1 //===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a set of utility VPlan to VPlan transformations.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "VPlanTransforms.h"
15 #include "llvm/ADT/PostOrderIterator.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/Analysis/IVDescriptors.h"
18 
19 using namespace llvm;
20 
21 void VPlanTransforms::VPInstructionsToVPRecipes(
22     Loop *OrigLoop, VPlanPtr &Plan,
23     function_ref<const InductionDescriptor *(PHINode *)>
24         GetIntOrFpInductionDescriptor,
25     SmallPtrSetImpl<Instruction *> &DeadInstructions, ScalarEvolution &SE) {
26 
27   auto *TopRegion = cast<VPRegionBlock>(Plan->getEntry());
28   ReversePostOrderTraversal<VPBlockBase *> RPOT(TopRegion->getEntry());
29 
30   for (VPBlockBase *Base : RPOT) {
31     // Do not widen instructions in pre-header and exit blocks.
32     if (Base->getNumPredecessors() == 0 || Base->getNumSuccessors() == 0)
33       continue;
34 
35     VPBasicBlock *VPBB = Base->getEntryBasicBlock();
36     // Introduce each ingredient into VPlan.
37     for (VPRecipeBase &Ingredient : llvm::make_early_inc_range(*VPBB)) {
38       VPValue *VPV = Ingredient.getVPSingleValue();
39       Instruction *Inst = cast<Instruction>(VPV->getUnderlyingValue());
40       if (DeadInstructions.count(Inst)) {
41         VPValue DummyValue;
42         VPV->replaceAllUsesWith(&DummyValue);
43         Ingredient.eraseFromParent();
44         continue;
45       }
46 
47       VPRecipeBase *NewRecipe = nullptr;
48       if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(&Ingredient)) {
49         auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue());
50         if (const auto *II = GetIntOrFpInductionDescriptor(Phi)) {
51           VPValue *Start = Plan->getOrAddVPValue(II->getStartValue());
52           NewRecipe = new VPWidenIntOrFpInductionRecipe(Phi, Start, *II, false,
53                                                         true, SE);
54         } else {
55           Plan->addVPValue(Phi, VPPhi);
56           continue;
57         }
58       } else {
59         assert(isa<VPInstruction>(&Ingredient) &&
60                "only VPInstructions expected here");
61         assert(!isa<PHINode>(Inst) && "phis should be handled above");
62         // Create VPWidenMemoryInstructionRecipe for loads and stores.
63         if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
64           NewRecipe = new VPWidenMemoryInstructionRecipe(
65               *Load, Plan->getOrAddVPValue(getLoadStorePointerOperand(Inst)),
66               nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/);
67         } else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
68           NewRecipe = new VPWidenMemoryInstructionRecipe(
69               *Store, Plan->getOrAddVPValue(getLoadStorePointerOperand(Inst)),
70               Plan->getOrAddVPValue(Store->getValueOperand()), nullptr /*Mask*/,
71               false /*Consecutive*/, false /*Reverse*/);
72         } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
73           NewRecipe = new VPWidenGEPRecipe(
74               GEP, Plan->mapToVPValues(GEP->operands()), OrigLoop);
75         } else if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
76           NewRecipe =
77               new VPWidenCallRecipe(*CI, Plan->mapToVPValues(CI->args()));
78         } else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) {
79           bool InvariantCond =
80               SE.isLoopInvariant(SE.getSCEV(SI->getOperand(0)), OrigLoop);
81           NewRecipe = new VPWidenSelectRecipe(
82               *SI, Plan->mapToVPValues(SI->operands()), InvariantCond);
83         } else {
84           NewRecipe =
85               new VPWidenRecipe(*Inst, Plan->mapToVPValues(Inst->operands()));
86         }
87       }
88 
89       NewRecipe->insertBefore(&Ingredient);
90       if (NewRecipe->getNumDefinedValues() == 1)
91         VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue());
92       else
93         assert(NewRecipe->getNumDefinedValues() == 0 &&
94                "Only recpies with zero or one defined values expected");
95       Ingredient.eraseFromParent();
96       Plan->removeVPValueFor(Inst);
97       for (auto *Def : NewRecipe->definedValues()) {
98         Plan->addVPValue(Inst, Def);
99       }
100     }
101   }
102 }
103 
104 bool VPlanTransforms::sinkScalarOperands(VPlan &Plan) {
105   auto Iter = depth_first(
106       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry()));
107   bool Changed = false;
108   // First, collect the operands of all predicated replicate recipes as seeds
109   // for sinking.
