1 //===-- MachODump.cpp - Object file dumping utility for llvm --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the MachO-specific dumper for llvm-objdump.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Object/MachO.h"
15 #include "llvm-objdump.h"
16 #include "llvm-c/Disassembler.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/Config/config.h"
21 #include "llvm/DebugInfo/DIContext.h"
22 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
23 #include "llvm/Demangle/Demangle.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
27 #include "llvm/MC/MCInst.h"
28 #include "llvm/MC/MCInstPrinter.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/MC/MCInstrInfo.h"
31 #include "llvm/MC/MCRegisterInfo.h"
32 #include "llvm/MC/MCSubtargetInfo.h"
33 #include "llvm/Object/MachOUniversal.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/Endian.h"
38 #include "llvm/Support/Format.h"
39 #include "llvm/Support/FormattedStream.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/LEB128.h"
42 #include "llvm/Support/MachO.h"
43 #include "llvm/Support/MemoryBuffer.h"
44 #include "llvm/Support/TargetRegistry.h"
45 #include "llvm/Support/TargetSelect.h"
46 #include "llvm/Support/ToolOutputFile.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cstring>
50 #include <system_error>
51 
52 #ifdef HAVE_LIBXAR
53 extern "C" {
54 #include <xar/xar.h>
55 }
56 #endif
57 
58 using namespace llvm;
59 using namespace object;
60 
61 static cl::opt<bool>
62     UseDbg("g",
63            cl::desc("Print line information from debug info if available"));
64 
65 static cl::opt<std::string> DSYMFile("dsym",
66                                      cl::desc("Use .dSYM file for debug info"));
67 
68 static cl::opt<bool> FullLeadingAddr("full-leading-addr",
69                                      cl::desc("Print full leading address"));
70 
71 static cl::opt<bool> NoLeadingAddr("no-leading-addr",
72                                    cl::desc("Print no leading address"));
73 
74 cl::opt<bool> llvm::UniversalHeaders("universal-headers",
75                                      cl::desc("Print Mach-O universal headers "
76                                               "(requires -macho)"));
77 
78 cl::opt<bool>
79     llvm::ArchiveHeaders("archive-headers",
80                          cl::desc("Print archive headers for Mach-O archives "
81                                   "(requires -macho)"));
82 
83 cl::opt<bool>
84     ArchiveMemberOffsets("archive-member-offsets",
85                          cl::desc("Print the offset to each archive member for "
86                                   "Mach-O archives (requires -macho and "
87                                   "-archive-headers)"));
88 
89 cl::opt<bool>
90     llvm::IndirectSymbols("indirect-symbols",
91                           cl::desc("Print indirect symbol table for Mach-O "
92                                    "objects (requires -macho)"));
93 
94 cl::opt<bool>
95     llvm::DataInCode("data-in-code",
96                      cl::desc("Print the data in code table for Mach-O objects "
97                               "(requires -macho)"));
98 
99 cl::opt<bool>
100     llvm::LinkOptHints("link-opt-hints",
101                        cl::desc("Print the linker optimization hints for "
102                                 "Mach-O objects (requires -macho)"));
103 
104 cl::opt<bool>
105     llvm::InfoPlist("info-plist",
106                     cl::desc("Print the info plist section as strings for "
107                              "Mach-O objects (requires -macho)"));
108 
109 cl::opt<bool>
110     llvm::DylibsUsed("dylibs-used",
111                      cl::desc("Print the shared libraries used for linked "
112                               "Mach-O files (requires -macho)"));
113 
114 cl::opt<bool>
115     llvm::DylibId("dylib-id",
116                   cl::desc("Print the shared library's id for the dylib Mach-O "
117                            "file (requires -macho)"));
118 
119 cl::opt<bool>
120     llvm::NonVerbose("non-verbose",
121                      cl::desc("Print the info for Mach-O objects in "
122                               "non-verbose or numeric form (requires -macho)"));
123 
124 cl::opt<bool>
125     llvm::ObjcMetaData("objc-meta-data",
126                        cl::desc("Print the Objective-C runtime meta data for "
127                                 "Mach-O files (requires -macho)"));
128 
129 cl::opt<std::string> llvm::DisSymName(
130     "dis-symname",
131     cl::desc("disassemble just this symbol's instructions (requires -macho)"));
132 
133 static cl::opt<bool> NoSymbolicOperands(
134     "no-symbolic-operands",
135     cl::desc("do not symbolic operands when disassembling (requires -macho)"));
136 
137 static cl::list<std::string>
138     ArchFlags("arch", cl::desc("architecture(s) from a Mach-O file to dump"),
139               cl::ZeroOrMore);
140 
141 bool ArchAll = false;
142 
143 static std::string ThumbTripleName;
144 
145 static const Target *GetTarget(const MachOObjectFile *MachOObj,
146                                const char **McpuDefault,
147                                const Target **ThumbTarget) {
148   // Figure out the target triple.
149   llvm::Triple TT(TripleName);
150   if (TripleName.empty()) {
151     TT = MachOObj->getArchTriple(McpuDefault);
152     TripleName = TT.str();
153   }
154 
155   if (TT.getArch() == Triple::arm) {
156     // We've inferred a 32-bit ARM target from the object file. All MachO CPUs
157     // that support ARM are also capable of Thumb mode.
158     llvm::Triple ThumbTriple = TT;
159     std::string ThumbName = (Twine("thumb") + TT.getArchName().substr(3)).str();
160     ThumbTriple.setArchName(ThumbName);
161     ThumbTripleName = ThumbTriple.str();
162   }
163 
164   // Get the target specific parser.
165   std::string Error;
166   const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error);
167   if (TheTarget && ThumbTripleName.empty())
168     return TheTarget;
169 
170   *ThumbTarget = TargetRegistry::lookupTarget(ThumbTripleName, Error);
171   if (*ThumbTarget)
172     return TheTarget;
173 
174   errs() << "llvm-objdump: error: unable to get target for '";
175   if (!TheTarget)
176     errs() << TripleName;
177   else
178     errs() << ThumbTripleName;
179   errs() << "', see --version and --triple.\n";
180   return nullptr;
181 }
182 
183 struct SymbolSorter {
184   bool operator()(const SymbolRef &A, const SymbolRef &B) {
185     Expected<SymbolRef::Type> ATypeOrErr = A.getType();
186     if (!ATypeOrErr) {
187       std::string Buf;
188       raw_string_ostream OS(Buf);
189       logAllUnhandledErrors(ATypeOrErr.takeError(), OS, "");
190       OS.flush();
191       report_fatal_error(Buf);
192     }
193     SymbolRef::Type AType = *ATypeOrErr;
194     Expected<SymbolRef::Type> BTypeOrErr = B.getType();
195     if (!BTypeOrErr) {
196       std::string Buf;
197       raw_string_ostream OS(Buf);
198       logAllUnhandledErrors(BTypeOrErr.takeError(), OS, "");
199       OS.flush();
200       report_fatal_error(Buf);
201     }
202     SymbolRef::Type BType = *BTypeOrErr;
203     uint64_t AAddr = (AType != SymbolRef::ST_Function) ? 0 : A.getValue();
204     uint64_t BAddr = (BType != SymbolRef::ST_Function) ? 0 : B.getValue();
205     return AAddr < BAddr;
206   }
207 };
208 
209 // Types for the storted data in code table that is built before disassembly
210 // and the predicate function to sort them.
211 typedef std::pair<uint64_t, DiceRef> DiceTableEntry;
212 typedef std::vector<DiceTableEntry> DiceTable;
213 typedef DiceTable::iterator dice_table_iterator;
214 
215 // This is used to search for a data in code table entry for the PC being
216 // disassembled.  The j parameter has the PC in j.first.  A single data in code
217 // table entry can cover many bytes for each of its Kind's.  So if the offset,
218 // aka the i.first value, of the data in code table entry plus its Length
219 // covers the PC being searched for this will return true.  If not it will
220 // return false.
221 static bool compareDiceTableEntries(const DiceTableEntry &i,
222                                     const DiceTableEntry &j) {
223   uint16_t Length;
224   i.second.getLength(Length);
225 
226   return j.first >= i.first && j.first < i.first + Length;
227 }
228 
229 static uint64_t DumpDataInCode(const uint8_t *bytes, uint64_t Length,
230                                unsigned short Kind) {
231   uint32_t Value, Size = 1;
232 
233   switch (Kind) {
234   default:
235   case MachO::DICE_KIND_DATA:
236     if (Length >= 4) {
237       if (!NoShowRawInsn)
238         dumpBytes(makeArrayRef(bytes, 4), outs());
239       Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0];
240       outs() << "\t.long " << Value;
241       Size = 4;
242     } else if (Length >= 2) {
243       if (!NoShowRawInsn)
244         dumpBytes(makeArrayRef(bytes, 2), outs());
245       Value = bytes[1] << 8 | bytes[0];
246       outs() << "\t.short " << Value;
247       Size = 2;
248     } else {
249       if (!NoShowRawInsn)
250         dumpBytes(makeArrayRef(bytes, 2), outs());
251       Value = bytes[0];
252       outs() << "\t.byte " << Value;
253       Size = 1;
254     }
255     if (Kind == MachO::DICE_KIND_DATA)
256       outs() << "\t@ KIND_DATA\n";
257     else
258       outs() << "\t@ data in code kind = " << Kind << "\n";
259     break;
260   case MachO::DICE_KIND_JUMP_TABLE8:
261     if (!NoShowRawInsn)
262       dumpBytes(makeArrayRef(bytes, 1), outs());
263     Value = bytes[0];
264     outs() << "\t.byte " << format("%3u", Value) << "\t@ KIND_JUMP_TABLE8\n";
265     Size = 1;
266     break;
267   case MachO::DICE_KIND_JUMP_TABLE16:
268     if (!NoShowRawInsn)
269       dumpBytes(makeArrayRef(bytes, 2), outs());
270     Value = bytes[1] << 8 | bytes[0];
271     outs() << "\t.short " << format("%5u", Value & 0xffff)
272            << "\t@ KIND_JUMP_TABLE16\n";
273     Size = 2;
274     break;
275   case MachO::DICE_KIND_JUMP_TABLE32:
276   case MachO::DICE_KIND_ABS_JUMP_TABLE32:
277     if (!NoShowRawInsn)
278       dumpBytes(makeArrayRef(bytes, 4), outs());
279     Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0];
280     outs() << "\t.long " << Value;
281     if (Kind == MachO::DICE_KIND_JUMP_TABLE32)
282       outs() << "\t@ KIND_JUMP_TABLE32\n";
283     else
284       outs() << "\t@ KIND_ABS_JUMP_TABLE32\n";
285     Size = 4;
286     break;
287   }
288   return Size;
289 }
290 
291 static void getSectionsAndSymbols(MachOObjectFile *MachOObj,
292                                   std::vector<SectionRef> &Sections,
293                                   std::vector<SymbolRef> &Symbols,
294                                   SmallVectorImpl<uint64_t> &FoundFns,
295                                   uint64_t &BaseSegmentAddress) {
296   for (const SymbolRef &Symbol : MachOObj->symbols()) {
297     Expected<StringRef> SymName = Symbol.getName();
298     if (!SymName) {
299       std::string Buf;
300       raw_string_ostream OS(Buf);
301       logAllUnhandledErrors(SymName.takeError(), OS, "");
302       OS.flush();
303       report_fatal_error(Buf);
304     }
305     if (!SymName->startswith("ltmp"))
306       Symbols.push_back(Symbol);
307   }
308 
309   for (const SectionRef &Section : MachOObj->sections()) {
310     StringRef SectName;
311     Section.getName(SectName);
312     Sections.push_back(Section);
313   }
314 
315   bool BaseSegmentAddressSet = false;
316   for (const auto &Command : MachOObj->load_commands()) {
317     if (Command.C.cmd == MachO::LC_FUNCTION_STARTS) {
318       // We found a function starts segment, parse the addresses for later
319       // consumption.
320       MachO::linkedit_data_command LLC =
321           MachOObj->getLinkeditDataLoadCommand(Command);
322 
323       MachOObj->ReadULEB128s(LLC.dataoff, FoundFns);
324     } else if (Command.C.cmd == MachO::LC_SEGMENT) {
325       MachO::segment_command SLC = MachOObj->getSegmentLoadCommand(Command);
326       StringRef SegName = SLC.segname;
327       if (!BaseSegmentAddressSet && SegName != "__PAGEZERO") {
328         BaseSegmentAddressSet = true;
329         BaseSegmentAddress = SLC.vmaddr;
330       }
331     }
332   }
333 }
334 
335 static void PrintIndirectSymbolTable(MachOObjectFile *O, bool verbose,
336                                      uint32_t n, uint32_t count,
337                                      uint32_t stride, uint64_t addr) {
338   MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand();
339   uint32_t nindirectsyms = Dysymtab.nindirectsyms;
340   if (n > nindirectsyms)
341     outs() << " (entries start past the end of the indirect symbol "
342               "table) (reserved1 field greater than the table size)";
343   else if (n + count > nindirectsyms)
344     outs() << " (entries extends past the end of the indirect symbol "
345               "table)";
346   outs() << "\n";
347   uint32_t cputype = O->getHeader().cputype;
348   if (cputype & MachO::CPU_ARCH_ABI64)
349     outs() << "address            index";
350   else
351     outs() << "address    index";
352   if (verbose)
353     outs() << " name\n";
354   else
355     outs() << "\n";
356   for (uint32_t j = 0; j < count && n + j < nindirectsyms; j++) {
357     if (cputype & MachO::CPU_ARCH_ABI64)
358       outs() << format("0x%016" PRIx64, addr + j * stride) << " ";
359     else
360       outs() << format("0x%08" PRIx32, (uint32_t)addr + j * stride) << " ";
361     MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand();
362     uint32_t indirect_symbol = O->getIndirectSymbolTableEntry(Dysymtab, n + j);
363     if (indirect_symbol == MachO::INDIRECT_SYMBOL_LOCAL) {
364       outs() << "LOCAL\n";
365       continue;
366     }
367     if (indirect_symbol ==
368         (MachO::INDIRECT_SYMBOL_LOCAL | MachO::INDIRECT_SYMBOL_ABS)) {
369       outs() << "LOCAL ABSOLUTE\n";
370       continue;
371     }
372     if (indirect_symbol == MachO::INDIRECT_SYMBOL_ABS) {
373       outs() << "ABSOLUTE\n";
374       continue;
375     }
376     outs() << format("%5u ", indirect_symbol);
377     if (verbose) {
378       MachO::symtab_command Symtab = O->getSymtabLoadCommand();
379       if (indirect_symbol < Symtab.nsyms) {
380         symbol_iterator Sym = O->getSymbolByIndex(indirect_symbol);
381         SymbolRef Symbol = *Sym;
382         Expected<StringRef> SymName = Symbol.getName();
383         if (!SymName) {
384           std::string Buf;
385           raw_string_ostream OS(Buf);
386           logAllUnhandledErrors(SymName.takeError(), OS, "");
387           OS.flush();
388           report_fatal_error(Buf);
389         }
390         outs() << *SymName;
391       } else {
392         outs() << "?";
393       }
394     }
395     outs() << "\n";
396   }
397 }
398 
399 static void PrintIndirectSymbols(MachOObjectFile *O, bool verbose) {
400   for (const auto &Load : O->load_commands()) {
401     if (Load.C.cmd == MachO::LC_SEGMENT_64) {
402       MachO::segment_command_64 Seg = O->getSegment64LoadCommand(Load);
403       for (unsigned J = 0; J < Seg.nsects; ++J) {
404         MachO::section_64 Sec = O->getSection64(Load, J);
405         uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
406         if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
407             section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
408             section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
409             section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
410             section_type == MachO::S_SYMBOL_STUBS) {
411           uint32_t stride;
412           if (section_type == MachO::S_SYMBOL_STUBS)
413             stride = Sec.reserved2;
414           else
415             stride = 8;
416           if (stride == 0) {
417             outs() << "Can't print indirect symbols for (" << Sec.segname << ","
418                    << Sec.sectname << ") "
419                    << "(size of stubs in reserved2 field is zero)\n";
420             continue;
421           }
422           uint32_t count = Sec.size / stride;
423           outs() << "Indirect symbols for (" << Sec.segname << ","
424                  << Sec.sectname << ") " << count << " entries";
425           uint32_t n = Sec.reserved1;
426           PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr);
427         }
428       }
429     } else if (Load.C.cmd == MachO::LC_SEGMENT) {
430       MachO::segment_command Seg = O->getSegmentLoadCommand(Load);
431       for (unsigned J = 0; J < Seg.nsects; ++J) {
432         MachO::section Sec = O->getSection(Load, J);
433         uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
434         if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
435             section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
436             section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
437             section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
438             section_type == MachO::S_SYMBOL_STUBS) {
439           uint32_t stride;
440           if (section_type == MachO::S_SYMBOL_STUBS)
441             stride = Sec.reserved2;
442           else
443             stride = 4;
444           if (stride == 0) {
445             outs() << "Can't print indirect symbols for (" << Sec.segname << ","
446                    << Sec.sectname << ") "
447                    << "(size of stubs in reserved2 field is zero)\n";
448             continue;
449           }
450           uint32_t count = Sec.size / stride;
451           outs() << "Indirect symbols for (" << Sec.segname << ","
452                  << Sec.sectname << ") " << count << " entries";
453           uint32_t n = Sec.reserved1;
454           PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr);
455         }
456       }
457     }
458   }
459 }
460 
461 static void PrintDataInCodeTable(MachOObjectFile *O, bool verbose) {
462   MachO::linkedit_data_command DIC = O->getDataInCodeLoadCommand();
463   uint32_t nentries = DIC.datasize / sizeof(struct MachO::data_in_code_entry);
464   outs() << "Data in code table (" << nentries << " entries)\n";
465   outs() << "offset     length kind\n";
466   for (dice_iterator DI = O->begin_dices(), DE = O->end_dices(); DI != DE;
467        ++DI) {
468     uint32_t Offset;
469     DI->getOffset(Offset);
470     outs() << format("0x%08" PRIx32, Offset) << " ";
471     uint16_t Length;
472     DI->getLength(Length);
473     outs() << format("%6u", Length) << " ";
474     uint16_t Kind;
475     DI->getKind(Kind);
476     if (verbose) {
477       switch (Kind) {
478       case MachO::DICE_KIND_DATA:
479         outs() << "DATA";
480         break;
481       case MachO::DICE_KIND_JUMP_TABLE8:
482         outs() << "JUMP_TABLE8";
483         break;
484       case MachO::DICE_KIND_JUMP_TABLE16:
485         outs() << "JUMP_TABLE16";
486         break;
487       case MachO::DICE_KIND_JUMP_TABLE32:
488         outs() << "JUMP_TABLE32";
489         break;
490       case MachO::DICE_KIND_ABS_JUMP_TABLE32:
491         outs() << "ABS_JUMP_TABLE32";
492         break;
493       default:
494         outs() << format("0x%04" PRIx32, Kind);
495         break;
496       }
497     } else
498       outs() << format("0x%04" PRIx32, Kind);
499     outs() << "\n";
500   }
501 }
502 
503 static void PrintLinkOptHints(MachOObjectFile *O) {
504   MachO::linkedit_data_command LohLC = O->getLinkOptHintsLoadCommand();
505   const char *loh = O->getData().substr(LohLC.dataoff, 1).data();
506   uint32_t nloh = LohLC.datasize;
507   outs() << "Linker optimiztion hints (" << nloh << " total bytes)\n";
508   for (uint32_t i = 0; i < nloh;) {
509     unsigned n;
510     uint64_t identifier = decodeULEB128((const uint8_t *)(loh + i), &n);
511     i += n;
512     outs() << "    identifier " << identifier << " ";
513     if (i >= nloh)
514       return;
515     switch (identifier) {
516     case 1:
517       outs() << "AdrpAdrp\n";
518       break;
519     case 2:
520       outs() << "AdrpLdr\n";
521       break;
522     case 3:
523       outs() << "AdrpAddLdr\n";
524       break;
525     case 4:
526       outs() << "AdrpLdrGotLdr\n";
527       break;
528     case 5:
529       outs() << "AdrpAddStr\n";
530       break;
531     case 6:
532       outs() << "AdrpLdrGotStr\n";
533       break;
534     case 7:
535       outs() << "AdrpAdd\n";
536       break;
537     case 8:
538       outs() << "AdrpLdrGot\n";
539       break;
540     default:
541       outs() << "Unknown identifier value\n";
542       break;
543     }
544     uint64_t narguments = decodeULEB128((const uint8_t *)(loh + i), &n);
545     i += n;
546     outs() << "    narguments " << narguments << "\n";
547     if (i >= nloh)
548       return;
549 
550     for (uint32_t j = 0; j < narguments; j++) {
551       uint64_t value = decodeULEB128((const uint8_t *)(loh + i), &n);
552       i += n;
553       outs() << "\tvalue " << format("0x%" PRIx64, value) << "\n";
554       if (i >= nloh)
555         return;
556     }
557   }
558 }
559 
560 static void PrintDylibs(MachOObjectFile *O, bool JustId) {
561   unsigned Index = 0;
562   for (const auto &Load : O->load_commands()) {
563     if ((JustId && Load.C.cmd == MachO::LC_ID_DYLIB) ||
564         (!JustId && (Load.C.cmd == MachO::LC_ID_DYLIB ||
565                      Load.C.cmd == MachO::LC_LOAD_DYLIB ||
566                      Load.C.cmd == MachO::LC_LOAD_WEAK_DYLIB ||
567                      Load.C.cmd == MachO::LC_REEXPORT_DYLIB ||
568                      Load.C.cmd == MachO::LC_LAZY_LOAD_DYLIB ||
569                      Load.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB))) {
570       MachO::dylib_command dl = O->getDylibIDLoadCommand(Load);
571       if (dl.dylib.name < dl.cmdsize) {
572         const char *p = (const char *)(Load.Ptr) + dl.dylib.name;
573         if (JustId)
574           outs() << p << "\n";
575         else {
576           outs() << "\t" << p;
577           outs() << " (compatibility version "
578                  << ((dl.dylib.compatibility_version >> 16) & 0xffff) << "."
579                  << ((dl.dylib.compatibility_version >> 8) & 0xff) << "."
580                  << (dl.dylib.compatibility_version & 0xff) << ",";
581           outs() << " current version "
582                  << ((dl.dylib.current_version >> 16) & 0xffff) << "."
583                  << ((dl.dylib.current_version >> 8) & 0xff) << "."
584                  << (dl.dylib.current_version & 0xff) << ")\n";
585         }
586       } else {
587         outs() << "\tBad offset (" << dl.dylib.name << ") for name of ";
588         if (Load.C.cmd == MachO::LC_ID_DYLIB)
589           outs() << "LC_ID_DYLIB ";
590         else if (Load.C.cmd == MachO::LC_LOAD_DYLIB)
591           outs() << "LC_LOAD_DYLIB ";
592         else if (Load.C.cmd == MachO::LC_LOAD_WEAK_DYLIB)
593           outs() << "LC_LOAD_WEAK_DYLIB ";
594         else if (Load.C.cmd == MachO::LC_LAZY_LOAD_DYLIB)
595           outs() << "LC_LAZY_LOAD_DYLIB ";
596         else if (Load.C.cmd == MachO::LC_REEXPORT_DYLIB)
597           outs() << "LC_REEXPORT_DYLIB ";
598         else if (Load.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB)
599           outs() << "LC_LOAD_UPWARD_DYLIB ";
600         else
601           outs() << "LC_??? ";
602         outs() << "command " << Index++ << "\n";
603       }
604     }
605   }
606 }
607 
608 typedef DenseMap<uint64_t, StringRef> SymbolAddressMap;
609 
610 static void CreateSymbolAddressMap(MachOObjectFile *O,
611                                    SymbolAddressMap *AddrMap) {
612   // Create a map of symbol addresses to symbol names.
613   for (const SymbolRef &Symbol : O->symbols()) {
614     Expected<SymbolRef::Type> STOrErr = Symbol.getType();
615     if (!STOrErr) {
616       std::string Buf;
617       raw_string_ostream OS(Buf);
618       logAllUnhandledErrors(STOrErr.takeError(), OS, "");
619       OS.flush();
620       report_fatal_error(Buf);
621     }
622     SymbolRef::Type ST = *STOrErr;
623     if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data ||
624         ST == SymbolRef::ST_Other) {
625       uint64_t Address = Symbol.getValue();
626       Expected<StringRef> SymNameOrErr = Symbol.getName();
627       if (!SymNameOrErr) {
628         std::string Buf;
629         raw_string_ostream OS(Buf);
630         logAllUnhandledErrors(SymNameOrErr.takeError(), OS, "");
631         OS.flush();
632         report_fatal_error(Buf);
633       }
634       StringRef SymName = *SymNameOrErr;
635       if (!SymName.startswith(".objc"))
636         (*AddrMap)[Address] = SymName;
637     }
638   }
639 }
640 
641 // GuessSymbolName is passed the address of what might be a symbol and a
642 // pointer to the SymbolAddressMap.  It returns the name of a symbol
643 // with that address or nullptr if no symbol is found with that address.
644 static const char *GuessSymbolName(uint64_t value, SymbolAddressMap *AddrMap) {
645   const char *SymbolName = nullptr;
646   // A DenseMap can't lookup up some values.
647   if (value != 0xffffffffffffffffULL && value != 0xfffffffffffffffeULL) {
648     StringRef name = AddrMap->lookup(value);
649     if (!name.empty())
650       SymbolName = name.data();
651   }
652   return SymbolName;
653 }
654 
655 static void DumpCstringChar(const char c) {
656   char p[2];
657   p[0] = c;
658   p[1] = '\0';
659   outs().write_escaped(p);
660 }
661 
662 static void DumpCstringSection(MachOObjectFile *O, const char *sect,
663                                uint32_t sect_size, uint64_t sect_addr,
664                                bool print_addresses) {
665   for (uint32_t i = 0; i < sect_size; i++) {
666     if (print_addresses) {
667       if (O->is64Bit())
668         outs() << format("%016" PRIx64, sect_addr + i) << "  ";
669       else
670         outs() << format("%08" PRIx64, sect_addr + i) << "  ";
671     }
672     for (; i < sect_size && sect[i] != '\0'; i++)
673       DumpCstringChar(sect[i]);
674     if (i < sect_size && sect[i] == '\0')
675       outs() << "\n";
676   }
677 }
678 
679 static void DumpLiteral4(uint32_t l, float f) {
680   outs() << format("0x%08" PRIx32, l);
681   if ((l & 0x7f800000) != 0x7f800000)
682     outs() << format(" (%.16e)\n", f);
683   else {
684     if (l == 0x7f800000)
685       outs() << " (+Infinity)\n";
686     else if (l == 0xff800000)
687       outs() << " (-Infinity)\n";
688     else if ((l & 0x00400000) == 0x00400000)
689       outs() << " (non-signaling Not-a-Number)\n";
690     else
691       outs() << " (signaling Not-a-Number)\n";
692   }
693 }
694 
695 static void DumpLiteral4Section(MachOObjectFile *O, const char *sect,
696                                 uint32_t sect_size, uint64_t sect_addr,
697                                 bool print_addresses) {
698   for (uint32_t i = 0; i < sect_size; i += sizeof(float)) {
699     if (print_addresses) {
700       if (O->is64Bit())
701         outs() << format("%016" PRIx64, sect_addr + i) << "  ";
702       else
703         outs() << format("%08" PRIx64, sect_addr + i) << "  ";
704     }
705     float f;
706     memcpy(&f, sect + i, sizeof(float));
707     if (O->isLittleEndian() != sys::IsLittleEndianHost)
708       sys::swapByteOrder(f);
709     uint32_t l;
710     memcpy(&l, sect + i, sizeof(uint32_t));
711     if (O->isLittleEndian() != sys::IsLittleEndianHost)
712       sys::swapByteOrder(l);
713     DumpLiteral4(l, f);
714   }
715 }
716 
717 static void DumpLiteral8(MachOObjectFile *O, uint32_t l0, uint32_t l1,
718                          double d) {
719   outs() << format("0x%08" PRIx32, l0) << " " << format("0x%08" PRIx32, l1);
720   uint32_t Hi, Lo;
721   Hi = (O->isLittleEndian()) ? l1 : l0;
722   Lo = (O->isLittleEndian()) ? l0 : l1;
723 
724   // Hi is the high word, so this is equivalent to if(isfinite(d))
725   if ((Hi & 0x7ff00000) != 0x7ff00000)
726     outs() << format(" (%.16e)\n", d);
727   else {
728     if (Hi == 0x7ff00000 && Lo == 0)
729       outs() << " (+Infinity)\n";
730     else if (Hi == 0xfff00000 && Lo == 0)
731       outs() << " (-Infinity)\n";
732     else if ((Hi & 0x00080000) == 0x00080000)
733       outs() << " (non-signaling Not-a-Number)\n";
734     else
735       outs() << " (signaling Not-a-Number)\n";
736   }
737 }
738 
739 static void DumpLiteral8Section(MachOObjectFile *O, const char *sect,
740                                 uint32_t sect_size, uint64_t sect_addr,
741                                 bool print_addresses) {
742   for (uint32_t i = 0; i < sect_size; i += sizeof(double)) {
743     if (print_addresses) {
744       if (O->is64Bit())
745         outs() << format("%016" PRIx64, sect_addr + i) << "  ";
746       else
747         outs() << format("%08" PRIx64, sect_addr + i) << "  ";
748     }
749     double d;
750     memcpy(&d, sect + i, sizeof(double));
751     if (O->isLittleEndian() != sys::IsLittleEndianHost)
752       sys::swapByteOrder(d);
753     uint32_t l0, l1;
754     memcpy(&l0, sect + i, sizeof(uint32_t));
755     memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t));
756     if (O->isLittleEndian() != sys::IsLittleEndianHost) {
757       sys::swapByteOrder(l0);
758       sys::swapByteOrder(l1);
759     }
760     DumpLiteral8(O, l0, l1, d);
761   }
762 }
763 
764 static void DumpLiteral16(uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3) {
765   outs() << format("0x%08" PRIx32, l0) << " ";
766   outs() << format("0x%08" PRIx32, l1) << " ";
767   outs() << format("0x%08" PRIx32, l2) << " ";
768   outs() << format("0x%08" PRIx32, l3) << "\n";
769 }
770 
771 static void DumpLiteral16Section(MachOObjectFile *O, const char *sect,
772                                  uint32_t sect_size, uint64_t sect_addr,
773                                  bool print_addresses) {
774   for (uint32_t i = 0; i < sect_size; i += 16) {
775     if (print_addresses) {
776       if (O->is64Bit())
777         outs() << format("%016" PRIx64, sect_addr + i) << "  ";
778       else
779         outs() << format("%08" PRIx64, sect_addr + i) << "  ";
780     }
781     uint32_t l0, l1, l2, l3;
782     memcpy(&l0, sect + i, sizeof(uint32_t));
783     memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t));
784     memcpy(&l2, sect + i + 2 * sizeof(uint32_t), sizeof(uint32_t));
785     memcpy(&l3, sect + i + 3 * sizeof(uint32_t), sizeof(uint32_t));
786     if (O->isLittleEndian() != sys::IsLittleEndianHost) {
787       sys::swapByteOrder(l0);
788       sys::swapByteOrder(l1);
789       sys::swapByteOrder(l2);
790       sys::swapByteOrder(l3);
791     }
792     DumpLiteral16(l0, l1, l2, l3);
793   }
794 }
795 
796 static void DumpLiteralPointerSection(MachOObjectFile *O,
797                                       const SectionRef &Section,
798                                       const char *sect, uint32_t sect_size,
799                                       uint64_t sect_addr,
800                                       bool print_addresses) {
801   // Collect the literal sections in this Mach-O file.
802   std::vector<SectionRef> LiteralSections;
803   for (const SectionRef &Section : O->sections()) {
804     DataRefImpl Ref = Section.getRawDataRefImpl();
805     uint32_t section_type;
806     if (O->is64Bit()) {
807       const MachO::section_64 Sec = O->getSection64(Ref);
808       section_type = Sec.flags & MachO::SECTION_TYPE;
809     } else {
810       const MachO::section Sec = O->getSection(Ref);
811       section_type = Sec.flags & MachO::SECTION_TYPE;
812     }
813     if (section_type == MachO::S_CSTRING_LITERALS ||
814         section_type == MachO::S_4BYTE_LITERALS ||
815         section_type == MachO::S_8BYTE_LITERALS ||
816         section_type == MachO::S_16BYTE_LITERALS)
817       LiteralSections.push_back(Section);
818   }
819 
820   // Set the size of the literal pointer.
821   uint32_t lp_size = O->is64Bit() ? 8 : 4;
822 
823   // Collect the external relocation symbols for the literal pointers.
824   std::vector<std::pair<uint64_t, SymbolRef>> Relocs;
825   for (const RelocationRef &Reloc : Section.relocations()) {
826     DataRefImpl Rel;
827     MachO::any_relocation_info RE;
828     bool isExtern = false;
829     Rel = Reloc.getRawDataRefImpl();
830     RE = O->getRelocation(Rel);
831     isExtern = O->getPlainRelocationExternal(RE);
832     if (isExtern) {
833       uint64_t RelocOffset = Reloc.getOffset();
834       symbol_iterator RelocSym = Reloc.getSymbol();
835       Relocs.push_back(std::make_pair(RelocOffset, *RelocSym));
836     }
837   }
838   array_pod_sort(Relocs.begin(), Relocs.end());
839 
840   // Dump each literal pointer.
841   for (uint32_t i = 0; i < sect_size; i += lp_size) {
842     if (print_addresses) {
843       if (O->is64Bit())
844         outs() << format("%016" PRIx64, sect_addr + i) << "  ";
845       else
846         outs() << format("%08" PRIx64, sect_addr + i) << "  ";
847     }
848     uint64_t lp;
849     if (O->is64Bit()) {
850       memcpy(&lp, sect + i, sizeof(uint64_t));
851       if (O->isLittleEndian() != sys::IsLittleEndianHost)
852         sys::swapByteOrder(lp);
853     } else {
854       uint32_t li;
855       memcpy(&li, sect + i, sizeof(uint32_t));
856       if (O->isLittleEndian() != sys::IsLittleEndianHost)
857         sys::swapByteOrder(li);
858       lp = li;
859     }
860 
861     // First look for an external relocation entry for this literal pointer.
862     auto Reloc = find_if(Relocs, [&](const std::pair<uint64_t, SymbolRef> &P) {
863       return P.first == i;
864     });
865     if (Reloc != Relocs.end()) {
866       symbol_iterator RelocSym = Reloc->second;
867       Expected<StringRef> SymName = RelocSym->getName();
868       if (!SymName) {
869         std::string Buf;
870         raw_string_ostream OS(Buf);
871         logAllUnhandledErrors(SymName.takeError(), OS, "");
872         OS.flush();
873         report_fatal_error(Buf);
874       }
875       outs() << "external relocation entry for symbol:" << *SymName << "\n";
876       continue;
877     }
878 
879     // For local references see what the section the literal pointer points to.
880     auto Sect = find_if(LiteralSections, [&](const SectionRef &R) {
881       return lp >= R.getAddress() && lp < R.getAddress() + R.getSize();
882     });
883     if (Sect == LiteralSections.end()) {
884       outs() << format("0x%" PRIx64, lp) << " (not in a literal section)\n";
885       continue;
886     }
887 
888     uint64_t SectAddress = Sect->getAddress();
889     uint64_t SectSize = Sect->getSize();
890 
891     StringRef SectName;
892     Sect->getName(SectName);
893     DataRefImpl Ref = Sect->getRawDataRefImpl();
894     StringRef SegmentName = O->getSectionFinalSegmentName(Ref);
895     outs() << SegmentName << ":" << SectName << ":";
896 
897     uint32_t section_type;
898     if (O->is64Bit()) {
899       const MachO::section_64 Sec = O->getSection64(Ref);
900       section_type = Sec.flags & MachO::SECTION_TYPE;
901     } else {
902       const MachO::section Sec = O->getSection(Ref);
903       section_type = Sec.flags & MachO::SECTION_TYPE;
904     }
905 
906     StringRef BytesStr;
907     Sect->getContents(BytesStr);
908     const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
909 
910     switch (section_type) {
911     case MachO::S_CSTRING_LITERALS:
912       for (uint64_t i = lp - SectAddress; i < SectSize && Contents[i] != '\0';
913            i++) {
914         DumpCstringChar(Contents[i]);
915       }
916       outs() << "\n";
917       break;
918     case MachO::S_4BYTE_LITERALS:
919       float f;
920       memcpy(&f, Contents + (lp - SectAddress), sizeof(float));
921       uint32_t l;
922       memcpy(&l, Contents + (lp - SectAddress), sizeof(uint32_t));
923       if (O->isLittleEndian() != sys::IsLittleEndianHost) {
924         sys::swapByteOrder(f);
925         sys::swapByteOrder(l);
926       }
927       DumpLiteral4(l, f);
928       break;
929     case MachO::S_8BYTE_LITERALS: {
930       double d;
931       memcpy(&d, Contents + (lp - SectAddress), sizeof(double));
932       uint32_t l0, l1;
933       memcpy(&l0, Contents + (lp - SectAddress), sizeof(uint32_t));
934       memcpy(&l1, Contents + (lp - SectAddress) + sizeof(uint32_t),
935              sizeof(uint32_t));
936       if (O->isLittleEndian() != sys::IsLittleEndianHost) {
937         sys::swapByteOrder(f);
938         sys::swapByteOrder(l0);
939         sys::swapByteOrder(l1);
940       }
941       DumpLiteral8(O, l0, l1, d);
942       break;
943     }
944     case MachO::S_16BYTE_LITERALS: {
945       uint32_t l0, l1, l2, l3;
946       memcpy(&l0, Contents + (lp - SectAddress), sizeof(uint32_t));
947       memcpy(&l1, Contents + (lp - SectAddress) + sizeof(uint32_t),
948              sizeof(uint32_t));
949       memcpy(&l2, Contents + (lp - SectAddress) + 2 * sizeof(uint32_t),
950              sizeof(uint32_t));
951       memcpy(&l3, Contents + (lp - SectAddress) + 3 * sizeof(uint32_t),
952              sizeof(uint32_t));
953       if (O->isLittleEndian() != sys::IsLittleEndianHost) {
954         sys::swapByteOrder(l0);
955         sys::swapByteOrder(l1);
956         sys::swapByteOrder(l2);
957         sys::swapByteOrder(l3);
958       }
959       DumpLiteral16(l0, l1, l2, l3);
960       break;
961     }
962     }
963   }
964 }
965 
966 static void DumpInitTermPointerSection(MachOObjectFile *O, const char *sect,
967                                        uint32_t sect_size, uint64_t sect_addr,
968                                        SymbolAddressMap *AddrMap,
969                                        bool verbose) {
970   uint32_t stride;
971   stride = (O->is64Bit()) ? sizeof(uint64_t) : sizeof(uint32_t);
972   for (uint32_t i = 0; i < sect_size; i += stride) {
973     const char *SymbolName = nullptr;
974     if (O->is64Bit()) {
975       outs() << format("0x%016" PRIx64, sect_addr + i * stride) << " ";
976       uint64_t pointer_value;
977       memcpy(&pointer_value, sect + i, stride);
978       if (O->isLittleEndian() != sys::IsLittleEndianHost)
979         sys::swapByteOrder(pointer_value);
980       outs() << format("0x%016" PRIx64, pointer_value);
981       if (verbose)
982         SymbolName = GuessSymbolName(pointer_value, AddrMap);
983     } else {
984       outs() << format("0x%08" PRIx64, sect_addr + i * stride) << " ";
985       uint32_t pointer_value;
986       memcpy(&pointer_value, sect + i, stride);
987       if (O->isLittleEndian() != sys::IsLittleEndianHost)
988         sys::swapByteOrder(pointer_value);
989       outs() << format("0x%08" PRIx32, pointer_value);
990       if (verbose)
991         SymbolName = GuessSymbolName(pointer_value, AddrMap);
992     }
993     if (SymbolName)
994       outs() << " " << SymbolName;
995     outs() << "\n";
996   }
997 }
998 
999 static void DumpRawSectionContents(MachOObjectFile *O, const char *sect,
1000                                    uint32_t size, uint64_t addr) {
1001   uint32_t cputype = O->getHeader().cputype;
1002   if (cputype == MachO::CPU_TYPE_I386 || cputype == MachO::CPU_TYPE_X86_64) {
1003     uint32_t j;
1004     for (uint32_t i = 0; i < size; i += j, addr += j) {
1005       if (O->is64Bit())
1006         outs() << format("%016" PRIx64, addr) << "\t";
1007       else
1008         outs() << format("%08" PRIx64, addr) << "\t";
1009       for (j = 0; j < 16 && i + j < size; j++) {
1010         uint8_t byte_word = *(sect + i + j);
1011         outs() << format("%02" PRIx32, (uint32_t)byte_word) << " ";
1012       }
1013       outs() << "\n";
1014     }
1015   } else {
1016     uint32_t j;
1017     for (uint32_t i = 0; i < size; i += j, addr += j) {
1018       if (O->is64Bit())
1019         outs() << format("%016" PRIx64, addr) << "\t";
1020       else
1021         outs() << format("%08" PRIx64, addr) << "\t";
1022       for (j = 0; j < 4 * sizeof(int32_t) && i + j < size;
1023            j += sizeof(int32_t)) {
1024         if (i + j + sizeof(int32_t) <= size) {
1025           uint32_t long_word;
1026           memcpy(&long_word, sect + i + j, sizeof(int32_t));
1027           if (O->isLittleEndian() != sys::IsLittleEndianHost)
1028             sys::swapByteOrder(long_word);
1029           outs() << format("%08" PRIx32, long_word) << " ";
1030         } else {
1031           for (uint32_t k = 0; i + j + k < size; k++) {
1032             uint8_t byte_word = *(sect + i + j + k);
1033             outs() << format("%02" PRIx32, (uint32_t)byte_word) << " ";
1034           }
1035         }
1036       }
1037       outs() << "\n";
1038     }
1039   }
1040 }
1041 
1042 static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF,
1043                              StringRef DisSegName, StringRef DisSectName);
1044 static void DumpProtocolSection(MachOObjectFile *O, const char *sect,
1045                                 uint32_t size, uint32_t addr);
1046 #ifdef HAVE_LIBXAR
1047 static void DumpBitcodeSection(MachOObjectFile *O, const char *sect,
1048                                 uint32_t size, bool verbose,
1049                                 bool PrintXarHeader, bool PrintXarFileHeaders,
1050                                 std::string XarMemberName);
1051 #endif // defined(HAVE_LIBXAR)
1052 
1053 static void DumpSectionContents(StringRef Filename, MachOObjectFile *O,
1054                                 bool verbose) {
1055   SymbolAddressMap AddrMap;
1056   if (verbose)
1057     CreateSymbolAddressMap(O, &AddrMap);
1058 
1059   for (unsigned i = 0; i < FilterSections.size(); ++i) {
1060     StringRef DumpSection = FilterSections[i];
1061     std::pair<StringRef, StringRef> DumpSegSectName;
1062     DumpSegSectName = DumpSection.split(',');
1063     StringRef DumpSegName, DumpSectName;
1064     if (DumpSegSectName.second.size()) {
1065       DumpSegName = DumpSegSectName.first;
1066       DumpSectName = DumpSegSectName.second;
1067     } else {
1068       DumpSegName = "";
1069       DumpSectName = DumpSegSectName.first;
1070     }
1071     for (const SectionRef &Section : O->sections()) {
1072       StringRef SectName;
1073       Section.getName(SectName);
1074       DataRefImpl Ref = Section.getRawDataRefImpl();
1075       StringRef SegName = O->getSectionFinalSegmentName(Ref);
1076       if ((DumpSegName.empty() || SegName == DumpSegName) &&
1077           (SectName == DumpSectName)) {
1078 
1079         uint32_t section_flags;
1080         if (O->is64Bit()) {
1081           const MachO::section_64 Sec = O->getSection64(Ref);
1082           section_flags = Sec.flags;
1083 
1084         } else {
1085           const MachO::section Sec = O->getSection(Ref);
1086           section_flags = Sec.flags;
1087         }
1088         uint32_t section_type = section_flags & MachO::SECTION_TYPE;
1089 
1090         StringRef BytesStr;
1091         Section.getContents(BytesStr);
1092         const char *sect = reinterpret_cast<const char *>(BytesStr.data());
1093         uint32_t sect_size = BytesStr.size();
1094         uint64_t sect_addr = Section.getAddress();
1095 
1096         outs() << "Contents of (" << SegName << "," << SectName
1097                << ") section\n";
1098 
1099         if (verbose) {
1100           if ((section_flags & MachO::S_ATTR_PURE_INSTRUCTIONS) ||
1101               (section_flags & MachO::S_ATTR_SOME_INSTRUCTIONS)) {
1102             DisassembleMachO(Filename, O, SegName, SectName);
1103             continue;
1104           }
1105           if (SegName == "__TEXT" && SectName == "__info_plist") {
1106             outs() << sect;
1107             continue;
1108           }
1109           if (SegName == "__OBJC" && SectName == "__protocol") {
1110             DumpProtocolSection(O, sect, sect_size, sect_addr);
1111             continue;
1112           }
1113 #ifdef HAVE_LIBXAR
1114           if (SegName == "__LLVM" && SectName == "__bundle") {
1115             DumpBitcodeSection(O, sect, sect_size, verbose, !NoSymbolicOperands,
1116                                ArchiveHeaders, "");
1117             continue;
1118           }
1119 #endif // defined(HAVE_LIBXAR)
1120           switch (section_type) {
1121           case MachO::S_REGULAR:
1122             DumpRawSectionContents(O, sect, sect_size, sect_addr);
1123             break;
1124           case MachO::S_ZEROFILL:
1125             outs() << "zerofill section and has no contents in the file\n";
1126             break;
1127           case MachO::S_CSTRING_LITERALS:
1128             DumpCstringSection(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1129             break;
1130           case MachO::S_4BYTE_LITERALS:
1131             DumpLiteral4Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1132             break;
1133           case MachO::S_8BYTE_LITERALS:
1134             DumpLiteral8Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1135             break;
1136           case MachO::S_16BYTE_LITERALS:
1137             DumpLiteral16Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1138             break;
1139           case MachO::S_LITERAL_POINTERS:
1140             DumpLiteralPointerSection(O, Section, sect, sect_size, sect_addr,
1141                                       !NoLeadingAddr);
1142             break;
1143           case MachO::S_MOD_INIT_FUNC_POINTERS:
1144           case MachO::S_MOD_TERM_FUNC_POINTERS:
1145             DumpInitTermPointerSection(O, sect, sect_size, sect_addr, &AddrMap,
1146                                        verbose);
1147             break;
1148           default:
1149             outs() << "Unknown section type ("
1150                    << format("0x%08" PRIx32, section_type) << ")\n";
1151             DumpRawSectionContents(O, sect, sect_size, sect_addr);
1152             break;
1153           }
1154         } else {
1155           if (section_type == MachO::S_ZEROFILL)
1156             outs() << "zerofill section and has no contents in the file\n";
1157           else
1158             DumpRawSectionContents(O, sect, sect_size, sect_addr);
1159         }
1160       }
1161     }
1162   }
1163 }
1164 
1165 static void DumpInfoPlistSectionContents(StringRef Filename,
1166                                          MachOObjectFile *O) {
1167   for (const SectionRef &Section : O->sections()) {
1168     StringRef SectName;
1169     Section.getName(SectName);
1170     DataRefImpl Ref = Section.getRawDataRefImpl();
1171     StringRef SegName = O->getSectionFinalSegmentName(Ref);
1172     if (SegName == "__TEXT" && SectName == "__info_plist") {
1173       outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
1174       StringRef BytesStr;
1175       Section.getContents(BytesStr);
1176       const char *sect = reinterpret_cast<const char *>(BytesStr.data());
1177       outs() << sect;
1178       return;
1179     }
1180   }
1181 }
1182 
1183 // checkMachOAndArchFlags() checks to see if the ObjectFile is a Mach-O file
1184 // and if it is and there is a list of architecture flags is specified then
1185 // check to make sure this Mach-O file is one of those architectures or all
1186 // architectures were specified.  If not then an error is generated and this
1187 // routine returns false.  Else it returns true.
1188 static bool checkMachOAndArchFlags(ObjectFile *O, StringRef Filename) {
1189   if (isa<MachOObjectFile>(O) && !ArchAll && ArchFlags.size() != 0) {
1190     MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O);
1191     bool ArchFound = false;
1192     MachO::mach_header H;
1193     MachO::mach_header_64 H_64;
1194     Triple T;
1195     if (MachO->is64Bit()) {
1196       H_64 = MachO->MachOObjectFile::getHeader64();
1197       T = MachOObjectFile::getArchTriple(H_64.cputype, H_64.cpusubtype);
1198     } else {
1199       H = MachO->MachOObjectFile::getHeader();
1200       T = MachOObjectFile::getArchTriple(H.cputype, H.cpusubtype);
1201     }
1202     unsigned i;
1203     for (i = 0; i < ArchFlags.size(); ++i) {
1204       if (ArchFlags[i] == T.getArchName())
1205         ArchFound = true;
1206       break;
1207     }
1208     if (!ArchFound) {
1209       errs() << "llvm-objdump: file: " + Filename + " does not contain "
1210              << "architecture: " + ArchFlags[i] + "\n";
1211       return false;
1212     }
1213   }
1214   return true;
1215 }
1216 
1217 static void printObjcMetaData(MachOObjectFile *O, bool verbose);
1218 
1219 // ProcessMachO() is passed a single opened Mach-O file, which may be an
1220 // archive member and or in a slice of a universal file.  It prints the
1221 // the file name and header info and then processes it according to the
1222 // command line options.
1223 static void ProcessMachO(StringRef Filename, MachOObjectFile *MachOOF,
1224                          StringRef ArchiveMemberName = StringRef(),
1225                          StringRef ArchitectureName = StringRef()) {
1226   // If we are doing some processing here on the Mach-O file print the header
1227   // info.  And don't print it otherwise like in the case of printing the
1228   // UniversalHeaders or ArchiveHeaders.
