1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that works like binutils "objdump", that is, it
11 // dumps out a plethora of information about an object file depending on the
12 // flags.
13 //
14 // The flags and output of this program should be near identical to those of
15 // binutils objdump.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm-objdump.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
31 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
32 #include "llvm/MC/MCInst.h"
33 #include "llvm/MC/MCInstPrinter.h"
34 #include "llvm/MC/MCInstrAnalysis.h"
35 #include "llvm/MC/MCInstrInfo.h"
36 #include "llvm/MC/MCObjectFileInfo.h"
37 #include "llvm/MC/MCRegisterInfo.h"
38 #include "llvm/MC/MCSubtargetInfo.h"
39 #include "llvm/Object/Archive.h"
40 #include "llvm/Object/COFF.h"
41 #include "llvm/Object/COFFImportFile.h"
42 #include "llvm/Object/ELFObjectFile.h"
43 #include "llvm/Object/MachO.h"
44 #include "llvm/Object/ObjectFile.h"
45 #include "llvm/Object/Wasm.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/Errc.h"
50 #include "llvm/Support/FileSystem.h"
51 #include "llvm/Support/Format.h"
52 #include "llvm/Support/GraphWriter.h"
53 #include "llvm/Support/Host.h"
54 #include "llvm/Support/InitLLVM.h"
55 #include "llvm/Support/MemoryBuffer.h"
56 #include "llvm/Support/SourceMgr.h"
57 #include "llvm/Support/TargetRegistry.h"
58 #include "llvm/Support/TargetSelect.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cctype>
62 #include <cstring>
63 #include <system_error>
64 #include <unordered_map>
65 #include <utility>
66 
67 using namespace llvm;
68 using namespace object;
69 
70 static cl::list<std::string>
71 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
72 
73 cl::opt<bool>
74 llvm::Disassemble("disassemble",
75   cl::desc("Display assembler mnemonics for the machine instructions"));
76 static cl::alias
77 Disassembled("d", cl::desc("Alias for --disassemble"),
78              cl::aliasopt(Disassemble));
79 
80 cl::opt<bool>
81 llvm::DisassembleAll("disassemble-all",
82   cl::desc("Display assembler mnemonics for the machine instructions"));
83 static cl::alias
84 DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
85              cl::aliasopt(DisassembleAll));
86 
87 static cl::list<std::string>
88 DisassembleFunctions("df",
89                      cl::CommaSeparated,
90                      cl::desc("List of functions to disassemble"));
91 static StringSet<> DisasmFuncsSet;
92 
93 cl::opt<bool>
94 llvm::Relocations("r", cl::desc("Display the relocation entries in the file"));
95 
96 cl::opt<bool>
97 llvm::SectionContents("s", cl::desc("Display the content of each section"));
98 
99 cl::opt<bool>
100 llvm::SymbolTable("t", cl::desc("Display the symbol table"));
101 
102 cl::opt<bool>
103 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
104 
105 cl::opt<bool>
106 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
107 
108 cl::opt<bool>
109 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
110 
111 cl::opt<bool>
112 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
113 
114 cl::opt<bool>
115 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
116 
117 cl::opt<bool>
118 llvm::RawClangAST("raw-clang-ast",
119     cl::desc("Dump the raw binary contents of the clang AST section"));
120 
121 static cl::opt<bool>
122 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
123 static cl::alias
124 MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt));
125 
126 cl::opt<std::string>
127 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
128                                     "see -version for available targets"));
129 
130 cl::opt<std::string>
131 llvm::MCPU("mcpu",
132      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
133      cl::value_desc("cpu-name"),
134      cl::init(""));
135 
136 cl::opt<std::string>
137 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
138                                 "see -version for available targets"));
139 
140 cl::opt<bool>
141 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
142                                                  "headers for each section."));
143 static cl::alias
144 SectionHeadersShort("headers", cl::desc("Alias for --section-headers"),
145                     cl::aliasopt(SectionHeaders));
146 static cl::alias
147 SectionHeadersShorter("h", cl::desc("Alias for --section-headers"),
148                       cl::aliasopt(SectionHeaders));
149 
150 cl::list<std::string>
151 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
152                                          "With -macho dump segment,section"));
153 cl::alias
154 static FilterSectionsj("j", cl::desc("Alias for --section"),
155                  cl::aliasopt(llvm::FilterSections));
156 
157 cl::list<std::string>
158 llvm::MAttrs("mattr",
159   cl::CommaSeparated,
160   cl::desc("Target specific attributes"),
161   cl::value_desc("a1,+a2,-a3,..."));
162 
163 cl::opt<bool>
164 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
165                                                  "instructions, do not print "
166                                                  "the instruction bytes."));
167 cl::opt<bool>
168 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
169 
170 cl::opt<bool>
171 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
172 
173 static cl::alias
174 UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
175                 cl::aliasopt(UnwindInfo));
176 
177 cl::opt<bool>
178 llvm::PrivateHeaders("private-headers",
179                      cl::desc("Display format specific file headers"));
180 
181 cl::opt<bool>
182 llvm::FirstPrivateHeader("private-header",
183                          cl::desc("Display only the first format specific file "
184                                   "header"));
185 
186 static cl::alias
187 PrivateHeadersShort("p", cl::desc("Alias for --private-headers"),
188                     cl::aliasopt(PrivateHeaders));
189 
190 cl::opt<bool>
191     llvm::PrintImmHex("print-imm-hex",
192                       cl::desc("Use hex format for immediate values"));
193 
194 cl::opt<bool> PrintFaultMaps("fault-map-section",
195                              cl::desc("Display contents of faultmap section"));
196 
197 cl::opt<DIDumpType> llvm::DwarfDumpType(
198     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
199     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
200 
201 cl::opt<bool> PrintSource(
202     "source",
203     cl::desc(
204         "Display source inlined with disassembly. Implies disassemble object"));
205 
206 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
207                            cl::aliasopt(PrintSource));
208 
209 cl::opt<bool> PrintLines("line-numbers",
210                          cl::desc("Display source line numbers with "
211                                   "disassembly. Implies disassemble object"));
212 
213 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
214                           cl::aliasopt(PrintLines));
215 
216 cl::opt<unsigned long long>
217     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
218                  cl::value_desc("address"), cl::init(0));
219 cl::opt<unsigned long long>
220     StopAddress("stop-address", cl::desc("Stop disassembly at address"),
221                 cl::value_desc("address"), cl::init(UINT64_MAX));
222 static StringRef ToolName;
223 
224 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
225 
226 namespace {
227 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate;
228 
229 class SectionFilterIterator {
230 public:
231   SectionFilterIterator(FilterPredicate P,
232                         llvm::object::section_iterator const &I,
233                         llvm::object::section_iterator const &E)
234       : Predicate(std::move(P)), Iterator(I), End(E) {
235     ScanPredicate();
236   }
237   const llvm::object::SectionRef &operator*() const { return *Iterator; }
238   SectionFilterIterator &operator++() {
239     ++Iterator;
240     ScanPredicate();
241     return *this;
242   }
243   bool operator!=(SectionFilterIterator const &Other) const {
244     return Iterator != Other.Iterator;
245   }
246 
247 private:
248   void ScanPredicate() {
249     while (Iterator != End && !Predicate(*Iterator)) {
250       ++Iterator;
251     }
252   }
253   FilterPredicate Predicate;
254   llvm::object::section_iterator Iterator;
255   llvm::object::section_iterator End;
256 };
257 
258 class SectionFilter {
259 public:
260   SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O)
261       : Predicate(std::move(P)), Object(O) {}
262   SectionFilterIterator begin() {
263     return SectionFilterIterator(Predicate, Object.section_begin(),
264                                  Object.section_end());
265   }
266   SectionFilterIterator end() {
267     return SectionFilterIterator(Predicate, Object.section_end(),
268                                  Object.section_end());
269   }
270 
271 private:
272   FilterPredicate Predicate;
273   llvm::object::ObjectFile const &Object;
274 };
275 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) {
276   return SectionFilter(
277       [](llvm::object::SectionRef const &S) {
278         if (FilterSections.empty())
279           return true;
280         llvm::StringRef String;
281         std::error_code error = S.getName(String);
282         if (error)
283           return false;
284         return is_contained(FilterSections, String);
285       },
286       O);
287 }
288 }
289 
290 void llvm::error(std::error_code EC) {
291   if (!EC)
292     return;
293 
294   errs() << ToolName << ": error reading file: " << EC.message() << ".\n";
295   errs().flush();
296   exit(1);
297 }
298 
299 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
300   errs() << ToolName << ": " << Message << ".\n";
301   errs().flush();
302   exit(1);
303 }
304 
305 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
306                                                 Twine Message) {
307   errs() << ToolName << ": '" << File << "': " << Message << ".\n";
308   exit(1);
309 }
310 
311 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
312                                                 std::error_code EC) {
313   assert(EC);
314   errs() << ToolName << ": '" << File << "': " << EC.message() << ".\n";
315   exit(1);
316 }
317 
318 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
319                                                 llvm::Error E) {
320   assert(E);
321   std::string Buf;
322   raw_string_ostream OS(Buf);
323   logAllUnhandledErrors(std::move(E), OS, "");
324   OS.flush();
325   errs() << ToolName << ": '" << File << "': " << Buf;
326   exit(1);
327 }
328 
329 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
330                                                 StringRef FileName,
331                                                 llvm::Error E,
332                                                 StringRef ArchitectureName) {
333   assert(E);
334   errs() << ToolName << ": ";
335   if (ArchiveName != "")
336     errs() << ArchiveName << "(" << FileName << ")";
337   else
338     errs() << "'" << FileName << "'";
339   if (!ArchitectureName.empty())
340     errs() << " (for architecture " << ArchitectureName << ")";
341   std::string Buf;
342   raw_string_ostream OS(Buf);
343   logAllUnhandledErrors(std::move(E), OS, "");
344   OS.flush();
345   errs() << ": " << Buf;
346   exit(1);
347 }
348 
349 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
350                                                 const object::Archive::Child &C,
351                                                 llvm::Error E,
352                                                 StringRef ArchitectureName) {
353   Expected<StringRef> NameOrErr = C.getName();
354   // TODO: if we have a error getting the name then it would be nice to print
355   // the index of which archive member this is and or its offset in the
356   // archive instead of "???" as the name.
