      cl::NotHidden, cl::Grouping,
144                                      cl::aliasopt(DisassembleAll));
145 
146 static cl::list<std::string>
147     DisassembleSymbols("disassemble-symbols", cl::CommaSeparated,
148                        cl::desc("List of symbols to disassemble. "
149                                 "Accept demangled names when --demangle is "
150                                 "specified, otherwise accept mangled names"),
151                        cl::cat(ObjdumpCat));
152 
153 static cl::opt<bool> DisassembleZeroes(
154     "disassemble-zeroes",
155     cl::desc("Do not skip blocks of zeroes when disassembling"),
156     cl::cat(ObjdumpCat));
157 static cl::alias
158     DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"),
159                            cl::NotHidden, cl::Grouping,
160                            cl::aliasopt(DisassembleZeroes));
161 
162 static cl::list<std::string>
163     DisassemblerOptions("disassembler-options",
164                         cl::desc("Pass target specific disassembler options"),
165                         cl::value_desc("options"), cl::CommaSeparated,
166                         cl::cat(ObjdumpCat));
167 static cl::alias
168     DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"),
169                              cl::NotHidden, cl::Grouping, cl::Prefix,
170                              cl::CommaSeparated,
171                              cl::aliasopt(DisassemblerOptions));
172 
173 cl::opt<DIDumpType> DwarfDumpType(
174     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
175     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")),
176     cl::cat(ObjdumpCat));
177 
178 static cl::opt<bool> DynamicRelocations(
179     "dynamic-reloc",
180     cl::desc("Display the dynamic relocation entries in the file"),
181     cl::cat(ObjdumpCat));
182 static cl::alias DynamicRelocationShort("R",
183                                         cl::desc("Alias for --dynamic-reloc"),
184                                         cl::NotHidden, cl::Grouping,
185                                         cl::aliasopt(DynamicRelocations));
186 
187 static cl::opt<bool>
188     FaultMapSection("fault-map-section",
189                     cl::desc("Display contents of faultmap section"),
190                     cl::cat(ObjdumpCat));
191 
192 static cl::opt<bool>
193     FileHeaders("file-headers",
194                 cl::desc("Display the contents of the overall file header"),
195                 cl::cat(ObjdumpCat));
196 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
197                                   cl::NotHidden, cl::Grouping,
198                                   cl::aliasopt(FileHeaders));
199 
200 cl::opt<bool> SectionContents("full-contents",
201                               cl::desc("Display the content of each section"),
202                               cl::cat(ObjdumpCat));
203 static cl::alias SectionContentsShort("s",
204                                       cl::desc("Alias for --full-contents"),
205                                       cl::NotHidden, cl::Grouping,
206                                       cl::aliasopt(SectionContents));
207 
208 static cl::list<std::string> InputFilenames(cl::Positional,
209                                             cl::desc("<input object files>"),
210                                             cl::ZeroOrMore,
211                                             cl::cat(ObjdumpCat));
212 
213 static cl::opt<bool>
214     PrintLines("line-numbers",
215                cl::desc("Display source line numbers with "
216                         "disassembly. Implies disassemble object"),
217                cl::cat(ObjdumpCat));
218 static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"),
219                                  cl::NotHidden, cl::Grouping,
220                                  cl::aliasopt(PrintLines));
221 
222 static cl::opt<bool> MachOOpt("macho",
223                               cl::desc("Use MachO specific object file parser"),
224                               cl::cat(ObjdumpCat));
225 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
226                         cl::Grouping, cl::aliasopt(MachOOpt));
227 
228 cl::opt<std::string>
229     MCPU("mcpu",
230          cl::desc("Target a specific cpu type (-mcpu=help for details)"),
231          cl::value_desc("cpu-name"), cl::init(""), cl::cat(ObjdumpCat));
232 
233 cl::list<std::string> MAttrs("mattr", cl::CommaSeparated,
234                              cl::desc("Target specific attributes"),
235                              cl::value_desc("a1,+a2,-a3,..."),
236                              cl::cat(ObjdumpCat));
237 
238 cl::opt<bool> NoShowRawInsn("no-show-raw-insn",
239                             cl::desc("When disassembling "
240                                      "instructions, do not print "
241                                      "the instruction bytes."),
242                             cl::cat(ObjdumpCat));
243 cl::opt<bool> NoLeadingAddr("no-leading-addr",
244                             cl::desc("Print no leading address"),
245                             cl::cat(ObjdumpCat));
246 
247 static cl::opt<bool> RawClangAST(
248     "raw-clang-ast",
249     cl::desc("Dump the raw binary contents of the clang AST section"),
250     cl::cat(ObjdumpCat));
251 
252 cl::opt<bool>
253     Relocations("reloc", cl::desc("Display the relocation entries in the file"),
254                 cl::cat(ObjdumpCat));
255 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
256                                   cl::NotHidden, cl::Grouping,
257                                   cl::aliasopt(Relocations));
258 
259 cl::opt<bool> PrintImmHex("print-imm-hex",
260                           cl::desc("Use hex format for immediate values"),
261                           cl::cat(ObjdumpCat));
262 
263 cl::opt<bool> PrivateHeaders("private-headers",
264                              cl::desc("Display format specific file headers"),
265                              cl::cat(ObjdumpCat));
266 static cl::alias PrivateHeadersShort("p",
267                                      cl::desc("Alias for --private-headers"),
268                                      cl::NotHidden, cl::Grouping,
269                                      cl::aliasopt(PrivateHeaders));
270 
271 cl::list<std::string>
272     FilterSections("section",
273                    cl::desc("Operate on the specified sections only. "
274                             "With -macho dump segment,section"),
275                    cl::cat(ObjdumpCat));
276 static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"),
277                                  cl::NotHidden, cl::Grouping, cl::Prefix,
278                                  cl::aliasopt(FilterSections));
279 
280 cl::opt<bool> SectionHeaders("section-headers",
281                              cl::desc("Display summaries of the "
282                                       "headers for each section."),
283                              cl::cat(ObjdumpCat));
284 static cl::alias SectionHeadersShort("headers",
285                                      cl::desc("Alias for --section-headers"),
286                                      cl::NotHidden,
287                                      cl::aliasopt(SectionHeaders));
288 static cl::alias SectionHeadersShorter("h",
289                                        cl::desc("Alias for --section-headers"),
290                                        cl::NotHidden, cl::Grouping,
291                                        cl::aliasopt(SectionHeaders));
292 
293 static cl::opt<bool>
294     ShowLMA("show-lma",
295             cl::desc("Display LMA column when dumping ELF section headers"),
296             cl::cat(ObjdumpCat));
297 
298 static cl::opt<bool> PrintSource(
299     "source",
300     cl::desc(
301         "Display source inlined with disassembly. Implies disassemble object"),
302     cl::cat(ObjdumpCat));
303 static cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
304                                   cl::NotHidden, cl::Grouping,
305                                   cl::aliasopt(PrintSource));
306 
307 static cl::opt<uint64_t>
308     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
309                  cl::value_desc("address"), cl::init(0), cl::cat(ObjdumpCat));
310 static cl::opt<uint64_t> StopAddress("stop-address",
311                                      cl::desc("Stop disassembly at address"),
312                                      cl::value_desc("address"),
313                                      cl::init(UINT64_MAX), cl::cat(ObjdumpCat));
314 
315 cl::opt<bool> SymbolTable("syms", cl::desc("Display the symbol table"),
316                           cl::cat(ObjdumpCat));
317 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
318                                   cl::NotHidden, cl::Grouping,
319                                   cl::aliasopt(SymbolTable));
320 
321 cl::opt<std::string> TripleName("triple",
322                                 cl::desc("Target triple to disassemble for, "
323                                          "see -version for available targets"),
324                                 cl::cat(ObjdumpCat));
325 
326 cl::opt<bool> UnwindInfo("unwind-info", cl::desc("Display unwind information"),
327                          cl::cat(ObjdumpCat));
328 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
329                                  cl::NotHidden, cl::Grouping,
330                                  cl::aliasopt(UnwindInfo));
331 
332 static cl::opt<bool>
333     Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"),
334          cl::cat(ObjdumpCat));
335 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide));
336 
337 static cl::extrahelp
338     HelpResponse("\nPass @FILE as argument to read options from FILE.\n");
339 
340 static StringSet<> DisasmSymbolSet;
341 StringSet<> FoundSectionSet;
342 static StringRef ToolName;
343 
344 namespace {
345 struct FilterResult {
346   // True if the section should not be skipped.
347   bool Keep;
348 
349   // True if the index counter should be incremented, even if the section should
350   // be skipped. For example, sections may be skipped if they are not included
351   // in the --section flag, but we still want those to count toward the section
352   // count.
353   bool IncrementIndex;
354 };
355 } // namespace
356 
357 static FilterResult checkSectionFilter(object::SectionRef S) {
358   if (FilterSections.empty())
359     return {/*Keep=*/true, /*IncrementIndex=*/true};
360 
361   Expected<StringRef> SecNameOrErr = S.getName();
362   if (!SecNameOrErr) {
363     consumeError(SecNameOrErr.takeError());
364     return {/*Keep=*/false, /*IncrementIndex=*/false};
365   }
366   StringRef SecName = *SecNameOrErr;
367 
368   // StringSet does not allow empty key so avoid adding sections with
369   // no name (such as the section with index 0) here.
370   if (!SecName.empty())
371     FoundSectionSet.insert(SecName);
372 
373   // Only show the section if it's in the FilterSections list, but always
374   // increment so the indexing is stable.
375   return {/*Keep=*/is_contained(FilterSections, SecName),
376           /*IncrementIndex=*/true};
377 }
378 
379 SectionFilter ToolSectionFilter(object::ObjectFile const &O, uint64_t *Idx) {
380   // Start at UINT64_MAX so that the first index returned after an increment is
381   // zero (after the unsigned wrap).
