1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringSet.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/CodeGen/FaultMaps.h"
25 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
26 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
27 #include "llvm/Demangle/Demangle.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
31 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
32 #include "llvm/MC/MCInst.h"
33 #include "llvm/MC/MCInstPrinter.h"
34 #include "llvm/MC/MCInstrAnalysis.h"
35 #include "llvm/MC/MCInstrInfo.h"
36 #include "llvm/MC/MCObjectFileInfo.h"
37 #include "llvm/MC/MCRegisterInfo.h"
38 #include "llvm/MC/MCSubtargetInfo.h"
39 #include "llvm/Object/Archive.h"
40 #include "llvm/Object/COFF.h"
41 #include "llvm/Object/COFFImportFile.h"
42 #include "llvm/Object/ELFObjectFile.h"
43 #include "llvm/Object/MachO.h"
44 #include "llvm/Object/MachOUniversal.h"
45 #include "llvm/Object/ObjectFile.h"
46 #include "llvm/Object/Wasm.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/Errc.h"
51 #include "llvm/Support/FileSystem.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/GraphWriter.h"
54 #include "llvm/Support/Host.h"
55 #include "llvm/Support/InitLLVM.h"
56 #include "llvm/Support/MemoryBuffer.h"
57 #include "llvm/Support/SourceMgr.h"
58 #include "llvm/Support/StringSaver.h"
59 #include "llvm/Support/TargetRegistry.h"
60 #include "llvm/Support/TargetSelect.h"
61 #include "llvm/Support/WithColor.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include <algorithm>
64 #include <cctype>
65 #include <cstring>
66 #include <system_error>
67 #include <unordered_map>
68 #include <utility>
69 
70 using namespace llvm;
71 using namespace object;
72 
73 cl::opt<bool>
74     llvm::AllHeaders("all-headers",
75                      cl::desc("Display all available header information"));
76 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
77                                  cl::NotHidden, cl::aliasopt(AllHeaders));
78 
79 static cl::list<std::string>
80 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
81 
82 cl::opt<bool>
83 llvm::Disassemble("disassemble",
84   cl::desc("Display assembler mnemonics for the machine instructions"));
85 static cl::alias Disassembled("d", cl::desc("Alias for --disassemble"),
86                               cl::NotHidden, cl::aliasopt(Disassemble));
87 
88 cl::opt<bool>
89 llvm::DisassembleAll("disassemble-all",
90   cl::desc("Display assembler mnemonics for the machine instructions"));
91 static cl::alias DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
92                                  cl::NotHidden, cl::aliasopt(DisassembleAll));
93 
94 cl::opt<bool> llvm::Demangle("demangle", cl::desc("Demangle symbols names"),
95                              cl::init(false));
96 
97 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
98                                cl::NotHidden, cl::aliasopt(llvm::Demangle));
99 
100 static cl::list<std::string>
101 DisassembleFunctions("df",
102                      cl::CommaSeparated,
103                      cl::desc("List of functions to disassemble"));
104 static StringSet<> DisasmFuncsSet;
105 
106 cl::opt<bool>
107 llvm::Relocations("reloc",
108                   cl::desc("Display the relocation entries in the file"));
109 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
110                                   cl::NotHidden,
111                                   cl::aliasopt(llvm::Relocations));
112 
113 cl::opt<bool>
114 llvm::DynamicRelocations("dynamic-reloc",
115   cl::desc("Display the dynamic relocation entries in the file"));
116 static cl::alias DynamicRelocationsd("R", cl::desc("Alias for --dynamic-reloc"),
117                                      cl::NotHidden,
118                                      cl::aliasopt(DynamicRelocations));
119 
120 cl::opt<bool>
121     llvm::SectionContents("full-contents",
122                           cl::desc("Display the content of each section"));
123 static cl::alias SectionContentsShort("s",
124                                       cl::desc("Alias for --full-contents"),
125                                       cl::NotHidden,
126                                       cl::aliasopt(SectionContents));
127 
128 cl::opt<bool> llvm::SymbolTable("syms", cl::desc("Display the symbol table"));
129 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
130                                   cl::NotHidden,
131                                   cl::aliasopt(llvm::SymbolTable));
132 
133 cl::opt<bool>
134 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
135 
136 cl::opt<bool>
137 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
138 
139 cl::opt<bool>
140 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
141 
142 cl::opt<bool>
143 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
144 
145 cl::opt<bool>
146 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
147 
148 cl::opt<bool>
149 llvm::RawClangAST("raw-clang-ast",
150     cl::desc("Dump the raw binary contents of the clang AST section"));
151 
152 static cl::opt<bool>
153 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
154 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
155                         cl::aliasopt(MachOOpt));
156 
157 cl::opt<std::string>
158 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
159                                     "see -version for available targets"));
160 
161 cl::opt<std::string>
162 llvm::MCPU("mcpu",
163      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
164      cl::value_desc("cpu-name"),
165      cl::init(""));
166 
167 cl::opt<std::string>
168 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
169                                 "see -version for available targets"));
170 
171 cl::opt<bool>
172 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
173                                                  "headers for each section."));
174 static cl::alias SectionHeadersShort("headers",
175                                      cl::desc("Alias for --section-headers"),
176                                      cl::NotHidden,
177                                      cl::aliasopt(SectionHeaders));
178 static cl::alias SectionHeadersShorter("h",
179                                        cl::desc("Alias for --section-headers"),
180                                        cl::NotHidden,
181                                        cl::aliasopt(SectionHeaders));
182 
183 cl::list<std::string>
184 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
185                                          "With -macho dump segment,section"));
186 cl::alias static FilterSectionsj("j", cl::desc("Alias for --section"),
187                                  cl::NotHidden,
188                                  cl::aliasopt(llvm::FilterSections));
189 
190 cl::list<std::string>
191 llvm::MAttrs("mattr",
192   cl::CommaSeparated,
193   cl::desc("Target specific attributes"),
194   cl::value_desc("a1,+a2,-a3,..."));
195 
196 cl::opt<bool>
197 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
198                                                  "instructions, do not print "
199                                                  "the instruction bytes."));
200 cl::opt<bool>
201 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
202 
203 cl::opt<bool>
204 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
205 
206 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
207                                  cl::NotHidden, cl::aliasopt(UnwindInfo));
208 
209 cl::opt<bool>
210 llvm::PrivateHeaders("private-headers",
211                      cl::desc("Display format specific file headers"));
212 
213 cl::opt<bool>
214 llvm::FirstPrivateHeader("private-header",
215                          cl::desc("Display only the first format specific file "
216                                   "header"));
217 
218 static cl::alias PrivateHeadersShort("p",
219                                      cl::desc("Alias for --private-headers"),
220                                      cl::NotHidden,
221                                      cl::aliasopt(PrivateHeaders));
222 
223 cl::opt<bool> llvm::FileHeaders(
224     "file-headers",
225     cl::desc("Display the contents of the overall file header"));
226 
227 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
228                                   cl::NotHidden, cl::aliasopt(FileHeaders));
229 
230 cl::opt<bool>
231     llvm::ArchiveHeaders("archive-headers",
232                          cl::desc("Display archive header information"));
233 
234 cl::alias ArchiveHeadersShort("a", cl::desc("Alias for --archive-headers"),
235                               cl::NotHidden, cl::aliasopt(ArchiveHeaders));
236 
237 cl::opt<bool>
238     llvm::PrintImmHex("print-imm-hex",
239                       cl::desc("Use hex format for immediate values"));
240 
241 cl::opt<bool> PrintFaultMaps("fault-map-section",
242                              cl::desc("Display contents of faultmap section"));
243 
244 cl::opt<DIDumpType> llvm::DwarfDumpType(
245     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
246     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
247 
248 cl::opt<bool> PrintSource(
249     "source",
250     cl::desc(
251         "Display source inlined with disassembly. Implies disassemble object"));
252 
253 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"), cl::NotHidden,
254                            cl::aliasopt(PrintSource));
255 
256 cl::opt<bool> PrintLines("line-numbers",
257                          cl::desc("Display source line numbers with "
258                                   "disassembly. Implies disassemble object"));
259 
260 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
261                           cl::NotHidden, cl::aliasopt(PrintLines));
262 
263 cl::opt<unsigned long long>
264     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
265                  cl::value_desc("address"), cl::init(0));
266 cl::opt<unsigned long long>
267     StopAddress("stop-address",
268                 cl::desc("Stop disassembly at address"),
269                 cl::value_desc("address"), cl::init(UINT64_MAX));
270 
271 cl::opt<bool> DisassembleZeroes(
272                 "disassemble-zeroes",
273                 cl::desc("Do not skip blocks of zeroes when disassembling"));
274 cl::alias DisassembleZeroesShort("z",
275                                  cl::desc("Alias for --disassemble-zeroes"),
276                                  cl::NotHidden,
277                                  cl::aliasopt(DisassembleZeroes));
278 
279 static StringRef ToolName;
280 
281 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
282 
283 SectionFilter llvm::ToolSectionFilter(llvm::object::ObjectFile const &O) {
284   return SectionFilter(
285       [](llvm::object::SectionRef const &S) {
286         if (FilterSections.empty())
287           return true;
288         llvm::StringRef String;
289         std::error_code error = S.getName(String);
290         if (error)
291           return false;
292         return is_contained(FilterSections, String);
293       },
294       O);
295 }
296 
297 void llvm::error(std::error_code EC) {
298   if (!EC)
299     return;
300   WithColor::error(errs(), ToolName)
301       << "reading file: " << EC.message() << ".\n";
302   errs().flush();
303   exit(1);
304 }
305 
306 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
307   WithColor::error(errs(), ToolName) << Message << ".\n";
308   errs().flush();
309   exit(1);
310 }
311 
312 void llvm::warn(StringRef Message) {
313   WithColor::warning(errs(), ToolName) << Message << ".\n";
314   errs().flush();
315 }
316 
317 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
318                                                 Twine Message) {
319   WithColor::error(errs(), ToolName)
320       << "'" << File << "': " << Message << ".\n";