357   if (!NameOrErr) {
358     consumeError(NameOrErr.takeError());
359     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
360   } else
361     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
362                        ArchitectureName);
363 }
364 
365 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
366   // Figure out the target triple.
367   llvm::Triple TheTriple("unknown-unknown-unknown");
368   if (TripleName.empty()) {
369     if (Obj) {
370       TheTriple = Obj->makeTriple();
371     }
372   } else {
373     TheTriple.setTriple(Triple::normalize(TripleName));
374 
375     // Use the triple, but also try to combine with ARM build attributes.
376     if (Obj) {
377       auto Arch = Obj->getArch();
378       if (Arch == Triple::arm || Arch == Triple::armeb) {
379         Obj->setARMSubArch(TheTriple);
380       }
381     }
382   }
383 
384   // Get the target specific parser.
385   std::string Error;
386   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
387                                                          Error);
388   if (!TheTarget) {
389     if (Obj)
390       report_error(Obj->getFileName(), "can't find target: " + Error);
391     else
392       error("can't find target: " + Error);
393   }
394 
395   // Update the triple name and return the found target.
396   TripleName = TheTriple.getTriple();
397   return TheTarget;
398 }
399 
400 bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) {
401   return a.getOffset() < b.getOffset();
402 }
403 
404 namespace {
405 class SourcePrinter {
406 protected:
407   DILineInfo OldLineInfo;
408   const ObjectFile *Obj = nullptr;
409   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
410   // File name to file contents of source
411   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
412   // Mark the line endings of the cached source
413   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
414 
415 private:
416   bool cacheSource(const DILineInfo& LineInfoFile);
417 
418 public:
419   SourcePrinter() = default;
420   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
421     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
422         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
423         DefaultArch);
424     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
425   }
426   virtual ~SourcePrinter() = default;
427   virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
428                                StringRef Delimiter = "; ");
429 };
430 
431 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
432   std::unique_ptr<MemoryBuffer> Buffer;
433   if (LineInfo.Source) {
434     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
435   } else {
436     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
437     if (!BufferOrError)
438       return false;
439     Buffer = std::move(*BufferOrError);
440   }
441   // Chomp the file to get lines
442   size_t BufferSize = Buffer->getBufferSize();
443   const char *BufferStart = Buffer->getBufferStart();
444   for (const char *Start = BufferStart, *End = BufferStart;
445        End < BufferStart + BufferSize; End++)
446     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
447         (*End == '\r' && *(End + 1) == '\n')) {
448       LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start));
449       if (*End == '\r')
450         End++;
451       Start = End + 1;
452     }
453   SourceCache[LineInfo.FileName] = std::move(Buffer);
454   return true;
455 }
456 
457 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
458                                     StringRef Delimiter) {
459   if (!Symbolizer)
460     return;
461   DILineInfo LineInfo = DILineInfo();
462   auto ExpectecLineInfo =
463       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
464   if (!ExpectecLineInfo)
465     consumeError(ExpectecLineInfo.takeError());
466   else
467     LineInfo = *ExpectecLineInfo;
468 
469   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
470       LineInfo.Line == 0)
471     return;
472 
473   if (PrintLines)
474     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
475   if (PrintSource) {
476     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
477       if (!cacheSource(LineInfo))
478         return;
479     auto FileBuffer = SourceCache.find(LineInfo.FileName);
480     if (FileBuffer != SourceCache.end()) {
481       auto LineBuffer = LineCache.find(LineInfo.FileName);
482       if (LineBuffer != LineCache.end()) {
483         if (LineInfo.Line > LineBuffer->second.size())
484           return;
485         // Vector begins at 0, line numbers are non-zero
486         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
487            << "\n";
488       }
489     }
490   }
491   OldLineInfo = LineInfo;
492 }
493 
494 static bool isArmElf(const ObjectFile *Obj) {
495   return (Obj->isELF() &&
496           (Obj->getArch() == Triple::aarch64 ||
497            Obj->getArch() == Triple::aarch64_be ||
498            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
499            Obj->getArch() == Triple::thumb ||
500            Obj->getArch() == Triple::thumbeb));
501 }
502 
503 class PrettyPrinter {
504 public:
505   virtual ~PrettyPrinter() = default;
506   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
507                          ArrayRef<uint8_t> Bytes, uint64_t Address,
508                          raw_ostream &OS, StringRef Annot,
509                          MCSubtargetInfo const &STI, SourcePrinter *SP) {
510     if (SP && (PrintSource || PrintLines))
511       SP->printSourceLine(OS, Address);
512     if (!NoLeadingAddr)
513       OS << format("%8" PRIx64 ":", Address);
514     if (!NoShowRawInsn) {
515       OS << "\t";
516       dumpBytes(Bytes, OS);
517     }
518     if (MI)
519       IP.printInst(MI, OS, "", STI);
520     else
521       OS << " <unknown>";
522   }
523 };
524 PrettyPrinter PrettyPrinterInst;
525 class HexagonPrettyPrinter : public PrettyPrinter {
526 public:
527   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
528                  raw_ostream &OS) {
529     uint32_t opcode =
530       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
531     if (!NoLeadingAddr)
532       OS << format("%8" PRIx64 ":", Address);
533     if (!NoShowRawInsn) {
534       OS << "\t";
535       dumpBytes(Bytes.slice(0, 4), OS);
536       OS << format("%08" PRIx32, opcode);
537     }
538   }
539   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
540                  uint64_t Address, raw_ostream &OS, StringRef Annot,
541                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
542     if (SP && (PrintSource || PrintLines))
543       SP->printSourceLine(OS, Address, "");
544     if (!MI) {
545       printLead(Bytes, Address, OS);
546       OS << " <unknown>";
547       return;
548     }
549     std::string Buffer;
550     {
551       raw_string_ostream TempStream(Buffer);
552       IP.printInst(MI, TempStream, "", STI);
553     }
554     StringRef Contents(Buffer);
555     // Split off bundle attributes
556     auto PacketBundle = Contents.rsplit('\n');
557     // Split off first instruction from the rest
558     auto HeadTail = PacketBundle.first.split('\n');
559     auto Preamble = " { ";
560     auto Separator = "";
561     while(!HeadTail.first.empty()) {
562       OS << Separator;
563       Separator = "\n";
564       if (SP && (PrintSource || PrintLines))
565         SP->printSourceLine(OS, Address, "");
566       printLead(Bytes, Address, OS);
567       OS << Preamble;
568       Preamble = "   ";
569       StringRef Inst;
570       auto Duplex = HeadTail.first.split('\v');
571       if(!Duplex.second.empty()){
572         OS << Duplex.first;
573         OS << "; ";
574         Inst = Duplex.second;
575       }
576       else
577         Inst = HeadTail.first;
578       OS << Inst;
579       Bytes = Bytes.slice(4);
580       Address += 4;
581       HeadTail = HeadTail.second.split('\n');
582     }
583     OS << " } " << PacketBundle.second;
584   }
585 };
586 HexagonPrettyPrinter HexagonPrettyPrinterInst;
587 
588 class AMDGCNPrettyPrinter : public PrettyPrinter {
589 public:
590   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
591                  uint64_t Address, raw_ostream &OS, StringRef Annot,
592                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
593     if (SP && (PrintSource || PrintLines))
594       SP->printSourceLine(OS, Address);
595 
596     typedef support::ulittle32_t U32;
597 
598     if (MI) {
599       SmallString<40> InstStr;
600       raw_svector_ostream IS(InstStr);
601 
602       IP.printInst(MI, IS, "", STI);
603 
604       OS << left_justify(IS.str(), 60);
605     } else {
606       // an unrecognized encoding - this is probably data so represent it
607       // using the .long directive, or .byte directive if fewer than 4 bytes
608       // remaining
609       if (Bytes.size() >= 4) {
610         OS << format("\t.long 0x%08" PRIx32 " ",
611                      static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data())));
612         OS.indent(42);
613       } else {
614           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
615           for (unsigned int i = 1; i < Bytes.size(); i++)
616             OS << format(", 0x%02" PRIx8, Bytes[i]);
617           OS.indent(55 - (6 * Bytes.size()));
618       }
619     }
620 
621     OS << format("// %012" PRIX64 ": ", Address);
622     if (Bytes.size() >=4) {
623       for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
624                                  Bytes.size() / sizeof(U32)))
625         // D should be explicitly casted to uint32_t here as it is passed
626         // by format to snprintf as vararg.