1229   if (Disassemble || PrivateHeaders || ExportsTrie || Rebase || Bind || SymbolTable ||
1230       LazyBind || WeakBind || IndirectSymbols || DataInCode || LinkOptHints ||
1231       DylibsUsed || DylibId || ObjcMetaData || (FilterSections.size() != 0)) {
1232     outs() << Filename;
1233     if (!ArchiveMemberName.empty())
1234       outs() << '(' << ArchiveMemberName << ')';
1235     if (!ArchitectureName.empty())
1236       outs() << " (architecture " << ArchitectureName << ")";
1237     outs() << ":\n";
1238   }
1239 
1240   if (Disassemble)
1241     DisassembleMachO(Filename, MachOOF, "__TEXT", "__text");
1242   if (IndirectSymbols)
1243     PrintIndirectSymbols(MachOOF, !NonVerbose);
1244   if (DataInCode)
1245     PrintDataInCodeTable(MachOOF, !NonVerbose);
1246   if (LinkOptHints)
1247     PrintLinkOptHints(MachOOF);
1248   if (Relocations)
1249     PrintRelocations(MachOOF);
1250   if (SectionHeaders)
1251     PrintSectionHeaders(MachOOF);
1252   if (SectionContents)
1253     PrintSectionContents(MachOOF);
1254   if (FilterSections.size() != 0)
1255     DumpSectionContents(Filename, MachOOF, !NonVerbose);
1256   if (InfoPlist)
1257     DumpInfoPlistSectionContents(Filename, MachOOF);
1258   if (DylibsUsed)
1259     PrintDylibs(MachOOF, false);
1260   if (DylibId)
1261     PrintDylibs(MachOOF, true);
1262   if (SymbolTable) {
1263     StringRef ArchiveName = ArchiveMemberName == StringRef() ? "" : Filename;
1264     PrintSymbolTable(MachOOF, ArchiveName, ArchitectureName);
1265   }
1266   if (UnwindInfo)
1267     printMachOUnwindInfo(MachOOF);
1268   if (PrivateHeaders) {
1269     printMachOFileHeader(MachOOF);
1270     printMachOLoadCommands(MachOOF);
1271   }
1272   if (FirstPrivateHeader)
1273     printMachOFileHeader(MachOOF);
1274   if (ObjcMetaData)
1275     printObjcMetaData(MachOOF, !NonVerbose);
1276   if (ExportsTrie)
1277     printExportsTrie(MachOOF);
1278   if (Rebase)
1279     printRebaseTable(MachOOF);
1280   if (Bind)
1281     printBindTable(MachOOF);
1282   if (LazyBind)
1283     printLazyBindTable(MachOOF);
1284   if (WeakBind)
1285     printWeakBindTable(MachOOF);
1286 
1287   if (DwarfDumpType != DIDT_Null) {
1288     std::unique_ptr<DIContext> DICtx(new DWARFContextInMemory(*MachOOF));
1289     // Dump the complete DWARF structure.
1290     DICtx->dump(outs(), DwarfDumpType, true /* DumpEH */);
1291   }
1292 }
1293 
1294 // printUnknownCPUType() helps print_fat_headers for unknown CPU's.
1295 static void printUnknownCPUType(uint32_t cputype, uint32_t cpusubtype) {
1296   outs() << "    cputype (" << cputype << ")\n";
1297   outs() << "    cpusubtype (" << cpusubtype << ")\n";
1298 }
1299 
1300 // printCPUType() helps print_fat_headers by printing the cputype and
1301 // pusubtype (symbolically for the one's it knows about).
1302 static void printCPUType(uint32_t cputype, uint32_t cpusubtype) {
1303   switch (cputype) {
1304   case MachO::CPU_TYPE_I386:
1305     switch (cpusubtype) {
1306     case MachO::CPU_SUBTYPE_I386_ALL:
1307       outs() << "    cputype CPU_TYPE_I386\n";
1308       outs() << "    cpusubtype CPU_SUBTYPE_I386_ALL\n";
1309       break;
1310     default:
1311       printUnknownCPUType(cputype, cpusubtype);
1312       break;
1313     }
1314     break;
1315   case MachO::CPU_TYPE_X86_64:
1316     switch (cpusubtype) {
1317     case MachO::CPU_SUBTYPE_X86_64_ALL:
1318       outs() << "    cputype CPU_TYPE_X86_64\n";
1319       outs() << "    cpusubtype CPU_SUBTYPE_X86_64_ALL\n";
1320       break;
1321     case MachO::CPU_SUBTYPE_X86_64_H:
1322       outs() << "    cputype CPU_TYPE_X86_64\n";
1323       outs() << "    cpusubtype CPU_SUBTYPE_X86_64_H\n";
1324       break;
1325     default:
1326       printUnknownCPUType(cputype, cpusubtype);
1327       break;
1328     }
1329     break;
1330   case MachO::CPU_TYPE_ARM:
1331     switch (cpusubtype) {
1332     case MachO::CPU_SUBTYPE_ARM_ALL:
1333       outs() << "    cputype CPU_TYPE_ARM\n";
1334       outs() << "    cpusubtype CPU_SUBTYPE_ARM_ALL\n";
1335       break;
1336     case MachO::CPU_SUBTYPE_ARM_V4T:
1337       outs() << "    cputype CPU_TYPE_ARM\n";
1338       outs() << "    cpusubtype CPU_SUBTYPE_ARM_V4T\n";
1339       break;
1340     case MachO::CPU_SUBTYPE_ARM_V5TEJ:
1341       outs() << "    cputype CPU_TYPE_ARM\n";
1342       outs() << "    cpusubtype CPU_SUBTYPE_ARM_V5TEJ\n";
1343       break;
1344     case MachO::CPU_SUBTYPE_ARM_XSCALE:
1345       outs() << "    cputype CPU_TYPE_ARM\n";
1346       outs() << "    cpusubtype CPU_SUBTYPE_ARM_XSCALE\n";
1347       break;
1348     case MachO::CPU_SUBTYPE_ARM_V6:
1349       outs() << "    cputype CPU_TYPE_ARM\n";
1350       outs() << "    cpusubtype CPU_SUBTYPE_ARM_V6\n";
1351       break;
1352     case MachO::CPU_SUBTYPE_ARM_V6M:
1353       outs() << "    cputype CPU_TYPE_ARM\n";
1354       outs() << "    cpusubtype CPU_SUBTYPE_ARM_V6M\n";
1355       break;
1356     case MachO::CPU_SUBTYPE_ARM_V7:
1357       outs() << "    cputype CPU_TYPE_ARM\n";
1358       outs() << "    cpusubtype CPU_SUBTYPE_ARM_V7\n";
1359       break;
1360     case MachO::CPU_SUBTYPE_ARM_V7EM:
1361       outs() << "    cputype CPU_TYPE_ARM\n";
1362       outs() << "    cpusubtype CPU_SUBTYPE_ARM_V7EM\n";
1363       break;
1364     case MachO::CPU_SUBTYPE_ARM_V7K:
1365       outs() << "    cputype CPU_TYPE_ARM\n";
1366       outs() << "    cpusubtype CPU_SUBTYPE_ARM_V7K\n";
1367       break;
1368     case MachO::CPU_SUBTYPE_ARM_V7M:
1369       outs() << "    cputype CPU_TYPE_ARM\n";
1370       outs() << "    cpusubtype CPU_SUBTYPE_ARM_V7M\n";
1371       break;
1372     case MachO::CPU_SUBTYPE_ARM_V7S:
1373       outs() << "    cputype CPU_TYPE_ARM\n";
1374       outs() << "    cpusubtype CPU_SUBTYPE_ARM_V7S\n";
1375       break;
1376     default:
1377       printUnknownCPUType(cputype, cpusubtype);
1378       break;
1379     }
1380     break;
1381   case MachO::CPU_TYPE_ARM64:
1382     switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
1383     case MachO::CPU_SUBTYPE_ARM64_ALL:
1384       outs() << "    cputype CPU_TYPE_ARM64\n";
1385       outs() << "    cpusubtype CPU_SUBTYPE_ARM64_ALL\n";
1386       break;
1387     default:
1388       printUnknownCPUType(cputype, cpusubtype);
1389       break;
1390     }
1391     break;
1392   default:
1393     printUnknownCPUType(cputype, cpusubtype);
1394     break;
1395   }
1396 }
1397 
1398 static void printMachOUniversalHeaders(const object::MachOUniversalBinary *UB,
1399                                        bool verbose) {
1400   outs() << "Fat headers\n";
1401   if (verbose) {
1402     if (UB->getMagic() == MachO::FAT_MAGIC)
1403       outs() << "fat_magic FAT_MAGIC\n";
1404     else // UB->getMagic() == MachO::FAT_MAGIC_64
1405       outs() << "fat_magic FAT_MAGIC_64\n";
1406   } else
1407     outs() << "fat_magic " << format("0x%" PRIx32, MachO::FAT_MAGIC) << "\n";
1408 
1409   uint32_t nfat_arch = UB->getNumberOfObjects();
1410   StringRef Buf = UB->getData();
1411   uint64_t size = Buf.size();
1412   uint64_t big_size = sizeof(struct MachO::fat_header) +
1413                       nfat_arch * sizeof(struct MachO::fat_arch);
1414   outs() << "nfat_arch " << UB->getNumberOfObjects();
1415   if (nfat_arch == 0)
1416     outs() << " (malformed, contains zero architecture types)\n";
1417   else if (big_size > size)
1418     outs() << " (malformed, architectures past end of file)\n";
1419   else
1420     outs() << "\n";
1421 
1422   for (uint32_t i = 0; i < nfat_arch; ++i) {
1423     MachOUniversalBinary::ObjectForArch OFA(UB, i);
1424     uint32_t cputype = OFA.getCPUType();
1425     uint32_t cpusubtype = OFA.getCPUSubType();
1426     outs() << "architecture ";
1427     for (uint32_t j = 0; i != 0 && j <= i - 1; j++) {
1428       MachOUniversalBinary::ObjectForArch other_OFA(UB, j);
1429       uint32_t other_cputype = other_OFA.getCPUType();
1430       uint32_t other_cpusubtype = other_OFA.getCPUSubType();
1431       if (cputype != 0 && cpusubtype != 0 && cputype == other_cputype &&
1432           (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) ==
1433               (other_cpusubtype & ~MachO::CPU_SUBTYPE_MASK)) {
1434         outs() << "(illegal duplicate architecture) ";
1435         break;
1436       }
1437     }
1438     if (verbose) {
1439       outs() << OFA.getArchTypeName() << "\n";
1440       printCPUType(cputype, cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
1441     } else {
1442       outs() << i << "\n";
1443       outs() << "    cputype " << cputype << "\n";
1444       outs() << "    cpusubtype " << (cpusubtype & ~MachO::CPU_SUBTYPE_MASK)
1445              << "\n";
1446     }
1447     if (verbose &&
1448         (cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64)
1449       outs() << "    capabilities CPU_SUBTYPE_LIB64\n";
1450     else
1451       outs() << "    capabilities "
1452              << format("0x%" PRIx32,
1453                        (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24) << "\n";
1454     outs() << "    offset " << OFA.getOffset();
1455     if (OFA.getOffset() > size)
1456       outs() << " (past end of file)";
1457     if (OFA.getOffset() % (1 << OFA.getAlign()) != 0)
1458       outs() << " (not aligned on it's alignment (2^" << OFA.getAlign() << ")";
1459     outs() << "\n";
1460     outs() << "    size " << OFA.getSize();
1461     big_size = OFA.getOffset() + OFA.getSize();
1462     if (big_size > size)
1463       outs() << " (past end of file)";
1464     outs() << "\n";
1465     outs() << "    align 2^" << OFA.getAlign() << " (" << (1 << OFA.getAlign())
1466            << ")\n";
1467   }
1468 }
1469 
1470 static void printArchiveChild(StringRef Filename, const Archive::Child &C,
1471                               bool verbose, bool print_offset,
1472                               StringRef ArchitectureName = StringRef()) {
1473   if (print_offset)
1474     outs() << C.getChildOffset() << "\t";
1475   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
1476   if (!ModeOrErr)
1477     report_error(Filename, C, ModeOrErr.takeError(), ArchitectureName);
1478   sys::fs::perms Mode = ModeOrErr.get();
1479   if (verbose) {
1480     // FIXME: this first dash, "-", is for (Mode & S_IFMT) == S_IFREG.
1481     // But there is nothing in sys::fs::perms for S_IFMT or S_IFREG.
1482     outs() << "-";
1483     outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
1484     outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
1485     outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
1486     outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
1487     outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
1488     outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
1489     outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
1490     outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
1491     outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
1492   } else {
1493     outs() << format("0%o ", Mode);
1494   }
1495 
1496   Expected<unsigned> UIDOrErr = C.getUID();
1497   if (!UIDOrErr)
1498     report_error(Filename, C, UIDOrErr.takeError(), ArchitectureName);
1499   unsigned UID = UIDOrErr.get();
1500   outs() << format("%3d/", UID);
1501   Expected<unsigned> GIDOrErr = C.getGID();
1502   if (!GIDOrErr)
1503     report_error(Filename, C, GIDOrErr.takeError(), ArchitectureName);
1504   unsigned GID = GIDOrErr.get();
1505   outs() << format("%-3d ", GID);
1506   Expected<uint64_t> Size = C.getRawSize();
1507   if (!Size)
1508     report_error(Filename, C, Size.takeError(), ArchitectureName);
1509   outs() << format("%5" PRId64, Size.get()) << " ";
1510 
1511   StringRef RawLastModified = C.getRawLastModified();
1512   if (verbose) {
1513     unsigned Seconds;
1514     if (RawLastModified.getAsInteger(10, Seconds))
1515       outs() << "(date: \"" << RawLastModified
1516              << "\" contains non-decimal chars) ";
1517     else {
1518       // Since cime(3) returns a 26 character string of the form:
1519       // "Sun Sep 16 01:03:52 1973\n\0"
1520       // just print 24 characters.
1521       time_t t = Seconds;
1522       outs() << format("%.24s ", ctime(&t));
1523     }
1524   } else {
1525     outs() << RawLastModified << " ";
1526   }
1527 
1528   if (verbose) {
1529     Expected<StringRef> NameOrErr = C.getName();
1530     if (!NameOrErr) {
1531       consumeError(NameOrErr.takeError());
1532       Expected<StringRef> NameOrErr = C.getRawName();
1533       if (!NameOrErr)
1534         report_error(Filename, C, NameOrErr.takeError(), ArchitectureName);
1535       StringRef RawName = NameOrErr.get();
1536       outs() << RawName << "\n";
1537     } else {
1538       StringRef Name = NameOrErr.get();
1539       outs() << Name << "\n";
1540     }
1541   } else {
1542     Expected<StringRef> NameOrErr = C.getRawName();
1543     if (!NameOrErr)
1544       report_error(Filename, C, NameOrErr.takeError(), ArchitectureName);
1545     StringRef RawName = NameOrErr.get();
1546     outs() << RawName << "\n";
1547   }
1548 }
1549 
1550 static void printArchiveHeaders(StringRef Filename, Archive *A, bool verbose,
1551                                 bool print_offset,
1552                                 StringRef ArchitectureName = StringRef()) {
1553   Error Err;
1554   for (const auto &C : A->children(Err, false))
1555     printArchiveChild(Filename, C, verbose, print_offset, ArchitectureName);
1556 
1557   if (Err)
1558     report_error(Filename, std::move(Err));
1559 }
1560 
1561 // ParseInputMachO() parses the named Mach-O file in Filename and handles the
1562 // -arch flags selecting just those slices as specified by them and also parses
1563 // archive files.  Then for each individual Mach-O file ProcessMachO() is
1564 // called to process the file based on the command line options.
1565 void llvm::ParseInputMachO(StringRef Filename) {
1566   // Check for -arch all and verifiy the -arch flags are valid.
1567   for (unsigned i = 0; i < ArchFlags.size(); ++i) {
1568     if (ArchFlags[i] == "all") {
1569       ArchAll = true;
1570     } else {
1571       if (!MachOObjectFile::isValidArch(ArchFlags[i])) {
1572         errs() << "llvm-objdump: Unknown architecture named '" + ArchFlags[i] +
1573                       "'for the -arch option\n";
1574         return;
1575       }
1576     }
1577   }
1578 
1579   // Attempt to open the binary.
1580   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(Filename);
1581   if (!BinaryOrErr)
1582     report_error(Filename, BinaryOrErr.takeError());
1583   Binary &Bin = *BinaryOrErr.get().getBinary();
1584 
1585   if (Archive *A = dyn_cast<Archive>(&Bin)) {
1586     outs() << "Archive : " << Filename << "\n";
1587     if (ArchiveHeaders)
1588       printArchiveHeaders(Filename, A, !NonVerbose, ArchiveMemberOffsets);
1589 
1590     Error Err;
1591     for (auto &C : A->children(Err)) {
1592       Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1593       if (!ChildOrErr) {
1594         if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
1595           report_error(Filename, C, std::move(E));
1596         continue;
1597       }
1598       if (MachOObjectFile *O = dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) {
1599         if (!checkMachOAndArchFlags(O, Filename))
1600           return;
1601         ProcessMachO(Filename, O, O->getFileName());
1602       }
1603     }
1604     if (Err)
1605       report_error(Filename, std::move(Err));
1606     return;
1607   }
1608   if (UniversalHeaders) {
1609     if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin))
1610       printMachOUniversalHeaders(UB, !NonVerbose);
1611   }
1612   if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin)) {
1613     // If we have a list of architecture flags specified dump only those.
1614     if (!ArchAll && ArchFlags.size() != 0) {
1615       // Look for a slice in the universal binary that matches each ArchFlag.
1616       bool ArchFound;
1617       for (unsigned i = 0; i < ArchFlags.size(); ++i) {
1618         ArchFound = false;
1619         for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
1620                                                    E = UB->end_objects();
1621              I != E; ++I) {
1622           if (ArchFlags[i] == I->getArchTypeName()) {
1623             ArchFound = true;
1624             Expected<std::unique_ptr<ObjectFile>> ObjOrErr =
1625                 I->getAsObjectFile();
1626             std::string ArchitectureName = "";
1627             if (ArchFlags.size() > 1)
1628               ArchitectureName = I->getArchTypeName();
1629             if (ObjOrErr) {
1630               ObjectFile &O = *ObjOrErr.get();
1631               if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O))
1632                 ProcessMachO(Filename, MachOOF, "", ArchitectureName);
1633             } else if (auto E = isNotObjectErrorInvalidFileType(
1634                        ObjOrErr.takeError())) {
1635               report_error(Filename, StringRef(), std::move(E),
1636                            ArchitectureName);
1637               continue;
1638             } else if (Expected<std::unique_ptr<Archive>> AOrErr =
1639                            I->getAsArchive()) {
1640               std::unique_ptr<Archive> &A = *AOrErr;
1641               outs() << "Archive : " << Filename;
1642               if (!ArchitectureName.empty())
1643                 outs() << " (architecture " << ArchitectureName << ")";
1644               outs() << "\n";
1645               if (ArchiveHeaders)
1646                 printArchiveHeaders(Filename, A.get(), !NonVerbose,
1647                                     ArchiveMemberOffsets, ArchitectureName);
1648               Error Err;
1649               for (auto &C : A->children(Err)) {
1650                 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1651                 if (!ChildOrErr) {
1652                   if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
1653                     report_error(Filename, C, std::move(E), ArchitectureName);
1654                   continue;
1655                 }
1656                 if (MachOObjectFile *O =
1657                         dyn_cast<MachOObjectFile>(&*ChildOrErr.get()))
1658                   ProcessMachO(Filename, O, O->getFileName(), ArchitectureName);
1659               }
1660               if (Err)
1661                 report_error(Filename, std::move(Err));
1662             } else {
1663               consumeError(AOrErr.takeError());
1664               error("Mach-O universal file: " + Filename + " for " +
1665                     "architecture " + StringRef(I->getArchTypeName()) +
1666                     " is not a Mach-O file or an archive file");
1667             }
1668           }
1669         }
1670         if (!ArchFound) {
1671           errs() << "llvm-objdump: file: " + Filename + " does not contain "
1672                  << "architecture: " + ArchFlags[i] + "\n";
1673           return;
1674         }
1675       }
1676       return;
1677     }
1678     // No architecture flags were specified so if this contains a slice that
1679     // matches the host architecture dump only that.
1680     if (!ArchAll) {
1681       for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
1682                                                  E = UB->end_objects();
1683            I != E; ++I) {
1684         if (MachOObjectFile::getHostArch().getArchName() ==
1685             I->getArchTypeName()) {
1686           Expected<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile();
1687           std::string ArchiveName;
1688           ArchiveName.clear();
1689           if (ObjOrErr) {
1690             ObjectFile &O = *ObjOrErr.get();
1691             if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O))
1692               ProcessMachO(Filename, MachOOF);
1693           } else if (auto E = isNotObjectErrorInvalidFileType(
1694                      ObjOrErr.takeError())) {
1695             report_error(Filename, std::move(E));
1696             continue;
1697           } else if (Expected<std::unique_ptr<Archive>> AOrErr =
1698                          I->getAsArchive()) {
1699             std::unique_ptr<Archive> &A = *AOrErr;
1700             outs() << "Archive : " << Filename << "\n";
1701             if (ArchiveHeaders)
1702               printArchiveHeaders(Filename, A.get(), !NonVerbose,
1703                                   ArchiveMemberOffsets);
1704             Error Err;
1705             for (auto &C : A->children(Err)) {
1706               Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1707               if (!ChildOrErr) {
1708                 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
1709                   report_error(Filename, C, std::move(E));
1710                 continue;
1711               }
1712               if (MachOObjectFile *O =
1713                       dyn_cast<MachOObjectFile>(&*ChildOrErr.get()))
1714                 ProcessMachO(Filename, O, O->getFileName());
1715             }
1716             if (Err)
1717               report_error(Filename, std::move(Err));
1718           } else {
1719             consumeError(AOrErr.takeError());
1720             error("Mach-O universal file: " + Filename + " for architecture " +
1721                   StringRef(I->getArchTypeName()) +
1722                   " is not a Mach-O file or an archive file");
1723           }
1724           return;
1725         }
1726       }
1727     }
1728     // Either all architectures have been specified or none have been specified
1729     // and this does not contain the host architecture so dump all the slices.
1730     bool moreThanOneArch = UB->getNumberOfObjects() > 1;
1731     for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
1732                                                E = UB->end_objects();
1733          I != E; ++I) {
1734       Expected<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile();
1735       std::string ArchitectureName = "";
1736       if (moreThanOneArch)
1737         ArchitectureName = I->getArchTypeName();
1738       if (ObjOrErr) {
1739         ObjectFile &Obj = *ObjOrErr.get();
1740         if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&Obj))
1741           ProcessMachO(Filename, MachOOF, "", ArchitectureName);
1742       } else if (auto E = isNotObjectErrorInvalidFileType(
1743                  ObjOrErr.takeError())) {
1744         report_error(StringRef(), Filename, std::move(E), ArchitectureName);
1745         continue;
1746       } else if (Expected<std::unique_ptr<Archive>> AOrErr =
1747                    I->getAsArchive()) {
1748         std::unique_ptr<Archive> &A = *AOrErr;
1749         outs() << "Archive : " << Filename;
1750         if (!ArchitectureName.empty())
1751           outs() << " (architecture " << ArchitectureName << ")";
1752         outs() << "\n";
1753         if (ArchiveHeaders)
1754           printArchiveHeaders(Filename, A.get(), !NonVerbose,
1755                               ArchiveMemberOffsets, ArchitectureName);
1756         Error Err;
1757         for (auto &C : A->children(Err)) {
1758           Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1759           if (!ChildOrErr) {
1760             if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
1761               report_error(Filename, C, std::move(E), ArchitectureName);
1762             continue;
1763           }
1764           if (MachOObjectFile *O =
1765                   dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) {
1766             if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(O))
1767               ProcessMachO(Filename, MachOOF, MachOOF->getFileName(),
1768                            ArchitectureName);
1769           }
1770         }
1771         if (Err)
1772           report_error(Filename, std::move(Err));
1773       } else {
1774         consumeError(AOrErr.takeError());
1775         error("Mach-O universal file: " + Filename + " for architecture " +
1776               StringRef(I->getArchTypeName()) +
1777               " is not a Mach-O file or an archive file");
1778       }
1779     }
1780     return;
1781   }
1782   if (ObjectFile *O = dyn_cast<ObjectFile>(&Bin)) {
1783     if (!checkMachOAndArchFlags(O, Filename))
1784       return;
1785     if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*O)) {
1786       ProcessMachO(Filename, MachOOF);
1787     } else
1788       errs() << "llvm-objdump: '" << Filename << "': "
1789              << "Object is not a Mach-O file type.\n";
1790     return;
1791   }
1792   llvm_unreachable("Input object can't be invalid at this point");
1793 }
1794 
1795 typedef std::pair<uint64_t, const char *> BindInfoEntry;
1796 typedef std::vector<BindInfoEntry> BindTable;
1797 typedef BindTable::iterator bind_table_iterator;
1798 
1799 // The block of info used by the Symbolizer call backs.
1800 struct DisassembleInfo {
1801   bool verbose;
1802   MachOObjectFile *O;
1803   SectionRef S;
1804   SymbolAddressMap *AddrMap;
1805   std::vector<SectionRef> *Sections;
1806   const char *class_name;
1807   const char *selector_name;
1808   char *method;
1809   char *demangled_name;
1810   uint64_t adrp_addr;
1811   uint32_t adrp_inst;
1812   BindTable *bindtable;
1813   uint32_t depth;
1814 };
1815 
1816 // SymbolizerGetOpInfo() is the operand information call back function.
1817 // This is called to get the symbolic information for operand(s) of an
1818 // instruction when it is being done.  This routine does this from
1819 // the relocation information, symbol table, etc. That block of information
1820 // is a pointer to the struct DisassembleInfo that was passed when the
1821 // disassembler context was created and passed to back to here when
1822 // called back by the disassembler for instruction operands that could have
1823 // relocation information. The address of the instruction containing operand is
1824 // at the Pc parameter.  The immediate value the operand has is passed in
1825 // op_info->Value and is at Offset past the start of the instruction and has a
1826 // byte Size of 1, 2 or 4. The symbolc information is returned in TagBuf is the
1827 // LLVMOpInfo1 struct defined in the header "llvm-c/Disassembler.h" as symbol
1828 // names and addends of the symbolic expression to add for the operand.  The
1829 // value of TagType is currently 1 (for the LLVMOpInfo1 struct). If symbolic
1830 // information is returned then this function returns 1 else it returns 0.
1831 static int SymbolizerGetOpInfo(void *DisInfo, uint64_t Pc, uint64_t Offset,
1832                                uint64_t Size, int TagType, void *TagBuf) {
1833   struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
1834   struct LLVMOpInfo1 *op_info = (struct LLVMOpInfo1 *)TagBuf;
1835   uint64_t value = op_info->Value;
1836 
1837   // Make sure all fields returned are zero if we don't set them.
1838   memset((void *)op_info, '\0', sizeof(struct LLVMOpInfo1));
1839   op_info->Value = value;
1840 
1841   // If the TagType is not the value 1 which it code knows about or if no
1842   // verbose symbolic information is wanted then just return 0, indicating no
1843   // information is being returned.
1844   if (TagType != 1 || !info->verbose)
1845     return 0;
1846 
1847   unsigned int Arch = info->O->getArch();
1848   if (Arch == Triple::x86) {
1849     if (Size != 1 && Size != 2 && Size != 4 && Size != 0)
1850       return 0;
1851     if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
1852       // TODO:
1853       // Search the external relocation entries of a fully linked image
1854       // (if any) for an entry that matches this segment offset.
1855       // uint32_t seg_offset = (Pc + Offset);
1856       return 0;
1857     }
1858     // In MH_OBJECT filetypes search the section's relocation entries (if any)
1859     // for an entry for this section offset.
1860     uint32_t sect_addr = info->S.getAddress();
1861     uint32_t sect_offset = (Pc + Offset) - sect_addr;
1862     bool reloc_found = false;
1863     DataRefImpl Rel;
1864     MachO::any_relocation_info RE;
1865     bool isExtern = false;
1866     SymbolRef Symbol;
1867     bool r_scattered = false;
1868     uint32_t r_value, pair_r_value, r_type;
1869     for (const RelocationRef &Reloc : info->S.relocations()) {
1870       uint64_t RelocOffset = Reloc.getOffset();
1871       if (RelocOffset == sect_offset) {
1872         Rel = Reloc.getRawDataRefImpl();
1873         RE = info->O->getRelocation(Rel);
1874         r_type = info->O->getAnyRelocationType(RE);
1875         r_scattered = info->O->isRelocationScattered(RE);
1876         if (r_scattered) {
1877           r_value = info->O->getScatteredRelocationValue(RE);
1878           if (r_type == MachO::GENERIC_RELOC_SECTDIFF ||
1879               r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF) {
1880             DataRefImpl RelNext = Rel;
1881             info->O->moveRelocationNext(RelNext);
1882             MachO::any_relocation_info RENext;
1883             RENext = info->O->getRelocation(RelNext);
1884             if (info->O->isRelocationScattered(RENext))
1885               pair_r_value = info->O->getScatteredRelocationValue(RENext);
1886             else
1887               return 0;
1888           }
1889         } else {
1890           isExtern = info->O->getPlainRelocationExternal(RE);
1891           if (isExtern) {
1892             symbol_iterator RelocSym = Reloc.getSymbol();
1893             Symbol = *RelocSym;
1894           }
1895         }
1896         reloc_found = true;
1897         break;
1898       }
1899     }
1900     if (reloc_found && isExtern) {
1901       Expected<StringRef> SymName = Symbol.getName();
1902       if (!SymName) {
1903         std::string Buf;
1904         raw_string_ostream OS(Buf);
1905         logAllUnhandledErrors(SymName.takeError(), OS, "");
1906         OS.flush();
1907         report_fatal_error(Buf);
1908       }
1909       const char *name = SymName->data();
1910       op_info->AddSymbol.Present = 1;
1911       op_info->AddSymbol.Name = name;
1912       // For i386 extern relocation entries the value in the instruction is
1913       // the offset from the symbol, and value is already set in op_info->Value.
1914       return 1;
1915     }
1916     if (reloc_found && (r_type == MachO::GENERIC_RELOC_SECTDIFF ||
1917                         r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF)) {
1918       const char *add = GuessSymbolName(r_value, info->AddrMap);
1919       const char *sub = GuessSymbolName(pair_r_value, info->AddrMap);
1920       uint32_t offset = value - (r_value - pair_r_value);
1921       op_info->AddSymbol.Present = 1;
1922       if (add != nullptr)
1923         op_info->AddSymbol.Name = add;
1924       else
1925         op_info->AddSymbol.Value = r_value;
1926       op_info->SubtractSymbol.Present = 1;
1927       if (sub != nullptr)
1928         op_info->SubtractSymbol.Name = sub;
1929       else
1930         op_info->SubtractSymbol.Value = pair_r_value;
1931       op_info->Value = offset;
1932       return 1;
1933     }
1934     return 0;
1935   }
1936   if (Arch == Triple::x86_64) {
1937     if (Size != 1 && Size != 2 && Size != 4 && Size != 0)
1938       return 0;
1939     if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
1940       // TODO:
1941       // Search the external relocation entries of a fully linked image
1942       // (if any) for an entry that matches this segment offset.
1943       // uint64_t seg_offset = (Pc + Offset);
1944       return 0;
1945     }
1946     // In MH_OBJECT filetypes search the section's relocation entries (if any)
1947     // for an entry for this section offset.
1948     uint64_t sect_addr = info->S.getAddress();
1949     uint64_t sect_offset = (Pc + Offset) - sect_addr;
1950     bool reloc_found = false;
1951     DataRefImpl Rel;
1952     MachO::any_relocation_info RE;
1953     bool isExtern = false;
1954     SymbolRef Symbol;
1955     for (const RelocationRef &Reloc : info->S.relocations()) {
1956       uint64_t RelocOffset = Reloc.getOffset();
1957       if (RelocOffset == sect_offset) {
1958         Rel = Reloc.getRawDataRefImpl();
1959         RE = info->O->getRelocation(Rel);
1960         // NOTE: Scattered relocations don't exist on x86_64.
1961         isExtern = info->O->getPlainRelocationExternal(RE);
1962         if (isExtern) {
1963           symbol_iterator RelocSym = Reloc.getSymbol();
1964           Symbol = *RelocSym;
1965         }
1966         reloc_found = true;
1967         break;
1968       }
1969     }
1970     if (reloc_found && isExtern) {
1971       // The Value passed in will be adjusted by the Pc if the instruction
1972       // adds the Pc.  But for x86_64 external relocation entries the Value
1973       // is the offset from the external symbol.
1974       if (info->O->getAnyRelocationPCRel(RE))
1975         op_info->Value -= Pc + Offset + Size;
1976       Expected<StringRef> SymName = Symbol.getName();
1977       if (!SymName) {
1978         std::string Buf;
1979         raw_string_ostream OS(Buf);
1980         logAllUnhandledErrors(SymName.takeError(), OS, "");
1981         OS.flush();
1982         report_fatal_error(Buf);
1983       }
1984       const char *name = SymName->data();
1985       unsigned Type = info->O->getAnyRelocationType(RE);
1986       if (Type == MachO::X86_64_RELOC_SUBTRACTOR) {
1987         DataRefImpl RelNext = Rel;
1988         info->O->moveRelocationNext(RelNext);
1989         MachO::any_relocation_info RENext = info->O->getRelocation(RelNext);
1990         unsigned TypeNext = info->O->getAnyRelocationType(RENext);
1991         bool isExternNext = info->O->getPlainRelocationExternal(RENext);
1992         unsigned SymbolNum = info->O->getPlainRelocationSymbolNum(RENext);
1993         if (TypeNext == MachO::X86_64_RELOC_UNSIGNED && isExternNext) {
1994           op_info->SubtractSymbol.Present = 1;
1995           op_info->SubtractSymbol.Name = name;
1996           symbol_iterator RelocSymNext = info->O->getSymbolByIndex(SymbolNum);
1997           Symbol = *RelocSymNext;
1998           Expected<StringRef> SymNameNext = Symbol.getName();
1999           if (!SymNameNext) {
2000             std::string Buf;
2001             raw_string_ostream OS(Buf);
2002             logAllUnhandledErrors(SymNameNext.takeError(), OS, "");
2003             OS.flush();
2004             report_fatal_error(Buf);
2005           }
2006           name = SymNameNext->data();
2007         }
2008       }
2009       // TODO: add the VariantKinds to op_info->VariantKind for relocation types
2010       // like: X86_64_RELOC_TLV, X86_64_RELOC_GOT_LOAD and X86_64_RELOC_GOT.
2011       op_info->AddSymbol.Present = 1;
2012       op_info->AddSymbol.Name = name;
2013       return 1;
2014     }
2015     return 0;
2016   }
2017   if (Arch == Triple::arm) {
2018     if (Offset != 0 || (Size != 4 && Size != 2))
2019       return 0;
2020     if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
2021       // TODO:
2022       // Search the external relocation entries of a fully linked image
2023       // (if any) for an entry that matches this segment offset.
2024       // uint32_t seg_offset = (Pc + Offset);
2025       return 0;
2026     }
2027     // In MH_OBJECT filetypes search the section's relocation entries (if any)
2028     // for an entry for this section offset.
2029     uint32_t sect_addr = info->S.getAddress();
2030     uint32_t sect_offset = (Pc + Offset) - sect_addr;
2031     DataRefImpl Rel;
2032     MachO::any_relocation_info RE;
2033     bool isExtern = false;
2034     SymbolRef Symbol;
2035     bool r_scattered = false;
2036     uint32_t r_value, pair_r_value, r_type, r_length, other_half;
2037     auto Reloc =
2038         find_if(info->S.relocations(), [&](const RelocationRef &Reloc) {
2039           uint64_t RelocOffset = Reloc.getOffset();
2040           return RelocOffset == sect_offset;
2041         });
2042 
2043     if (Reloc == info->S.relocations().end())
2044       return 0;
2045 
2046     Rel = Reloc->getRawDataRefImpl();
2047     RE = info->O->getRelocation(Rel);
2048     r_length = info->O->getAnyRelocationLength(RE);
2049     r_scattered = info->O->isRelocationScattered(RE);
2050     if (r_scattered) {
2051       r_value = info->O->getScatteredRelocationValue(RE);
2052       r_type = info->O->getScatteredRelocationType(RE);
2053     } else {
2054       r_type = info->O->getAnyRelocationType(RE);
2055       isExtern = info->O->getPlainRelocationExternal(RE);
2056       if (isExtern) {
2057         symbol_iterator RelocSym = Reloc->getSymbol();
2058         Symbol = *RelocSym;
2059       }
2060     }
2061     if (r_type == MachO::ARM_RELOC_HALF ||
2062         r_type == MachO::ARM_RELOC_SECTDIFF ||
2063         r_type == MachO::ARM_RELOC_LOCAL_SECTDIFF ||
2064         r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
2065       DataRefImpl RelNext = Rel;
2066       info->O->moveRelocationNext(RelNext);
2067       MachO::any_relocation_info RENext;
2068       RENext = info->O->getRelocation(RelNext);
2069       other_half = info->O->getAnyRelocationAddress(RENext) & 0xffff;
2070       if (info->O->isRelocationScattered(RENext))
2071         pair_r_value = info->O->getScatteredRelocationValue(RENext);
2072     }
2073 
2074     if (isExtern) {
2075       Expected<StringRef> SymName = Symbol.getName();
2076       if (!SymName) {
2077         std::string Buf;
2078         raw_string_ostream OS(Buf);
2079         logAllUnhandledErrors(SymName.takeError(), OS, "");
2080         OS.flush();
2081         report_fatal_error(Buf);
2082       }
2083       const char *name = SymName->data();
2084       op_info->AddSymbol.Present = 1;
2085       op_info->AddSymbol.Name = name;
2086       switch (r_type) {
2087       case MachO::ARM_RELOC_HALF:
2088         if ((r_length & 0x1) == 1) {
2089           op_info->Value = value << 16 | other_half;
2090           op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
2091         } else {
2092           op_info->Value = other_half << 16 | value;
2093           op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
2094         }
2095         break;
2096       default:
2097         break;
2098       }
2099       return 1;
2100     }
2101     // If we have a branch that is not an external relocation entry then
2102     // return 0 so the code in tryAddingSymbolicOperand() can use the
2103     // SymbolLookUp call back with the branch target address to look up the
2104     // symbol and possiblity add an annotation for a symbol stub.
2105     if (isExtern == 0 && (r_type == MachO::ARM_RELOC_BR24 ||
2106                           r_type == MachO::ARM_THUMB_RELOC_BR22))
2107       return 0;
2108 
2109     uint32_t offset = 0;
2110     if (r_type == MachO::ARM_RELOC_HALF ||
2111         r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
2112       if ((r_length & 0x1) == 1)
2113         value = value << 16 | other_half;
2114       else
2115         value = other_half << 16 | value;
2116     }
2117     if (r_scattered && (r_type != MachO::ARM_RELOC_HALF &&
2118                         r_type != MachO::ARM_RELOC_HALF_SECTDIFF)) {
2119       offset = value - r_value;
2120       value = r_value;
2121     }
2122 
2123     if (r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
2124       if ((r_length & 0x1) == 1)
2125         op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
2126       else
2127         op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
2128       const char *add = GuessSymbolName(r_value, info->AddrMap);
2129       const char *sub = GuessSymbolName(pair_r_value, info->AddrMap);
2130       int32_t offset = value - (r_value - pair_r_value);
2131       op_info->AddSymbol.Present = 1;
2132       if (add != nullptr)
2133         op_info->AddSymbol.Name = add;
2134       else
2135         op_info->AddSymbol.Value = r_value;
2136       op_info->SubtractSymbol.Present = 1;
2137       if (sub != nullptr)
2138         op_info->SubtractSymbol.Name = sub;
2139       else
2140         op_info->SubtractSymbol.Value = pair_r_value;
2141       op_info->Value = offset;
2142       return 1;
2143     }
2144 
2145     op_info->AddSymbol.Present = 1;
2146     op_info->Value = offset;
2147     if (r_type == MachO::ARM_RELOC_HALF) {
2148       if ((r_length & 0x1) == 1)
2149         op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16;
2150       else
2151         op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16;
2152     }
2153     const char *add = GuessSymbolName(value, info->AddrMap);
2154     if (add != nullptr) {
2155       op_info->AddSymbol.Name = add;
2156       return 1;
2157     }
2158     op_info->AddSymbol.Value = value;
2159     return 1;
2160   }
2161   if (Arch == Triple::aarch64) {
2162     if (Offset != 0 || Size != 4)
2163       return 0;
2164     if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
2165       // TODO:
2166       // Search the external relocation entries of a fully linked image
2167       // (if any) for an entry that matches this segment offset.
2168       // uint64_t seg_offset = (Pc + Offset);
2169       return 0;
2170     }
2171     // In MH_OBJECT filetypes search the section's relocation entries (if any)
2172     // for an entry for this section offset.
2173     uint64_t sect_addr = info->S.getAddress();
2174     uint64_t sect_offset = (Pc + Offset) - sect_addr;
2175     auto Reloc =
2176         find_if(info->S.relocations(), [&](const RelocationRef &Reloc) {
2177           uint64_t RelocOffset = Reloc.getOffset();
2178           return RelocOffset == sect_offset;
2179         });
2180 
2181     if (Reloc == info->S.relocations().end())
2182       return 0;
2183 
2184     DataRefImpl Rel = Reloc->getRawDataRefImpl();
2185     MachO::any_relocation_info RE = info->O->getRelocation(Rel);
2186     uint32_t r_type = info->O->getAnyRelocationType(RE);
2187     if (r_type == MachO::ARM64_RELOC_ADDEND) {
2188       DataRefImpl RelNext = Rel;
2189       info->O->moveRelocationNext(RelNext);
2190       MachO::any_relocation_info RENext = info->O->getRelocation(RelNext);
2191       if (value == 0) {
2192         value = info->O->getPlainRelocationSymbolNum(RENext);
2193         op_info->Value = value;
2194       }
2195     }
2196     // NOTE: Scattered relocations don't exist on arm64.
2197     if (!info->O->getPlainRelocationExternal(RE))
2198       return 0;
2199     Expected<StringRef> SymName = Reloc->getSymbol()->getName();
2200     if (!SymName) {
2201       std::string Buf;
2202       raw_string_ostream OS(Buf);
2203       logAllUnhandledErrors(SymName.takeError(), OS, "");
2204       OS.flush();
2205       report_fatal_error(Buf);
2206     }
2207     const char *name = SymName->data();
2208     op_info->AddSymbol.Present = 1;
2209     op_info->AddSymbol.Name = name;
2210 
2211     switch (r_type) {
2212     case MachO::ARM64_RELOC_PAGE21:
2213       /* @page */
2214       op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGE;
2215       break;
2216     case MachO::ARM64_RELOC_PAGEOFF12:
2217       /* @pageoff */
2218       op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGEOFF;
2219       break;
2220     case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
2221       /* @gotpage */
2222       op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGE;
2223       break;
2224     case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12:
2225       /* @gotpageoff */
2226       op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGEOFF;
2227       break;
2228     case MachO::ARM64_RELOC_TLVP_LOAD_PAGE21:
2229       /* @tvlppage is not implemented in llvm-mc */
2230       op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVP;
2231       break;
2232     case MachO::ARM64_RELOC_TLVP_LOAD_PAGEOFF12:
2233       /* @tvlppageoff is not implemented in llvm-mc */
2234       op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVOFF;
2235       break;
2236     default:
2237     case MachO::ARM64_RELOC_BRANCH26:
2238       op_info->VariantKind = LLVMDisassembler_VariantKind_None;
2239       break;
2240     }
2241     return 1;
2242   }
2243   return 0;
2244 }
2245 
2246 // GuessCstringPointer is passed the address of what might be a pointer to a
2247 // literal string in a cstring section.  If that address is in a cstring section
2248 // it returns a pointer to that string.  Else it returns nullptr.
2249 static const char *GuessCstringPointer(uint64_t ReferenceValue,
2250                                        struct DisassembleInfo *info) {
2251   for (const auto &Load : info->O->load_commands()) {
2252     if (Load.C.cmd == MachO::LC_SEGMENT_64) {
2253       MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
2254       for (unsigned J = 0; J < Seg.nsects; ++J) {
2255         MachO::section_64 Sec = info->O->getSection64(Load, J);
2256         uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2257         if (section_type == MachO::S_CSTRING_LITERALS &&
2258             ReferenceValue >= Sec.addr &&
2259             ReferenceValue < Sec.addr + Sec.size) {
2260           uint64_t sect_offset = ReferenceValue - Sec.addr;
2261           uint64_t object_offset = Sec.offset + sect_offset;
2262           StringRef MachOContents = info->O->getData();
2263           uint64_t object_size = MachOContents.size();
2264           const char *object_addr = (const char *)MachOContents.data();
2265           if (object_offset < object_size) {
2266             const char *name = object_addr + object_offset;
2267             return name;
2268           } else {
2269             return nullptr;
2270           }
2271         }
2272       }
2273     } else if (Load.C.cmd == MachO::LC_SEGMENT) {
2274       MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load);
2275       for (unsigned J = 0; J < Seg.nsects; ++J) {
2276         MachO::section Sec = info->O->getSection(Load, J);
2277         uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2278         if (section_type == MachO::S_CSTRING_LITERALS &&
2279             ReferenceValue >= Sec.addr &&
2280             ReferenceValue < Sec.addr + Sec.size) {
2281           uint64_t sect_offset = ReferenceValue - Sec.addr;
2282           uint64_t object_offset = Sec.offset + sect_offset;
2283           StringRef MachOContents = info->O->getData();
2284           uint64_t object_size = MachOContents.size();
2285           const char *object_addr = (const char *)MachOContents.data();
2286           if (object_offset < object_size) {
2287             const char *name = object_addr + object_offset;
2288             return name;
2289           } else {
2290             return nullptr;
2291           }
2292         }
2293       }
2294     }
2295   }
2296   return nullptr;
2297 }
2298 
2299 // GuessIndirectSymbol returns the name of the indirect symbol for the
2300 // ReferenceValue passed in or nullptr.  This is used when ReferenceValue maybe
2301 // an address of a symbol stub or a lazy or non-lazy pointer to associate the
2302 // symbol name being referenced by the stub or pointer.
2303 static const char *GuessIndirectSymbol(uint64_t ReferenceValue,
2304                                        struct DisassembleInfo *info) {
2305   MachO::dysymtab_command Dysymtab = info->O->getDysymtabLoadCommand();
2306   MachO::symtab_command Symtab = info->O->getSymtabLoadCommand();
2307   for (const auto &Load : info->O->load_commands()) {
2308     if (Load.C.cmd == MachO::LC_SEGMENT_64) {
2309       MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
2310       for (unsigned J = 0; J < Seg.nsects; ++J) {
2311         MachO::section_64 Sec = info->O->getSection64(Load, J);
2312         uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2313         if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
2314              section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
2315              section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
2316              section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
2317              section_type == MachO::S_SYMBOL_STUBS) &&
2318             ReferenceValue >= Sec.addr &&
2319             ReferenceValue < Sec.addr + Sec.size) {
2320           uint32_t stride;
2321           if (section_type == MachO::S_SYMBOL_STUBS)
2322             stride = Sec.reserved2;
2323           else
2324             stride = 8;
2325           if (stride == 0)
2326             return nullptr;
2327           uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride;
2328           if (index < Dysymtab.nindirectsyms) {
2329             uint32_t indirect_symbol =
2330                 info->O->getIndirectSymbolTableEntry(Dysymtab, index);
2331             if (indirect_symbol < Symtab.nsyms) {
2332               symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol);
2333               SymbolRef Symbol = *Sym;
2334               Expected<StringRef> SymName = Symbol.getName();
2335               if (!SymName) {
2336                 std::string Buf;
2337                 raw_string_ostream OS(Buf);
2338                 logAllUnhandledErrors(SymName.takeError(), OS, "");
2339                 OS.flush();
2340                 report_fatal_error(Buf);
2341               }
2342               const char *name = SymName->data();
2343               return name;
2344             }
2345           }
2346         }
2347       }
2348     } else if (Load.C.cmd == MachO::LC_SEGMENT) {
2349       MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load);
2350       for (unsigned J = 0; J < Seg.nsects; ++J) {
2351         MachO::section Sec = info->O->getSection(Load, J);
2352         uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2353         if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
2354              section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
2355              section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
2356              section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
2357              section_type == MachO::S_SYMBOL_STUBS) &&
2358             ReferenceValue >= Sec.addr &&
2359             ReferenceValue < Sec.addr + Sec.size) {
2360           uint32_t stride;
2361           if (section_type == MachO::S_SYMBOL_STUBS)
2362             stride = Sec.reserved2;
2363           else
2364             stride = 4;
2365           if (stride == 0)
2366             return nullptr;
2367           uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride;
2368           if (index < Dysymtab.nindirectsyms) {
2369             uint32_t indirect_symbol =
2370                 info->O->getIndirectSymbolTableEntry(Dysymtab, index);
2371             if (indirect_symbol < Symtab.nsyms) {
2372               symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol);
2373               SymbolRef Symbol = *Sym;
2374               Expected<StringRef> SymName = Symbol.getName();
2375               if (!SymName) {
2376                 std::string Buf;
2377                 raw_string_ostream OS(Buf);
2378                 logAllUnhandledErrors(SymName.takeError(), OS, "");
2379                 OS.flush();
2380                 report_fatal_error(Buf);
2381               }
2382               const char *name = SymName->data();
2383               return name;
2384             }
2385           }
2386         }
2387       }
2388     }
2389   }
2390   return nullptr;
2391 }
2392 
2393 // method_reference() is called passing it the ReferenceName that might be
2394 // a reference it to an Objective-C method call.  If so then it allocates and
2395 // assembles a method call string with the values last seen and saved in
2396 // the DisassembleInfo's class_name and selector_name fields.  This is saved
2397 // into the method field of the info and any previous string is free'ed.
2398 // Then the class_name field in the info is set to nullptr.  The method call
2399 // string is set into ReferenceName and ReferenceType is set to
2400 // LLVMDisassembler_ReferenceType_Out_Objc_Message.  If this not a method call
2401 // then both ReferenceType and ReferenceName are left unchanged.
2402 static void method_reference(struct DisassembleInfo *info,
2403                              uint64_t *ReferenceType,
2404                              const char **ReferenceName) {
2405   unsigned int Arch = info->O->getArch();
2406   if (*ReferenceName != nullptr) {
2407     if (strcmp(*ReferenceName, "_objc_msgSend") == 0) {
2408       if (info->selector_name != nullptr) {
2409         if (info->method != nullptr)
2410           free(info->method);
2411         if (info->class_name != nullptr) {
2412           info->method = (char *)malloc(5 + strlen(info->class_name) +
2413                                         strlen(info->selector_name));
2414           if (info->method != nullptr) {
2415             strcpy(info->method, "+[");
2416             strcat(info->method, info->class_name);
2417             strcat(info->method, " ");
2418             strcat(info->method, info->selector_name);
2419             strcat(info->method, "]");
2420             *ReferenceName = info->method;
2421             *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
2422           }
2423         } else {
2424           info->method = (char *)malloc(9 + strlen(info->selector_name));
2425           if (info->method != nullptr) {
2426             if (Arch == Triple::x86_64)
2427               strcpy(info->method, "-[%rdi ");
2428             else if (Arch == Triple::aarch64)
2429               strcpy(info->method, "-[x0 ");
2430             else
2431               strcpy(info->method, "-[r? ");
2432             strcat(info->method, info->selector_name);
2433             strcat(info->method, "]");
2434             *ReferenceName = info->method;
2435             *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
2436           }
2437         }
2438         info->class_name = nullptr;
2439       }
2440     } else if (strcmp(*ReferenceName, "_objc_msgSendSuper2") == 0) {
2441       if (info->selector_name != nullptr) {
2442         if (info->method != nullptr)
2443           free(info->method);
2444         info->method = (char *)malloc(17 + strlen(info->selector_name));
2445         if (info->method != nullptr) {
2446           if (Arch == Triple::x86_64)
2447             strcpy(info->method, "-[[%rdi super] ");
2448           else if (Arch == Triple::aarch64)
2449             strcpy(info->method, "-[[x0 super] ");
2450           else
2451             strcpy(info->method, "-[[r? super] ");
2452           strcat(info->method, info->selector_name);
2453           strcat(info->method, "]");
2454           *ReferenceName = info->method;
2455           *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message;
2456         }
2457         info->class_name = nullptr;
2458       }
2459     }
2460   }
2461 }
2462 
2463 // GuessPointerPointer() is passed the address of what might be a pointer to
2464 // a reference to an Objective-C class, selector, message ref or cfstring.
