1; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -S | FileCheck %s 2; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=IND 3; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=UNROLL 4 5target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128" 6 7; Make sure that we can handle multiple integer induction variables. 8; CHECK-LABEL: @multi_int_induction( 9; CHECK: vector.body: 10; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 11; CHECK: %[[VAR:.*]] = trunc i64 %index to i32 12; CHECK: %offset.idx = add i32 190, %[[VAR]] 13define void @multi_int_induction(i32* %A, i32 %N) { 14for.body.lr.ph: 15 br label %for.body 16 17for.body: 18 %indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ] 19 %count.09 = phi i32 [ 190, %for.body.lr.ph ], [ %inc, %for.body ] 20 %arrayidx2 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv 21 store i32 %count.09, i32* %arrayidx2, align 4 22 %inc = add nsw i32 %count.09, 1 23 %indvars.iv.next = add i64 %indvars.iv, 1 24 %lftr.wideiv = trunc i64 %indvars.iv.next to i32 25 %exitcond = icmp ne i32 %lftr.wideiv, %N 26 br i1 %exitcond, label %for.body, label %for.end 27 28for.end: 29 ret void 30} 31 32; Make sure we remove unneeded vectorization of induction variables. 33; In order for instcombine to cleanup the vectorized induction variables that we 34; create in the loop vectorizer we need to perform some form of redundancy 35; elimination to get rid of multiple uses. 36 37; IND-LABEL: scalar_use 38 39; IND: br label %vector.body 40; IND: vector.body: 41; Vectorized induction variable. 42; IND-NOT: insertelement <2 x i64> 43; IND-NOT: shufflevector <2 x i64> 44; IND: br {{.*}}, label %vector.body 45 46define void @scalar_use(float* %a, float %b, i64 %offset, i64 %offset2, i64 %n) { 47entry: 48 br label %for.body 49 50for.body: 51 %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] 52 %ind.sum = add i64 %iv, %offset 53 %arr.idx = getelementptr inbounds float, float* %a, i64 %ind.sum 54 %l1 = load float, float* %arr.idx, align 4 55 %ind.sum2 = add i64 %iv, %offset2 56 %arr.idx2 = getelementptr inbounds float, float* %a, i64 %ind.sum2 57 %l2 = load float, float* %arr.idx2, align 4 58 %m = fmul fast float %b, %l2 59 %ad = fadd fast float %l1, %m 60 store float %ad, float* %arr.idx, align 4 61 %iv.next = add nuw nsw i64 %iv, 1 62 %exitcond = icmp eq i64 %iv.next, %n 63 br i1 %exitcond, label %loopexit, label %for.body 64 65loopexit: 66 ret void 67} 68 69 70; Make sure that the loop exit count computation does not overflow for i8 and 71; i16. The exit count of these loops is i8/i16 max + 1. If we don't cast the 72; induction variable to a bigger type the exit count computation will overflow 73; to 0. 74; PR17532 75 76; CHECK-LABEL: i8_loop 77; CHECK: icmp eq i32 {{.*}}, 256 78define i32 @i8_loop() nounwind readnone ssp uwtable { 79 br label %1 80 81; <label>:1 ; preds = %1, %0 82 %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] 83 %b.0 = phi i8 [ 0, %0 ], [ %3, %1 ] 84 %2 = and i32 %a.0, 4 85 %3 = add i8 %b.0, -1 86 %4 = icmp eq i8 %3, 0 87 br i1 %4, label %5, label %1 88 89; <label>:5 ; preds = %1 90 ret i32 %2 91} 92 93; CHECK-LABEL: i16_loop 94; CHECK: icmp eq i32 {{.