382   if (Idx)
383     *Idx = UINT64_MAX;
384   return SectionFilter(
385       [Idx](object::SectionRef S) {
386         FilterResult Result = checkSectionFilter(S);
387         if (Idx != nullptr && Result.IncrementIndex)
388           *Idx += 1;
389         return Result.Keep;
390       },
391       O);
392 }
393 
394 std::string getFileNameForError(const object::Archive::Child &C,
395                                 unsigned Index) {
396   Expected<StringRef> NameOrErr = C.getName();
397   if (NameOrErr)
398     return std::string(NameOrErr.get());
399   // If we have an error getting the name then we print the index of the archive
400   // member. Since we are already in an error state, we just ignore this error.
401   consumeError(NameOrErr.takeError());
402   return "<file index: " + std::to_string(Index) + ">";
403 }
404 
405 void reportWarning(Twine Message, StringRef File) {
406   // Output order between errs() and outs() matters especially for archive
407   // files where the output is per member object.
408   outs().flush();
409   WithColor::warning(errs(), ToolName)
410       << "'" << File << "': " << Message << "\n";
411   errs().flush();
412 }
413 
414 LLVM_ATTRIBUTE_NORETURN void reportError(StringRef File, Twine Message) {
415   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
416   exit(1);
417 }
418 
419 LLVM_ATTRIBUTE_NORETURN void reportError(Error E, StringRef FileName,
420                                          StringRef ArchiveName,
421                                          StringRef ArchitectureName) {
422   assert(E);
423   WithColor::error(errs(), ToolName);
424   if (ArchiveName != "")
425     errs() << ArchiveName << "(" << FileName << ")";
426   else
427     errs() << "'" << FileName << "'";
428   if (!ArchitectureName.empty())
429     errs() << " (for architecture " << ArchitectureName << ")";
430   std::string Buf;
431   raw_string_ostream OS(Buf);
432   logAllUnhandledErrors(std::move(E), OS);
433   OS.flush();
434   errs() << ": " << Buf;
435   exit(1);
436 }
437 
438 static void reportCmdLineWarning(Twine Message) {
439   WithColor::warning(errs(), ToolName) << Message << "\n";
440 }
441 
442 LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(Twine Message) {
443   WithColor::error(errs(), ToolName) << Message << "\n";
444   exit(1);
445 }
446 
447 static void warnOnNoMatchForSections() {
448   SetVector<StringRef> MissingSections;
449   for (StringRef S : FilterSections) {
450     if (FoundSectionSet.count(S))
451       return;
452     // User may specify a unnamed section. Don't warn for it.
453     if (!S.empty())
454       MissingSections.insert(S);
455   }
456 
457   // Warn only if no section in FilterSections is matched.
458   for (StringRef S : MissingSections)
459     reportCmdLineWarning("section '" + S +
460                          "' mentioned in a -j/--section option, but not "
461                          "found in any input file");
462 }
463 
464 static const Target *getTarget(const ObjectFile *Obj) {
465   // Figure out the target triple.
466   Triple TheTriple("unknown-unknown-unknown");
467   if (TripleName.empty()) {
468     TheTriple = Obj->makeTriple();
469   } else {
470     TheTriple.setTriple(Triple::normalize(TripleName));
471     auto Arch = Obj->getArch();
472     if (Arch == Triple::arm || Arch == Triple::armeb)
473       Obj->setARMSubArch(TheTriple);
474   }
475 
476   // Get the target specific parser.
477   std::string Error;
478   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
479                                                          Error);
480   if (!TheTarget)
481     reportError(Obj->getFileName(), "can't find target: " + Error);
482 
483   // Update the triple name and return the found target.
484   TripleName = TheTriple.getTriple();
485   return TheTarget;
486 }
487 
488 bool isRelocAddressLess(RelocationRef A, RelocationRef B) {
489   return A.getOffset() < B.getOffset();
490 }
491 
492 static Error getRelocationValueString(const RelocationRef &Rel,
493                                       SmallVectorImpl<char> &Result) {
494   const ObjectFile *Obj = Rel.getObject();
495   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
496     return getELFRelocationValueString(ELF, Rel, Result);
497   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
498     return getCOFFRelocationValueString(COFF, Rel, Result);
499   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
500     return getWasmRelocationValueString(Wasm, Rel, Result);
501   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
502     return getMachORelocationValueString(MachO, Rel, Result);
503   llvm_unreachable("unknown object file format");
504 }
505 
506 /// Indicates whether this relocation should hidden when listing
507 /// relocations, usually because it is the trailing part of a multipart
508 /// relocation that will be printed as part of the leading relocation.
509 static bool getHidden(RelocationRef RelRef) {
510   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
511   if (!MachO)
512     return false;
513 
514   unsigned Arch = MachO->getArch();
515   DataRefImpl Rel = RelRef.getRawDataRefImpl();
516   uint64_t Type = MachO->getRelocationType(Rel);
517 
518   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
519   // is always hidden.
520   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
521     return Type == MachO::GENERIC_RELOC_PAIR;
522 
523   if (Arch == Triple::x86_64) {
524     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
525     // an X86_64_RELOC_SUBTRACTOR.
526     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
527       DataRefImpl RelPrev = Rel;
528       RelPrev.d.a--;
529       uint64_t PrevType = MachO->getRelocationType(RelPrev);
530       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
531         return true;
532     }
533   }
534 
535   return false;
536 }
537 
538 namespace {
539 class SourcePrinter {
540 protected:
541   DILineInfo OldLineInfo;
542   const ObjectFile *Obj = nullptr;
543   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
544   // File name to file contents of source.
545   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
546   // Mark the line endings of the cached source.
547   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
548   // Keep track of missing sources.
549   StringSet<> MissingSources;
550   // Only emit 'no debug info' warning once.
551   bool WarnedNoDebugInfo;
552 
553 private:
554   bool cacheSource(const DILineInfo& LineInfoFile);
555 
556   void printLines(raw_ostream &OS, const DILineInfo &LineInfo,
557                   StringRef Delimiter);
558 
559   void printSources(raw_ostream &OS, const DILineInfo &LineInfo,
560                     StringRef ObjectFilename, StringRef Delimiter);
561 
562 public:
563   SourcePrinter() = default;
564   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch)
565       : Obj(Obj), WarnedNoDebugInfo(false) {
566     symbolize::LLVMSymbolizer::Options SymbolizerOpts;
567     SymbolizerOpts.PrintFunctions =
568         DILineInfoSpecifier::FunctionNameKind::LinkageName;
569     SymbolizerOpts.Demangle = Demangle;
570     SymbolizerOpts.DefaultArch = std::string(DefaultArch);
571     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
572   }
573   virtual ~SourcePrinter() = default;
574   virtual void printSourceLine(raw_ostream &OS,
575                                object::SectionedAddress Address,
576                                StringRef ObjectFilename,
577                                StringRef Delimiter = "; ");
578 };
579 
580 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
581   std::unique_ptr<MemoryBuffer> Buffer;
582   if (LineInfo.Source) {
583     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
584   } else {
585     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
586     if (!BufferOrError) {
587       if (MissingSources.insert(LineInfo.FileName).second)
588         reportWarning("failed to find source " + LineInfo.FileName,
589                       Obj->getFileName());
590       return false;
591     }
592     Buffer = std::move(*BufferOrError);
593   }
594   // Chomp the file to get lines
595   const char *BufferStart = Buffer->getBufferStart(),
596              *BufferEnd = Buffer->getBufferEnd();
597   std::vector<StringRef> &Lines = LineCache[LineInfo.FileName];
598   const char *Start = BufferStart;
599   for (const char *I = BufferStart; I != BufferEnd; ++I)
600     if (*I == '\n') {
601       Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r'));
602       Start = I + 1;
603     }
604   if (Start < BufferEnd)
605     Lines.emplace_back(Start, BufferEnd - Start);
606   SourceCache[LineInfo.FileName] = std::move(Buffer);
607   return true;
608 }
609 
610 void SourcePrinter::printSourceLine(raw_ostream &OS,
611                                     object::SectionedAddress Address,
612                                     StringRef ObjectFilename,
613                                     StringRef Delimiter) {
614   if (!Symbolizer)
615     return;
616 
617   DILineInfo LineInfo = DILineInfo();
618   auto ExpectedLineInfo = Symbolizer->symbolizeCode(*Obj, Address);
619   std::string ErrorMessage;
620   if (!ExpectedLineInfo)
621     ErrorMessage = toString(ExpectedLineInfo.takeError());
622   else
623     LineInfo = *ExpectedLineInfo;
624 
625   if (LineInfo.FileName == DILineInfo::BadString) {
626     if (!WarnedNoDebugInfo) {
627       std::string Warning =
628           "failed to parse debug information for " + ObjectFilename.str();
629       if (!ErrorMessage.empty())
630         Warning += ": " + ErrorMessage;
631       reportWarning(Warning, ObjectFilename);
632       WarnedNoDebugInfo = true;
633     }
634   }
635 
636   if (PrintLines)
637     printLines(OS, LineInfo, Delimiter);
638   if (PrintSource)
639     printSources(OS, LineInfo, ObjectFilename, Delimiter);
640   OldLineInfo = LineInfo;
641 }
642 
643 void SourcePrinter::printLines(raw_ostream &OS, const DILineInfo &LineInfo,
644                                StringRef Delimiter) {
645   bool PrintFunctionName = LineInfo.FunctionName != DILineInfo::BadString &&
646                            LineInfo.FunctionName != OldLineInfo.FunctionName;
647   if (PrintFunctionName) {
648     OS << Delimiter << LineInfo.FunctionName;
649     // If demangling is successful, FunctionName will end with "()". Print it
650     // only if demangling did not run or was unsuccessful.