2465 // If so the value of the pointer is returned and one of the booleans are set
2466 // to true.  If not zero is returned and all the booleans are set to false.
2467 static uint64_t GuessPointerPointer(uint64_t ReferenceValue,
2468                                     struct DisassembleInfo *info,
2469                                     bool &classref, bool &selref, bool &msgref,
2470                                     bool &cfstring) {
2471   classref = false;
2472   selref = false;
2473   msgref = false;
2474   cfstring = false;
2475   for (const auto &Load : info->O->load_commands()) {
2476     if (Load.C.cmd == MachO::LC_SEGMENT_64) {
2477       MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
2478       for (unsigned J = 0; J < Seg.nsects; ++J) {
2479         MachO::section_64 Sec = info->O->getSection64(Load, J);
2480         if ((strncmp(Sec.sectname, "__objc_selrefs", 16) == 0 ||
2481              strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 ||
2482              strncmp(Sec.sectname, "__objc_superrefs", 16) == 0 ||
2483              strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 ||
2484              strncmp(Sec.sectname, "__cfstring", 16) == 0) &&
2485             ReferenceValue >= Sec.addr &&
2486             ReferenceValue < Sec.addr + Sec.size) {
2487           uint64_t sect_offset = ReferenceValue - Sec.addr;
2488           uint64_t object_offset = Sec.offset + sect_offset;
2489           StringRef MachOContents = info->O->getData();
2490           uint64_t object_size = MachOContents.size();
2491           const char *object_addr = (const char *)MachOContents.data();
2492           if (object_offset < object_size) {
2493             uint64_t pointer_value;
2494             memcpy(&pointer_value, object_addr + object_offset,
2495                    sizeof(uint64_t));
2496             if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
2497               sys::swapByteOrder(pointer_value);
2498             if (strncmp(Sec.sectname, "__objc_selrefs", 16) == 0)
2499               selref = true;
2500             else if (strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 ||
2501                      strncmp(Sec.sectname, "__objc_superrefs", 16) == 0)
2502               classref = true;
2503             else if (strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 &&
2504                      ReferenceValue + 8 < Sec.addr + Sec.size) {
2505               msgref = true;
2506               memcpy(&pointer_value, object_addr + object_offset + 8,
2507                      sizeof(uint64_t));
2508               if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
2509                 sys::swapByteOrder(pointer_value);
2510             } else if (strncmp(Sec.sectname, "__cfstring", 16) == 0)
2511               cfstring = true;
2512             return pointer_value;
2513           } else {
2514             return 0;
2515           }
2516         }
2517       }
2518     }
2519     // TODO: Look for LC_SEGMENT for 32-bit Mach-O files.
2520   }
2521   return 0;
2522 }
2523 
2524 // get_pointer_64 returns a pointer to the bytes in the object file at the
2525 // Address from a section in the Mach-O file.  And indirectly returns the
2526 // offset into the section, number of bytes left in the section past the offset
2527 // and which section is was being referenced.  If the Address is not in a
2528 // section nullptr is returned.
2529 static const char *get_pointer_64(uint64_t Address, uint32_t &offset,
2530                                   uint32_t &left, SectionRef &S,
2531                                   DisassembleInfo *info,
2532                                   bool objc_only = false) {
2533   offset = 0;
2534   left = 0;
2535   S = SectionRef();
2536   for (unsigned SectIdx = 0; SectIdx != info->Sections->size(); SectIdx++) {
2537     uint64_t SectAddress = ((*(info->Sections))[SectIdx]).getAddress();
2538     uint64_t SectSize = ((*(info->Sections))[SectIdx]).getSize();
2539     if (SectSize == 0)
2540       continue;
2541     if (objc_only) {
2542       StringRef SectName;
2543       ((*(info->Sections))[SectIdx]).getName(SectName);
2544       DataRefImpl Ref = ((*(info->Sections))[SectIdx]).getRawDataRefImpl();
2545       StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
2546       if (SegName != "__OBJC" && SectName != "__cstring")
2547         continue;
2548     }
2549     if (Address >= SectAddress && Address < SectAddress + SectSize) {
2550       S = (*(info->Sections))[SectIdx];
2551       offset = Address - SectAddress;
2552       left = SectSize - offset;
2553       StringRef SectContents;
2554       ((*(info->Sections))[SectIdx]).getContents(SectContents);
2555       return SectContents.data() + offset;
2556     }
2557   }
2558   return nullptr;
2559 }
2560 
2561 static const char *get_pointer_32(uint32_t Address, uint32_t &offset,
2562                                   uint32_t &left, SectionRef &S,
2563                                   DisassembleInfo *info,
2564                                   bool objc_only = false) {
2565   return get_pointer_64(Address, offset, left, S, info, objc_only);
2566 }
2567 
2568 // get_symbol_64() returns the name of a symbol (or nullptr) and the address of
2569 // the symbol indirectly through n_value. Based on the relocation information
2570 // for the specified section offset in the specified section reference.
2571 // If no relocation information is found and a non-zero ReferenceValue for the
2572 // symbol is passed, look up that address in the info's AddrMap.
2573 static const char *get_symbol_64(uint32_t sect_offset, SectionRef S,
2574                                  DisassembleInfo *info, uint64_t &n_value,
2575                                  uint64_t ReferenceValue = 0) {
2576   n_value = 0;
2577   if (!info->verbose)
2578     return nullptr;
2579 
2580   // See if there is an external relocation entry at the sect_offset.
2581   bool reloc_found = false;
2582   DataRefImpl Rel;
2583   MachO::any_relocation_info RE;
2584   bool isExtern = false;
2585   SymbolRef Symbol;
2586   for (const RelocationRef &Reloc : S.relocations()) {
2587     uint64_t RelocOffset = Reloc.getOffset();
2588     if (RelocOffset == sect_offset) {
2589       Rel = Reloc.getRawDataRefImpl();
2590       RE = info->O->getRelocation(Rel);
2591       if (info->O->isRelocationScattered(RE))
2592         continue;
2593       isExtern = info->O->getPlainRelocationExternal(RE);
2594       if (isExtern) {
2595         symbol_iterator RelocSym = Reloc.getSymbol();
2596         Symbol = *RelocSym;
2597       }
2598       reloc_found = true;
2599       break;
2600     }
2601   }
2602   // If there is an external relocation entry for a symbol in this section
2603   // at this section_offset then use that symbol's value for the n_value
2604   // and return its name.
2605   const char *SymbolName = nullptr;
2606   if (reloc_found && isExtern) {
2607     n_value = Symbol.getValue();
2608     Expected<StringRef> NameOrError = Symbol.getName();
2609     if (!NameOrError) {
2610       std::string Buf;
2611       raw_string_ostream OS(Buf);
2612       logAllUnhandledErrors(NameOrError.takeError(), OS, "");
2613       OS.flush();
2614       report_fatal_error(Buf);
2615     }
2616     StringRef Name = *NameOrError;
2617     if (!Name.empty()) {
2618       SymbolName = Name.data();
2619       return SymbolName;
2620     }
2621   }
2622 
2623   // TODO: For fully linked images, look through the external relocation
2624   // entries off the dynamic symtab command. For these the r_offset is from the
2625   // start of the first writeable segment in the Mach-O file.  So the offset
2626   // to this section from that segment is passed to this routine by the caller,
2627   // as the database_offset. Which is the difference of the section's starting
2628   // address and the first writable segment.
2629   //
2630   // NOTE: need add passing the database_offset to this routine.
2631 
2632   // We did not find an external relocation entry so look up the ReferenceValue
2633   // as an address of a symbol and if found return that symbol's name.
2634   SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap);
2635 
2636   return SymbolName;
2637 }
2638 
2639 static const char *get_symbol_32(uint32_t sect_offset, SectionRef S,
2640                                  DisassembleInfo *info,
2641                                  uint32_t ReferenceValue) {
2642   uint64_t n_value64;
2643   return get_symbol_64(sect_offset, S, info, n_value64, ReferenceValue);
2644 }
2645 
2646 // These are structs in the Objective-C meta data and read to produce the
2647 // comments for disassembly.  While these are part of the ABI they are no
2648 // public defintions.  So the are here not in include/llvm/Support/MachO.h .
2649 
2650 // The cfstring object in a 64-bit Mach-O file.
2651 struct cfstring64_t {
2652   uint64_t isa;        // class64_t * (64-bit pointer)
2653   uint64_t flags;      // flag bits
2654   uint64_t characters; // char * (64-bit pointer)
2655   uint64_t length;     // number of non-NULL characters in above
2656 };
2657 
2658 // The class object in a 64-bit Mach-O file.
2659 struct class64_t {
2660   uint64_t isa;        // class64_t * (64-bit pointer)
2661   uint64_t superclass; // class64_t * (64-bit pointer)
2662   uint64_t cache;      // Cache (64-bit pointer)
2663   uint64_t vtable;     // IMP * (64-bit pointer)
2664   uint64_t data;       // class_ro64_t * (64-bit pointer)
2665 };
2666 
2667 struct class32_t {
2668   uint32_t isa;        /* class32_t * (32-bit pointer) */
2669   uint32_t superclass; /* class32_t * (32-bit pointer) */
2670   uint32_t cache;      /* Cache (32-bit pointer) */
2671   uint32_t vtable;     /* IMP * (32-bit pointer) */
2672   uint32_t data;       /* class_ro32_t * (32-bit pointer) */
2673 };
2674 
2675 struct class_ro64_t {
2676   uint32_t flags;
2677   uint32_t instanceStart;
2678   uint32_t instanceSize;
2679   uint32_t reserved;
2680   uint64_t ivarLayout;     // const uint8_t * (64-bit pointer)
2681   uint64_t name;           // const char * (64-bit pointer)
2682   uint64_t baseMethods;    // const method_list_t * (64-bit pointer)
2683   uint64_t baseProtocols;  // const protocol_list_t * (64-bit pointer)
2684   uint64_t ivars;          // const ivar_list_t * (64-bit pointer)
2685   uint64_t weakIvarLayout; // const uint8_t * (64-bit pointer)
2686   uint64_t baseProperties; // const struct objc_property_list (64-bit pointer)
2687 };
2688 
2689 struct class_ro32_t {
2690   uint32_t flags;
2691   uint32_t instanceStart;
2692   uint32_t instanceSize;
2693   uint32_t ivarLayout;     /* const uint8_t * (32-bit pointer) */
2694   uint32_t name;           /* const char * (32-bit pointer) */
2695   uint32_t baseMethods;    /* const method_list_t * (32-bit pointer) */
2696   uint32_t baseProtocols;  /* const protocol_list_t * (32-bit pointer) */
2697   uint32_t ivars;          /* const ivar_list_t * (32-bit pointer) */
2698   uint32_t weakIvarLayout; /* const uint8_t * (32-bit pointer) */
2699   uint32_t baseProperties; /* const struct objc_property_list *
2700                                                    (32-bit pointer) */
2701 };
2702 
2703 /* Values for class_ro{64,32}_t->flags */
2704 #define RO_META (1 << 0)
2705 #define RO_ROOT (1 << 1)
2706 #define RO_HAS_CXX_STRUCTORS (1 << 2)
2707 
2708 struct method_list64_t {
2709   uint32_t entsize;
2710   uint32_t count;
2711   /* struct method64_t first;  These structures follow inline */
2712 };
2713 
2714 struct method_list32_t {
2715   uint32_t entsize;
2716   uint32_t count;
2717   /* struct method32_t first;  These structures follow inline */
2718 };
2719 
2720 struct method64_t {
2721   uint64_t name;  /* SEL (64-bit pointer) */
2722   uint64_t types; /* const char * (64-bit pointer) */
2723   uint64_t imp;   /* IMP (64-bit pointer) */
2724 };
2725 
2726 struct method32_t {
2727   uint32_t name;  /* SEL (32-bit pointer) */
2728   uint32_t types; /* const char * (32-bit pointer) */
2729   uint32_t imp;   /* IMP (32-bit pointer) */
2730 };
2731 
2732 struct protocol_list64_t {
2733   uint64_t count; /* uintptr_t (a 64-bit value) */
2734   /* struct protocol64_t * list[0];  These pointers follow inline */
2735 };
2736 
2737 struct protocol_list32_t {
2738   uint32_t count; /* uintptr_t (a 32-bit value) */
2739   /* struct protocol32_t * list[0];  These pointers follow inline */
2740 };
2741 
2742 struct protocol64_t {
2743   uint64_t isa;                     /* id * (64-bit pointer) */
2744   uint64_t name;                    /* const char * (64-bit pointer) */
2745   uint64_t protocols;               /* struct protocol_list64_t *
2746                                                     (64-bit pointer) */
2747   uint64_t instanceMethods;         /* method_list_t * (64-bit pointer) */
2748   uint64_t classMethods;            /* method_list_t * (64-bit pointer) */
2749   uint64_t optionalInstanceMethods; /* method_list_t * (64-bit pointer) */
2750   uint64_t optionalClassMethods;    /* method_list_t * (64-bit pointer) */
2751   uint64_t instanceProperties;      /* struct objc_property_list *
2752                                                        (64-bit pointer) */
2753 };
2754 
2755 struct protocol32_t {
2756   uint32_t isa;                     /* id * (32-bit pointer) */
2757   uint32_t name;                    /* const char * (32-bit pointer) */
2758   uint32_t protocols;               /* struct protocol_list_t *
2759                                                     (32-bit pointer) */
2760   uint32_t instanceMethods;         /* method_list_t * (32-bit pointer) */
2761   uint32_t classMethods;            /* method_list_t * (32-bit pointer) */
2762   uint32_t optionalInstanceMethods; /* method_list_t * (32-bit pointer) */
2763   uint32_t optionalClassMethods;    /* method_list_t * (32-bit pointer) */
2764   uint32_t instanceProperties;      /* struct objc_property_list *
2765                                                        (32-bit pointer) */
2766 };
2767 
2768 struct ivar_list64_t {
2769   uint32_t entsize;
2770   uint32_t count;
2771   /* struct ivar64_t first;  These structures follow inline */
2772 };
2773 
2774 struct ivar_list32_t {
2775   uint32_t entsize;
2776   uint32_t count;
2777   /* struct ivar32_t first;  These structures follow inline */
2778 };
2779 
2780 struct ivar64_t {
2781   uint64_t offset; /* uintptr_t * (64-bit pointer) */
2782   uint64_t name;   /* const char * (64-bit pointer) */
2783   uint64_t type;   /* const char * (64-bit pointer) */
2784   uint32_t alignment;
2785   uint32_t size;
2786 };
2787 
2788 struct ivar32_t {
2789   uint32_t offset; /* uintptr_t * (32-bit pointer) */
2790   uint32_t name;   /* const char * (32-bit pointer) */
2791   uint32_t type;   /* const char * (32-bit pointer) */
2792   uint32_t alignment;
2793   uint32_t size;
2794 };
2795 
2796 struct objc_property_list64 {
2797   uint32_t entsize;
2798   uint32_t count;
2799   /* struct objc_property64 first;  These structures follow inline */
2800 };
2801 
2802 struct objc_property_list32 {
2803   uint32_t entsize;
2804   uint32_t count;
2805   /* struct objc_property32 first;  These structures follow inline */
2806 };
2807 
2808 struct objc_property64 {
2809   uint64_t name;       /* const char * (64-bit pointer) */
2810   uint64_t attributes; /* const char * (64-bit pointer) */
2811 };
2812 
2813 struct objc_property32 {
2814   uint32_t name;       /* const char * (32-bit pointer) */
2815   uint32_t attributes; /* const char * (32-bit pointer) */
2816 };
2817 
2818 struct category64_t {
2819   uint64_t name;               /* const char * (64-bit pointer) */
2820   uint64_t cls;                /* struct class_t * (64-bit pointer) */
2821   uint64_t instanceMethods;    /* struct method_list_t * (64-bit pointer) */
2822   uint64_t classMethods;       /* struct method_list_t * (64-bit pointer) */
2823   uint64_t protocols;          /* struct protocol_list_t * (64-bit pointer) */
2824   uint64_t instanceProperties; /* struct objc_property_list *
2825                                   (64-bit pointer) */
2826 };
2827 
2828 struct category32_t {
2829   uint32_t name;               /* const char * (32-bit pointer) */
2830   uint32_t cls;                /* struct class_t * (32-bit pointer) */
2831   uint32_t instanceMethods;    /* struct method_list_t * (32-bit pointer) */
2832   uint32_t classMethods;       /* struct method_list_t * (32-bit pointer) */
2833   uint32_t protocols;          /* struct protocol_list_t * (32-bit pointer) */
2834   uint32_t instanceProperties; /* struct objc_property_list *
2835                                   (32-bit pointer) */
2836 };
2837 
2838 struct objc_image_info64 {
2839   uint32_t version;
2840   uint32_t flags;
2841 };
2842 struct objc_image_info32 {
2843   uint32_t version;
2844   uint32_t flags;
2845 };
2846 struct imageInfo_t {
2847   uint32_t version;
2848   uint32_t flags;
2849 };
2850 /* masks for objc_image_info.flags */
2851 #define OBJC_IMAGE_IS_REPLACEMENT (1 << 0)
2852 #define OBJC_IMAGE_SUPPORTS_GC (1 << 1)
2853 
2854 struct message_ref64 {
2855   uint64_t imp; /* IMP (64-bit pointer) */
2856   uint64_t sel; /* SEL (64-bit pointer) */
2857 };
2858 
2859 struct message_ref32 {
2860   uint32_t imp; /* IMP (32-bit pointer) */
2861   uint32_t sel; /* SEL (32-bit pointer) */
2862 };
2863 
2864 // Objective-C 1 (32-bit only) meta data structs.
2865 
2866 struct objc_module_t {
2867   uint32_t version;
2868   uint32_t size;
2869   uint32_t name;   /* char * (32-bit pointer) */
2870   uint32_t symtab; /* struct objc_symtab * (32-bit pointer) */
2871 };
2872 
2873 struct objc_symtab_t {
2874   uint32_t sel_ref_cnt;
2875   uint32_t refs; /* SEL * (32-bit pointer) */
2876   uint16_t cls_def_cnt;
2877   uint16_t cat_def_cnt;
2878   // uint32_t defs[1];        /* void * (32-bit pointer) variable size */
2879 };
2880 
2881 struct objc_class_t {
2882   uint32_t isa;         /* struct objc_class * (32-bit pointer) */
2883   uint32_t super_class; /* struct objc_class * (32-bit pointer) */
2884   uint32_t name;        /* const char * (32-bit pointer) */
2885   int32_t version;
2886   int32_t info;
2887   int32_t instance_size;
2888   uint32_t ivars;       /* struct objc_ivar_list * (32-bit pointer) */
2889   uint32_t methodLists; /* struct objc_method_list ** (32-bit pointer) */
2890   uint32_t cache;       /* struct objc_cache * (32-bit pointer) */
2891   uint32_t protocols;   /* struct objc_protocol_list * (32-bit pointer) */
2892 };
2893 
2894 #define CLS_GETINFO(cls, infomask) ((cls)->info & (infomask))
2895 // class is not a metaclass
2896 #define CLS_CLASS 0x1
2897 // class is a metaclass
2898 #define CLS_META 0x2
2899 
2900 struct objc_category_t {
2901   uint32_t category_name;    /* char * (32-bit pointer) */
2902   uint32_t class_name;       /* char * (32-bit pointer) */
2903   uint32_t instance_methods; /* struct objc_method_list * (32-bit pointer) */
2904   uint32_t class_methods;    /* struct objc_method_list * (32-bit pointer) */
2905   uint32_t protocols;        /* struct objc_protocol_list * (32-bit ptr) */
2906 };
2907 
2908 struct objc_ivar_t {
2909   uint32_t ivar_name; /* char * (32-bit pointer) */
2910   uint32_t ivar_type; /* char * (32-bit pointer) */
2911   int32_t ivar_offset;
2912 };
2913 
2914 struct objc_ivar_list_t {
2915   int32_t ivar_count;
2916   // struct objc_ivar_t ivar_list[1];          /* variable length structure */
2917 };
2918 
2919 struct objc_method_list_t {
2920   uint32_t obsolete; /* struct objc_method_list * (32-bit pointer) */
2921   int32_t method_count;
2922   // struct objc_method_t method_list[1];      /* variable length structure */
2923 };
2924 
2925 struct objc_method_t {
2926   uint32_t method_name;  /* SEL, aka struct objc_selector * (32-bit pointer) */
2927   uint32_t method_types; /* char * (32-bit pointer) */
2928   uint32_t method_imp;   /* IMP, aka function pointer, (*IMP)(id, SEL, ...)
2929                             (32-bit pointer) */
2930 };
2931 
2932 struct objc_protocol_list_t {
2933   uint32_t next; /* struct objc_protocol_list * (32-bit pointer) */
2934   int32_t count;
2935   // uint32_t list[1];   /* Protocol *, aka struct objc_protocol_t *
2936   //                        (32-bit pointer) */
2937 };
2938 
2939 struct objc_protocol_t {
2940   uint32_t isa;              /* struct objc_class * (32-bit pointer) */
2941   uint32_t protocol_name;    /* char * (32-bit pointer) */
2942   uint32_t protocol_list;    /* struct objc_protocol_list * (32-bit pointer) */
2943   uint32_t instance_methods; /* struct objc_method_description_list *
2944                                 (32-bit pointer) */
2945   uint32_t class_methods;    /* struct objc_method_description_list *
2946                                 (32-bit pointer) */
2947 };
2948 
2949 struct objc_method_description_list_t {
2950   int32_t count;
2951   // struct objc_method_description_t list[1];
2952 };
2953 
2954 struct objc_method_description_t {
2955   uint32_t name;  /* SEL, aka struct objc_selector * (32-bit pointer) */
2956   uint32_t types; /* char * (32-bit pointer) */
2957 };
2958 
2959 inline void swapStruct(struct cfstring64_t &cfs) {
2960   sys::swapByteOrder(cfs.isa);
2961   sys::swapByteOrder(cfs.flags);
2962   sys::swapByteOrder(cfs.characters);
2963   sys::swapByteOrder(cfs.length);
2964 }
2965 
2966 inline void swapStruct(struct class64_t &c) {
2967   sys::swapByteOrder(c.isa);
2968   sys::swapByteOrder(c.superclass);
2969   sys::swapByteOrder(c.cache);
2970   sys::swapByteOrder(c.vtable);
2971   sys::swapByteOrder(c.data);
2972 }
2973 
2974 inline void swapStruct(struct class32_t &c) {
2975   sys::swapByteOrder(c.isa);
2976   sys::swapByteOrder(c.superclass);
2977   sys::swapByteOrder(c.cache);
2978   sys::swapByteOrder(c.vtable);
2979   sys::swapByteOrder(c.data);
2980 }
2981 
2982 inline void swapStruct(struct class_ro64_t &cro) {
2983   sys::swapByteOrder(cro.flags);
2984   sys::swapByteOrder(cro.instanceStart);
2985   sys::swapByteOrder(cro.instanceSize);
2986   sys::swapByteOrder(cro.reserved);
2987   sys::swapByteOrder(cro.ivarLayout);
2988   sys::swapByteOrder(cro.name);
2989   sys::swapByteOrder(cro.baseMethods);
2990   sys::swapByteOrder(cro.baseProtocols);
2991   sys::swapByteOrder(cro.ivars);
2992   sys::swapByteOrder(cro.weakIvarLayout);
2993   sys::swapByteOrder(cro.baseProperties);
2994 }
2995 
2996 inline void swapStruct(struct class_ro32_t &cro) {
2997   sys::swapByteOrder(cro.flags);
2998   sys::swapByteOrder(cro.instanceStart);
2999   sys::swapByteOrder(cro.instanceSize);
3000   sys::swapByteOrder(cro.ivarLayout);
3001   sys::swapByteOrder(cro.name);
3002   sys::swapByteOrder(cro.baseMethods);
3003   sys::swapByteOrder(cro.baseProtocols);
3004   sys::swapByteOrder(cro.ivars);
3005   sys::swapByteOrder(cro.weakIvarLayout);
3006   sys::swapByteOrder(cro.baseProperties);
3007 }
3008 
3009 inline void swapStruct(struct method_list64_t &ml) {
3010   sys::swapByteOrder(ml.entsize);
3011   sys::swapByteOrder(ml.count);
3012 }
3013 
3014 inline void swapStruct(struct method_list32_t &ml) {
3015   sys::swapByteOrder(ml.entsize);
3016   sys::swapByteOrder(ml.count);
3017 }
3018 
3019 inline void swapStruct(struct method64_t &m) {
3020   sys::swapByteOrder(m.name);
3021   sys::swapByteOrder(m.types);
3022   sys::swapByteOrder(m.imp);
3023 }
3024 
3025 inline void swapStruct(struct method32_t &m) {
3026   sys::swapByteOrder(m.name);
3027   sys::swapByteOrder(m.types);
3028   sys::swapByteOrder(m.imp);
3029 }
3030 
3031 inline void swapStruct(struct protocol_list64_t &pl) {
3032   sys::swapByteOrder(pl.count);
3033 }
3034 
3035 inline void swapStruct(struct protocol_list32_t &pl) {
3036   sys::swapByteOrder(pl.count);
3037 }
3038 
3039 inline void swapStruct(struct protocol64_t &p) {
3040   sys::swapByteOrder(p.isa);
3041   sys::swapByteOrder(p.name);
3042   sys::swapByteOrder(p.protocols);
3043   sys::swapByteOrder(p.instanceMethods);
3044   sys::swapByteOrder(p.classMethods);
3045   sys::swapByteOrder(p.optionalInstanceMethods);
3046   sys::swapByteOrder(p.optionalClassMethods);
3047   sys::swapByteOrder(p.instanceProperties);
3048 }
3049 
3050 inline void swapStruct(struct protocol32_t &p) {
3051   sys::swapByteOrder(p.isa);
3052   sys::swapByteOrder(p.name);
3053   sys::swapByteOrder(p.protocols);
3054   sys::swapByteOrder(p.instanceMethods);
3055   sys::swapByteOrder(p.classMethods);
3056   sys::swapByteOrder(p.optionalInstanceMethods);
3057   sys::swapByteOrder(p.optionalClassMethods);
3058   sys::swapByteOrder(p.instanceProperties);
3059 }
3060 
3061 inline void swapStruct(struct ivar_list64_t &il) {
3062   sys::swapByteOrder(il.entsize);
3063   sys::swapByteOrder(il.count);
3064 }
3065 
3066 inline void swapStruct(struct ivar_list32_t &il) {
3067   sys::swapByteOrder(il.entsize);
3068   sys::swapByteOrder(il.count);
3069 }
3070 
3071 inline void swapStruct(struct ivar64_t &i) {
3072   sys::swapByteOrder(i.offset);
3073   sys::swapByteOrder(i.name);
3074   sys::swapByteOrder(i.type);
3075   sys::swapByteOrder(i.alignment);
3076   sys::swapByteOrder(i.size);
3077 }
3078 
3079 inline void swapStruct(struct ivar32_t &i) {
3080   sys::swapByteOrder(i.offset);
3081   sys::swapByteOrder(i.name);
3082   sys::swapByteOrder(i.type);
3083   sys::swapByteOrder(i.alignment);
3084   sys::swapByteOrder(i.size);
3085 }
3086 
3087 inline void swapStruct(struct objc_property_list64 &pl) {
3088   sys::swapByteOrder(pl.entsize);
3089   sys::swapByteOrder(pl.count);
3090 }
3091 
3092 inline void swapStruct(struct objc_property_list32 &pl) {
3093   sys::swapByteOrder(pl.entsize);
3094   sys::swapByteOrder(pl.count);
3095 }
3096 
3097 inline void swapStruct(struct objc_property64 &op) {
3098   sys::swapByteOrder(op.name);
3099   sys::swapByteOrder(op.attributes);
3100 }
3101 
3102 inline void swapStruct(struct objc_property32 &op) {
3103   sys::swapByteOrder(op.name);
3104   sys::swapByteOrder(op.attributes);
3105 }
3106 
3107 inline void swapStruct(struct category64_t &c) {
3108   sys::swapByteOrder(c.name);
3109   sys::swapByteOrder(c.cls);
3110   sys::swapByteOrder(c.instanceMethods);
3111   sys::swapByteOrder(c.classMethods);
3112   sys::swapByteOrder(c.protocols);
3113   sys::swapByteOrder(c.instanceProperties);
3114 }
3115 
3116 inline void swapStruct(struct category32_t &c) {
3117   sys::swapByteOrder(c.name);
3118   sys::swapByteOrder(c.cls);
3119   sys::swapByteOrder(c.instanceMethods);
3120   sys::swapByteOrder(c.classMethods);
3121   sys::swapByteOrder(c.protocols);
3122   sys::swapByteOrder(c.instanceProperties);
3123 }
3124 
3125 inline void swapStruct(struct objc_image_info64 &o) {
3126   sys::swapByteOrder(o.version);
3127   sys::swapByteOrder(o.flags);
3128 }
3129 
3130 inline void swapStruct(struct objc_image_info32 &o) {
3131   sys::swapByteOrder(o.version);
3132   sys::swapByteOrder(o.flags);
3133 }
3134 
3135 inline void swapStruct(struct imageInfo_t &o) {
3136   sys::swapByteOrder(o.version);
3137   sys::swapByteOrder(o.flags);
3138 }
3139 
3140 inline void swapStruct(struct message_ref64 &mr) {
3141   sys::swapByteOrder(mr.imp);
3142   sys::swapByteOrder(mr.sel);
3143 }
3144 
3145 inline void swapStruct(struct message_ref32 &mr) {
3146   sys::swapByteOrder(mr.imp);
3147   sys::swapByteOrder(mr.sel);
3148 }
3149 
3150 inline void swapStruct(struct objc_module_t &module) {
3151   sys::swapByteOrder(module.version);
3152   sys::swapByteOrder(module.size);
3153   sys::swapByteOrder(module.name);
3154   sys::swapByteOrder(module.symtab);
3155 }
3156 
3157 inline void swapStruct(struct objc_symtab_t &symtab) {
3158   sys::swapByteOrder(symtab.sel_ref_cnt);
3159   sys::swapByteOrder(symtab.refs);
3160   sys::swapByteOrder(symtab.cls_def_cnt);
3161   sys::swapByteOrder(symtab.cat_def_cnt);
3162 }
3163 
3164 inline void swapStruct(struct objc_class_t &objc_class) {
3165   sys::swapByteOrder(objc_class.isa);
3166   sys::swapByteOrder(objc_class.super_class);
3167   sys::swapByteOrder(objc_class.name);
3168   sys::swapByteOrder(objc_class.version);
3169   sys::swapByteOrder(objc_class.info);
3170   sys::swapByteOrder(objc_class.instance_size);
3171   sys::swapByteOrder(objc_class.ivars);
3172   sys::swapByteOrder(objc_class.methodLists);
3173   sys::swapByteOrder(objc_class.cache);
3174   sys::swapByteOrder(objc_class.protocols);
3175 }
3176 
3177 inline void swapStruct(struct objc_category_t &objc_category) {
3178   sys::swapByteOrder(objc_category.category_name);
3179   sys::swapByteOrder(objc_category.class_name);
3180   sys::swapByteOrder(objc_category.instance_methods);
3181   sys::swapByteOrder(objc_category.class_methods);
3182   sys::swapByteOrder(objc_category.protocols);
3183 }
3184 
3185 inline void swapStruct(struct objc_ivar_list_t &objc_ivar_list) {
3186   sys::swapByteOrder(objc_ivar_list.ivar_count);
3187 }
3188 
3189 inline void swapStruct(struct objc_ivar_t &objc_ivar) {
3190   sys::swapByteOrder(objc_ivar.ivar_name);
3191   sys::swapByteOrder(objc_ivar.ivar_type);
3192   sys::swapByteOrder(objc_ivar.ivar_offset);
3193 }
3194 
3195 inline void swapStruct(struct objc_method_list_t &method_list) {
3196   sys::swapByteOrder(method_list.obsolete);
3197   sys::swapByteOrder(method_list.method_count);
3198 }
3199 
3200 inline void swapStruct(struct objc_method_t &method) {
3201   sys::swapByteOrder(method.method_name);
3202   sys::swapByteOrder(method.method_types);
3203   sys::swapByteOrder(method.method_imp);
3204 }
3205 
3206 inline void swapStruct(struct objc_protocol_list_t &protocol_list) {
3207   sys::swapByteOrder(protocol_list.next);
3208   sys::swapByteOrder(protocol_list.count);
3209 }
3210 
3211 inline void swapStruct(struct objc_protocol_t &protocol) {
3212   sys::swapByteOrder(protocol.isa);
3213   sys::swapByteOrder(protocol.protocol_name);
3214   sys::swapByteOrder(protocol.protocol_list);
3215   sys::swapByteOrder(protocol.instance_methods);
3216   sys::swapByteOrder(protocol.class_methods);
3217 }
3218 
3219 inline void swapStruct(struct objc_method_description_list_t &mdl) {
3220   sys::swapByteOrder(mdl.count);
3221 }
3222 
3223 inline void swapStruct(struct objc_method_description_t &md) {
3224   sys::swapByteOrder(md.name);
3225   sys::swapByteOrder(md.types);
3226 }
3227 
3228 static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue,
3229                                                  struct DisassembleInfo *info);
3230 
3231 // get_objc2_64bit_class_name() is used for disassembly and is passed a pointer
3232 // to an Objective-C class and returns the class name.  It is also passed the
3233 // address of the pointer, so when the pointer is zero as it can be in an .o
3234 // file, that is used to look for an external relocation entry with a symbol
3235 // name.
3236 static const char *get_objc2_64bit_class_name(uint64_t pointer_value,
3237                                               uint64_t ReferenceValue,
3238                                               struct DisassembleInfo *info) {
3239   const char *r;
3240   uint32_t offset, left;
3241   SectionRef S;
3242 
3243   // The pointer_value can be 0 in an object file and have a relocation
3244   // entry for the class symbol at the ReferenceValue (the address of the
3245   // pointer).
3246   if (pointer_value == 0) {
3247     r = get_pointer_64(ReferenceValue, offset, left, S, info);
3248     if (r == nullptr || left < sizeof(uint64_t))
3249       return nullptr;
3250     uint64_t n_value;
3251     const char *symbol_name = get_symbol_64(offset, S, info, n_value);
3252     if (symbol_name == nullptr)
3253       return nullptr;
3254     const char *class_name = strrchr(symbol_name, '$');
3255     if (class_name != nullptr && class_name[1] == '_' && class_name[2] != '\0')
3256       return class_name + 2;
3257     else
3258       return nullptr;
3259   }
3260 
3261   // The case were the pointer_value is non-zero and points to a class defined
3262   // in this Mach-O file.
3263   r = get_pointer_64(pointer_value, offset, left, S, info);
3264   if (r == nullptr || left < sizeof(struct class64_t))
3265     return nullptr;
3266   struct class64_t c;
3267   memcpy(&c, r, sizeof(struct class64_t));
3268   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3269     swapStruct(c);
3270   if (c.data == 0)
3271     return nullptr;
3272   r = get_pointer_64(c.data, offset, left, S, info);
3273   if (r == nullptr || left < sizeof(struct class_ro64_t))
3274     return nullptr;
3275   struct class_ro64_t cro;
3276   memcpy(&cro, r, sizeof(struct class_ro64_t));
3277   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3278     swapStruct(cro);
3279   if (cro.name == 0)
3280     return nullptr;
3281   const char *name = get_pointer_64(cro.name, offset, left, S, info);
3282   return name;
3283 }
3284 
3285 // get_objc2_64bit_cfstring_name is used for disassembly and is passed a
3286 // pointer to a cfstring and returns its name or nullptr.
