1; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -S | FileCheck %s 2; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=IND 3; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=UNROLL 4; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=2 -S | FileCheck %s --check-prefix=UNROLL-NO-IC 5; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=4 -enable-interleaved-mem-accesses -instcombine -S | FileCheck %s --check-prefix=INTERLEAVE 6 7target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128" 8 9; Make sure that we can handle multiple integer induction variables. 10; 11; CHECK-LABEL: @multi_int_induction( 12; CHECK: vector.body: 13; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 14; CHECK-NEXT: %vec.ind = phi <2 x i32> [ <i32 190, i32 191>, %vector.ph ], [ %vec.ind.next, %vector.body ] 15; CHECK: [[TMP3:%.*]] = add i64 %index, 0 16; CHECK-NEXT: [[TMP4:%.*]] = getelementptr inbounds i32, i32* %A, i64 [[TMP3]] 17; CHECK-NEXT: [[TMP5:%.*]] = getelementptr inbounds i32, i32* [[TMP4]], i32 0 18; CHECK-NEXT: [[TMP6:%.*]] = bitcast i32* [[TMP5]] to <2 x i32>* 19; CHECK-NEXT: store <2 x i32> %vec.ind, <2 x i32>* [[TMP6]], align 4 20; CHECK: %index.next = add i64 %index, 2 21; CHECK-NEXT: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2> 22; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body 23define void @multi_int_induction(i32* %A, i32 %N) { 24for.body.lr.ph: 25 br label %for.body 26 27for.body: 28 %indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ] 29 %count.09 = phi i32 [ 190, %for.body.lr.ph ], [ %inc, %for.body ] 30 %arrayidx2 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv 31 store i32 %count.09, i32* %arrayidx2, align 4 32 %inc = add nsw i32 %count.09, 1 33 %indvars.iv.next = add i64 %indvars.iv, 1 34 %lftr.wideiv = trunc i64 %indvars.iv.next to i32 35 %exitcond = icmp ne i32 %lftr.wideiv, %N 36 br i1 %exitcond, label %for.body, label %for.end 37 38for.end: 39 ret void 40} 41 42; Make sure we remove unneeded vectorization of induction variables. 43; In order for instcombine to cleanup the vectorized induction variables that we 44; create in the loop vectorizer we need to perform some form of redundancy 45; elimination to get rid of multiple uses. 46 47; IND-LABEL: scalar_use 48 49; IND: br label %vector.body 50; IND: vector.body: 51; Vectorized induction variable. 52; IND-NOT: insertelement <2 x i64> 53; IND-NOT: shufflevector <2 x i64> 54; IND: br {{.*}}, label %vector.body 55 56define void @scalar_use(float* %a, float %b, i64 %offset, i64 %offset2, i64 %n) { 57entry: 58 br label %for.body 59 60for.body: 61 %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] 62 %ind.sum = add i64 %iv, %offset 63 %arr.idx = getelementptr inbounds float, float* %a, i64 %ind.sum 64 %l1 = load float, float* %arr.idx, align 4 65 %ind.sum2 = add i64 %iv, %offset2 66 %arr.idx2 = getelementptr inbounds float, float* %a, i64 %ind.sum2 67 %l2 = load float, float* %arr.idx2, align 4 68 %m = fmul fast float %b, %l2 69 %ad = fadd fast float %l1, %m 70 store float %ad, float* %arr.idx, align 4 71 %iv.next = add nuw nsw i64 %iv, 1 72 %exitcond = icmp eq i64 %iv.next, %n 73 br i1 %exitcond, label %loopexit, label %for.body 74 75loopexit: 76 ret void 77} 78 79; Make sure we don't create a vector induction phi node that is unused. 80; Scalarize the step vectors instead. 81; 82; for (int i = 0; i < n; ++i) 83; sum += a[i]; 84; 85; CHECK-LABEL: @scalarize_induction_variable_01( 86; CHECK: vector.body: 87; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 88; CHECK: %[[i0:.+]] = add i64 %index, 0 89; CHECK: getelementptr inbounds i64, i64* %a, i64 %[[i0]] 90; 91; UNROLL-NO-IC-LABEL: @scalarize_induction_variable_01( 92; UNROLL-NO-IC: vector.body: 93; UNROLL-NO-IC: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 94; UNROLL-NO-IC: %[[i0:.+]] = add i64 %index, 0 95; UNROLL-NO-IC: %[[i2:.+]] = add i64 %index, 2 96; UNROLL-NO-IC: getelementptr inbounds i64, i64* %a, i64 %[[i0]] 97; UNROLL-NO-IC: getelementptr inbounds i64, i64* %a, i64 %[[i2]] 98; 99; IND-LABEL: @scalarize_induction_variable_01( 100; IND: vector.body: 101; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 102; IND-NOT: add i64 {{.*}}, 2 103; IND: getelementptr inbounds i64, i64* %a, i64 %index 104; 105; UNROLL-LABEL: @scalarize_induction_variable_01( 106; UNROLL: vector.body: 107; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 108; UNROLL-NOT: add i64 {{.*}}, 4 109; UNROLL: %[[g1:.