321   exit(1);
322 }
323 
324 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
325                                                 std::error_code EC) {
326   assert(EC);
327   WithColor::error(errs(), ToolName)
328       << "'" << File << "': " << EC.message() << ".\n";
329   exit(1);
330 }
331 
332 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
333                                                 llvm::Error E) {
334   assert(E);
335   std::string Buf;
336   raw_string_ostream OS(Buf);
337   logAllUnhandledErrors(std::move(E), OS);
338   OS.flush();
339   WithColor::error(errs(), ToolName) << "'" << File << "': " << Buf;
340   exit(1);
341 }
342 
343 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
344                                                 StringRef FileName,
345                                                 llvm::Error E,
346                                                 StringRef ArchitectureName) {
347   assert(E);
348   WithColor::error(errs(), ToolName);
349   if (ArchiveName != "")
350     errs() << ArchiveName << "(" << FileName << ")";
351   else
352     errs() << "'" << FileName << "'";
353   if (!ArchitectureName.empty())
354     errs() << " (for architecture " << ArchitectureName << ")";
355   std::string Buf;
356   raw_string_ostream OS(Buf);
357   logAllUnhandledErrors(std::move(E), OS);
358   OS.flush();
359   errs() << ": " << Buf;
360   exit(1);
361 }
362 
363 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
364                                                 const object::Archive::Child &C,
365                                                 llvm::Error E,
366                                                 StringRef ArchitectureName) {
367   Expected<StringRef> NameOrErr = C.getName();
368   // TODO: if we have a error getting the name then it would be nice to print
369   // the index of which archive member this is and or its offset in the
370   // archive instead of "???" as the name.
371   if (!NameOrErr) {
372     consumeError(NameOrErr.takeError());
373     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
374   } else
375     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
376                        ArchitectureName);
377 }
378 
379 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
380   // Figure out the target triple.
381   llvm::Triple TheTriple("unknown-unknown-unknown");
382   if (TripleName.empty()) {
383     if (Obj)
384       TheTriple = Obj->makeTriple();
385   } else {
386     TheTriple.setTriple(Triple::normalize(TripleName));
387 
388     // Use the triple, but also try to combine with ARM build attributes.
389     if (Obj) {
390       auto Arch = Obj->getArch();
391       if (Arch == Triple::arm || Arch == Triple::armeb)
392         Obj->setARMSubArch(TheTriple);
393     }
394   }
395 
396   // Get the target specific parser.
397   std::string Error;
398   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
399                                                          Error);
400   if (!TheTarget) {
401     if (Obj)
402       report_error(Obj->getFileName(), "can't find target: " + Error);
403     else
404       error("can't find target: " + Error);
405   }
406 
407   // Update the triple name and return the found target.
408   TripleName = TheTriple.getTriple();
409   return TheTarget;
410 }
411 
412 bool llvm::isRelocAddressLess(RelocationRef A, RelocationRef B) {
413   return A.getOffset() < B.getOffset();
414 }
415 
416 static std::error_code getRelocationValueString(const RelocationRef &Rel,
417                                                 SmallVectorImpl<char> &Result) {
418   const ObjectFile *Obj = Rel.getObject();
419   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
420     return getELFRelocationValueString(ELF, Rel, Result);
421   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
422     return getCOFFRelocationValueString(COFF, Rel, Result);
423   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
424     return getWasmRelocationValueString(Wasm, Rel, Result);
425   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
426     return getMachORelocationValueString(MachO, Rel, Result);
427   llvm_unreachable("unknown object file format");
428 }
429 
430 /// Indicates whether this relocation should hidden when listing
431 /// relocations, usually because it is the trailing part of a multipart
432 /// relocation that will be printed as part of the leading relocation.
433 static bool getHidden(RelocationRef RelRef) {
434   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
435   if (!MachO)
436     return false;
437 
438   unsigned Arch = MachO->getArch();
439   DataRefImpl Rel = RelRef.getRawDataRefImpl();
440   uint64_t Type = MachO->getRelocationType(Rel);
441 
442   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
443   // is always hidden.
444   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
445     return Type == MachO::GENERIC_RELOC_PAIR;
446 
447   if (Arch == Triple::x86_64) {
448     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
449     // an X86_64_RELOC_SUBTRACTOR.
450     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
451       DataRefImpl RelPrev = Rel;
452       RelPrev.d.a--;
453       uint64_t PrevType = MachO->getRelocationType(RelPrev);
454       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
455         return true;
456     }
457   }
458 
459   return false;
460 }
461 
462 namespace {
463 class SourcePrinter {
464 protected:
465   DILineInfo OldLineInfo;
466   const ObjectFile *Obj = nullptr;
467   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
468   // File name to file contents of source
469   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
470   // Mark the line endings of the cached source
471   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
472 
473 private:
474   bool cacheSource(const DILineInfo& LineInfoFile);
475 
476 public:
477   SourcePrinter() = default;
478   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
479     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
480         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
481         DefaultArch);
482     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
483   }
484   virtual ~SourcePrinter() = default;
485   virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
486                                StringRef Delimiter = "; ");
487 };
488 
489 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
490   std::unique_ptr<MemoryBuffer> Buffer;
491   if (LineInfo.Source) {
492     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
493   } else {
494     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
495     if (!BufferOrError)
496       return false;
497     Buffer = std::move(*BufferOrError);
498   }
499   // Chomp the file to get lines
500   size_t BufferSize = Buffer->getBufferSize();
501   const char *BufferStart = Buffer->getBufferStart();
502   for (const char *Start = BufferStart, *End = BufferStart;
503        End < BufferStart + BufferSize; End++)
504     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
505         (*End == '\r' && *(End + 1) == '\n')) {
506       LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start));
507       if (*End == '\r')
508         End++;
509       Start = End + 1;
510     }
511   SourceCache[LineInfo.FileName] = std::move(Buffer);
512   return true;
513 }
514 
515 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
516                                     StringRef Delimiter) {
517   if (!Symbolizer)
518     return;
519   DILineInfo LineInfo = DILineInfo();
520   auto ExpectecLineInfo =
521       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
522   if (!ExpectecLineInfo)
523     consumeError(ExpectecLineInfo.takeError());
524   else
525     LineInfo = *ExpectecLineInfo;
526 
527   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
528       LineInfo.Line == 0)
529     return;
530 
531   if (PrintLines)
532     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
533   if (PrintSource) {
534     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
535       if (!cacheSource(LineInfo))
536         return;
537     auto FileBuffer = SourceCache.find(LineInfo.FileName);
538     if (FileBuffer != SourceCache.end()) {
539       auto LineBuffer = LineCache.find(LineInfo.FileName);
540       if (LineBuffer != LineCache.end()) {
541         if (LineInfo.Line > LineBuffer->second.size())
542           return;
543         // Vector begins at 0, line numbers are non-zero
544         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
545            << "\n";
546       }
547     }
548   }
549   OldLineInfo = LineInfo;
550 }
551 
552 static bool isArmElf(const ObjectFile *Obj) {
553   return (Obj->isELF() &&
554           (Obj->getArch() == Triple::aarch64 ||
555            Obj->getArch() == Triple::aarch64_be ||
556            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
557            Obj->getArch() == Triple::thumb ||
558            Obj->getArch() == Triple::thumbeb));
559 }
560 
561 static void printRelocation(const RelocationRef &Rel, uint64_t Address,
562                             uint8_t AddrSize) {
563   StringRef Fmt =
564       AddrSize > 4 ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
565   SmallString<16> Name;
566   SmallString<32> Val;
567   Rel.getTypeName(Name);
568   error(getRelocationValueString(Rel, Val));
569   outs() << format(Fmt.data(), Address) << Name << "\t" << Val << "\n";
570 }
571 
572 class PrettyPrinter {
573 public:
574   virtual ~PrettyPrinter() = default;
575   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
576                          ArrayRef<uint8_t> Bytes, uint64_t Address,
577                          raw_ostream &OS, StringRef Annot,
578                          MCSubtargetInfo const &STI, SourcePrinter *SP,
579                          std::vector<RelocationRef> *Rels = nullptr) {
580     if (SP && (PrintSource || PrintLines))
581       SP->printSourceLine(OS, Address);
582     if (!NoLeadingAddr)
583       OS << format("%8" PRIx64 ":", Address);
584     if (!NoShowRawInsn) {
585       OS << "\t";
586       dumpBytes(Bytes, OS);
587     }
588     if (MI)
589       IP.printInst(MI, OS, "", STI);
590     else
591       OS << " <unknown>";
592   }
593 };
594 PrettyPrinter PrettyPrinterInst;
595 class HexagonPrettyPrinter : public PrettyPrinter {
596 public:
597   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
598                  raw_ostream &OS) {
599     uint32_t opcode =
600       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
601     if (!NoLeadingAddr)
602       OS << format("%8" PRIx64 ":", Address);
603     if (!NoShowRawInsn) {
604       OS << "\t";
605       dumpBytes(Bytes.slice(0, 4), OS);
606       OS << format("%08" PRIx32, opcode);
607     }
608   }
609   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
610                  uint64_t Address, raw_ostream &OS, StringRef Annot,
611                  MCSubtargetInfo const &STI, SourcePrinter *SP,
612                  std::vector<RelocationRef> *Rels) override {
613     if (SP && (PrintSource || PrintLines))
614       SP->printSourceLine(OS, Address, "");
615     if (!MI) {
616       printLead(Bytes, Address, OS);
617       OS << " <unknown>";
618       return;
619     }
620     std::string Buffer;
621     {
622       raw_string_ostream TempStream(Buffer);
623       IP.printInst(MI, TempStream, "", STI);
624     }
625     StringRef Contents(Buffer);
626     // Split off bundle attributes
627     auto PacketBundle = Contents.rsplit('\n');
628     // Split off first instruction from the rest
629     auto HeadTail = PacketBundle.first.split('\n');
630     auto Preamble = " { ";
631     auto Separator = "";
632 
633     // Hexagon's packets require relocations to be inline rather than
634     // clustered at the end of the packet.