651     if (!StringRef(LineInfo.FunctionName).endswith("()"))
652       OS << "()";
653     OS << ":\n";
654   }
655   if (LineInfo.FileName != DILineInfo::BadString && LineInfo.Line != 0 &&
656       (OldLineInfo.Line != LineInfo.Line ||
657        OldLineInfo.FileName != LineInfo.FileName || PrintFunctionName))
658     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
659 }
660 
661 void SourcePrinter::printSources(raw_ostream &OS, const DILineInfo &LineInfo,
662                                  StringRef ObjectFilename,
663                                  StringRef Delimiter) {
664   if (LineInfo.FileName == DILineInfo::BadString || LineInfo.Line == 0 ||
665       (OldLineInfo.Line == LineInfo.Line &&
666        OldLineInfo.FileName == LineInfo.FileName))
667     return;
668 
669   if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
670     if (!cacheSource(LineInfo))
671       return;
672   auto LineBuffer = LineCache.find(LineInfo.FileName);
673   if (LineBuffer != LineCache.end()) {
674     if (LineInfo.Line > LineBuffer->second.size()) {
675       reportWarning(
676           formatv(
677               "debug info line number {0} exceeds the number of lines in {1}",
678               LineInfo.Line, LineInfo.FileName),
679           ObjectFilename);
680       return;
681     }
682     // Vector begins at 0, line numbers are non-zero
683     OS << Delimiter << LineBuffer->second[LineInfo.Line - 1] << '\n';
684   }
685 }
686 
687 static bool isAArch64Elf(const ObjectFile *Obj) {
688   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
689   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
690 }
691 
692 static bool isArmElf(const ObjectFile *Obj) {
693   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
694   return Elf && Elf->getEMachine() == ELF::EM_ARM;
695 }
696 
697 static bool hasMappingSymbols(const ObjectFile *Obj) {
698   return isArmElf(Obj) || isAArch64Elf(Obj);
699 }
700 
701 static void printRelocation(StringRef FileName, const RelocationRef &Rel,
702                             uint64_t Address, bool Is64Bits) {
703   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
704   SmallString<16> Name;
705   SmallString<32> Val;
706   Rel.getTypeName(Name);
707   if (Error E = getRelocationValueString(Rel, Val))
708     reportError(std::move(E), FileName);
709   outs() << format(Fmt.data(), Address) << Name << "\t" << Val << "\n";
710 }
711 
712 class PrettyPrinter {
713 public:
714   virtual ~PrettyPrinter() = default;
715   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
716                          ArrayRef<uint8_t> Bytes,
717                          object::SectionedAddress Address, raw_ostream &OS,
718                          StringRef Annot, MCSubtargetInfo const &STI,
719                          SourcePrinter *SP, StringRef ObjectFilename,
720                          std::vector<RelocationRef> *Rels = nullptr) {
721     if (SP && (PrintSource || PrintLines))
722       SP->printSourceLine(OS, Address, ObjectFilename);
723 
724     size_t Start = OS.tell();
725     if (!NoLeadingAddr)
726       OS << format("%8" PRIx64 ":", Address.Address);
727     if (!NoShowRawInsn) {
728       OS << ' ';
729       dumpBytes(Bytes, OS);
730     }
731 
732     // The output of printInst starts with a tab. Print some spaces so that
733     // the tab has 1 column and advances to the target tab stop.
734     unsigned TabStop = NoShowRawInsn ? 16 : 40;
735     unsigned Column = OS.tell() - Start;
736     OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
737 
738     if (MI) {
739       // See MCInstPrinter::printInst. On targets where a PC relative immediate
740       // is relative to the next instruction and the length of a MCInst is
741       // difficult to measure (x86), this is the address of the next
742       // instruction.
743       uint64_t Addr =
744           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
745       IP.printInst(MI, Addr, "", STI, OS);
746     } else
747       OS << "\t<unknown>";
748   }
749 };
750 PrettyPrinter PrettyPrinterInst;
751 
752 class HexagonPrettyPrinter : public PrettyPrinter {
753 public:
754   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
755                  raw_ostream &OS) {
756     uint32_t opcode =
757       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
758     if (!NoLeadingAddr)
759       OS << format("%8" PRIx64 ":", Address);
760     if (!NoShowRawInsn) {
761       OS << "\t";
762       dumpBytes(Bytes.slice(0, 4), OS);
763       OS << format("\t%08" PRIx32, opcode);
764     }
765   }
766   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
767                  object::SectionedAddress Address, raw_ostream &OS,
768                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
769                  StringRef ObjectFilename,
770                  std::vector<RelocationRef> *Rels) override {
771     if (SP && (PrintSource || PrintLines))
772       SP->printSourceLine(OS, Address, ObjectFilename, "");
773     if (!MI) {
774       printLead(Bytes, Address.Address, OS);
775       OS << " <unknown>";
776       return;
777     }
778     std::string Buffer;
779     {
780       raw_string_ostream TempStream(Buffer);
781       IP.printInst(MI, Address.Address, "", STI, TempStream);
782     }
783     StringRef Contents(Buffer);
784     // Split off bundle attributes
785     auto PacketBundle = Contents.rsplit('\n');
786     // Split off first instruction from the rest
787     auto HeadTail = PacketBundle.first.split('\n');
788     auto Preamble = " { ";
789     auto Separator = "";
790 
791     // Hexagon's packets require relocations to be inline rather than
792     // clustered at the end of the packet.
793     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
794     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
795     auto PrintReloc = [&]() -> void {
796       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
797         if (RelCur->getOffset() == Address.Address) {
798           printRelocation(ObjectFilename, *RelCur, Address.Address, false);
799           return;
800         }
801         ++RelCur;
802       }
803     };
804 
805     while (!HeadTail.first.empty()) {
806       OS << Separator;
807       Separator = "\n";
808       if (SP && (PrintSource || PrintLines))
809         SP->printSourceLine(OS, Address, ObjectFilename, "");
810       printLead(Bytes, Address.Address, OS);
811       OS << Preamble;
812       Preamble = "   ";
813       StringRef Inst;
814       auto Duplex = HeadTail.first.split('\v');
815       if (!Duplex.second.empty()) {
816         OS << Duplex.first;
817         OS << "; ";
818         Inst = Duplex.second;
819       }
820       else
821         Inst = HeadTail.first;
822       OS << Inst;
823       HeadTail = HeadTail.second.split('\n');
824       if (HeadTail.first.empty())
825         OS << " } " << PacketBundle.second;
826       PrintReloc();
827       Bytes = Bytes.slice(4);
828       Address.Address += 4;
829     }
830   }
831 };
832 HexagonPrettyPrinter HexagonPrettyPrinterInst;
833 
834 class AMDGCNPrettyPrinter : public PrettyPrinter {
835 public:
836   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
837                  object::SectionedAddress Address, raw_ostream &OS,
838                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
839                  StringRef ObjectFilename,
840                  std::vector<RelocationRef> *Rels) override {
841     if (SP && (PrintSource || PrintLines))
842       SP->printSourceLine(OS, Address, ObjectFilename);
843 
844     if (MI) {
845       SmallString<40> InstStr;
846       raw_svector_ostream IS(InstStr);
847 
848       IP.printInst(MI, Address.Address, "", STI, IS);
849 
850       OS << left_justify(IS.str(), 60);
851     } else {
852       // an unrecognized encoding - this is probably data so represent it
853       // using the .long directive, or .byte directive if fewer than 4 bytes
854       // remaining
855       if (Bytes.size() >= 4) {
856         OS << format("\t.long 0x%08" PRIx32 " ",
857                      support::endian::read32<support::little>(Bytes.data()));
858         OS.indent(42);
859       } else {
860           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
861           for (unsigned int i = 1; i < Bytes.size(); i++)
862             OS << format(", 0x%02" PRIx8, Bytes[i]);
863           OS.indent(55 - (6 * Bytes.size()));
864       }
865     }
866 
867     OS << format("// %012" PRIX64 ":", Address.Address);
868     if (Bytes.size() >= 4) {
869       // D should be casted to uint32_t here as it is passed by format to
870       // snprintf as vararg.
871       for (uint32_t D : makeArrayRef(
872                reinterpret_cast<const support::little32_t *>(Bytes.data()),
873                Bytes.size() / 4))
874         OS << format(" %08" PRIX32, D);
875     } else {
876       for (unsigned char B : Bytes)
877         OS << format(" %02" PRIX8, B);
878     }
879 
880     if (!Annot.empty())
881       OS << " // " << Annot;
882   }
883 };
884 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
885 
886 class BPFPrettyPrinter : public PrettyPrinter {
887 public:
888   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
889                  object::SectionedAddress Address, raw_ostream &OS,
890                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
891                  StringRef ObjectFilename,
892                  std::vector<RelocationRef> *Rels) override {
893     if (SP && (PrintSource || PrintLines))
894       SP->printSourceLine(OS, Address, ObjectFilename);
895     if (!NoLeadingAddr)
896       OS << format("%8" PRId64 ":", Address.Address / 8);
897     if (!NoShowRawInsn) {
898       OS << "\t";
899       dumpBytes(Bytes, OS);
900     }
901     if (MI)
902       IP.printInst(MI, Address.Address, "", STI, OS);
903     else
904       OS << "\t<unknown>";
905   }
906 };
907 BPFPrettyPrinter BPFPrettyPrinterInst;
908 
909 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
910   switch(Triple.getArch()) {
911   default:
912     return PrettyPrinterInst;
913   case Triple::hexagon:
914     return HexagonPrettyPrinterInst;
915   case Triple::amdgcn:
916     return AMDGCNPrettyPrinterInst;
917   case Triple::bpfel:
918   case Triple::bpfeb:
919     return BPFPrettyPrinterInst;
920   }
921 }
922 }
923 
924 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
925   assert(Obj->isELF());
926   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
927     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
928   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
929     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
930   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
931     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
932   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
933     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
934   llvm_unreachable("Unsupported binary format");
935 }
936 
937 template <class ELFT> static void
938 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
939                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
940   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
941     uint8_t SymbolType = Symbol.getELFType();
942     if (SymbolType == ELF::STT_SECTION)
943       continue;
944 
945     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
946     // ELFSymbolRef::getAddress() returns size instead of value for common
947     // symbols which is not desirable for disassembly output. Overriding.