*}}, 65536 95 96define i32 @i16_loop() nounwind readnone ssp uwtable { 97 br label %1 98 99; <label>:1 ; preds = %1, %0 100 %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] 101 %b.0 = phi i16 [ 0, %0 ], [ %3, %1 ] 102 %2 = and i32 %a.0, 4 103 %3 = add i16 %b.0, -1 104 %4 = icmp eq i16 %3, 0 105 br i1 %4, label %5, label %1 106 107; <label>:5 ; preds = %1 108 ret i32 %2 109} 110 111; This loop has a backedge taken count of i32_max. We need to check for this 112; condition and branch directly to the scalar loop. 113 114; CHECK-LABEL: max_i32_backedgetaken 115; CHECK: br i1 true, label %scalar.ph, label %min.iters.checked 116 117; CHECK: scalar.ph: 118; CHECK: %bc.resume.val = phi i32 [ 0, %middle.block ], [ 0, %0 ] 119; CHECK: %bc.merge.rdx = phi i32 [ 1, %0 ], [ 1, %min.iters.checked ], [ %5, %middle.block ] 120 121define i32 @max_i32_backedgetaken() nounwind readnone ssp uwtable { 122 123 br label %1 124 125; <label>:1 ; preds = %1, %0 126 %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] 127 %b.0 = phi i32 [ 0, %0 ], [ %3, %1 ] 128 %2 = and i32 %a.0, 4 129 %3 = add i32 %b.0, -1 130 %4 = icmp eq i32 %3, 0 131 br i1 %4, label %5, label %1 132 133; <label>:5 ; preds = %1 134 ret i32 %2 135} 136 137; When generating the overflow check we must sure that the induction start value 138; is defined before the branch to the scalar preheader. 139 140; CHECK-LABEL: testoverflowcheck 141; CHECK: entry 142; CHECK: %[[LOAD:.*]] = load i8 143; CHECK: br 144 145; CHECK: scalar.ph 146; CHECK: phi i8 [ %{{.*}}, %middle.block ], [ %[[LOAD]], %entry ] 147 148@e = global i8 1, align 1 149@d = common global i32 0, align 4 150@c = common global i32 0, align 4 151define i32 @testoverflowcheck() { 152entry: 153 %.pr.i = load i8, i8* @e, align 1 154 %0 = load i32, i32* @d, align 4 155 %c.promoted.i = load i32, i32* @c, align 4 156 br label %cond.end.i 157 158cond.end.i: 159 %inc4.i = phi i8 [ %.pr.i, %entry ], [ %inc.i, %cond.end.i ] 160 %and3.i = phi i32 [ %c.promoted.i, %entry ], [ %and.i, %cond.end.i ] 161 %and.i = and i32 %0, %and3.i 162 %inc.i = add i8 %inc4.i, 1 163 %tobool.i = icmp eq i8 %inc.i, 0 164 br i1 %tobool.i, label %loopexit, label %cond.end.i 165 166loopexit: 167 ret i32 %and.i 168} 169 170; The SCEV expression of %sphi is (zext i8 {%t,+,1}<%loop> to i32) 171; In order to recognize %sphi as an induction PHI and vectorize this loop, 172; we need to convert the SCEV expression into an AddRecExpr. 173; The expression gets converted to {zext i8 %t to i32,+,1}. 174 175; CHECK-LABEL: wrappingindvars1 176; CHECK-LABEL: vector.scevcheck 177; CHECK-LABEL: vector.body 178; CHECK: add <2 x i32> {{%[^ ]*}}, <i32 0, i32 1> 179define void @wrappingindvars1(i8 %t, i32 %len, i32 *%A) { 180 entry: 181 %st = zext i8 %t to i16 182 %ext = zext i8 %t to i32 183 %ecmp = icmp ult i16 %st, 42 184 br i1 %ecmp, label %loop, label %exit 185 186 loop: 187 188 %idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ] 189 %idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ] 190 %sphi = phi i32 [ %ext, %entry ], [%idx.inc.ext, %loop] 191 192 %ptr = getelementptr inbounds i32, i32* %A, i8 %idx 193 store i32 %sphi, i32* %ptr 194 195 %idx.inc = add i8 %idx, 1 196 %idx.inc.ext = zext i8 %idx.inc to i32 197 %idx.b.inc = add nuw nsw i32 %idx.b, 1 198 199 %c = icmp ult i32 %idx.b, %len 200 br i1 %c, label %loop, label %exit 201 202 exit: 203 ret void 204} 205 206; The SCEV expression of %sphi is (4 * (zext i8 {%t,+,1}<%loop> to i32)) 207; In order to recognize %sphi as an induction PHI and vectorize this loop, 208; we need to convert the SCEV expression into an AddRecExpr. 209; The expression gets converted to ({4 * (zext %t to i32),+,4}). 