+]] = getelementptr inbounds i64, i64* %a, i64 %index 110; UNROLL: getelementptr inbounds i64, i64* %[[g1]], i64 2 111 112define i64 @scalarize_induction_variable_01(i64 *%a, i64 %n) { 113entry: 114 br label %for.body 115 116for.body: 117 %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] 118 %sum = phi i64 [ %2, %for.body ], [ 0, %entry ] 119 %0 = getelementptr inbounds i64, i64* %a, i64 %i 120 %1 = load i64, i64* %0, align 8 121 %2 = add i64 %1, %sum 122 %i.next = add nuw nsw i64 %i, 1 123 %cond = icmp slt i64 %i.next, %n 124 br i1 %cond, label %for.body, label %for.end 125 126for.end: 127 %3 = phi i64 [ %2, %for.body ] 128 ret i64 %3 129} 130 131; Make sure we scalarize the step vectors used for the pointer arithmetic. We 132; can't easily simplify vectorized step vectors. 133; 134; float s = 0; 135; for (int i ; 0; i < n; i += 8) 136; s += (a[i] + b[i] + 1.0f); 137; 138; CHECK-LABEL: @scalarize_induction_variable_02( 139; CHECK: vector.body: 140; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 141; CHECK: %offset.idx = mul i64 %index, 8 142; CHECK: %[[i0:.+]] = add i64 %offset.idx, 0 143; CHECK: %[[i1:.+]] = add i64 %offset.idx, 8 144; CHECK: getelementptr inbounds float, float* %a, i64 %[[i0]] 145; CHECK: getelementptr inbounds float, float* %a, i64 %[[i1]] 146; CHECK: getelementptr inbounds float, float* %b, i64 %[[i0]] 147; CHECK: getelementptr inbounds float, float* %b, i64 %[[i1]] 148; 149; UNROLL-NO-IC-LABEL: @scalarize_induction_variable_02( 150; UNROLL-NO-IC: vector.body: 151; UNROLL-NO-IC: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 152; UNROLL-NO-IC: %offset.idx = mul i64 %index, 8 153; UNROLL-NO-IC: %[[i0:.+]] = add i64 %offset.idx, 0 154; UNROLL-NO-IC: %[[i1:.+]] = add i64 %offset.idx, 8 155; UNROLL-NO-IC: %[[i2:.+]] = add i64 %offset.idx, 16 156; UNROLL-NO-IC: %[[i3:.+]] = add i64 %offset.idx, 24 157; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i0]] 158; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i1]] 159; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i2]] 160; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i3]] 161; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i0]] 162; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i1]] 163; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i2]] 164; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i3]] 165; 166; IND-LABEL: @scalarize_induction_variable_02( 167; IND: vector.body: 168; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 169; IND: %[[i0:.+]] = shl i64 %index, 3 170; IND: %[[i1:.+]] = or i64 %[[i0]], 8 171; IND: getelementptr inbounds float, float* %a, i64 %[[i0]] 172; IND: getelementptr inbounds float, float* %a, i64 %[[i1]] 173; 174; UNROLL-LABEL: @scalarize_induction_variable_02( 175; UNROLL: vector.body: 176; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 177; UNROLL: %[[i0:.+]] = shl i64 %index, 3 178; UNROLL: %[[i1:.+]] = or i64 %[[i0]], 8 179; UNROLL: %[[i2:.+]] = or i64 %[[i0]], 16 180; UNROLL: %[[i3:.+]] = or i64 %[[i0]], 24 181; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i0]] 182; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i1]] 183; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i2]] 184; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i3]] 185 186define float @scalarize_induction_variable_02(float* %a, float* %b, i64 %n) { 187entry: 188 br label %for.body 189 190for.body: 191 %i = phi i64 [ 0, %entry ], [ %i.next, %for.body ] 192 %s = phi float [ 0.0, %entry ], [ %6, %for.body ] 193 %0 = getelementptr inbounds float, float* %a, i64 %i 194 %1 = load float, float* %0, align 4 195 %2 = getelementptr inbounds float, float* %b, i64 %i 196 %3 = load float, float* %2, align 4 197 %4 = fadd fast float %s, 1.0 198 %5 = fadd fast float %4, %1 199 %6 = fadd fast float %5, %3 200 %i.next = add nuw nsw i64 %i, 8 201 %cond = icmp slt i64 %i.next, %n 202 br i1 %cond, label %for.body, label %for.end 203 204for.end: 205 %s.lcssa = phi float [ %6, %for.body ] 206 ret float %s.lcssa 207} 208 209; Make sure we scalarize the step vectors used for the pointer arithmetic. We 210; can't easily simplify vectorized step vectors. (Interleaved accesses.) 211; 212; for (int i = 0; i < n; ++i) 213; a[i].f ^= y; 214; 215; INTERLEAVE-LABEL: @scalarize_induction_variable_03( 216; INTERLEAVE: vector.body: 217; INTERLEAVE: %[[i0:.+]] = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 218; INTERLEAVE: %[[i1:.