3287 static const char *get_objc2_64bit_cfstring_name(uint64_t ReferenceValue,
3288                                                  struct DisassembleInfo *info) {
3289   const char *r, *name;
3290   uint32_t offset, left;
3291   SectionRef S;
3292   struct cfstring64_t cfs;
3293   uint64_t cfs_characters;
3294 
3295   r = get_pointer_64(ReferenceValue, offset, left, S, info);
3296   if (r == nullptr || left < sizeof(struct cfstring64_t))
3297     return nullptr;
3298   memcpy(&cfs, r, sizeof(struct cfstring64_t));
3299   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3300     swapStruct(cfs);
3301   if (cfs.characters == 0) {
3302     uint64_t n_value;
3303     const char *symbol_name = get_symbol_64(
3304         offset + offsetof(struct cfstring64_t, characters), S, info, n_value);
3305     if (symbol_name == nullptr)
3306       return nullptr;
3307     cfs_characters = n_value;
3308   } else
3309     cfs_characters = cfs.characters;
3310   name = get_pointer_64(cfs_characters, offset, left, S, info);
3311 
3312   return name;
3313 }
3314 
3315 // get_objc2_64bit_selref() is used for disassembly and is passed a the address
3316 // of a pointer to an Objective-C selector reference when the pointer value is
3317 // zero as in a .o file and is likely to have a external relocation entry with
3318 // who's symbol's n_value is the real pointer to the selector name.  If that is
3319 // the case the real pointer to the selector name is returned else 0 is
3320 // returned
3321 static uint64_t get_objc2_64bit_selref(uint64_t ReferenceValue,
3322                                        struct DisassembleInfo *info) {
3323   uint32_t offset, left;
3324   SectionRef S;
3325 
3326   const char *r = get_pointer_64(ReferenceValue, offset, left, S, info);
3327   if (r == nullptr || left < sizeof(uint64_t))
3328     return 0;
3329   uint64_t n_value;
3330   const char *symbol_name = get_symbol_64(offset, S, info, n_value);
3331   if (symbol_name == nullptr)
3332     return 0;
3333   return n_value;
3334 }
3335 
3336 static const SectionRef get_section(MachOObjectFile *O, const char *segname,
3337                                     const char *sectname) {
3338   for (const SectionRef &Section : O->sections()) {
3339     StringRef SectName;
3340     Section.getName(SectName);
3341     DataRefImpl Ref = Section.getRawDataRefImpl();
3342     StringRef SegName = O->getSectionFinalSegmentName(Ref);
3343     if (SegName == segname && SectName == sectname)
3344       return Section;
3345   }
3346   return SectionRef();
3347 }
3348 
3349 static void
3350 walk_pointer_list_64(const char *listname, const SectionRef S,
3351                      MachOObjectFile *O, struct DisassembleInfo *info,
3352                      void (*func)(uint64_t, struct DisassembleInfo *info)) {
3353   if (S == SectionRef())
3354     return;
3355 
3356   StringRef SectName;
3357   S.getName(SectName);
3358   DataRefImpl Ref = S.getRawDataRefImpl();
3359   StringRef SegName = O->getSectionFinalSegmentName(Ref);
3360   outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
3361 
3362   StringRef BytesStr;
3363   S.getContents(BytesStr);
3364   const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
3365 
3366   for (uint32_t i = 0; i < S.getSize(); i += sizeof(uint64_t)) {
3367     uint32_t left = S.getSize() - i;
3368     uint32_t size = left < sizeof(uint64_t) ? left : sizeof(uint64_t);
3369     uint64_t p = 0;
3370     memcpy(&p, Contents + i, size);
3371     if (i + sizeof(uint64_t) > S.getSize())
3372       outs() << listname << " list pointer extends past end of (" << SegName
3373              << "," << SectName << ") section\n";
3374     outs() << format("%016" PRIx64, S.getAddress() + i) << " ";
3375 
3376     if (O->isLittleEndian() != sys::IsLittleEndianHost)
3377       sys::swapByteOrder(p);
3378 
3379     uint64_t n_value = 0;
3380     const char *name = get_symbol_64(i, S, info, n_value, p);
3381     if (name == nullptr)
3382       name = get_dyld_bind_info_symbolname(S.getAddress() + i, info);
3383 
3384     if (n_value != 0) {
3385       outs() << format("0x%" PRIx64, n_value);
3386       if (p != 0)
3387         outs() << " + " << format("0x%" PRIx64, p);
3388     } else
3389       outs() << format("0x%" PRIx64, p);
3390     if (name != nullptr)
3391       outs() << " " << name;
3392     outs() << "\n";
3393 
3394     p += n_value;
3395     if (func)
3396       func(p, info);
3397   }
3398 }
3399 
3400 static void
3401 walk_pointer_list_32(const char *listname, const SectionRef S,
3402                      MachOObjectFile *O, struct DisassembleInfo *info,
3403                      void (*func)(uint32_t, struct DisassembleInfo *info)) {
3404   if (S == SectionRef())
3405     return;
3406 
3407   StringRef SectName;
3408   S.getName(SectName);
3409   DataRefImpl Ref = S.getRawDataRefImpl();
3410   StringRef SegName = O->getSectionFinalSegmentName(Ref);
3411   outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
3412 
3413   StringRef BytesStr;
3414   S.getContents(BytesStr);
3415   const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
3416 
3417   for (uint32_t i = 0; i < S.getSize(); i += sizeof(uint32_t)) {
3418     uint32_t left = S.getSize() - i;
3419     uint32_t size = left < sizeof(uint32_t) ? left : sizeof(uint32_t);
3420     uint32_t p = 0;
3421     memcpy(&p, Contents + i, size);
3422     if (i + sizeof(uint32_t) > S.getSize())
3423       outs() << listname << " list pointer extends past end of (" << SegName
3424              << "," << SectName << ") section\n";
3425     uint32_t Address = S.getAddress() + i;
3426     outs() << format("%08" PRIx32, Address) << " ";
3427 
3428     if (O->isLittleEndian() != sys::IsLittleEndianHost)
3429       sys::swapByteOrder(p);
3430     outs() << format("0x%" PRIx32, p);
3431 
3432     const char *name = get_symbol_32(i, S, info, p);
3433     if (name != nullptr)
3434       outs() << " " << name;
3435     outs() << "\n";
3436 
3437     if (func)
3438       func(p, info);
3439   }
3440 }
3441 
3442 static void print_layout_map(const char *layout_map, uint32_t left) {
3443   if (layout_map == nullptr)
3444     return;
3445   outs() << "                layout map: ";
3446   do {
3447     outs() << format("0x%02" PRIx32, (*layout_map) & 0xff) << " ";
3448     left--;
3449     layout_map++;
3450   } while (*layout_map != '\0' && left != 0);
3451   outs() << "\n";
3452 }
3453 
3454 static void print_layout_map64(uint64_t p, struct DisassembleInfo *info) {
3455   uint32_t offset, left;
3456   SectionRef S;
3457   const char *layout_map;
3458 
3459   if (p == 0)
3460     return;
3461   layout_map = get_pointer_64(p, offset, left, S, info);
3462   print_layout_map(layout_map, left);
3463 }
3464 
3465 static void print_layout_map32(uint32_t p, struct DisassembleInfo *info) {
3466   uint32_t offset, left;
3467   SectionRef S;
3468   const char *layout_map;
3469 
3470   if (p == 0)
3471     return;
3472   layout_map = get_pointer_32(p, offset, left, S, info);
3473   print_layout_map(layout_map, left);
3474 }
3475 
3476 static void print_method_list64_t(uint64_t p, struct DisassembleInfo *info,
3477                                   const char *indent) {
3478   struct method_list64_t ml;
3479   struct method64_t m;
3480   const char *r;
3481   uint32_t offset, xoffset, left, i;
3482   SectionRef S, xS;
3483   const char *name, *sym_name;
3484   uint64_t n_value;
3485 
3486   r = get_pointer_64(p, offset, left, S, info);
3487   if (r == nullptr)
3488     return;
3489   memset(&ml, '\0', sizeof(struct method_list64_t));
3490   if (left < sizeof(struct method_list64_t)) {
3491     memcpy(&ml, r, left);
3492     outs() << "   (method_list_t entends past the end of the section)\n";
3493   } else
3494     memcpy(&ml, r, sizeof(struct method_list64_t));
3495   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3496     swapStruct(ml);
3497   outs() << indent << "\t\t   entsize " << ml.entsize << "\n";
3498   outs() << indent << "\t\t     count " << ml.count << "\n";
3499 
3500   p += sizeof(struct method_list64_t);
3501   offset += sizeof(struct method_list64_t);
3502   for (i = 0; i < ml.count; i++) {
3503     r = get_pointer_64(p, offset, left, S, info);
3504     if (r == nullptr)
3505       return;
3506     memset(&m, '\0', sizeof(struct method64_t));
3507     if (left < sizeof(struct method64_t)) {
3508       memcpy(&m, r, left);
3509       outs() << indent << "   (method_t extends past the end of the section)\n";
3510     } else
3511       memcpy(&m, r, sizeof(struct method64_t));
3512     if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3513       swapStruct(m);
3514 
3515     outs() << indent << "\t\t      name ";
3516     sym_name = get_symbol_64(offset + offsetof(struct method64_t, name), S,
3517                              info, n_value, m.name);
3518     if (n_value != 0) {
3519       if (info->verbose && sym_name != nullptr)
3520         outs() << sym_name;
3521       else
3522         outs() << format("0x%" PRIx64, n_value);
3523       if (m.name != 0)
3524         outs() << " + " << format("0x%" PRIx64, m.name);
3525     } else
3526       outs() << format("0x%" PRIx64, m.name);
3527     name = get_pointer_64(m.name + n_value, xoffset, left, xS, info);
3528     if (name != nullptr)
3529       outs() << format(" %.*s", left, name);
3530     outs() << "\n";
3531 
3532     outs() << indent << "\t\t     types ";
3533     sym_name = get_symbol_64(offset + offsetof(struct method64_t, types), S,
3534                              info, n_value, m.types);
3535     if (n_value != 0) {
3536       if (info->verbose && sym_name != nullptr)
3537         outs() << sym_name;
3538       else
3539         outs() << format("0x%" PRIx64, n_value);
3540       if (m.types != 0)
3541         outs() << " + " << format("0x%" PRIx64, m.types);
3542     } else
3543       outs() << format("0x%" PRIx64, m.types);
3544     name = get_pointer_64(m.types + n_value, xoffset, left, xS, info);
3545     if (name != nullptr)
3546       outs() << format(" %.*s", left, name);
3547     outs() << "\n";
3548 
3549     outs() << indent << "\t\t       imp ";
3550     name = get_symbol_64(offset + offsetof(struct method64_t, imp), S, info,
3551                          n_value, m.imp);
3552     if (info->verbose && name == nullptr) {
3553       if (n_value != 0) {
3554         outs() << format("0x%" PRIx64, n_value) << " ";
3555         if (m.imp != 0)
3556           outs() << "+ " << format("0x%" PRIx64, m.imp) << " ";
3557       } else
3558         outs() << format("0x%" PRIx64, m.imp) << " ";
3559     }
3560     if (name != nullptr)
3561       outs() << name;
3562     outs() << "\n";
3563 
3564     p += sizeof(struct method64_t);
3565     offset += sizeof(struct method64_t);
3566   }
3567 }
3568 
3569 static void print_method_list32_t(uint64_t p, struct DisassembleInfo *info,
3570                                   const char *indent) {
3571   struct method_list32_t ml;
3572   struct method32_t m;
3573   const char *r, *name;
3574   uint32_t offset, xoffset, left, i;
3575   SectionRef S, xS;
3576 
3577   r = get_pointer_32(p, offset, left, S, info);
3578   if (r == nullptr)
3579     return;
3580   memset(&ml, '\0', sizeof(struct method_list32_t));
3581   if (left < sizeof(struct method_list32_t)) {
3582     memcpy(&ml, r, left);
3583     outs() << "   (method_list_t entends past the end of the section)\n";
3584   } else
3585     memcpy(&ml, r, sizeof(struct method_list32_t));
3586   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3587     swapStruct(ml);
3588   outs() << indent << "\t\t   entsize " << ml.entsize << "\n";
3589   outs() << indent << "\t\t     count " << ml.count << "\n";
3590 
3591   p += sizeof(struct method_list32_t);
3592   offset += sizeof(struct method_list32_t);
3593   for (i = 0; i < ml.count; i++) {
3594     r = get_pointer_32(p, offset, left, S, info);
3595     if (r == nullptr)
3596       return;
3597     memset(&m, '\0', sizeof(struct method32_t));
3598     if (left < sizeof(struct method32_t)) {
3599       memcpy(&ml, r, left);
3600       outs() << indent << "   (method_t entends past the end of the section)\n";
3601     } else
3602       memcpy(&m, r, sizeof(struct method32_t));
3603     if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3604       swapStruct(m);
3605 
3606     outs() << indent << "\t\t      name " << format("0x%" PRIx32, m.name);
3607     name = get_pointer_32(m.name, xoffset, left, xS, info);
3608     if (name != nullptr)
3609       outs() << format(" %.*s", left, name);
3610     outs() << "\n";
3611 
3612     outs() << indent << "\t\t     types " << format("0x%" PRIx32, m.types);
3613     name = get_pointer_32(m.types, xoffset, left, xS, info);
3614     if (name != nullptr)
3615       outs() << format(" %.*s", left, name);
3616     outs() << "\n";
3617 
3618     outs() << indent << "\t\t       imp " << format("0x%" PRIx32, m.imp);
3619     name = get_symbol_32(offset + offsetof(struct method32_t, imp), S, info,
3620                          m.imp);
3621     if (name != nullptr)
3622       outs() << " " << name;
3623     outs() << "\n";
3624 
3625     p += sizeof(struct method32_t);
3626     offset += sizeof(struct method32_t);
3627   }
3628 }
3629 
3630 static bool print_method_list(uint32_t p, struct DisassembleInfo *info) {
3631   uint32_t offset, left, xleft;
3632   SectionRef S;
3633   struct objc_method_list_t method_list;
3634   struct objc_method_t method;
3635   const char *r, *methods, *name, *SymbolName;
3636   int32_t i;
3637 
3638   r = get_pointer_32(p, offset, left, S, info, true);
3639   if (r == nullptr)
3640     return true;
3641 
3642   outs() << "\n";
3643   if (left > sizeof(struct objc_method_list_t)) {
3644     memcpy(&method_list, r, sizeof(struct objc_method_list_t));
3645   } else {
3646     outs() << "\t\t objc_method_list extends past end of the section\n";
3647     memset(&method_list, '\0', sizeof(struct objc_method_list_t));
3648     memcpy(&method_list, r, left);
3649   }
3650   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3651     swapStruct(method_list);
3652 
3653   outs() << "\t\t         obsolete "
3654          << format("0x%08" PRIx32, method_list.obsolete) << "\n";
3655   outs() << "\t\t     method_count " << method_list.method_count << "\n";
3656 
3657   methods = r + sizeof(struct objc_method_list_t);
3658   for (i = 0; i < method_list.method_count; i++) {
3659     if ((i + 1) * sizeof(struct objc_method_t) > left) {
3660       outs() << "\t\t remaining method's extend past the of the section\n";
3661       break;
3662     }
3663     memcpy(&method, methods + i * sizeof(struct objc_method_t),
3664            sizeof(struct objc_method_t));
3665     if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3666       swapStruct(method);
3667 
3668     outs() << "\t\t      method_name "
3669            << format("0x%08" PRIx32, method.method_name);
3670     if (info->verbose) {
3671       name = get_pointer_32(method.method_name, offset, xleft, S, info, true);
3672       if (name != nullptr)
3673         outs() << format(" %.*s", xleft, name);
3674       else
3675         outs() << " (not in an __OBJC section)";
3676     }
3677     outs() << "\n";
3678 
3679     outs() << "\t\t     method_types "
3680            << format("0x%08" PRIx32, method.method_types);
3681     if (info->verbose) {
3682       name = get_pointer_32(method.method_types, offset, xleft, S, info, true);
3683       if (name != nullptr)
3684         outs() << format(" %.*s", xleft, name);
3685       else
3686         outs() << " (not in an __OBJC section)";
3687     }
3688     outs() << "\n";
3689 
3690     outs() << "\t\t       method_imp "
3691            << format("0x%08" PRIx32, method.method_imp) << " ";
3692     if (info->verbose) {
3693       SymbolName = GuessSymbolName(method.method_imp, info->AddrMap);
3694       if (SymbolName != nullptr)
3695         outs() << SymbolName;
3696     }
3697     outs() << "\n";
3698   }
3699   return false;
3700 }
3701 
3702 static void print_protocol_list64_t(uint64_t p, struct DisassembleInfo *info) {
3703   struct protocol_list64_t pl;
3704   uint64_t q, n_value;
3705   struct protocol64_t pc;
3706   const char *r;
3707   uint32_t offset, xoffset, left, i;
3708   SectionRef S, xS;
3709   const char *name, *sym_name;
3710 
3711   r = get_pointer_64(p, offset, left, S, info);
3712   if (r == nullptr)
3713     return;
3714   memset(&pl, '\0', sizeof(struct protocol_list64_t));
3715   if (left < sizeof(struct protocol_list64_t)) {
3716     memcpy(&pl, r, left);
3717     outs() << "   (protocol_list_t entends past the end of the section)\n";
3718   } else
3719     memcpy(&pl, r, sizeof(struct protocol_list64_t));
3720   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3721     swapStruct(pl);
3722   outs() << "                      count " << pl.count << "\n";
3723 
3724   p += sizeof(struct protocol_list64_t);
3725   offset += sizeof(struct protocol_list64_t);
3726   for (i = 0; i < pl.count; i++) {
3727     r = get_pointer_64(p, offset, left, S, info);
3728     if (r == nullptr)
3729       return;
3730     q = 0;
3731     if (left < sizeof(uint64_t)) {
3732       memcpy(&q, r, left);
3733       outs() << "   (protocol_t * entends past the end of the section)\n";
3734     } else
3735       memcpy(&q, r, sizeof(uint64_t));
3736     if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3737       sys::swapByteOrder(q);
3738 
3739     outs() << "\t\t      list[" << i << "] ";
3740     sym_name = get_symbol_64(offset, S, info, n_value, q);
3741     if (n_value != 0) {
3742       if (info->verbose && sym_name != nullptr)
3743         outs() << sym_name;
3744       else
3745         outs() << format("0x%" PRIx64, n_value);
3746       if (q != 0)
3747         outs() << " + " << format("0x%" PRIx64, q);
3748     } else
3749       outs() << format("0x%" PRIx64, q);
3750     outs() << " (struct protocol_t *)\n";
3751 
3752     r = get_pointer_64(q + n_value, offset, left, S, info);
3753     if (r == nullptr)
3754       return;
3755     memset(&pc, '\0', sizeof(struct protocol64_t));
3756     if (left < sizeof(struct protocol64_t)) {
3757       memcpy(&pc, r, left);
3758       outs() << "   (protocol_t entends past the end of the section)\n";
3759     } else
3760       memcpy(&pc, r, sizeof(struct protocol64_t));
3761     if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3762       swapStruct(pc);
3763 
3764     outs() << "\t\t\t      isa " << format("0x%" PRIx64, pc.isa) << "\n";
3765 
3766     outs() << "\t\t\t     name ";
3767     sym_name = get_symbol_64(offset + offsetof(struct protocol64_t, name), S,
3768                              info, n_value, pc.name);
3769     if (n_value != 0) {
3770       if (info->verbose && sym_name != nullptr)
3771         outs() << sym_name;
3772       else
3773         outs() << format("0x%" PRIx64, n_value);
3774       if (pc.name != 0)
3775         outs() << " + " << format("0x%" PRIx64, pc.name);
3776     } else
3777       outs() << format("0x%" PRIx64, pc.name);
3778     name = get_pointer_64(pc.name + n_value, xoffset, left, xS, info);
3779     if (name != nullptr)
3780       outs() << format(" %.*s", left, name);
3781     outs() << "\n";
3782 
3783     outs() << "\t\t\tprotocols " << format("0x%" PRIx64, pc.protocols) << "\n";
3784 
3785     outs() << "\t\t  instanceMethods ";
3786     sym_name =
3787         get_symbol_64(offset + offsetof(struct protocol64_t, instanceMethods),
3788                       S, info, n_value, pc.instanceMethods);
3789     if (n_value != 0) {
3790       if (info->verbose && sym_name != nullptr)
3791         outs() << sym_name;
3792       else
3793         outs() << format("0x%" PRIx64, n_value);
3794       if (pc.instanceMethods != 0)
3795         outs() << " + " << format("0x%" PRIx64, pc.instanceMethods);
3796     } else
3797       outs() << format("0x%" PRIx64, pc.instanceMethods);
3798     outs() << " (struct method_list_t *)\n";
3799     if (pc.instanceMethods + n_value != 0)
3800       print_method_list64_t(pc.instanceMethods + n_value, info, "\t");
3801 
3802     outs() << "\t\t     classMethods ";
3803     sym_name =
3804         get_symbol_64(offset + offsetof(struct protocol64_t, classMethods), S,
3805                       info, n_value, pc.classMethods);
3806     if (n_value != 0) {
3807       if (info->verbose && sym_name != nullptr)
3808         outs() << sym_name;
3809       else
3810         outs() << format("0x%" PRIx64, n_value);
3811       if (pc.classMethods != 0)
3812         outs() << " + " << format("0x%" PRIx64, pc.classMethods);
3813     } else
3814       outs() << format("0x%" PRIx64, pc.classMethods);
3815     outs() << " (struct method_list_t *)\n";
3816     if (pc.classMethods + n_value != 0)
3817       print_method_list64_t(pc.classMethods + n_value, info, "\t");
3818 
3819     outs() << "\t  optionalInstanceMethods "
3820            << format("0x%" PRIx64, pc.optionalInstanceMethods) << "\n";
3821     outs() << "\t     optionalClassMethods "
3822            << format("0x%" PRIx64, pc.optionalClassMethods) << "\n";
3823     outs() << "\t       instanceProperties "
3824            << format("0x%" PRIx64, pc.instanceProperties) << "\n";
3825 
3826     p += sizeof(uint64_t);
3827     offset += sizeof(uint64_t);
3828   }
3829 }
3830 
3831 static void print_protocol_list32_t(uint32_t p, struct DisassembleInfo *info) {
3832   struct protocol_list32_t pl;
3833   uint32_t q;
3834   struct protocol32_t pc;
3835   const char *r;
3836   uint32_t offset, xoffset, left, i;
3837   SectionRef S, xS;
3838   const char *name;
3839 
3840   r = get_pointer_32(p, offset, left, S, info);
3841   if (r == nullptr)
3842     return;
3843   memset(&pl, '\0', sizeof(struct protocol_list32_t));
3844   if (left < sizeof(struct protocol_list32_t)) {
3845     memcpy(&pl, r, left);
3846     outs() << "   (protocol_list_t entends past the end of the section)\n";
3847   } else
3848     memcpy(&pl, r, sizeof(struct protocol_list32_t));
3849   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3850     swapStruct(pl);
3851   outs() << "                      count " << pl.count << "\n";
3852 
3853   p += sizeof(struct protocol_list32_t);
3854   offset += sizeof(struct protocol_list32_t);
3855   for (i = 0; i < pl.count; i++) {
3856     r = get_pointer_32(p, offset, left, S, info);
3857     if (r == nullptr)
3858       return;
3859     q = 0;
3860     if (left < sizeof(uint32_t)) {
3861       memcpy(&q, r, left);
3862       outs() << "   (protocol_t * entends past the end of the section)\n";
3863     } else
3864       memcpy(&q, r, sizeof(uint32_t));
3865     if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3866       sys::swapByteOrder(q);
3867     outs() << "\t\t      list[" << i << "] " << format("0x%" PRIx32, q)
3868            << " (struct protocol_t *)\n";
3869     r = get_pointer_32(q, offset, left, S, info);
3870     if (r == nullptr)
3871       return;
3872     memset(&pc, '\0', sizeof(struct protocol32_t));
3873     if (left < sizeof(struct protocol32_t)) {
3874       memcpy(&pc, r, left);
3875       outs() << "   (protocol_t entends past the end of the section)\n";
3876     } else
3877       memcpy(&pc, r, sizeof(struct protocol32_t));
3878     if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3879       swapStruct(pc);
3880     outs() << "\t\t\t      isa " << format("0x%" PRIx32, pc.isa) << "\n";
3881     outs() << "\t\t\t     name " << format("0x%" PRIx32, pc.name);
3882     name = get_pointer_32(pc.name, xoffset, left, xS, info);
3883     if (name != nullptr)
3884       outs() << format(" %.*s", left, name);
3885     outs() << "\n";
3886     outs() << "\t\t\tprotocols " << format("0x%" PRIx32, pc.protocols) << "\n";
3887     outs() << "\t\t  instanceMethods "
3888            << format("0x%" PRIx32, pc.instanceMethods)
3889            << " (struct method_list_t *)\n";
3890     if (pc.instanceMethods != 0)
3891       print_method_list32_t(pc.instanceMethods, info, "\t");
3892     outs() << "\t\t     classMethods " << format("0x%" PRIx32, pc.classMethods)
3893            << " (struct method_list_t *)\n";
3894     if (pc.classMethods != 0)
3895       print_method_list32_t(pc.classMethods, info, "\t");
3896     outs() << "\t  optionalInstanceMethods "
3897            << format("0x%" PRIx32, pc.optionalInstanceMethods) << "\n";
3898     outs() << "\t     optionalClassMethods "
3899            << format("0x%" PRIx32, pc.optionalClassMethods) << "\n";
3900     outs() << "\t       instanceProperties "
3901            << format("0x%" PRIx32, pc.instanceProperties) << "\n";
3902     p += sizeof(uint32_t);
3903     offset += sizeof(uint32_t);
3904   }
3905 }
3906 
3907 static void print_indent(uint32_t indent) {
3908   for (uint32_t i = 0; i < indent;) {
3909     if (indent - i >= 8) {
3910       outs() << "\t";
3911       i += 8;
3912     } else {
3913       for (uint32_t j = i; j < indent; j++)
3914         outs() << " ";
3915       return;
3916     }
3917   }
3918 }
3919 
3920 static bool print_method_description_list(uint32_t p, uint32_t indent,
3921                                           struct DisassembleInfo *info) {
3922   uint32_t offset, left, xleft;
3923   SectionRef S;
3924   struct objc_method_description_list_t mdl;
3925   struct objc_method_description_t md;
3926   const char *r, *list, *name;
3927   int32_t i;
3928 
3929   r = get_pointer_32(p, offset, left, S, info, true);
3930   if (r == nullptr)
3931     return true;
3932 
3933   outs() << "\n";
3934   if (left > sizeof(struct objc_method_description_list_t)) {
3935     memcpy(&mdl, r, sizeof(struct objc_method_description_list_t));
3936   } else {
3937     print_indent(indent);
3938     outs() << " objc_method_description_list extends past end of the section\n";
3939     memset(&mdl, '\0', sizeof(struct objc_method_description_list_t));
3940     memcpy(&mdl, r, left);
3941   }
3942   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3943     swapStruct(mdl);
3944 
3945   print_indent(indent);
3946   outs() << "        count " << mdl.count << "\n";
3947 
3948   list = r + sizeof(struct objc_method_description_list_t);
3949   for (i = 0; i < mdl.count; i++) {
3950     if ((i + 1) * sizeof(struct objc_method_description_t) > left) {
3951       print_indent(indent);
3952       outs() << " remaining list entries extend past the of the section\n";
3953       break;
3954     }
3955     print_indent(indent);
3956     outs() << "        list[" << i << "]\n";
3957     memcpy(&md, list + i * sizeof(struct objc_method_description_t),
3958            sizeof(struct objc_method_description_t));
3959     if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3960       swapStruct(md);
3961 
3962     print_indent(indent);
3963     outs() << "             name " << format("0x%08" PRIx32, md.name);
3964     if (info->verbose) {
3965       name = get_pointer_32(md.name, offset, xleft, S, info, true);
3966       if (name != nullptr)
3967         outs() << format(" %.*s", xleft, name);
3968       else
3969         outs() << " (not in an __OBJC section)";
3970     }
3971     outs() << "\n";
3972 
3973     print_indent(indent);
3974     outs() << "            types " << format("0x%08" PRIx32, md.types);
3975     if (info->verbose) {
3976       name = get_pointer_32(md.types, offset, xleft, S, info, true);
3977       if (name != nullptr)
3978         outs() << format(" %.*s", xleft, name);
3979       else
3980         outs() << " (not in an __OBJC section)";
3981     }
3982     outs() << "\n";
3983   }
3984   return false;
3985 }
3986 
3987 static bool print_protocol_list(uint32_t p, uint32_t indent,
3988                                 struct DisassembleInfo *info);
3989 
3990 static bool print_protocol(uint32_t p, uint32_t indent,
3991                            struct DisassembleInfo *info) {
3992   uint32_t offset, left;
3993   SectionRef S;
3994   struct objc_protocol_t protocol;
3995   const char *r, *name;
3996 
3997   r = get_pointer_32(p, offset, left, S, info, true);
3998   if (r == nullptr)
3999     return true;
4000 
4001   outs() << "\n";
4002   if (left >= sizeof(struct objc_protocol_t)) {
4003     memcpy(&protocol, r, sizeof(struct objc_protocol_t));
4004   } else {
4005     print_indent(indent);
4006     outs() << "            Protocol extends past end of the section\n";
4007     memset(&protocol, '\0', sizeof(struct objc_protocol_t));
4008     memcpy(&protocol, r, left);
4009   }
4010   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4011     swapStruct(protocol);
4012 
4013   print_indent(indent);
4014   outs() << "              isa " << format("0x%08" PRIx32, protocol.isa)
4015          << "\n";
4016 
4017   print_indent(indent);
4018   outs() << "    protocol_name "
4019          << format("0x%08" PRIx32, protocol.protocol_name);
4020   if (info->verbose) {
4021     name = get_pointer_32(protocol.protocol_name, offset, left, S, info, true);
4022     if (name != nullptr)
4023       outs() << format(" %.*s", left, name);
4024     else
4025       outs() << " (not in an __OBJC section)";
4026   }
4027   outs() << "\n";
4028 
4029   print_indent(indent);
4030   outs() << "    protocol_list "
4031          << format("0x%08" PRIx32, protocol.protocol_list);
4032   if (print_protocol_list(protocol.protocol_list, indent + 4, info))
4033     outs() << " (not in an __OBJC section)\n";
4034 
4035   print_indent(indent);
4036   outs() << " instance_methods "
4037          << format("0x%08" PRIx32, protocol.instance_methods);
4038   if (print_method_description_list(protocol.instance_methods, indent, info))
4039     outs() << " (not in an __OBJC section)\n";
4040 
4041   print_indent(indent);
4042   outs() << "    class_methods "
4043          << format("0x%08" PRIx32, protocol.class_methods);
4044   if (print_method_description_list(protocol.class_methods, indent, info))
4045     outs() << " (not in an __OBJC section)\n";
4046 
4047   return false;
4048 }
4049 
4050 static bool print_protocol_list(uint32_t p, uint32_t indent,
4051                                 struct DisassembleInfo *info) {
4052   uint32_t offset, left, l;
4053   SectionRef S;
4054   struct objc_protocol_list_t protocol_list;
4055   const char *r, *list;
4056   int32_t i;
4057 
4058   r = get_pointer_32(p, offset, left, S, info, true);
4059   if (r == nullptr)
4060     return true;
4061 
4062   outs() << "\n";
4063   if (left > sizeof(struct objc_protocol_list_t)) {
4064     memcpy(&protocol_list, r, sizeof(struct objc_protocol_list_t));
4065   } else {
4066     outs() << "\t\t objc_protocol_list_t extends past end of the section\n";
4067     memset(&protocol_list, '\0', sizeof(struct objc_protocol_list_t));
4068     memcpy(&protocol_list, r, left);
4069   }
4070   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4071     swapStruct(protocol_list);
4072 
4073   print_indent(indent);
4074   outs() << "         next " << format("0x%08" PRIx32, protocol_list.next)
4075          << "\n";
4076   print_indent(indent);
4077   outs() << "        count " << protocol_list.count << "\n";
4078 
4079   list = r + sizeof(struct objc_protocol_list_t);
4080   for (i = 0; i < protocol_list.count; i++) {
4081     if ((i + 1) * sizeof(uint32_t) > left) {
4082       outs() << "\t\t remaining list entries extend past the of the section\n";
4083       break;
4084     }
4085     memcpy(&l, list + i * sizeof(uint32_t), sizeof(uint32_t));
4086     if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4087       sys::swapByteOrder(l);
4088 
4089     print_indent(indent);
4090     outs() << "      list[" << i << "] " << format("0x%08" PRIx32, l);
4091     if (print_protocol(l, indent, info))
4092       outs() << "(not in an __OBJC section)\n";
4093   }
4094   return false;
4095 }
4096 
4097 static void print_ivar_list64_t(uint64_t p, struct DisassembleInfo *info) {
4098   struct ivar_list64_t il;
4099   struct ivar64_t i;
4100   const char *r;
4101   uint32_t offset, xoffset, left, j;
4102   SectionRef S, xS;
4103   const char *name, *sym_name, *ivar_offset_p;
4104   uint64_t ivar_offset, n_value;
4105 
4106   r = get_pointer_64(p, offset, left, S, info);
4107   if (r == nullptr)
4108     return;
4109   memset(&il, '\0', sizeof(struct ivar_list64_t));
4110   if (left < sizeof(struct ivar_list64_t)) {
4111     memcpy(&il, r, left);
4112     outs() << "   (ivar_list_t entends past the end of the section)\n";
4113   } else
4114     memcpy(&il, r, sizeof(struct ivar_list64_t));
4115   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4116     swapStruct(il);
4117   outs() << "                    entsize " << il.entsize << "\n";
4118   outs() << "                      count " << il.count << "\n";
4119 
4120   p += sizeof(struct ivar_list64_t);
4121   offset += sizeof(struct ivar_list64_t);
4122   for (j = 0; j < il.count; j++) {
4123     r = get_pointer_64(p, offset, left, S, info);
4124     if (r == nullptr)
4125       return;
4126     memset(&i, '\0', sizeof(struct ivar64_t));
4127     if (left < sizeof(struct ivar64_t)) {
4128       memcpy(&i, r, left);
4129       outs() << "   (ivar_t entends past the end of the section)\n";
4130     } else
4131       memcpy(&i, r, sizeof(struct ivar64_t));
4132     if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4133       swapStruct(i);
4134 
4135     outs() << "\t\t\t   offset ";
4136     sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, offset), S,
4137                              info, n_value, i.offset);
4138     if (n_value != 0) {
4139       if (info->verbose && sym_name != nullptr)
4140         outs() << sym_name;
4141       else
4142         outs() << format("0x%" PRIx64, n_value);
4143       if (i.offset != 0)
4144         outs() << " + " << format("0x%" PRIx64, i.offset);
4145     } else
4146       outs() << format("0x%" PRIx64, i.offset);
4147     ivar_offset_p = get_pointer_64(i.offset + n_value, xoffset, left, xS, info);
4148     if (ivar_offset_p != nullptr && left >= sizeof(*ivar_offset_p)) {
4149       memcpy(&ivar_offset, ivar_offset_p, sizeof(ivar_offset));
4150       if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4151         sys::swapByteOrder(ivar_offset);
4152       outs() << " " << ivar_offset << "\n";
4153     } else
4154       outs() << "\n";
4155 
4156     outs() << "\t\t\t     name ";
4157     sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, name), S, info,
4158                              n_value, i.name);
4159     if (n_value != 0) {
4160       if (info->verbose && sym_name != nullptr)
4161         outs() << sym_name;
4162       else
4163         outs() << format("0x%" PRIx64, n_value);
4164       if (i.name != 0)
4165         outs() << " + " << format("0x%" PRIx64, i.name);
4166     } else
4167       outs() << format("0x%" PRIx64, i.name);
4168     name = get_pointer_64(i.name + n_value, xoffset, left, xS, info);
4169     if (name != nullptr)
4170       outs() << format(" %.*s", left, name);
4171     outs() << "\n";
4172 
4173     outs() << "\t\t\t     type ";
4174     sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, type), S, info,
4175                              n_value, i.name);
4176     name = get_pointer_64(i.type + n_value, xoffset, left, xS, info);
4177     if (n_value != 0) {
4178       if (info->verbose && sym_name != nullptr)
4179         outs() << sym_name;
4180       else
4181         outs() << format("0x%" PRIx64, n_value);
4182       if (i.type != 0)
4183         outs() << " + " << format("0x%" PRIx64, i.type);
4184     } else
4185       outs() << format("0x%" PRIx64, i.type);
4186     if (name != nullptr)
4187       outs() << format(" %.*s", left, name);
4188     outs() << "\n";
4189 
4190     outs() << "\t\t\talignment " << i.alignment << "\n";
4191     outs() << "\t\t\t     size " << i.size << "\n";
4192 
4193     p += sizeof(struct ivar64_t);
4194     offset += sizeof(struct ivar64_t);
4195   }
4196 }
4197 
4198 static void print_ivar_list32_t(uint32_t p, struct DisassembleInfo *info) {
4199   struct ivar_list32_t il;
4200   struct ivar32_t i;
4201   const char *r;
4202   uint32_t offset, xoffset, left, j;
4203   SectionRef S, xS;
4204   const char *name, *ivar_offset_p;
4205   uint32_t ivar_offset;
4206 
4207   r = get_pointer_32(p, offset, left, S, info);
4208   if (r == nullptr)
4209     return;
4210   memset(&il, '\0', sizeof(struct ivar_list32_t));
4211   if (left < sizeof(struct ivar_list32_t)) {
4212     memcpy(&il, r, left);
4213     outs() << "   (ivar_list_t entends past the end of the section)\n";
4214   } else
4215     memcpy(&il, r, sizeof(struct ivar_list32_t));
4216   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4217     swapStruct(il);
4218   outs() << "                    entsize " << il.entsize << "\n";
4219   outs() << "                      count " << il.count << "\n";
4220 
4221   p += sizeof(struct ivar_list32_t);
4222   offset += sizeof(struct ivar_list32_t);
4223   for (j = 0; j < il.count; j++) {
4224     r = get_pointer_32(p, offset, left, S, info);
4225     if (r == nullptr)
4226       return;
4227     memset(&i, '\0', sizeof(struct ivar32_t));
4228     if (left < sizeof(struct ivar32_t)) {
4229       memcpy(&i, r, left);
4230       outs() << "   (ivar_t entends past the end of the section)\n";
4231     } else
4232       memcpy(&i, r, sizeof(struct ivar32_t));
4233     if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4234       swapStruct(i);
4235 
4236     outs() << "\t\t\t   offset " << format("0x%" PRIx32, i.offset);
4237     ivar_offset_p = get_pointer_32(i.offset, xoffset, left, xS, info);
4238     if (ivar_offset_p != nullptr && left >= sizeof(*ivar_offset_p)) {
4239       memcpy(&ivar_offset, ivar_offset_p, sizeof(ivar_offset));
4240       if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4241         sys::swapByteOrder(ivar_offset);
4242       outs() << " " << ivar_offset << "\n";
4243     } else
4244       outs() << "\n";
4245 
4246     outs() << "\t\t\t     name " << format("0x%" PRIx32, i.name);
4247     name = get_pointer_32(i.name, xoffset, left, xS, info);
4248     if (name != nullptr)
4249       outs() << format(" %.*s", left, name);
4250     outs() << "\n";
4251 
4252     outs() << "\t\t\t     type " << format("0x%" PRIx32, i.type);
4253     name = get_pointer_32(i.type, xoffset, left, xS, info);
4254     if (name != nullptr)
4255       outs() << format(" %.*s", left, name);
4256     outs() << "\n";
4257 
4258     outs() << "\t\t\talignment " << i.alignment << "\n";
4259     outs() << "\t\t\t     size " << i.size << "\n";
4260 
4261     p += sizeof(struct ivar32_t);
4262     offset += sizeof(struct ivar32_t);
4263   }
4264 }
4265 
4266 static void print_objc_property_list64(uint64_t p,
4267                                        struct DisassembleInfo *info) {
4268   struct objc_property_list64 opl;
4269   struct objc_property64 op;
4270   const char *r;
4271   uint32_t offset, xoffset, left, j;
4272   SectionRef S, xS;
4273   const char *name, *sym_name;
4274   uint64_t n_value;
4275 
4276   r = get_pointer_64(p, offset, left, S, info);
4277   if (r == nullptr)
4278     return;
4279   memset(&opl, '\0', sizeof(struct objc_property_list64));
4280   if (left < sizeof(struct objc_property_list64)) {
4281     memcpy(&opl, r, left);
4282     outs() << "   (objc_property_list entends past the end of the section)\n";
4283   } else
4284     memcpy(&opl, r, sizeof(struct objc_property_list64));
4285   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4286     swapStruct(opl);
4287   outs() << "                    entsize " << opl.entsize << "\n";
4288   outs() << "                      count " << opl.count << "\n";
4289 
4290   p += sizeof(struct objc_property_list64);
4291   offset += sizeof(struct objc_property_list64);
4292   for (j = 0; j < opl.count; j++) {
4293     r = get_pointer_64(p, offset, left, S, info);
4294     if (r == nullptr)
4295       return;
4296     memset(&op, '\0', sizeof(struct objc_property64));
4297     if (left < sizeof(struct objc_property64)) {
4298       memcpy(&op, r, left);
4299       outs() << "   (objc_property entends past the end of the section)\n";
4300     } else
4301       memcpy(&op, r, sizeof(struct objc_property64));
4302     if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4303       swapStruct(op);
4304 
4305     outs() << "\t\t\t     name ";
4306     sym_name = get_symbol_64(offset + offsetof(struct objc_property64, name), S,
4307                              info, n_value, op.name);
4308     if (n_value != 0) {
4309       if (info->verbose && sym_name != nullptr)
4310         outs() << sym_name;
4311       else
4312         outs() << format("0x%" PRIx64, n_value);
4313       if (op.name != 0)
4314         outs() << " + " << format("0x%" PRIx64, op.name);
4315     } else
4316       outs() << format("0x%" PRIx64, op.name);
4317     name = get_pointer_64(op.name + n_value, xoffset, left, xS, info);
4318     if (name != nullptr)
4319       outs() << format(" %.*s", left, name);
4320     outs() << "\n";
4321 
4322     outs() << "\t\t\tattributes ";
4323     sym_name =
4324         get_symbol_64(offset + offsetof(struct objc_property64, attributes), S,
4325                       info, n_value, op.attributes);
4326     if (n_value != 0) {
4327       if (info->verbose && sym_name != nullptr)
4328         outs() << sym_name;
4329       else
4330         outs() << format("0x%" PRIx64, n_value);
4331       if (op.attributes != 0)
4332         outs() << " + " << format("0x%" PRIx64, op.attributes);
4333     } else
4334       outs() << format("0x%" PRIx64, op.attributes);
4335     name = get_pointer_64(op.attributes + n_value, xoffset, left, xS, info);
4336     if (name != nullptr)
4337       outs() << format(" %.*s", left, name);
4338     outs() << "\n";
4339 
4340     p += sizeof(struct objc_property64);
4341     offset += sizeof(struct objc_property64);
4342   }
4343 }
4344 
4345 static void print_objc_property_list32(uint32_t p,
4346                                        struct DisassembleInfo *info) {
4347   struct objc_property_list32 opl;
4348   struct objc_property32 op;
4349   const char *r;
4350   uint32_t offset, xoffset, left, j;
4351   SectionRef S, xS;
4352   const char *name;
4353 
4354   r = get_pointer_32(p, offset, left, S, info);
4355   if (r == nullptr)
4356     return;
4357   memset(&opl, '\0', sizeof(struct objc_property_list32));
4358   if (left < sizeof(struct objc_property_list32)) {
4359     memcpy(&opl, r, left);
4360     outs() << "   (objc_property_list entends past the end of the section)\n";
4361   } else
4362     memcpy(&opl, r, sizeof(struct objc_property_list32));
4363   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4364     swapStruct(opl);
4365   outs() << "                    entsize " << opl.entsize << "\n";
4366   outs() << "                      count " << opl.count << "\n";
4367 
4368   p += sizeof(struct objc_property_list32);
4369   offset += sizeof(struct objc_property_list32);
4370   for (j = 0; j < opl.count; j++) {
4371     r = get_pointer_32(p, offset, left, S, info);
4372     if (r == nullptr)
4373       return;
4374     memset(&op, '\0', sizeof(struct objc_property32));
4375     if (left < sizeof(struct objc_property32)) {
4376       memcpy(&op, r, left);
4377       outs() << "   (objc_property entends past the end of the section)\n";
4378     } else
4379       memcpy(&op, r, sizeof(struct objc_property32));
4380     if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4381       swapStruct(op);
4382 
4383     outs() << "\t\t\t     name " << format("0x%" PRIx32, op.name);
4384     name = get_pointer_32(op.name, xoffset, left, xS, info);
4385     if (name != nullptr)
4386       outs() << format(" %.*s", left, name);
4387     outs() << "\n";
4388 
4389     outs() << "\t\t\tattributes " << format("0x%" PRIx32, op.attributes);
4390     name = get_pointer_32(op.attributes, xoffset, left, xS, info);
4391     if (name != nullptr)
4392       outs() << format(" %.*s", left, name);
4393     outs() << "\n";
4394 
4395     p += sizeof(struct objc_property32);
4396     offset += sizeof(struct objc_property32);
4397   }
4398 }
4399 
4400 static bool print_class_ro64_t(uint64_t p, struct DisassembleInfo *info,
4401                                bool &is_meta_class) {
4402   struct class_ro64_t cro;
4403   const char *r;
4404   uint32_t offset, xoffset, left;
4405   SectionRef S, xS;
4406   const char *name, *sym_name;
4407   uint64_t n_value;
4408 
4409   r = get_pointer_64(p, offset, left, S, info);
4410   if (r == nullptr || left < sizeof(struct class_ro64_t))
4411     return false;
4412   memset(&cro, '\0', sizeof(struct class_ro64_t));
4413   if (left < sizeof(struct class_ro64_t)) {
4414     memcpy(&cro, r, left);
4415     outs() << "   (class_ro_t entends past the end of the section)\n";
4416   } else
4417     memcpy(&cro, r, sizeof(struct class_ro64_t));
4418   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4419     swapStruct(cro);
4420   outs() << "                    flags " << format("0x%" PRIx32, cro.flags);
4421   if (cro.flags & RO_META)
4422     outs() << " RO_META";
4423   if (cro.flags & RO_ROOT)
4424     outs() << " RO_ROOT";
4425   if (cro.flags & RO_HAS_CXX_STRUCTORS)
4426     outs() << " RO_HAS_CXX_STRUCTORS";
4427   outs() << "\n";
4428   outs() << "            instanceStart " << cro.instanceStart << "\n";
4429   outs() << "             instanceSize " << cro.instanceSize << "\n";
4430   outs() << "                 reserved " << format("0x%" PRIx32, cro.reserved)
4431          << "\n";
4432   outs() << "               ivarLayout " << format("0x%" PRIx64, cro.ivarLayout)
4433          << "\n";
4434   print_layout_map64(cro.ivarLayout, info);
4435 
4436   outs() << "                     name ";
4437   sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, name), S,
4438                            info, n_value, cro.name);
4439   if (n_value != 0) {
4440     if (info->verbose && sym_name != nullptr)
4441       outs() << sym_name;
4442     else
4443       outs() << format("0x%" PRIx64, n_value);
4444     if (cro.name != 0)
4445       outs() << " + " << format("0x%" PRIx64, cro.name);
4446   } else
4447     outs() << format("0x%" PRIx64, cro.name);
4448   name = get_pointer_64(cro.name + n_value, xoffset, left, xS, info);
4449   if (name != nullptr)
4450     outs() << format(" %.*s", left, name);
4451   outs() << "\n";
4452 
4453   outs() << "              baseMethods ";
4454   sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, baseMethods),
4455                            S, info, n_value, cro.baseMethods);
4456   if (n_value != 0) {
4457     if (info->verbose && sym_name != nullptr)
4458       outs() << sym_name;
4459     else
4460       outs() << format("0x%" PRIx64, n_value);
4461     if (cro.baseMethods != 0)
4462       outs() << " + " << format("0x%" PRIx64, cro.baseMethods);
4463   } else
4464     outs() << format("0x%" PRIx64, cro.baseMethods);
4465   outs() << " (struct method_list_t *)\n";
4466   if (cro.baseMethods + n_value != 0)
4467     print_method_list64_t(cro.baseMethods + n_value, info, "");
4468 
4469   outs() << "            baseProtocols ";
4470   sym_name =
4471       get_symbol_64(offset + offsetof(struct class_ro64_t, baseProtocols), S,
4472                     info, n_value, cro.baseProtocols);
4473   if (n_value != 0) {
4474     if (info->verbose && sym_name != nullptr)
4475       outs() << sym_name;
4476     else
4477       outs() << format("0x%" PRIx64, n_value);
4478     if (cro.baseProtocols != 0)
4479       outs() << " + " << format("0x%" PRIx64, cro.baseProtocols);
4480   } else
4481     outs() << format("0x%" PRIx64, cro.baseProtocols);
4482   outs() << "\n";
4483   if (cro.baseProtocols + n_value != 0)
4484     print_protocol_list64_t(cro.baseProtocols + n_value, info);
4485 
4486   outs() << "                    ivars ";
4487   sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, ivars), S,
4488                            info, n_value, cro.ivars);
4489   if (n_value != 0) {
4490     if (info->verbose && sym_name != nullptr)
4491       outs() << sym_name;
4492     else
4493       outs() << format("0x%" PRIx64, n_value);
4494     if (cro.ivars != 0)
4495       outs() << " + " << format("0x%" PRIx64, cro.ivars);
4496   } else
4497     outs() << format("0x%" PRIx64, cro.ivars);
4498   outs() << "\n";
4499   if (cro.ivars + n_value != 0)
4500     print_ivar_list64_t(cro.ivars + n_value, info);
4501 
4502   outs() << "           weakIvarLayout ";
4503   sym_name =
4504       get_symbol_64(offset + offsetof(struct class_ro64_t, weakIvarLayout), S,
4505                     info, n_value, cro.weakIvarLayout);
4506   if (n_value != 0) {
4507     if (info->verbose && sym_name != nullptr)
4508       outs() << sym_name;
4509     else
4510       outs() << format("0x%" PRIx64, n_value);
4511     if (cro.weakIvarLayout != 0)
4512       outs() << " + " << format("0x%" PRIx64, cro.weakIvarLayout);
4513   } else
4514     outs() << format("0x%" PRIx64, cro.weakIvarLayout);
4515   outs() << "\n";
4516   print_layout_map64(cro.weakIvarLayout + n_value, info);
4517 
4518   outs() << "           baseProperties ";
4519   sym_name =
4520       get_symbol_64(offset + offsetof(struct class_ro64_t, baseProperties), S,
4521                     info, n_value, cro.baseProperties);
4522   if (n_value != 0) {
4523     if (info->verbose && sym_name != nullptr)
4524       outs() << sym_name;
4525     else
4526       outs() << format("0x%" PRIx64, n_value);
4527     if (cro.baseProperties != 0)
4528       outs() << " + " << format("0x%" PRIx64, cro.baseProperties);
4529   } else
4530     outs() << format("0x%" PRIx64, cro.baseProperties);
4531   outs() << "\n";
4532   if (cro.baseProperties + n_value != 0)
4533     print_objc_property_list64(cro.baseProperties + n_value, info);
4534 
4535   is_meta_class = (cro.flags & RO_META) != 0;
4536   return true;
4537 }
4538 
4539 static bool print_class_ro32_t(uint32_t p, struct DisassembleInfo *info,
4540                                bool &is_meta_class) {
4541   struct class_ro32_t cro;
4542   const char *r;
4543   uint32_t offset, xoffset, left;
4544   SectionRef S, xS;
4545   const char *name;
4546 
4547   r = get_pointer_32(p, offset, left, S, info);
4548   if (r == nullptr)
4549     return false;
4550   memset(&cro, '\0', sizeof(struct class_ro32_t));
4551   if (left < sizeof(struct class_ro32_t)) {
4552     memcpy(&cro, r, left);
4553     outs() << "   (class_ro_t entends past the end of the section)\n";
4554   } else
4555     memcpy(&cro, r, sizeof(struct class_ro32_t));
4556   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4557     swapStruct(cro);
4558   outs() << "                    flags " << format("0x%" PRIx32, cro.flags);
4559   if (cro.flags & RO_META)
4560     outs() << " RO_META";
4561   if (cro.flags & RO_ROOT)
4562     outs() << " RO_ROOT";
4563   if (cro.flags & RO_HAS_CXX_STRUCTORS)
4564     outs() << " RO_HAS_CXX_STRUCTORS";
4565   outs() << "\n";
4566   outs() << "            instanceStart " << cro.instanceStart << "\n";
4567   outs() << "             instanceSize " << cro.instanceSize << "\n";
4568   outs() << "               ivarLayout " << format("0x%" PRIx32, cro.ivarLayout)
4569          << "\n";
4570   print_layout_map32(cro.ivarLayout, info);
4571 
4572   outs() << "                     name " << format("0x%" PRIx32, cro.name);
4573   name = get_pointer_32(cro.name, xoffset, left, xS, info);
4574   if (name != nullptr)
4575     outs() << format(" %.*s", left, name);
4576   outs() << "\n";
4577 
4578   outs() << "              baseMethods "
4579          << format("0x%" PRIx32, cro.baseMethods)
4580          << " (struct method_list_t *)\n";
4581   if (cro.baseMethods != 0)
4582     print_method_list32_t(cro.baseMethods, info, "");
4583 
4584   outs() << "            baseProtocols "
4585          << format("0x%" PRIx32, cro.baseProtocols) << "\n";
4586   if (cro.baseProtocols != 0)
4587     print_protocol_list32_t(cro.baseProtocols, info);
4588   outs() << "                    ivars " << format("0x%" PRIx32, cro.ivars)
4589          << "\n";
4590   if (cro.ivars != 0)
4591     print_ivar_list32_t(cro.ivars, info);
4592   outs() << "           weakIvarLayout "
4593          << format("0x%" PRIx32, cro.weakIvarLayout) << "\n";
4594   print_layout_map32(cro.weakIvarLayout, info);
4595   outs() << "           baseProperties "
4596          << format("0x%" PRIx32, cro.baseProperties) << "\n";
4597   if (cro.baseProperties != 0)
4598     print_objc_property_list32(cro.baseProperties, info);
4599   is_meta_class = (cro.flags & RO_META) != 0;
4600   return true;
4601 }
4602 
4603 static void print_class64_t(uint64_t p, struct DisassembleInfo *info) {
4604   struct class64_t c;
4605   const char *r;
4606   uint32_t offset, left;
4607   SectionRef S;
4608   const char *name;
4609   uint64_t isa_n_value, n_value;
4610 
4611   r = get_pointer_64(p, offset, left, S, info);
4612   if (r == nullptr || left < sizeof(struct class64_t))
4613     return;
4614   memset(&c, '\0', sizeof(struct class64_t));
4615   if (left < sizeof(struct class64_t)) {
4616     memcpy(&c, r, left);
4617     outs() << "   (class_t entends past the end of the section)\n";
4618   } else
4619     memcpy(&c, r, sizeof(struct class64_t));
4620   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4621     swapStruct(c);
4622 
4623   outs() << "           isa " << format("0x%" PRIx64, c.isa);
4624   name = get_symbol_64(offset + offsetof(struct class64_t, isa), S, info,
4625                        isa_n_value, c.isa);
4626   if (name != nullptr)
4627     outs() << " " << name;
4628   outs() << "\n";
4629 
4630   outs() << "    superclass " << format("0x%" PRIx64, c.superclass);
4631   name = get_symbol_64(offset + offsetof(struct class64_t, superclass), S, info,
4632                        n_value, c.superclass);
4633   if (name != nullptr)
4634     outs() << " " << name;
4635   outs() << "\n";
4636 
4637   outs() << "         cache " << format("0x%" PRIx64, c.cache);
4638   name = get_symbol_64(offset + offsetof(struct class64_t, cache), S, info,
4639                        n_value, c.cache);
4640   if (name != nullptr)
4641     outs() << " " << name;
4642   outs() << "\n";
4643 
4644   outs() << "        vtable " << format("0x%" PRIx64, c.vtable);
4645   name = get_symbol_64(offset + offsetof(struct class64_t, vtable), S, info,
4646                        n_value, c.vtable);
4647   if (name != nullptr)
4648     outs() << " " << name;
4649   outs() << "\n";
4650 
4651   name = get_symbol_64(offset + offsetof(struct class64_t, data), S, info,
4652                        n_value, c.data);
4653   outs() << "          data ";
4654   if (n_value != 0) {
4655     if (info->verbose && name != nullptr)
4656       outs() << name;
4657     else
4658       outs() << format("0x%" PRIx64, n_value);
4659     if (c.data != 0)
4660       outs() << " + " << format("0x%" PRIx64, c.data);
4661   } else
4662     outs() << format("0x%" PRIx64, c.data);
4663   outs() << " (struct class_ro_t *)";
4664 
4665   // This is a Swift class if some of the low bits of the pointer are set.
4666   if ((c.data + n_value) & 0x7)
4667     outs() << " Swift class";
4668   outs() << "\n";
4669   bool is_meta_class;
4670   if (!print_class_ro64_t((c.data + n_value) & ~0x7, info, is_meta_class))
4671     return;
4672 
4673   if (!is_meta_class &&
4674       c.isa + isa_n_value != p &&
4675       c.isa + isa_n_value != 0 &&
4676       info->depth < 100) {
4677       info->depth++;
4678       outs() << "Meta Class\n";
4679       print_class64_t(c.isa + isa_n_value, info);
4680   }
4681 }
4682 
4683 static void print_class32_t(uint32_t p, struct DisassembleInfo *info) {
4684   struct class32_t c;
4685   const char *r;
4686   uint32_t offset, left;
4687   SectionRef S;
4688   const char *name;
4689 
4690   r = get_pointer_32(p, offset, left, S, info);
4691   if (r == nullptr)
4692     return;
4693   memset(&c, '\0', sizeof(struct class32_t));
4694   if (left < sizeof(struct class32_t)) {
4695     memcpy(&c, r, left);
4696     outs() << "   (class_t entends past the end of the section)\n";
4697   } else
4698     memcpy(&c, r, sizeof(struct class32_t));
4699   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4700     swapStruct(c);
4701 
4702   outs() << "           isa " << format("0x%" PRIx32, c.isa);
4703   name =
4704       get_symbol_32(offset + offsetof(struct class32_t, isa), S, info, c.isa);
4705   if (name != nullptr)
4706     outs() << " " << name;
4707   outs() << "\n";
4708 
4709   outs() << "    superclass " << format("0x%" PRIx32, c.superclass);
4710   name = get_symbol_32(offset + offsetof(struct class32_t, superclass), S, info,
4711                        c.superclass);
4712   if (name != nullptr)
4713     outs() << " " << name;
4714   outs() << "\n";
4715 
4716   outs() << "         cache " << format("0x%" PRIx32, c.cache);
4717   name = get_symbol_32(offset + offsetof(struct class32_t, cache), S, info,
4718                        c.cache);
4719   if (name != nullptr)
4720     outs() << " " << name;
4721   outs() << "\n";
4722 
4723   outs() << "        vtable " << format("0x%" PRIx32, c.vtable);
4724   name = get_symbol_32(offset + offsetof(struct class32_t, vtable), S, info,
4725                        c.vtable);
4726   if (name != nullptr)
4727     outs() << " " << name;
4728   outs() << "\n";
4729 
4730   name =
4731       get_symbol_32(offset + offsetof(struct class32_t, data), S, info, c.data);
4732   outs() << "          data " << format("0x%" PRIx32, c.data)
4733          << " (struct class_ro_t *)";
4734 
4735   // This is a Swift class if some of the low bits of the pointer are set.