627         OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
628     } else {
629       for (unsigned int i = 0; i < Bytes.size(); i++)
630         OS << format("%02" PRIX8 " ", Bytes[i]);
631     }
632 
633     if (!Annot.empty())
634       OS << "// " << Annot;
635   }
636 };
637 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
638 
639 class BPFPrettyPrinter : public PrettyPrinter {
640 public:
641   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
642                  uint64_t Address, raw_ostream &OS, StringRef Annot,
643                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
644     if (SP && (PrintSource || PrintLines))
645       SP->printSourceLine(OS, Address);
646     if (!NoLeadingAddr)
647       OS << format("%8" PRId64 ":", Address / 8);
648     if (!NoShowRawInsn) {
649       OS << "\t";
650       dumpBytes(Bytes, OS);
651     }
652     if (MI)
653       IP.printInst(MI, OS, "", STI);
654     else
655       OS << " <unknown>";
656   }
657 };
658 BPFPrettyPrinter BPFPrettyPrinterInst;
659 
660 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
661   switch(Triple.getArch()) {
662   default:
663     return PrettyPrinterInst;
664   case Triple::hexagon:
665     return HexagonPrettyPrinterInst;
666   case Triple::amdgcn:
667     return AMDGCNPrettyPrinterInst;
668   case Triple::bpfel:
669   case Triple::bpfeb:
670     return BPFPrettyPrinterInst;
671   }
672 }
673 }
674 
675 template <class ELFT>
676 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj,
677                                                 const RelocationRef &RelRef,
678                                                 SmallVectorImpl<char> &Result) {
679   DataRefImpl Rel = RelRef.getRawDataRefImpl();
680 
681   typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym;
682   typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr;
683   typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela;
684 
685   const ELFFile<ELFT> &EF = *Obj->getELFFile();
686 
687   auto SecOrErr = EF.getSection(Rel.d.a);
688   if (!SecOrErr)
689     return errorToErrorCode(SecOrErr.takeError());
690   const Elf_Shdr *Sec = *SecOrErr;
691   auto SymTabOrErr = EF.getSection(Sec->sh_link);
692   if (!SymTabOrErr)
693     return errorToErrorCode(SymTabOrErr.takeError());
694   const Elf_Shdr *SymTab = *SymTabOrErr;
695   assert(SymTab->sh_type == ELF::SHT_SYMTAB ||
696          SymTab->sh_type == ELF::SHT_DYNSYM);
697   auto StrTabSec = EF.getSection(SymTab->sh_link);
698   if (!StrTabSec)
699     return errorToErrorCode(StrTabSec.takeError());
700   auto StrTabOrErr = EF.getStringTable(*StrTabSec);
701   if (!StrTabOrErr)
702     return errorToErrorCode(StrTabOrErr.takeError());
703   StringRef StrTab = *StrTabOrErr;
704   uint8_t type = RelRef.getType();
705   StringRef res;
706   int64_t addend = 0;
707   switch (Sec->sh_type) {
708   default:
709     return object_error::parse_failed;
710   case ELF::SHT_REL: {
711     // TODO: Read implicit addend from section data.
712     break;
713   }
714   case ELF::SHT_RELA: {
715     const Elf_Rela *ERela = Obj->getRela(Rel);
716     addend = ERela->r_addend;
717     break;
718   }
719   }
720   symbol_iterator SI = RelRef.getSymbol();
721   const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl());
722   StringRef Target;
723   if (symb->getType() == ELF::STT_SECTION) {
724     Expected<section_iterator> SymSI = SI->getSection();
725     if (!SymSI)
726       return errorToErrorCode(SymSI.takeError());
727     const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl());
728     auto SecName = EF.getSectionName(SymSec);
729     if (!SecName)
730       return errorToErrorCode(SecName.takeError());
731     Target = *SecName;
732   } else {
733     Expected<StringRef> SymName = symb->getName(StrTab);
734     if (!SymName)
735       return errorToErrorCode(SymName.takeError());
736     Target = *SymName;
737   }
738   switch (EF.getHeader()->e_machine) {
739   case ELF::EM_X86_64:
740     switch (type) {
741     case ELF::R_X86_64_PC8:
742     case ELF::R_X86_64_PC16:
743     case ELF::R_X86_64_PC32: {
744       std::string fmtbuf;
745       raw_string_ostream fmt(fmtbuf);
746       fmt << Target << (addend < 0 ? "" : "+") << addend << "-P";
747       fmt.flush();
748       Result.append(fmtbuf.begin(), fmtbuf.end());
749     } break;
750     case ELF::R_X86_64_8:
751     case ELF::R_X86_64_16:
752     case ELF::R_X86_64_32:
753     case ELF::R_X86_64_32S:
754     case ELF::R_X86_64_64: {
755       std::string fmtbuf;
756       raw_string_ostream fmt(fmtbuf);
757       fmt << Target << (addend < 0 ? "" : "+") << addend;
758       fmt.flush();
759       Result.append(fmtbuf.begin(), fmtbuf.end());
760     } break;
761     default:
762       res = "Unknown";
763     }
764     break;
765   case ELF::EM_LANAI:
766   case ELF::EM_AVR:
767   case ELF::EM_AARCH64: {
768     std::string fmtbuf;
769     raw_string_ostream fmt(fmtbuf);
770     fmt << Target;
771     if (addend != 0)
772       fmt << (addend < 0 ? "" : "+") << addend;
773     fmt.flush();
774     Result.append(fmtbuf.begin(), fmtbuf.end());
775     break;
776   }
777   case ELF::EM_386:
778   case ELF::EM_IAMCU:
779   case ELF::EM_ARM:
780   case ELF::EM_HEXAGON:
781   case ELF::EM_MIPS:
782   case ELF::EM_BPF:
783   case ELF::EM_RISCV:
784     res = Target;
785     break;
786   case ELF::EM_WEBASSEMBLY:
787     switch (type) {
788     case ELF::R_WEBASSEMBLY_DATA: {
789       std::string fmtbuf;
790       raw_string_ostream fmt(fmtbuf);
791       fmt << Target << (addend < 0 ? "" : "+") << addend;
792       fmt.flush();
793       Result.append(fmtbuf.begin(), fmtbuf.end());
794       break;
795     }
796     case ELF::R_WEBASSEMBLY_FUNCTION:
797       res = Target;
798       break;
799     default:
800       res = "Unknown";
801     }
802     break;
803   default:
804     res = "Unknown";
805   }
806   if (Result.empty())
807     Result.append(res.begin(), res.end());
808   return std::error_code();
809 }
810 
811 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj,
812                                                 const RelocationRef &Rel,
813                                                 SmallVectorImpl<char> &Result) {
814   if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
815     return getRelocationValueString(ELF32LE, Rel, Result);
816   if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
817     return getRelocationValueString(ELF64LE, Rel, Result);
818   if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
819     return getRelocationValueString(ELF32BE, Rel, Result);
820   auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
821   return getRelocationValueString(ELF64BE, Rel, Result);
822 }
823 
824 static std::error_code getRelocationValueString(const COFFObjectFile *Obj,
825                                                 const RelocationRef &Rel,
826                                                 SmallVectorImpl<char> &Result) {
827   symbol_iterator SymI = Rel.getSymbol();
828   Expected<StringRef> SymNameOrErr = SymI->getName();
829   if (!SymNameOrErr)
830     return errorToErrorCode(SymNameOrErr.takeError());
831   StringRef SymName = *SymNameOrErr;
832   Result.append(SymName.begin(), SymName.end());
833   return std::error_code();
834 }
835 
836 static void printRelocationTargetName(const MachOObjectFile *O,
837                                       const MachO::any_relocation_info &RE,
838                                       raw_string_ostream &fmt) {
839   bool IsScattered = O->isRelocationScattered(RE);
840 
841   // Target of a scattered relocation is an address.  In the interest of
842   // generating pretty output, scan through the symbol table looking for a
843   // symbol that aligns with that address.  If we find one, print it.
844   // Otherwise, we just print the hex address of the target.
845   if (IsScattered) {
846     uint32_t Val = O->getPlainRelocationSymbolNum(RE);
847 
848     for (const SymbolRef &Symbol : O->symbols()) {
849       std::error_code ec;
850       Expected<uint64_t> Addr = Symbol.getAddress();
851       if (!Addr)
852         report_error(O->getFileName(), Addr.takeError());
853       if (*Addr != Val)
854         continue;
855       Expected<StringRef> Name = Symbol.getName();
856       if (!Name)
857         report_error(O->getFileName(), Name.takeError());
858       fmt << *Name;
859       return;
860     }
861 
862     // If we couldn't find a symbol that this relocation refers to, try
863     // to find a section beginning instead.
864     for (const SectionRef &Section : ToolSectionFilter(*O)) {
865       std::error_code ec;
866 
867       StringRef Name;
868       uint64_t Addr = Section.getAddress();
869       if (Addr != Val)
870         continue;
871       if ((ec = Section.getName(Name)))
872         report_error(O->getFileName(), ec);
873       fmt << Name;
874       return;
875     }
876 
877     fmt << format("0x%x", Val);
878     return;
879   }
880 
881   StringRef S;
882   bool isExtern = O->getPlainRelocationExternal(RE);
883   uint64_t Val = O->getPlainRelocationSymbolNum(RE);
884 
885   if (O->getAnyRelocationType(RE) == MachO::ARM64_RELOC_ADDEND) {
886     fmt << format("0x%0" PRIx64, Val);
887     return;
888   } else if (isExtern) {
889     symbol_iterator SI = O->symbol_begin();
890     advance(SI, Val);
891     Expected<StringRef> SOrErr = SI->getName();
892     if (!SOrErr)
893       report_error(O->getFileName(), SOrErr.takeError());
894     S = *SOrErr;
895   } else {
896     section_iterator SI = O->section_begin();
897     // Adjust for the fact that sections are 1-indexed.