635     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
636     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
637     auto PrintReloc = [&]() -> void {
638       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address)) {
639         if (RelCur->getOffset() == Address) {
640           printRelocation(*RelCur, Address, 4);
641           return;
642         }
643         ++RelCur;
644       }
645     };
646 
647     while (!HeadTail.first.empty()) {
648       OS << Separator;
649       Separator = "\n";
650       if (SP && (PrintSource || PrintLines))
651         SP->printSourceLine(OS, Address, "");
652       printLead(Bytes, Address, OS);
653       OS << Preamble;
654       Preamble = "   ";
655       StringRef Inst;
656       auto Duplex = HeadTail.first.split('\v');
657       if (!Duplex.second.empty()) {
658         OS << Duplex.first;
659         OS << "; ";
660         Inst = Duplex.second;
661       }
662       else
663         Inst = HeadTail.first;
664       OS << Inst;
665       HeadTail = HeadTail.second.split('\n');
666       if (HeadTail.first.empty())
667         OS << " } " << PacketBundle.second;
668       PrintReloc();
669       Bytes = Bytes.slice(4);
670       Address += 4;
671     }
672   }
673 };
674 HexagonPrettyPrinter HexagonPrettyPrinterInst;
675 
676 class AMDGCNPrettyPrinter : public PrettyPrinter {
677 public:
678   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
679                  uint64_t Address, raw_ostream &OS, StringRef Annot,
680                  MCSubtargetInfo const &STI, SourcePrinter *SP,
681                  std::vector<RelocationRef> *Rels) override {
682     if (SP && (PrintSource || PrintLines))
683       SP->printSourceLine(OS, Address);
684 
685     typedef support::ulittle32_t U32;
686 
687     if (MI) {
688       SmallString<40> InstStr;
689       raw_svector_ostream IS(InstStr);
690 
691       IP.printInst(MI, IS, "", STI);
692 
693       OS << left_justify(IS.str(), 60);
694     } else {
695       // an unrecognized encoding - this is probably data so represent it
696       // using the .long directive, or .byte directive if fewer than 4 bytes
697       // remaining
698       if (Bytes.size() >= 4) {
699         OS << format("\t.long 0x%08" PRIx32 " ",
700                      static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data())));
701         OS.indent(42);
702       } else {
703           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
704           for (unsigned int i = 1; i < Bytes.size(); i++)
705             OS << format(", 0x%02" PRIx8, Bytes[i]);
706           OS.indent(55 - (6 * Bytes.size()));
707       }
708     }
709 
710     OS << format("// %012" PRIX64 ": ", Address);
711     if (Bytes.size() >=4) {
712       for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
713                                  Bytes.size() / sizeof(U32)))
714         // D should be explicitly casted to uint32_t here as it is passed
715         // by format to snprintf as vararg.
716         OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
717     } else {
718       for (unsigned int i = 0; i < Bytes.size(); i++)
719         OS << format("%02" PRIX8 " ", Bytes[i]);
720     }
721 
722     if (!Annot.empty())
723       OS << "// " << Annot;
724   }
725 };
726 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
727 
728 class BPFPrettyPrinter : public PrettyPrinter {
729 public:
730   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
731                  uint64_t Address, raw_ostream &OS, StringRef Annot,
732                  MCSubtargetInfo const &STI, SourcePrinter *SP,
733                  std::vector<RelocationRef> *Rels) override {
734     if (SP && (PrintSource || PrintLines))
735       SP->printSourceLine(OS, Address);
736     if (!NoLeadingAddr)
737       OS << format("%8" PRId64 ":", Address / 8);
738     if (!NoShowRawInsn) {
739       OS << "\t";
740       dumpBytes(Bytes, OS);
741     }
742     if (MI)
743       IP.printInst(MI, OS, "", STI);
744     else
745       OS << " <unknown>";
746   }
747 };
748 BPFPrettyPrinter BPFPrettyPrinterInst;
749 
750 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
751   switch(Triple.getArch()) {
752   default:
753     return PrettyPrinterInst;
754   case Triple::hexagon:
755     return HexagonPrettyPrinterInst;
756   case Triple::amdgcn:
757     return AMDGCNPrettyPrinterInst;
758   case Triple::bpfel:
759   case Triple::bpfeb:
760     return BPFPrettyPrinterInst;
761   }
762 }
763 }
764 
765 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
766   assert(Obj->isELF());
767   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
768     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
769   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
770     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
771   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
772     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
773   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
774     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
775   llvm_unreachable("Unsupported binary format");
776 }
777 
778 template <class ELFT> static void
779 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
780                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
781   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
782     uint8_t SymbolType = Symbol.getELFType();
783     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
784       continue;
785 
786     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
787     if (!AddressOrErr)
788       report_error(Obj->getFileName(), AddressOrErr.takeError());
789 
790     Expected<StringRef> Name = Symbol.getName();
791     if (!Name)
792       report_error(Obj->getFileName(), Name.takeError());
793     if (Name->empty())
794       continue;
795 
796     Expected<section_iterator> SectionOrErr = Symbol.getSection();
797     if (!SectionOrErr)
798       report_error(Obj->getFileName(), SectionOrErr.takeError());
799     section_iterator SecI = *SectionOrErr;
800     if (SecI == Obj->section_end())
801       continue;
802 
803     AllSymbols[*SecI].emplace_back(*AddressOrErr, *Name, SymbolType);
804   }
805 }
806 
807 static void
808 addDynamicElfSymbols(const ObjectFile *Obj,
809                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
810   assert(Obj->isELF());
811   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
812     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
813   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
814     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
815   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
816     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
817   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
818     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
819   else
820     llvm_unreachable("Unsupported binary format");
821 }
822 
823 static void addPltEntries(const ObjectFile *Obj,
824                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
825                           StringSaver &Saver) {
826   Optional<SectionRef> Plt = None;
827   for (const SectionRef &Section : Obj->sections()) {
828     StringRef Name;
829     if (Section.getName(Name))
830       continue;
831     if (Name == ".plt")
832       Plt = Section;
833   }
834   if (!Plt)
835     return;
836   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
837     for (auto PltEntry : ElfObj->getPltAddresses()) {
838       SymbolRef Symbol(PltEntry.first, ElfObj);
839       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
840 
841       Expected<StringRef> NameOrErr = Symbol.getName();
842       if (!NameOrErr)
843         report_error(Obj->getFileName(), NameOrErr.takeError());
844       if (NameOrErr->empty())
845         continue;
846       StringRef Name = Saver.save((*NameOrErr + "@plt").str());
847 
848       AllSymbols[*Plt].emplace_back(PltEntry.second, Name, SymbolType);
849     }
850   }
851 }
852 
853 // Normally the disassembly output will skip blocks of zeroes. This function
854 // returns the number of zero bytes that can be skipped when dumping the
855 // disassembly of the instructions in Buf.