4736   if (c.data & 0x3)
4737     outs() << " Swift class";
4738   outs() << "\n";
4739   bool is_meta_class;
4740   if (!print_class_ro32_t(c.data & ~0x3, info, is_meta_class))
4741     return;
4742 
4743   if (!is_meta_class) {
4744     outs() << "Meta Class\n";
4745     print_class32_t(c.isa, info);
4746   }
4747 }
4748 
4749 static void print_objc_class_t(struct objc_class_t *objc_class,
4750                                struct DisassembleInfo *info) {
4751   uint32_t offset, left, xleft;
4752   const char *name, *p, *ivar_list;
4753   SectionRef S;
4754   int32_t i;
4755   struct objc_ivar_list_t objc_ivar_list;
4756   struct objc_ivar_t ivar;
4757 
4758   outs() << "\t\t      isa " << format("0x%08" PRIx32, objc_class->isa);
4759   if (info->verbose && CLS_GETINFO(objc_class, CLS_META)) {
4760     name = get_pointer_32(objc_class->isa, offset, left, S, info, true);
4761     if (name != nullptr)
4762       outs() << format(" %.*s", left, name);
4763     else
4764       outs() << " (not in an __OBJC section)";
4765   }
4766   outs() << "\n";
4767 
4768   outs() << "\t      super_class "
4769          << format("0x%08" PRIx32, objc_class->super_class);
4770   if (info->verbose) {
4771     name = get_pointer_32(objc_class->super_class, offset, left, S, info, true);
4772     if (name != nullptr)
4773       outs() << format(" %.*s", left, name);
4774     else
4775       outs() << " (not in an __OBJC section)";
4776   }
4777   outs() << "\n";
4778 
4779   outs() << "\t\t     name " << format("0x%08" PRIx32, objc_class->name);
4780   if (info->verbose) {
4781     name = get_pointer_32(objc_class->name, offset, left, S, info, true);
4782     if (name != nullptr)
4783       outs() << format(" %.*s", left, name);
4784     else
4785       outs() << " (not in an __OBJC section)";
4786   }
4787   outs() << "\n";
4788 
4789   outs() << "\t\t  version " << format("0x%08" PRIx32, objc_class->version)
4790          << "\n";
4791 
4792   outs() << "\t\t     info " << format("0x%08" PRIx32, objc_class->info);
4793   if (info->verbose) {
4794     if (CLS_GETINFO(objc_class, CLS_CLASS))
4795       outs() << " CLS_CLASS";
4796     else if (CLS_GETINFO(objc_class, CLS_META))
4797       outs() << " CLS_META";
4798   }
4799   outs() << "\n";
4800 
4801   outs() << "\t    instance_size "
4802          << format("0x%08" PRIx32, objc_class->instance_size) << "\n";
4803 
4804   p = get_pointer_32(objc_class->ivars, offset, left, S, info, true);
4805   outs() << "\t\t    ivars " << format("0x%08" PRIx32, objc_class->ivars);
4806   if (p != nullptr) {
4807     if (left > sizeof(struct objc_ivar_list_t)) {
4808       outs() << "\n";
4809       memcpy(&objc_ivar_list, p, sizeof(struct objc_ivar_list_t));
4810     } else {
4811       outs() << " (entends past the end of the section)\n";
4812       memset(&objc_ivar_list, '\0', sizeof(struct objc_ivar_list_t));
4813       memcpy(&objc_ivar_list, p, left);
4814     }
4815     if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4816       swapStruct(objc_ivar_list);
4817     outs() << "\t\t       ivar_count " << objc_ivar_list.ivar_count << "\n";
4818     ivar_list = p + sizeof(struct objc_ivar_list_t);
4819     for (i = 0; i < objc_ivar_list.ivar_count; i++) {
4820       if ((i + 1) * sizeof(struct objc_ivar_t) > left) {
4821         outs() << "\t\t remaining ivar's extend past the of the section\n";
4822         break;
4823       }
4824       memcpy(&ivar, ivar_list + i * sizeof(struct objc_ivar_t),
4825              sizeof(struct objc_ivar_t));
4826       if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4827         swapStruct(ivar);
4828 
4829       outs() << "\t\t\tivar_name " << format("0x%08" PRIx32, ivar.ivar_name);
4830       if (info->verbose) {
4831         name = get_pointer_32(ivar.ivar_name, offset, xleft, S, info, true);
4832         if (name != nullptr)
4833           outs() << format(" %.*s", xleft, name);
4834         else
4835           outs() << " (not in an __OBJC section)";
4836       }
4837       outs() << "\n";
4838 
4839       outs() << "\t\t\tivar_type " << format("0x%08" PRIx32, ivar.ivar_type);
4840       if (info->verbose) {
4841         name = get_pointer_32(ivar.ivar_type, offset, xleft, S, info, true);
4842         if (name != nullptr)
4843           outs() << format(" %.*s", xleft, name);
4844         else
4845           outs() << " (not in an __OBJC section)";
4846       }
4847       outs() << "\n";
4848 
4849       outs() << "\t\t      ivar_offset "
4850              << format("0x%08" PRIx32, ivar.ivar_offset) << "\n";
4851     }
4852   } else {
4853     outs() << " (not in an __OBJC section)\n";
4854   }
4855 
4856   outs() << "\t\t  methods " << format("0x%08" PRIx32, objc_class->methodLists);
4857   if (print_method_list(objc_class->methodLists, info))
4858     outs() << " (not in an __OBJC section)\n";
4859 
4860   outs() << "\t\t    cache " << format("0x%08" PRIx32, objc_class->cache)
4861          << "\n";
4862 
4863   outs() << "\t\tprotocols " << format("0x%08" PRIx32, objc_class->protocols);
4864   if (print_protocol_list(objc_class->protocols, 16, info))
4865     outs() << " (not in an __OBJC section)\n";
4866 }
4867 
4868 static void print_objc_objc_category_t(struct objc_category_t *objc_category,
4869                                        struct DisassembleInfo *info) {
4870   uint32_t offset, left;
4871   const char *name;
4872   SectionRef S;
4873 
4874   outs() << "\t       category name "
4875          << format("0x%08" PRIx32, objc_category->category_name);
4876   if (info->verbose) {
4877     name = get_pointer_32(objc_category->category_name, offset, left, S, info,
4878                           true);
4879     if (name != nullptr)
4880       outs() << format(" %.*s", left, name);
4881     else
4882       outs() << " (not in an __OBJC section)";
4883   }
4884   outs() << "\n";
4885 
4886   outs() << "\t\t  class name "
4887          << format("0x%08" PRIx32, objc_category->class_name);
4888   if (info->verbose) {
4889     name =
4890         get_pointer_32(objc_category->class_name, offset, left, S, info, true);
4891     if (name != nullptr)
4892       outs() << format(" %.*s", left, name);
4893     else
4894       outs() << " (not in an __OBJC section)";
4895   }
4896   outs() << "\n";
4897 
4898   outs() << "\t    instance methods "
4899          << format("0x%08" PRIx32, objc_category->instance_methods);
4900   if (print_method_list(objc_category->instance_methods, info))
4901     outs() << " (not in an __OBJC section)\n";
4902 
4903   outs() << "\t       class methods "
4904          << format("0x%08" PRIx32, objc_category->class_methods);
4905   if (print_method_list(objc_category->class_methods, info))
4906     outs() << " (not in an __OBJC section)\n";
4907 }
4908 
4909 static void print_category64_t(uint64_t p, struct DisassembleInfo *info) {
4910   struct category64_t c;
4911   const char *r;
4912   uint32_t offset, xoffset, left;
4913   SectionRef S, xS;
4914   const char *name, *sym_name;
4915   uint64_t n_value;
4916 
4917   r = get_pointer_64(p, offset, left, S, info);
4918   if (r == nullptr)
4919     return;
4920   memset(&c, '\0', sizeof(struct category64_t));
4921   if (left < sizeof(struct category64_t)) {
4922     memcpy(&c, r, left);
4923     outs() << "   (category_t entends past the end of the section)\n";
4924   } else
4925     memcpy(&c, r, sizeof(struct category64_t));
4926   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4927     swapStruct(c);
4928 
4929   outs() << "              name ";
4930   sym_name = get_symbol_64(offset + offsetof(struct category64_t, name), S,
4931                            info, n_value, c.name);
4932   if (n_value != 0) {
4933     if (info->verbose && sym_name != nullptr)
4934       outs() << sym_name;
4935     else
4936       outs() << format("0x%" PRIx64, n_value);
4937     if (c.name != 0)
4938       outs() << " + " << format("0x%" PRIx64, c.name);
4939   } else
4940     outs() << format("0x%" PRIx64, c.name);
4941   name = get_pointer_64(c.name + n_value, xoffset, left, xS, info);
4942   if (name != nullptr)
4943     outs() << format(" %.*s", left, name);
4944   outs() << "\n";
4945 
4946   outs() << "               cls ";
4947   sym_name = get_symbol_64(offset + offsetof(struct category64_t, cls), S, info,
4948                            n_value, c.cls);
4949   if (n_value != 0) {
4950     if (info->verbose && sym_name != nullptr)
4951       outs() << sym_name;
4952     else
4953       outs() << format("0x%" PRIx64, n_value);
4954     if (c.cls != 0)
4955       outs() << " + " << format("0x%" PRIx64, c.cls);
4956   } else
4957     outs() << format("0x%" PRIx64, c.cls);
4958   outs() << "\n";
4959   if (c.cls + n_value != 0)
4960     print_class64_t(c.cls + n_value, info);
4961 
4962   outs() << "   instanceMethods ";
4963   sym_name =
4964       get_symbol_64(offset + offsetof(struct category64_t, instanceMethods), S,
4965                     info, n_value, c.instanceMethods);
4966   if (n_value != 0) {
4967     if (info->verbose && sym_name != nullptr)
4968       outs() << sym_name;
4969     else
4970       outs() << format("0x%" PRIx64, n_value);
4971     if (c.instanceMethods != 0)
4972       outs() << " + " << format("0x%" PRIx64, c.instanceMethods);
4973   } else
4974     outs() << format("0x%" PRIx64, c.instanceMethods);
4975   outs() << "\n";
4976   if (c.instanceMethods + n_value != 0)
4977     print_method_list64_t(c.instanceMethods + n_value, info, "");
4978 
4979   outs() << "      classMethods ";
4980   sym_name = get_symbol_64(offset + offsetof(struct category64_t, classMethods),
4981                            S, info, n_value, c.classMethods);
4982   if (n_value != 0) {
4983     if (info->verbose && sym_name != nullptr)
4984       outs() << sym_name;
4985     else
4986       outs() << format("0x%" PRIx64, n_value);
4987     if (c.classMethods != 0)
4988       outs() << " + " << format("0x%" PRIx64, c.classMethods);
4989   } else
4990     outs() << format("0x%" PRIx64, c.classMethods);
4991   outs() << "\n";
4992   if (c.classMethods + n_value != 0)
4993     print_method_list64_t(c.classMethods + n_value, info, "");
4994 
4995   outs() << "         protocols ";
4996   sym_name = get_symbol_64(offset + offsetof(struct category64_t, protocols), S,
4997                            info, n_value, c.protocols);
4998   if (n_value != 0) {
4999     if (info->verbose && sym_name != nullptr)
5000       outs() << sym_name;
5001     else
5002       outs() << format("0x%" PRIx64, n_value);
5003     if (c.protocols != 0)
5004       outs() << " + " << format("0x%" PRIx64, c.protocols);
5005   } else
5006     outs() << format("0x%" PRIx64, c.protocols);
5007   outs() << "\n";
5008   if (c.protocols + n_value != 0)
5009     print_protocol_list64_t(c.protocols + n_value, info);
5010 
5011   outs() << "instanceProperties ";
5012   sym_name =
5013       get_symbol_64(offset + offsetof(struct category64_t, instanceProperties),
5014                     S, info, n_value, c.instanceProperties);
5015   if (n_value != 0) {
5016     if (info->verbose && sym_name != nullptr)
5017       outs() << sym_name;
5018     else
5019       outs() << format("0x%" PRIx64, n_value);
5020     if (c.instanceProperties != 0)
5021       outs() << " + " << format("0x%" PRIx64, c.instanceProperties);
5022   } else
5023     outs() << format("0x%" PRIx64, c.instanceProperties);
5024   outs() << "\n";
5025   if (c.instanceProperties + n_value != 0)
5026     print_objc_property_list64(c.instanceProperties + n_value, info);
5027 }
5028 
5029 static void print_category32_t(uint32_t p, struct DisassembleInfo *info) {
5030   struct category32_t c;
5031   const char *r;
5032   uint32_t offset, left;
5033   SectionRef S, xS;
5034   const char *name;
5035 
5036   r = get_pointer_32(p, offset, left, S, info);
5037   if (r == nullptr)
5038     return;
5039   memset(&c, '\0', sizeof(struct category32_t));
5040   if (left < sizeof(struct category32_t)) {
5041     memcpy(&c, r, left);
5042     outs() << "   (category_t entends past the end of the section)\n";
5043   } else
5044     memcpy(&c, r, sizeof(struct category32_t));
5045   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5046     swapStruct(c);
5047 
5048   outs() << "              name " << format("0x%" PRIx32, c.name);
5049   name = get_symbol_32(offset + offsetof(struct category32_t, name), S, info,
5050                        c.name);
5051   if (name)
5052     outs() << " " << name;
5053   outs() << "\n";
5054 
5055   outs() << "               cls " << format("0x%" PRIx32, c.cls) << "\n";
5056   if (c.cls != 0)
5057     print_class32_t(c.cls, info);
5058   outs() << "   instanceMethods " << format("0x%" PRIx32, c.instanceMethods)
5059          << "\n";
5060   if (c.instanceMethods != 0)
5061     print_method_list32_t(c.instanceMethods, info, "");
5062   outs() << "      classMethods " << format("0x%" PRIx32, c.classMethods)
5063          << "\n";
5064   if (c.classMethods != 0)
5065     print_method_list32_t(c.classMethods, info, "");
5066   outs() << "         protocols " << format("0x%" PRIx32, c.protocols) << "\n";
5067   if (c.protocols != 0)
5068     print_protocol_list32_t(c.protocols, info);
5069   outs() << "instanceProperties " << format("0x%" PRIx32, c.instanceProperties)
5070          << "\n";
5071   if (c.instanceProperties != 0)
5072     print_objc_property_list32(c.instanceProperties, info);
5073 }
5074 
5075 static void print_message_refs64(SectionRef S, struct DisassembleInfo *info) {
5076   uint32_t i, left, offset, xoffset;
5077   uint64_t p, n_value;
5078   struct message_ref64 mr;
5079   const char *name, *sym_name;
5080   const char *r;
5081   SectionRef xS;
5082 
5083   if (S == SectionRef())
5084     return;
5085 
5086   StringRef SectName;
5087   S.getName(SectName);
5088   DataRefImpl Ref = S.getRawDataRefImpl();
5089   StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5090   outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5091   offset = 0;
5092   for (i = 0; i < S.getSize(); i += sizeof(struct message_ref64)) {
5093     p = S.getAddress() + i;
5094     r = get_pointer_64(p, offset, left, S, info);
5095     if (r == nullptr)
5096       return;
5097     memset(&mr, '\0', sizeof(struct message_ref64));
5098     if (left < sizeof(struct message_ref64)) {
5099       memcpy(&mr, r, left);
5100       outs() << "   (message_ref entends past the end of the section)\n";
5101     } else
5102       memcpy(&mr, r, sizeof(struct message_ref64));
5103     if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5104       swapStruct(mr);
5105 
5106     outs() << "  imp ";
5107     name = get_symbol_64(offset + offsetof(struct message_ref64, imp), S, info,
5108                          n_value, mr.imp);
5109     if (n_value != 0) {
5110       outs() << format("0x%" PRIx64, n_value) << " ";
5111       if (mr.imp != 0)
5112         outs() << "+ " << format("0x%" PRIx64, mr.imp) << " ";
5113     } else
5114       outs() << format("0x%" PRIx64, mr.imp) << " ";
5115     if (name != nullptr)
5116       outs() << " " << name;
5117     outs() << "\n";
5118 
5119     outs() << "  sel ";
5120     sym_name = get_symbol_64(offset + offsetof(struct message_ref64, sel), S,
5121                              info, n_value, mr.sel);
5122     if (n_value != 0) {
5123       if (info->verbose && sym_name != nullptr)
5124         outs() << sym_name;
5125       else
5126         outs() << format("0x%" PRIx64, n_value);
5127       if (mr.sel != 0)
5128         outs() << " + " << format("0x%" PRIx64, mr.sel);
5129     } else
5130       outs() << format("0x%" PRIx64, mr.sel);
5131     name = get_pointer_64(mr.sel + n_value, xoffset, left, xS, info);
5132     if (name != nullptr)
5133       outs() << format(" %.*s", left, name);
5134     outs() << "\n";
5135 
5136     offset += sizeof(struct message_ref64);
5137   }
5138 }
5139 
5140 static void print_message_refs32(SectionRef S, struct DisassembleInfo *info) {
5141   uint32_t i, left, offset, xoffset, p;
5142   struct message_ref32 mr;
5143   const char *name, *r;
5144   SectionRef xS;
5145 
5146   if (S == SectionRef())
5147     return;
5148 
5149   StringRef SectName;
5150   S.getName(SectName);
5151   DataRefImpl Ref = S.getRawDataRefImpl();
5152   StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5153   outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5154   offset = 0;
5155   for (i = 0; i < S.getSize(); i += sizeof(struct message_ref64)) {
5156     p = S.getAddress() + i;
5157     r = get_pointer_32(p, offset, left, S, info);
5158     if (r == nullptr)
5159       return;
5160     memset(&mr, '\0', sizeof(struct message_ref32));
5161     if (left < sizeof(struct message_ref32)) {
5162       memcpy(&mr, r, left);
5163       outs() << "   (message_ref entends past the end of the section)\n";
5164     } else
5165       memcpy(&mr, r, sizeof(struct message_ref32));
5166     if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5167       swapStruct(mr);
5168 
5169     outs() << "  imp " << format("0x%" PRIx32, mr.imp);
5170     name = get_symbol_32(offset + offsetof(struct message_ref32, imp), S, info,
5171                          mr.imp);
5172     if (name != nullptr)
5173       outs() << " " << name;
5174     outs() << "\n";
5175 
5176     outs() << "  sel " << format("0x%" PRIx32, mr.sel);
5177     name = get_pointer_32(mr.sel, xoffset, left, xS, info);
5178     if (name != nullptr)
5179       outs() << " " << name;
5180     outs() << "\n";
5181 
5182     offset += sizeof(struct message_ref32);
5183   }
5184 }
5185 
5186 static void print_image_info64(SectionRef S, struct DisassembleInfo *info) {
5187   uint32_t left, offset, swift_version;
5188   uint64_t p;
5189   struct objc_image_info64 o;
5190   const char *r;
5191 
5192   if (S == SectionRef())
5193     return;
5194 
5195   StringRef SectName;
5196   S.getName(SectName);
5197   DataRefImpl Ref = S.getRawDataRefImpl();
5198   StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5199   outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5200   p = S.getAddress();
5201   r = get_pointer_64(p, offset, left, S, info);
5202   if (r == nullptr)
5203     return;
5204   memset(&o, '\0', sizeof(struct objc_image_info64));
5205   if (left < sizeof(struct objc_image_info64)) {
5206     memcpy(&o, r, left);
5207     outs() << "   (objc_image_info entends past the end of the section)\n";
5208   } else
5209     memcpy(&o, r, sizeof(struct objc_image_info64));
5210   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5211     swapStruct(o);
5212   outs() << "  version " << o.version << "\n";
5213   outs() << "    flags " << format("0x%" PRIx32, o.flags);
5214   if (o.flags & OBJC_IMAGE_IS_REPLACEMENT)
5215     outs() << " OBJC_IMAGE_IS_REPLACEMENT";
5216   if (o.flags & OBJC_IMAGE_SUPPORTS_GC)
5217     outs() << " OBJC_IMAGE_SUPPORTS_GC";
5218   swift_version = (o.flags >> 8) & 0xff;
5219   if (swift_version != 0) {
5220     if (swift_version == 1)
5221       outs() << " Swift 1.0";
5222     else if (swift_version == 2)
5223       outs() << " Swift 1.1";
5224     else
5225       outs() << " unknown future Swift version (" << swift_version << ")";
5226   }
5227   outs() << "\n";
5228 }
5229 
5230 static void print_image_info32(SectionRef S, struct DisassembleInfo *info) {
5231   uint32_t left, offset, swift_version, p;
5232   struct objc_image_info32 o;
5233   const char *r;
5234 
5235   if (S == SectionRef())
5236     return;
5237 
5238   StringRef SectName;
5239   S.getName(SectName);
5240   DataRefImpl Ref = S.getRawDataRefImpl();
5241   StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5242   outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5243   p = S.getAddress();
5244   r = get_pointer_32(p, offset, left, S, info);
5245   if (r == nullptr)
5246     return;
5247   memset(&o, '\0', sizeof(struct objc_image_info32));
5248   if (left < sizeof(struct objc_image_info32)) {
5249     memcpy(&o, r, left);
5250     outs() << "   (objc_image_info entends past the end of the section)\n";
5251   } else
5252     memcpy(&o, r, sizeof(struct objc_image_info32));
5253   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5254     swapStruct(o);
5255   outs() << "  version " << o.version << "\n";
5256   outs() << "    flags " << format("0x%" PRIx32, o.flags);
5257   if (o.flags & OBJC_IMAGE_IS_REPLACEMENT)
5258     outs() << " OBJC_IMAGE_IS_REPLACEMENT";
5259   if (o.flags & OBJC_IMAGE_SUPPORTS_GC)
5260     outs() << " OBJC_IMAGE_SUPPORTS_GC";
5261   swift_version = (o.flags >> 8) & 0xff;
5262   if (swift_version != 0) {
5263     if (swift_version == 1)
5264       outs() << " Swift 1.0";
5265     else if (swift_version == 2)
5266       outs() << " Swift 1.1";
5267     else
5268       outs() << " unknown future Swift version (" << swift_version << ")";
5269   }
5270   outs() << "\n";
5271 }
5272 
5273 static void print_image_info(SectionRef S, struct DisassembleInfo *info) {
5274   uint32_t left, offset, p;
5275   struct imageInfo_t o;
5276   const char *r;
5277 
5278   StringRef SectName;
5279   S.getName(SectName);
5280   DataRefImpl Ref = S.getRawDataRefImpl();
5281   StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5282   outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5283   p = S.getAddress();
5284   r = get_pointer_32(p, offset, left, S, info);
5285   if (r == nullptr)
5286     return;
5287   memset(&o, '\0', sizeof(struct imageInfo_t));
5288   if (left < sizeof(struct imageInfo_t)) {
5289     memcpy(&o, r, left);
5290     outs() << " (imageInfo entends past the end of the section)\n";
5291   } else
5292     memcpy(&o, r, sizeof(struct imageInfo_t));
5293   if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5294     swapStruct(o);
5295   outs() << "  version " << o.version << "\n";
5296   outs() << "    flags " << format("0x%" PRIx32, o.flags);
5297   if (o.flags & 0x1)
5298     outs() << "  F&C";
5299   if (o.flags & 0x2)
5300     outs() << " GC";
5301   if (o.flags & 0x4)
5302     outs() << " GC-only";
5303   else
5304     outs() << " RR";
5305   outs() << "\n";
5306 }
5307 
5308 static void printObjc2_64bit_MetaData(MachOObjectFile *O, bool verbose) {
5309   SymbolAddressMap AddrMap;
5310   if (verbose)
5311     CreateSymbolAddressMap(O, &AddrMap);
5312 
5313   std::vector<SectionRef> Sections;
5314   for (const SectionRef &Section : O->sections()) {
5315     StringRef SectName;
5316     Section.getName(SectName);
5317     Sections.push_back(Section);
5318   }
5319 
5320   struct DisassembleInfo info;
5321   // Set up the block of info used by the Symbolizer call backs.
5322   info.verbose = verbose;
5323   info.O = O;
5324   info.AddrMap = &AddrMap;
5325   info.Sections = &Sections;
5326   info.class_name = nullptr;
5327   info.selector_name = nullptr;
5328   info.method = nullptr;
5329   info.demangled_name = nullptr;
5330   info.bindtable = nullptr;
5331   info.adrp_addr = 0;
5332   info.adrp_inst = 0;
5333 
5334   info.depth = 0;
5335   SectionRef CL = get_section(O, "__OBJC2", "__class_list");
5336   if (CL == SectionRef())
5337     CL = get_section(O, "__DATA", "__objc_classlist");
5338   info.S = CL;
5339   walk_pointer_list_64("class", CL, O, &info, print_class64_t);
5340 
5341   SectionRef CR = get_section(O, "__OBJC2", "__class_refs");
5342   if (CR == SectionRef())
5343     CR = get_section(O, "__DATA", "__objc_classrefs");
5344   info.S = CR;
5345   walk_pointer_list_64("class refs", CR, O, &info, nullptr);
5346 
5347   SectionRef SR = get_section(O, "__OBJC2", "__super_refs");
5348   if (SR == SectionRef())
5349     SR = get_section(O, "__DATA", "__objc_superrefs");
5350   info.S = SR;
5351   walk_pointer_list_64("super refs", SR, O, &info, nullptr);
5352 
5353   SectionRef CA = get_section(O, "__OBJC2", "__category_list");
5354   if (CA == SectionRef())
5355     CA = get_section(O, "__DATA", "__objc_catlist");
5356   info.S = CA;
5357   walk_pointer_list_64("category", CA, O, &info, print_category64_t);
5358 
5359   SectionRef PL = get_section(O, "__OBJC2", "__protocol_list");
5360   if (PL == SectionRef())
5361     PL = get_section(O, "__DATA", "__objc_protolist");
5362   info.S = PL;
5363   walk_pointer_list_64("protocol", PL, O, &info, nullptr);
5364 
5365   SectionRef MR = get_section(O, "__OBJC2", "__message_refs");
5366   if (MR == SectionRef())
5367     MR = get_section(O, "__DATA", "__objc_msgrefs");
5368   info.S = MR;
5369   print_message_refs64(MR, &info);
5370 
5371   SectionRef II = get_section(O, "__OBJC2", "__image_info");
5372   if (II == SectionRef())
5373     II = get_section(O, "__DATA", "__objc_imageinfo");
5374   info.S = II;
5375   print_image_info64(II, &info);
5376 
5377   if (info.bindtable != nullptr)
5378     delete info.bindtable;
5379 }
5380 
5381 static void printObjc2_32bit_MetaData(MachOObjectFile *O, bool verbose) {
5382   SymbolAddressMap AddrMap;
5383   if (verbose)
5384     CreateSymbolAddressMap(O, &AddrMap);
5385 
5386   std::vector<SectionRef> Sections;
5387   for (const SectionRef &Section : O->sections()) {
5388     StringRef SectName;
5389     Section.getName(SectName);
5390     Sections.push_back(Section);
5391   }
5392 
5393   struct DisassembleInfo info;
5394   // Set up the block of info used by the Symbolizer call backs.
5395   info.verbose = verbose;
5396   info.O = O;
5397   info.AddrMap = &AddrMap;
5398   info.Sections = &Sections;
5399   info.class_name = nullptr;
5400   info.selector_name = nullptr;
5401   info.method = nullptr;
5402   info.demangled_name = nullptr;
5403   info.bindtable = nullptr;
5404   info.adrp_addr = 0;
5405   info.adrp_inst = 0;
5406 
5407   const SectionRef CL = get_section(O, "__OBJC2", "__class_list");
5408   if (CL != SectionRef()) {
5409     info.S = CL;
5410     walk_pointer_list_32("class", CL, O, &info, print_class32_t);
5411   } else {
5412     const SectionRef CL = get_section(O, "__DATA", "__objc_classlist");
5413     info.S = CL;
5414     walk_pointer_list_32("class", CL, O, &info, print_class32_t);
5415   }
5416 
5417   const SectionRef CR = get_section(O, "__OBJC2", "__class_refs");
5418   if (CR != SectionRef()) {
5419     info.S = CR;
5420     walk_pointer_list_32("class refs", CR, O, &info, nullptr);
5421   } else {
5422     const SectionRef CR = get_section(O, "__DATA", "__objc_classrefs");
5423     info.S = CR;
5424     walk_pointer_list_32("class refs", CR, O, &info, nullptr);
5425   }
5426 
5427   const SectionRef SR = get_section(O, "__OBJC2", "__super_refs");
5428   if (SR != SectionRef()) {
5429     info.S = SR;
5430     walk_pointer_list_32("super refs", SR, O, &info, nullptr);
5431   } else {
5432     const SectionRef SR = get_section(O, "__DATA", "__objc_superrefs");
5433     info.S = SR;
5434     walk_pointer_list_32("super refs", SR, O, &info, nullptr);
5435   }
5436 
5437   const SectionRef CA = get_section(O, "__OBJC2", "__category_list");
5438   if (CA != SectionRef()) {
5439     info.S = CA;
5440     walk_pointer_list_32("category", CA, O, &info, print_category32_t);
5441   } else {
5442     const SectionRef CA = get_section(O, "__DATA", "__objc_catlist");
5443     info.S = CA;
5444     walk_pointer_list_32("category", CA, O, &info, print_category32_t);
5445   }
5446 
5447   const SectionRef PL = get_section(O, "__OBJC2", "__protocol_list");
5448   if (PL != SectionRef()) {
5449     info.S = PL;
5450     walk_pointer_list_32("protocol", PL, O, &info, nullptr);
5451   } else {
5452     const SectionRef PL = get_section(O, "__DATA", "__objc_protolist");
5453     info.S = PL;
5454     walk_pointer_list_32("protocol", PL, O, &info, nullptr);
5455   }
5456 
5457   const SectionRef MR = get_section(O, "__OBJC2", "__message_refs");
5458   if (MR != SectionRef()) {
5459     info.S = MR;
5460     print_message_refs32(MR, &info);
5461   } else {
5462     const SectionRef MR = get_section(O, "__DATA", "__objc_msgrefs");
5463     info.S = MR;
5464     print_message_refs32(MR, &info);
5465   }
5466 
5467   const SectionRef II = get_section(O, "__OBJC2", "__image_info");
5468   if (II != SectionRef()) {
5469     info.S = II;
5470     print_image_info32(II, &info);
5471   } else {
5472     const SectionRef II = get_section(O, "__DATA", "__objc_imageinfo");
5473     info.S = II;
5474     print_image_info32(II, &info);
5475   }
5476 }
5477 
5478 static bool printObjc1_32bit_MetaData(MachOObjectFile *O, bool verbose) {
5479   uint32_t i, j, p, offset, xoffset, left, defs_left, def;
5480   const char *r, *name, *defs;
5481   struct objc_module_t module;
5482   SectionRef S, xS;
5483   struct objc_symtab_t symtab;
5484   struct objc_class_t objc_class;
5485   struct objc_category_t objc_category;
5486 
5487   outs() << "Objective-C segment\n";
5488   S = get_section(O, "__OBJC", "__module_info");
5489   if (S == SectionRef())
5490     return false;
5491 
5492   SymbolAddressMap AddrMap;
5493   if (verbose)
5494     CreateSymbolAddressMap(O, &AddrMap);
5495 
5496   std::vector<SectionRef> Sections;
5497   for (const SectionRef &Section : O->sections()) {
5498     StringRef SectName;
5499     Section.getName(SectName);
5500     Sections.push_back(Section);
5501   }
5502 
5503   struct DisassembleInfo info;
5504   // Set up the block of info used by the Symbolizer call backs.
5505   info.verbose = verbose;
5506   info.O = O;
5507   info.AddrMap = &AddrMap;
5508   info.Sections = &Sections;
5509   info.class_name = nullptr;
5510   info.selector_name = nullptr;
5511   info.method = nullptr;
5512   info.demangled_name = nullptr;
5513   info.bindtable = nullptr;
5514   info.adrp_addr = 0;
5515   info.adrp_inst = 0;
5516 
5517   for (i = 0; i < S.getSize(); i += sizeof(struct objc_module_t)) {
5518     p = S.getAddress() + i;
5519     r = get_pointer_32(p, offset, left, S, &info, true);
5520     if (r == nullptr)
5521       return true;
5522     memset(&module, '\0', sizeof(struct objc_module_t));
5523     if (left < sizeof(struct objc_module_t)) {
5524       memcpy(&module, r, left);
5525       outs() << "   (module extends past end of __module_info section)\n";
5526     } else
5527       memcpy(&module, r, sizeof(struct objc_module_t));
5528     if (O->isLittleEndian() != sys::IsLittleEndianHost)
5529       swapStruct(module);
5530 
5531     outs() << "Module " << format("0x%" PRIx32, p) << "\n";
5532     outs() << "    version " << module.version << "\n";
5533     outs() << "       size " << module.size << "\n";
5534     outs() << "       name ";
5535     name = get_pointer_32(module.name, xoffset, left, xS, &info, true);
5536     if (name != nullptr)
5537       outs() << format("%.*s", left, name);
5538     else
5539       outs() << format("0x%08" PRIx32, module.name)
5540              << "(not in an __OBJC section)";
5541     outs() << "\n";
5542 
5543     r = get_pointer_32(module.symtab, xoffset, left, xS, &info, true);
5544     if (module.symtab == 0 || r == nullptr) {
5545       outs() << "     symtab " << format("0x%08" PRIx32, module.symtab)
5546              << " (not in an __OBJC section)\n";
5547       continue;
5548     }
5549     outs() << "     symtab " << format("0x%08" PRIx32, module.symtab) << "\n";
5550     memset(&symtab, '\0', sizeof(struct objc_symtab_t));
5551     defs_left = 0;
5552     defs = nullptr;
5553     if (left < sizeof(struct objc_symtab_t)) {
5554       memcpy(&symtab, r, left);
5555       outs() << "\tsymtab extends past end of an __OBJC section)\n";
5556     } else {
5557       memcpy(&symtab, r, sizeof(struct objc_symtab_t));
5558       if (left > sizeof(struct objc_symtab_t)) {
5559         defs_left = left - sizeof(struct objc_symtab_t);
5560         defs = r + sizeof(struct objc_symtab_t);
5561       }
5562     }
5563     if (O->isLittleEndian() != sys::IsLittleEndianHost)
5564       swapStruct(symtab);
5565 
5566     outs() << "\tsel_ref_cnt " << symtab.sel_ref_cnt << "\n";
5567     r = get_pointer_32(symtab.refs, xoffset, left, xS, &info, true);
5568     outs() << "\trefs " << format("0x%08" PRIx32, symtab.refs);
5569     if (r == nullptr)
5570       outs() << " (not in an __OBJC section)";
5571     outs() << "\n";
5572     outs() << "\tcls_def_cnt " << symtab.cls_def_cnt << "\n";
5573     outs() << "\tcat_def_cnt " << symtab.cat_def_cnt << "\n";
5574     if (symtab.cls_def_cnt > 0)
5575       outs() << "\tClass Definitions\n";
5576     for (j = 0; j < symtab.cls_def_cnt; j++) {
5577       if ((j + 1) * sizeof(uint32_t) > defs_left) {
5578         outs() << "\t(remaining class defs entries entends past the end of the "
5579                << "section)\n";
5580         break;
5581       }
5582       memcpy(&def, defs + j * sizeof(uint32_t), sizeof(uint32_t));
5583       if (O->isLittleEndian() != sys::IsLittleEndianHost)
5584         sys::swapByteOrder(def);
5585 
5586       r = get_pointer_32(def, xoffset, left, xS, &info, true);
5587       outs() << "\tdefs[" << j << "] " << format("0x%08" PRIx32, def);
5588       if (r != nullptr) {
5589         if (left > sizeof(struct objc_class_t)) {
5590           outs() << "\n";
5591           memcpy(&objc_class, r, sizeof(struct objc_class_t));
5592         } else {
5593           outs() << " (entends past the end of the section)\n";
5594           memset(&objc_class, '\0', sizeof(struct objc_class_t));
5595           memcpy(&objc_class, r, left);
5596         }
5597         if (O->isLittleEndian() != sys::IsLittleEndianHost)
5598           swapStruct(objc_class);
5599         print_objc_class_t(&objc_class, &info);
5600       } else {
5601         outs() << "(not in an __OBJC section)\n";
5602       }
5603 
5604       if (CLS_GETINFO(&objc_class, CLS_CLASS)) {
5605         outs() << "\tMeta Class";
5606         r = get_pointer_32(objc_class.isa, xoffset, left, xS, &info, true);
5607         if (r != nullptr) {
5608           if (left > sizeof(struct objc_class_t)) {
5609             outs() << "\n";
5610             memcpy(&objc_class, r, sizeof(struct objc_class_t));
5611           } else {
5612             outs() << " (entends past the end of the section)\n";
5613             memset(&objc_class, '\0', sizeof(struct objc_class_t));
5614             memcpy(&objc_class, r, left);
5615           }
5616           if (O->isLittleEndian() != sys::IsLittleEndianHost)
5617             swapStruct(objc_class);
5618           print_objc_class_t(&objc_class, &info);
5619         } else {
5620           outs() << "(not in an __OBJC section)\n";
5621         }
5622       }
5623     }
5624     if (symtab.cat_def_cnt > 0)
5625       outs() << "\tCategory Definitions\n";
5626     for (j = 0; j < symtab.cat_def_cnt; j++) {
5627       if ((j + symtab.cls_def_cnt + 1) * sizeof(uint32_t) > defs_left) {
5628         outs() << "\t(remaining category defs entries entends past the end of "
5629                << "the section)\n";
5630         break;
5631       }
5632       memcpy(&def, defs + (j + symtab.cls_def_cnt) * sizeof(uint32_t),
5633              sizeof(uint32_t));
5634       if (O->isLittleEndian() != sys::IsLittleEndianHost)
5635         sys::swapByteOrder(def);
5636 
5637       r = get_pointer_32(def, xoffset, left, xS, &info, true);
5638       outs() << "\tdefs[" << j + symtab.cls_def_cnt << "] "
5639              << format("0x%08" PRIx32, def);
5640       if (r != nullptr) {
5641         if (left > sizeof(struct objc_category_t)) {
5642           outs() << "\n";
5643           memcpy(&objc_category, r, sizeof(struct objc_category_t));
5644         } else {
5645           outs() << " (entends past the end of the section)\n";
5646           memset(&objc_category, '\0', sizeof(struct objc_category_t));
5647           memcpy(&objc_category, r, left);
5648         }
5649         if (O->isLittleEndian() != sys::IsLittleEndianHost)
5650           swapStruct(objc_category);
5651         print_objc_objc_category_t(&objc_category, &info);
5652       } else {
5653         outs() << "(not in an __OBJC section)\n";
5654       }
5655     }
5656   }
5657   const SectionRef II = get_section(O, "__OBJC", "__image_info");
5658   if (II != SectionRef())
5659     print_image_info(II, &info);
5660 
5661   return true;
5662 }
5663 
5664 static void DumpProtocolSection(MachOObjectFile *O, const char *sect,
5665                                 uint32_t size, uint32_t addr) {
5666   SymbolAddressMap AddrMap;
5667   CreateSymbolAddressMap(O, &AddrMap);
5668 
5669   std::vector<SectionRef> Sections;
5670   for (const SectionRef &Section : O->sections()) {
5671     StringRef SectName;
5672     Section.getName(SectName);
5673     Sections.push_back(Section);
5674   }
5675 
5676   struct DisassembleInfo info;
5677   // Set up the block of info used by the Symbolizer call backs.
5678   info.verbose = true;
5679   info.O = O;
5680   info.AddrMap = &AddrMap;
5681   info.Sections = &Sections;
5682   info.class_name = nullptr;
5683   info.selector_name = nullptr;
5684   info.method = nullptr;
5685   info.demangled_name = nullptr;
5686   info.bindtable = nullptr;
5687   info.adrp_addr = 0;
5688   info.adrp_inst = 0;
5689 
5690   const char *p;
5691   struct objc_protocol_t protocol;
5692   uint32_t left, paddr;
5693   for (p = sect; p < sect + size; p += sizeof(struct objc_protocol_t)) {
5694     memset(&protocol, '\0', sizeof(struct objc_protocol_t));
5695     left = size - (p - sect);
5696     if (left < sizeof(struct objc_protocol_t)) {
5697       outs() << "Protocol extends past end of __protocol section\n";
5698       memcpy(&protocol, p, left);
5699     } else
5700       memcpy(&protocol, p, sizeof(struct objc_protocol_t));
5701     if (O->isLittleEndian() != sys::IsLittleEndianHost)
5702       swapStruct(protocol);
5703     paddr = addr + (p - sect);
5704     outs() << "Protocol " << format("0x%" PRIx32, paddr);
5705     if (print_protocol(paddr, 0, &info))
5706       outs() << "(not in an __OBJC section)\n";
5707   }
5708 }
5709 
5710 #ifdef HAVE_LIBXAR
5711 inline void swapStruct(struct xar_header &xar) {
5712   sys::swapByteOrder(xar.magic);
5713   sys::swapByteOrder(xar.size);
5714   sys::swapByteOrder(xar.version);
5715   sys::swapByteOrder(xar.toc_length_compressed);
5716   sys::swapByteOrder(xar.toc_length_uncompressed);
5717   sys::swapByteOrder(xar.cksum_alg);
5718 }
5719 
5720 static void PrintModeVerbose(uint32_t mode) {
5721   switch(mode & S_IFMT){
5722   case S_IFDIR:
5723     outs() << "d";
5724     break;
5725   case S_IFCHR:
5726     outs() << "c";
5727     break;
5728   case S_IFBLK:
5729     outs() << "b";
5730     break;
5731   case S_IFREG:
5732     outs() << "-";
5733     break;
5734   case S_IFLNK:
5735     outs() << "l";
5736     break;
5737   case S_IFSOCK:
5738     outs() << "s";
5739     break;
5740   default:
5741     outs() << "?";
5742     break;
5743   }
5744 
5745   /* owner permissions */
5746   if(mode & S_IREAD)
5747     outs() << "r";
5748   else
5749     outs() << "-";
5750   if(mode & S_IWRITE)
5751     outs() << "w";
5752   else
5753     outs() << "-";
5754   if(mode & S_ISUID)
5755     outs() << "s";
5756   else if(mode & S_IEXEC)
5757     outs() << "x";
5758   else
5759     outs() << "-";
5760 
5761   /* group permissions */
5762   if(mode & (S_IREAD >> 3))
5763     outs() << "r";
5764   else
5765     outs() << "-";
5766   if(mode & (S_IWRITE >> 3))
5767     outs() << "w";
5768   else
5769     outs() << "-";
5770   if(mode & S_ISGID)
5771     outs() << "s";
5772   else if(mode & (S_IEXEC >> 3))
5773     outs() << "x";
5774   else
5775     outs() << "-";
5776 
5777   /* other permissions */
5778   if(mode & (S_IREAD >> 6))
5779     outs() << "r";
5780   else
5781     outs() << "-";
5782   if(mode & (S_IWRITE >> 6))
5783     outs() << "w";
5784   else
5785     outs() << "-";
5786   if(mode & S_ISVTX)
5787     outs() << "t";
5788   else if(mode & (S_IEXEC >> 6))
5789     outs() << "x";
5790   else
5791     outs() << "-";
5792 }
5793 
5794 static void PrintXarFilesSummary(const char *XarFilename, xar_t xar) {
5795   xar_iter_t xi;
5796   xar_file_t xf;
5797   xar_iter_t xp;
5798   const char *key, *type, *mode, *user, *group, *size, *mtime, *name, *m;
5799   char *endp;
5800   uint32_t mode_value;
5801 
5802   xi = xar_iter_new();
5803   if (!xi) {
5804     errs() << "Can't obtain an xar iterator for xar archive "
5805            << XarFilename << "\n";
5806     return;
5807   }
5808 
5809   // Go through the xar's files.
5810   for (xf = xar_file_first(xar, xi); xf; xf = xar_file_next(xi)) {
5811     xp = xar_iter_new();
5812     if(!xp){
5813       errs() << "Can't obtain an xar iterator for xar archive "
5814              << XarFilename << "\n";
5815       return;
5816     }
5817     type = nullptr;
5818     mode = nullptr;
5819     user = nullptr;
5820     group = nullptr;
5821     size = nullptr;
5822     mtime = nullptr;
5823     name = nullptr;
5824     for(key = xar_prop_first(xf, xp); key; key = xar_prop_next(xp)){
5825       const char *val = nullptr;
5826       xar_prop_get(xf, key, &val);
5827 #if 0 // Useful for debugging.
5828       outs() << "key: " << key << " value: " << val << "\n";
5829 #endif
5830       if(strcmp(key, "type") == 0)
5831         type = val;
5832       if(strcmp(key, "mode") == 0)
5833         mode = val;
5834       if(strcmp(key, "user") == 0)
5835         user = val;
5836       if(strcmp(key, "group") == 0)
5837         group = val;
5838       if(strcmp(key, "data/size") == 0)
5839         size = val;
5840       if(strcmp(key, "mtime") == 0)
5841         mtime = val;
5842       if(strcmp(key, "name") == 0)
5843         name = val;
5844     }
5845     if(mode != nullptr){
5846       mode_value = strtoul(mode, &endp, 8);
5847       if(*endp != '\0')
5848         outs() << "(mode: \"" << mode << "\" contains non-octal chars) ";
5849       if(strcmp(type, "file") == 0)
5850         mode_value |= S_IFREG;
5851       PrintModeVerbose(mode_value);
5852       outs() << " ";
5853     }
5854     if(user != nullptr)
5855       outs() << format("%10s/", user);
5856     if(group != nullptr)
5857       outs() << format("%-10s ", group);
5858     if(size != nullptr)
5859       outs() << format("%7s ", size);
5860     if(mtime != nullptr){
5861       for(m = mtime; *m != 'T' && *m != '\0'; m++)
5862         outs() << *m;
5863       if(*m == 'T')
5864         m++;
5865       outs() << " ";
5866       for( ; *m != 'Z' && *m != '\0'; m++)
5867         outs() << *m;
5868       outs() << " ";
5869     }
5870     if(name != nullptr)
5871       outs() << name;
5872     outs() << "\n";
5873   }
5874 }
5875 
5876 static void DumpBitcodeSection(MachOObjectFile *O, const char *sect,
5877                                 uint32_t size, bool verbose,
5878                                 bool PrintXarHeader, bool PrintXarFileHeaders,
5879                                 std::string XarMemberName) {
5880   if(size < sizeof(struct xar_header)) {
5881     outs() << "size of (__LLVM,__bundle) section too small (smaller than size "
5882               "of struct xar_header)\n";
5883     return;
5884   }
5885   struct xar_header XarHeader;
5886   memcpy(&XarHeader, sect, sizeof(struct xar_header));
5887   if (sys::IsLittleEndianHost)
5888     swapStruct(XarHeader);
5889   if (PrintXarHeader) {
5890     if (!XarMemberName.empty())
5891       outs() << "In xar member " << XarMemberName << ": ";
5892     else
5893       outs() << "For (__LLVM,__bundle) section: ";
5894     outs() << "xar header\n";
5895     if (XarHeader.magic == XAR_HEADER_MAGIC)
5896       outs() << "                  magic XAR_HEADER_MAGIC\n";
5897     else
5898       outs() << "                  magic "
5899              << format_hex(XarHeader.magic, 10, true)
5900              << " (not XAR_HEADER_MAGIC)\n";
5901     outs() << "                   size " << XarHeader.size << "\n";
5902     outs() << "                version " << XarHeader.version << "\n";
5903     outs() << "  toc_length_compressed " << XarHeader.toc_length_compressed
5904            << "\n";
5905     outs() << "toc_length_uncompressed " << XarHeader.toc_length_uncompressed
5906            << "\n";
5907     outs() << "              cksum_alg ";
5908     switch (XarHeader.cksum_alg) {
5909       case XAR_CKSUM_NONE:
5910         outs() << "XAR_CKSUM_NONE\n";
5911         break;
5912       case XAR_CKSUM_SHA1:
5913         outs() << "XAR_CKSUM_SHA1\n";
5914         break;
5915       case XAR_CKSUM_MD5:
5916         outs() << "XAR_CKSUM_MD5\n";
5917         break;
5918 #ifdef XAR_CKSUM_SHA256
5919       case XAR_CKSUM_SHA256:
5920         outs() << "XAR_CKSUM_SHA256\n";
5921         break;
5922 #endif
5923 #ifdef XAR_CKSUM_SHA512
5924       case XAR_CKSUM_SHA512:
5925         outs() << "XAR_CKSUM_SHA512\n";
5926         break;
5927 #endif
5928       default:
5929         outs() << XarHeader.cksum_alg << "\n";
5930     }
5931   }
5932 
5933   SmallString<128> XarFilename;
5934   int FD;
5935   std::error_code XarEC =
5936       sys::fs::createTemporaryFile("llvm-objdump", "xar", FD, XarFilename);
5937   if (XarEC) {
5938     errs() << XarEC.message() << "\n";
5939     return;
5940   }
5941   tool_output_file XarFile(XarFilename, FD);
5942   raw_fd_ostream &XarOut = XarFile.os();
5943   StringRef XarContents(sect, size);
5944   XarOut << XarContents;
5945   XarOut.close();
5946   if (XarOut.has_error())
5947     return;
5948 
5949   xar_t xar = xar_open(XarFilename.c_str(), READ);
5950   if (!xar) {
5951     errs() << "Can't create temporary xar archive " << XarFilename << "\n";
5952     return;
5953   }
5954 
5955   SmallString<128> TocFilename;
5956   std::error_code TocEC =
5957       sys::fs::createTemporaryFile("llvm-objdump", "toc", TocFilename);
5958   if (TocEC) {
5959     errs() << TocEC.message() << "\n";
5960     return;
5961   }
5962   xar_serialize(xar, TocFilename.c_str());
5963 
5964   if (PrintXarFileHeaders) {
5965     if (!XarMemberName.empty())
5966       outs() << "In xar member " << XarMemberName << ": ";
5967     else
5968       outs() << "For (__LLVM,__bundle) section: ";
5969     outs() << "xar archive files:\n";
5970     PrintXarFilesSummary(XarFilename.c_str(), xar);
5971   }
5972 
5973   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
5974     MemoryBuffer::getFileOrSTDIN(TocFilename.c_str());
5975   if (std::error_code EC = FileOrErr.getError()) {
5976     errs() << EC.message() << "\n";
5977     return;
5978   }
5979   std::unique_ptr<MemoryBuffer> &Buffer = FileOrErr.get();
5980 
5981   if (!XarMemberName.empty())
5982     outs() << "In xar member " << XarMemberName << ": ";
5983   else
5984     outs() << "For (__LLVM,__bundle) section: ";
5985   outs() << "xar table of contents:\n";
5986   outs() << Buffer->getBuffer() << "\n";
5987 
5988   // TODO: Go through the xar's files.
5989   xar_iter_t xi = xar_iter_new();
5990   if(!xi){
5991     errs() << "Can't obtain an xar iterator for xar archive "
5992            << XarFilename.c_str() << "\n";
5993     xar_close(xar);
5994     return;
5995   }
5996   for(xar_file_t xf = xar_file_first(xar, xi); xf; xf = xar_file_next(xi)){
5997     const char *key;
5998     xar_iter_t xp;
5999     const char *member_name, *member_type, *member_size_string;
6000     size_t member_size;
6001 
6002     xp = xar_iter_new();
6003     if(!xp){
6004       errs() << "Can't obtain an xar iterator for xar archive "
6005 	     << XarFilename.c_str() << "\n";
6006       xar_close(xar);
6007       return;
6008     }
6009     member_name = NULL;
6010     member_type = NULL;
6011     member_size_string = NULL;
6012     for(key = xar_prop_first(xf, xp); key; key = xar_prop_next(xp)){
6013       const char *val = nullptr;
6014       xar_prop_get(xf, key, &val);
6015 #if 0 // Useful for debugging.
6016       outs() << "key: " << key << " value: " << val << "\n";
6017 #endif
6018       if(strcmp(key, "name") == 0)
6019 	member_name = val;
6020       if(strcmp(key, "type") == 0)
6021 	member_type = val;
6022       if(strcmp(key, "data/size") == 0)
6023 	member_size_string = val;
6024     }
6025     /*
6026      * If we find a file with a name, date/size and type properties
6027      * and with the type being "file" see if that is a xar file.
6028      */
6029     if (member_name != NULL && member_type != NULL &&
6030         strcmp(member_type, "file") == 0 &&
6031         member_size_string != NULL){
6032       // Extract the file into a buffer.
6033       char *endptr;
6034       member_size = strtoul(member_size_string, &endptr, 10);
6035       if (*endptr == '\0' && member_size != 0) {
6036 	char *buffer = (char *) ::operator new (member_size);
6037 	if (xar_extract_tobuffersz(xar, xf, &buffer, &member_size) == 0) {
6038 #if 0 // Useful for debugging.
6039 	  outs() << "xar member: " << member_name << " extracted\n";
6040 #endif
6041           // Set the XarMemberName we want to see printed in the header.
6042 	  std::string OldXarMemberName;
6043 	  // If XarMemberName is already set this is nested. So
6044 	  // save the old name and create the nested name.
6045 	  if (!XarMemberName.empty()) {
6046 	    OldXarMemberName = XarMemberName;
6047             XarMemberName =
6048              (Twine("[") + XarMemberName + "]" + member_name).str();
6049 	  } else {
6050 	    OldXarMemberName = "";
6051 	    XarMemberName = member_name;
6052 	  }
6053 	  // See if this is could be a xar file (nested).
6054 	  if (member_size >= sizeof(struct xar_header)) {
6055 #if 0 // Useful for debugging.
6056 	    outs() << "could be a xar file: " << member_name << "\n";
6057 #endif
6058 	    memcpy((char *)&XarHeader, buffer, sizeof(struct xar_header));
6059             if (sys::IsLittleEndianHost)
6060 	      swapStruct(XarHeader);
6061 	    if(XarHeader.magic == XAR_HEADER_MAGIC)
6062 	      DumpBitcodeSection(O, buffer, member_size, verbose,
6063                                  PrintXarHeader, PrintXarFileHeaders,
6064 		                 XarMemberName);
6065 	  }
6066 	  XarMemberName = OldXarMemberName;
6067 	}
6068         delete buffer;
6069       }
6070     }
6071     xar_iter_free(xp);
6072   }
6073   xar_close(xar);
6074 }
6075 #endif // defined(HAVE_LIBXAR)
6076 
6077 static void printObjcMetaData(MachOObjectFile *O, bool verbose) {
6078   if (O->is64Bit())
6079     printObjc2_64bit_MetaData(O, verbose);
6080   else {
6081     MachO::mach_header H;
6082     H = O->getHeader();
6083     if (H.cputype == MachO::CPU_TYPE_ARM)
6084       printObjc2_32bit_MetaData(O, verbose);
6085     else {
6086       // This is the 32-bit non-arm cputype case.  Which is normally
6087       // the first Objective-C ABI.  But it may be the case of a
6088       // binary for the iOS simulator which is the second Objective-C
6089       // ABI.  In that case printObjc1_32bit_MetaData() will determine that
6090       // and return false.
6091       if (!printObjc1_32bit_MetaData(O, verbose))
6092         printObjc2_32bit_MetaData(O, verbose);
6093     }
6094   }
6095 }
6096 
6097 // GuessLiteralPointer returns a string which for the item in the Mach-O file
6098 // for the address passed in as ReferenceValue for printing as a comment with
6099 // the instruction and also returns the corresponding type of that item
6100 // indirectly through ReferenceType.
6101 //
6102 // If ReferenceValue is an address of literal cstring then a pointer to the
6103 // cstring is returned and ReferenceType is set to
6104 // LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr .
6105 //
6106 // If ReferenceValue is an address of an Objective-C CFString, Selector ref or
6107 // Class ref that name is returned and the ReferenceType is set accordingly.
6108 //
6109 // Lastly, literals which are Symbol address in a literal pool are looked for
6110 // and if found the symbol name is returned and ReferenceType is set to
6111 // LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr .
6112 //
6113 // If there is no item in the Mach-O file for the address passed in as
6114 // ReferenceValue nullptr is returned and ReferenceType is unchanged.
6115 static const char *GuessLiteralPointer(uint64_t ReferenceValue,
6116                                        uint64_t ReferencePC,
6117                                        uint64_t *ReferenceType,
6118                                        struct DisassembleInfo *info) {
6119   // First see if there is an external relocation entry at the ReferencePC.
6120   if (info->O->getHeader().filetype == MachO::MH_OBJECT) {
6121     uint64_t sect_addr = info->S.getAddress();
6122     uint64_t sect_offset = ReferencePC - sect_addr;
6123     bool reloc_found = false;
6124     DataRefImpl Rel;
6125     MachO::any_relocation_info RE;
6126     bool isExtern = false;
6127     SymbolRef Symbol;
6128     for (const RelocationRef &Reloc : info->S.relocations()) {
6129       uint64_t RelocOffset = Reloc.getOffset();
6130       if (RelocOffset == sect_offset) {
6131         Rel = Reloc.getRawDataRefImpl();
6132         RE = info->O->getRelocation(Rel);
6133         if (info->O->isRelocationScattered(RE))
6134           continue;
6135         isExtern = info->O->getPlainRelocationExternal(RE);
6136         if (isExtern) {
6137           symbol_iterator RelocSym = Reloc.getSymbol();
6138           Symbol = *RelocSym;
6139         }
6140         reloc_found = true;
6141         break;
6142       }
6143     }
6144     // If there is an external relocation entry for a symbol in a section
6145     // then used that symbol's value for the value of the reference.