110   SetVector<std::pair<VPBasicBlock *, VPValue *>> WorkList;
111   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
112     for (auto &Recipe : *VPBB) {
113       auto *RepR = dyn_cast<VPReplicateRecipe>(&Recipe);
114       if (!RepR || !RepR->isPredicated())
115         continue;
116       for (VPValue *Op : RepR->operands())
117         WorkList.insert(std::make_pair(RepR->getParent(), Op));
118     }
119   }
120 
121   // Try to sink each replicate recipe in the worklist.
122   while (!WorkList.empty()) {
123     VPBasicBlock *SinkTo;
124     VPValue *C;
125     std::tie(SinkTo, C) = WorkList.pop_back_val();
126     auto *SinkCandidate = dyn_cast_or_null<VPReplicateRecipe>(C->Def);
127     if (!SinkCandidate || SinkCandidate->isUniform() ||
128         SinkCandidate->getParent() == SinkTo ||
129         SinkCandidate->mayHaveSideEffects() ||
130         SinkCandidate->mayReadOrWriteMemory())
131       continue;
132 
133     bool NeedsDuplicating = false;
134     // All recipe users of the sink candidate must be in the same block SinkTo
135     // or all users outside of SinkTo must be uniform-after-vectorization (
136     // i.e., only first lane is used) . In the latter case, we need to duplicate
137     // SinkCandidate. At the moment, we identify such UAV's by looking for the
138     // address operands of widened memory recipes.
139     auto CanSinkWithUser = [SinkTo, &NeedsDuplicating,
140                             SinkCandidate](VPUser *U) {
141       auto *UI = dyn_cast<VPRecipeBase>(U);
142       if (!UI)
143         return false;
144       if (UI->getParent() == SinkTo)
145         return true;
146       auto *WidenI = dyn_cast<VPWidenMemoryInstructionRecipe>(UI);
147       if (WidenI && WidenI->getAddr() == SinkCandidate) {
148         NeedsDuplicating = true;
149         return true;
150       }
151       return false;
152     };
153     if (!all_of(SinkCandidate->users(), CanSinkWithUser))
154       continue;
155 
156     if (NeedsDuplicating) {
157       Instruction *I = cast<Instruction>(SinkCandidate->getUnderlyingValue());
158       auto *Clone =
159           new VPReplicateRecipe(I, SinkCandidate->operands(), true, false);
160       // TODO: add ".cloned" suffix to name of Clone's VPValue.
161 
162       Clone->insertBefore(SinkCandidate);
163       SmallVector<VPUser *, 4> Users(SinkCandidate->users());
164       for (auto *U : Users) {
165         auto *UI = cast<VPRecipeBase>(U);
166         if (UI->getParent() == SinkTo)
167           continue;
168 
169         for (unsigned Idx = 0; Idx != UI->getNumOperands(); Idx++) {
170           if (UI->getOperand(Idx) != SinkCandidate)
171             continue;
172           UI->setOperand(Idx, Clone);
173         }
174       }
175     }
176     SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi());
177     for (VPValue *Op : SinkCandidate->operands())
178       WorkList.insert(std::make_pair(SinkTo, Op));
179     Changed = true;
180   }
181   return Changed;
182 }
183 
184 /// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return
185 /// the mask.