856 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
857   // When -z or --disassemble-zeroes are given we always dissasemble them.
858   if (DisassembleZeroes)
859     return 0;
860 
861   // Find the number of leading zeroes.
862   size_t N = 0;
863   while (N < Buf.size() && !Buf[N])
864     ++N;
865 
866   // We may want to skip blocks of zero bytes, but unless we see
867   // at least 8 of them in a row.
868   if (N < 8)
869     return 0;
870 
871   // We skip zeroes in multiples of 4 because do not want to truncate an
872   // instruction if it starts with a zero byte.
873   return N & ~0x3;
874 }
875 
876 // Returns a map from sections to their relocations.
877 static std::map<SectionRef, std::vector<RelocationRef>>
878 getRelocsMap(llvm::object::ObjectFile const &Obj) {
879   std::map<SectionRef, std::vector<RelocationRef>> Ret;
880   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
881     section_iterator RelSec = Section.getRelocatedSection();
882     if (RelSec == Obj.section_end())
883       continue;
884     std::vector<RelocationRef> &V = Ret[*RelSec];
885     for (const RelocationRef &R : Section.relocations())
886       V.push_back(R);
887     // Sort relocations by address.
888     llvm::sort(V, isRelocAddressLess);
889   }
890   return Ret;
891 }
892 
893 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
894                               MCContext &Ctx, MCDisassembler *DisAsm,
895                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
896                               const MCSubtargetInfo *STI, PrettyPrinter &PIP,
897                               SourcePrinter &SP, bool InlineRelocs) {
898   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
899   if (InlineRelocs)
900     RelocMap = getRelocsMap(*Obj);
901 
902   // Create a mapping from virtual address to symbol name.  This is used to
903   // pretty print the symbols while disassembling.
904   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
905   SectionSymbolsTy AbsoluteSymbols;
906   for (const SymbolRef &Symbol : Obj->symbols()) {
907     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
908     if (!AddressOrErr)
909       report_error(Obj->getFileName(), AddressOrErr.takeError());
910     uint64_t Address = *AddressOrErr;
911 
912     Expected<StringRef> Name = Symbol.getName();
913     if (!Name)
914       report_error(Obj->getFileName(), Name.takeError());
915     if (Name->empty())
916       continue;
917 
918     Expected<section_iterator> SectionOrErr = Symbol.getSection();
919     if (!SectionOrErr)
920       report_error(Obj->getFileName(), SectionOrErr.takeError());
921 
922     uint8_t SymbolType = ELF::STT_NOTYPE;
923     if (Obj->isELF())
924       SymbolType = getElfSymbolType(Obj, Symbol);
925 
926     section_iterator SecI = *SectionOrErr;
927     if (SecI != Obj->section_end())
928       AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
929     else
930       AbsoluteSymbols.emplace_back(Address, *Name, SymbolType);
931 
932 
933   }
934   if (AllSymbols.empty() && Obj->isELF())
935     addDynamicElfSymbols(Obj, AllSymbols);
936 
937   BumpPtrAllocator A;
938   StringSaver Saver(A);
939   addPltEntries(Obj, AllSymbols, Saver);
940 
941   // Create a mapping from virtual address to section.
942   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
943   for (SectionRef Sec : Obj->sections())
944     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
945   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
946 
947   // Linked executables (.exe and .dll files) typically don't include a real
948   // symbol table but they might contain an export table.
949   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
950     for (const auto &ExportEntry : COFFObj->export_directories()) {
951       StringRef Name;
952       error(ExportEntry.getSymbolName(Name));
953       if (Name.empty())
954         continue;
955       uint32_t RVA;
956       error(ExportEntry.getExportRVA(RVA));
957 
958       uint64_t VA = COFFObj->getImageBase() + RVA;
959       auto Sec = std::upper_bound(
960           SectionAddresses.begin(), SectionAddresses.end(), VA,
961           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
962             return LHS < RHS.first;
963           });
964       if (Sec != SectionAddresses.begin())
965         --Sec;
966       else
967         Sec = SectionAddresses.end();
968 
969       if (Sec != SectionAddresses.end())
970         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
971       else
972         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
973     }
974   }
975 
976   // Sort all the symbols, this allows us to use a simple binary search to find
977   // a symbol near an address.
978   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
979     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
980   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
981 
982   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
983     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
984       continue;
985 
986     uint64_t SectionAddr = Section.getAddress();
987     uint64_t SectSize = Section.getSize();
988     if (!SectSize)
989       continue;
990 
991     // Get the list of all the symbols in this section.
992     SectionSymbolsTy &Symbols = AllSymbols[Section];
993     std::vector<uint64_t> DataMappingSymsAddr;
994     std::vector<uint64_t> TextMappingSymsAddr;
995     if (isArmElf(Obj)) {
996       for (const auto &Symb : Symbols) {
997         uint64_t Address = std::get<0>(Symb);
998         StringRef Name = std::get<1>(Symb);
999         if (Name.startswith("$d"))
1000           DataMappingSymsAddr.push_back(Address - SectionAddr);
1001         if (Name.startswith("$x"))
1002           TextMappingSymsAddr.push_back(Address - SectionAddr);
1003         if (Name.startswith("$a"))
1004           TextMappingSymsAddr.push_back(Address - SectionAddr);
1005         if (Name.startswith("$t"))
1006           TextMappingSymsAddr.push_back(Address - SectionAddr);
1007       }
1008     }
1009 
1010     llvm::sort(DataMappingSymsAddr);
1011     llvm::sort(TextMappingSymsAddr);
1012 
1013     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1014       // AMDGPU disassembler uses symbolizer for printing labels
1015       std::unique_ptr<MCRelocationInfo> RelInfo(
1016         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1017       if (RelInfo) {
1018         std::unique_ptr<MCSymbolizer> Symbolizer(
1019           TheTarget->createMCSymbolizer(
1020             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1021         DisAsm->setSymbolizer(std::move(Symbolizer));
1022       }
1023     }
1024 
1025     StringRef SegmentName = "";
1026     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1027       DataRefImpl DR = Section.getRawDataRefImpl();
1028       SegmentName = MachO->getSectionFinalSegmentName(DR);
1029     }
1030     StringRef SectionName;
1031     error(Section.getName(SectionName));
1032 
1033     // If the section has no symbol at the start, just insert a dummy one.
1034     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1035       Symbols.insert(
1036           Symbols.begin(),
1037           std::make_tuple(SectionAddr, SectionName,
1038                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1039     }
1040 
1041     SmallString<40> Comments;
1042     raw_svector_ostream CommentStream(Comments);
1043 
1044     StringRef BytesStr;
1045     error(Section.getContents(BytesStr));
1046     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1047                             BytesStr.size());
1048 
1049     uint64_t Size;
1050     uint64_t Index;
1051     bool PrintedSection = false;
1052     std::vector<RelocationRef> Rels = RelocMap[Section];
1053     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1054     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1055     // Disassemble symbol by symbol.
1056     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1057       uint64_t Start = std::get<0>(Symbols[SI]) - SectionAddr;
1058       // The end is either the section end or the beginning of the next
1059       // symbol.
1060       uint64_t End = (SI == SE - 1)
1061                          ? SectSize
1062                          : std::get<0>(Symbols[SI + 1]) - SectionAddr;
1063       // Don't try to disassemble beyond the end of section contents.
1064       if (End > SectSize)
1065         End = SectSize;
1066       // If this symbol has the same address as the next symbol, then skip it.