898     if (Val == 0) {
899       fmt << "0 (?,?)";
900       return;
901     }
902     uint32_t i = Val - 1;
903     while (i != 0 && SI != O->section_end()) {
904       i--;
905       advance(SI, 1);
906     }
907     if (SI == O->section_end())
908       fmt << Val << " (?,?)";
909     else
910       SI->getName(S);
911   }
912 
913   fmt << S;
914 }
915 
916 static std::error_code getRelocationValueString(const WasmObjectFile *Obj,
917                                                 const RelocationRef &RelRef,
918                                                 SmallVectorImpl<char> &Result) {
919   const wasm::WasmRelocation& Rel = Obj->getWasmRelocation(RelRef);
920   std::string fmtbuf;
921   raw_string_ostream fmt(fmtbuf);
922   fmt << Rel.Index << (Rel.Addend < 0 ? "" : "+") << Rel.Addend;
923   fmt.flush();
924   Result.append(fmtbuf.begin(), fmtbuf.end());
925   return std::error_code();
926 }
927 
928 static std::error_code getRelocationValueString(const MachOObjectFile *Obj,
929                                                 const RelocationRef &RelRef,
930                                                 SmallVectorImpl<char> &Result) {
931   DataRefImpl Rel = RelRef.getRawDataRefImpl();
932   MachO::any_relocation_info RE = Obj->getRelocation(Rel);
933 
934   unsigned Arch = Obj->getArch();
935 
936   std::string fmtbuf;
937   raw_string_ostream fmt(fmtbuf);
938   unsigned Type = Obj->getAnyRelocationType(RE);
939   bool IsPCRel = Obj->getAnyRelocationPCRel(RE);
940 
941   // Determine any addends that should be displayed with the relocation.
942   // These require decoding the relocation type, which is triple-specific.
943 
944   // X86_64 has entirely custom relocation types.
945   if (Arch == Triple::x86_64) {
946     bool isPCRel = Obj->getAnyRelocationPCRel(RE);
947 
948     switch (Type) {
949     case MachO::X86_64_RELOC_GOT_LOAD:
950     case MachO::X86_64_RELOC_GOT: {
951       printRelocationTargetName(Obj, RE, fmt);
952       fmt << "@GOT";
953       if (isPCRel)
954         fmt << "PCREL";
955       break;
956     }
957     case MachO::X86_64_RELOC_SUBTRACTOR: {
958       DataRefImpl RelNext = Rel;
959       Obj->moveRelocationNext(RelNext);
960       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
961 
962       // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type
963       // X86_64_RELOC_UNSIGNED.
964       // NOTE: Scattered relocations don't exist on x86_64.
965       unsigned RType = Obj->getAnyRelocationType(RENext);
966       if (RType != MachO::X86_64_RELOC_UNSIGNED)
967         report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after "
968                      "X86_64_RELOC_SUBTRACTOR.");
969 
970       // The X86_64_RELOC_UNSIGNED contains the minuend symbol;
971       // X86_64_RELOC_SUBTRACTOR contains the subtrahend.
972       printRelocationTargetName(Obj, RENext, fmt);
973       fmt << "-";
974       printRelocationTargetName(Obj, RE, fmt);
975       break;
976     }
977     case MachO::X86_64_RELOC_TLV:
978       printRelocationTargetName(Obj, RE, fmt);
979       fmt << "@TLV";
980       if (isPCRel)
981         fmt << "P";
982       break;
983     case MachO::X86_64_RELOC_SIGNED_1:
984       printRelocationTargetName(Obj, RE, fmt);
985       fmt << "-1";
986       break;
987     case MachO::X86_64_RELOC_SIGNED_2:
988       printRelocationTargetName(Obj, RE, fmt);
989       fmt << "-2";
990       break;
991     case MachO::X86_64_RELOC_SIGNED_4:
992       printRelocationTargetName(Obj, RE, fmt);
993       fmt << "-4";
994       break;
995     default:
996       printRelocationTargetName(Obj, RE, fmt);
997       break;
998     }
999     // X86 and ARM share some relocation types in common.
1000   } else if (Arch == Triple::x86 || Arch == Triple::arm ||
1001              Arch == Triple::ppc) {
1002     // Generic relocation types...
1003     switch (Type) {
1004     case MachO::GENERIC_RELOC_PAIR: // prints no info
1005       return std::error_code();
1006     case MachO::GENERIC_RELOC_SECTDIFF: {
1007       DataRefImpl RelNext = Rel;
1008       Obj->moveRelocationNext(RelNext);
1009       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
1010 
1011       // X86 sect diff's must be followed by a relocation of type
1012       // GENERIC_RELOC_PAIR.
1013       unsigned RType = Obj->getAnyRelocationType(RENext);
1014 
1015       if (RType != MachO::GENERIC_RELOC_PAIR)
1016         report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
1017                      "GENERIC_RELOC_SECTDIFF.");
1018 
1019       printRelocationTargetName(Obj, RE, fmt);
1020       fmt << "-";
1021       printRelocationTargetName(Obj, RENext, fmt);
1022       break;
1023     }
1024     }
1025 
1026     if (Arch == Triple::x86 || Arch == Triple::ppc) {
1027       switch (Type) {
1028       case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
1029         DataRefImpl RelNext = Rel;
1030         Obj->moveRelocationNext(RelNext);
1031         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
1032 
1033         // X86 sect diff's must be followed by a relocation of type
1034         // GENERIC_RELOC_PAIR.
1035         unsigned RType = Obj->getAnyRelocationType(RENext);
1036         if (RType != MachO::GENERIC_RELOC_PAIR)
1037           report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
1038                        "GENERIC_RELOC_LOCAL_SECTDIFF.");
1039 
1040         printRelocationTargetName(Obj, RE, fmt);
1041         fmt << "-";
1042         printRelocationTargetName(Obj, RENext, fmt);
1043         break;
1044       }
1045       case MachO::GENERIC_RELOC_TLV: {
1046         printRelocationTargetName(Obj, RE, fmt);
1047         fmt << "@TLV";
1048         if (IsPCRel)
1049           fmt << "P";
1050         break;
1051       }
1052       default:
1053         printRelocationTargetName(Obj, RE, fmt);
1054       }
1055     } else { // ARM-specific relocations
1056       switch (Type) {
1057       case MachO::ARM_RELOC_HALF:
1058       case MachO::ARM_RELOC_HALF_SECTDIFF: {
1059         // Half relocations steal a bit from the length field to encode
1060         // whether this is an upper16 or a lower16 relocation.
1061         bool isUpper = (Obj->getAnyRelocationLength(RE) & 0x1) == 1;
1062 
1063         if (isUpper)
1064           fmt << ":upper16:(";
1065         else
1066           fmt << ":lower16:(";
1067         printRelocationTargetName(Obj, RE, fmt);
1068 
1069         DataRefImpl RelNext = Rel;
1070         Obj->moveRelocationNext(RelNext);
1071         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
1072 
1073         // ARM half relocs must be followed by a relocation of type
1074         // ARM_RELOC_PAIR.
1075         unsigned RType = Obj->getAnyRelocationType(RENext);
1076         if (RType != MachO::ARM_RELOC_PAIR)
1077           report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after "
1078                        "ARM_RELOC_HALF");
1079 
1080         // NOTE: The half of the target virtual address is stashed in the
1081         // address field of the secondary relocation, but we can't reverse
1082         // engineer the constant offset from it without decoding the movw/movt
1083         // instruction to find the other half in its immediate field.
1084 
1085         // ARM_RELOC_HALF_SECTDIFF encodes the second section in the
1086         // symbol/section pointer of the follow-on relocation.
1087         if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
1088           fmt << "-";
1089           printRelocationTargetName(Obj, RENext, fmt);
1090         }
1091 
1092         fmt << ")";
1093         break;
1094       }
1095       default: { printRelocationTargetName(Obj, RE, fmt); }
1096       }
1097     }
1098   } else
1099     printRelocationTargetName(Obj, RE, fmt);
1100 
1101   fmt.flush();
1102   Result.append(fmtbuf.begin(), fmtbuf.end());
1103   return std::error_code();
1104 }
1105 
1106 static std::error_code getRelocationValueString(const RelocationRef &Rel,
1107                                                 SmallVectorImpl<char> &Result) {
1108   const ObjectFile *Obj = Rel.getObject();
1109   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
1110     return getRelocationValueString(ELF, Rel, Result);
1111   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
1112     return getRelocationValueString(COFF, Rel, Result);
1113   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
1114     return getRelocationValueString(Wasm, Rel, Result);
1115   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
1116     return getRelocationValueString(MachO, Rel, Result);
1117   llvm_unreachable("unknown object file format");
1118 }
1119 
1120 /// @brief Indicates whether this relocation should hidden when listing
1121 /// relocations, usually because it is the trailing part of a multipart
1122 /// relocation that will be printed as part of the leading relocation.
1123 static bool getHidden(RelocationRef RelRef) {
1124   const ObjectFile *Obj = RelRef.getObject();
1125   auto *MachO = dyn_cast<MachOObjectFile>(Obj);
1126   if (!MachO)
1127     return false;
1128 
1129   unsigned Arch = MachO->getArch();
1130   DataRefImpl Rel = RelRef.getRawDataRefImpl();
1131   uint64_t Type = MachO->getRelocationType(Rel);
1132 
1133   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
1134   // is always hidden.
1135   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) {
1136     if (Type == MachO::GENERIC_RELOC_PAIR)
1137       return true;
1138   } else if (Arch == Triple::x86_64) {
1139     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
1140     // an X86_64_RELOC_SUBTRACTOR.