+]] = or i64 %[[i0]], 1 219; INTERLEAVE: %[[i2:.+]] = or i64 %[[i0]], 2 220; INTERLEAVE: %[[i3:.+]] = or i64 %[[i0]], 3 221; INTERLEAVE: %[[i4:.+]] = or i64 %[[i0]], 4 222; INTERLEAVE: %[[i5:.+]] = or i64 %[[i0]], 5 223; INTERLEAVE: %[[i6:.+]] = or i64 %[[i0]], 6 224; INTERLEAVE: %[[i7:.+]] = or i64 %[[i0]], 7 225; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i0]], i32 1 226; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i1]], i32 1 227; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i2]], i32 1 228; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i3]], i32 1 229; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i4]], i32 1 230; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i5]], i32 1 231; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i6]], i32 1 232; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i7]], i32 1 233 234%pair.i32 = type { i32, i32 } 235define void @scalarize_induction_variable_03(%pair.i32 *%p, i32 %y, i64 %n) { 236entry: 237 br label %for.body 238 239for.body: 240 %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] 241 %f = getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %i, i32 1 242 %0 = load i32, i32* %f, align 8 243 %1 = xor i32 %0, %y 244 store i32 %1, i32* %f, align 8 245 %i.next = add nuw nsw i64 %i, 1 246 %cond = icmp slt i64 %i.next, %n 247 br i1 %cond, label %for.body, label %for.end 248 249for.end: 250 ret void 251} 252 253; Make sure we scalarize the step vectors used for the pointer arithmetic. We 254; can't easily simplify vectorized step vectors. (Interleaved accesses.) 255; 256; for (int i = 0; i < n; ++i) 257; p[i].f = a[i * 4] 258; 259; INTERLEAVE-LABEL: @scalarize_induction_variable_04( 260; INTERLEAVE: vector.body: 261; INTERLEAVE: %[[i0:.+]] = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 262; INTERLEAVE: %[[i1:.+]] = or i64 %[[i0]], 1 263; INTERLEAVE: %[[i2:.+]] = or i64 %[[i0]], 2 264; INTERLEAVE: %[[i3:.+]] = or i64 %[[i0]], 3 265; INTERLEAVE: %[[i4:.+]] = or i64 %[[i0]], 4 266; INTERLEAVE: %[[i5:.+]] = or i64 %[[i0]], 5 267; INTERLEAVE: %[[i6:.+]] = or i64 %[[i0]], 6 268; INTERLEAVE: %[[i7:.+]] = or i64 %[[i0]], 7 269; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i0]], i32 1 270; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i1]], i32 1 271; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i2]], i32 1 272; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i3]], i32 1 273; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i4]], i32 1 274; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i5]], i32 1 275; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i6]], i32 1 276; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i7]], i32 1 277 278define void @scalarize_induction_variable_04(i32* %a, %pair.i32* %p, i32 %n) { 279entry: 280 br label %for.body 281 282for.body: 283 %i = phi i64 [ %i.next, %for.body ], [ 0, %entry] 284 %0 = shl nsw i64 %i, 2 285 %1 = getelementptr inbounds i32, i32* %a, i64 %0 286 %2 = load i32, i32* %1, align 1 287 %3 = getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %i, i32 1 288 store i32 %2, i32* %3, align 1 289 %i.next = add nuw nsw i64 %i, 1 290 %4 = trunc i64 %i.next to i32 291 %cond = icmp eq i32 %4, %n 292 br i1 %cond, label %for.end, label %for.body 293 294for.end: 295 ret void 296} 297 298; PR30542. Ensure we generate all the scalar steps for the induction variable. 299; The scalar induction variable is used by a getelementptr instruction 300; (uniform), and a udiv (non-uniform). 301; 302; int sum = 0; 303; for (int i = 0; i < n; ++i) { 304; int x = a[i]; 305; if (c) 306; x /= i; 307; sum += x; 308; } 309; 310; CHECK-LABEL: @scalarize_induction_variable_05( 311; CHECK: vector.body: 312; CHECK: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ] 313; CHECK: %[[I0:.+]] = add i32 %index, 0 314; CHECK: getelementptr inbounds i32, i32* %a, i32 %[[I0]] 315; CHECK: pred.udiv.if: 316; CHECK: udiv i32 {{.*}}, %[[I0]] 317; CHECK: pred.udiv.if{{[0-9]+}}: 318; CHECK: %[[I1:.+]] = add i32 %index, 1 319; CHECK: udiv i32 {{.*}}, %[[I1]] 320; 321; UNROLL-NO_IC-LABEL: @scalarize_induction_variable_05( 322; UNROLL-NO-IC: vector.body: 323; UNROLL-NO-IC: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ] 324; UNROLL-NO-IC: %[[I0:.+]] = add i32 %index, 0 325; UNROLL-NO-IC: %[[I2:.