948     if (SymbolType == ELF::STT_COMMON)
949       Address = Obj->getSymbol(Symbol.getRawDataRefImpl())->st_value;
950 
951     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
952     if (Name.empty())
953       continue;
954 
955     section_iterator SecI =
956         unwrapOrError(Symbol.getSection(), Obj->getFileName());
957     if (SecI == Obj->section_end())
958       continue;
959 
960     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
961   }
962 }
963 
964 static void
965 addDynamicElfSymbols(const ObjectFile *Obj,
966                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
967   assert(Obj->isELF());
968   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
969     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
970   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
971     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
972   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
973     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
974   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
975     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
976   else
977     llvm_unreachable("Unsupported binary format");
978 }
979 
980 static void addPltEntries(const ObjectFile *Obj,
981                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
982                           StringSaver &Saver) {
983   Optional<SectionRef> Plt = None;
984   for (const SectionRef &Section : Obj->sections()) {
985     Expected<StringRef> SecNameOrErr = Section.getName();
986     if (!SecNameOrErr) {
987       consumeError(SecNameOrErr.takeError());
988       continue;
989     }
990     if (*SecNameOrErr == ".plt")
991       Plt = Section;
992   }
993   if (!Plt)
994     return;
995   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
996     for (auto PltEntry : ElfObj->getPltAddresses()) {
997       SymbolRef Symbol(PltEntry.first, ElfObj);
998       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
999 
1000       StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
1001       if (!Name.empty())
1002         AllSymbols[*Plt].emplace_back(
1003             PltEntry.second, Saver.save((Name + "@plt").str()), SymbolType);
1004     }
1005   }
1006 }
1007 
1008 // Normally the disassembly output will skip blocks of zeroes. This function
1009 // returns the number of zero bytes that can be skipped when dumping the
1010 // disassembly of the instructions in Buf.
1011 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
1012   // Find the number of leading zeroes.
1013   size_t N = 0;
1014   while (N < Buf.size() && !Buf[N])
1015     ++N;
1016 
1017   // We may want to skip blocks of zero bytes, but unless we see
1018   // at least 8 of them in a row.
1019   if (N < 8)
1020     return 0;
1021 
1022   // We skip zeroes in multiples of 4 because do not want to truncate an
1023   // instruction if it starts with a zero byte.
1024   return N & ~0x3;
1025 }
1026 
1027 // Returns a map from sections to their relocations.
1028 static std::map<SectionRef, std::vector<RelocationRef>>
1029 getRelocsMap(object::ObjectFile const &Obj) {
1030   std::map<SectionRef, std::vector<RelocationRef>> Ret;
1031   uint64_t I = (uint64_t)-1;
1032   for (SectionRef Sec : Obj.sections()) {
1033     ++I;
1034     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
1035     if (!RelocatedOrErr)
1036       reportError(Obj.getFileName(),
1037                   "section (" + Twine(I) +
1038                       "): failed to get a relocated section: " +
1039                       toString(RelocatedOrErr.takeError()));
1040 
1041     section_iterator Relocated = *RelocatedOrErr;
1042     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
1043       continue;
1044     std::vector<RelocationRef> &V = Ret[*Relocated];
1045     for (const RelocationRef &R : Sec.relocations())
1046       V.push_back(R);
1047     // Sort relocations by address.
1048     llvm::stable_sort(V, isRelocAddressLess);
1049   }
1050   return Ret;
1051 }
1052 
1053 // Used for --adjust-vma to check if address should be adjusted by the
1054 // specified value for a given section.
1055 // For ELF we do not adjust non-allocatable sections like debug ones,
1056 // because they are not loadable.
1057 // TODO: implement for other file formats.
1058 static bool shouldAdjustVA(const SectionRef &Section) {
1059   const ObjectFile *Obj = Section.getObject();
1060   if (isa<object::ELFObjectFileBase>(Obj))
1061     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1062   return false;
1063 }
1064 
1065 
1066 typedef std::pair<uint64_t, char> MappingSymbolPair;
1067 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1068                                  uint64_t Address) {
1069   auto It =
1070       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1071         return Val.first <= Address;
1072       });
1073   // Return zero for any address before the first mapping symbol; this means
1074   // we should use the default disassembly mode, depending on the target.
1075   if (It == MappingSymbols.begin())
1076     return '\x00';
1077   return (It - 1)->second;
1078 }
1079 
1080 static uint64_t
1081 dumpARMELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1082                const ObjectFile *Obj, ArrayRef<uint8_t> Bytes,
1083                ArrayRef<MappingSymbolPair> MappingSymbols) {
1084   support::endianness Endian =
1085       Obj->isLittleEndian() ? support::little : support::big;
1086   while (Index < End) {
1087     outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1088     outs() << "\t";
1089     if (Index + 4 <= End) {
1090       dumpBytes(Bytes.slice(Index, 4), outs());
1091       outs() << "\t.word\t"
1092              << format_hex(
1093                     support::endian::read32(Bytes.data() + Index, Endian), 10);
1094       Index += 4;
1095     } else if (Index + 2 <= End) {
1096       dumpBytes(Bytes.slice(Index, 2), outs());
1097       outs() << "\t\t.short\t"
1098              << format_hex(
1099                     support::endian::read16(Bytes.data() + Index, Endian), 6);
1100       Index += 2;
1101     } else {
1102       dumpBytes(Bytes.slice(Index, 1), outs());
1103       outs() << "\t\t.byte\t" << format_hex(Bytes[0], 4);
1104       ++Index;
1105     }
1106     outs() << "\n";
1107     if (getMappingSymbolKind(MappingSymbols, Index) != 'd')
1108       break;
1109   }
1110   return Index;
1111 }
1112 
1113 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1114                         ArrayRef<uint8_t> Bytes) {
1115   // print out data up to 8 bytes at a time in hex and ascii
1116   uint8_t AsciiData[9] = {'\0'};
1117   uint8_t Byte;
1118   int NumBytes = 0;
1119 
1120   for (; Index < End; ++Index) {
1121     if (NumBytes == 0)
1122       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1123     Byte = Bytes.slice(Index)[0];
1124     outs() << format(" %02x", Byte);
1125     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1126 
1127     uint8_t IndentOffset = 0;
1128     NumBytes++;
1129     if (Index == End - 1 || NumBytes > 8) {
1130       // Indent the space for less than 8 bytes data.
1131       // 2 spaces for byte and one for space between bytes
1132       IndentOffset = 3 * (8 - NumBytes);
1133       for (int Excess = NumBytes; Excess < 8; Excess++)
1134         AsciiData[Excess] = '\0';
1135       NumBytes = 8;
1136     }
1137     if (NumBytes == 8) {
1138       AsciiData[8] = '\0';
1139       outs() << std::string(IndentOffset, ' ') << "         ";
1140       outs() << reinterpret_cast<char *>(AsciiData);
1141       outs() << '\n';
1142       NumBytes = 0;
1143     }
1144   }
1145 }
1146 
1147 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1148                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1149                               MCDisassembler *SecondaryDisAsm,
1150                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1151                               const MCSubtargetInfo *PrimarySTI,
1152                               const MCSubtargetInfo *SecondarySTI,
1153                               PrettyPrinter &PIP,
1154                               SourcePrinter &SP, bool InlineRelocs) {
1155   const MCSubtargetInfo *STI = PrimarySTI;
1156   MCDisassembler *DisAsm = PrimaryDisAsm;
1157   bool PrimaryIsThumb = false;
1158   if (isArmElf(Obj))
1159     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1160 
1161   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1162   if (InlineRelocs)
1163     RelocMap = getRelocsMap(*Obj);
1164   bool Is64Bits = Obj->getBytesInAddress() > 4;
1165 
1166   // Create a mapping from virtual address to symbol name.  This is used to
1167   // pretty print the symbols while disassembling.
1168   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1169   SectionSymbolsTy AbsoluteSymbols;
1170   const StringRef FileName = Obj->getFileName();
1171   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1172   for (const SymbolRef &Symbol : Obj->symbols()) {
1173     uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName);
1174 
1175     StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1176     if (Name.empty())
1177       continue;
1178 
1179     uint8_t SymbolType = ELF::STT_NOTYPE;
1180     if (Obj->isELF()) {
1181       SymbolType = getElfSymbolType(Obj, Symbol);
1182       if (SymbolType == ELF::STT_SECTION)
1183         continue;
1184     }
1185 
1186     // Don't ask a Mach-O STAB symbol for its section unless you know that
1187     // STAB symbol's section field refers to a valid section index. Otherwise
1188     // the symbol may error trying to load a section that does not exist.
1189     if (MachO) {
1190       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1191       uint8_t NType = (MachO->is64Bit() ?
1192                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1193                        MachO->getSymbolTableEntry(SymDRI).n_type);
1194       if (NType & MachO::N_STAB)
1195         continue;
1196     }
1197 
1198     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1199     if (SecI != Obj->section_end())
1200       AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1201     else
1202       AbsoluteSymbols.emplace_back(Address, Name, SymbolType);
1203   }
1204   if (AllSymbols.empty() && Obj->isELF())
1205     addDynamicElfSymbols(Obj, AllSymbols);
1206 
1207   BumpPtrAllocator A;
1208   StringSaver Saver(A);
1209   addPltEntries(Obj, AllSymbols, Saver);
1210 
1211   // Create a mapping from virtual address to section. An empty section can
1212   // cause more than one section at the same address. Use a stable sort to
1213   // stabilize the output.
1214   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1215   for (SectionRef Sec : Obj->sections())
1216     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1217   stable_sort(SectionAddresses);
1218 
1219   // Linked executables (.exe and .dll files) typically don't include a real
1220   // symbol table but they might contain an export table.