186 VPValue *getPredicatedMask(VPRegionBlock *R) {
187   auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry());
188   if (!EntryBB || EntryBB->size() != 1 ||
189       !isa<VPBranchOnMaskRecipe>(EntryBB->begin()))
190     return nullptr;
191 
192   return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0);
193 }
194 
195 /// If \p R is a triangle region, return the 'then' block of the triangle.
196 static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) {
197   auto *EntryBB = cast<VPBasicBlock>(R->getEntry());
198   if (EntryBB->getNumSuccessors() != 2)
199     return nullptr;
200 
201   auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]);
202   auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]);
203   if (!Succ0 || !Succ1)
204     return nullptr;
205 
206   if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
207     return nullptr;
208   if (Succ0->getSingleSuccessor() == Succ1)
209     return Succ0;
210   if (Succ1->getSingleSuccessor() == Succ0)
211     return Succ1;
212   return nullptr;
213 }
214 
215 bool VPlanTransforms::mergeReplicateRegions(VPlan &Plan) {
216   SetVector<VPRegionBlock *> DeletedRegions;
217   bool Changed = false;
218 
219   // Collect region blocks to process up-front, to avoid iterator invalidation
220   // issues while merging regions.
221   SmallVector<VPRegionBlock *, 8> CandidateRegions(
222       VPBlockUtils::blocksOnly<VPRegionBlock>(depth_first(
223           VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry()))));
224 
225   // Check if Base is a predicated triangle, followed by an empty block,
226   // followed by another predicate triangle. If that's the case, move the
227   // recipes from the first to the second triangle.
228   for (VPRegionBlock *Region1 : CandidateRegions) {
229     if (DeletedRegions.contains(Region1))
230       continue;
231     auto *MiddleBasicBlock =
232         dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor());
233     if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
234       continue;
235 
236     auto *Region2 =
237         dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
238     if (!Region2)
239       continue;
240 
241     VPValue *Mask1 = getPredicatedMask(Region1);
242     VPValue *Mask2 = getPredicatedMask(Region2);
243     if (!Mask1 || Mask1 != Mask2)
244       continue;
245     VPBasicBlock *Then1 = getPredicatedThenBlock(Region1);
246     VPBasicBlock *Then2 = getPredicatedThenBlock(Region2);
247     if (!Then1 || !Then2)
248       continue;
249 
250     assert(Mask1 && Mask2 && "both region must have conditions");
251 
252     // Note: No fusion-preventing memory dependencies are expected in either
253     // region. Such dependencies should be rejected during earlier dependence
254     // checks, which guarantee accesses can be re-ordered for vectorization.
255     //
256     // Move recipes to the successor region.
257     for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1)))
258       ToMove.moveBefore(*Then2, Then2->getFirstNonPhi());
259 
260     auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor());
261     auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor());
262 
263     // Move VPPredInstPHIRecipes from the merge block to the successor region's
264     // merge block. Update all users inside the successor region to use the
265     // original values.
266     for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) {
267       VPValue *PredInst1 =
268           cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0);
269       VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
270       SmallVector<VPUser *> Users(Phi1ToMoveV->users());
271       for (VPUser *U : Users) {
272         auto *UI = dyn_cast<VPRecipeBase>(U);
273         if (!UI || UI->getParent() != Then2)
274           continue;
275         for (unsigned I = 0, E = U->getNumOperands(); I != E; ++I) {
276           if (Phi1ToMoveV != U->getOperand(I))
277             continue;
278           U->setOperand(I, PredInst1);
279         }
280       }
281 
282       Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
283     }
284 
285     // Finally, remove the first region.