+]] = add i32 %index, 2 326; UNROLL-NO-IC: getelementptr inbounds i32, i32* %a, i32 %[[I0]] 327; UNROLL-NO-IC: getelementptr inbounds i32, i32* %a, i32 %[[I2]] 328; UNROLL-NO-IC: pred.udiv.if: 329; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I0]] 330; UNROLL-NO-IC: pred.udiv.if{{[0-9]+}}: 331; UNROLL-NO-IC: %[[I1:.+]] = add i32 %index, 1 332; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I1]] 333; UNROLL-NO-IC: pred.udiv.if{{[0-9]+}}: 334; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I2]] 335; UNROLL-NO-IC: pred.udiv.if{{[0-9]+}}: 336; UNROLL-NO-IC: %[[I3:.+]] = add i32 %index, 3 337; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I3]] 338; 339; IND-LABEL: @scalarize_induction_variable_05( 340; IND: vector.body: 341; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ] 342; IND: %[[E0:.+]] = sext i32 %index to i64 343; IND: getelementptr inbounds i32, i32* %a, i64 %[[E0]] 344; IND: pred.udiv.if: 345; IND: udiv i32 {{.*}}, %index 346; IND: pred.udiv.if{{[0-9]+}}: 347; IND: %[[I1:.+]] = or i32 %index, 1 348; IND: udiv i32 {{.*}}, %[[I1]] 349; 350; UNROLL-LABEL: @scalarize_induction_variable_05( 351; UNROLL: vector.body: 352; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ] 353; UNROLL: %[[I2:.+]] = or i32 %index, 2 354; UNROLL: %[[E0:.+]] = sext i32 %index to i64 355; UNROLL: %[[G0:.+]] = getelementptr inbounds i32, i32* %a, i64 %[[E0]] 356; UNROLL: getelementptr inbounds i32, i32* %[[G0]], i64 2 357; UNROLL: pred.udiv.if: 358; UNROLL: udiv i32 {{.*}}, %index 359; UNROLL: pred.udiv.if{{[0-9]+}}: 360; UNROLL: %[[I1:.+]] = or i32 %index, 1 361; UNROLL: udiv i32 {{.*}}, %[[I1]] 362; UNROLL: pred.udiv.if{{[0-9]+}}: 363; UNROLL: udiv i32 {{.*}}, %[[I2]] 364; UNROLL: pred.udiv.if{{[0-9]+}}: 365; UNROLL: %[[I3:.+]] = or i32 %index, 3 366; UNROLL: udiv i32 {{.*}}, %[[I3]] 367 368define i32 @scalarize_induction_variable_05(i32* %a, i32 %x, i1 %c, i32 %n) { 369entry: 370 br label %for.body 371 372for.body: 373 %i = phi i32 [ 0, %entry ], [ %i.next, %if.end ] 374 %sum = phi i32 [ 0, %entry ], [ %tmp4, %if.end ] 375 %tmp0 = getelementptr inbounds i32, i32* %a, i32 %i 376 %tmp1 = load i32, i32* %tmp0, align 4 377 br i1 %c, label %if.then, label %if.end 378 379if.then: 380 %tmp2 = udiv i32 %tmp1, %i 381 br label %if.end 382 383if.end: 384 %tmp3 = phi i32 [ %tmp2, %if.then ], [ %tmp1, %for.body ] 385 %tmp4 = add i32 %tmp3, %sum 386 %i.next = add nuw nsw i32 %i, 1 387 %cond = icmp slt i32 %i.next, %n 388 br i1 %cond, label %for.body, label %for.end 389 390for.end: 391 %tmp5 = phi i32 [ %tmp4, %if.end ] 392 ret i32 %tmp5 393} 394 395; Ensure we generate both a vector and a scalar induction variable. In this 396; test, the induction variable is used by an instruction that will be 397; vectorized (trunc) as well as an instruction that will remain in scalar form 398; (gepelementptr). 399; 400; CHECK-LABEL: @iv_vector_and_scalar_users( 401; CHECK: vector.body: 402; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 403; CHECK: %vec.ind = phi <2 x i64> [ <i64 0, i64 1>, %vector.ph ], [ %vec.ind.next, %vector.body ] 404; CHECK: %vec.ind1 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next2, %vector.body ] 405; CHECK: %[[i0:.+]] = add i64 %index, 0 406; CHECK: %[[i1:.+]] = add i64 %index, 1 407; CHECK: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i0]], i32 1 408; CHECK: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1 409; CHECK: %index.next = add i64 %index, 2 410; CHECK: %vec.ind.next = add <2 x i64> %vec.ind, <i64 2, i64 2> 411; CHECK: %vec.ind.next2 = add <2 x i32> %vec.ind1, <i32 2, i32 2> 412; 413; IND-LABEL: @iv_vector_and_scalar_users( 414; IND: vector.body: 415; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 416; IND: %vec.ind1 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next2, %vector.body ] 417; IND: %[[i1:.+]] = or i64 %index, 1 418; IND: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %index, i32 1 419; IND: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1 420; IND: %index.next = add i64 %index, 2 421; IND: %vec.ind.next2 = add <2 x i32> %vec.ind1, <i32 2, i32 2> 422; 423; UNROLL-LABEL: @iv_vector_and_scalar_users( 424; UNROLL: vector.body: 425; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 426; UNROLL: %vec.ind2 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next5, %vector.body ] 427; UNROLL: %[[i1:.+]] = or i64 %index, 1 428; UNROLL: %[[i2:.+]] = or i64 %index, 2 429; UNROLL: %[[i3:.+]] = or i64 %index, 3 430; UNROLL: %[[add:.+]]= add <2 x i32> %[[splat:.