1221   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1222     for (const auto &ExportEntry : COFFObj->export_directories()) {
1223       StringRef Name;
1224       if (std::error_code EC = ExportEntry.getSymbolName(Name))
1225         reportError(errorCodeToError(EC), Obj->getFileName());
1226       if (Name.empty())
1227         continue;
1228 
1229       uint32_t RVA;
1230       if (std::error_code EC = ExportEntry.getExportRVA(RVA))
1231         reportError(errorCodeToError(EC), Obj->getFileName());
1232 
1233       uint64_t VA = COFFObj->getImageBase() + RVA;
1234       auto Sec = partition_point(
1235           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1236             return O.first <= VA;
1237           });
1238       if (Sec != SectionAddresses.begin()) {
1239         --Sec;
1240         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1241       } else
1242         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1243     }
1244   }
1245 
1246   // Sort all the symbols, this allows us to use a simple binary search to find
1247   // Multiple symbols can have the same address. Use a stable sort to stabilize
1248   // the output.
1249   StringSet<> FoundDisasmSymbolSet;
1250   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1251     stable_sort(SecSyms.second);
1252   stable_sort(AbsoluteSymbols);
1253 
1254   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1255     if (FilterSections.empty() && !DisassembleAll &&
1256         (!Section.isText() || Section.isVirtual()))
1257       continue;
1258 
1259     uint64_t SectionAddr = Section.getAddress();
1260     uint64_t SectSize = Section.getSize();
1261     if (!SectSize)
1262       continue;
1263 
1264     // Get the list of all the symbols in this section.
1265     SectionSymbolsTy &Symbols = AllSymbols[Section];
1266     std::vector<MappingSymbolPair> MappingSymbols;
1267     if (hasMappingSymbols(Obj)) {
1268       for (const auto &Symb : Symbols) {
1269         uint64_t Address = Symb.Addr;
1270         StringRef Name = Symb.Name;
1271         if (Name.startswith("$d"))
1272           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1273         if (Name.startswith("$x"))
1274           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1275         if (Name.startswith("$a"))
1276           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1277         if (Name.startswith("$t"))
1278           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1279       }
1280     }
1281 
1282     llvm::sort(MappingSymbols);
1283 
1284     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1285       // AMDGPU disassembler uses symbolizer for printing labels
1286       std::unique_ptr<MCRelocationInfo> RelInfo(
1287         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1288       if (RelInfo) {
1289         std::unique_ptr<MCSymbolizer> Symbolizer(
1290           TheTarget->createMCSymbolizer(
1291             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1292         DisAsm->setSymbolizer(std::move(Symbolizer));
1293       }
1294     }
1295 
1296     StringRef SegmentName = "";
1297     if (MachO) {
1298       DataRefImpl DR = Section.getRawDataRefImpl();
1299       SegmentName = MachO->getSectionFinalSegmentName(DR);
1300     }
1301 
1302     StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName());
1303     // If the section has no symbol at the start, just insert a dummy one.
1304     if (Symbols.empty() || Symbols[0].Addr != 0) {
1305       Symbols.insert(
1306           Symbols.begin(),
1307            SymbolInfoTy(SectionAddr, SectionName,
1308                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1309     }
1310 
1311     SmallString<40> Comments;
1312     raw_svector_ostream CommentStream(Comments);
1313 
1314     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1315         unwrapOrError(Section.getContents(), Obj->getFileName()));
1316 
1317     uint64_t VMAAdjustment = 0;
1318     if (shouldAdjustVA(Section))
1319       VMAAdjustment = AdjustVMA;
1320 
1321     uint64_t Size;
1322     uint64_t Index;
1323     bool PrintedSection = false;
1324     std::vector<RelocationRef> Rels = RelocMap[Section];
1325     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1326     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1327     // Disassemble symbol by symbol.
1328     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1329       std::string SymbolName = Symbols[SI].Name.str();
1330       if (Demangle)
1331         SymbolName = demangle(SymbolName);
1332 
1333       // Skip if --disassemble-symbols is not empty and the symbol is not in
1334       // the list.
1335       if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName))
1336         continue;
1337 
1338       uint64_t Start = Symbols[SI].Addr;
1339       if (Start < SectionAddr || StopAddress <= Start)
1340         continue;
1341       else
1342         FoundDisasmSymbolSet.insert(SymbolName);
1343 
1344       // The end is the section end, the beginning of the next symbol, or
1345       // --stop-address.
1346       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1347       if (SI + 1 < SE)
1348         End = std::min(End, Symbols[SI + 1].Addr);
1349       if (Start >= End || End <= StartAddress)
1350         continue;
1351       Start -= SectionAddr;
1352       End -= SectionAddr;
1353 
1354       if (!PrintedSection) {
1355         PrintedSection = true;
1356         outs() << "\nDisassembly of section ";
1357         if (!SegmentName.empty())
1358           outs() << SegmentName << ",";
1359         outs() << SectionName << ":\n";
1360       }
1361 
1362       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1363         if (Symbols[SI].Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1364           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1365           Start += 256;
1366         }
1367         if (SI == SE - 1 ||
1368             Symbols[SI + 1].Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1369           // cut trailing zeroes at the end of kernel
1370           // cut up to 256 bytes
1371           const uint64_t EndAlign = 256;
1372           const auto Limit = End - (std::min)(EndAlign, End - Start);
1373           while (End > Limit &&
1374             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1375             End -= 4;
1376         }
1377       }
1378 
1379       outs() << '\n';
1380       if (!NoLeadingAddr)
1381         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1382                          SectionAddr + Start + VMAAdjustment);
1383 
1384       outs() << '<' << SymbolName << ">:\n";
1385 
1386       // Don't print raw contents of a virtual section. A virtual section
1387       // doesn't have any contents in the file.
1388       if (Section.isVirtual()) {
1389         outs() << "...\n";
1390         continue;
1391       }
1392 
1393       // Some targets (like WebAssembly) have a special prelude at the start
1394       // of each symbol.
1395       DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start),
1396                             SectionAddr + Start, CommentStream);
1397       Start += Size;
1398 
1399       Index = Start;
1400       if (SectionAddr < StartAddress)
1401         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1402 
1403       // If there is a data/common symbol inside an ELF text section and we are
1404       // only disassembling text (applicable all architectures), we are in a
1405       // situation where we must print the data and not disassemble it.
1406       if (Obj->isELF() && !DisassembleAll && Section.isText()) {
1407         uint8_t SymTy = Symbols[SI].Type;
1408         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1409           dumpELFData(SectionAddr, Index, End, Bytes);
1410           Index = End;
1411         }
1412       }
1413 
1414       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1415                              Symbols[SI].Type != ELF::STT_OBJECT &&
1416                              !DisassembleAll;
1417       while (Index < End) {
1418         // ARM and AArch64 ELF binaries can interleave data and text in the
1419         // same section. We rely on the markers introduced to understand what
1420         // we need to dump. If the data marker is within a function, it is
1421         // denoted as a word/short etc.
1422         if (CheckARMELFData &&
1423             getMappingSymbolKind(MappingSymbols, Index) == 'd') {
1424           Index = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1425                                  MappingSymbols);
1426           continue;
1427         }
1428 
1429         // When -z or --disassemble-zeroes are given we always dissasemble
1430         // them. Otherwise we might want to skip zero bytes we see.
1431         if (!DisassembleZeroes) {
1432           uint64_t MaxOffset = End - Index;
1433           // For --reloc: print zero blocks patched by relocations, so that
1434           // relocations can be shown in the dump.
1435           if (RelCur != RelEnd)
1436             MaxOffset = RelCur->getOffset() - Index;
1437 
1438           if (size_t N =
1439                   countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1440             outs() << "\t\t..." << '\n';
1441             Index += N;
1442             continue;
1443           }
1444         }
1445 
1446         if (SecondarySTI) {
1447           if (getMappingSymbolKind(MappingSymbols, Index) == 'a') {
1448             STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1449             DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1450           } else if (getMappingSymbolKind(MappingSymbols, Index) == 't') {
1451             STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1452             DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1453           }
1454         }
1455 
1456         // Disassemble a real instruction or a data when disassemble all is
1457         // provided
1458         MCInst Inst;
1459         bool Disassembled = DisAsm->getInstruction(
1460             Inst, Size, Bytes.slice(Index), SectionAddr + Index, CommentStream);
1461         if (Size == 0)
1462           Size = 1;
1463 
1464         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1465                       Bytes.slice(Index, Size),
1466                       {SectionAddr + Index + VMAAdjustment, Section.getIndex()},
1467                       outs(), "", *STI, &SP, Obj->getFileName(), &Rels);
1468         outs() << CommentStream.str();
1469         Comments.clear();
1470 
1471         // If disassembly has failed, continue with the next instruction, to
1472         // avoid analysing invalid/incomplete instruction information.
1473         if (!Disassembled) {
1474           outs() << "\n";
1475           Index += Size;
1476           continue;
1477         }
1478 
1479         // Try to resolve the target of a call, tail call, etc. to a specific
1480         // symbol.
1481         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1482                     MIA->isConditionalBranch(Inst))) {
1483           uint64_t Target;
1484           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1485             // In a relocatable object, the target's section must reside in
1486             // the same section as the call instruction or it is accessed
1487             // through a relocation.
1488             //
1489             // In a non-relocatable object, the target may be in any section.
1490             //
1491             // N.B. We don't walk the relocations in the relocatable case yet.
1492             auto *TargetSectionSymbols = &Symbols;
1493             if (!Obj->isRelocatableObject()) {
1494               auto It = partition_point(
1495                   SectionAddresses,
1496                   [=](const std::pair<uint64_t, SectionRef> &O) {
1497                     return O.first <= Target;
1498                   });
1499               if (It != SectionAddresses.begin()) {
1500                 --It;
1501                 TargetSectionSymbols = &AllSymbols[It->second];
1502               } else {
1503                 TargetSectionSymbols = &AbsoluteSymbols;
1504               }
1505             }
1506 
1507             // Find the last symbol in the section whose offset is less than
1508             // or equal to the target. If there isn't a section that contains
1509             // the target, find the nearest preceding absolute symbol.