1141     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
1142       DataRefImpl RelPrev = Rel;
1143       RelPrev.d.a--;
1144       uint64_t PrevType = MachO->getRelocationType(RelPrev);
1145       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
1146         return true;
1147     }
1148   }
1149 
1150   return false;
1151 }
1152 
1153 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1154   assert(Obj->isELF());
1155   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1156     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1157   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1158     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1159   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1160     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1161   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1162     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1163   llvm_unreachable("Unsupported binary format");
1164 }
1165 
1166 template <class ELFT> static void
1167 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
1168                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1169   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
1170     uint8_t SymbolType = Symbol.getELFType();
1171     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
1172       continue;
1173 
1174     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1175     if (!AddressOrErr)
1176       report_error(Obj->getFileName(), AddressOrErr.takeError());
1177     uint64_t Address = *AddressOrErr;
1178 
1179     Expected<StringRef> Name = Symbol.getName();
1180     if (!Name)
1181       report_error(Obj->getFileName(), Name.takeError());
1182     if (Name->empty())
1183       continue;
1184 
1185     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1186     if (!SectionOrErr)
1187       report_error(Obj->getFileName(), SectionOrErr.takeError());
1188     section_iterator SecI = *SectionOrErr;
1189     if (SecI == Obj->section_end())
1190       continue;
1191 
1192     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1193   }
1194 }
1195 
1196 static void
1197 addDynamicElfSymbols(const ObjectFile *Obj,
1198                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1199   assert(Obj->isELF());
1200   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1201     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
1202   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1203     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
1204   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1205     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
1206   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1207     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
1208   else
1209     llvm_unreachable("Unsupported binary format");
1210 }
1211 
1212 static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1213   if (StartAddress > StopAddress)
1214     error("Start address should be less than stop address");
1215 
1216   const Target *TheTarget = getTarget(Obj);
1217 
1218   // Package up features to be passed to target/subtarget
1219   SubtargetFeatures Features = Obj->getFeatures();
1220   if (MAttrs.size()) {
1221     for (unsigned i = 0; i != MAttrs.size(); ++i)
1222       Features.AddFeature(MAttrs[i]);
1223   }
1224 
1225   std::unique_ptr<const MCRegisterInfo> MRI(
1226       TheTarget->createMCRegInfo(TripleName));
1227   if (!MRI)
1228     report_error(Obj->getFileName(), "no register info for target " +
1229                  TripleName);
1230 
1231   // Set up disassembler.
1232   std::unique_ptr<const MCAsmInfo> AsmInfo(
1233       TheTarget->createMCAsmInfo(*MRI, TripleName));
1234   if (!AsmInfo)
1235     report_error(Obj->getFileName(), "no assembly info for target " +
1236                  TripleName);
1237   std::unique_ptr<const MCSubtargetInfo> STI(
1238       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1239   if (!STI)
1240     report_error(Obj->getFileName(), "no subtarget info for target " +
1241                  TripleName);
1242   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1243   if (!MII)
1244     report_error(Obj->getFileName(), "no instruction info for target " +
1245                  TripleName);
1246   MCObjectFileInfo MOFI;
1247   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1248   // FIXME: for now initialize MCObjectFileInfo with default values
1249   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1250 
1251   std::unique_ptr<MCDisassembler> DisAsm(
1252     TheTarget->createMCDisassembler(*STI, Ctx));
1253   if (!DisAsm)
1254     report_error(Obj->getFileName(), "no disassembler for target " +
1255                  TripleName);
1256 
1257   std::unique_ptr<const MCInstrAnalysis> MIA(
1258       TheTarget->createMCInstrAnalysis(MII.get()));
1259 
1260   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1261   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1262       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1263   if (!IP)
1264     report_error(Obj->getFileName(), "no instruction printer for target " +
1265                  TripleName);
1266   IP->setPrintImmHex(PrintImmHex);
1267   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1268 
1269   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ":  " :
1270                                                  "\t\t\t%08" PRIx64 ":  ";
1271 
1272   SourcePrinter SP(Obj, TheTarget->getName());
1273 
1274   // Create a mapping, RelocSecs = SectionRelocMap[S], where sections
1275   // in RelocSecs contain the relocations for section S.
1276   std::error_code EC;
1277   std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
1278   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1279     section_iterator Sec2 = Section.getRelocatedSection();
1280     if (Sec2 != Obj->section_end())
1281       SectionRelocMap[*Sec2].push_back(Section);
1282   }
1283 
1284   // Create a mapping from virtual address to symbol name.  This is used to
1285   // pretty print the symbols while disassembling.
1286   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1287   for (const SymbolRef &Symbol : Obj->symbols()) {
1288     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1289     if (!AddressOrErr)
1290       report_error(Obj->getFileName(), AddressOrErr.takeError());
1291     uint64_t Address = *AddressOrErr;
1292 
1293     Expected<StringRef> Name = Symbol.getName();
1294     if (!Name)
1295       report_error(Obj->getFileName(), Name.takeError());
1296     if (Name->empty())
1297       continue;
1298 
1299     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1300     if (!SectionOrErr)
1301       report_error(Obj->getFileName(), SectionOrErr.takeError());
1302     section_iterator SecI = *SectionOrErr;
1303     if (SecI == Obj->section_end())
1304       continue;
1305 
1306     uint8_t SymbolType = ELF::STT_NOTYPE;
1307     if (Obj->isELF())
1308       SymbolType = getElfSymbolType(Obj, Symbol);
1309 
1310     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1311 
1312   }
1313   if (AllSymbols.empty() && Obj->isELF())
1314     addDynamicElfSymbols(Obj, AllSymbols);
1315 
1316   // Create a mapping from virtual address to section.
1317   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1318   for (SectionRef Sec : Obj->sections())
1319     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1320   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1321 
1322   // Linked executables (.exe and .dll files) typically don't include a real
1323   // symbol table but they might contain an export table.
1324   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1325     for (const auto &ExportEntry : COFFObj->export_directories()) {
1326       StringRef Name;
1327       error(ExportEntry.getSymbolName(Name));
1328       if (Name.empty())
1329         continue;
1330       uint32_t RVA;
1331       error(ExportEntry.getExportRVA(RVA));
1332 
1333       uint64_t VA = COFFObj->getImageBase() + RVA;
1334       auto Sec = std::upper_bound(
1335           SectionAddresses.begin(), SectionAddresses.end(), VA,
1336           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1337             return LHS < RHS.first;
1338           });
1339       if (Sec != SectionAddresses.begin())
1340         --Sec;
1341       else
1342         Sec = SectionAddresses.end();
1343 
1344       if (Sec != SectionAddresses.end())
1345         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1346     }
1347   }
1348 
1349   // Sort all the symbols, this allows us to use a simple binary search to find
1350   // a symbol near an address.
1351   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1352     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1353 
1354   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1355     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1356       continue;
1357 
1358     uint64_t SectionAddr = Section.getAddress();
1359     uint64_t SectSize = Section.getSize();
1360     if (!SectSize)
1361       continue;
1362 
1363     // Get the list of all the symbols in this section.
1364     SectionSymbolsTy &Symbols = AllSymbols[Section];
1365     std::vector<uint64_t> DataMappingSymsAddr;
1366     std::vector<uint64_t> TextMappingSymsAddr;
1367     if (isArmElf(Obj)) {
1368       for (const auto &Symb : Symbols) {
1369         uint64_t Address = std::get<0>(Symb);
1370         StringRef Name = std::get<1>(Symb);
1371         if (Name.startswith("$d"))
1372           DataMappingSymsAddr.push_back(Address - SectionAddr);
1373         if (Name.startswith("$x"))
1374           TextMappingSymsAddr.push_back(Address - SectionAddr);
1375         if (Name.startswith("$a"))
1376           TextMappingSymsAddr.push_back(Address - SectionAddr);
1377         if (Name.startswith("$t"))
1378           TextMappingSymsAddr.push_back(Address - SectionAddr);
1379       }
1380     }
1381 
1382     llvm::sort(DataMappingSymsAddr.begin(), DataMappingSymsAddr.end());
1383     llvm::sort(TextMappingSymsAddr.begin(), TextMappingSymsAddr.end());
1384 
1385     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1386       // AMDGPU disassembler uses symbolizer for printing labels
1387       std::unique_ptr<MCRelocationInfo> RelInfo(
1388         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1389       if (RelInfo) {
1390         std::unique_ptr<MCSymbolizer> Symbolizer(
1391           TheTarget->createMCSymbolizer(
1392             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1393         DisAsm->setSymbolizer(std::move(Symbolizer));
1394       }
1395     }
1396 
1397     // Make a list of all the relocations for this section.
1398     std::vector<RelocationRef> Rels;
1399     if (InlineRelocs) {
1400       for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
1401         for (const RelocationRef &Reloc : RelocSec.relocations()) {
1402           Rels.push_back(Reloc);
1403         }
1404       }
1405     }
1406 
1407     // Sort relocations by address.
1408     llvm::sort(Rels.begin(), Rels.end(), RelocAddressLess);
1409 
1410     StringRef SegmentName = "";
1411     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1412       DataRefImpl DR = Section.getRawDataRefImpl();
1413       SegmentName = MachO->getSectionFinalSegmentName(DR);
1414     }
1415     StringRef SectionName;
1416     error(Section.getName(SectionName));
1417 
1418     // If the section has no symbol at the start, just insert a dummy one.