+]], <i32 2, i32 undef> 431; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %index, i32 1 432; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1 433; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i2]], i32 1 434; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i3]], i32 1 435; UNROLL: %index.next = add i64 %index, 4 436; UNROLL: %vec.ind.next5 = add <2 x i32> %vec.ind2, <i32 4, i32 4> 437 438%pair.i16 = type { i16, i16 } 439define void @iv_vector_and_scalar_users(%pair.i16* %p, i32 %a, i32 %n) { 440entry: 441 br label %for.body 442 443for.body: 444 %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] 445 %0 = trunc i64 %i to i32 446 %1 = add i32 %a, %0 447 %2 = trunc i32 %1 to i16 448 %3 = getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %i, i32 1 449 store i16 %2, i16* %3, align 2 450 %i.next = add nuw nsw i64 %i, 1 451 %4 = trunc i64 %i.next to i32 452 %cond = icmp eq i32 %4, %n 453 br i1 %cond, label %for.end, label %for.body 454 455for.end: 456 ret void 457} 458 459; Make sure that the loop exit count computation does not overflow for i8 and 460; i16. The exit count of these loops is i8/i16 max + 1. If we don't cast the 461; induction variable to a bigger type the exit count computation will overflow 462; to 0. 463; PR17532 464 465; CHECK-LABEL: i8_loop 466; CHECK: icmp eq i32 {{.*}}, 256 467define i32 @i8_loop() nounwind readnone ssp uwtable { 468 br label %1 469 470; <label>:1 ; preds = %1, %0 471 %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] 472 %b.0 = phi i8 [ 0, %0 ], [ %3, %1 ] 473 %2 = and i32 %a.0, 4 474 %3 = add i8 %b.0, -1 475 %4 = icmp eq i8 %3, 0 476 br i1 %4, label %5, label %1 477 478; <label>:5 ; preds = %1 479 ret i32 %2 480} 481 482; CHECK-LABEL: i16_loop 483; CHECK: icmp eq i32 {{.*}}, 65536 484 485define i32 @i16_loop() nounwind readnone ssp uwtable { 486 br label %1 487 488; <label>:1 ; preds = %1, %0 489 %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] 490 %b.0 = phi i16 [ 0, %0 ], [ %3, %1 ] 491 %2 = and i32 %a.0, 4 492 %3 = add i16 %b.0, -1 493 %4 = icmp eq i16 %3, 0 494 br i1 %4, label %5, label %1 495 496; <label>:5 ; preds = %1 497 ret i32 %2 498} 499 500; This loop has a backedge taken count of i32_max. We need to check for this 501; condition and branch directly to the scalar loop. 502 503; CHECK-LABEL: max_i32_backedgetaken 504; CHECK: br i1 true, label %scalar.ph, label %vector.ph 505 506; CHECK: middle.block: 507; CHECK: %[[v9:.+]] = extractelement <2 x i32> %bin.rdx, i32 0 508; CHECK: scalar.ph: 509; CHECK: %bc.resume.val = phi i32 [ 0, %middle.block ], [ 0, %[[v0:.+]] ] 510; CHECK: %bc.merge.rdx = phi i32 [ 1, %[[v0:.+]] ], [ %[[v9]], %middle.block ] 511 512define i32 @max_i32_backedgetaken() nounwind readnone ssp uwtable { 513 514 br label %1 515 516; <label>:1 ; preds = %1, %0 517 %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] 518 %b.0 = phi i32 [ 0, %0 ], [ %3, %1 ] 519 %2 = and i32 %a.0, 4 520 %3 = add i32 %b.0, -1 521 %4 = icmp eq i32 %3, 0 522 br i1 %4, label %5, label %1 523 524; <label>:5 ; preds = %1 525 ret i32 %2 526} 527 528; When generating the overflow check we must sure that the induction start value 529; is defined before the branch to the scalar preheader. 530 531; CHECK-LABEL: testoverflowcheck 532; CHECK: entry 533; CHECK: %[[LOAD:.*]] = load i8 534; CHECK: br 535 536; CHECK: scalar.ph 537; CHECK: phi i8 [ %{{.*}}, %middle.block ], [ %[[LOAD]], %entry ] 538 539@e = global i8 1, align 1 540@d = common global i32 0, align 4 541@c = common global i32 0, align 4 542define i32 @testoverflowcheck() { 543entry: 544 %.pr.i = load i8, i8* @e, align 1 545 %0 = load i32, i32* @d, align 4 546 %c.promoted.i = load i32, i32* @c, align 4 547 br label %cond.end.i 548 549cond.end.i: 550 %inc4.i = phi i8 [ %.pr.i, %entry ], [ %inc.i, %cond.end.i ] 551 %and3.i = phi i32 [ %c.promoted.i, %entry ], [ %and.i, %cond.end.i ] 552 %and.i = and i32 %0, %and3.i 553 %inc.i = add i8 %inc4.i, 1 554 %tobool.i = icmp eq i8 %inc.i, 0 555 br i1 %tobool.i, label %loopexit, label %cond.end.i 556 557loopexit: 558 ret i32 %and.i 559} 560 561; The SCEV expression of %sphi is (zext i8 {%t,+,1}<%loop> to i32) 562; In order to recognize %sphi as an induction PHI and vectorize this loop, 563; we need to convert the SCEV expression into an AddRecExpr. 564; The expression gets converted to {zext i8 %t to i32,+,1}. 565 566; CHECK-LABEL: wrappingindvars1 567; CHECK-LABEL: vector.scevcheck 568; CHECK-LABEL: vector.ph 569; CHECK: %[[START:.*]] = add <2 x i32> %{{.