1067       if (Start >= End)
1068         continue;
1069 
1070       // Check if we need to skip symbol
1071       // Skip if the symbol's data is not between StartAddress and StopAddress
1072       if (End + SectionAddr < StartAddress ||
1073           Start + SectionAddr > StopAddress) {
1074         continue;
1075       }
1076 
1077       /// Skip if user requested specific symbols and this is not in the list
1078       if (!DisasmFuncsSet.empty() &&
1079           !DisasmFuncsSet.count(std::get<1>(Symbols[SI])))
1080         continue;
1081 
1082       if (!PrintedSection) {
1083         PrintedSection = true;
1084         outs() << "Disassembly of section ";
1085         if (!SegmentName.empty())
1086           outs() << SegmentName << ",";
1087         outs() << SectionName << ':';
1088       }
1089 
1090       // Stop disassembly at the stop address specified
1091       if (End + SectionAddr > StopAddress)
1092         End = StopAddress - SectionAddr;
1093 
1094       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1095         if (std::get<2>(Symbols[SI]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1096           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1097           Start += 256;
1098         }
1099         if (SI == SE - 1 ||
1100             std::get<2>(Symbols[SI + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1101           // cut trailing zeroes at the end of kernel
1102           // cut up to 256 bytes
1103           const uint64_t EndAlign = 256;
1104           const auto Limit = End - (std::min)(EndAlign, End - Start);
1105           while (End > Limit &&
1106             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1107             End -= 4;
1108         }
1109       }
1110 
1111       outs() << '\n';
1112       if (!NoLeadingAddr)
1113         outs() << format("%016" PRIx64 " ", SectionAddr + Start);
1114 
1115       StringRef SymbolName = std::get<1>(Symbols[SI]);
1116       if (Demangle)
1117         outs() << demangle(SymbolName) << ":\n";
1118       else
1119         outs() << SymbolName << ":\n";
1120 
1121       // Don't print raw contents of a virtual section. A virtual section
1122       // doesn't have any contents in the file.
1123       if (Section.isVirtual()) {
1124         outs() << "...\n";
1125         continue;
1126       }
1127 
1128 #ifndef NDEBUG
1129       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1130 #else
1131       raw_ostream &DebugOut = nulls();
1132 #endif
1133 
1134       // Some targets (like WebAssembly) have a special prelude at the start
1135       // of each symbol.
1136       DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start),
1137                             SectionAddr + Start, DebugOut, CommentStream);
1138       Start += Size;
1139 
1140       for (Index = Start; Index < End; Index += Size) {
1141         MCInst Inst;
1142 
1143         if (Index + SectionAddr < StartAddress ||
1144             Index + SectionAddr > StopAddress) {
1145           // skip byte by byte till StartAddress is reached
1146           Size = 1;
1147           continue;
1148         }
1149         // AArch64 ELF binaries can interleave data and text in the
1150         // same section. We rely on the markers introduced to
1151         // understand what we need to dump. If the data marker is within a
1152         // function, it is denoted as a word/short etc
1153         if (isArmElf(Obj) && std::get<2>(Symbols[SI]) != ELF::STT_OBJECT &&
1154             !DisassembleAll) {
1155           uint64_t Stride = 0;
1156 
1157           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1158                                       DataMappingSymsAddr.end(), Index);
1159           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1160             // Switch to data.
1161             while (Index < End) {
1162               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1163               outs() << "\t";
1164               if (Index + 4 <= End) {
1165                 Stride = 4;
1166                 dumpBytes(Bytes.slice(Index, 4), outs());
1167                 outs() << "\t.word\t";
1168                 uint32_t Data = 0;
1169                 if (Obj->isLittleEndian()) {
1170                   const auto Word =
1171                       reinterpret_cast<const support::ulittle32_t *>(
1172                           Bytes.data() + Index);
1173                   Data = *Word;
1174                 } else {
1175                   const auto Word = reinterpret_cast<const support::ubig32_t *>(
1176                       Bytes.data() + Index);
1177                   Data = *Word;
1178                 }
1179                 outs() << "0x" << format("%08" PRIx32, Data);
1180               } else if (Index + 2 <= End) {
1181                 Stride = 2;
1182                 dumpBytes(Bytes.slice(Index, 2), outs());
1183                 outs() << "\t\t.short\t";
1184                 uint16_t Data = 0;
1185                 if (Obj->isLittleEndian()) {
1186                   const auto Short =
1187                       reinterpret_cast<const support::ulittle16_t *>(
1188                           Bytes.data() + Index);
1189                   Data = *Short;
1190                 } else {
1191                   const auto Short =
1192                       reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1193                                                                   Index);
1194                   Data = *Short;
1195                 }
1196                 outs() << "0x" << format("%04" PRIx16, Data);
1197               } else {
1198                 Stride = 1;
1199                 dumpBytes(Bytes.slice(Index, 1), outs());
1200                 outs() << "\t\t.byte\t";
1201                 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1202               }
1203               Index += Stride;
1204               outs() << "\n";
1205               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1206                                           TextMappingSymsAddr.end(), Index);
1207               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1208                 break;
1209             }
1210           }
1211         }
1212 
1213         // If there is a data symbol inside an ELF text section and we are only
1214         // disassembling text (applicable all architectures),
1215         // we are in a situation where we must print the data and not
1216         // disassemble it.
1217         if (Obj->isELF() && std::get<2>(Symbols[SI]) == ELF::STT_OBJECT &&
1218             !DisassembleAll && Section.isText()) {
1219           // print out data up to 8 bytes at a time in hex and ascii
1220           uint8_t AsciiData[9] = {'\0'};
1221           uint8_t Byte;
1222           int NumBytes = 0;
1223 
1224           for (Index = Start; Index < End; Index += 1) {
1225             if (((SectionAddr + Index) < StartAddress) ||
1226                 ((SectionAddr + Index) > StopAddress))
1227               continue;
1228             if (NumBytes == 0) {
1229               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1230               outs() << "\t";
1231             }
1232             Byte = Bytes.slice(Index)[0];
1233             outs() << format(" %02x", Byte);
1234             AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1235 
1236             uint8_t IndentOffset = 0;
1237             NumBytes++;
1238             if (Index == End - 1 || NumBytes > 8) {
1239               // Indent the space for less than 8 bytes data.
1240               // 2 spaces for byte and one for space between bytes
1241               IndentOffset = 3 * (8 - NumBytes);
1242               for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
1243                 AsciiData[Excess] = '\0';
1244               NumBytes = 8;
1245             }
1246             if (NumBytes == 8) {
1247               AsciiData[8] = '\0';
1248               outs() << std::string(IndentOffset, ' ') << "         ";
1249               outs() << reinterpret_cast<char *>(AsciiData);
1250               outs() << '\n';
1251               NumBytes = 0;
1252             }
1253           }
1254         }
1255         if (Index >= End)
1256           break;
1257 
1258         if (size_t N =
1259                 countSkippableZeroBytes(Bytes.slice(Index, End - Index))) {
1260           outs() << "\t\t..." << '\n';
1261           Index += N;
1262           if (Index >= End)
1263             break;
1264         }
1265 
1266         // Disassemble a real instruction or a data when disassemble all is
1267         // provided
1268         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1269                                                    SectionAddr + Index, DebugOut,
1270                                                    CommentStream);
1271         if (Size == 0)
1272           Size = 1;
1273 
1274         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1275                       Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1276                       *STI, &SP, &Rels);
1277         outs() << CommentStream.str();
1278         Comments.clear();
1279 
1280         // Try to resolve the target of a call, tail call, etc. to a specific
1281         // symbol.
1282         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1283                     MIA->isConditionalBranch(Inst))) {
1284           uint64_t Target;
1285           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1286             // In a relocatable object, the target's section must reside in
1287             // the same section as the call instruction or it is accessed
1288             // through a relocation.
1289             //
1290             // In a non-relocatable object, the target may be in any section.
1291             //
1292             // N.B. We don't walk the relocations in the relocatable case yet.
1293             auto *TargetSectionSymbols = &Symbols;
1294             if (!Obj->isRelocatableObject()) {
1295               auto SectionAddress = std::upper_bound(
1296                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1297                   [](uint64_t LHS,
1298                       const std::pair<uint64_t, SectionRef> &RHS) {
1299                     return LHS < RHS.first;
1300                   });
1301               if (SectionAddress != SectionAddresses.begin()) {
1302                 --SectionAddress;
1303                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1304               } else {
1305                 TargetSectionSymbols = &AbsoluteSymbols;
1306               }
1307             }
1308 
1309             // Find the first symbol in the section whose offset is less than
1310             // or equal to the target. If there isn't a section that contains
1311             // the target, find the nearest preceding absolute symbol.
1312             auto TargetSym = std::upper_bound(
1313                 TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1314                 Target, [](uint64_t LHS,
1315                            const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1316                   return LHS < std::get<0>(RHS);
1317                 });
1318             if (TargetSym == TargetSectionSymbols->begin()) {
1319               TargetSectionSymbols = &AbsoluteSymbols;
1320               TargetSym = std::upper_bound(
1321                   AbsoluteSymbols.begin(), AbsoluteSymbols.end(),
1322                   Target, [](uint64_t LHS,
1323                              const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1324                             return LHS < std::get<0>(RHS);
1325                           });
1326             }
1327             if (TargetSym != TargetSectionSymbols->begin()) {
1328               --TargetSym;
1329               uint64_t TargetAddress = std::get<0>(*TargetSym);
1330               StringRef TargetName = std::get<1>(*TargetSym);
1331               outs() << " <" << TargetName;
1332               uint64_t Disp = Target - TargetAddress;
1333               if (Disp)
1334                 outs() << "+0x" << Twine::utohexstr(Disp);
1335               outs() << '>';
1336             }
1337           }
1338         }
1339         outs() << "\n";
1340 
1341         // Hexagon does this in pretty printer
1342         if (Obj->getArch() != Triple::hexagon) {
1343           // Print relocation for instruction.