1419     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1420       Symbols.insert(
1421           Symbols.begin(),
1422           std::make_tuple(SectionAddr, SectionName,
1423                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1424     }
1425 
1426     SmallString<40> Comments;
1427     raw_svector_ostream CommentStream(Comments);
1428 
1429     StringRef BytesStr;
1430     error(Section.getContents(BytesStr));
1431     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1432                             BytesStr.size());
1433 
1434     uint64_t Size;
1435     uint64_t Index;
1436     bool PrintedSection = false;
1437 
1438     std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin();
1439     std::vector<RelocationRef>::const_iterator rel_end = Rels.end();
1440     // Disassemble symbol by symbol.
1441     for (unsigned si = 0, se = Symbols.size(); si != se; ++si) {
1442       uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr;
1443       // The end is either the section end or the beginning of the next
1444       // symbol.
1445       uint64_t End =
1446           (si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr;
1447       // Don't try to disassemble beyond the end of section contents.
1448       if (End > SectSize)
1449         End = SectSize;
1450       // If this symbol has the same address as the next symbol, then skip it.
1451       if (Start >= End)
1452         continue;
1453 
1454       // Check if we need to skip symbol
1455       // Skip if the symbol's data is not between StartAddress and StopAddress
1456       if (End + SectionAddr < StartAddress ||
1457           Start + SectionAddr > StopAddress) {
1458         continue;
1459       }
1460 
1461       /// Skip if user requested specific symbols and this is not in the list
1462       if (!DisasmFuncsSet.empty() &&
1463           !DisasmFuncsSet.count(std::get<1>(Symbols[si])))
1464         continue;
1465 
1466       if (!PrintedSection) {
1467         PrintedSection = true;
1468         outs() << "Disassembly of section ";
1469         if (!SegmentName.empty())
1470           outs() << SegmentName << ",";
1471         outs() << SectionName << ':';
1472       }
1473 
1474       // Stop disassembly at the stop address specified
1475       if (End + SectionAddr > StopAddress)
1476         End = StopAddress - SectionAddr;
1477 
1478       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1479         if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1480           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1481           Start += 256;
1482         }
1483         if (si == se - 1 ||
1484             std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1485           // cut trailing zeroes at the end of kernel
1486           // cut up to 256 bytes
1487           const uint64_t EndAlign = 256;
1488           const auto Limit = End - (std::min)(EndAlign, End - Start);
1489           while (End > Limit &&
1490             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1491             End -= 4;
1492         }
1493       }
1494 
1495       outs() << '\n' << std::get<1>(Symbols[si]) << ":\n";
1496 
1497 #ifndef NDEBUG
1498       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1499 #else
1500       raw_ostream &DebugOut = nulls();
1501 #endif
1502 
1503       for (Index = Start; Index < End; Index += Size) {
1504         MCInst Inst;
1505 
1506         if (Index + SectionAddr < StartAddress ||
1507             Index + SectionAddr > StopAddress) {
1508           // skip byte by byte till StartAddress is reached
1509           Size = 1;
1510           continue;
1511         }
1512         // AArch64 ELF binaries can interleave data and text in the
1513         // same section. We rely on the markers introduced to
1514         // understand what we need to dump. If the data marker is within a
1515         // function, it is denoted as a word/short etc
1516         if (isArmElf(Obj) && std::get<2>(Symbols[si]) != ELF::STT_OBJECT &&
1517             !DisassembleAll) {
1518           uint64_t Stride = 0;
1519 
1520           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1521                                       DataMappingSymsAddr.end(), Index);
1522           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1523             // Switch to data.
1524             while (Index < End) {
1525               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1526               outs() << "\t";
1527               if (Index + 4 <= End) {
1528                 Stride = 4;
1529                 dumpBytes(Bytes.slice(Index, 4), outs());
1530                 outs() << "\t.word\t";
1531                 uint32_t Data = 0;
1532                 if (Obj->isLittleEndian()) {
1533                   const auto Word =
1534                       reinterpret_cast<const support::ulittle32_t *>(
1535                           Bytes.data() + Index);
1536                   Data = *Word;
1537                 } else {
1538                   const auto Word = reinterpret_cast<const support::ubig32_t *>(
1539                       Bytes.data() + Index);
1540                   Data = *Word;
1541                 }
1542                 outs() << "0x" << format("%08" PRIx32, Data);
1543               } else if (Index + 2 <= End) {
1544                 Stride = 2;
1545                 dumpBytes(Bytes.slice(Index, 2), outs());
1546                 outs() << "\t\t.short\t";
1547                 uint16_t Data = 0;
1548                 if (Obj->isLittleEndian()) {
1549                   const auto Short =
1550                       reinterpret_cast<const support::ulittle16_t *>(
1551                           Bytes.data() + Index);
1552                   Data = *Short;
1553                 } else {
1554                   const auto Short =
1555                       reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1556                                                                   Index);
1557                   Data = *Short;
1558                 }
1559                 outs() << "0x" << format("%04" PRIx16, Data);
1560               } else {
1561                 Stride = 1;
1562                 dumpBytes(Bytes.slice(Index, 1), outs());
1563                 outs() << "\t\t.byte\t";
1564                 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1565               }
1566               Index += Stride;
1567               outs() << "\n";
1568               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1569                                           TextMappingSymsAddr.end(), Index);
1570               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1571                 break;
1572             }
1573           }
1574         }
1575 
1576         // If there is a data symbol inside an ELF text section and we are only
1577         // disassembling text (applicable all architectures),
1578         // we are in a situation where we must print the data and not
1579         // disassemble it.
1580         if (Obj->isELF() && std::get<2>(Symbols[si]) == ELF::STT_OBJECT &&
1581             !DisassembleAll && Section.isText()) {
1582           // print out data up to 8 bytes at a time in hex and ascii
1583           uint8_t AsciiData[9] = {'\0'};
1584           uint8_t Byte;
1585           int NumBytes = 0;
1586 
1587           for (Index = Start; Index < End; Index += 1) {
1588             if (((SectionAddr + Index) < StartAddress) ||
1589                 ((SectionAddr + Index) > StopAddress))
1590               continue;
1591             if (NumBytes == 0) {
1592               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1593               outs() << "\t";
1594             }
1595             Byte = Bytes.slice(Index)[0];
1596             outs() << format(" %02x", Byte);
1597             AsciiData[NumBytes] = isprint(Byte) ? Byte : '.';
1598 
1599             uint8_t IndentOffset = 0;
1600             NumBytes++;
1601             if (Index == End - 1 || NumBytes > 8) {
1602               // Indent the space for less than 8 bytes data.
1603               // 2 spaces for byte and one for space between bytes
1604               IndentOffset = 3 * (8 - NumBytes);
1605               for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
1606                 AsciiData[Excess] = '\0';
1607               NumBytes = 8;
1608             }
1609             if (NumBytes == 8) {
1610               AsciiData[8] = '\0';
1611               outs() << std::string(IndentOffset, ' ') << "         ";
1612               outs() << reinterpret_cast<char *>(AsciiData);
1613               outs() << '\n';
1614               NumBytes = 0;
1615             }
1616           }
1617         }
1618         if (Index >= End)
1619           break;
1620 
1621         // Disassemble a real instruction or a data when disassemble all is
1622         // provided
1623         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1624                                                    SectionAddr + Index, DebugOut,
1625                                                    CommentStream);
1626         if (Size == 0)
1627           Size = 1;
1628 
1629         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1630                       Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1631                       *STI, &SP);
1632         outs() << CommentStream.str();
1633         Comments.clear();
1634 
1635         // Try to resolve the target of a call, tail call, etc. to a specific
1636         // symbol.
1637         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1638                     MIA->isConditionalBranch(Inst))) {
1639           uint64_t Target;
1640           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1641             // In a relocatable object, the target's section must reside in
1642             // the same section as the call instruction or it is accessed
1643             // through a relocation.
1644             //
1645             // In a non-relocatable object, the target may be in any section.
1646             //
1647             // N.B. We don't walk the relocations in the relocatable case yet.
1648             auto *TargetSectionSymbols = &Symbols;
1649             if (!Obj->isRelocatableObject()) {
1650               auto SectionAddress = std::upper_bound(
1651                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1652                   [](uint64_t LHS,
1653                       const std::pair<uint64_t, SectionRef> &RHS) {
1654                     return LHS < RHS.first;
1655                   });
1656               if (SectionAddress != SectionAddresses.begin()) {
1657                 --SectionAddress;
1658                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1659               } else {
1660                 TargetSectionSymbols = nullptr;
1661               }
1662             }
1663 
1664             // Find the first symbol in the section whose offset is less than
1665             // or equal to the target.
1666             if (TargetSectionSymbols) {
1667               auto TargetSym = std::upper_bound(
1668                   TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1669                   Target, [](uint64_t LHS,
1670                              const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1671                     return LHS < std::get<0>(RHS);
1672                   });
1673               if (TargetSym != TargetSectionSymbols->begin()) {
1674                 --TargetSym;
1675                 uint64_t TargetAddress = std::get<0>(*TargetSym);
1676                 StringRef TargetName = std::get<1>(*TargetSym);
1677                 outs() << " <" << TargetName;
1678                 uint64_t Disp = Target - TargetAddress;
1679                 if (Disp)
1680                   outs() << "+0x" << Twine::utohexstr(Disp);
1681                 outs() << '>';
1682               }
1683             }
1684           }
1685         }
1686         outs() << "\n";
1687 
1688         // Print relocation for instruction.
1689         while (rel_cur != rel_end) {
1690           bool hidden = getHidden(*rel_cur);
1691           uint64_t addr = rel_cur->getOffset();
1692           SmallString<16> name;
1693           SmallString<32> val;
1694 
1695           // If this relocation is hidden, skip it.