6146     if (reloc_found && isExtern) {
6147       if (info->O->getAnyRelocationPCRel(RE)) {
6148         unsigned Type = info->O->getAnyRelocationType(RE);
6149         if (Type == MachO::X86_64_RELOC_SIGNED) {
6150           ReferenceValue = Symbol.getValue();
6151         }
6152       }
6153     }
6154   }
6155 
6156   // Look for literals such as Objective-C CFStrings refs, Selector refs,
6157   // Message refs and Class refs.
6158   bool classref, selref, msgref, cfstring;
6159   uint64_t pointer_value = GuessPointerPointer(ReferenceValue, info, classref,
6160                                                selref, msgref, cfstring);
6161   if (classref && pointer_value == 0) {
6162     // Note the ReferenceValue is a pointer into the __objc_classrefs section.
6163     // And the pointer_value in that section is typically zero as it will be
6164     // set by dyld as part of the "bind information".
6165     const char *name = get_dyld_bind_info_symbolname(ReferenceValue, info);
6166     if (name != nullptr) {
6167       *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref;
6168       const char *class_name = strrchr(name, '$');
6169       if (class_name != nullptr && class_name[1] == '_' &&
6170           class_name[2] != '\0') {
6171         info->class_name = class_name + 2;
6172         return name;
6173       }
6174     }
6175   }
6176 
6177   if (classref) {
6178     *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref;
6179     const char *name =
6180         get_objc2_64bit_class_name(pointer_value, ReferenceValue, info);
6181     if (name != nullptr)
6182       info->class_name = name;
6183     else
6184       name = "bad class ref";
6185     return name;
6186   }
6187 
6188   if (cfstring) {
6189     *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_CFString_Ref;
6190     const char *name = get_objc2_64bit_cfstring_name(ReferenceValue, info);
6191     return name;
6192   }
6193 
6194   if (selref && pointer_value == 0)
6195     pointer_value = get_objc2_64bit_selref(ReferenceValue, info);
6196 
6197   if (pointer_value != 0)
6198     ReferenceValue = pointer_value;
6199 
6200   const char *name = GuessCstringPointer(ReferenceValue, info);
6201   if (name) {
6202     if (pointer_value != 0 && selref) {
6203       *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Selector_Ref;
6204       info->selector_name = name;
6205     } else if (pointer_value != 0 && msgref) {
6206       info->class_name = nullptr;
6207       *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message_Ref;
6208       info->selector_name = name;
6209     } else
6210       *ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr;
6211     return name;
6212   }
6213 
6214   // Lastly look for an indirect symbol with this ReferenceValue which is in
6215   // a literal pool.  If found return that symbol name.
6216   name = GuessIndirectSymbol(ReferenceValue, info);
6217   if (name) {
6218     *ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr;
6219     return name;
6220   }
6221 
6222   return nullptr;
6223 }
6224 
6225 // SymbolizerSymbolLookUp is the symbol lookup function passed when creating
6226 // the Symbolizer.  It looks up the ReferenceValue using the info passed via the
6227 // pointer to the struct DisassembleInfo that was passed when MCSymbolizer
6228 // is created and returns the symbol name that matches the ReferenceValue or
6229 // nullptr if none.  The ReferenceType is passed in for the IN type of
6230 // reference the instruction is making from the values in defined in the header
6231 // "llvm-c/Disassembler.h".  On return the ReferenceType can set to a specific
6232 // Out type and the ReferenceName will also be set which is added as a comment
6233 // to the disassembled instruction.
6234 //
6235 // If the symbol name is a C++ mangled name then the demangled name is
6236 // returned through ReferenceName and ReferenceType is set to
6237 // LLVMDisassembler_ReferenceType_DeMangled_Name .
6238 //
6239 // When this is called to get a symbol name for a branch target then the
6240 // ReferenceType will be LLVMDisassembler_ReferenceType_In_Branch and then
6241 // SymbolValue will be looked for in the indirect symbol table to determine if
6242 // it is an address for a symbol stub.  If so then the symbol name for that
6243 // stub is returned indirectly through ReferenceName and then ReferenceType is
6244 // set to LLVMDisassembler_ReferenceType_Out_SymbolStub.
6245 //
6246 // When this is called with an value loaded via a PC relative load then
6247 // ReferenceType will be LLVMDisassembler_ReferenceType_In_PCrel_Load then the
6248 // SymbolValue is checked to be an address of literal pointer, symbol pointer,
6249 // or an Objective-C meta data reference.  If so the output ReferenceType is
6250 // set to correspond to that as well as setting the ReferenceName.
6251 static const char *SymbolizerSymbolLookUp(void *DisInfo,
6252                                           uint64_t ReferenceValue,
6253                                           uint64_t *ReferenceType,
6254                                           uint64_t ReferencePC,
6255                                           const char **ReferenceName) {
6256   struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
6257   // If no verbose symbolic information is wanted then just return nullptr.
6258   if (!info->verbose) {
6259     *ReferenceName = nullptr;
6260     *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
6261     return nullptr;
6262   }
6263 
6264   const char *SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap);
6265 
6266   if (*ReferenceType == LLVMDisassembler_ReferenceType_In_Branch) {
6267     *ReferenceName = GuessIndirectSymbol(ReferenceValue, info);
6268     if (*ReferenceName != nullptr) {
6269       method_reference(info, ReferenceType, ReferenceName);
6270       if (*ReferenceType != LLVMDisassembler_ReferenceType_Out_Objc_Message)
6271         *ReferenceType = LLVMDisassembler_ReferenceType_Out_SymbolStub;
6272     } else if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) {
6273       if (info->demangled_name != nullptr)
6274         free(info->demangled_name);
6275       int status;
6276       info->demangled_name =
6277           itaniumDemangle(SymbolName + 1, nullptr, nullptr, &status);
6278       if (info->demangled_name != nullptr) {
6279         *ReferenceName = info->demangled_name;
6280         *ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name;
6281       } else
6282         *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
6283     } else
6284       *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
6285   } else if (*ReferenceType == LLVMDisassembler_ReferenceType_In_PCrel_Load) {
6286     *ReferenceName =
6287         GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
6288     if (*ReferenceName)
6289       method_reference(info, ReferenceType, ReferenceName);
6290     else
6291       *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
6292     // If this is arm64 and the reference is an adrp instruction save the
6293     // instruction, passed in ReferenceValue and the address of the instruction
6294     // for use later if we see and add immediate instruction.
6295   } else if (info->O->getArch() == Triple::aarch64 &&
6296              *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADRP) {
6297     info->adrp_inst = ReferenceValue;
6298     info->adrp_addr = ReferencePC;
6299     SymbolName = nullptr;
6300     *ReferenceName = nullptr;
6301     *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
6302     // If this is arm64 and reference is an add immediate instruction and we
6303     // have
6304     // seen an adrp instruction just before it and the adrp's Xd register
6305     // matches
6306     // this add's Xn register reconstruct the value being referenced and look to
6307     // see if it is a literal pointer.  Note the add immediate instruction is
6308     // passed in ReferenceValue.
6309   } else if (info->O->getArch() == Triple::aarch64 &&
6310              *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADDXri &&
6311              ReferencePC - 4 == info->adrp_addr &&
6312              (info->adrp_inst & 0x9f000000) == 0x90000000 &&
6313              (info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) {
6314     uint32_t addxri_inst;
6315     uint64_t adrp_imm, addxri_imm;
6316 
6317     adrp_imm =
6318         ((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3);
6319     if (info->adrp_inst & 0x0200000)
6320       adrp_imm |= 0xfffffffffc000000LL;
6321 
6322     addxri_inst = ReferenceValue;
6323     addxri_imm = (addxri_inst >> 10) & 0xfff;
6324     if (((addxri_inst >> 22) & 0x3) == 1)
6325       addxri_imm <<= 12;
6326 
6327     ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) +
6328                      (adrp_imm << 12) + addxri_imm;
6329 
6330     *ReferenceName =
6331         GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
6332     if (*ReferenceName == nullptr)
6333       *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
6334     // If this is arm64 and the reference is a load register instruction and we
6335     // have seen an adrp instruction just before it and the adrp's Xd register
6336     // matches this add's Xn register reconstruct the value being referenced and
6337     // look to see if it is a literal pointer.  Note the load register
6338     // instruction is passed in ReferenceValue.
6339   } else if (info->O->getArch() == Triple::aarch64 &&
6340              *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXui &&
6341              ReferencePC - 4 == info->adrp_addr &&
6342              (info->adrp_inst & 0x9f000000) == 0x90000000 &&
6343              (info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) {
6344     uint32_t ldrxui_inst;
6345     uint64_t adrp_imm, ldrxui_imm;
6346 
6347     adrp_imm =
6348         ((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3);
6349     if (info->adrp_inst & 0x0200000)
6350       adrp_imm |= 0xfffffffffc000000LL;
6351 
6352     ldrxui_inst = ReferenceValue;
6353     ldrxui_imm = (ldrxui_inst >> 10) & 0xfff;
6354 
6355     ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) +
6356                      (adrp_imm << 12) + (ldrxui_imm << 3);
6357 
6358     *ReferenceName =
6359         GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
6360     if (*ReferenceName == nullptr)
6361       *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
6362   }
6363   // If this arm64 and is an load register (PC-relative) instruction the
6364   // ReferenceValue is the PC plus the immediate value.
6365   else if (info->O->getArch() == Triple::aarch64 &&
6366            (*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXl ||
6367             *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADR)) {
6368     *ReferenceName =
6369         GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
6370     if (*ReferenceName == nullptr)
6371       *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
6372   } else if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) {
6373     if (info->demangled_name != nullptr)
6374       free(info->demangled_name);
6375     int status;
6376     info->demangled_name =
6377         itaniumDemangle(SymbolName + 1, nullptr, nullptr, &status);
6378     if (info->demangled_name != nullptr) {
6379       *ReferenceName = info->demangled_name;
6380       *ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name;
6381     }
6382   }
6383   else {
6384     *ReferenceName = nullptr;
6385     *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None;
6386   }
6387 
6388   return SymbolName;
6389 }
6390 
6391 /// \brief Emits the comments that are stored in the CommentStream.
6392 /// Each comment in the CommentStream must end with a newline.
6393 static void emitComments(raw_svector_ostream &CommentStream,
6394                          SmallString<128> &CommentsToEmit,
6395                          formatted_raw_ostream &FormattedOS,
6396                          const MCAsmInfo &MAI) {
6397   // Flush the stream before taking its content.
6398   StringRef Comments = CommentsToEmit.str();
6399   // Get the default information for printing a comment.
6400   StringRef CommentBegin = MAI.getCommentString();
6401   unsigned CommentColumn = MAI.getCommentColumn();
6402   bool IsFirst = true;
6403   while (!Comments.empty()) {
6404     if (!IsFirst)
6405       FormattedOS << '\n';
6406     // Emit a line of comments.
6407     FormattedOS.PadToColumn(CommentColumn);
6408     size_t Position = Comments.find('\n');
6409     FormattedOS << CommentBegin << ' ' << Comments.substr(0, Position);
6410     // Move after the newline character.
6411     Comments = Comments.substr(Position + 1);
6412     IsFirst = false;
6413   }
6414   FormattedOS.flush();
6415 
6416   // Tell the comment stream that the vector changed underneath it.
6417   CommentsToEmit.clear();
6418 }
6419 
6420 static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF,
6421                              StringRef DisSegName, StringRef DisSectName) {
6422   const char *McpuDefault = nullptr;
6423   const Target *ThumbTarget = nullptr;
6424   const Target *TheTarget = GetTarget(MachOOF, &McpuDefault, &ThumbTarget);
6425   if (!TheTarget) {
6426     // GetTarget prints out stuff.
6427     return;
6428   }
6429   if (MCPU.empty() && McpuDefault)
6430     MCPU = McpuDefault;
6431 
6432   std::unique_ptr<const MCInstrInfo> InstrInfo(TheTarget->createMCInstrInfo());
6433   std::unique_ptr<const MCInstrInfo> ThumbInstrInfo;
6434   if (ThumbTarget)
6435     ThumbInstrInfo.reset(ThumbTarget->createMCInstrInfo());
6436 
6437   // Package up features to be passed to target/subtarget
6438   std::string FeaturesStr;
6439   if (MAttrs.size()) {
6440     SubtargetFeatures Features;
6441     for (unsigned i = 0; i != MAttrs.size(); ++i)
6442       Features.AddFeature(MAttrs[i]);
6443     FeaturesStr = Features.getString();
6444   }
6445 
6446   // Set up disassembler.
6447   std::unique_ptr<const MCRegisterInfo> MRI(
6448       TheTarget->createMCRegInfo(TripleName));
6449   std::unique_ptr<const MCAsmInfo> AsmInfo(
6450       TheTarget->createMCAsmInfo(*MRI, TripleName));
6451   std::unique_ptr<const MCSubtargetInfo> STI(
6452       TheTarget->createMCSubtargetInfo(TripleName, MCPU, FeaturesStr));
6453   MCContext Ctx(AsmInfo.get(), MRI.get(), nullptr);
6454   std::unique_ptr<MCDisassembler> DisAsm(
6455       TheTarget->createMCDisassembler(*STI, Ctx));
6456   std::unique_ptr<MCSymbolizer> Symbolizer;
6457   struct DisassembleInfo SymbolizerInfo;
6458   std::unique_ptr<MCRelocationInfo> RelInfo(
6459       TheTarget->createMCRelocationInfo(TripleName, Ctx));
6460   if (RelInfo) {
6461     Symbolizer.reset(TheTarget->createMCSymbolizer(
6462         TripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp,
6463         &SymbolizerInfo, &Ctx, std::move(RelInfo)));
6464     DisAsm->setSymbolizer(std::move(Symbolizer));
6465   }
6466   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
6467   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
6468       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *InstrInfo, *MRI));
6469   // Set the display preference for hex vs. decimal immediates.
6470   IP->setPrintImmHex(PrintImmHex);
6471   // Comment stream and backing vector.
6472   SmallString<128> CommentsToEmit;
6473   raw_svector_ostream CommentStream(CommentsToEmit);
6474   // FIXME: Setting the CommentStream in the InstPrinter is problematic in that
6475   // if it is done then arm64 comments for string literals don't get printed
6476   // and some constant get printed instead and not setting it causes intel
6477   // (32-bit and 64-bit) comments printed with different spacing before the
6478   // comment causing different diffs with the 'C' disassembler library API.
6479   // IP->setCommentStream(CommentStream);
6480 
6481   if (!AsmInfo || !STI || !DisAsm || !IP) {
6482     errs() << "error: couldn't initialize disassembler for target "
6483            << TripleName << '\n';
6484     return;
6485   }
6486 
6487   // Set up separate thumb disassembler if needed.
6488   std::unique_ptr<const MCRegisterInfo> ThumbMRI;
6489   std::unique_ptr<const MCAsmInfo> ThumbAsmInfo;
6490   std::unique_ptr<const MCSubtargetInfo> ThumbSTI;
6491   std::unique_ptr<MCDisassembler> ThumbDisAsm;
6492   std::unique_ptr<MCInstPrinter> ThumbIP;
6493   std::unique_ptr<MCContext> ThumbCtx;
6494   std::unique_ptr<MCSymbolizer> ThumbSymbolizer;
6495   struct DisassembleInfo ThumbSymbolizerInfo;
6496   std::unique_ptr<MCRelocationInfo> ThumbRelInfo;
6497   if (ThumbTarget) {
6498     ThumbMRI.reset(ThumbTarget->createMCRegInfo(ThumbTripleName));
6499     ThumbAsmInfo.reset(
6500         ThumbTarget->createMCAsmInfo(*ThumbMRI, ThumbTripleName));
6501     ThumbSTI.reset(
6502         ThumbTarget->createMCSubtargetInfo(ThumbTripleName, MCPU, FeaturesStr));
6503     ThumbCtx.reset(new MCContext(ThumbAsmInfo.get(), ThumbMRI.get(), nullptr));
6504     ThumbDisAsm.reset(ThumbTarget->createMCDisassembler(*ThumbSTI, *ThumbCtx));
6505     MCContext *PtrThumbCtx = ThumbCtx.get();
6506     ThumbRelInfo.reset(
6507         ThumbTarget->createMCRelocationInfo(ThumbTripleName, *PtrThumbCtx));
6508     if (ThumbRelInfo) {
6509       ThumbSymbolizer.reset(ThumbTarget->createMCSymbolizer(
6510           ThumbTripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp,
6511           &ThumbSymbolizerInfo, PtrThumbCtx, std::move(ThumbRelInfo)));
6512       ThumbDisAsm->setSymbolizer(std::move(ThumbSymbolizer));
6513     }
6514     int ThumbAsmPrinterVariant = ThumbAsmInfo->getAssemblerDialect();
6515     ThumbIP.reset(ThumbTarget->createMCInstPrinter(
6516         Triple(ThumbTripleName), ThumbAsmPrinterVariant, *ThumbAsmInfo,
6517         *ThumbInstrInfo, *ThumbMRI));
6518     // Set the display preference for hex vs. decimal immediates.
6519     ThumbIP->setPrintImmHex(PrintImmHex);
6520   }
6521 
6522   if (ThumbTarget && (!ThumbAsmInfo || !ThumbSTI || !ThumbDisAsm || !ThumbIP)) {
6523     errs() << "error: couldn't initialize disassembler for target "
6524            << ThumbTripleName << '\n';
6525     return;
6526   }
6527 
6528   MachO::mach_header Header = MachOOF->getHeader();
6529 
6530   // FIXME: Using the -cfg command line option, this code used to be able to
6531   // annotate relocations with the referenced symbol's name, and if this was
6532   // inside a __[cf]string section, the data it points to. This is now replaced
6533   // by the upcoming MCSymbolizer, which needs the appropriate setup done above.
6534   std::vector<SectionRef> Sections;
6535   std::vector<SymbolRef> Symbols;
6536   SmallVector<uint64_t, 8> FoundFns;
6537   uint64_t BaseSegmentAddress;
6538 
6539   getSectionsAndSymbols(MachOOF, Sections, Symbols, FoundFns,
6540                         BaseSegmentAddress);
6541 
6542   // Sort the symbols by address, just in case they didn't come in that way.
6543   std::sort(Symbols.begin(), Symbols.end(), SymbolSorter());
6544 
6545   // Build a data in code table that is sorted on by the address of each entry.
6546   uint64_t BaseAddress = 0;
6547   if (Header.filetype == MachO::MH_OBJECT)
6548     BaseAddress = Sections[0].getAddress();
6549   else
6550     BaseAddress = BaseSegmentAddress;
6551   DiceTable Dices;
6552   for (dice_iterator DI = MachOOF->begin_dices(), DE = MachOOF->end_dices();
6553        DI != DE; ++DI) {
6554     uint32_t Offset;
6555     DI->getOffset(Offset);
6556     Dices.push_back(std::make_pair(BaseAddress + Offset, *DI));
6557   }
6558   array_pod_sort(Dices.begin(), Dices.end());
6559 
6560 #ifndef NDEBUG
6561   raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
6562 #else
6563   raw_ostream &DebugOut = nulls();
6564 #endif
6565 
6566   std::unique_ptr<DIContext> diContext;
6567   ObjectFile *DbgObj = MachOOF;
6568   // Try to find debug info and set up the DIContext for it.
6569   if (UseDbg) {
6570     // A separate DSym file path was specified, parse it as a macho file,
6571     // get the sections and supply it to the section name parsing machinery.
6572     if (!DSYMFile.empty()) {
6573       ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
6574           MemoryBuffer::getFileOrSTDIN(DSYMFile);
6575       if (std::error_code EC = BufOrErr.getError()) {
6576         errs() << "llvm-objdump: " << Filename << ": " << EC.message() << '\n';
6577         return;
6578       }
6579       DbgObj =
6580           ObjectFile::createMachOObjectFile(BufOrErr.get()->getMemBufferRef())
6581               .get()
6582               .release();
6583     }
6584 
6585     // Setup the DIContext
6586     diContext.reset(new DWARFContextInMemory(*DbgObj));
6587   }
6588 
6589   if (FilterSections.size() == 0)
6590     outs() << "(" << DisSegName << "," << DisSectName << ") section\n";
6591 
6592   for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) {
6593     StringRef SectName;
6594     if (Sections[SectIdx].getName(SectName) || SectName != DisSectName)
6595       continue;
6596 
6597     DataRefImpl DR = Sections[SectIdx].getRawDataRefImpl();
6598 
6599     StringRef SegmentName = MachOOF->getSectionFinalSegmentName(DR);
6600     if (SegmentName != DisSegName)
6601       continue;
6602 
6603     StringRef BytesStr;
6604     Sections[SectIdx].getContents(BytesStr);
6605     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
6606                             BytesStr.size());
6607     uint64_t SectAddress = Sections[SectIdx].getAddress();
6608 
6609     bool symbolTableWorked = false;
6610 
6611     // Create a map of symbol addresses to symbol names for use by
6612     // the SymbolizerSymbolLookUp() routine.
6613     SymbolAddressMap AddrMap;
6614     bool DisSymNameFound = false;
6615     for (const SymbolRef &Symbol : MachOOF->symbols()) {
6616       Expected<SymbolRef::Type> STOrErr = Symbol.getType();
6617       if (!STOrErr) {
6618         std::string Buf;
6619         raw_string_ostream OS(Buf);
6620         logAllUnhandledErrors(STOrErr.takeError(), OS, "");
6621         OS.flush();
6622         report_fatal_error(Buf);
6623       }
6624       SymbolRef::Type ST = *STOrErr;
6625       if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data ||
6626           ST == SymbolRef::ST_Other) {
6627         uint64_t Address = Symbol.getValue();
6628         Expected<StringRef> SymNameOrErr = Symbol.getName();
6629         if (!SymNameOrErr) {
6630           std::string Buf;
6631           raw_string_ostream OS(Buf);
6632           logAllUnhandledErrors(SymNameOrErr.takeError(), OS, "");
6633           OS.flush();
6634           report_fatal_error(Buf);
6635         }
6636         StringRef SymName = *SymNameOrErr;
6637         AddrMap[Address] = SymName;
6638         if (!DisSymName.empty() && DisSymName == SymName)
6639           DisSymNameFound = true;
6640       }
6641     }
6642     if (!DisSymName.empty() && !DisSymNameFound) {
6643       outs() << "Can't find -dis-symname: " << DisSymName << "\n";
6644       return;
6645     }
6646     // Set up the block of info used by the Symbolizer call backs.
6647     SymbolizerInfo.verbose = !NoSymbolicOperands;
6648     SymbolizerInfo.O = MachOOF;
6649     SymbolizerInfo.S = Sections[SectIdx];
6650     SymbolizerInfo.AddrMap = &AddrMap;
6651     SymbolizerInfo.Sections = &Sections;
6652     SymbolizerInfo.class_name = nullptr;
6653     SymbolizerInfo.selector_name = nullptr;
6654     SymbolizerInfo.method = nullptr;
6655     SymbolizerInfo.demangled_name = nullptr;
6656     SymbolizerInfo.bindtable = nullptr;
6657     SymbolizerInfo.adrp_addr = 0;
6658     SymbolizerInfo.adrp_inst = 0;
6659     // Same for the ThumbSymbolizer
6660     ThumbSymbolizerInfo.verbose = !NoSymbolicOperands;
6661     ThumbSymbolizerInfo.O = MachOOF;
6662     ThumbSymbolizerInfo.S = Sections[SectIdx];
6663     ThumbSymbolizerInfo.AddrMap = &AddrMap;
6664     ThumbSymbolizerInfo.Sections = &Sections;
6665     ThumbSymbolizerInfo.class_name = nullptr;
6666     ThumbSymbolizerInfo.selector_name = nullptr;
6667     ThumbSymbolizerInfo.method = nullptr;
6668     ThumbSymbolizerInfo.demangled_name = nullptr;
6669     ThumbSymbolizerInfo.bindtable = nullptr;
6670     ThumbSymbolizerInfo.adrp_addr = 0;
6671     ThumbSymbolizerInfo.adrp_inst = 0;
6672 
6673     unsigned int Arch = MachOOF->getArch();
6674 
6675     // Skip all symbols if this is a stubs file.
6676     if (Bytes.size() == 0)
6677       return;
6678 
6679     // Disassemble symbol by symbol.
6680     for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) {
6681       Expected<StringRef> SymNameOrErr = Symbols[SymIdx].getName();
6682       if (!SymNameOrErr) {
6683         std::string Buf;
6684         raw_string_ostream OS(Buf);
6685         logAllUnhandledErrors(SymNameOrErr.takeError(), OS, "");
6686         OS.flush();
6687         report_fatal_error(Buf);
6688       }
6689       StringRef SymName = *SymNameOrErr;
6690 
6691       Expected<SymbolRef::Type> STOrErr = Symbols[SymIdx].getType();
6692       if (!STOrErr) {
6693         std::string Buf;
6694         raw_string_ostream OS(Buf);
6695         logAllUnhandledErrors(STOrErr.takeError(), OS, "");
6696         OS.flush();
6697         report_fatal_error(Buf);
6698       }
6699       SymbolRef::Type ST = *STOrErr;
6700       if (ST != SymbolRef::ST_Function && ST != SymbolRef::ST_Data)
6701         continue;
6702 
6703       // Make sure the symbol is defined in this section.
6704       bool containsSym = Sections[SectIdx].containsSymbol(Symbols[SymIdx]);
6705       if (!containsSym) {
6706         if (!DisSymName.empty() && DisSymName == SymName) {
6707           outs() << "-dis-symname: " << DisSymName << " not in the section\n";
6708           return;
6709 	}
6710         continue;
6711       }
6712       // The __mh_execute_header is special and we need to deal with that fact
6713       // this symbol is before the start of the (__TEXT,__text) section and at the
6714       // address of the start of the __TEXT segment.  This is because this symbol
6715       // is an N_SECT symbol in the (__TEXT,__text) but its address is before the
6716       // start of the section in a standard MH_EXECUTE filetype.
6717       if (!DisSymName.empty() && DisSymName == "__mh_execute_header") {
6718         outs() << "-dis-symname: __mh_execute_header not in any section\n";
6719         return;
6720       }
6721       // When this code is trying to disassemble a symbol at a time and in the
6722       // case there is only the __mh_execute_header symbol left as in a stripped
6723       // executable, we need to deal with this by ignoring this symbol so the
6724       // whole section is disassembled and this symbol is then not displayed.
6725       if (SymName == "__mh_execute_header" || SymName == "__mh_dylib_header" ||
6726           SymName == "__mh_bundle_header" || SymName == "__mh_object_header" ||
6727           SymName == "__mh_preload_header" || SymName == "__mh_dylinker_header")
6728         continue;
6729 
6730       // If we are only disassembling one symbol see if this is that symbol.
6731       if (!DisSymName.empty() && DisSymName != SymName)
6732         continue;
6733 
6734       // Start at the address of the symbol relative to the section's address.
6735       uint64_t SectSize = Sections[SectIdx].getSize();
6736       uint64_t Start = Symbols[SymIdx].getValue();
6737       uint64_t SectionAddress = Sections[SectIdx].getAddress();
6738       Start -= SectionAddress;
6739 
6740       if (Start > SectSize) {
6741         outs() << "section data ends, " << SymName
6742                << " lies outside valid range\n";
6743         return;
6744       }
6745 
6746       // Stop disassembling either at the beginning of the next symbol or at
6747       // the end of the section.
6748       bool containsNextSym = false;
6749       uint64_t NextSym = 0;
6750       uint64_t NextSymIdx = SymIdx + 1;
6751       while (Symbols.size() > NextSymIdx) {
6752         Expected<SymbolRef::Type> STOrErr = Symbols[NextSymIdx].getType();
6753         if (!STOrErr) {
6754           std::string Buf;
6755           raw_string_ostream OS(Buf);
6756           logAllUnhandledErrors(STOrErr.takeError(), OS, "");
6757           OS.flush();
6758           report_fatal_error(Buf);
6759         }
6760         SymbolRef::Type NextSymType = *STOrErr;
6761         if (NextSymType == SymbolRef::ST_Function) {
6762           containsNextSym =
6763               Sections[SectIdx].containsSymbol(Symbols[NextSymIdx]);
6764           NextSym = Symbols[NextSymIdx].getValue();
6765           NextSym -= SectionAddress;
6766           break;
6767         }
6768         ++NextSymIdx;
6769       }
6770 
6771       uint64_t End = containsNextSym ? std::min(NextSym, SectSize) : SectSize;
6772       uint64_t Size;
6773 
6774       symbolTableWorked = true;
6775 
6776       DataRefImpl Symb = Symbols[SymIdx].getRawDataRefImpl();
6777       bool IsThumb = MachOOF->getSymbolFlags(Symb) & SymbolRef::SF_Thumb;
6778 
6779       // We only need the dedicated Thumb target if there's a real choice
6780       // (i.e. we're not targeting M-class) and the function is Thumb.
6781       bool UseThumbTarget = IsThumb && ThumbTarget;
6782 
6783       outs() << SymName << ":\n";
6784       DILineInfo lastLine;
6785       for (uint64_t Index = Start; Index < End; Index += Size) {
6786         MCInst Inst;
6787 
6788         uint64_t PC = SectAddress + Index;
6789         if (!NoLeadingAddr) {
6790           if (FullLeadingAddr) {
6791             if (MachOOF->is64Bit())
6792               outs() << format("%016" PRIx64, PC);
6793             else
6794               outs() << format("%08" PRIx64, PC);
6795           } else {
6796             outs() << format("%8" PRIx64 ":", PC);
6797           }
6798         }
6799         if (!NoShowRawInsn || Arch == Triple::arm)
6800           outs() << "\t";
6801 
6802         // Check the data in code table here to see if this is data not an
6803         // instruction to be disassembled.
6804         DiceTable Dice;
6805         Dice.push_back(std::make_pair(PC, DiceRef()));
6806         dice_table_iterator DTI =
6807             std::search(Dices.begin(), Dices.end(), Dice.begin(), Dice.end(),
6808                         compareDiceTableEntries);
6809         if (DTI != Dices.end()) {
6810           uint16_t Length;
6811           DTI->second.getLength(Length);
6812           uint16_t Kind;
6813           DTI->second.getKind(Kind);
6814           Size = DumpDataInCode(Bytes.data() + Index, Length, Kind);
6815           if ((Kind == MachO::DICE_KIND_JUMP_TABLE8) &&
6816               (PC == (DTI->first + Length - 1)) && (Length & 1))
6817             Size++;
6818           continue;
6819         }
6820 
6821         SmallVector<char, 64> AnnotationsBytes;
6822         raw_svector_ostream Annotations(AnnotationsBytes);
6823 
6824         bool gotInst;
6825         if (UseThumbTarget)
6826           gotInst = ThumbDisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
6827                                                 PC, DebugOut, Annotations);
6828         else
6829           gotInst = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), PC,
6830                                            DebugOut, Annotations);
6831         if (gotInst) {
6832           if (!NoShowRawInsn || Arch == Triple::arm) {
6833             dumpBytes(makeArrayRef(Bytes.data() + Index, Size), outs());
6834           }
6835           formatted_raw_ostream FormattedOS(outs());
6836           StringRef AnnotationsStr = Annotations.str();
6837           if (UseThumbTarget)
6838             ThumbIP->printInst(&Inst, FormattedOS, AnnotationsStr, *ThumbSTI);
6839           else
6840             IP->printInst(&Inst, FormattedOS, AnnotationsStr, *STI);
6841           emitComments(CommentStream, CommentsToEmit, FormattedOS, *AsmInfo);
6842 
6843           // Print debug info.
6844           if (diContext) {
6845             DILineInfo dli = diContext->getLineInfoForAddress(PC);
6846             // Print valid line info if it changed.
6847             if (dli != lastLine && dli.Line != 0)
6848               outs() << "\t## " << dli.FileName << ':' << dli.Line << ':'
6849                      << dli.Column;
6850             lastLine = dli;
6851           }
6852           outs() << "\n";
6853         } else {
6854           unsigned int Arch = MachOOF->getArch();
6855           if (Arch == Triple::x86_64 || Arch == Triple::x86) {
6856             outs() << format("\t.byte 0x%02x #bad opcode\n",
6857                              *(Bytes.data() + Index) & 0xff);
6858             Size = 1; // skip exactly one illegible byte and move on.
6859           } else if (Arch == Triple::aarch64 ||
6860                      (Arch == Triple::arm && !IsThumb)) {
6861             uint32_t opcode = (*(Bytes.data() + Index) & 0xff) |
6862                               (*(Bytes.data() + Index + 1) & 0xff) << 8 |
6863                               (*(Bytes.data() + Index + 2) & 0xff) << 16 |
6864                               (*(Bytes.data() + Index + 3) & 0xff) << 24;
6865             outs() << format("\t.long\t0x%08x\n", opcode);
6866             Size = 4;
6867           } else if (Arch == Triple::arm) {
6868             assert(IsThumb && "ARM mode should have been dealt with above");
6869             uint32_t opcode = (*(Bytes.data() + Index) & 0xff) |
6870                               (*(Bytes.data() + Index + 1) & 0xff) << 8;
6871             outs() << format("\t.short\t0x%04x\n", opcode);
6872             Size = 2;
6873           } else{
6874             errs() << "llvm-objdump: warning: invalid instruction encoding\n";
6875             if (Size == 0)
6876               Size = 1; // skip illegible bytes
6877           }
6878         }
6879       }
6880     }
6881     if (!symbolTableWorked) {
6882       // Reading the symbol table didn't work, disassemble the whole section.
6883       uint64_t SectAddress = Sections[SectIdx].getAddress();
6884       uint64_t SectSize = Sections[SectIdx].getSize();
6885       uint64_t InstSize;
6886       for (uint64_t Index = 0; Index < SectSize; Index += InstSize) {
6887         MCInst Inst;
6888 
6889         uint64_t PC = SectAddress + Index;
6890         if (DisAsm->getInstruction(Inst, InstSize, Bytes.slice(Index), PC,
6891                                    DebugOut, nulls())) {
6892           if (!NoLeadingAddr) {
6893             if (FullLeadingAddr) {
6894               if (MachOOF->is64Bit())
6895                 outs() << format("%016" PRIx64, PC);
6896               else
6897                 outs() << format("%08" PRIx64, PC);
6898             } else {
6899               outs() << format("%8" PRIx64 ":", PC);
6900             }
6901           }
6902           if (!NoShowRawInsn || Arch == Triple::arm) {
6903             outs() << "\t";
6904             dumpBytes(makeArrayRef(Bytes.data() + Index, InstSize), outs());
6905           }
6906           IP->printInst(&Inst, outs(), "", *STI);
6907           outs() << "\n";
6908         } else {
6909           unsigned int Arch = MachOOF->getArch();
6910           if (Arch == Triple::x86_64 || Arch == Triple::x86) {
6911             outs() << format("\t.byte 0x%02x #bad opcode\n",
6912                              *(Bytes.data() + Index) & 0xff);
6913             InstSize = 1; // skip exactly one illegible byte and move on.
6914           } else {
6915             errs() << "llvm-objdump: warning: invalid instruction encoding\n";
6916             if (InstSize == 0)
6917               InstSize = 1; // skip illegible bytes
6918           }
6919         }
6920       }
6921     }
6922     // The TripleName's need to be reset if we are called again for a different
6923     // archtecture.
6924     TripleName = "";
6925     ThumbTripleName = "";
6926 
6927     if (SymbolizerInfo.method != nullptr)
6928       free(SymbolizerInfo.method);
6929     if (SymbolizerInfo.demangled_name != nullptr)
6930       free(SymbolizerInfo.demangled_name);
6931     if (SymbolizerInfo.bindtable != nullptr)
6932       delete SymbolizerInfo.bindtable;
6933     if (ThumbSymbolizerInfo.method != nullptr)
6934       free(ThumbSymbolizerInfo.method);
6935     if (ThumbSymbolizerInfo.demangled_name != nullptr)
6936       free(ThumbSymbolizerInfo.demangled_name);
6937     if (ThumbSymbolizerInfo.bindtable != nullptr)
6938       delete ThumbSymbolizerInfo.bindtable;
6939   }
6940 }
6941 
6942 //===----------------------------------------------------------------------===//
6943 // __compact_unwind section dumping
6944 //===----------------------------------------------------------------------===//
6945 
6946 namespace {
6947 
6948 template <typename T> static uint64_t readNext(const char *&Buf) {
6949   using llvm::support::little;
6950   using llvm::support::unaligned;
6951 
6952   uint64_t Val = support::endian::read<T, little, unaligned>(Buf);
6953   Buf += sizeof(T);
6954   return Val;
6955 }
6956 
6957 struct CompactUnwindEntry {
6958   uint32_t OffsetInSection;
6959 
6960   uint64_t FunctionAddr;
6961   uint32_t Length;
6962   uint32_t CompactEncoding;
6963   uint64_t PersonalityAddr;
6964   uint64_t LSDAAddr;
6965 
6966   RelocationRef FunctionReloc;
6967   RelocationRef PersonalityReloc;
6968   RelocationRef LSDAReloc;
6969 
6970   CompactUnwindEntry(StringRef Contents, unsigned Offset, bool Is64)
6971       : OffsetInSection(Offset) {
6972     if (Is64)
6973       read<uint64_t>(Contents.data() + Offset);
6974     else
6975       read<uint32_t>(Contents.data() + Offset);
6976   }
6977 
6978 private:
6979   template <typename UIntPtr> void read(const char *Buf) {
6980     FunctionAddr = readNext<UIntPtr>(Buf);
6981     Length = readNext<uint32_t>(Buf);
6982     CompactEncoding = readNext<uint32_t>(Buf);
6983     PersonalityAddr = readNext<UIntPtr>(Buf);
6984     LSDAAddr = readNext<UIntPtr>(Buf);
6985   }
6986 };
6987 }
6988 
6989 /// Given a relocation from __compact_unwind, consisting of the RelocationRef
6990 /// and data being relocated, determine the best base Name and Addend to use for
6991 /// display purposes.
6992 ///
6993 /// 1. An Extern relocation will directly reference a symbol (and the data is
6994 ///    then already an addend), so use that.
6995 /// 2. Otherwise the data is an offset in the object file's layout; try to find
6996 //     a symbol before it in the same section, and use the offset from there.
6997 /// 3. Finally, if all that fails, fall back to an offset from the start of the
6998 ///    referenced section.
6999 static void findUnwindRelocNameAddend(const MachOObjectFile *Obj,
7000                                       std::map<uint64_t, SymbolRef> &Symbols,
7001                                       const RelocationRef &Reloc, uint64_t Addr,
7002                                       StringRef &Name, uint64_t &Addend) {
7003   if (Reloc.getSymbol() != Obj->symbol_end()) {
7004     Expected<StringRef> NameOrErr = Reloc.getSymbol()->getName();
7005     if (!NameOrErr) {
7006       std::string Buf;
7007       raw_string_ostream OS(Buf);
7008       logAllUnhandledErrors(NameOrErr.takeError(), OS, "");
7009       OS.flush();
7010       report_fatal_error(Buf);
7011     }
7012     Name = *NameOrErr;
7013     Addend = Addr;
7014     return;
7015   }
7016 
7017   auto RE = Obj->getRelocation(Reloc.getRawDataRefImpl());
7018   SectionRef RelocSection = Obj->getAnyRelocationSection(RE);
7019 
7020   uint64_t SectionAddr = RelocSection.getAddress();
7021 
7022   auto Sym = Symbols.upper_bound(Addr);
7023   if (Sym == Symbols.begin()) {
7024     // The first symbol in the object is after this reference, the best we can
7025     // do is section-relative notation.
7026     RelocSection.getName(Name);
7027     Addend = Addr - SectionAddr;
7028     return;
7029   }
7030 
7031   // Go back one so that SymbolAddress <= Addr.
7032   --Sym;
7033 
7034   auto SectOrErr = Sym->second.getSection();
7035   if (!SectOrErr) {
7036     std::string Buf;
7037     raw_string_ostream OS(Buf);
7038     logAllUnhandledErrors(SectOrErr.takeError(), OS, "");
7039     OS.flush();
7040     report_fatal_error(Buf);
7041   }
7042   section_iterator SymSection = *SectOrErr;
7043   if (RelocSection == *SymSection) {
7044     // There's a valid symbol in the same section before this reference.
7045     Expected<StringRef> NameOrErr = Sym->second.getName();
7046     if (!NameOrErr) {
7047       std::string Buf;
7048       raw_string_ostream OS(Buf);
7049       logAllUnhandledErrors(NameOrErr.takeError(), OS, "");
7050       OS.flush();
7051       report_fatal_error(Buf);
7052     }
7053     Name = *NameOrErr;
7054     Addend = Addr - Sym->first;
7055     return;
7056   }
7057 
7058   // There is a symbol before this reference, but it's in a different
7059   // section. Probably not helpful to mention it, so use the section name.
7060   RelocSection.getName(Name);
7061   Addend = Addr - SectionAddr;
7062 }
7063 
7064 static void printUnwindRelocDest(const MachOObjectFile *Obj,
7065                                  std::map<uint64_t, SymbolRef> &Symbols,
7066                                  const RelocationRef &Reloc, uint64_t Addr) {
7067   StringRef Name;
7068   uint64_t Addend;
7069 
7070   if (!Reloc.getObject())
7071     return;
7072 
7073   findUnwindRelocNameAddend(Obj, Symbols, Reloc, Addr, Name, Addend);
7074 
7075   outs() << Name;
7076   if (Addend)
7077     outs() << " + " << format("0x%" PRIx64, Addend);
7078 }
7079 
7080 static void
7081 printMachOCompactUnwindSection(const MachOObjectFile *Obj,
7082                                std::map<uint64_t, SymbolRef> &Symbols,
7083                                const SectionRef &CompactUnwind) {
7084 
7085   assert(Obj->isLittleEndian() &&
7086          "There should not be a big-endian .o with __compact_unwind");
7087 
7088   bool Is64 = Obj->is64Bit();
7089   uint32_t PointerSize = Is64 ? sizeof(uint64_t) : sizeof(uint32_t);
7090   uint32_t EntrySize = 3 * PointerSize + 2 * sizeof(uint32_t);
7091 
7092   StringRef Contents;
7093   CompactUnwind.getContents(Contents);
7094 
7095   SmallVector<CompactUnwindEntry, 4> CompactUnwinds;
7096 
7097   // First populate the initial raw offsets, encodings and so on from the entry.
7098   for (unsigned Offset = 0; Offset < Contents.size(); Offset += EntrySize) {
7099     CompactUnwindEntry Entry(Contents.data(), Offset, Is64);
7100     CompactUnwinds.push_back(Entry);
7101   }
7102 
7103   // Next we need to look at the relocations to find out what objects are
7104   // actually being referred to.
7105   for (const RelocationRef &Reloc : CompactUnwind.relocations()) {
7106     uint64_t RelocAddress = Reloc.getOffset();
7107 
7108     uint32_t EntryIdx = RelocAddress / EntrySize;
7109     uint32_t OffsetInEntry = RelocAddress - EntryIdx * EntrySize;
7110     CompactUnwindEntry &Entry = CompactUnwinds[EntryIdx];
7111 
7112     if (OffsetInEntry == 0)
7113       Entry.FunctionReloc = Reloc;
7114     else if (OffsetInEntry == PointerSize + 2 * sizeof(uint32_t))
7115       Entry.PersonalityReloc = Reloc;
7116     else if (OffsetInEntry == 2 * PointerSize + 2 * sizeof(uint32_t))
7117       Entry.LSDAReloc = Reloc;
7118     else
7119       llvm_unreachable("Unexpected relocation in __compact_unwind section");
7120   }
7121 
7122   // Finally, we're ready to print the data we've gathered.
7123   outs() << "Contents of __compact_unwind section:\n";
7124   for (auto &Entry : CompactUnwinds) {
7125     outs() << "  Entry at offset "
7126            << format("0x%" PRIx32, Entry.OffsetInSection) << ":\n";
7127 
7128     // 1. Start of the region this entry applies to.
7129     outs() << "    start:                " << format("0x%" PRIx64,
7130                                                      Entry.FunctionAddr) << ' ';
7131     printUnwindRelocDest(Obj, Symbols, Entry.FunctionReloc, Entry.FunctionAddr);
7132     outs() << '\n';
7133 
7134     // 2. Length of the region this entry applies to.
7135     outs() << "    length:               " << format("0x%" PRIx32, Entry.Length)
7136            << '\n';
7137     // 3. The 32-bit compact encoding.
7138     outs() << "    compact encoding:     "
7139            << format("0x%08" PRIx32, Entry.CompactEncoding) << '\n';
7140 
7141     // 4. The personality function, if present.
7142     if (Entry.PersonalityReloc.getObject()) {
7143       outs() << "    personality function: "
7144              << format("0x%" PRIx64, Entry.PersonalityAddr) << ' ';
7145       printUnwindRelocDest(Obj, Symbols, Entry.PersonalityReloc,
7146                            Entry.PersonalityAddr);
7147       outs() << '\n';
7148     }
7149 
7150     // 5. This entry's language-specific data area.
7151     if (Entry.LSDAReloc.getObject()) {
7152       outs() << "    LSDA:                 " << format("0x%" PRIx64,
7153                                                        Entry.LSDAAddr) << ' ';
7154       printUnwindRelocDest(Obj, Symbols, Entry.LSDAReloc, Entry.LSDAAddr);
7155       outs() << '\n';
7156     }
7157   }
7158 }
7159 
7160 //===----------------------------------------------------------------------===//
7161 // __unwind_info section dumping
7162 //===----------------------------------------------------------------------===//
7163 
7164 static void printRegularSecondLevelUnwindPage(const char *PageStart) {
7165   const char *Pos = PageStart;
7166   uint32_t Kind = readNext<uint32_t>(Pos);
7167   (void)Kind;
7168   assert(Kind == 2 && "kind for a regular 2nd level index should be 2");
7169 
7170   uint16_t EntriesStart = readNext<uint16_t>(Pos);
7171   uint16_t NumEntries = readNext<uint16_t>(Pos);
7172 
7173   Pos = PageStart + EntriesStart;
7174   for (unsigned i = 0; i < NumEntries; ++i) {
7175     uint32_t FunctionOffset = readNext<uint32_t>(Pos);
7176     uint32_t Encoding = readNext<uint32_t>(Pos);
7177 
7178     outs() << "      [" << i << "]: "
7179            << "function offset=" << format("0x%08" PRIx32, FunctionOffset)
7180            << ", "
7181            << "encoding=" << format("0x%08" PRIx32, Encoding) << '\n';
7182   }
7183 }
7184 
7185 static void printCompressedSecondLevelUnwindPage(
7186     const char *PageStart, uint32_t FunctionBase,
7187     const SmallVectorImpl<uint32_t> &CommonEncodings) {
7188   const char *Pos = PageStart;
7189   uint32_t Kind = readNext<uint32_t>(Pos);
7190   (void)Kind;
7191   assert(Kind == 3 && "kind for a compressed 2nd level index should be 3");
7192 
7193   uint16_t EntriesStart = readNext<uint16_t>(Pos);
7194   uint16_t NumEntries = readNext<uint16_t>(Pos);
7195 
7196   uint16_t EncodingsStart = readNext<uint16_t>(Pos);
7197   readNext<uint16_t>(Pos);
7198   const auto *PageEncodings = reinterpret_cast<const support::ulittle32_t *>(
7199       PageStart + EncodingsStart);
7200 
7201   Pos = PageStart + EntriesStart;
7202   for (unsigned i = 0; i < NumEntries; ++i) {
7203     uint32_t Entry = readNext<uint32_t>(Pos);
7204     uint32_t FunctionOffset = FunctionBase + (Entry & 0xffffff);
7205     uint32_t EncodingIdx = Entry >> 24;
7206 
7207     uint32_t Encoding;
7208     if (EncodingIdx < CommonEncodings.size())
7209       Encoding = CommonEncodings[EncodingIdx];
7210     else
7211       Encoding = PageEncodings[EncodingIdx - CommonEncodings.size()];
7212 
7213     outs() << "      [" << i << "]: "
7214            << "function offset=" << format("0x%08" PRIx32, FunctionOffset)
7215            << ", "
7216            << "encoding[" << EncodingIdx
7217            << "]=" << format("0x%08" PRIx32, Encoding) << '\n';
7218   }
7219 }
7220 
7221 static void printMachOUnwindInfoSection(const MachOObjectFile *Obj,
7222                                         std::map<uint64_t, SymbolRef> &Symbols,
7223                                         const SectionRef &UnwindInfo) {
7224 
7225   assert(Obj->isLittleEndian() &&
7226          "There should not be a big-endian .o with __unwind_info");
7227 
7228   outs() << "Contents of __unwind_info section:\n";
7229 
7230   StringRef Contents;
7231   UnwindInfo.getContents(Contents);
7232   const char *Pos = Contents.data();
7233 
7234   //===----------------------------------
7235   // Section header
7236   //===----------------------------------
7237 
7238   uint32_t Version = readNext<uint32_t>(Pos);
7239   outs() << "  Version:                                   "
7240          << format("0x%" PRIx32, Version) << '\n';
7241   assert(Version == 1 && "only understand version 1");
7242 
7243   uint32_t CommonEncodingsStart = readNext<uint32_t>(Pos);
7244   outs() << "  Common encodings array section offset:     "
7245          << format("0x%" PRIx32, CommonEncodingsStart) << '\n';
7246   uint32_t NumCommonEncodings = readNext<uint32_t>(Pos);
7247   outs() << "  Number of common encodings in array:       "
7248          << format("0x%" PRIx32, NumCommonEncodings) << '\n';
7249 
7250   uint32_t PersonalitiesStart = readNext<uint32_t>(Pos);
7251   outs() << "  Personality function array section offset: "
7252          << format("0x%" PRIx32, PersonalitiesStart) << '\n';
7253   uint32_t NumPersonalities = readNext<uint32_t>(Pos);
7254   outs() << "  Number of personality functions in array:  "
7255          << format("0x%" PRIx32, NumPersonalities) << '\n';
7256 
7257   uint32_t IndicesStart = readNext<uint32_t>(Pos);
7258   outs() << "  Index array section offset:                "
7259          << format("0x%" PRIx32, IndicesStart) << '\n';
7260   uint32_t NumIndices = readNext<uint32_t>(Pos);
7261   outs() << "  Number of indices in array:                "
7262          << format("0x%" PRIx32, NumIndices) << '\n';
7263 
7264   //===----------------------------------
7265   // A shared list of common encodings
7266   //===----------------------------------
7267 
7268   // These occupy indices in the range [0, N] whenever an encoding is referenced
7269   // from a compressed 2nd level index table. In practice the linker only
7270   // creates ~128 of these, so that indices are available to embed encodings in
7271   // the 2nd level index.