*}}, <i32 0, i32 1> 570; CHECK-LABEL: vector.body 571; CHECK: %[[PHI:.*]] = phi <2 x i32> [ %[[START]], %vector.ph ], [ %[[STEP:.*]], %vector.body ] 572; CHECK: %[[STEP]] = add <2 x i32> %[[PHI]], <i32 2, i32 2> 573define void @wrappingindvars1(i8 %t, i32 %len, i32 *%A) { 574 entry: 575 %st = zext i8 %t to i16 576 %ext = zext i8 %t to i32 577 %ecmp = icmp ult i16 %st, 42 578 br i1 %ecmp, label %loop, label %exit 579 580 loop: 581 582 %idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ] 583 %idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ] 584 %sphi = phi i32 [ %ext, %entry ], [%idx.inc.ext, %loop] 585 586 %ptr = getelementptr inbounds i32, i32* %A, i8 %idx 587 store i32 %sphi, i32* %ptr 588 589 %idx.inc = add i8 %idx, 1 590 %idx.inc.ext = zext i8 %idx.inc to i32 591 %idx.b.inc = add nuw nsw i32 %idx.b, 1 592 593 %c = icmp ult i32 %idx.b, %len 594 br i1 %c, label %loop, label %exit 595 596 exit: 597 ret void 598} 599 600; The SCEV expression of %sphi is (4 * (zext i8 {%t,+,1}<%loop> to i32)) 601; In order to recognize %sphi as an induction PHI and vectorize this loop, 602; we need to convert the SCEV expression into an AddRecExpr. 603; The expression gets converted to ({4 * (zext %t to i32),+,4}). 604; CHECK-LABEL: wrappingindvars2 605; CHECK-LABEL: vector.scevcheck 606; CHECK-LABEL: vector.ph 607; CHECK: %[[START:.*]] = add <2 x i32> %{{.*}}, <i32 0, i32 4> 608; CHECK-LABEL: vector.body 609; CHECK: %[[PHI:.*]] = phi <2 x i32> [ %[[START]], %vector.ph ], [ %[[STEP:.*]], %vector.body ] 610; CHECK: %[[STEP]] = add <2 x i32> %[[PHI]], <i32 8, i32 8> 611define void @wrappingindvars2(i8 %t, i32 %len, i32 *%A) { 612 613entry: 614 %st = zext i8 %t to i16 615 %ext = zext i8 %t to i32 616 %ext.mul = mul i32 %ext, 4 617 618 %ecmp = icmp ult i16 %st, 42 619 br i1 %ecmp, label %loop, label %exit 620 621 loop: 622 623 %idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ] 624 %sphi = phi i32 [ %ext.mul, %entry ], [%mul, %loop] 625 %idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ] 626 627 %ptr = getelementptr inbounds i32, i32* %A, i8 %idx 628 store i32 %sphi, i32* %ptr 629 630 %idx.inc = add i8 %idx, 1 631 %idx.inc.ext = zext i8 %idx.inc to i32 632 %mul = mul i32 %idx.inc.ext, 4 633 %idx.b.inc = add nuw nsw i32 %idx.b, 1 634 635 %c = icmp ult i32 %idx.b, %len 636 br i1 %c, label %loop, label %exit 637 638 exit: 639 ret void 640} 641 642; Check that we generate vectorized IVs in the pre-header 643; instead of widening the scalar IV inside the loop, when 644; we know how to do that. 645; IND-LABEL: veciv 646; IND: vector.body: 647; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] 648; IND: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next, %vector.body ] 649; IND: %index.next = add i32 %index, 2 650; IND: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2> 651; IND: %[[CMP:.*]] = icmp eq i32 %index.next 652; IND: br i1 %[[CMP]] 653; UNROLL-LABEL: veciv 654; UNROLL: vector.body: 655; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] 656; UNROLL: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next, %vector.body ] 657; UNROLL: %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2> 658; UNROLL: %index.next = add i32 %index, 4 659; UNROLL: %vec.ind.next = add <2 x i32> %vec.ind, <i32 4, i32 4> 660; UNROLL: %[[CMP:.*]] = icmp eq i32 %index.next 661; UNROLL: br i1 %[[CMP]] 662define void @veciv(i32* nocapture %a, i32 %start, i32 %k) { 663for.body.preheader: 664 br label %for.body 665 666for.body: 667 %indvars.iv = phi i32 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ] 668 %arrayidx = getelementptr inbounds i32, i32* %a, i32 %indvars.iv 669 store i32 %indvars.iv, i32* %arrayidx, align 4 670 %indvars.iv.next = add nuw nsw i32 %indvars.iv, 1 671 %exitcond = icmp eq i32 %indvars.iv.next, %k 672 br i1 %exitcond, label %exit, label %for.body 673 674exit: 675 ret void 676} 677 678; IND-LABEL: trunciv 679; IND: vector.body: 680; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 681; IND: %[[VECIND:.*]] = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %[[STEPADD:.*]], %vector.body ] 682; IND: %index.next = add i64 %index, 2 683; IND: %[[STEPADD]] = add <2 x i32> %[[VECIND]], <i32 2, i32 2> 684; IND: %[[CMP:.