1510             auto TargetSym = partition_point(
1511                 *TargetSectionSymbols,
1512                 [=](const SymbolInfoTy &O) {
1513                   return O.Addr <= Target;
1514                 });
1515             if (TargetSym == TargetSectionSymbols->begin()) {
1516               TargetSectionSymbols = &AbsoluteSymbols;
1517               TargetSym = partition_point(
1518                   AbsoluteSymbols,
1519                   [=](const SymbolInfoTy &O) {
1520                     return O.Addr <= Target;
1521                   });
1522             }
1523             if (TargetSym != TargetSectionSymbols->begin()) {
1524               --TargetSym;
1525               uint64_t TargetAddress = TargetSym->Addr;
1526               StringRef TargetName = TargetSym->Name;
1527               outs() << " <" << TargetName;
1528               uint64_t Disp = Target - TargetAddress;
1529               if (Disp)
1530                 outs() << "+0x" << Twine::utohexstr(Disp);
1531               outs() << '>';
1532             }
1533           }
1534         }
1535         outs() << "\n";
1536 
1537         // Hexagon does this in pretty printer
1538         if (Obj->getArch() != Triple::hexagon) {
1539           // Print relocation for instruction.
1540           while (RelCur != RelEnd) {
1541             uint64_t Offset = RelCur->getOffset();
1542             // If this relocation is hidden, skip it.
1543             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1544               ++RelCur;
1545               continue;
1546             }
1547 
1548             // Stop when RelCur's offset is past the current instruction.
1549             if (Offset >= Index + Size)
1550               break;
1551 
1552             // When --adjust-vma is used, update the address printed.
1553             if (RelCur->getSymbol() != Obj->symbol_end()) {
1554               Expected<section_iterator> SymSI =
1555                   RelCur->getSymbol()->getSection();
1556               if (SymSI && *SymSI != Obj->section_end() &&
1557                   shouldAdjustVA(**SymSI))
1558                 Offset += AdjustVMA;
1559             }
1560 
1561             printRelocation(Obj->getFileName(), *RelCur, SectionAddr + Offset,
1562                             Is64Bits);
1563             ++RelCur;
1564           }
1565         }
1566 
1567         Index += Size;
1568       }
1569     }
1570   }
1571   StringSet<> MissingDisasmSymbolSet =
1572       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
1573   for (StringRef Sym : MissingDisasmSymbolSet.keys())
1574     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
1575 }
1576 
1577 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1578   const Target *TheTarget = getTarget(Obj);
1579 
1580   // Package up features to be passed to target/subtarget
1581   SubtargetFeatures Features = Obj->getFeatures();
1582   if (!MAttrs.empty())
1583     for (unsigned I = 0; I != MAttrs.size(); ++I)
1584       Features.AddFeature(MAttrs[I]);
1585 
1586   std::unique_ptr<const MCRegisterInfo> MRI(
1587       TheTarget->createMCRegInfo(TripleName));
1588   if (!MRI)
1589     reportError(Obj->getFileName(),
1590                 "no register info for target " + TripleName);
1591 
1592   // Set up disassembler.
1593   MCTargetOptions MCOptions;
1594   std::unique_ptr<const MCAsmInfo> AsmInfo(
1595       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
1596   if (!AsmInfo)
1597     reportError(Obj->getFileName(),
1598                 "no assembly info for target " + TripleName);
1599   std::unique_ptr<const MCSubtargetInfo> STI(
1600       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1601   if (!STI)
1602     reportError(Obj->getFileName(),
1603                 "no subtarget info for target " + TripleName);
1604   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1605   if (!MII)
1606     reportError(Obj->getFileName(),
1607                 "no instruction info for target " + TripleName);
1608   MCObjectFileInfo MOFI;
1609   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1610   // FIXME: for now initialize MCObjectFileInfo with default values
1611   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1612 
1613   std::unique_ptr<MCDisassembler> DisAsm(
1614       TheTarget->createMCDisassembler(*STI, Ctx));
1615   if (!DisAsm)
1616     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
1617 
1618   // If we have an ARM object file, we need a second disassembler, because
1619   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
1620   // We use mapping symbols to switch between the two assemblers, where
1621   // appropriate.
1622   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
1623   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
1624   if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
1625     if (STI->checkFeatures("+thumb-mode"))
1626       Features.AddFeature("-thumb-mode");
1627     else
1628       Features.AddFeature("+thumb-mode");
1629     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1630                                                         Features.getString()));
1631     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
1632   }
1633 
1634   std::unique_ptr<const MCInstrAnalysis> MIA(
1635       TheTarget->createMCInstrAnalysis(MII.get()));
1636 
1637   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1638   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1639       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1640   if (!IP)
1641     reportError(Obj->getFileName(),
1642                 "no instruction printer for target " + TripleName);
1643   IP->setPrintImmHex(PrintImmHex);
1644   IP->setPrintBranchImmAsAddress(true);
1645 
1646   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1647   SourcePrinter SP(Obj, TheTarget->getName());
1648 
1649   for (StringRef Opt : DisassemblerOptions)
1650     if (!IP->applyTargetSpecificCLOption(Opt))
1651       reportError(Obj->getFileName(),
1652                   "Unrecognized disassembler option: " + Opt);
1653 
1654   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
1655                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
1656                     SP, InlineRelocs);
1657 }
1658 
1659 void printRelocations(const ObjectFile *Obj) {
1660   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1661                                                  "%08" PRIx64;
1662   // Regular objdump doesn't print relocations in non-relocatable object
1663   // files.
1664   if (!Obj->isRelocatableObject())
1665     return;
1666 
1667   // Build a mapping from relocation target to a vector of relocation
1668   // sections. Usually, there is an only one relocation section for
1669   // each relocated section.
1670   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
1671   uint64_t Ndx;
1672   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
1673     if (Section.relocation_begin() == Section.relocation_end())
1674       continue;
1675     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
1676     if (!SecOrErr)
1677       reportError(Obj->getFileName(),
1678                   "section (" + Twine(Ndx) +
1679                       "): unable to get a relocation target: " +
1680                       toString(SecOrErr.takeError()));
1681     SecToRelSec[**SecOrErr].push_back(Section);
1682   }
1683 
1684   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
1685     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
1686     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
1687     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
1688     uint32_t TypePadding = 24;
1689     outs() << left_justify("OFFSET", OffsetPadding) << " "
1690            << left_justify("TYPE", TypePadding) << " "
1691            << "VALUE\n";
1692 
1693     for (SectionRef Section : P.second) {
1694       for (const RelocationRef &Reloc : Section.relocations()) {
1695         uint64_t Address = Reloc.getOffset();
1696         SmallString<32> RelocName;
1697         SmallString<32> ValueStr;
1698         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1699           continue;
1700         Reloc.getTypeName(RelocName);
1701         if (Error E = getRelocationValueString(Reloc, ValueStr))
1702           reportError(std::move(E), Obj->getFileName());
1703 
1704         outs() << format(Fmt.data(), Address) << " "
1705                << left_justify(RelocName, TypePadding) << " " << ValueStr
1706                << "\n";
1707       }
1708     }
1709     outs() << "\n";
1710   }
1711 }
1712 
1713 void printDynamicRelocations(const ObjectFile *Obj) {
1714   // For the moment, this option is for ELF only
1715   if (!Obj->isELF())
1716     return;
1717 
1718   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1719   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1720     reportError(Obj->getFileName(), "not a dynamic object");
1721     return;
1722   }
1723 
1724   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1725   if (DynRelSec.empty())
1726     return;
1727 
1728   outs() << "DYNAMIC RELOCATION RECORDS\n";
1729   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1730   for (const SectionRef &Section : DynRelSec)
1731     for (const RelocationRef &Reloc : Section.relocations()) {
1732       uint64_t Address = Reloc.getOffset();
1733       SmallString<32> RelocName;
1734       SmallString<32> ValueStr;
1735       Reloc.getTypeName(RelocName);
1736       if (Error E = getRelocationValueString(Reloc, ValueStr))
1737         reportError(std::move(E), Obj->getFileName());
1738       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1739              << ValueStr << "\n";
1740     }
1741 }
1742 
1743 // Returns true if we need to show LMA column when dumping section headers. We
1744 // show it only when the platform is ELF and either we have at least one section
1745 // whose VMA and LMA are different and/or when --show-lma flag is used.
1746 static bool shouldDisplayLMA(const ObjectFile *Obj) {
1747   if (!Obj->isELF())
1748     return false;
1749   for (const SectionRef &S : ToolSectionFilter(*Obj))
1750     if (S.getAddress() != getELFSectionLMA(S))
1751       return true;
1752   return ShowLMA;
1753 }
1754 
1755 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) {
1756   // Default column width for names is 13 even if no names are that long.
1757   size_t MaxWidth = 13;
1758   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1759     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1760     MaxWidth = std::max(MaxWidth, Name.size());
1761   }
1762   return MaxWidth;
1763 }
1764 
1765 void printSectionHeaders(const ObjectFile *Obj) {
1766   size_t NameWidth = getMaxSectionNameWidth(Obj);
1767   size_t AddressWidth = 2 * Obj->getBytesInAddress();
1768   bool HasLMAColumn = shouldDisplayLMA(Obj);
1769   if (HasLMAColumn)
1770     outs() << "Sections:\n"
1771               "Idx "
1772            << left_justify("Name", NameWidth) << " Size     "
1773            << left_justify("VMA", AddressWidth) << " "
1774            << left_justify("LMA", AddressWidth) << " Type\n";
1775   else
1776     outs() << "Sections:\n"
1777               "Idx "
1778            << left_justify("Name", NameWidth) << " Size     "
1779            << left_justify("VMA", AddressWidth) << " Type\n";
1780 
1781   uint64_t Idx;
1782   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) {
1783     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1784     uint64_t VMA = Section.getAddress();
1785     if (shouldAdjustVA(Section))
1786       VMA += AdjustVMA;
1787 
1788     uint64_t Size = Section.getSize();
1789 
1790     std::string Type = Section.isText() ? "TEXT" : "";
1791     if (Section.isData())
1792       Type += Type.empty() ? "DATA" : " DATA";
1793     if (Section.isBSS())
1794       Type += Type.empty() ? "BSS" : " BSS";
1795 
1796     if (HasLMAColumn)
1797       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1798                        Name.str().c_str(), Size)
1799              << format_hex_no_prefix(VMA, AddressWidth) << " "
1800              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
1801              << " " << Type << "\n";
1802     else
1803       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
1804                        Name.str().c_str(), Size)
1805              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
1806   }
1807   outs() << "\n";
1808 }
1809 
1810 void printSectionContents(const ObjectFile *Obj) {
1811   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1812     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
1813     uint64_t BaseAddr = Section.getAddress();
1814     uint64_t Size = Section.getSize();
1815     if (!Size)
1816       continue;
1817 
1818     outs() << "Contents of section " << Name << ":\n";
1819     if (Section.isBSS()) {
1820       outs() << format("<skipping contents of bss section at [%04" PRIx64
1821                        ", %04" PRIx64 ")>\n",
1822                        BaseAddr, BaseAddr + Size);
1823       continue;
1824     }
1825 
1826     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
1827 
1828     // Dump out the content as hex and printable ascii characters.