7272 
7273   SmallVector<uint32_t, 64> CommonEncodings;
7274   outs() << "  Common encodings: (count = " << NumCommonEncodings << ")\n";
7275   Pos = Contents.data() + CommonEncodingsStart;
7276   for (unsigned i = 0; i < NumCommonEncodings; ++i) {
7277     uint32_t Encoding = readNext<uint32_t>(Pos);
7278     CommonEncodings.push_back(Encoding);
7279 
7280     outs() << "    encoding[" << i << "]: " << format("0x%08" PRIx32, Encoding)
7281            << '\n';
7282   }
7283 
7284   //===----------------------------------
7285   // Personality functions used in this executable
7286   //===----------------------------------
7287 
7288   // There should be only a handful of these (one per source language,
7289   // roughly). Particularly since they only get 2 bits in the compact encoding.
7290 
7291   outs() << "  Personality functions: (count = " << NumPersonalities << ")\n";
7292   Pos = Contents.data() + PersonalitiesStart;
7293   for (unsigned i = 0; i < NumPersonalities; ++i) {
7294     uint32_t PersonalityFn = readNext<uint32_t>(Pos);
7295     outs() << "    personality[" << i + 1
7296            << "]: " << format("0x%08" PRIx32, PersonalityFn) << '\n';
7297   }
7298 
7299   //===----------------------------------
7300   // The level 1 index entries
7301   //===----------------------------------
7302 
7303   // These specify an approximate place to start searching for the more detailed
7304   // information, sorted by PC.
7305 
7306   struct IndexEntry {
7307     uint32_t FunctionOffset;
7308     uint32_t SecondLevelPageStart;
7309     uint32_t LSDAStart;
7310   };
7311 
7312   SmallVector<IndexEntry, 4> IndexEntries;
7313 
7314   outs() << "  Top level indices: (count = " << NumIndices << ")\n";
7315   Pos = Contents.data() + IndicesStart;
7316   for (unsigned i = 0; i < NumIndices; ++i) {
7317     IndexEntry Entry;
7318 
7319     Entry.FunctionOffset = readNext<uint32_t>(Pos);
7320     Entry.SecondLevelPageStart = readNext<uint32_t>(Pos);
7321     Entry.LSDAStart = readNext<uint32_t>(Pos);
7322     IndexEntries.push_back(Entry);
7323 
7324     outs() << "    [" << i << "]: "
7325            << "function offset=" << format("0x%08" PRIx32, Entry.FunctionOffset)
7326            << ", "
7327            << "2nd level page offset="
7328            << format("0x%08" PRIx32, Entry.SecondLevelPageStart) << ", "
7329            << "LSDA offset=" << format("0x%08" PRIx32, Entry.LSDAStart) << '\n';
7330   }
7331 
7332   //===----------------------------------
7333   // Next come the LSDA tables
7334   //===----------------------------------
7335 
7336   // The LSDA layout is rather implicit: it's a contiguous array of entries from
7337   // the first top-level index's LSDAOffset to the last (sentinel).
7338 
7339   outs() << "  LSDA descriptors:\n";
7340   Pos = Contents.data() + IndexEntries[0].LSDAStart;
7341   int NumLSDAs = (IndexEntries.back().LSDAStart - IndexEntries[0].LSDAStart) /
7342                  (2 * sizeof(uint32_t));
7343   for (int i = 0; i < NumLSDAs; ++i) {
7344     uint32_t FunctionOffset = readNext<uint32_t>(Pos);
7345     uint32_t LSDAOffset = readNext<uint32_t>(Pos);
7346     outs() << "    [" << i << "]: "
7347            << "function offset=" << format("0x%08" PRIx32, FunctionOffset)
7348            << ", "
7349            << "LSDA offset=" << format("0x%08" PRIx32, LSDAOffset) << '\n';
7350   }
7351 
7352   //===----------------------------------
7353   // Finally, the 2nd level indices
7354   //===----------------------------------
7355 
7356   // Generally these are 4K in size, and have 2 possible forms:
7357   //   + Regular stores up to 511 entries with disparate encodings
7358   //   + Compressed stores up to 1021 entries if few enough compact encoding
7359   //     values are used.
7360   outs() << "  Second level indices:\n";
7361   for (unsigned i = 0; i < IndexEntries.size() - 1; ++i) {
7362     // The final sentinel top-level index has no associated 2nd level page
7363     if (IndexEntries[i].SecondLevelPageStart == 0)
7364       break;
7365 
7366     outs() << "    Second level index[" << i << "]: "
7367            << "offset in section="
7368            << format("0x%08" PRIx32, IndexEntries[i].SecondLevelPageStart)
7369            << ", "
7370            << "base function offset="
7371            << format("0x%08" PRIx32, IndexEntries[i].FunctionOffset) << '\n';
7372 
7373     Pos = Contents.data() + IndexEntries[i].SecondLevelPageStart;
7374     uint32_t Kind = *reinterpret_cast<const support::ulittle32_t *>(Pos);
7375     if (Kind == 2)
7376       printRegularSecondLevelUnwindPage(Pos);
7377     else if (Kind == 3)
7378       printCompressedSecondLevelUnwindPage(Pos, IndexEntries[i].FunctionOffset,
7379                                            CommonEncodings);
7380     else
7381       llvm_unreachable("Do not know how to print this kind of 2nd level page");
7382   }
7383 }
7384 
7385 void llvm::printMachOUnwindInfo(const MachOObjectFile *Obj) {
7386   std::map<uint64_t, SymbolRef> Symbols;
7387   for (const SymbolRef &SymRef : Obj->symbols()) {
7388     // Discard any undefined or absolute symbols. They're not going to take part
7389     // in the convenience lookup for unwind info and just take up resources.
7390     auto SectOrErr = SymRef.getSection();
7391     if (!SectOrErr) {
7392       // TODO: Actually report errors helpfully.
7393       consumeError(SectOrErr.takeError());
7394       continue;
7395     }
7396     section_iterator Section = *SectOrErr;
7397     if (Section == Obj->section_end())
7398       continue;
7399 
7400     uint64_t Addr = SymRef.getValue();
7401     Symbols.insert(std::make_pair(Addr, SymRef));
7402   }
7403 
7404   for (const SectionRef &Section : Obj->sections()) {
7405     StringRef SectName;
7406     Section.getName(SectName);
7407     if (SectName == "__compact_unwind")
7408       printMachOCompactUnwindSection(Obj, Symbols, Section);
7409     else if (SectName == "__unwind_info")
7410       printMachOUnwindInfoSection(Obj, Symbols, Section);
7411   }
7412 }
7413 
7414 static void PrintMachHeader(uint32_t magic, uint32_t cputype,
7415                             uint32_t cpusubtype, uint32_t filetype,
7416                             uint32_t ncmds, uint32_t sizeofcmds, uint32_t flags,
7417                             bool verbose) {
7418   outs() << "Mach header\n";
7419   outs() << "      magic cputype cpusubtype  caps    filetype ncmds "
7420             "sizeofcmds      flags\n";
7421   if (verbose) {
7422     if (magic == MachO::MH_MAGIC)
7423       outs() << "   MH_MAGIC";
7424     else if (magic == MachO::MH_MAGIC_64)
7425       outs() << "MH_MAGIC_64";
7426     else
7427       outs() << format(" 0x%08" PRIx32, magic);
7428     switch (cputype) {
7429     case MachO::CPU_TYPE_I386:
7430       outs() << "    I386";
7431       switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7432       case MachO::CPU_SUBTYPE_I386_ALL:
7433         outs() << "        ALL";
7434         break;
7435       default:
7436         outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7437         break;
7438       }
7439       break;
7440     case MachO::CPU_TYPE_X86_64:
7441       outs() << "  X86_64";
7442       switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7443       case MachO::CPU_SUBTYPE_X86_64_ALL:
7444         outs() << "        ALL";
7445         break;
7446       case MachO::CPU_SUBTYPE_X86_64_H:
7447         outs() << "    Haswell";
7448         break;
7449       default:
7450         outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7451         break;
7452       }
7453       break;
7454     case MachO::CPU_TYPE_ARM:
7455       outs() << "     ARM";
7456       switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7457       case MachO::CPU_SUBTYPE_ARM_ALL:
7458         outs() << "        ALL";
7459         break;
7460       case MachO::CPU_SUBTYPE_ARM_V4T:
7461         outs() << "        V4T";
7462         break;
7463       case MachO::CPU_SUBTYPE_ARM_V5TEJ:
7464         outs() << "      V5TEJ";
7465         break;
7466       case MachO::CPU_SUBTYPE_ARM_XSCALE:
7467         outs() << "     XSCALE";
7468         break;
7469       case MachO::CPU_SUBTYPE_ARM_V6:
7470         outs() << "         V6";
7471         break;
7472       case MachO::CPU_SUBTYPE_ARM_V6M:
7473         outs() << "        V6M";
7474         break;
7475       case MachO::CPU_SUBTYPE_ARM_V7:
7476         outs() << "         V7";
7477         break;
7478       case MachO::CPU_SUBTYPE_ARM_V7EM:
7479         outs() << "       V7EM";
7480         break;
7481       case MachO::CPU_SUBTYPE_ARM_V7K:
7482         outs() << "        V7K";
7483         break;
7484       case MachO::CPU_SUBTYPE_ARM_V7M:
7485         outs() << "        V7M";
7486         break;
7487       case MachO::CPU_SUBTYPE_ARM_V7S:
7488         outs() << "        V7S";
7489         break;
7490       default:
7491         outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7492         break;
7493       }
7494       break;
7495     case MachO::CPU_TYPE_ARM64:
7496       outs() << "   ARM64";
7497       switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7498       case MachO::CPU_SUBTYPE_ARM64_ALL:
7499         outs() << "        ALL";
7500         break;
7501       default:
7502         outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7503         break;
7504       }
7505       break;
7506     case MachO::CPU_TYPE_POWERPC:
7507       outs() << "     PPC";
7508       switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7509       case MachO::CPU_SUBTYPE_POWERPC_ALL:
7510         outs() << "        ALL";
7511         break;
7512       default:
7513         outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7514         break;
7515       }
7516       break;
7517     case MachO::CPU_TYPE_POWERPC64:
7518       outs() << "   PPC64";
7519       switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7520       case MachO::CPU_SUBTYPE_POWERPC_ALL:
7521         outs() << "        ALL";
7522         break;
7523       default:
7524         outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7525         break;
7526       }
7527       break;
7528     default:
7529       outs() << format(" %7d", cputype);
7530       outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7531       break;
7532     }
7533     if ((cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64) {
7534       outs() << " LIB64";
7535     } else {
7536       outs() << format("  0x%02" PRIx32,
7537                        (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
7538     }
7539     switch (filetype) {
7540     case MachO::MH_OBJECT:
7541       outs() << "      OBJECT";
7542       break;
7543     case MachO::MH_EXECUTE:
7544       outs() << "     EXECUTE";
7545       break;
7546     case MachO::MH_FVMLIB:
7547       outs() << "      FVMLIB";
7548       break;
7549     case MachO::MH_CORE:
7550       outs() << "        CORE";
7551       break;
7552     case MachO::MH_PRELOAD:
7553       outs() << "     PRELOAD";
7554       break;
7555     case MachO::MH_DYLIB:
7556       outs() << "       DYLIB";
7557       break;
7558     case MachO::MH_DYLIB_STUB:
7559       outs() << "  DYLIB_STUB";
7560       break;
7561     case MachO::MH_DYLINKER:
7562       outs() << "    DYLINKER";
7563       break;
7564     case MachO::MH_BUNDLE:
7565       outs() << "      BUNDLE";
7566       break;
7567     case MachO::MH_DSYM:
7568       outs() << "        DSYM";
7569       break;
7570     case MachO::MH_KEXT_BUNDLE:
7571       outs() << "  KEXTBUNDLE";
7572       break;
7573     default:
7574       outs() << format("  %10u", filetype);
7575       break;
7576     }
7577     outs() << format(" %5u", ncmds);
7578     outs() << format(" %10u", sizeofcmds);
7579     uint32_t f = flags;
7580     if (f & MachO::MH_NOUNDEFS) {
7581       outs() << "   NOUNDEFS";
7582       f &= ~MachO::MH_NOUNDEFS;
7583     }
7584     if (f & MachO::MH_INCRLINK) {
7585       outs() << " INCRLINK";
7586       f &= ~MachO::MH_INCRLINK;
7587     }
7588     if (f & MachO::MH_DYLDLINK) {
7589       outs() << " DYLDLINK";
7590       f &= ~MachO::MH_DYLDLINK;
7591     }
7592     if (f & MachO::MH_BINDATLOAD) {
7593       outs() << " BINDATLOAD";
7594       f &= ~MachO::MH_BINDATLOAD;
7595     }
7596     if (f & MachO::MH_PREBOUND) {
7597       outs() << " PREBOUND";
7598       f &= ~MachO::MH_PREBOUND;
7599     }
7600     if (f & MachO::MH_SPLIT_SEGS) {
7601       outs() << " SPLIT_SEGS";
7602       f &= ~MachO::MH_SPLIT_SEGS;
7603     }
7604     if (f & MachO::MH_LAZY_INIT) {
7605       outs() << " LAZY_INIT";
7606       f &= ~MachO::MH_LAZY_INIT;
7607     }
7608     if (f & MachO::MH_TWOLEVEL) {
7609       outs() << " TWOLEVEL";
7610       f &= ~MachO::MH_TWOLEVEL;
7611     }
7612     if (f & MachO::MH_FORCE_FLAT) {
7613       outs() << " FORCE_FLAT";
7614       f &= ~MachO::MH_FORCE_FLAT;
7615     }
7616     if (f & MachO::MH_NOMULTIDEFS) {
7617       outs() << " NOMULTIDEFS";
7618       f &= ~MachO::MH_NOMULTIDEFS;
7619     }
7620     if (f & MachO::MH_NOFIXPREBINDING) {
7621       outs() << " NOFIXPREBINDING";
7622       f &= ~MachO::MH_NOFIXPREBINDING;
7623     }
7624     if (f & MachO::MH_PREBINDABLE) {
7625       outs() << " PREBINDABLE";
7626       f &= ~MachO::MH_PREBINDABLE;
7627     }
7628     if (f & MachO::MH_ALLMODSBOUND) {
7629       outs() << " ALLMODSBOUND";
7630       f &= ~MachO::MH_ALLMODSBOUND;
7631     }
7632     if (f & MachO::MH_SUBSECTIONS_VIA_SYMBOLS) {
7633       outs() << " SUBSECTIONS_VIA_SYMBOLS";
7634       f &= ~MachO::MH_SUBSECTIONS_VIA_SYMBOLS;
7635     }
7636     if (f & MachO::MH_CANONICAL) {
7637       outs() << " CANONICAL";
7638       f &= ~MachO::MH_CANONICAL;
7639     }
7640     if (f & MachO::MH_WEAK_DEFINES) {
7641       outs() << " WEAK_DEFINES";
7642       f &= ~MachO::MH_WEAK_DEFINES;
7643     }
7644     if (f & MachO::MH_BINDS_TO_WEAK) {
7645       outs() << " BINDS_TO_WEAK";
7646       f &= ~MachO::MH_BINDS_TO_WEAK;
7647     }
7648     if (f & MachO::MH_ALLOW_STACK_EXECUTION) {
7649       outs() << " ALLOW_STACK_EXECUTION";
7650       f &= ~MachO::MH_ALLOW_STACK_EXECUTION;
7651     }
7652     if (f & MachO::MH_DEAD_STRIPPABLE_DYLIB) {
7653       outs() << " DEAD_STRIPPABLE_DYLIB";
7654       f &= ~MachO::MH_DEAD_STRIPPABLE_DYLIB;
7655     }
7656     if (f & MachO::MH_PIE) {
7657       outs() << " PIE";
7658       f &= ~MachO::MH_PIE;
7659     }
7660     if (f & MachO::MH_NO_REEXPORTED_DYLIBS) {
7661       outs() << " NO_REEXPORTED_DYLIBS";
7662       f &= ~MachO::MH_NO_REEXPORTED_DYLIBS;
7663     }
7664     if (f & MachO::MH_HAS_TLV_DESCRIPTORS) {
7665       outs() << " MH_HAS_TLV_DESCRIPTORS";
7666       f &= ~MachO::MH_HAS_TLV_DESCRIPTORS;
7667     }
7668     if (f & MachO::MH_NO_HEAP_EXECUTION) {
7669       outs() << " MH_NO_HEAP_EXECUTION";
7670       f &= ~MachO::MH_NO_HEAP_EXECUTION;
7671     }
7672     if (f & MachO::MH_APP_EXTENSION_SAFE) {
7673       outs() << " APP_EXTENSION_SAFE";
7674       f &= ~MachO::MH_APP_EXTENSION_SAFE;
7675     }
7676     if (f != 0 || flags == 0)
7677       outs() << format(" 0x%08" PRIx32, f);
7678   } else {
7679     outs() << format(" 0x%08" PRIx32, magic);
7680     outs() << format(" %7d", cputype);
7681     outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7682     outs() << format("  0x%02" PRIx32,
7683                      (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
7684     outs() << format("  %10u", filetype);
7685     outs() << format(" %5u", ncmds);
7686     outs() << format(" %10u", sizeofcmds);
7687     outs() << format(" 0x%08" PRIx32, flags);
7688   }
7689   outs() << "\n";
7690 }
7691 
7692 static void PrintSegmentCommand(uint32_t cmd, uint32_t cmdsize,
7693                                 StringRef SegName, uint64_t vmaddr,
7694                                 uint64_t vmsize, uint64_t fileoff,
7695                                 uint64_t filesize, uint32_t maxprot,
7696                                 uint32_t initprot, uint32_t nsects,
7697                                 uint32_t flags, uint32_t object_size,
7698                                 bool verbose) {
7699   uint64_t expected_cmdsize;
7700   if (cmd == MachO::LC_SEGMENT) {
7701     outs() << "      cmd LC_SEGMENT\n";
7702     expected_cmdsize = nsects;
7703     expected_cmdsize *= sizeof(struct MachO::section);
7704     expected_cmdsize += sizeof(struct MachO::segment_command);
7705   } else {
7706     outs() << "      cmd LC_SEGMENT_64\n";
7707     expected_cmdsize = nsects;
7708     expected_cmdsize *= sizeof(struct MachO::section_64);
7709     expected_cmdsize += sizeof(struct MachO::segment_command_64);
7710   }
7711   outs() << "  cmdsize " << cmdsize;
7712   if (cmdsize != expected_cmdsize)
7713     outs() << " Inconsistent size\n";
7714   else
7715     outs() << "\n";
7716   outs() << "  segname " << SegName << "\n";
7717   if (cmd == MachO::LC_SEGMENT_64) {
7718     outs() << "   vmaddr " << format("0x%016" PRIx64, vmaddr) << "\n";
7719     outs() << "   vmsize " << format("0x%016" PRIx64, vmsize) << "\n";
7720   } else {
7721     outs() << "   vmaddr " << format("0x%08" PRIx64, vmaddr) << "\n";
7722     outs() << "   vmsize " << format("0x%08" PRIx64, vmsize) << "\n";
7723   }
7724   outs() << "  fileoff " << fileoff;
7725   if (fileoff > object_size)
7726     outs() << " (past end of file)\n";
7727   else
7728     outs() << "\n";
7729   outs() << " filesize " << filesize;
7730   if (fileoff + filesize > object_size)
7731     outs() << " (past end of file)\n";
7732   else
7733     outs() << "\n";
7734   if (verbose) {
7735     if ((maxprot &
7736          ~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE |
7737            MachO::VM_PROT_EXECUTE)) != 0)
7738       outs() << "  maxprot ?" << format("0x%08" PRIx32, maxprot) << "\n";
7739     else {
7740       outs() << "  maxprot ";
7741       outs() << ((maxprot & MachO::VM_PROT_READ) ? "r" : "-");
7742       outs() << ((maxprot & MachO::VM_PROT_WRITE) ? "w" : "-");
7743       outs() << ((maxprot & MachO::VM_PROT_EXECUTE) ? "x\n" : "-\n");
7744     }
7745     if ((initprot &
7746          ~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE |
7747            MachO::VM_PROT_EXECUTE)) != 0)
7748       outs() << "  initprot ?" << format("0x%08" PRIx32, initprot) << "\n";
7749     else {
7750       outs() << "  initprot ";
7751       outs() << ((initprot & MachO::VM_PROT_READ) ? "r" : "-");
7752       outs() << ((initprot & MachO::VM_PROT_WRITE) ? "w" : "-");
7753       outs() << ((initprot & MachO::VM_PROT_EXECUTE) ? "x\n" : "-\n");
7754     }
7755   } else {
7756     outs() << "  maxprot " << format("0x%08" PRIx32, maxprot) << "\n";
7757     outs() << " initprot " << format("0x%08" PRIx32, initprot) << "\n";
7758   }
7759   outs() << "   nsects " << nsects << "\n";
7760   if (verbose) {
7761     outs() << "    flags";
7762     if (flags == 0)
7763       outs() << " (none)\n";
7764     else {
7765       if (flags & MachO::SG_HIGHVM) {
7766         outs() << " HIGHVM";
7767         flags &= ~MachO::SG_HIGHVM;
7768       }
7769       if (flags & MachO::SG_FVMLIB) {
7770         outs() << " FVMLIB";
7771         flags &= ~MachO::SG_FVMLIB;
7772       }
7773       if (flags & MachO::SG_NORELOC) {
7774         outs() << " NORELOC";
7775         flags &= ~MachO::SG_NORELOC;
7776       }
7777       if (flags & MachO::SG_PROTECTED_VERSION_1) {
7778         outs() << " PROTECTED_VERSION_1";
7779         flags &= ~MachO::SG_PROTECTED_VERSION_1;
7780       }
7781       if (flags)
7782         outs() << format(" 0x%08" PRIx32, flags) << " (unknown flags)\n";
7783       else
7784         outs() << "\n";
7785     }
7786   } else {
7787     outs() << "    flags " << format("0x%" PRIx32, flags) << "\n";
7788   }
7789 }
7790 
7791 static void PrintSection(const char *sectname, const char *segname,
7792                          uint64_t addr, uint64_t size, uint32_t offset,
7793                          uint32_t align, uint32_t reloff, uint32_t nreloc,
7794                          uint32_t flags, uint32_t reserved1, uint32_t reserved2,
7795                          uint32_t cmd, const char *sg_segname,
7796                          uint32_t filetype, uint32_t object_size,
7797                          bool verbose) {
7798   outs() << "Section\n";
7799   outs() << "  sectname " << format("%.16s\n", sectname);
7800   outs() << "   segname " << format("%.16s", segname);
7801   if (filetype != MachO::MH_OBJECT && strncmp(sg_segname, segname, 16) != 0)
7802     outs() << " (does not match segment)\n";
7803   else
7804     outs() << "\n";
7805   if (cmd == MachO::LC_SEGMENT_64) {
7806     outs() << "      addr " << format("0x%016" PRIx64, addr) << "\n";
7807     outs() << "      size " << format("0x%016" PRIx64, size);
7808   } else {
7809     outs() << "      addr " << format("0x%08" PRIx64, addr) << "\n";
7810     outs() << "      size " << format("0x%08" PRIx64, size);
7811   }
7812   if ((flags & MachO::S_ZEROFILL) != 0 && offset + size > object_size)
7813     outs() << " (past end of file)\n";
7814   else
7815     outs() << "\n";
7816   outs() << "    offset " << offset;
7817   if (offset > object_size)
7818     outs() << " (past end of file)\n";
7819   else
7820     outs() << "\n";
7821   uint32_t align_shifted = 1 << align;
7822   outs() << "     align 2^" << align << " (" << align_shifted << ")\n";
7823   outs() << "    reloff " << reloff;
7824   if (reloff > object_size)
7825     outs() << " (past end of file)\n";
7826   else
7827     outs() << "\n";
7828   outs() << "    nreloc " << nreloc;
7829   if (reloff + nreloc * sizeof(struct MachO::relocation_info) > object_size)
7830     outs() << " (past end of file)\n";
7831   else
7832     outs() << "\n";
7833   uint32_t section_type = flags & MachO::SECTION_TYPE;
7834   if (verbose) {
7835     outs() << "      type";
7836     if (section_type == MachO::S_REGULAR)
7837       outs() << " S_REGULAR\n";
7838     else if (section_type == MachO::S_ZEROFILL)
7839       outs() << " S_ZEROFILL\n";
7840     else if (section_type == MachO::S_CSTRING_LITERALS)
7841       outs() << " S_CSTRING_LITERALS\n";
7842     else if (section_type == MachO::S_4BYTE_LITERALS)
7843       outs() << " S_4BYTE_LITERALS\n";
7844     else if (section_type == MachO::S_8BYTE_LITERALS)
7845       outs() << " S_8BYTE_LITERALS\n";
7846     else if (section_type == MachO::S_16BYTE_LITERALS)
7847       outs() << " S_16BYTE_LITERALS\n";
7848     else if (section_type == MachO::S_LITERAL_POINTERS)
7849       outs() << " S_LITERAL_POINTERS\n";
7850     else if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS)
7851       outs() << " S_NON_LAZY_SYMBOL_POINTERS\n";
7852     else if (section_type == MachO::S_LAZY_SYMBOL_POINTERS)
7853       outs() << " S_LAZY_SYMBOL_POINTERS\n";
7854     else if (section_type == MachO::S_SYMBOL_STUBS)
7855       outs() << " S_SYMBOL_STUBS\n";
7856     else if (section_type == MachO::S_MOD_INIT_FUNC_POINTERS)
7857       outs() << " S_MOD_INIT_FUNC_POINTERS\n";
7858     else if (section_type == MachO::S_MOD_TERM_FUNC_POINTERS)
7859       outs() << " S_MOD_TERM_FUNC_POINTERS\n";
7860     else if (section_type == MachO::S_COALESCED)
7861       outs() << " S_COALESCED\n";
7862     else if (section_type == MachO::S_INTERPOSING)
7863       outs() << " S_INTERPOSING\n";
7864     else if (section_type == MachO::S_DTRACE_DOF)
7865       outs() << " S_DTRACE_DOF\n";
7866     else if (section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS)
7867       outs() << " S_LAZY_DYLIB_SYMBOL_POINTERS\n";
7868     else if (section_type == MachO::S_THREAD_LOCAL_REGULAR)
7869       outs() << " S_THREAD_LOCAL_REGULAR\n";
7870     else if (section_type == MachO::S_THREAD_LOCAL_ZEROFILL)
7871       outs() << " S_THREAD_LOCAL_ZEROFILL\n";
7872     else if (section_type == MachO::S_THREAD_LOCAL_VARIABLES)
7873       outs() << " S_THREAD_LOCAL_VARIABLES\n";
7874     else if (section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS)
7875       outs() << " S_THREAD_LOCAL_VARIABLE_POINTERS\n";
7876     else if (section_type == MachO::S_THREAD_LOCAL_INIT_FUNCTION_POINTERS)
7877       outs() << " S_THREAD_LOCAL_INIT_FUNCTION_POINTERS\n";
7878     else
7879       outs() << format("0x%08" PRIx32, section_type) << "\n";
7880     outs() << "attributes";
7881     uint32_t section_attributes = flags & MachO::SECTION_ATTRIBUTES;
7882     if (section_attributes & MachO::S_ATTR_PURE_INSTRUCTIONS)
7883       outs() << " PURE_INSTRUCTIONS";
7884     if (section_attributes & MachO::S_ATTR_NO_TOC)
7885       outs() << " NO_TOC";
7886     if (section_attributes & MachO::S_ATTR_STRIP_STATIC_SYMS)
7887       outs() << " STRIP_STATIC_SYMS";
7888     if (section_attributes & MachO::S_ATTR_NO_DEAD_STRIP)
7889       outs() << " NO_DEAD_STRIP";
7890     if (section_attributes & MachO::S_ATTR_LIVE_SUPPORT)
7891       outs() << " LIVE_SUPPORT";
7892     if (section_attributes & MachO::S_ATTR_SELF_MODIFYING_CODE)
7893       outs() << " SELF_MODIFYING_CODE";
7894     if (section_attributes & MachO::S_ATTR_DEBUG)
7895       outs() << " DEBUG";
7896     if (section_attributes & MachO::S_ATTR_SOME_INSTRUCTIONS)
7897       outs() << " SOME_INSTRUCTIONS";
7898     if (section_attributes & MachO::S_ATTR_EXT_RELOC)
7899       outs() << " EXT_RELOC";
7900     if (section_attributes & MachO::S_ATTR_LOC_RELOC)
7901       outs() << " LOC_RELOC";
7902     if (section_attributes == 0)
7903       outs() << " (none)";
7904     outs() << "\n";
7905   } else
7906     outs() << "     flags " << format("0x%08" PRIx32, flags) << "\n";
7907   outs() << " reserved1 " << reserved1;
7908   if (section_type == MachO::S_SYMBOL_STUBS ||
7909       section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
7910       section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
7911       section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
7912       section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS)
7913     outs() << " (index into indirect symbol table)\n";
7914   else
7915     outs() << "\n";
7916   outs() << " reserved2 " << reserved2;
7917   if (section_type == MachO::S_SYMBOL_STUBS)
7918     outs() << " (size of stubs)\n";
7919   else
7920     outs() << "\n";
7921 }
7922 
7923 static void PrintSymtabLoadCommand(MachO::symtab_command st, bool Is64Bit,
7924                                    uint32_t object_size) {
7925   outs() << "     cmd LC_SYMTAB\n";
7926   outs() << " cmdsize " << st.cmdsize;
7927   if (st.cmdsize != sizeof(struct MachO::symtab_command))
7928     outs() << " Incorrect size\n";
7929   else
7930     outs() << "\n";
7931   outs() << "  symoff " << st.symoff;
7932   if (st.symoff > object_size)
7933     outs() << " (past end of file)\n";
7934   else
7935     outs() << "\n";
7936   outs() << "   nsyms " << st.nsyms;
7937   uint64_t big_size;
7938   if (Is64Bit) {
7939     big_size = st.nsyms;
7940     big_size *= sizeof(struct MachO::nlist_64);
7941     big_size += st.symoff;
7942     if (big_size > object_size)
7943       outs() << " (past end of file)\n";
7944     else
7945       outs() << "\n";
7946   } else {
7947     big_size = st.nsyms;
7948     big_size *= sizeof(struct MachO::nlist);
7949     big_size += st.symoff;
7950     if (big_size > object_size)
7951       outs() << " (past end of file)\n";
7952     else
7953       outs() << "\n";
7954   }
7955   outs() << "  stroff " << st.stroff;
7956   if (st.stroff > object_size)
7957     outs() << " (past end of file)\n";
7958   else
7959     outs() << "\n";
7960   outs() << " strsize " << st.strsize;
7961   big_size = st.stroff;
7962   big_size += st.strsize;
7963   if (big_size > object_size)
7964     outs() << " (past end of file)\n";
7965   else
7966     outs() << "\n";
7967 }
7968 
7969 static void PrintDysymtabLoadCommand(MachO::dysymtab_command dyst,
7970                                      uint32_t nsyms, uint32_t object_size,
7971                                      bool Is64Bit) {
7972   outs() << "            cmd LC_DYSYMTAB\n";
7973   outs() << "        cmdsize " << dyst.cmdsize;
7974   if (dyst.cmdsize != sizeof(struct MachO::dysymtab_command))
7975     outs() << " Incorrect size\n";
7976   else
7977     outs() << "\n";
7978   outs() << "      ilocalsym " << dyst.ilocalsym;
7979   if (dyst.ilocalsym > nsyms)
7980     outs() << " (greater than the number of symbols)\n";
7981   else
7982     outs() << "\n";
7983   outs() << "      nlocalsym " << dyst.nlocalsym;
7984   uint64_t big_size;
7985   big_size = dyst.ilocalsym;
7986   big_size += dyst.nlocalsym;
7987   if (big_size > nsyms)
7988     outs() << " (past the end of the symbol table)\n";
7989   else
7990     outs() << "\n";
7991   outs() << "     iextdefsym " << dyst.iextdefsym;
7992   if (dyst.iextdefsym > nsyms)
7993     outs() << " (greater than the number of symbols)\n";
7994   else
7995     outs() << "\n";
7996   outs() << "     nextdefsym " << dyst.nextdefsym;
7997   big_size = dyst.iextdefsym;
7998   big_size += dyst.nextdefsym;
7999   if (big_size > nsyms)
8000     outs() << " (past the end of the symbol table)\n";
8001   else
8002     outs() << "\n";
8003   outs() << "      iundefsym " << dyst.iundefsym;
8004   if (dyst.iundefsym > nsyms)
8005     outs() << " (greater than the number of symbols)\n";
8006   else
8007     outs() << "\n";
8008   outs() << "      nundefsym " << dyst.nundefsym;
8009   big_size = dyst.iundefsym;
8010   big_size += dyst.nundefsym;
8011   if (big_size > nsyms)
8012     outs() << " (past the end of the symbol table)\n";
8013   else
8014     outs() << "\n";
8015   outs() << "         tocoff " << dyst.tocoff;
8016   if (dyst.tocoff > object_size)
8017     outs() << " (past end of file)\n";
8018   else
8019     outs() << "\n";
8020   outs() << "           ntoc " << dyst.ntoc;
8021   big_size = dyst.ntoc;
8022   big_size *= sizeof(struct MachO::dylib_table_of_contents);
8023   big_size += dyst.tocoff;
8024   if (big_size > object_size)
8025     outs() << " (past end of file)\n";
8026   else
8027     outs() << "\n";
8028   outs() << "      modtaboff " << dyst.modtaboff;
8029   if (dyst.modtaboff > object_size)
8030     outs() << " (past end of file)\n";
8031   else
8032     outs() << "\n";
8033   outs() << "        nmodtab " << dyst.nmodtab;
8034   uint64_t modtabend;
8035   if (Is64Bit) {
8036     modtabend = dyst.nmodtab;
8037     modtabend *= sizeof(struct MachO::dylib_module_64);
8038     modtabend += dyst.modtaboff;
8039   } else {
8040     modtabend = dyst.nmodtab;
8041     modtabend *= sizeof(struct MachO::dylib_module);
8042     modtabend += dyst.modtaboff;
8043   }
8044   if (modtabend > object_size)
8045     outs() << " (past end of file)\n";
8046   else
8047     outs() << "\n";
8048   outs() << "   extrefsymoff " << dyst.extrefsymoff;
8049   if (dyst.extrefsymoff > object_size)
8050     outs() << " (past end of file)\n";
8051   else
8052     outs() << "\n";
8053   outs() << "    nextrefsyms " << dyst.nextrefsyms;
8054   big_size = dyst.nextrefsyms;
8055   big_size *= sizeof(struct MachO::dylib_reference);
8056   big_size += dyst.extrefsymoff;
8057   if (big_size > object_size)
8058     outs() << " (past end of file)\n";
8059   else
8060     outs() << "\n";
8061   outs() << " indirectsymoff " << dyst.indirectsymoff;
8062   if (dyst.indirectsymoff > object_size)
8063     outs() << " (past end of file)\n";
8064   else
8065     outs() << "\n";
8066   outs() << "  nindirectsyms " << dyst.nindirectsyms;
8067   big_size = dyst.nindirectsyms;
8068   big_size *= sizeof(uint32_t);
8069   big_size += dyst.indirectsymoff;
8070   if (big_size > object_size)
8071     outs() << " (past end of file)\n";
8072   else
8073     outs() << "\n";
8074   outs() << "      extreloff " << dyst.extreloff;
8075   if (dyst.extreloff > object_size)
8076     outs() << " (past end of file)\n";
8077   else
8078     outs() << "\n";
8079   outs() << "        nextrel " << dyst.nextrel;
8080   big_size = dyst.nextrel;
8081   big_size *= sizeof(struct MachO::relocation_info);
8082   big_size += dyst.extreloff;
8083   if (big_size > object_size)
8084     outs() << " (past end of file)\n";
8085   else
8086     outs() << "\n";
8087   outs() << "      locreloff " << dyst.locreloff;
8088   if (dyst.locreloff > object_size)
8089     outs() << " (past end of file)\n";
8090   else
8091     outs() << "\n";
8092   outs() << "        nlocrel " << dyst.nlocrel;
8093   big_size = dyst.nlocrel;
8094   big_size *= sizeof(struct MachO::relocation_info);
8095   big_size += dyst.locreloff;
8096   if (big_size > object_size)
8097     outs() << " (past end of file)\n";
8098   else
8099     outs() << "\n";
8100 }
8101 
8102 static void PrintDyldInfoLoadCommand(MachO::dyld_info_command dc,
8103                                      uint32_t object_size) {
8104   if (dc.cmd == MachO::LC_DYLD_INFO)
8105     outs() << "            cmd LC_DYLD_INFO\n";
8106   else
8107     outs() << "            cmd LC_DYLD_INFO_ONLY\n";
8108   outs() << "        cmdsize " << dc.cmdsize;
8109   if (dc.cmdsize != sizeof(struct MachO::dyld_info_command))
8110     outs() << " Incorrect size\n";
8111   else
8112     outs() << "\n";
8113   outs() << "     rebase_off " << dc.rebase_off;
8114   if (dc.rebase_off > object_size)
8115     outs() << " (past end of file)\n";
8116   else
8117     outs() << "\n";
8118   outs() << "    rebase_size " << dc.rebase_size;
8119   uint64_t big_size;
8120   big_size = dc.rebase_off;
8121   big_size += dc.rebase_size;
8122   if (big_size > object_size)
8123     outs() << " (past end of file)\n";
8124   else
8125     outs() << "\n";
8126   outs() << "       bind_off " << dc.bind_off;
8127   if (dc.bind_off > object_size)
8128     outs() << " (past end of file)\n";
8129   else
8130     outs() << "\n";
8131   outs() << "      bind_size " << dc.bind_size;
8132   big_size = dc.bind_off;
8133   big_size += dc.bind_size;
8134   if (big_size > object_size)
8135     outs() << " (past end of file)\n";
8136   else
8137     outs() << "\n";
8138   outs() << "  weak_bind_off " << dc.weak_bind_off;
8139   if (dc.weak_bind_off > object_size)
8140     outs() << " (past end of file)\n";
8141   else
8142     outs() << "\n";
8143   outs() << " weak_bind_size " << dc.weak_bind_size;
8144   big_size = dc.weak_bind_off;
8145   big_size += dc.weak_bind_size;
8146   if (big_size > object_size)
8147     outs() << " (past end of file)\n";
8148   else
8149     outs() << "\n";
8150   outs() << "  lazy_bind_off " << dc.lazy_bind_off;
8151   if (dc.lazy_bind_off > object_size)
8152     outs() << " (past end of file)\n";
8153   else
8154     outs() << "\n";
8155   outs() << " lazy_bind_size " << dc.lazy_bind_size;
8156   big_size = dc.lazy_bind_off;
8157   big_size += dc.lazy_bind_size;
8158   if (big_size > object_size)
8159     outs() << " (past end of file)\n";
8160   else
8161     outs() << "\n";
8162   outs() << "     export_off " << dc.export_off;
8163   if (dc.export_off > object_size)
8164     outs() << " (past end of file)\n";
8165   else
8166     outs() << "\n";
8167   outs() << "    export_size " << dc.export_size;
8168   big_size = dc.export_off;
8169   big_size += dc.export_size;
8170   if (big_size > object_size)
8171     outs() << " (past end of file)\n";
8172   else
8173     outs() << "\n";
8174 }
8175 
8176 static void PrintDyldLoadCommand(MachO::dylinker_command dyld,
8177                                  const char *Ptr) {
8178   if (dyld.cmd == MachO::LC_ID_DYLINKER)
8179     outs() << "          cmd LC_ID_DYLINKER\n";
8180   else if (dyld.cmd == MachO::LC_LOAD_DYLINKER)
8181     outs() << "          cmd LC_LOAD_DYLINKER\n";
8182   else if (dyld.cmd == MachO::LC_DYLD_ENVIRONMENT)
8183     outs() << "          cmd LC_DYLD_ENVIRONMENT\n";
8184   else
8185     outs() << "          cmd ?(" << dyld.cmd << ")\n";
8186   outs() << "      cmdsize " << dyld.cmdsize;
8187   if (dyld.cmdsize < sizeof(struct MachO::dylinker_command))
8188     outs() << " Incorrect size\n";
8189   else
8190     outs() << "\n";
8191   if (dyld.name >= dyld.cmdsize)
8192     outs() << "         name ?(bad offset " << dyld.name << ")\n";
8193   else {
8194     const char *P = (const char *)(Ptr) + dyld.name;
8195     outs() << "         name " << P << " (offset " << dyld.name << ")\n";
8196   }
8197 }
8198 
8199 static void PrintUuidLoadCommand(MachO::uuid_command uuid) {
8200   outs() << "     cmd LC_UUID\n";
8201   outs() << " cmdsize " << uuid.cmdsize;
8202   if (uuid.cmdsize != sizeof(struct MachO::uuid_command))
8203     outs() << " Incorrect size\n";
8204   else
8205     outs() << "\n";
8206   outs() << "    uuid ";
8207   for (int i = 0; i < 16; ++i) {
8208     outs() << format("%02" PRIX32, uuid.uuid[i]);
8209     if (i == 3 || i == 5 || i == 7 || i == 9)
8210       outs() << "-";
8211   }
8212   outs() << "\n";
8213 }
8214 
8215 static void PrintRpathLoadCommand(MachO::rpath_command rpath, const char *Ptr) {
8216   outs() << "          cmd LC_RPATH\n";
8217   outs() << "      cmdsize " << rpath.cmdsize;
8218   if (rpath.cmdsize < sizeof(struct MachO::rpath_command))
8219     outs() << " Incorrect size\n";
8220   else
8221     outs() << "\n";
8222   if (rpath.path >= rpath.cmdsize)
8223     outs() << "         path ?(bad offset " << rpath.path << ")\n";
8224   else {
8225     const char *P = (const char *)(Ptr) + rpath.path;
8226     outs() << "         path " << P << " (offset " << rpath.path << ")\n";
8227   }
8228 }
8229 
8230 static void PrintVersionMinLoadCommand(MachO::version_min_command vd) {
8231   StringRef LoadCmdName;
8232   switch (vd.cmd) {
8233   case MachO::LC_VERSION_MIN_MACOSX:
8234     LoadCmdName = "LC_VERSION_MIN_MACOSX";
8235     break;
8236   case MachO::LC_VERSION_MIN_IPHONEOS:
8237     LoadCmdName = "LC_VERSION_MIN_IPHONEOS";
8238     break;
8239   case MachO::LC_VERSION_MIN_TVOS:
8240     LoadCmdName = "LC_VERSION_MIN_TVOS";
8241     break;
8242   case MachO::LC_VERSION_MIN_WATCHOS:
8243     LoadCmdName = "LC_VERSION_MIN_WATCHOS";
8244     break;
8245   default:
8246     llvm_unreachable("Unknown version min load command");
8247   }
8248 
8249   outs() << "      cmd " << LoadCmdName << '\n';
8250   outs() << "  cmdsize " << vd.cmdsize;
8251   if (vd.cmdsize != sizeof(struct MachO::version_min_command))
8252     outs() << " Incorrect size\n";
8253   else
8254     outs() << "\n";
8255   outs() << "  version "
8256          << MachOObjectFile::getVersionMinMajor(vd, false) << "."
8257          << MachOObjectFile::getVersionMinMinor(vd, false);
8258   uint32_t Update = MachOObjectFile::getVersionMinUpdate(vd, false);
8259   if (Update != 0)
8260     outs() << "." << Update;
8261   outs() << "\n";
8262   if (vd.sdk == 0)
8263     outs() << "      sdk n/a";
8264   else {
8265     outs() << "      sdk "
8266            << MachOObjectFile::getVersionMinMajor(vd, true) << "."