*]] = icmp eq i64 %index.next 685; IND: br i1 %[[CMP]] 686define void @trunciv(i32* nocapture %a, i32 %start, i64 %k) { 687for.body.preheader: 688 br label %for.body 689 690for.body: 691 %indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ] 692 %trunc.iv = trunc i64 %indvars.iv to i32 693 %arrayidx = getelementptr inbounds i32, i32* %a, i32 %trunc.iv 694 store i32 %trunc.iv, i32* %arrayidx, align 4 695 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 696 %exitcond = icmp eq i64 %indvars.iv.next, %k 697 br i1 %exitcond, label %exit, label %for.body 698 699exit: 700 ret void 701} 702 703; CHECK-LABEL: @nonprimary( 704; CHECK: vector.ph: 705; CHECK: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0 706; CHECK: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer 707; CHECK: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1> 708; CHECK: vector.body: 709; CHECK: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] 710; CHECK: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ] 711; CHECK: %offset.idx = add i32 %i, %index 712; CHECK: %[[A1:.*]] = add i32 %offset.idx, 0 713; CHECK: %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i32 %[[A1]] 714; CHECK: %[[G3:.*]] = getelementptr inbounds i32, i32* %[[G1]], i32 0 715; CHECK: %[[B1:.*]] = bitcast i32* %[[G3]] to <2 x i32>* 716; CHECK: store <2 x i32> %vec.ind, <2 x i32>* %[[B1]] 717; CHECK: %index.next = add i32 %index, 2 718; CHECK: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2> 719; CHECK: %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec 720; CHECK: br i1 %[[CMP]] 721; 722; IND-LABEL: @nonprimary( 723; IND: vector.ph: 724; IND: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0 725; IND: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer 726; IND: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1> 727; IND: vector.body: 728; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] 729; IND: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ] 730; IND: %[[A1:.*]] = add i32 %index, %i 731; IND: %[[S1:.*]] = sext i32 %[[A1]] to i64 732; IND: %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i64 %[[S1]] 733; IND: %[[B1:.*]] = bitcast i32* %[[G1]] to <2 x i32>* 734; IND: store <2 x i32> %vec.ind, <2 x i32>* %[[B1]] 735; IND: %index.next = add i32 %index, 2 736; IND: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2> 737; IND: %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec 738; IND: br i1 %[[CMP]] 739; 740; UNROLL-LABEL: @nonprimary( 741; UNROLL: vector.ph: 742; UNROLL: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0 743; UNROLL: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer 744; UNROLL: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1> 745; UNROLL: vector.body: 746; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] 747; UNROLL: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ] 748; UNROLL: %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2> 749; UNROLL: %[[A1:.*]] = add i32 %index, %i 750; UNROLL: %[[S1:.*]] = sext i32 %[[A1]] to i64 751; UNROLL: %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i64 %[[S1]] 752; UNROLL: %[[B1:.*]] = bitcast i32* %[[G1]] to <2 x i32>* 753; UNROLL: store <2 x i32> %vec.ind, <2 x i32>* %[[B1]] 754; UNROLL: %[[G2:.*]] = getelementptr inbounds i32, i32* %[[G1]], i64 2 755; UNROLL: %[[B2:.*]] = bitcast i32* %[[G2]] to <2 x i32>* 756; UNROLL: store <2 x i32> %step.add, <2 x i32>* %[[B2]] 757; UNROLL: %index.next = add i32 %index, 4 758; UNROLL: %vec.ind.next = add <2 x i32> %vec.ind, <i32 4, i32 4> 759; UNROLL: %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec 760; UNROLL: br i1 %[[CMP]] 761define void @nonprimary(i32* nocapture %a, i32 %start, i32 %i, i32 %k) { 762for.body.preheader: 763 br label %for.body 764 765for.body: 766 %indvars.iv = phi i32 [ %indvars.iv.next, %for.body ], [ %i, %for.body.preheader ] 767 %arrayidx = getelementptr inbounds i32, i32* %a, i32 %indvars.iv 768 store i32 %indvars.iv, i32* %arrayidx, align 4 769 %indvars.iv.next = add nuw nsw i32 %indvars.iv, 1 770 %exitcond = icmp eq i32 %indvars.iv.next, %k 771 br i1 %exitcond, label %exit, label %for.body 772 773exit: 774 ret void 775} 776 777; CHECK-LABEL: @non_primary_iv_trunc( 778; CHECK: vector.body: 779; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 780; CHECK: [[VEC_IND:%.*]] = phi <2 x i32> [ <i32 0, i32 2>, %vector.ph ], [ [[VEC_IND_NEXT:%.*]], %vector.body ] 781; CHECK: [[TMP3:%.*]] = add i64 %index, 0 782; CHECK-NEXT: [[TMP4:%.*]] = getelementptr inbounds i32, i32* %a, i64 [[TMP3]] 783; CHECK-NEXT: [[TMP5:%.*]] = getelementptr inbounds i32, i32* [[TMP4]], i32 0 784; CHECK-NEXT: [[TMP6:%.