1829     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1830       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1831       // Dump line of hex.
1832       for (std::size_t I = 0; I < 16; ++I) {
1833         if (I != 0 && I % 4 == 0)
1834           outs() << ' ';
1835         if (Addr + I < End)
1836           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1837                  << hexdigit(Contents[Addr + I] & 0xF, true);
1838         else
1839           outs() << "  ";
1840       }
1841       // Print ascii.
1842       outs() << "  ";
1843       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1844         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1845           outs() << Contents[Addr + I];
1846         else
1847           outs() << ".";
1848       }
1849       outs() << "\n";
1850     }
1851   }
1852 }
1853 
1854 void printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1855                       StringRef ArchitectureName) {
1856   outs() << "SYMBOL TABLE:\n";
1857 
1858   if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) {
1859     printCOFFSymbolTable(Coff);
1860     return;
1861   }
1862 
1863   const StringRef FileName = O->getFileName();
1864   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O);
1865   for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) {
1866     const SymbolRef &Symbol = *I;
1867     uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
1868                                      ArchitectureName);
1869     if ((Address < StartAddress) || (Address > StopAddress))
1870       continue;
1871     SymbolRef::Type Type = unwrapOrError(Symbol.getType(), FileName,
1872                                          ArchiveName, ArchitectureName);
1873     uint32_t Flags = Symbol.getFlags();
1874 
1875     // Don't ask a Mach-O STAB symbol for its section unless you know that
1876     // STAB symbol's section field refers to a valid section index. Otherwise
1877     // the symbol may error trying to load a section that does not exist.
1878     bool isSTAB = false;
1879     if (MachO) {
1880       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1881       uint8_t NType = (MachO->is64Bit() ?
1882                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1883                        MachO->getSymbolTableEntry(SymDRI).n_type);
1884       if (NType & MachO::N_STAB)
1885         isSTAB = true;
1886     }
1887     section_iterator Section = isSTAB ? O->section_end() :
1888                                unwrapOrError(Symbol.getSection(), FileName,
1889                                              ArchiveName, ArchitectureName);
1890 
1891     StringRef Name;
1892     if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
1893       if (Expected<StringRef> NameOrErr = Section->getName())
1894         Name = *NameOrErr;
1895       else
1896         consumeError(NameOrErr.takeError());
1897 
1898     } else {
1899       Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
1900                            ArchitectureName);
1901     }
1902 
1903     bool Global = Flags & SymbolRef::SF_Global;
1904     bool Weak = Flags & SymbolRef::SF_Weak;
1905     bool Absolute = Flags & SymbolRef::SF_Absolute;
1906     bool Common = Flags & SymbolRef::SF_Common;
1907     bool Hidden = Flags & SymbolRef::SF_Hidden;
1908 
1909     char GlobLoc = ' ';
1910     if ((Section != O->section_end() || Absolute) && !Weak)
1911       GlobLoc = Global ? 'g' : 'l';
1912     char IFunc = ' ';
1913     if (isa<ELFObjectFileBase>(O)) {
1914       if (ELFSymbolRef(*I).getELFType() == ELF::STT_GNU_IFUNC)
1915         IFunc = 'i';
1916       if (ELFSymbolRef(*I).getBinding() == ELF::STB_GNU_UNIQUE)
1917         GlobLoc = 'u';
1918     }
1919     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1920                  ? 'd' : ' ';
1921     char FileFunc = ' ';
1922     if (Type == SymbolRef::ST_File)
1923       FileFunc = 'f';
1924     else if (Type == SymbolRef::ST_Function)
1925       FileFunc = 'F';
1926     else if (Type == SymbolRef::ST_Data)
1927       FileFunc = 'O';
1928 
1929     const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 :
1930                                                    "%08" PRIx64;
1931 
1932     outs() << format(Fmt, Address) << " "
1933            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1934            << (Weak ? 'w' : ' ') // Weak?
1935            << ' ' // Constructor. Not supported yet.
1936            << ' ' // Warning. Not supported yet.
1937            << IFunc
1938            << Debug // Debugging (d) or dynamic (D) symbol.
1939            << FileFunc // Name of function (F), file (f) or object (O).
1940            << ' ';
1941     if (Absolute) {
1942       outs() << "*ABS*";
1943     } else if (Common) {
1944       outs() << "*COM*";
1945     } else if (Section == O->section_end()) {
1946       outs() << "*UND*";
1947     } else {
1948       if (const MachOObjectFile *MachO =
1949           dyn_cast<const MachOObjectFile>(O)) {
1950         DataRefImpl DR = Section->getRawDataRefImpl();
1951         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1952         outs() << SegmentName << ",";
1953       }
1954       StringRef SectionName =
1955           unwrapOrError(Section->getName(), O->getFileName());
1956       outs() << SectionName;
1957     }
1958 
1959     if (Common || isa<ELFObjectFileBase>(O)) {
1960       uint64_t Val =
1961           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1962       outs() << '\t' << format(Fmt, Val);
1963     }
1964 
1965     if (isa<ELFObjectFileBase>(O)) {
1966       uint8_t Other = ELFSymbolRef(Symbol).getOther();
1967       switch (Other) {
1968       case ELF::STV_DEFAULT:
1969         break;
1970       case ELF::STV_INTERNAL:
1971         outs() << " .internal";
1972         break;
1973       case ELF::STV_HIDDEN:
1974         outs() << " .hidden";
1975         break;
1976       case ELF::STV_PROTECTED:
1977         outs() << " .protected";
1978         break;
1979       default:
1980         outs() << format(" 0x%02x", Other);
1981         break;
1982       }
1983     } else if (Hidden) {
1984       outs() << " .hidden";
1985     }
1986 
1987     if (Demangle)
1988       outs() << ' ' << demangle(std::string(Name)) << '\n';
1989     else
1990       outs() << ' ' << Name << '\n';
1991   }
1992 }
1993 
1994 static void printUnwindInfo(const ObjectFile *O) {
1995   outs() << "Unwind info:\n\n";
1996 
1997   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
1998     printCOFFUnwindInfo(Coff);
1999   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2000     printMachOUnwindInfo(MachO);
2001   else
2002     // TODO: Extract DWARF dump tool to objdump.
2003     WithColor::error(errs(), ToolName)
2004         << "This operation is only currently supported "
2005            "for COFF and MachO object files.\n";
2006 }
2007 
2008 /// Dump the raw contents of the __clangast section so the output can be piped
2009 /// into llvm-bcanalyzer.
2010 void printRawClangAST(const ObjectFile *Obj) {
2011   if (outs().is_displayed()) {
2012     WithColor::error(errs(), ToolName)
2013         << "The -raw-clang-ast option will dump the raw binary contents of "
2014            "the clang ast section.\n"
2015            "Please redirect the output to a file or another program such as "
2016            "llvm-bcanalyzer.\n";
2017     return;
2018   }
2019 
2020   StringRef ClangASTSectionName("__clangast");
2021   if (isa<COFFObjectFile>(Obj)) {
2022     ClangASTSectionName = "clangast";
2023   }
2024 
2025   Optional<object::SectionRef> ClangASTSection;
2026   for (auto Sec : ToolSectionFilter(*Obj)) {
2027     StringRef Name;
2028     if (Expected<StringRef> NameOrErr = Sec.getName())
2029       Name = *NameOrErr;
2030     else
2031       consumeError(NameOrErr.takeError());
2032 
2033     if (Name == ClangASTSectionName) {
2034       ClangASTSection = Sec;
2035       break;
2036     }
2037   }
2038   if (!ClangASTSection)
2039     return;
2040 
2041   StringRef ClangASTContents = unwrapOrError(
2042       ClangASTSection.getValue().getContents(), Obj->getFileName());
2043   outs().write(ClangASTContents.data(), ClangASTContents.size());
2044 }
2045 
2046 static void printFaultMaps(const ObjectFile *Obj) {
2047   StringRef FaultMapSectionName;
2048 
2049   if (isa<ELFObjectFileBase>(Obj)) {
2050     FaultMapSectionName = ".llvm_faultmaps";
2051   } else if (isa<MachOObjectFile>(Obj)) {
2052     FaultMapSectionName = "__llvm_faultmaps";
2053   } else {
2054     WithColor::error(errs(), ToolName)
2055         << "This operation is only currently supported "
2056            "for ELF and Mach-O executable files.\n";
2057     return;
2058   }
2059 
2060   Optional<object::SectionRef> FaultMapSection;
2061 
2062   for (auto Sec : ToolSectionFilter(*Obj)) {
2063     StringRef Name;
2064     if (Expected<StringRef> NameOrErr = Sec.getName())
2065       Name = *NameOrErr;
2066     else
2067       consumeError(NameOrErr.takeError());
2068 
2069     if (Name == FaultMapSectionName) {
2070       FaultMapSection = Sec;
2071       break;
2072     }
2073   }
2074 
2075   outs() << "FaultMap table:\n";
2076 
2077   if (!FaultMapSection.hasValue()) {
2078     outs() << "<not found>\n";
2079     return;
2080   }
2081 
2082   StringRef FaultMapContents =
2083       unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
2084   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2085                      FaultMapContents.bytes_end());
2086 
2087   outs() << FMP;
2088 }
2089 
2090 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2091   if (O->isELF()) {
2092     printELFFileHeader(O);
2093     printELFDynamicSection(O);
2094     printELFSymbolVersionInfo(O);
2095     return;
2096   }
2097   if (O->isCOFF())
2098     return printCOFFFileHeader(O);
2099   if (O->isWasm())
2100     return printWasmFileHeader(O);
2101   if (O->isMachO()) {
2102     printMachOFileHeader(O);
2103     if (!OnlyFirst)
2104       printMachOLoadCommands(O);
2105     return;
2106   }
2107   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2108 }
2109 
2110 static void printFileHeaders(const ObjectFile *O) {
2111   if (!O->isELF() && !O->isCOFF())
2112     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2113 
2114   Triple::ArchType AT = O->getArch();
2115   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2116   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2117 
2118   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2119   outs() << "start address: "
2120          << "0x" << format(Fmt.data(), Address) << "\n\n";
2121 }
2122 
2123 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2124   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2125   if (!ModeOrErr) {
2126     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2127     consumeError(ModeOrErr.takeError());
2128     return;
2129   }
2130   sys::fs::perms Mode = ModeOrErr.get();
2131   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2132   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2133   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2134   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2135   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2136   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2137   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2138   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2139   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2140 
2141   outs() << " ";
2142 
2143   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2144                    unwrapOrError(C.getGID(), Filename),
2145                    unwrapOrError(C.getRawSize(), Filename));
2146 
2147   StringRef RawLastModified = C.getRawLastModified();
2148   unsigned Seconds;
2149   if (RawLastModified.getAsInteger(10, Seconds))
2150     outs() << "(date: \"" << RawLastModified
2151            << "\" contains non-decimal chars) ";
2152   else {
2153     // Since ctime(3) returns a 26 character string of the form:
2154     // "Sun Sep 16 01:03:52 1973\n\0"
2155     // just print 24 characters.