8267            << MachOObjectFile::getVersionMinMinor(vd, true);
8268   }
8269   Update = MachOObjectFile::getVersionMinUpdate(vd, true);
8270   if (Update != 0)
8271     outs() << "." << Update;
8272   outs() << "\n";
8273 }
8274 
8275 static void PrintSourceVersionCommand(MachO::source_version_command sd) {
8276   outs() << "      cmd LC_SOURCE_VERSION\n";
8277   outs() << "  cmdsize " << sd.cmdsize;
8278   if (sd.cmdsize != sizeof(struct MachO::source_version_command))
8279     outs() << " Incorrect size\n";
8280   else
8281     outs() << "\n";
8282   uint64_t a = (sd.version >> 40) & 0xffffff;
8283   uint64_t b = (sd.version >> 30) & 0x3ff;
8284   uint64_t c = (sd.version >> 20) & 0x3ff;
8285   uint64_t d = (sd.version >> 10) & 0x3ff;
8286   uint64_t e = sd.version & 0x3ff;
8287   outs() << "  version " << a << "." << b;
8288   if (e != 0)
8289     outs() << "." << c << "." << d << "." << e;
8290   else if (d != 0)
8291     outs() << "." << c << "." << d;
8292   else if (c != 0)
8293     outs() << "." << c;
8294   outs() << "\n";
8295 }
8296 
8297 static void PrintEntryPointCommand(MachO::entry_point_command ep) {
8298   outs() << "       cmd LC_MAIN\n";
8299   outs() << "   cmdsize " << ep.cmdsize;
8300   if (ep.cmdsize != sizeof(struct MachO::entry_point_command))
8301     outs() << " Incorrect size\n";
8302   else
8303     outs() << "\n";
8304   outs() << "  entryoff " << ep.entryoff << "\n";
8305   outs() << " stacksize " << ep.stacksize << "\n";
8306 }
8307 
8308 static void PrintEncryptionInfoCommand(MachO::encryption_info_command ec,
8309                                        uint32_t object_size) {
8310   outs() << "          cmd LC_ENCRYPTION_INFO\n";
8311   outs() << "      cmdsize " << ec.cmdsize;
8312   if (ec.cmdsize != sizeof(struct MachO::encryption_info_command))
8313     outs() << " Incorrect size\n";
8314   else
8315     outs() << "\n";
8316   outs() << "     cryptoff " << ec.cryptoff;
8317   if (ec.cryptoff > object_size)
8318     outs() << " (past end of file)\n";
8319   else
8320     outs() << "\n";
8321   outs() << "    cryptsize " << ec.cryptsize;
8322   if (ec.cryptsize > object_size)
8323     outs() << " (past end of file)\n";
8324   else
8325     outs() << "\n";
8326   outs() << "      cryptid " << ec.cryptid << "\n";
8327 }
8328 
8329 static void PrintEncryptionInfoCommand64(MachO::encryption_info_command_64 ec,
8330                                          uint32_t object_size) {
8331   outs() << "          cmd LC_ENCRYPTION_INFO_64\n";
8332   outs() << "      cmdsize " << ec.cmdsize;
8333   if (ec.cmdsize != sizeof(struct MachO::encryption_info_command_64))
8334     outs() << " Incorrect size\n";
8335   else
8336     outs() << "\n";
8337   outs() << "     cryptoff " << ec.cryptoff;
8338   if (ec.cryptoff > object_size)
8339     outs() << " (past end of file)\n";
8340   else
8341     outs() << "\n";
8342   outs() << "    cryptsize " << ec.cryptsize;
8343   if (ec.cryptsize > object_size)
8344     outs() << " (past end of file)\n";
8345   else
8346     outs() << "\n";
8347   outs() << "      cryptid " << ec.cryptid << "\n";
8348   outs() << "          pad " << ec.pad << "\n";
8349 }
8350 
8351 static void PrintLinkerOptionCommand(MachO::linker_option_command lo,
8352                                      const char *Ptr) {
8353   outs() << "     cmd LC_LINKER_OPTION\n";
8354   outs() << " cmdsize " << lo.cmdsize;
8355   if (lo.cmdsize < sizeof(struct MachO::linker_option_command))
8356     outs() << " Incorrect size\n";
8357   else
8358     outs() << "\n";
8359   outs() << "   count " << lo.count << "\n";
8360   const char *string = Ptr + sizeof(struct MachO::linker_option_command);
8361   uint32_t left = lo.cmdsize - sizeof(struct MachO::linker_option_command);
8362   uint32_t i = 0;
8363   while (left > 0) {
8364     while (*string == '\0' && left > 0) {
8365       string++;
8366       left--;
8367     }
8368     if (left > 0) {
8369       i++;
8370       outs() << "  string #" << i << " " << format("%.*s\n", left, string);
8371       uint32_t NullPos = StringRef(string, left).find('\0');
8372       uint32_t len = std::min(NullPos, left) + 1;
8373       string += len;
8374       left -= len;
8375     }
8376   }
8377   if (lo.count != i)
8378     outs() << "   count " << lo.count << " does not match number of strings "
8379            << i << "\n";
8380 }
8381 
8382 static void PrintSubFrameworkCommand(MachO::sub_framework_command sub,
8383                                      const char *Ptr) {
8384   outs() << "          cmd LC_SUB_FRAMEWORK\n";
8385   outs() << "      cmdsize " << sub.cmdsize;
8386   if (sub.cmdsize < sizeof(struct MachO::sub_framework_command))
8387     outs() << " Incorrect size\n";
8388   else
8389     outs() << "\n";
8390   if (sub.umbrella < sub.cmdsize) {
8391     const char *P = Ptr + sub.umbrella;
8392     outs() << "     umbrella " << P << " (offset " << sub.umbrella << ")\n";
8393   } else {
8394     outs() << "     umbrella ?(bad offset " << sub.umbrella << ")\n";
8395   }
8396 }
8397 
8398 static void PrintSubUmbrellaCommand(MachO::sub_umbrella_command sub,
8399                                     const char *Ptr) {
8400   outs() << "          cmd LC_SUB_UMBRELLA\n";
8401   outs() << "      cmdsize " << sub.cmdsize;
8402   if (sub.cmdsize < sizeof(struct MachO::sub_umbrella_command))
8403     outs() << " Incorrect size\n";
8404   else
8405     outs() << "\n";
8406   if (sub.sub_umbrella < sub.cmdsize) {
8407     const char *P = Ptr + sub.sub_umbrella;
8408     outs() << " sub_umbrella " << P << " (offset " << sub.sub_umbrella << ")\n";
8409   } else {
8410     outs() << " sub_umbrella ?(bad offset " << sub.sub_umbrella << ")\n";
8411   }
8412 }
8413 
8414 static void PrintSubLibraryCommand(MachO::sub_library_command sub,
8415                                    const char *Ptr) {
8416   outs() << "          cmd LC_SUB_LIBRARY\n";
8417   outs() << "      cmdsize " << sub.cmdsize;
8418   if (sub.cmdsize < sizeof(struct MachO::sub_library_command))
8419     outs() << " Incorrect size\n";
8420   else
8421     outs() << "\n";
8422   if (sub.sub_library < sub.cmdsize) {
8423     const char *P = Ptr + sub.sub_library;
8424     outs() << "  sub_library " << P << " (offset " << sub.sub_library << ")\n";
8425   } else {
8426     outs() << "  sub_library ?(bad offset " << sub.sub_library << ")\n";
8427   }
8428 }
8429 
8430 static void PrintSubClientCommand(MachO::sub_client_command sub,
8431                                   const char *Ptr) {
8432   outs() << "          cmd LC_SUB_CLIENT\n";
8433   outs() << "      cmdsize " << sub.cmdsize;
8434   if (sub.cmdsize < sizeof(struct MachO::sub_client_command))
8435     outs() << " Incorrect size\n";
8436   else
8437     outs() << "\n";
8438   if (sub.client < sub.cmdsize) {
8439     const char *P = Ptr + sub.client;
8440     outs() << "       client " << P << " (offset " << sub.client << ")\n";
8441   } else {
8442     outs() << "       client ?(bad offset " << sub.client << ")\n";
8443   }
8444 }
8445 
8446 static void PrintRoutinesCommand(MachO::routines_command r) {
8447   outs() << "          cmd LC_ROUTINES\n";
8448   outs() << "      cmdsize " << r.cmdsize;
8449   if (r.cmdsize != sizeof(struct MachO::routines_command))
8450     outs() << " Incorrect size\n";
8451   else
8452     outs() << "\n";
8453   outs() << " init_address " << format("0x%08" PRIx32, r.init_address) << "\n";
8454   outs() << "  init_module " << r.init_module << "\n";
8455   outs() << "    reserved1 " << r.reserved1 << "\n";
8456   outs() << "    reserved2 " << r.reserved2 << "\n";
8457   outs() << "    reserved3 " << r.reserved3 << "\n";
8458   outs() << "    reserved4 " << r.reserved4 << "\n";
8459   outs() << "    reserved5 " << r.reserved5 << "\n";
8460   outs() << "    reserved6 " << r.reserved6 << "\n";
8461 }
8462 
8463 static void PrintRoutinesCommand64(MachO::routines_command_64 r) {
8464   outs() << "          cmd LC_ROUTINES_64\n";
8465   outs() << "      cmdsize " << r.cmdsize;
8466   if (r.cmdsize != sizeof(struct MachO::routines_command_64))
8467     outs() << " Incorrect size\n";
8468   else
8469     outs() << "\n";
8470   outs() << " init_address " << format("0x%016" PRIx64, r.init_address) << "\n";
8471   outs() << "  init_module " << r.init_module << "\n";
8472   outs() << "    reserved1 " << r.reserved1 << "\n";
8473   outs() << "    reserved2 " << r.reserved2 << "\n";
8474   outs() << "    reserved3 " << r.reserved3 << "\n";
8475   outs() << "    reserved4 " << r.reserved4 << "\n";
8476   outs() << "    reserved5 " << r.reserved5 << "\n";
8477   outs() << "    reserved6 " << r.reserved6 << "\n";
8478 }
8479 
8480 static void Print_x86_thread_state64_t(MachO::x86_thread_state64_t &cpu64) {
8481   outs() << "   rax  " << format("0x%016" PRIx64, cpu64.rax);
8482   outs() << " rbx " << format("0x%016" PRIx64, cpu64.rbx);
8483   outs() << " rcx  " << format("0x%016" PRIx64, cpu64.rcx) << "\n";
8484   outs() << "   rdx  " << format("0x%016" PRIx64, cpu64.rdx);
8485   outs() << " rdi " << format("0x%016" PRIx64, cpu64.rdi);
8486   outs() << " rsi  " << format("0x%016" PRIx64, cpu64.rsi) << "\n";
8487   outs() << "   rbp  " << format("0x%016" PRIx64, cpu64.rbp);
8488   outs() << " rsp " << format("0x%016" PRIx64, cpu64.rsp);
8489   outs() << " r8   " << format("0x%016" PRIx64, cpu64.r8) << "\n";
8490   outs() << "    r9  " << format("0x%016" PRIx64, cpu64.r9);
8491   outs() << " r10 " << format("0x%016" PRIx64, cpu64.r10);
8492   outs() << " r11  " << format("0x%016" PRIx64, cpu64.r11) << "\n";
8493   outs() << "   r12  " << format("0x%016" PRIx64, cpu64.r12);
8494   outs() << " r13 " << format("0x%016" PRIx64, cpu64.r13);
8495   outs() << " r14  " << format("0x%016" PRIx64, cpu64.r14) << "\n";
8496   outs() << "   r15  " << format("0x%016" PRIx64, cpu64.r15);
8497   outs() << " rip " << format("0x%016" PRIx64, cpu64.rip) << "\n";
8498   outs() << "rflags  " << format("0x%016" PRIx64, cpu64.rflags);
8499   outs() << " cs  " << format("0x%016" PRIx64, cpu64.cs);
8500   outs() << " fs   " << format("0x%016" PRIx64, cpu64.fs) << "\n";
8501   outs() << "    gs  " << format("0x%016" PRIx64, cpu64.gs) << "\n";
8502 }
8503 
8504 static void Print_mmst_reg(MachO::mmst_reg_t &r) {
8505   uint32_t f;
8506   outs() << "\t      mmst_reg  ";
8507   for (f = 0; f < 10; f++)
8508     outs() << format("%02" PRIx32, (r.mmst_reg[f] & 0xff)) << " ";
8509   outs() << "\n";
8510   outs() << "\t      mmst_rsrv ";
8511   for (f = 0; f < 6; f++)
8512     outs() << format("%02" PRIx32, (r.mmst_rsrv[f] & 0xff)) << " ";
8513   outs() << "\n";
8514 }
8515 
8516 static void Print_xmm_reg(MachO::xmm_reg_t &r) {
8517   uint32_t f;
8518   outs() << "\t      xmm_reg ";
8519   for (f = 0; f < 16; f++)
8520     outs() << format("%02" PRIx32, (r.xmm_reg[f] & 0xff)) << " ";
8521   outs() << "\n";
8522 }
8523 
8524 static void Print_x86_float_state_t(MachO::x86_float_state64_t &fpu) {
8525   outs() << "\t    fpu_reserved[0] " << fpu.fpu_reserved[0];
8526   outs() << " fpu_reserved[1] " << fpu.fpu_reserved[1] << "\n";
8527   outs() << "\t    control: invalid " << fpu.fpu_fcw.invalid;
8528   outs() << " denorm " << fpu.fpu_fcw.denorm;
8529   outs() << " zdiv " << fpu.fpu_fcw.zdiv;
8530   outs() << " ovrfl " << fpu.fpu_fcw.ovrfl;
8531   outs() << " undfl " << fpu.fpu_fcw.undfl;
8532   outs() << " precis " << fpu.fpu_fcw.precis << "\n";
8533   outs() << "\t\t     pc ";
8534   if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_24B)
8535     outs() << "FP_PREC_24B ";
8536   else if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_53B)
8537     outs() << "FP_PREC_53B ";
8538   else if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_64B)
8539     outs() << "FP_PREC_64B ";
8540   else
8541     outs() << fpu.fpu_fcw.pc << " ";
8542   outs() << "rc ";
8543   if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_NEAR)
8544     outs() << "FP_RND_NEAR ";
8545   else if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_DOWN)
8546     outs() << "FP_RND_DOWN ";
8547   else if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_UP)
8548     outs() << "FP_RND_UP ";
8549   else if (fpu.fpu_fcw.rc == MachO::x86_FP_CHOP)
8550     outs() << "FP_CHOP ";
8551   outs() << "\n";
8552   outs() << "\t    status: invalid " << fpu.fpu_fsw.invalid;
8553   outs() << " denorm " << fpu.fpu_fsw.denorm;
8554   outs() << " zdiv " << fpu.fpu_fsw.zdiv;
8555   outs() << " ovrfl " << fpu.fpu_fsw.ovrfl;
8556   outs() << " undfl " << fpu.fpu_fsw.undfl;
8557   outs() << " precis " << fpu.fpu_fsw.precis;
8558   outs() << " stkflt " << fpu.fpu_fsw.stkflt << "\n";
8559   outs() << "\t            errsumm " << fpu.fpu_fsw.errsumm;
8560   outs() << " c0 " << fpu.fpu_fsw.c0;
8561   outs() << " c1 " << fpu.fpu_fsw.c1;
8562   outs() << " c2 " << fpu.fpu_fsw.c2;
8563   outs() << " tos " << fpu.fpu_fsw.tos;
8564   outs() << " c3 " << fpu.fpu_fsw.c3;
8565   outs() << " busy " << fpu.fpu_fsw.busy << "\n";
8566   outs() << "\t    fpu_ftw " << format("0x%02" PRIx32, fpu.fpu_ftw);
8567   outs() << " fpu_rsrv1 " << format("0x%02" PRIx32, fpu.fpu_rsrv1);
8568   outs() << " fpu_fop " << format("0x%04" PRIx32, fpu.fpu_fop);
8569   outs() << " fpu_ip " << format("0x%08" PRIx32, fpu.fpu_ip) << "\n";
8570   outs() << "\t    fpu_cs " << format("0x%04" PRIx32, fpu.fpu_cs);
8571   outs() << " fpu_rsrv2 " << format("0x%04" PRIx32, fpu.fpu_rsrv2);
8572   outs() << " fpu_dp " << format("0x%08" PRIx32, fpu.fpu_dp);
8573   outs() << " fpu_ds " << format("0x%04" PRIx32, fpu.fpu_ds) << "\n";
8574   outs() << "\t    fpu_rsrv3 " << format("0x%04" PRIx32, fpu.fpu_rsrv3);
8575   outs() << " fpu_mxcsr " << format("0x%08" PRIx32, fpu.fpu_mxcsr);
8576   outs() << " fpu_mxcsrmask " << format("0x%08" PRIx32, fpu.fpu_mxcsrmask);
8577   outs() << "\n";
8578   outs() << "\t    fpu_stmm0:\n";
8579   Print_mmst_reg(fpu.fpu_stmm0);
8580   outs() << "\t    fpu_stmm1:\n";
8581   Print_mmst_reg(fpu.fpu_stmm1);
8582   outs() << "\t    fpu_stmm2:\n";
8583   Print_mmst_reg(fpu.fpu_stmm2);
8584   outs() << "\t    fpu_stmm3:\n";
8585   Print_mmst_reg(fpu.fpu_stmm3);
8586   outs() << "\t    fpu_stmm4:\n";
8587   Print_mmst_reg(fpu.fpu_stmm4);
8588   outs() << "\t    fpu_stmm5:\n";
8589   Print_mmst_reg(fpu.fpu_stmm5);
8590   outs() << "\t    fpu_stmm6:\n";
8591   Print_mmst_reg(fpu.fpu_stmm6);
8592   outs() << "\t    fpu_stmm7:\n";
8593   Print_mmst_reg(fpu.fpu_stmm7);
8594   outs() << "\t    fpu_xmm0:\n";
8595   Print_xmm_reg(fpu.fpu_xmm0);
8596   outs() << "\t    fpu_xmm1:\n";
8597   Print_xmm_reg(fpu.fpu_xmm1);
8598   outs() << "\t    fpu_xmm2:\n";
8599   Print_xmm_reg(fpu.fpu_xmm2);
8600   outs() << "\t    fpu_xmm3:\n";
8601   Print_xmm_reg(fpu.fpu_xmm3);
8602   outs() << "\t    fpu_xmm4:\n";
8603   Print_xmm_reg(fpu.fpu_xmm4);
8604   outs() << "\t    fpu_xmm5:\n";
8605   Print_xmm_reg(fpu.fpu_xmm5);
8606   outs() << "\t    fpu_xmm6:\n";
8607   Print_xmm_reg(fpu.fpu_xmm6);
8608   outs() << "\t    fpu_xmm7:\n";
8609   Print_xmm_reg(fpu.fpu_xmm7);
8610   outs() << "\t    fpu_xmm8:\n";
8611   Print_xmm_reg(fpu.fpu_xmm8);
8612   outs() << "\t    fpu_xmm9:\n";
8613   Print_xmm_reg(fpu.fpu_xmm9);
8614   outs() << "\t    fpu_xmm10:\n";
8615   Print_xmm_reg(fpu.fpu_xmm10);
8616   outs() << "\t    fpu_xmm11:\n";
8617   Print_xmm_reg(fpu.fpu_xmm11);
8618   outs() << "\t    fpu_xmm12:\n";
8619   Print_xmm_reg(fpu.fpu_xmm12);
8620   outs() << "\t    fpu_xmm13:\n";
8621   Print_xmm_reg(fpu.fpu_xmm13);
8622   outs() << "\t    fpu_xmm14:\n";
8623   Print_xmm_reg(fpu.fpu_xmm14);
8624   outs() << "\t    fpu_xmm15:\n";
8625   Print_xmm_reg(fpu.fpu_xmm15);
8626   outs() << "\t    fpu_rsrv4:\n";
8627   for (uint32_t f = 0; f < 6; f++) {
8628     outs() << "\t            ";
8629     for (uint32_t g = 0; g < 16; g++)
8630       outs() << format("%02" PRIx32, fpu.fpu_rsrv4[f * g]) << " ";
8631     outs() << "\n";
8632   }
8633   outs() << "\t    fpu_reserved1 " << format("0x%08" PRIx32, fpu.fpu_reserved1);
8634   outs() << "\n";
8635 }
8636 
8637 static void Print_x86_exception_state_t(MachO::x86_exception_state64_t &exc64) {
8638   outs() << "\t    trapno " << format("0x%08" PRIx32, exc64.trapno);
8639   outs() << " err " << format("0x%08" PRIx32, exc64.err);
8640   outs() << " faultvaddr " << format("0x%016" PRIx64, exc64.faultvaddr) << "\n";
8641 }
8642 
8643 static void PrintThreadCommand(MachO::thread_command t, const char *Ptr,
8644                                bool isLittleEndian, uint32_t cputype) {
8645   if (t.cmd == MachO::LC_THREAD)
8646     outs() << "        cmd LC_THREAD\n";
8647   else if (t.cmd == MachO::LC_UNIXTHREAD)
8648     outs() << "        cmd LC_UNIXTHREAD\n";
8649   else
8650     outs() << "        cmd " << t.cmd << " (unknown)\n";
8651   outs() << "    cmdsize " << t.cmdsize;
8652   if (t.cmdsize < sizeof(struct MachO::thread_command) + 2 * sizeof(uint32_t))
8653     outs() << " Incorrect size\n";
8654   else
8655     outs() << "\n";
8656 
8657   const char *begin = Ptr + sizeof(struct MachO::thread_command);
8658   const char *end = Ptr + t.cmdsize;
8659   uint32_t flavor, count, left;
8660   if (cputype == MachO::CPU_TYPE_X86_64) {
8661     while (begin < end) {
8662       if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
8663         memcpy((char *)&flavor, begin, sizeof(uint32_t));
8664         begin += sizeof(uint32_t);
8665       } else {
8666         flavor = 0;
8667         begin = end;
8668       }
8669       if (isLittleEndian != sys::IsLittleEndianHost)
8670         sys::swapByteOrder(flavor);
8671       if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
8672         memcpy((char *)&count, begin, sizeof(uint32_t));
8673         begin += sizeof(uint32_t);
8674       } else {
8675         count = 0;
8676         begin = end;
8677       }
8678       if (isLittleEndian != sys::IsLittleEndianHost)
8679         sys::swapByteOrder(count);
8680       if (flavor == MachO::x86_THREAD_STATE64) {
8681         outs() << "     flavor x86_THREAD_STATE64\n";
8682         if (count == MachO::x86_THREAD_STATE64_COUNT)
8683           outs() << "      count x86_THREAD_STATE64_COUNT\n";
8684         else
8685           outs() << "      count " << count
8686                  << " (not x86_THREAD_STATE64_COUNT)\n";
8687         MachO::x86_thread_state64_t cpu64;
8688         left = end - begin;
8689         if (left >= sizeof(MachO::x86_thread_state64_t)) {
8690           memcpy(&cpu64, begin, sizeof(MachO::x86_thread_state64_t));
8691           begin += sizeof(MachO::x86_thread_state64_t);
8692         } else {
8693           memset(&cpu64, '\0', sizeof(MachO::x86_thread_state64_t));
8694           memcpy(&cpu64, begin, left);
8695           begin += left;
8696         }
8697         if (isLittleEndian != sys::IsLittleEndianHost)
8698           swapStruct(cpu64);
8699         Print_x86_thread_state64_t(cpu64);
8700       } else if (flavor == MachO::x86_THREAD_STATE) {
8701         outs() << "     flavor x86_THREAD_STATE\n";
8702         if (count == MachO::x86_THREAD_STATE_COUNT)
8703           outs() << "      count x86_THREAD_STATE_COUNT\n";
8704         else
8705           outs() << "      count " << count
8706                  << " (not x86_THREAD_STATE_COUNT)\n";
8707         struct MachO::x86_thread_state_t ts;
8708         left = end - begin;
8709         if (left >= sizeof(MachO::x86_thread_state_t)) {
8710           memcpy(&ts, begin, sizeof(MachO::x86_thread_state_t));
8711           begin += sizeof(MachO::x86_thread_state_t);
8712         } else {
8713           memset(&ts, '\0', sizeof(MachO::x86_thread_state_t));
8714           memcpy(&ts, begin, left);
8715           begin += left;
8716         }
8717         if (isLittleEndian != sys::IsLittleEndianHost)
8718           swapStruct(ts);
8719         if (ts.tsh.flavor == MachO::x86_THREAD_STATE64) {
8720           outs() << "\t    tsh.flavor x86_THREAD_STATE64 ";
8721           if (ts.tsh.count == MachO::x86_THREAD_STATE64_COUNT)
8722             outs() << "tsh.count x86_THREAD_STATE64_COUNT\n";
8723           else
8724             outs() << "tsh.count " << ts.tsh.count
8725                    << " (not x86_THREAD_STATE64_COUNT\n";
8726           Print_x86_thread_state64_t(ts.uts.ts64);
8727         } else {
8728           outs() << "\t    tsh.flavor " << ts.tsh.flavor << "  tsh.count "
8729                  << ts.tsh.count << "\n";
8730         }
8731       } else if (flavor == MachO::x86_FLOAT_STATE) {
8732         outs() << "     flavor x86_FLOAT_STATE\n";
8733         if (count == MachO::x86_FLOAT_STATE_COUNT)
8734           outs() << "      count x86_FLOAT_STATE_COUNT\n";
8735         else
8736           outs() << "      count " << count << " (not x86_FLOAT_STATE_COUNT)\n";
8737         struct MachO::x86_float_state_t fs;
8738         left = end - begin;
8739         if (left >= sizeof(MachO::x86_float_state_t)) {
8740           memcpy(&fs, begin, sizeof(MachO::x86_float_state_t));
8741           begin += sizeof(MachO::x86_float_state_t);
8742         } else {
8743           memset(&fs, '\0', sizeof(MachO::x86_float_state_t));
8744           memcpy(&fs, begin, left);
8745           begin += left;
8746         }
8747         if (isLittleEndian != sys::IsLittleEndianHost)
8748           swapStruct(fs);
8749         if (fs.fsh.flavor == MachO::x86_FLOAT_STATE64) {
8750           outs() << "\t    fsh.flavor x86_FLOAT_STATE64 ";
8751           if (fs.fsh.count == MachO::x86_FLOAT_STATE64_COUNT)
8752             outs() << "fsh.count x86_FLOAT_STATE64_COUNT\n";
8753           else
8754             outs() << "fsh.count " << fs.fsh.count
8755                    << " (not x86_FLOAT_STATE64_COUNT\n";
8756           Print_x86_float_state_t(fs.ufs.fs64);
8757         } else {
8758           outs() << "\t    fsh.flavor " << fs.fsh.flavor << "  fsh.count "
8759                  << fs.fsh.count << "\n";
8760         }
8761       } else if (flavor == MachO::x86_EXCEPTION_STATE) {
8762         outs() << "     flavor x86_EXCEPTION_STATE\n";
8763         if (count == MachO::x86_EXCEPTION_STATE_COUNT)
8764           outs() << "      count x86_EXCEPTION_STATE_COUNT\n";
8765         else
8766           outs() << "      count " << count
8767                  << " (not x86_EXCEPTION_STATE_COUNT)\n";
8768         struct MachO::x86_exception_state_t es;
8769         left = end - begin;
8770         if (left >= sizeof(MachO::x86_exception_state_t)) {
8771           memcpy(&es, begin, sizeof(MachO::x86_exception_state_t));
8772           begin += sizeof(MachO::x86_exception_state_t);
8773         } else {
8774           memset(&es, '\0', sizeof(MachO::x86_exception_state_t));
8775           memcpy(&es, begin, left);
8776           begin += left;
8777         }
8778         if (isLittleEndian != sys::IsLittleEndianHost)
8779           swapStruct(es);
8780         if (es.esh.flavor == MachO::x86_EXCEPTION_STATE64) {
8781           outs() << "\t    esh.flavor x86_EXCEPTION_STATE64\n";
8782           if (es.esh.count == MachO::x86_EXCEPTION_STATE64_COUNT)
8783             outs() << "\t    esh.count x86_EXCEPTION_STATE64_COUNT\n";
8784           else
8785             outs() << "\t    esh.count " << es.esh.count
8786                    << " (not x86_EXCEPTION_STATE64_COUNT\n";
8787           Print_x86_exception_state_t(es.ues.es64);
8788         } else {
8789           outs() << "\t    esh.flavor " << es.esh.flavor << "  esh.count "
8790                  << es.esh.count << "\n";
8791         }
8792       } else {
8793         outs() << "     flavor " << flavor << " (unknown)\n";
8794         outs() << "      count " << count << "\n";
8795         outs() << "      state (unknown)\n";
8796         begin += count * sizeof(uint32_t);
8797       }
8798     }
8799   } else {
8800     while (begin < end) {
8801       if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
8802         memcpy((char *)&flavor, begin, sizeof(uint32_t));
8803         begin += sizeof(uint32_t);
8804       } else {
8805         flavor = 0;
8806         begin = end;
8807       }
8808       if (isLittleEndian != sys::IsLittleEndianHost)
8809         sys::swapByteOrder(flavor);
8810       if (end - begin > (ptrdiff_t)sizeof(uint32_t)) {
8811         memcpy((char *)&count, begin, sizeof(uint32_t));
8812         begin += sizeof(uint32_t);
8813       } else {
8814         count = 0;
8815         begin = end;
8816       }
8817       if (isLittleEndian != sys::IsLittleEndianHost)
8818         sys::swapByteOrder(count);
8819       outs() << "     flavor " << flavor << "\n";
8820       outs() << "      count " << count << "\n";
8821       outs() << "      state (Unknown cputype/cpusubtype)\n";
8822       begin += count * sizeof(uint32_t);
8823     }
8824   }
8825 }
8826 
8827 static void PrintDylibCommand(MachO::dylib_command dl, const char *Ptr) {
8828   if (dl.cmd == MachO::LC_ID_DYLIB)
8829     outs() << "          cmd LC_ID_DYLIB\n";
8830   else if (dl.cmd == MachO::LC_LOAD_DYLIB)
8831     outs() << "          cmd LC_LOAD_DYLIB\n";
8832   else if (dl.cmd == MachO::LC_LOAD_WEAK_DYLIB)
8833     outs() << "          cmd LC_LOAD_WEAK_DYLIB\n";
8834   else if (dl.cmd == MachO::LC_REEXPORT_DYLIB)
8835     outs() << "          cmd LC_REEXPORT_DYLIB\n";
8836   else if (dl.cmd == MachO::LC_LAZY_LOAD_DYLIB)
8837     outs() << "          cmd LC_LAZY_LOAD_DYLIB\n";
8838   else if (dl.cmd == MachO::LC_LOAD_UPWARD_DYLIB)
8839     outs() << "          cmd LC_LOAD_UPWARD_DYLIB\n";
8840   else
8841     outs() << "          cmd " << dl.cmd << " (unknown)\n";
8842   outs() << "      cmdsize " << dl.cmdsize;
8843   if (dl.cmdsize < sizeof(struct MachO::dylib_command))
8844     outs() << " Incorrect size\n";
8845   else
8846     outs() << "\n";
8847   if (dl.dylib.name < dl.cmdsize) {
8848     const char *P = (const char *)(Ptr) + dl.dylib.name;
8849     outs() << "         name " << P << " (offset " << dl.dylib.name << ")\n";
8850   } else {
8851     outs() << "         name ?(bad offset " << dl.dylib.name << ")\n";
8852   }
8853   outs() << "   time stamp " << dl.dylib.timestamp << " ";
8854   time_t t = dl.dylib.timestamp;
8855   outs() << ctime(&t);
8856   outs() << "      current version ";
8857   if (dl.dylib.current_version == 0xffffffff)
8858     outs() << "n/a\n";
8859   else
8860     outs() << ((dl.dylib.current_version >> 16) & 0xffff) << "."
8861            << ((dl.dylib.current_version >> 8) & 0xff) << "."
8862            << (dl.dylib.current_version & 0xff) << "\n";
8863   outs() << "compatibility version ";
8864   if (dl.dylib.compatibility_version == 0xffffffff)
8865     outs() << "n/a\n";
8866   else
8867     outs() << ((dl.dylib.compatibility_version >> 16) & 0xffff) << "."
8868            << ((dl.dylib.compatibility_version >> 8) & 0xff) << "."
8869            << (dl.dylib.compatibility_version & 0xff) << "\n";
8870 }
8871 
8872 static void PrintLinkEditDataCommand(MachO::linkedit_data_command ld,
8873                                      uint32_t object_size) {
8874   if (ld.cmd == MachO::LC_CODE_SIGNATURE)
8875     outs() << "      cmd LC_CODE_SIGNATURE\n";
8876   else if (ld.cmd == MachO::LC_SEGMENT_SPLIT_INFO)
8877     outs() << "      cmd LC_SEGMENT_SPLIT_INFO\n";
8878   else if (ld.cmd == MachO::LC_FUNCTION_STARTS)
8879     outs() << "      cmd LC_FUNCTION_STARTS\n";
8880   else if (ld.cmd == MachO::LC_DATA_IN_CODE)
8881     outs() << "      cmd LC_DATA_IN_CODE\n";
8882   else if (ld.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS)
8883     outs() << "      cmd LC_DYLIB_CODE_SIGN_DRS\n";
8884   else if (ld.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT)
8885     outs() << "      cmd LC_LINKER_OPTIMIZATION_HINT\n";
8886   else
8887     outs() << "      cmd " << ld.cmd << " (?)\n";
8888   outs() << "  cmdsize " << ld.cmdsize;
8889   if (ld.cmdsize != sizeof(struct MachO::linkedit_data_command))
8890     outs() << " Incorrect size\n";
8891   else
8892     outs() << "\n";
8893   outs() << "  dataoff " << ld.dataoff;
8894   if (ld.dataoff > object_size)
8895     outs() << " (past end of file)\n";
8896   else
8897     outs() << "\n";
8898   outs() << " datasize " << ld.datasize;
8899   uint64_t big_size = ld.dataoff;
8900   big_size += ld.datasize;
8901   if (big_size > object_size)
8902     outs() << " (past end of file)\n";
8903   else
8904     outs() << "\n";
8905 }
8906 
8907 static void PrintLoadCommands(const MachOObjectFile *Obj, uint32_t filetype,
8908                               uint32_t cputype, bool verbose) {
8909   StringRef Buf = Obj->getData();
8910   unsigned Index = 0;
8911   for (const auto &Command : Obj->load_commands()) {
8912     outs() << "Load command " << Index++ << "\n";
8913     if (Command.C.cmd == MachO::LC_SEGMENT) {
8914       MachO::segment_command SLC = Obj->getSegmentLoadCommand(Command);
8915       const char *sg_segname = SLC.segname;
8916       PrintSegmentCommand(SLC.cmd, SLC.cmdsize, SLC.segname, SLC.vmaddr,
8917                           SLC.vmsize, SLC.fileoff, SLC.filesize, SLC.maxprot,
8918                           SLC.initprot, SLC.nsects, SLC.flags, Buf.size(),
8919                           verbose);
8920       for (unsigned j = 0; j < SLC.nsects; j++) {
8921         MachO::section S = Obj->getSection(Command, j);
8922         PrintSection(S.sectname, S.segname, S.addr, S.size, S.offset, S.align,
8923                      S.reloff, S.nreloc, S.flags, S.reserved1, S.reserved2,
8924                      SLC.cmd, sg_segname, filetype, Buf.size(), verbose);
8925       }
8926     } else if (Command.C.cmd == MachO::LC_SEGMENT_64) {
8927       MachO::segment_command_64 SLC_64 = Obj->getSegment64LoadCommand(Command);
8928       const char *sg_segname = SLC_64.segname;
8929       PrintSegmentCommand(SLC_64.cmd, SLC_64.cmdsize, SLC_64.segname,
8930                           SLC_64.vmaddr, SLC_64.vmsize, SLC_64.fileoff,
8931                           SLC_64.filesize, SLC_64.maxprot, SLC_64.initprot,
8932                           SLC_64.nsects, SLC_64.flags, Buf.size(), verbose);
8933       for (unsigned j = 0; j < SLC_64.nsects; j++) {
8934         MachO::section_64 S_64 = Obj->getSection64(Command, j);
8935         PrintSection(S_64.sectname, S_64.segname, S_64.addr, S_64.size,
8936                      S_64.offset, S_64.align, S_64.reloff, S_64.nreloc,
8937                      S_64.flags, S_64.reserved1, S_64.reserved2, SLC_64.cmd,
8938                      sg_segname, filetype, Buf.size(), verbose);
8939       }
8940     } else if (Command.C.cmd == MachO::LC_SYMTAB) {
8941       MachO::symtab_command Symtab = Obj->getSymtabLoadCommand();
8942       PrintSymtabLoadCommand(Symtab, Obj->is64Bit(), Buf.size());
8943     } else if (Command.C.cmd == MachO::LC_DYSYMTAB) {
8944       MachO::dysymtab_command Dysymtab = Obj->getDysymtabLoadCommand();
8945       MachO::symtab_command Symtab = Obj->getSymtabLoadCommand();
8946       PrintDysymtabLoadCommand(Dysymtab, Symtab.nsyms, Buf.size(),
8947                                Obj->is64Bit());
8948     } else if (Command.C.cmd == MachO::LC_DYLD_INFO ||
8949                Command.C.cmd == MachO::LC_DYLD_INFO_ONLY) {
8950       MachO::dyld_info_command DyldInfo = Obj->getDyldInfoLoadCommand(Command);
8951       PrintDyldInfoLoadCommand(DyldInfo, Buf.size());
8952     } else if (Command.C.cmd == MachO::LC_LOAD_DYLINKER ||
8953                Command.C.cmd == MachO::LC_ID_DYLINKER ||
8954                Command.C.cmd == MachO::LC_DYLD_ENVIRONMENT) {
8955       MachO::dylinker_command Dyld = Obj->getDylinkerCommand(Command);
8956       PrintDyldLoadCommand(Dyld, Command.Ptr);
8957     } else if (Command.C.cmd == MachO::LC_UUID) {
8958       MachO::uuid_command Uuid = Obj->getUuidCommand(Command);
8959       PrintUuidLoadCommand(Uuid);
8960     } else if (Command.C.cmd == MachO::LC_RPATH) {
8961       MachO::rpath_command Rpath = Obj->getRpathCommand(Command);
8962       PrintRpathLoadCommand(Rpath, Command.Ptr);
8963     } else if (Command.C.cmd == MachO::LC_VERSION_MIN_MACOSX ||
8964                Command.C.cmd == MachO::LC_VERSION_MIN_IPHONEOS ||
8965                Command.C.cmd == MachO::LC_VERSION_MIN_TVOS ||
8966                Command.C.cmd == MachO::LC_VERSION_MIN_WATCHOS) {
8967       MachO::version_min_command Vd = Obj->getVersionMinLoadCommand(Command);
8968       PrintVersionMinLoadCommand(Vd);
8969     } else if (Command.C.cmd == MachO::LC_SOURCE_VERSION) {
8970       MachO::source_version_command Sd = Obj->getSourceVersionCommand(Command);
8971       PrintSourceVersionCommand(Sd);
8972     } else if (Command.C.cmd == MachO::LC_MAIN) {
8973       MachO::entry_point_command Ep = Obj->getEntryPointCommand(Command);
8974       PrintEntryPointCommand(Ep);
8975     } else if (Command.C.cmd == MachO::LC_ENCRYPTION_INFO) {
8976       MachO::encryption_info_command Ei =
8977           Obj->getEncryptionInfoCommand(Command);
8978       PrintEncryptionInfoCommand(Ei, Buf.size());
8979     } else if (Command.C.cmd == MachO::LC_ENCRYPTION_INFO_64) {
8980       MachO::encryption_info_command_64 Ei =
8981           Obj->getEncryptionInfoCommand64(Command);
8982       PrintEncryptionInfoCommand64(Ei, Buf.size());
8983     } else if (Command.C.cmd == MachO::LC_LINKER_OPTION) {
8984       MachO::linker_option_command Lo =
8985           Obj->getLinkerOptionLoadCommand(Command);
8986       PrintLinkerOptionCommand(Lo, Command.Ptr);
8987     } else if (Command.C.cmd == MachO::LC_SUB_FRAMEWORK) {
8988       MachO::sub_framework_command Sf = Obj->getSubFrameworkCommand(Command);
8989       PrintSubFrameworkCommand(Sf, Command.Ptr);
8990     } else if (Command.C.cmd == MachO::LC_SUB_UMBRELLA) {
8991       MachO::sub_umbrella_command Sf = Obj->getSubUmbrellaCommand(Command);
8992       PrintSubUmbrellaCommand(Sf, Command.Ptr);
8993     } else if (Command.C.cmd == MachO::LC_SUB_LIBRARY) {
8994       MachO::sub_library_command Sl = Obj->getSubLibraryCommand(Command);
8995       PrintSubLibraryCommand(Sl, Command.Ptr);
8996     } else if (Command.C.cmd == MachO::LC_SUB_CLIENT) {
8997       MachO::sub_client_command Sc = Obj->getSubClientCommand(Command);
8998       PrintSubClientCommand(Sc, Command.Ptr);
8999     } else if (Command.C.cmd == MachO::LC_ROUTINES) {
9000       MachO::routines_command Rc = Obj->getRoutinesCommand(Command);
9001       PrintRoutinesCommand(Rc);
9002     } else if (Command.C.cmd == MachO::LC_ROUTINES_64) {
9003       MachO::routines_command_64 Rc = Obj->getRoutinesCommand64(Command);
9004       PrintRoutinesCommand64(Rc);
9005     } else if (Command.C.cmd == MachO::LC_THREAD ||
9006                Command.C.cmd == MachO::LC_UNIXTHREAD) {
9007       MachO::thread_command Tc = Obj->getThreadCommand(Command);
9008       PrintThreadCommand(Tc, Command.Ptr, Obj->isLittleEndian(), cputype);
9009     } else if (Command.C.cmd == MachO::LC_LOAD_DYLIB ||
9010                Command.C.cmd == MachO::LC_ID_DYLIB ||
9011                Command.C.cmd == MachO::LC_LOAD_WEAK_DYLIB ||
9012                Command.C.cmd == MachO::LC_REEXPORT_DYLIB ||
9013                Command.C.cmd == MachO::LC_LAZY_LOAD_DYLIB ||
9014                Command.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB) {
9015       MachO::dylib_command Dl = Obj->getDylibIDLoadCommand(Command);
9016       PrintDylibCommand(Dl, Command.Ptr);
9017     } else if (Command.C.cmd == MachO::LC_CODE_SIGNATURE ||
9018                Command.C.cmd == MachO::LC_SEGMENT_SPLIT_INFO ||
9019                Command.C.cmd == MachO::LC_FUNCTION_STARTS ||
9020                Command.C.cmd == MachO::LC_DATA_IN_CODE ||
9021                Command.C.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS ||
9022                Command.C.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT) {
9023       MachO::linkedit_data_command Ld =
9024           Obj->getLinkeditDataLoadCommand(Command);
9025       PrintLinkEditDataCommand(Ld, Buf.size());
9026     } else {
9027       outs() << "      cmd ?(" << format("0x%08" PRIx32, Command.C.cmd)
9028              << ")\n";
9029       outs() << "  cmdsize " << Command.C.cmdsize << "\n";
9030       // TODO: get and print the raw bytes of the load command.
9031     }
9032     // TODO: print all the other kinds of load commands.
9033   }
9034 }
9035 
9036 static void PrintMachHeader(const MachOObjectFile *Obj, bool verbose) {
9037   if (Obj->is64Bit()) {
9038     MachO::mach_header_64 H_64;
9039     H_64 = Obj->getHeader64();
9040     PrintMachHeader(H_64.magic, H_64.cputype, H_64.cpusubtype, H_64.filetype,
9041                     H_64.ncmds, H_64.sizeofcmds, H_64.flags, verbose);
9042   } else {
9043     MachO::mach_header H;
9044     H = Obj->getHeader();
9045     PrintMachHeader(H.magic, H.cputype, H.cpusubtype, H.filetype, H.ncmds,
9046                     H.sizeofcmds, H.flags, verbose);
9047   }
9048 }
9049 
9050 void llvm::printMachOFileHeader(const object::ObjectFile *Obj) {
9051   const MachOObjectFile *file = dyn_cast<const MachOObjectFile>(Obj);
9052   PrintMachHeader(file, !NonVerbose);
9053 }
9054 
9055 void llvm::printMachOLoadCommands(const object::ObjectFile *Obj) {
9056   const MachOObjectFile *file = dyn_cast<const MachOObjectFile>(Obj);
9057   uint32_t filetype = 0;
9058   uint32_t cputype = 0;
9059   if (file->is64Bit()) {
9060     MachO::mach_header_64 H_64;
9061     H_64 = file->getHeader64();
9062     filetype = H_64.filetype;
9063     cputype = H_64.cputype;
9064   } else {
9065     MachO::mach_header H;
9066     H = file->getHeader();
9067     filetype = H.filetype;
9068     cputype = H.cputype;
9069   }
9070   PrintLoadCommands(file, filetype, cputype, !NonVerbose);
9071 }
9072 
9073 //===----------------------------------------------------------------------===//
9074 // export trie dumping
9075 //===----------------------------------------------------------------------===//
9076 
9077 void llvm::printMachOExportsTrie(const object::MachOObjectFile *Obj) {
9078   for (const llvm::object::ExportEntry &Entry : Obj->exports()) {
9079     uint64_t Flags = Entry.flags();
9080     bool ReExport = (Flags & MachO::EXPORT_SYMBOL_FLAGS_REEXPORT);
9081     bool WeakDef = (Flags & MachO::EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION);
9082     bool ThreadLocal = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) ==
9083                         MachO::EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL);
9084     bool Abs = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) ==
9085                 MachO::EXPORT_SYMBOL_FLAGS_KIND_ABSOLUTE);
9086     bool Resolver = (Flags & MachO::EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER);
9087     if (ReExport)
9088       outs() << "[re-export] ";
9089     else
9090       outs() << format("0x%08llX  ",
9091                        Entry.address()); // FIXME:add in base address
9092     outs() << Entry.name();
9093     if (WeakDef || ThreadLocal || Resolver || Abs) {
9094       bool NeedsComma = false;
9095       outs() << " [";
9096       if (WeakDef) {
9097         outs() << "weak_def";
9098         NeedsComma = true;
9099       }
9100       if (ThreadLocal) {
9101         if (NeedsComma)
9102           outs() << ", ";
9103         outs() << "per-thread";
9104         NeedsComma = true;
9105       }
9106       if (Abs) {
9107         if (NeedsComma)
9108           outs() << ", ";
9109         outs() << "absolute";
9110         NeedsComma = true;
9111       }
9112       if (Resolver) {
9113         if (NeedsComma)
9114           outs() << ", ";
9115         outs() << format("resolver=0x%08llX", Entry.other());
9116         NeedsComma = true;
9117       }
9118       outs() << "]";
9119     }
9120     if (ReExport) {
9121       StringRef DylibName = "unknown";
9122       int Ordinal = Entry.other() - 1;
9123       Obj->getLibraryShortNameByIndex(Ordinal, DylibName);
9124       if (Entry.otherName().empty())
9125         outs() << " (from " << DylibName << ")";
9126       else
9127         outs() << " (" << Entry.otherName() << " from " << DylibName << ")";
9128     }
9129     outs() << "\n";
9130   }
9131 }
9132 
9133 //===----------------------------------------------------------------------===//
9134 // rebase table dumping
9135 //===----------------------------------------------------------------------===//
9136 
9137 namespace {
9138 class SegInfo {
9139 public:
9140   SegInfo(const object::MachOObjectFile *Obj);
9141 
9142   StringRef segmentName(uint32_t SegIndex);
9143   StringRef sectionName(uint32_t SegIndex, uint64_t SegOffset);
9144   uint64_t address(uint32_t SegIndex, uint64_t SegOffset);
9145   bool isValidSegIndexAndOffset(uint32_t SegIndex, uint64_t SegOffset);
9146 
9147 private:
9148   struct SectionInfo {
9149     uint64_t Address;
9150     uint64_t Size;
9151     StringRef SectionName;
9152     StringRef SegmentName;
9153     uint64_t OffsetInSegment;
9154     uint64_t SegmentStartAddress;
9155     uint32_t SegmentIndex;
9156   };
9157   const SectionInfo &findSection(uint32_t SegIndex, uint64_t SegOffset);
9158   SmallVector<SectionInfo, 32> Sections;
9159 };
9160 }
9161 
9162 SegInfo::SegInfo(const object::MachOObjectFile *Obj) {
9163   // Build table of sections so segIndex/offset pairs can be translated.
9164   uint32_t CurSegIndex = Obj->hasPageZeroSegment() ? 1 : 0;
9165   StringRef CurSegName;
9166   uint64_t CurSegAddress;
9167   for (const SectionRef &Section : Obj->sections()) {
9168     SectionInfo Info;
9169     error(Section.getName(Info.SectionName));
9170     Info.Address = Section.getAddress();
9171     Info.Size = Section.getSize();
9172     Info.SegmentName =
9173         Obj->getSectionFinalSegmentName(Section.getRawDataRefImpl());
9174     if (!Info.SegmentName.equals(CurSegName)) {
9175       ++CurSegIndex;
9176       CurSegName = Info.SegmentName;
9177       CurSegAddress = Info.Address;
9178     }
9179     Info.SegmentIndex = CurSegIndex - 1;
9180     Info.OffsetInSegment = Info.Address - CurSegAddress;
9181     Info.SegmentStartAddress = CurSegAddress;
9182     Sections.push_back(Info);
9183   }
9184 }
9185 
9186 StringRef SegInfo::segmentName(uint32_t SegIndex) {
9187   for (const SectionInfo &SI : Sections) {
9188     if (SI.SegmentIndex == SegIndex)
9189       return SI.SegmentName;
9190   }
9191   llvm_unreachable("invalid segIndex");
9192 }
9193 
9194 bool SegInfo::isValidSegIndexAndOffset(uint32_t SegIndex,
9195                                        uint64_t OffsetInSeg) {
9196   for (const SectionInfo &SI : Sections) {
9197     if (SI.SegmentIndex != SegIndex)
9198       continue;
9199     if (SI.OffsetInSegment > OffsetInSeg)
9200       continue;
9201     if (OffsetInSeg >= (SI.OffsetInSegment + SI.Size))
9202       continue;
9203     return true;
9204   }
9205   return false;
9206 }
9207 
9208 const SegInfo::SectionInfo &SegInfo::findSection(uint32_t SegIndex,
9209                                                  uint64_t OffsetInSeg) {
9210   for (const SectionInfo &SI : Sections) {
9211     if (SI.SegmentIndex != SegIndex)
9212       continue;
9213     if (SI.OffsetInSegment > OffsetInSeg)
9214       continue;
9215     if (OffsetInSeg >= (SI.OffsetInSegment + SI.Size))
9216       continue;
9217     return SI;
9218   }
9219   llvm_unreachable("segIndex and offset not in any section");
9220 }
9221 
9222 StringRef SegInfo::sectionName(uint32_t SegIndex, uint64_t OffsetInSeg) {
9223   return findSection(SegIndex, OffsetInSeg).SectionName;
9224 }
9225 
9226 uint64_t SegInfo::address(uint32_t SegIndex, uint64_t OffsetInSeg) {
9227   const SectionInfo &SI = findSection(SegIndex, OffsetInSeg);
9228   return SI.SegmentStartAddress + OffsetInSeg;
9229 }
9230 
9231 void llvm::printMachORebaseTable(const object::MachOObjectFile *Obj) {
9232   // Build table of sections so names can used in final output.
9233   SegInfo sectionTable(Obj);
9234 
9235   outs() << "segment  section            address     type\n";
9236   for (const llvm::object::MachORebaseEntry &Entry : Obj->rebaseTable()) {
9237     uint32_t SegIndex = Entry.segmentIndex();
9238     uint64_t OffsetInSeg = Entry.segmentOffset();
9239     StringRef SegmentName = sectionTable.segmentName(SegIndex);
9240     StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
9241     uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
9242 
9243     // Table lines look like: __DATA  __nl_symbol_ptr  0x0000F00C  pointer
9244     outs() << format("%-8s %-18s 0x%08" PRIX64 "  %s\n",
9245                      SegmentName.str().c_str(), SectionName.str().c_str(),
9246                      Address, Entry.typeName().str().c_str());
9247   }
9248 }
9249 
9250 static StringRef ordinalName(const object::MachOObjectFile *Obj, int Ordinal) {
9251   StringRef DylibName;
9252   switch (Ordinal) {
9253   case MachO::BIND_SPECIAL_DYLIB_SELF:
9254     return "this-image";
9255   case MachO::BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE:
9256     return "main-executable";
9257   case MachO::BIND_SPECIAL_DYLIB_FLAT_LOOKUP:
9258     return "flat-namespace";
9259   default:
9260     if (Ordinal > 0) {
9261       std::error_code EC =
9262           Obj->getLibraryShortNameByIndex(Ordinal - 1, DylibName);
9263       if (EC)
9264         return "<<bad library ordinal>>";
9265       return DylibName;
9266     }
9267   }
9268   return "<<unknown special ordinal>>";
9269 }
9270 
9271 //===----------------------------------------------------------------------===//
9272 // bind table dumping
9273 //===----------------------------------------------------------------------===//
9274 
9275 void llvm::printMachOBindTable(const object::MachOObjectFile *Obj) {
9276   // Build table of sections so names can used in final output.
9277   SegInfo sectionTable(Obj);
9278 
9279   outs() << "segment  section            address    type       "
9280             "addend dylib            symbol\n";
9281   for (const llvm::object::MachOBindEntry &Entry : Obj->bindTable()) {
9282     uint32_t SegIndex = Entry.segmentIndex();
9283     uint64_t OffsetInSeg = Entry.segmentOffset();
9284     StringRef SegmentName = sectionTable.segmentName(SegIndex);
9285     StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
9286     uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
9287 
9288     // Table lines look like:
9289     //  __DATA  __got  0x00012010    pointer   0 libSystem ___stack_chk_guard
9290     StringRef Attr;
9291     if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_WEAK_IMPORT)
9292       Attr = " (weak_import)";
9293     outs() << left_justify(SegmentName, 8) << " "
9294            << left_justify(SectionName, 18) << " "
9295            << format_hex(Address, 10, true) << " "
9296            << left_justify(Entry.typeName(), 8) << " "
9297            << format_decimal(Entry.addend(), 8) << " "
9298            << left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " "
9299            << Entry.symbolName() << Attr << "\n";
9300   }
9301 }
9302 
9303 //===----------------------------------------------------------------------===//
9304 // lazy bind table dumping
9305 //===----------------------------------------------------------------------===//
9306 
9307 void llvm::printMachOLazyBindTable(const object::MachOObjectFile *Obj) {
9308   // Build table of sections so names can used in final output.
9309   SegInfo sectionTable(Obj);
9310 
9311   outs() << "segment  section            address     "
9312             "dylib            symbol\n";
9313   for (const llvm::object::MachOBindEntry &Entry : Obj->lazyBindTable()) {
9314     uint32_t SegIndex = Entry.segmentIndex();
9315     uint64_t OffsetInSeg = Entry.segmentOffset();
9316     StringRef SegmentName = sectionTable.segmentName(SegIndex);
9317     StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
9318     uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
9319 
9320     // Table lines look like:
9321     //  __DATA  __got  0x00012010 libSystem ___stack_chk_guard
9322     outs() << left_justify(SegmentName, 8) << " "
9323            << left_justify(SectionName, 18) << " "
9324            << format_hex(Address, 10, true) << " "
9325            << left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " "
9326            << Entry.symbolName() << "\n";
9327   }
9328 }
9329 
9330 //===----------------------------------------------------------------------===//
9331 // weak bind table dumping
9332 //===----------------------------------------------------------------------===//
9333 
9334 void llvm::printMachOWeakBindTable(const object::MachOObjectFile *Obj) {
9335   // Build table of sections so names can used in final output.
9336   SegInfo sectionTable(Obj);
9337 
9338   outs() << "segment  section            address     "
9339             "type       addend   symbol\n";
9340   for (const llvm::object::MachOBindEntry &Entry : Obj->weakBindTable()) {
9341     // Strong symbols don't have a location to update.
9342     if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) {
9343       outs() << "                                        strong              "
9344              << Entry.symbolName() << "\n";
9345       continue;
9346     }
9347     uint32_t SegIndex = Entry.segmentIndex();
9348     uint64_t OffsetInSeg = Entry.segmentOffset();
9349     StringRef SegmentName = sectionTable.segmentName(SegIndex);
9350     StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg);
9351     uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
9352 
9353     // Table lines look like:
9354     // __DATA  __data  0x00001000  pointer    0   _foo
9355     outs() << left_justify(SegmentName, 8) << " "
9356            << left_justify(SectionName, 18) << " "
9357            << format_hex(Address, 10, true) << " "
9358            << left_justify(Entry.typeName(), 8) << " "
9359            << format_decimal(Entry.addend(), 8) << "   " << Entry.symbolName()
9360            << "\n";
9361   }
9362 }
9363 
9364 // get_dyld_bind_info_symbolname() is used for disassembly and passed an
9365 // address, ReferenceValue, in the Mach-O file and looks in the dyld bind
9366 // information for that address. If the address is found its binding symbol
9367 // name is returned.  If not nullptr is returned.
9368 static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue,
9369                                                  struct DisassembleInfo *info) {
9370   if (info->bindtable == nullptr) {
9371     info->bindtable = new (BindTable);
9372     SegInfo sectionTable(info->O);
9373     for (const llvm::object::MachOBindEntry &Entry : info->O->bindTable()) {
9374       uint32_t SegIndex = Entry.segmentIndex();
9375       uint64_t OffsetInSeg = Entry.segmentOffset();
9376       if (!sectionTable.isValidSegIndexAndOffset(SegIndex, OffsetInSeg))
9377         continue;
9378       uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg);
9379       const char *SymbolName = nullptr;
9380       StringRef name = Entry.symbolName();
9381       if (!name.empty())
9382         SymbolName = name.data();
9383       info->bindtable->push_back(std::make_pair(Address, SymbolName));
9384     }
9385   }
9386   for (bind_table_iterator BI = info->bindtable->begin(),
9387                            BE = info->bindtable->end();
9388        BI != BE; ++BI) {
9389     uint64_t Address = BI->first;
9390     if (ReferenceValue == Address) {
9391       const char *SymbolName = BI->second;
9392       return SymbolName;
9393     }
9394   }
9395   return nullptr;
9396 }
9397