*]] = bitcast i32* [[TMP5]] to <2 x i32>* 785; CHECK-NEXT: store <2 x i32> [[VEC_IND]], <2 x i32>* [[TMP6]], align 4 786; CHECK-NEXT: %index.next = add i64 %index, 2 787; CHECK: [[VEC_IND_NEXT]] = add <2 x i32> [[VEC_IND]], <i32 4, i32 4> 788; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body 789define void @non_primary_iv_trunc(i32* %a, i64 %n) { 790entry: 791 br label %for.body 792 793for.body: 794 %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] 795 %j = phi i64 [ %j.next, %for.body ], [ 0, %entry ] 796 %tmp0 = getelementptr inbounds i32, i32* %a, i64 %i 797 %tmp1 = trunc i64 %j to i32 798 store i32 %tmp1, i32* %tmp0, align 4 799 %i.next = add nuw nsw i64 %i, 1 800 %j.next = add nuw nsw i64 %j, 2 801 %cond = icmp slt i64 %i.next, %n 802 br i1 %cond, label %for.body, label %for.end 803 804for.end: 805 ret void 806} 807 808; PR32419. Ensure we transform truncated non-primary induction variables. In 809; the test case below we replace %tmp1 with a new induction variable. Because 810; the truncated value is non-primary, we must compute an offset from the 811; primary induction variable. 812; 813; CHECK-LABEL: @PR32419( 814; CHECK: vector.body: 815; CHECK-NEXT: [[INDEX:%.*]] = phi i32 [ 0, %vector.ph ], [ [[INDEX_NEXT:%.*]], %[[PRED_UREM_CONTINUE4:.*]] ] 816; CHECK: [[OFFSET_IDX:%.*]] = add i32 -20, [[INDEX]] 817; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[OFFSET_IDX]] to i16 818; CHECK: [[TMP8:%.*]] = add i16 [[TMP1]], 0 819; CHECK-NEXT: [[TMP9:%.*]] = urem i16 %b, [[TMP8]] 820; CHECK: [[TMP15:%.*]] = add i16 [[TMP1]], 1 821; CHECK-NEXT: [[TMP16:%.*]] = urem i16 %b, [[TMP15]] 822; CHECK: [[PRED_UREM_CONTINUE4]]: 823; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body 824; 825define i32 @PR32419(i32 %a, i16 %b) { 826entry: 827 br label %for.body 828 829for.body: 830 %i = phi i32 [ -20, %entry ], [ %i.next, %for.inc ] 831 %tmp0 = phi i32 [ %a, %entry ], [ %tmp6, %for.inc ] 832 %tmp1 = trunc i32 %i to i16 833 %tmp2 = icmp eq i16 %tmp1, 0 834 br i1 %tmp2, label %for.inc, label %for.cond 835 836for.cond: 837 %tmp3 = urem i16 %b, %tmp1 838 br label %for.inc 839 840for.inc: 841 %tmp4 = phi i16 [ %tmp3, %for.cond ], [ 0, %for.body ] 842 %tmp5 = sext i16 %tmp4 to i32 843 %tmp6 = or i32 %tmp0, %tmp5 844 %i.next = add nsw i32 %i, 1 845 %cond = icmp eq i32 %i.next, 0 846 br i1 %cond, label %for.end, label %for.body 847 848for.end: 849 %tmp7 = phi i32 [ %tmp6, %for.inc ] 850 ret i32 %tmp7 851} 852 853; Ensure that the shuffle vector for first order recurrence is inserted 854; correctly after all the phis. These new phis correspond to new IVs 855; that are generated by optimizing non-free truncs of IVs to IVs themselves 856define i64 @trunc_with_first_order_recurrence() { 857; CHECK-LABEL: trunc_with_first_order_recurrence 858; CHECK-LABEL: vector.body: 859; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 860; CHECK-NEXT: %vec.phi = phi <2 x i64> 861; CHECK-NEXT: %vec.ind = phi <2 x i64> [ <i64 1, i64 2>, %vector.ph ], [ %vec.ind.next, %vector.body ] 862; CHECK-NEXT: %vec.ind2 = phi <2 x i32> [ <i32 1, i32 2>, %vector.ph ], [ %vec.ind.next3, %vector.body ] 863; CHECK-NEXT: %vector.recur = phi <2 x i32> [ <i32 undef, i32 42>, %vector.ph ], [ %vec.ind5, %vector.body ] 864; CHECK-NEXT: %vec.ind5 = phi <2 x i32> [ <i32 1, i32 2>, %vector.ph ], [ %vec.ind.next6, %vector.body ] 865; CHECK-NEXT: %vec.ind7 = phi <2 x i32> [ <i32 1, i32 2>, %vector.ph ], [ %vec.ind.next8, %vector.body ] 866; CHECK-NEXT: shufflevector <2 x i32> %vector.recur, <2 x i32> %vec.ind5, <2 x i32> <i32 1, i32 2> 867entry: 868 br label %loop 869 870exit: ; preds = %loop 871 %.lcssa = phi i64 [ %c23, %loop ] 872 ret i64 %.lcssa 873 874loop: ; preds = %loop, %entry 875 %c5 = phi i64 [ %c23, %loop ], [ 0, %entry ] 876 %indvars.iv = phi i64 [ %indvars.iv.next, %loop ], [ 1, %entry ] 877 %x = phi i32 [ %c24, %loop ], [ 1, %entry ] 878 %y = phi i32 [ %c6, %loop ], [ 42, %entry ] 879 %c6 = trunc i64 %indvars.iv to i32 880 %c8 = mul i32 %x, %c6 881 %c9 = add i32 %c8, 42 882 %c10 = add i32 %y, %c6 883 %c11 = add i32 %c10, %c9 884 %c12 = sext i32 %c11 to i64 885 %c13 = add i64 %c5, %c12 886 %indvars.iv.tr = trunc i64 %indvars.iv to i32 887 %c14 = shl i32 %indvars.iv.tr, 1 888 %c15 = add i32 %c9, %c14 889 %c16 = sext i32 %c15 to i64 890 %c23 = add i64 %c13, %c16 891 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 892 %c24 = add nuw nsw i32 %x, 1 893 %exitcond.i = icmp eq i64 %indvars.iv.next, 114 894 br i1 %exitcond.i, label %exit, label %loop 895 896} 897