210; CHECK-LABEL: wrappingindvars2 211; CHECK-LABEL: vector.scevcheck 212; CHECK-LABEL: vector.body 213; CHECK: add <2 x i32> {{%[^ ]*}}, <i32 0, i32 4> 214define void @wrappingindvars2(i8 %t, i32 %len, i32 *%A) { 215 216entry: 217 %st = zext i8 %t to i16 218 %ext = zext i8 %t to i32 219 %ext.mul = mul i32 %ext, 4 220 221 %ecmp = icmp ult i16 %st, 42 222 br i1 %ecmp, label %loop, label %exit 223 224 loop: 225 226 %idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ] 227 %sphi = phi i32 [ %ext.mul, %entry ], [%mul, %loop] 228 %idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ] 229 230 %ptr = getelementptr inbounds i32, i32* %A, i8 %idx 231 store i32 %sphi, i32* %ptr 232 233 %idx.inc = add i8 %idx, 1 234 %idx.inc.ext = zext i8 %idx.inc to i32 235 %mul = mul i32 %idx.inc.ext, 4 236 %idx.b.inc = add nuw nsw i32 %idx.b, 1 237 238 %c = icmp ult i32 %idx.b, %len 239 br i1 %c, label %loop, label %exit 240 241 exit: 242 ret void 243} 244 245; Check that we generate vectorized IVs in the pre-header 246; instead of widening the scalar IV inside the loop, when 247; we know how to do that. 248; IND-LABEL: veciv 249; IND: vector.body: 250; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] 251; IND: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %step.add, %vector.body ] 252; IND: %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2> 253; IND: %index.next = add i32 %index, 2 254; IND: %[[CMP:.*]] = icmp eq i32 %index.next 255; IND: br i1 %[[CMP]] 256; UNROLL-LABEL: veciv 257; UNROLL: vector.body: 258; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] 259; UNROLL: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %step.add1, %vector.body ] 260; UNROLL: %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2> 261; UNROLL: %step.add1 = add <2 x i32> %vec.ind, <i32 4, i32 4> 262; UNROLL: %index.next = add i32 %index, 4 263; UNROLL: %[[CMP:.*]] = icmp eq i32 %index.next 264; UNROLL: br i1 %[[CMP]] 265define void @veciv(i32* nocapture %a, i32 %start, i32 %k) { 266for.body.preheader: 267 br label %for.body 268 269for.body: 270 %indvars.iv = phi i32 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ] 271 %arrayidx = getelementptr inbounds i32, i32* %a, i32 %indvars.iv 272 store i32 %indvars.iv, i32* %arrayidx, align 4 273 %indvars.iv.next = add nuw nsw i32 %indvars.iv, 1 274 %exitcond = icmp eq i32 %indvars.iv.next, %k 275 br i1 %exitcond, label %exit, label %for.body 276 277exit: 278 ret void 279} 280 281; IND-LABEL: trunciv 282; IND: vector.body: 283; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 284; IND: %[[VECIND:.*]] = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %[[STEPADD:.*]], %vector.body ] 285; IND: %[[STEPADD]] = add <2 x i32> %[[VECIND]], <i32 2, i32 2> 286; IND: %index.next = add i64 %index, 2 287; IND: %[[CMP:.*]] = icmp eq i64 %index.next 288; IND: br i1 %[[CMP]] 289define void @trunciv(i32* nocapture %a, i32 %start, i64 %k) { 290for.body.preheader: 291 br label %for.body 292 293for.body: 294 %indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ] 295 %trunc.iv = trunc i64 %indvars.iv to i32 296 %arrayidx = getelementptr inbounds i32, i32* %a, i32 %trunc.iv 297 store i32 %trunc.iv, i32* %arrayidx, align 4 298 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 299 %exitcond = icmp eq i64 %indvars.iv.next, %k 300 br i1 %exitcond, label %exit, label %for.body 301 302exit: 303 ret void 304} 305