1344           while (RelCur != RelEnd) {
1345             uint64_t Offset = RelCur->getOffset();
1346             // If this relocation is hidden, skip it.
1347             if (getHidden(*RelCur) || ((SectionAddr + Offset) < StartAddress)) {
1348               ++RelCur;
1349               continue;
1350             }
1351 
1352             // Stop when rel_cur's address is past the current instruction.
1353             if (Offset >= Index + Size)
1354               break;
1355 
1356             printRelocation(*RelCur, SectionAddr + Offset,
1357                             Obj->getBytesInAddress());
1358             ++RelCur;
1359           }
1360         }
1361       }
1362     }
1363   }
1364 }
1365 
1366 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1367   if (StartAddress > StopAddress)
1368     error("Start address should be less than stop address");
1369 
1370   const Target *TheTarget = getTarget(Obj);
1371 
1372   // Package up features to be passed to target/subtarget
1373   SubtargetFeatures Features = Obj->getFeatures();
1374   if (!MAttrs.empty())
1375     for (unsigned I = 0; I != MAttrs.size(); ++I)
1376       Features.AddFeature(MAttrs[I]);
1377 
1378   std::unique_ptr<const MCRegisterInfo> MRI(
1379       TheTarget->createMCRegInfo(TripleName));
1380   if (!MRI)
1381     report_error(Obj->getFileName(),
1382                  "no register info for target " + TripleName);
1383 
1384   // Set up disassembler.
1385   std::unique_ptr<const MCAsmInfo> AsmInfo(
1386       TheTarget->createMCAsmInfo(*MRI, TripleName));
1387   if (!AsmInfo)
1388     report_error(Obj->getFileName(),
1389                  "no assembly info for target " + TripleName);
1390   std::unique_ptr<const MCSubtargetInfo> STI(
1391       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1392   if (!STI)
1393     report_error(Obj->getFileName(),
1394                  "no subtarget info for target " + TripleName);
1395   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1396   if (!MII)
1397     report_error(Obj->getFileName(),
1398                  "no instruction info for target " + TripleName);
1399   MCObjectFileInfo MOFI;
1400   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1401   // FIXME: for now initialize MCObjectFileInfo with default values
1402   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1403 
1404   std::unique_ptr<MCDisassembler> DisAsm(
1405       TheTarget->createMCDisassembler(*STI, Ctx));
1406   if (!DisAsm)
1407     report_error(Obj->getFileName(),
1408                  "no disassembler for target " + TripleName);
1409 
1410   std::unique_ptr<const MCInstrAnalysis> MIA(
1411       TheTarget->createMCInstrAnalysis(MII.get()));
1412 
1413   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1414   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1415       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1416   if (!IP)
1417     report_error(Obj->getFileName(),
1418                  "no instruction printer for target " + TripleName);
1419   IP->setPrintImmHex(PrintImmHex);
1420 
1421   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1422   SourcePrinter SP(Obj, TheTarget->getName());
1423 
1424   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), MIA.get(), IP.get(),
1425                     STI.get(), PIP, SP, InlineRelocs);
1426 }
1427 
1428 void llvm::printRelocations(const ObjectFile *Obj) {
1429   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1430                                                  "%08" PRIx64;
1431   // Regular objdump doesn't print relocations in non-relocatable object
1432   // files.
1433   if (!Obj->isRelocatableObject())
1434     return;
1435 
1436   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1437     if (Section.relocation_begin() == Section.relocation_end())
1438       continue;
1439     StringRef SecName;
1440     error(Section.getName(SecName));
1441     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
1442     for (const RelocationRef &Reloc : Section.relocations()) {
1443       uint64_t Address = Reloc.getOffset();
1444       SmallString<32> RelocName;
1445       SmallString<32> ValueStr;
1446       if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1447         continue;
1448       Reloc.getTypeName(RelocName);
1449       error(getRelocationValueString(Reloc, ValueStr));
1450       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1451              << ValueStr << "\n";
1452     }
1453     outs() << "\n";
1454   }
1455 }
1456 
1457 void llvm::printDynamicRelocations(const ObjectFile *Obj) {
1458   // For the moment, this option is for ELF only
1459   if (!Obj->isELF())
1460     return;
1461 
1462   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1463   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1464     error("not a dynamic object");
1465     return;
1466   }
1467 
1468   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1469   if (DynRelSec.empty())
1470     return;
1471 
1472   outs() << "DYNAMIC RELOCATION RECORDS\n";
1473   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1474   for (const SectionRef &Section : DynRelSec) {
1475     if (Section.relocation_begin() == Section.relocation_end())
1476       continue;
1477     for (const RelocationRef &Reloc : Section.relocations()) {
1478       uint64_t Address = Reloc.getOffset();
1479       SmallString<32> RelocName;
1480       SmallString<32> ValueStr;
1481       Reloc.getTypeName(RelocName);
1482       error(getRelocationValueString(Reloc, ValueStr));
1483       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1484              << ValueStr << "\n";
1485     }
1486   }
1487 }
1488 
1489 void llvm::printSectionHeaders(const ObjectFile *Obj) {
1490   outs() << "Sections:\n"
1491             "Idx Name          Size      Address          Type\n";
1492   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1493     StringRef Name;
1494     error(Section.getName(Name));
1495     uint64_t Address = Section.getAddress();
1496     uint64_t Size = Section.getSize();
1497     bool Text = Section.isText();
1498     bool Data = Section.isData();
1499     bool BSS = Section.isBSS();
1500     std::string Type = (std::string(Text ? "TEXT " : "") +
1501                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1502     outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n",
1503                      (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1504                      Address, Type.c_str());
1505   }
1506   outs() << "\n";
1507 }
1508 
1509 void llvm::printSectionContents(const ObjectFile *Obj) {
1510   std::error_code EC;
1511   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1512     StringRef Name;
1513     StringRef Contents;
1514     error(Section.getName(Name));
1515     uint64_t BaseAddr = Section.getAddress();
1516     uint64_t Size = Section.getSize();
1517     if (!Size)
1518       continue;
1519 
1520     outs() << "Contents of section " << Name << ":\n";
1521     if (Section.isBSS()) {
1522       outs() << format("<skipping contents of bss section at [%04" PRIx64
1523                        ", %04" PRIx64 ")>\n",
1524                        BaseAddr, BaseAddr + Size);
1525       continue;
1526     }
1527 
1528     error(Section.getContents(Contents));
1529 
1530     // Dump out the content as hex and printable ascii characters.
1531     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1532       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1533       // Dump line of hex.
1534       for (std::size_t I = 0; I < 16; ++I) {
1535         if (I != 0 && I % 4 == 0)
1536           outs() << ' ';
1537         if (Addr + I < End)
1538           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1539                  << hexdigit(Contents[Addr + I] & 0xF, true);
1540         else
1541           outs() << "  ";
1542       }
1543       // Print ascii.
1544       outs() << "  ";
1545       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1546         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1547           outs() << Contents[Addr + I];
1548         else
1549           outs() << ".";
1550       }
1551       outs() << "\n";
1552     }
1553   }
1554 }
1555 
1556 void llvm::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1557                             StringRef ArchitectureName) {
1558   outs() << "SYMBOL TABLE:\n";
1559 
1560   if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) {
1561     printCOFFSymbolTable(Coff);
1562     return;
1563   }
1564 
1565   for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) {
1566     // Skip printing the special zero symbol when dumping an ELF file.
1567     // This makes the output consistent with the GNU objdump.