2156     time_t t = Seconds;
2157     outs() << format("%.24s ", ctime(&t));
2158   }
2159 
2160   StringRef Name = "";
2161   Expected<StringRef> NameOrErr = C.getName();
2162   if (!NameOrErr) {
2163     consumeError(NameOrErr.takeError());
2164     Name = unwrapOrError(C.getRawName(), Filename);
2165   } else {
2166     Name = NameOrErr.get();
2167   }
2168   outs() << Name << "\n";
2169 }
2170 
2171 // For ELF only now.
2172 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2173   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2174     if (Elf->getEType() != ELF::ET_REL)
2175       return true;
2176   }
2177   return false;
2178 }
2179 
2180 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2181                                             uint64_t Start, uint64_t Stop) {
2182   if (!shouldWarnForInvalidStartStopAddress(Obj))
2183     return;
2184 
2185   for (const SectionRef &Section : Obj->sections())
2186     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2187       uint64_t BaseAddr = Section.getAddress();
2188       uint64_t Size = Section.getSize();
2189       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2190         return;
2191     }
2192 
2193   if (StartAddress.getNumOccurrences() == 0)
2194     reportWarning("no section has address less than 0x" +
2195                       Twine::utohexstr(Stop) + " specified by --stop-address",
2196                   Obj->getFileName());
2197   else if (StopAddress.getNumOccurrences() == 0)
2198     reportWarning("no section has address greater than or equal to 0x" +
2199                       Twine::utohexstr(Start) + " specified by --start-address",
2200                   Obj->getFileName());
2201   else
2202     reportWarning("no section overlaps the range [0x" +
2203                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2204                       ") specified by --start-address/--stop-address",
2205                   Obj->getFileName());
2206 }
2207 
2208 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2209                        const Archive::Child *C = nullptr) {
2210   // Avoid other output when using a raw option.
2211   if (!RawClangAST) {
2212     outs() << '\n';
2213     if (A)
2214       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2215     else
2216       outs() << O->getFileName();
2217     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n\n";
2218   }
2219 
2220   if (StartAddress.getNumOccurrences() || StopAddress.getNumOccurrences())
2221     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2222 
2223   // Note: the order here matches GNU objdump for compatability.
2224   StringRef ArchiveName = A ? A->getFileName() : "";
2225   if (ArchiveHeaders && !MachOOpt && C)
2226     printArchiveChild(ArchiveName, *C);
2227   if (FileHeaders)
2228     printFileHeaders(O);
2229   if (PrivateHeaders || FirstPrivateHeader)
2230     printPrivateFileHeaders(O, FirstPrivateHeader);
2231   if (SectionHeaders)
2232     printSectionHeaders(O);
2233   if (SymbolTable)
2234     printSymbolTable(O, ArchiveName);
2235   if (DwarfDumpType != DIDT_Null) {
2236     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2237     // Dump the complete DWARF structure.
2238     DIDumpOptions DumpOpts;
2239     DumpOpts.DumpType = DwarfDumpType;
2240     DICtx->dump(outs(), DumpOpts);
2241   }
2242   if (Relocations && !Disassemble)
2243     printRelocations(O);
2244   if (DynamicRelocations)
2245     printDynamicRelocations(O);
2246   if (SectionContents)
2247     printSectionContents(O);
2248   if (Disassemble)
2249     disassembleObject(O, Relocations);
2250   if (UnwindInfo)
2251     printUnwindInfo(O);
2252 
2253   // Mach-O specific options:
2254   if (ExportsTrie)
2255     printExportsTrie(O);
2256   if (Rebase)
2257     printRebaseTable(O);
2258   if (Bind)
2259     printBindTable(O);
2260   if (LazyBind)
2261     printLazyBindTable(O);
2262   if (WeakBind)
2263     printWeakBindTable(O);
2264 
2265   // Other special sections:
2266   if (RawClangAST)
2267     printRawClangAST(O);
2268   if (FaultMapSection)
2269     printFaultMaps(O);
2270 }
2271 
2272 static void dumpObject(const COFFImportFile *I, const Archive *A,
2273                        const Archive::Child *C = nullptr) {
2274   StringRef ArchiveName = A ? A->getFileName() : "";
2275 
2276   // Avoid other output when using a raw option.
2277   if (!RawClangAST)
2278     outs() << '\n'
2279            << ArchiveName << "(" << I->getFileName() << ")"
2280            << ":\tfile format COFF-import-file"
2281            << "\n\n";
2282 
2283   if (ArchiveHeaders && !MachOOpt && C)
2284     printArchiveChild(ArchiveName, *C);
2285   if (SymbolTable)
2286     printCOFFSymbolTable(I);
2287 }
2288 
2289 /// Dump each object file in \a a;
2290 static void dumpArchive(const Archive *A) {
2291   Error Err = Error::success();
2292   unsigned I = -1;
2293   for (auto &C : A->children(Err)) {
2294     ++I;
2295     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2296     if (!ChildOrErr) {
2297       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2298         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2299       continue;
2300     }
2301     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2302       dumpObject(O, A, &C);
2303     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2304       dumpObject(I, A, &C);
2305     else
2306       reportError(errorCodeToError(object_error::invalid_file_type),
2307                   A->getFileName());
2308   }
2309   if (Err)
2310     reportError(std::move(Err), A->getFileName());
2311 }
2312 
2313 /// Open file and figure out how to dump it.
2314 static void dumpInput(StringRef file) {
2315   // If we are using the Mach-O specific object file parser, then let it parse
2316   // the file and process the command line options.  So the -arch flags can
2317   // be used to select specific slices, etc.
2318   if (MachOOpt) {
2319     parseInputMachO(file);
2320     return;
2321   }
2322 
2323   // Attempt to open the binary.
2324   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2325   Binary &Binary = *OBinary.getBinary();
2326 
2327   if (Archive *A = dyn_cast<Archive>(&Binary))
2328     dumpArchive(A);
2329   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2330     dumpObject(O);
2331   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2332     parseInputMachO(UB);
2333   else
2334     reportError(errorCodeToError(object_error::invalid_file_type), file);
2335 }
2336 } // namespace llvm
2337 
2338 int main(int argc, char **argv) {
2339   using namespace llvm;
2340   InitLLVM X(argc, argv);
2341   const cl::OptionCategory *OptionFilters[] = {&ObjdumpCat, &MachOCat};
2342   cl::HideUnrelatedOptions(OptionFilters);
2343 
2344   // Initialize targets and assembly printers/parsers.
2345   InitializeAllTargetInfos();
2346   InitializeAllTargetMCs();
2347   InitializeAllDisassemblers();
2348 
2349   // Register the target printer for --version.
2350   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2351 
2352   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n", nullptr,
2353                               /*EnvVar=*/nullptr,
2354                               /*LongOptionsUseDoubleDash=*/true);
2355 
2356   if (StartAddress >= StopAddress)
2357     reportCmdLineError("start address should be less than stop address");
2358 
2359   ToolName = argv[0];
2360 
2361   // Defaults to a.out if no filenames specified.
2362   if (InputFilenames.empty())
2363     InputFilenames.push_back("a.out");
2364 
2365   if (AllHeaders)
2366     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2367         SectionHeaders = SymbolTable = true;
2368 
2369   if (DisassembleAll || PrintSource || PrintLines ||
2370       !DisassembleSymbols.empty())
2371     Disassemble = true;
2372 
2373   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2374       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2375       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2376       !UnwindInfo && !FaultMapSection &&
2377       !(MachOOpt &&
2378         (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
2379          FirstPrivateHeader || IndirectSymbols || InfoPlist || LazyBind ||
2380          LinkOptHints || ObjcMetaData || Rebase || UniversalHeaders ||
2381          WeakBind || !FilterSections.empty()))) {
2382     cl::PrintHelpMessage();
2383     return 2;
2384   }
2385 
2386   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
2387 
2388   llvm::for_each(InputFilenames, dumpInput);
2389 
2390   warnOnNoMatchForSections();
2391 
2392   return EXIT_SUCCESS;
2393 }
2394