1696           if (hidden || ((SectionAddr + addr) < StartAddress)) {
1697             ++rel_cur;
1698             continue;
1699           }
1700 
1701           // Stop when rel_cur's address is past the current instruction.
1702           if (addr >= Index + Size) break;
1703           rel_cur->getTypeName(name);
1704           error(getRelocationValueString(*rel_cur, val));
1705           outs() << format(Fmt.data(), SectionAddr + addr) << name
1706                  << "\t" << val << "\n";
1707           ++rel_cur;
1708         }
1709       }
1710     }
1711   }
1712 }
1713 
1714 void llvm::PrintRelocations(const ObjectFile *Obj) {
1715   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1716                                                  "%08" PRIx64;
1717   // Regular objdump doesn't print relocations in non-relocatable object
1718   // files.
1719   if (!Obj->isRelocatableObject())
1720     return;
1721 
1722   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1723     if (Section.relocation_begin() == Section.relocation_end())
1724       continue;
1725     StringRef secname;
1726     error(Section.getName(secname));
1727     outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n";
1728     for (const RelocationRef &Reloc : Section.relocations()) {
1729       bool hidden = getHidden(Reloc);
1730       uint64_t address = Reloc.getOffset();
1731       SmallString<32> relocname;
1732       SmallString<32> valuestr;
1733       if (address < StartAddress || address > StopAddress || hidden)
1734         continue;
1735       Reloc.getTypeName(relocname);
1736       error(getRelocationValueString(Reloc, valuestr));
1737       outs() << format(Fmt.data(), address) << " " << relocname << " "
1738              << valuestr << "\n";
1739     }
1740     outs() << "\n";
1741   }
1742 }
1743 
1744 void llvm::PrintSectionHeaders(const ObjectFile *Obj) {
1745   outs() << "Sections:\n"
1746             "Idx Name          Size      Address          Type\n";
1747   unsigned i = 0;
1748   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1749     StringRef Name;
1750     error(Section.getName(Name));
1751     uint64_t Address = Section.getAddress();
1752     uint64_t Size = Section.getSize();
1753     bool Text = Section.isText();
1754     bool Data = Section.isData();
1755     bool BSS = Section.isBSS();
1756     std::string Type = (std::string(Text ? "TEXT " : "") +
1757                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1758     outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", i,
1759                      Name.str().c_str(), Size, Address, Type.c_str());
1760     ++i;
1761   }
1762 }
1763 
1764 void llvm::PrintSectionContents(const ObjectFile *Obj) {
1765   std::error_code EC;
1766   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1767     StringRef Name;
1768     StringRef Contents;
1769     error(Section.getName(Name));
1770     uint64_t BaseAddr = Section.getAddress();
1771     uint64_t Size = Section.getSize();
1772     if (!Size)
1773       continue;
1774 
1775     outs() << "Contents of section " << Name << ":\n";
1776     if (Section.isBSS()) {
1777       outs() << format("<skipping contents of bss section at [%04" PRIx64
1778                        ", %04" PRIx64 ")>\n",
1779                        BaseAddr, BaseAddr + Size);
1780       continue;
1781     }
1782 
1783     error(Section.getContents(Contents));
1784 
1785     // Dump out the content as hex and printable ascii characters.
1786     for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) {
1787       outs() << format(" %04" PRIx64 " ", BaseAddr + addr);
1788       // Dump line of hex.
1789       for (std::size_t i = 0; i < 16; ++i) {
1790         if (i != 0 && i % 4 == 0)
1791           outs() << ' ';
1792         if (addr + i < end)
1793           outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true)
1794                  << hexdigit(Contents[addr + i] & 0xF, true);
1795         else
1796           outs() << "  ";
1797       }
1798       // Print ascii.
1799       outs() << "  ";
1800       for (std::size_t i = 0; i < 16 && addr + i < end; ++i) {
1801         if (std::isprint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF))
1802           outs() << Contents[addr + i];
1803         else
1804           outs() << ".";
1805       }
1806       outs() << "\n";
1807     }
1808   }
1809 }
1810 
1811 void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName,
1812                             StringRef ArchitectureName) {
1813   outs() << "SYMBOL TABLE:\n";
1814 
1815   if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) {
1816     printCOFFSymbolTable(coff);
1817     return;
1818   }
1819   for (const SymbolRef &Symbol : o->symbols()) {
1820     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1821     if (!AddressOrError)
1822       report_error(ArchiveName, o->getFileName(), AddressOrError.takeError(),
1823                    ArchitectureName);
1824     uint64_t Address = *AddressOrError;
1825     if ((Address < StartAddress) || (Address > StopAddress))
1826       continue;
1827     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1828     if (!TypeOrError)
1829       report_error(ArchiveName, o->getFileName(), TypeOrError.takeError(),
1830                    ArchitectureName);
1831     SymbolRef::Type Type = *TypeOrError;
1832     uint32_t Flags = Symbol.getFlags();
1833     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1834     if (!SectionOrErr)
1835       report_error(ArchiveName, o->getFileName(), SectionOrErr.takeError(),
1836                    ArchitectureName);
1837     section_iterator Section = *SectionOrErr;
1838     StringRef Name;
1839     if (Type == SymbolRef::ST_Debug && Section != o->section_end()) {
1840       Section->getName(Name);
1841     } else {
1842       Expected<StringRef> NameOrErr = Symbol.getName();
1843       if (!NameOrErr)
1844         report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(),
1845                      ArchitectureName);
1846       Name = *NameOrErr;
1847     }
1848 
1849     bool Global = Flags & SymbolRef::SF_Global;
1850     bool Weak = Flags & SymbolRef::SF_Weak;
1851     bool Absolute = Flags & SymbolRef::SF_Absolute;
1852     bool Common = Flags & SymbolRef::SF_Common;
1853     bool Hidden = Flags & SymbolRef::SF_Hidden;
1854 
1855     char GlobLoc = ' ';
1856     if (Type != SymbolRef::ST_Unknown)
1857       GlobLoc = Global ? 'g' : 'l';
1858     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1859                  ? 'd' : ' ';
1860     char FileFunc = ' ';
1861     if (Type == SymbolRef::ST_File)
1862       FileFunc = 'f';
1863     else if (Type == SymbolRef::ST_Function)
1864       FileFunc = 'F';
1865 
1866     const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 :
1867                                                    "%08" PRIx64;
1868 
1869     outs() << format(Fmt, Address) << " "
1870            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1871            << (Weak ? 'w' : ' ') // Weak?
1872            << ' ' // Constructor. Not supported yet.
1873            << ' ' // Warning. Not supported yet.
1874            << ' ' // Indirect reference to another symbol.
1875            << Debug // Debugging (d) or dynamic (D) symbol.
1876            << FileFunc // Name of function (F), file (f) or object (O).
1877            << ' ';
1878     if (Absolute) {
1879       outs() << "*ABS*";
1880     } else if (Common) {
1881       outs() << "*COM*";
1882     } else if (Section == o->section_end()) {
1883       outs() << "*UND*";
1884     } else {
1885       if (const MachOObjectFile *MachO =
1886           dyn_cast<const MachOObjectFile>(o)) {
1887         DataRefImpl DR = Section->getRawDataRefImpl();
1888         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1889         outs() << SegmentName << ",";
1890       }
1891       StringRef SectionName;
1892       error(Section->getName(SectionName));
1893       outs() << SectionName;
1894     }
1895 
1896     outs() << '\t';
1897     if (Common || isa<ELFObjectFileBase>(o)) {
1898       uint64_t Val =
1899           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1900       outs() << format("\t %08" PRIx64 " ", Val);
1901     }
1902 
1903     if (Hidden) {
1904       outs() << ".hidden ";
1905     }
1906     outs() << Name
1907            << '\n';
1908   }
1909 }
1910 
1911 static void PrintUnwindInfo(const ObjectFile *o) {
1912   outs() << "Unwind info:\n\n";
1913 
1914   if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) {
1915     printCOFFUnwindInfo(coff);
1916   } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1917     printMachOUnwindInfo(MachO);
1918   else {
1919     // TODO: Extract DWARF dump tool to objdump.
1920     errs() << "This operation is only currently supported "
1921               "for COFF and MachO object files.\n";
1922     return;
1923   }
1924 }
1925 
1926 void llvm::printExportsTrie(const ObjectFile *o) {
1927   outs() << "Exports trie:\n";
1928   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1929     printMachOExportsTrie(MachO);
1930   else {
1931     errs() << "This operation is only currently supported "
1932               "for Mach-O executable files.\n";
1933     return;
1934   }
1935 }
1936 
1937 void llvm::printRebaseTable(ObjectFile *o) {
1938   outs() << "Rebase table:\n";
1939   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1940     printMachORebaseTable(MachO);
1941   else {
1942     errs() << "This operation is only currently supported "
1943               "for Mach-O executable files.\n";
1944     return;
1945   }
1946 }
1947 
1948 void llvm::printBindTable(ObjectFile *o) {
1949   outs() << "Bind table:\n";
1950   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1951     printMachOBindTable(MachO);
1952   else {
1953     errs() << "This operation is only currently supported "
1954               "for Mach-O executable files.\n";
1955     return;
1956   }
1957 }
1958 
1959 void llvm::printLazyBindTable(ObjectFile *o) {
1960   outs() << "Lazy bind table:\n";
1961   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1962     printMachOLazyBindTable(MachO);
1963   else {
1964     errs() << "This operation is only currently supported "
1965               "for Mach-O executable files.\n";
1966     return;
1967   }
1968 }
1969 
1970 void llvm::printWeakBindTable(ObjectFile *o) {
1971   outs() << "Weak bind table:\n";
1972   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1973     printMachOWeakBindTable(MachO);
1974   else {
1975     errs() << "This operation is only currently supported "
1976               "for Mach-O executable files.\n";
1977     return;
1978   }
1979 }
1980 
1981 /// Dump the raw contents of the __clangast section so the output can be piped
1982 /// into llvm-bcanalyzer.