1568     if (I == O->symbol_begin() && isa<ELFObjectFileBase>(O))
1569       continue;
1570 
1571     const SymbolRef &Symbol = *I;
1572     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1573     if (!AddressOrError)
1574       report_error(ArchiveName, O->getFileName(), AddressOrError.takeError(),
1575                    ArchitectureName);
1576     uint64_t Address = *AddressOrError;
1577     if ((Address < StartAddress) || (Address > StopAddress))
1578       continue;
1579     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1580     if (!TypeOrError)
1581       report_error(ArchiveName, O->getFileName(), TypeOrError.takeError(),
1582                    ArchitectureName);
1583     SymbolRef::Type Type = *TypeOrError;
1584     uint32_t Flags = Symbol.getFlags();
1585     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1586     if (!SectionOrErr)
1587       report_error(ArchiveName, O->getFileName(), SectionOrErr.takeError(),
1588                    ArchitectureName);
1589     section_iterator Section = *SectionOrErr;
1590     StringRef Name;
1591     if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
1592       Section->getName(Name);
1593     } else {
1594       Expected<StringRef> NameOrErr = Symbol.getName();
1595       if (!NameOrErr)
1596         report_error(ArchiveName, O->getFileName(), NameOrErr.takeError(),
1597                      ArchitectureName);
1598       Name = *NameOrErr;
1599     }
1600 
1601     bool Global = Flags & SymbolRef::SF_Global;
1602     bool Weak = Flags & SymbolRef::SF_Weak;
1603     bool Absolute = Flags & SymbolRef::SF_Absolute;
1604     bool Common = Flags & SymbolRef::SF_Common;
1605     bool Hidden = Flags & SymbolRef::SF_Hidden;
1606 
1607     char GlobLoc = ' ';
1608     if (Type != SymbolRef::ST_Unknown)
1609       GlobLoc = Global ? 'g' : 'l';
1610     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1611                  ? 'd' : ' ';
1612     char FileFunc = ' ';
1613     if (Type == SymbolRef::ST_File)
1614       FileFunc = 'f';
1615     else if (Type == SymbolRef::ST_Function)
1616       FileFunc = 'F';
1617     else if (Type == SymbolRef::ST_Data)
1618       FileFunc = 'O';
1619 
1620     const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 :
1621                                                    "%08" PRIx64;
1622 
1623     outs() << format(Fmt, Address) << " "
1624            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1625            << (Weak ? 'w' : ' ') // Weak?
1626            << ' ' // Constructor. Not supported yet.
1627            << ' ' // Warning. Not supported yet.
1628            << ' ' // Indirect reference to another symbol.
1629            << Debug // Debugging (d) or dynamic (D) symbol.
1630            << FileFunc // Name of function (F), file (f) or object (O).
1631            << ' ';
1632     if (Absolute) {
1633       outs() << "*ABS*";
1634     } else if (Common) {
1635       outs() << "*COM*";
1636     } else if (Section == O->section_end()) {
1637       outs() << "*UND*";
1638     } else {
1639       if (const MachOObjectFile *MachO =
1640           dyn_cast<const MachOObjectFile>(O)) {
1641         DataRefImpl DR = Section->getRawDataRefImpl();
1642         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1643         outs() << SegmentName << ",";
1644       }
1645       StringRef SectionName;
1646       error(Section->getName(SectionName));
1647       outs() << SectionName;
1648     }
1649 
1650     outs() << '\t';
1651     if (Common || isa<ELFObjectFileBase>(O)) {
1652       uint64_t Val =
1653           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1654       outs() << format("\t %08" PRIx64 " ", Val);
1655     }
1656 
1657     if (Hidden)
1658       outs() << ".hidden ";
1659 
1660     if (Demangle)
1661       outs() << demangle(Name) << '\n';
1662     else
1663       outs() << Name << '\n';
1664   }
1665 }
1666 
1667 static void printUnwindInfo(const ObjectFile *O) {
1668   outs() << "Unwind info:\n\n";
1669 
1670   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
1671     printCOFFUnwindInfo(Coff);
1672   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
1673     printMachOUnwindInfo(MachO);
1674   else
1675     // TODO: Extract DWARF dump tool to objdump.
1676     WithColor::error(errs(), ToolName)
1677         << "This operation is only currently supported "
1678            "for COFF and MachO object files.\n";
1679 }
1680 
1681 void llvm::printExportsTrie(const ObjectFile *o) {
1682   outs() << "Exports trie:\n";
1683   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1684     printMachOExportsTrie(MachO);
1685   else
1686     WithColor::error(errs(), ToolName)
1687         << "This operation is only currently supported "
1688            "for Mach-O executable files.\n";
1689 }
1690 
1691 void llvm::printRebaseTable(ObjectFile *o) {
1692   outs() << "Rebase table:\n";
1693   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1694     printMachORebaseTable(MachO);
1695   else
1696     WithColor::error(errs(), ToolName)
1697         << "This operation is only currently supported "
1698            "for Mach-O executable files.\n";
1699 }
1700 
1701 void llvm::printBindTable(ObjectFile *o) {
1702   outs() << "Bind table:\n";
1703   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1704     printMachOBindTable(MachO);
1705   else
1706     WithColor::error(errs(), ToolName)
1707         << "This operation is only currently supported "
1708            "for Mach-O executable files.\n";
1709 }
1710 
1711 void llvm::printLazyBindTable(ObjectFile *o) {
1712   outs() << "Lazy bind table:\n";
1713   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1714     printMachOLazyBindTable(MachO);
1715   else
1716     WithColor::error(errs(), ToolName)
1717         << "This operation is only currently supported "
1718            "for Mach-O executable files.\n";
1719 }
1720 
1721 void llvm::printWeakBindTable(ObjectFile *o) {
1722   outs() << "Weak bind table:\n";
1723   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1724     printMachOWeakBindTable(MachO);
1725   else
1726     WithColor::error(errs(), ToolName)
1727         << "This operation is only currently supported "
1728            "for Mach-O executable files.\n";
1729 }
1730 
1731 /// Dump the raw contents of the __clangast section so the output can be piped
1732 /// into llvm-bcanalyzer.
1733 void llvm::printRawClangAST(const ObjectFile *Obj) {
1734   if (outs().is_displayed()) {
1735     WithColor::error(errs(), ToolName)
1736         << "The -raw-clang-ast option will dump the raw binary contents of "
1737            "the clang ast section.\n"
1738            "Please redirect the output to a file or another program such as "
1739            "llvm-bcanalyzer.\n";
1740     return;
1741   }
1742 
1743   StringRef ClangASTSectionName("__clangast");
1744   if (isa<COFFObjectFile>(Obj)) {
1745     ClangASTSectionName = "clangast";
1746   }
1747 
1748   Optional<object::SectionRef> ClangASTSection;
1749   for (auto Sec : ToolSectionFilter(*Obj)) {
1750     StringRef Name;
1751     Sec.getName(Name);
1752     if (Name == ClangASTSectionName) {
1753       ClangASTSection = Sec;
1754       break;
1755     }
1756   }
1757   if (!ClangASTSection)
1758     return;
1759 
1760   StringRef ClangASTContents;
1761   error(ClangASTSection.getValue().getContents(ClangASTContents));
1762   outs().write(ClangASTContents.data(), ClangASTContents.size());
1763 }
1764 
1765 static void printFaultMaps(const ObjectFile *Obj) {
1766   StringRef FaultMapSectionName;
1767 
1768   if (isa<ELFObjectFileBase>(Obj)) {
1769     FaultMapSectionName = ".llvm_faultmaps";
1770   } else if (isa<MachOObjectFile>(Obj)) {
1771     FaultMapSectionName = "__llvm_faultmaps";
1772   } else {
1773     WithColor::error(errs(), ToolName)
1774         << "This operation is only currently supported "
1775            "for ELF and Mach-O executable files.\n";
1776     return;
1777   }
1778 
1779   Optional<object::SectionRef> FaultMapSection;
1780 
1781   for (auto Sec : ToolSectionFilter(*Obj)) {
1782     StringRef Name;
1783     Sec.getName(Name);
1784     if (Name == FaultMapSectionName) {
1785       FaultMapSection = Sec;
1786       break;
1787     }
1788   }
1789 
1790   outs() << "FaultMap table:\n";
1791 
1792   if (!FaultMapSection.hasValue()) {
1793     outs() << "<not found>\n";
1794     return;
1795   }
1796 
1797   StringRef FaultMapContents;
1798   error(FaultMapSection.getValue().getContents(FaultMapContents));
1799 
1800   FaultMapParser FMP(FaultMapContents.bytes_begin(),
1801                      FaultMapContents.bytes_end());
1802 
1803   outs() << FMP;
1804 }
1805 
1806 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
1807   if (O->isELF()) {
1808     printELFFileHeader(O);
1809     return printELFDynamicSection(O);
1810   }
1811   if (O->isCOFF())
1812     return printCOFFFileHeader(O);
1813   if (O->isWasm())
1814     return printWasmFileHeader(O);
1815   if (O->isMachO()) {
1816     printMachOFileHeader(O);
1817     if (!OnlyFirst)
1818       printMachOLoadCommands(O);
1819     return;
1820   }
1821   report_error(O->getFileName(), "Invalid/Unsupported object file format");
1822 }
1823 
1824 static void printFileHeaders(const ObjectFile *O) {
1825   if (!O->isELF() && !O->isCOFF())
1826     report_error(O->getFileName(), "Invalid/Unsupported object file format");
1827 
1828   Triple::ArchType AT = O->getArch();
1829   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
1830   Expected<uint64_t> StartAddrOrErr = O->getStartAddress();
1831   if (!StartAddrOrErr)
1832     report_error(O->getFileName(), StartAddrOrErr.takeError());
1833 
1834   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1835   uint64_t Address = StartAddrOrErr.get();
1836   outs() << "start address: "
1837          << "0x" << format(Fmt.data(), Address) << "\n\n";
1838 }
1839 
1840 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
1841   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
1842   if (!ModeOrErr) {
1843     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
1844     consumeError(ModeOrErr.takeError());
1845     return;
1846   }
1847   sys::fs::perms Mode = ModeOrErr.get();
1848   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
1849   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
1850   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
1851   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
1852   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
1853   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
1854   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
1855   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
1856   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
1857 
1858   outs() << " ";
1859 
1860   Expected<unsigned> UIDOrErr = C.getUID();
1861   if (!UIDOrErr)
1862     report_error(Filename, UIDOrErr.takeError());
1863   unsigned UID = UIDOrErr.get();
1864   outs() << format("%d/", UID);
1865 
1866   Expected<unsigned> GIDOrErr = C.getGID();
1867   if (!GIDOrErr)
1868     report_error(Filename, GIDOrErr.takeError());
1869   unsigned GID = GIDOrErr.get();
1870   outs() << format("%-d ", GID);
1871 
1872   Expected<uint64_t> Size = C.getRawSize();
1873   if (!Size)
1874     report_error(Filename, Size.takeError());
1875   outs() << format("%6" PRId64, Size.get()) << " ";
1876 
1877   StringRef RawLastModified = C.getRawLastModified();
1878   unsigned Seconds;
1879   if (RawLastModified.getAsInteger(10, Seconds))
1880     outs() << "(date: \"" << RawLastModified
1881            << "\" contains non-decimal chars) ";
1882   else {
1883     // Since ctime(3) returns a 26 character string of the form:
1884     // "Sun Sep 16 01:03:52 1973\n\0"
1885     // just print 24 characters.
1886     time_t t = Seconds;
1887     outs() << format("%.24s ", ctime(&t));
1888   }
1889 
1890   StringRef Name = "";
1891   Expected<StringRef> NameOrErr = C.getName();
1892   if (!NameOrErr) {
1893     consumeError(NameOrErr.takeError());
1894     Expected<StringRef> RawNameOrErr = C.getRawName();
1895     if (!RawNameOrErr)
1896       report_error(Filename, NameOrErr.takeError());
1897     Name = RawNameOrErr.get();
1898   } else {
1899     Name = NameOrErr.get();
1900   }
1901   outs() << Name << "\n";
1902 }
1903 
1904 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
1905                        const Archive::Child *C = nullptr) {
1906   // Avoid other output when using a raw option.
1907   if (!RawClangAST) {
1908     outs() << '\n';
1909     if (A)
1910       outs() << A->getFileName() << "(" << O->getFileName() << ")";
1911     else
1912       outs() << O->getFileName();
1913     outs() << ":\tfile format " << O->getFileFormatName() << "\n\n";
1914   }
1915 
1916   StringRef ArchiveName = A ? A->getFileName() : "";
1917   if (FileHeaders)
1918     printFileHeaders(O);
1919   if (ArchiveHeaders && !MachOOpt && C)
1920     printArchiveChild(ArchiveName, *C);
1921   if (Disassemble)
1922     disassembleObject(O, Relocations);
1923   if (Relocations && !Disassemble)
1924     printRelocations(O);
1925   if (DynamicRelocations)
1926     printDynamicRelocations(O);
1927   if (SectionHeaders)
1928     printSectionHeaders(O);
1929   if (SectionContents)
1930     printSectionContents(O);
1931   if (SymbolTable)
1932     printSymbolTable(O, ArchiveName);
1933   if (UnwindInfo)
1934     printUnwindInfo(O);
1935   if (PrivateHeaders || FirstPrivateHeader)
1936     printPrivateFileHeaders(O, FirstPrivateHeader);
1937   if (ExportsTrie)
1938     printExportsTrie(O);
1939   if (Rebase)
1940     printRebaseTable(O);
1941   if (Bind)
1942     printBindTable(O);
1943   if (LazyBind)
1944     printLazyBindTable(O);
1945   if (WeakBind)
1946     printWeakBindTable(O);
1947   if (RawClangAST)
1948     printRawClangAST(O);
1949   if (PrintFaultMaps)
1950     printFaultMaps(O);
1951   if (DwarfDumpType != DIDT_Null) {
1952     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
1953     // Dump the complete DWARF structure.
1954     DIDumpOptions DumpOpts;
1955     DumpOpts.DumpType = DwarfDumpType;
1956     DICtx->dump(outs(), DumpOpts);
1957   }
1958 }
1959 
1960 static void dumpObject(const COFFImportFile *I, const Archive *A,
1961                        const Archive::Child *C = nullptr) {
1962   StringRef ArchiveName = A ? A->getFileName() : "";
1963 
1964   // Avoid other output when using a raw option.
1965   if (!RawClangAST)
1966     outs() << '\n'
1967            << ArchiveName << "(" << I->getFileName() << ")"
1968            << ":\tfile format COFF-import-file"
1969            << "\n\n";
1970 
1971   if (ArchiveHeaders && !MachOOpt && C)
1972     printArchiveChild(ArchiveName, *C);
1973   if (SymbolTable)
1974     printCOFFSymbolTable(I);
1975 }
1976 
1977 /// Dump each object file in \a a;
1978 static void dumpArchive(const Archive *A) {
1979   Error Err = Error::success();
1980   for (auto &C : A->children(Err)) {
1981     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1982     if (!ChildOrErr) {
1983       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
1984         report_error(A->getFileName(), C, std::move(E));
1985       continue;
1986     }
1987     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
1988       dumpObject(O, A, &C);
1989     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
1990       dumpObject(I, A, &C);
1991     else
1992       report_error(A->getFileName(), object_error::invalid_file_type);
1993   }
1994   if (Err)
1995     report_error(A->getFileName(), std::move(Err));
1996 }
1997 
1998 /// Open file and figure out how to dump it.
1999 static void dumpInput(StringRef file) {
2000   // If we are using the Mach-O specific object file parser, then let it parse
2001   // the file and process the command line options.  So the -arch flags can
2002   // be used to select specific slices, etc.
2003   if (MachOOpt) {
2004     parseInputMachO(file);
2005     return;
2006   }
2007 
2008   // Attempt to open the binary.
2009   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2010   if (!BinaryOrErr)
2011     report_error(file, BinaryOrErr.takeError());
2012   Binary &Binary = *BinaryOrErr.get().getBinary();
2013 
2014   if (Archive *A = dyn_cast<Archive>(&Binary))
2015     dumpArchive(A);
2016   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2017     dumpObject(O);
2018   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2019     parseInputMachO(UB);
2020   else
2021     report_error(file, object_error::invalid_file_type);
2022 }
2023 
2024 int main(int argc, char **argv) {
2025   InitLLVM X(argc, argv);
2026 
2027   // Initialize targets and assembly printers/parsers.
2028   llvm::InitializeAllTargetInfos();
2029   llvm::InitializeAllTargetMCs();
2030   llvm::InitializeAllDisassemblers();
2031 
2032   // Register the target printer for --version.
2033   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2034 
2035   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2036 
2037   ToolName = argv[0];
2038 
2039   // Defaults to a.out if no filenames specified.
2040   if (InputFilenames.empty())
2041     InputFilenames.push_back("a.out");
2042 
2043   if (AllHeaders)
2044     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2045         SectionHeaders = SymbolTable = true;
2046 
2047   if (DisassembleAll || PrintSource || PrintLines)
2048     Disassemble = true;
2049 
2050   if (!Disassemble
2051       && !Relocations
2052       && !DynamicRelocations
2053       && !SectionHeaders
2054       && !SectionContents
2055       && !SymbolTable
2056       && !UnwindInfo
2057       && !PrivateHeaders
2058       && !FileHeaders
2059       && !FirstPrivateHeader
2060       && !ExportsTrie
2061       && !Rebase
2062       && !Bind
2063       && !LazyBind
2064       && !WeakBind
2065       && !RawClangAST
2066       && !(UniversalHeaders && MachOOpt)
2067       && !ArchiveHeaders
2068       && !(IndirectSymbols && MachOOpt)
2069       && !(DataInCode && MachOOpt)
2070       && !(LinkOptHints && MachOOpt)
2071       && !(InfoPlist && MachOOpt)
2072       && !(DylibsUsed && MachOOpt)
2073       && !(DylibId && MachOOpt)
2074       && !(ObjcMetaData && MachOOpt)
2075       && !(!FilterSections.empty() && MachOOpt)
2076       && !PrintFaultMaps
2077       && DwarfDumpType == DIDT_Null) {
2078     cl::PrintHelpMessage();
2079     return 2;
2080   }
2081 
2082   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2083                         DisassembleFunctions.end());
2084 
2085   llvm::for_each(InputFilenames, dumpInput);
2086 
2087   return EXIT_SUCCESS;
2088 }
2089