1983 void llvm::printRawClangAST(const ObjectFile *Obj) {
1984   if (outs().is_displayed()) {
1985     errs() << "The -raw-clang-ast option will dump the raw binary contents of "
1986               "the clang ast section.\n"
1987               "Please redirect the output to a file or another program such as "
1988               "llvm-bcanalyzer.\n";
1989     return;
1990   }
1991 
1992   StringRef ClangASTSectionName("__clangast");
1993   if (isa<COFFObjectFile>(Obj)) {
1994     ClangASTSectionName = "clangast";
1995   }
1996 
1997   Optional<object::SectionRef> ClangASTSection;
1998   for (auto Sec : ToolSectionFilter(*Obj)) {
1999     StringRef Name;
2000     Sec.getName(Name);
2001     if (Name == ClangASTSectionName) {
2002       ClangASTSection = Sec;
2003       break;
2004     }
2005   }
2006   if (!ClangASTSection)
2007     return;
2008 
2009   StringRef ClangASTContents;
2010   error(ClangASTSection.getValue().getContents(ClangASTContents));
2011   outs().write(ClangASTContents.data(), ClangASTContents.size());
2012 }
2013 
2014 static void printFaultMaps(const ObjectFile *Obj) {
2015   const char *FaultMapSectionName = nullptr;
2016 
2017   if (isa<ELFObjectFileBase>(Obj)) {
2018     FaultMapSectionName = ".llvm_faultmaps";
2019   } else if (isa<MachOObjectFile>(Obj)) {
2020     FaultMapSectionName = "__llvm_faultmaps";
2021   } else {
2022     errs() << "This operation is only currently supported "
2023               "for ELF and Mach-O executable files.\n";
2024     return;
2025   }
2026 
2027   Optional<object::SectionRef> FaultMapSection;
2028 
2029   for (auto Sec : ToolSectionFilter(*Obj)) {
2030     StringRef Name;
2031     Sec.getName(Name);
2032     if (Name == FaultMapSectionName) {
2033       FaultMapSection = Sec;
2034       break;
2035     }
2036   }
2037 
2038   outs() << "FaultMap table:\n";
2039 
2040   if (!FaultMapSection.hasValue()) {
2041     outs() << "<not found>\n";
2042     return;
2043   }
2044 
2045   StringRef FaultMapContents;
2046   error(FaultMapSection.getValue().getContents(FaultMapContents));
2047 
2048   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2049                      FaultMapContents.bytes_end());
2050 
2051   outs() << FMP;
2052 }
2053 
2054 static void printPrivateFileHeaders(const ObjectFile *o, bool onlyFirst) {
2055   if (o->isELF())
2056     return printELFFileHeader(o);
2057   if (o->isCOFF())
2058     return printCOFFFileHeader(o);
2059   if (o->isWasm())
2060     return printWasmFileHeader(o);
2061   if (o->isMachO()) {
2062     printMachOFileHeader(o);
2063     if (!onlyFirst)
2064       printMachOLoadCommands(o);
2065     return;
2066   }
2067   report_error(o->getFileName(), "Invalid/Unsupported object file format");
2068 }
2069 
2070 static void DumpObject(ObjectFile *o, const Archive *a = nullptr) {
2071   StringRef ArchiveName = a != nullptr ? a->getFileName() : "";
2072   // Avoid other output when using a raw option.
2073   if (!RawClangAST) {
2074     outs() << '\n';
2075     if (a)
2076       outs() << a->getFileName() << "(" << o->getFileName() << ")";
2077     else
2078       outs() << o->getFileName();
2079     outs() << ":\tfile format " << o->getFileFormatName() << "\n\n";
2080   }
2081 
2082   if (Disassemble)
2083     DisassembleObject(o, Relocations);
2084   if (Relocations && !Disassemble)
2085     PrintRelocations(o);
2086   if (SectionHeaders)
2087     PrintSectionHeaders(o);
2088   if (SectionContents)
2089     PrintSectionContents(o);
2090   if (SymbolTable)
2091     PrintSymbolTable(o, ArchiveName);
2092   if (UnwindInfo)
2093     PrintUnwindInfo(o);
2094   if (PrivateHeaders || FirstPrivateHeader)
2095     printPrivateFileHeaders(o, FirstPrivateHeader);
2096   if (ExportsTrie)
2097     printExportsTrie(o);
2098   if (Rebase)
2099     printRebaseTable(o);
2100   if (Bind)
2101     printBindTable(o);
2102   if (LazyBind)
2103     printLazyBindTable(o);
2104   if (WeakBind)
2105     printWeakBindTable(o);
2106   if (RawClangAST)
2107     printRawClangAST(o);
2108   if (PrintFaultMaps)
2109     printFaultMaps(o);
2110   if (DwarfDumpType != DIDT_Null) {
2111     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*o);
2112     // Dump the complete DWARF structure.
2113     DIDumpOptions DumpOpts;
2114     DumpOpts.DumpType = DwarfDumpType;
2115     DICtx->dump(outs(), DumpOpts);
2116   }
2117 }
2118 
2119 static void DumpObject(const COFFImportFile *I, const Archive *A) {
2120   StringRef ArchiveName = A ? A->getFileName() : "";
2121 
2122   // Avoid other output when using a raw option.
2123   if (!RawClangAST)
2124     outs() << '\n'
2125            << ArchiveName << "(" << I->getFileName() << ")"
2126            << ":\tfile format COFF-import-file"
2127            << "\n\n";
2128 
2129   if (SymbolTable)
2130     printCOFFSymbolTable(I);
2131 }
2132 
2133 /// @brief Dump each object file in \a a;
2134 static void DumpArchive(const Archive *a) {
2135   Error Err = Error::success();
2136   for (auto &C : a->children(Err)) {
2137     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2138     if (!ChildOrErr) {
2139       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2140         report_error(a->getFileName(), C, std::move(E));
2141       continue;
2142     }
2143     if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2144       DumpObject(o, a);
2145     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2146       DumpObject(I, a);
2147     else
2148       report_error(a->getFileName(), object_error::invalid_file_type);
2149   }
2150   if (Err)
2151     report_error(a->getFileName(), std::move(Err));
2152 }
2153 
2154 /// @brief Open file and figure out how to dump it.
2155 static void DumpInput(StringRef file) {
2156 
2157   // If we are using the Mach-O specific object file parser, then let it parse
2158   // the file and process the command line options.  So the -arch flags can
2159   // be used to select specific slices, etc.
2160   if (MachOOpt) {
2161     ParseInputMachO(file);
2162     return;
2163   }
2164 
2165   // Attempt to open the binary.
2166   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2167   if (!BinaryOrErr)
2168     report_error(file, BinaryOrErr.takeError());
2169   Binary &Binary = *BinaryOrErr.get().getBinary();
2170 
2171   if (Archive *a = dyn_cast<Archive>(&Binary))
2172     DumpArchive(a);
2173   else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary))
2174     DumpObject(o);
2175   else
2176     report_error(file, object_error::invalid_file_type);
2177 }
2178 
2179 int main(int argc, char **argv) {
2180   InitLLVM X(argc, argv);
2181 
2182   // Initialize targets and assembly printers/parsers.
2183   llvm::InitializeAllTargetInfos();
2184   llvm::InitializeAllTargetMCs();
2185   llvm::InitializeAllDisassemblers();
2186 
2187   // Register the target printer for --version.
2188   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2189 
2190   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2191   TripleName = Triple::normalize(TripleName);
2192 
2193   ToolName = argv[0];
2194 
2195   // Defaults to a.out if no filenames specified.
2196   if (InputFilenames.size() == 0)
2197     InputFilenames.push_back("a.out");
2198 
2199   if (DisassembleAll || PrintSource || PrintLines)
2200     Disassemble = true;
2201   if (!Disassemble
2202       && !Relocations
2203       && !SectionHeaders
2204       && !SectionContents
2205       && !SymbolTable
2206       && !UnwindInfo
2207       && !PrivateHeaders
2208       && !FirstPrivateHeader
2209       && !ExportsTrie
2210       && !Rebase
2211       && !Bind
2212       && !LazyBind
2213       && !WeakBind
2214       && !RawClangAST
2215       && !(UniversalHeaders && MachOOpt)
2216       && !(ArchiveHeaders && MachOOpt)
2217       && !(IndirectSymbols && MachOOpt)
2218       && !(DataInCode && MachOOpt)
2219       && !(LinkOptHints && MachOOpt)
2220       && !(InfoPlist && MachOOpt)
2221       && !(DylibsUsed && MachOOpt)
2222       && !(DylibId && MachOOpt)
2223       && !(ObjcMetaData && MachOOpt)
2224       && !(FilterSections.size() != 0 && MachOOpt)
2225       && !PrintFaultMaps
2226       && DwarfDumpType == DIDT_Null) {
2227     cl::PrintHelpMessage();
2228     return 2;
2229   }
2230 
2231   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2232                         DisassembleFunctions.end());
2233 
2234   llvm::for_each(InputFilenames, DumpInput);
2235 
2236   return EXIT_SUCCESS;
2237 }
2238