286     for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) {
287       VPBlockUtils::disconnectBlocks(Pred, Region1);
288       VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock);
289     }
290     VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock);
291     DeletedRegions.insert(Region1);
292   }
293 
294   for (VPRegionBlock *ToDelete : DeletedRegions)
295     delete ToDelete;
296   return Changed;
297 }
298 
299 void VPlanTransforms::removeRedundantInductionCasts(VPlan &Plan) {
300   for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
301     auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
302     if (!IV || IV->getTruncInst())
303       continue;
304 
305     // A sequence of IR Casts has potentially been recorded for IV, which
306     // *must be bypassed* when the IV is vectorized, because the vectorized IV
307     // will produce the desired casted value. This sequence forms a def-use
308     // chain and is provided in reverse order, ending with the cast that uses
309     // the IV phi. Search for the recipe of the last cast in the chain and
310     // replace it with the original IV. Note that only the final cast is
311     // expected to have users outside the cast-chain and the dead casts left
312     // over will be cleaned up later.
313     auto &Casts = IV->getInductionDescriptor().getCastInsts();
314     VPValue *FindMyCast = IV;
315     for (Instruction *IRCast : reverse(Casts)) {
316       VPRecipeBase *FoundUserCast = nullptr;
317       for (auto *U : FindMyCast->users()) {
318         auto *UserCast = cast<VPRecipeBase>(U);
319         if (UserCast->getNumDefinedValues() == 1 &&
320             UserCast->getVPSingleValue()->getUnderlyingValue() == IRCast) {
321           FoundUserCast = UserCast;
322           break;
323         }
324       }
325       FindMyCast = FoundUserCast->getVPSingleValue();
326     }
327     FindMyCast->replaceAllUsesWith(IV);
328   }
329 }
330 
331 void VPlanTransforms::removeRedundantCanonicalIVs(VPlan &Plan) {
332   VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
333   VPWidenCanonicalIVRecipe *WidenNewIV = nullptr;
334   for (VPUser *U : CanonicalIV->users()) {
335     WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(U);
336     if (WidenNewIV)
337       break;
338   }
339 
340   if (!WidenNewIV)
341     return;
342 
343   VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
344   for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
345     auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
346 
347     if (!WidenOriginalIV || !WidenOriginalIV->isCanonical() ||
348         WidenOriginalIV->getScalarType() != WidenNewIV->getScalarType())
349       continue;
350 
351     // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides
352     // everything WidenNewIV's users need. That is, WidenOriginalIV will
353     // generate a vector phi or all users of WidenNewIV demand the first lane
354     // only.
355     if (WidenOriginalIV->needsVectorIV() ||
356         vputils::onlyFirstLaneUsed(WidenNewIV)) {
357       WidenNewIV->replaceAllUsesWith(WidenOriginalIV);
358       WidenNewIV->eraseFromParent();
359       return;
360     }
361   }
362 }
363 
364 // Check for live-out users currently not modeled in VPlan.
365 // Note that exit values of inductions are generated independent of
366 // the recipe. This means  VPWidenIntOrFpInductionRecipe &
367 // VPScalarIVStepsRecipe can be removed, independent of uses outside
368 // the loop.
369 // TODO: Remove once live-outs are modeled in VPlan.
370 static bool hasOutsideUser(Instruction &I, Loop &OrigLoop) {
371   return any_of(I.users(), [&OrigLoop](User *U) {
372     if (!OrigLoop.contains(cast<Instruction>(U)))
373       return true;
374 
375     // Look through single-value phis in the loop, as they won't be modeled in
376     // VPlan and may be used outside the loop.
377     if (auto *PN = dyn_cast<PHINode>(U))
378       if (PN->getNumIncomingValues() == 1)
379         return hasOutsideUser(*PN, OrigLoop);
380 
381     return false;
382   });
383 }
384 
385 void VPlanTransforms::removeDeadRecipes(VPlan &Plan, Loop &OrigLoop) {
386   VPBasicBlock *Header = Plan.getVectorLoopRegion()->getEntryBasicBlock();
387   // Check if \p R is used outside the loop, if required.
388   // TODO: Remove once live-outs are modeled in VPlan.
389   auto HasUsersOutsideLoop = [&OrigLoop](VPRecipeBase &R) {
390     // Exit values for induction recipes are generated independent of the
391     // recipes, expect for truncated inductions. Hence there is no need to check
392     // for users outside the loop for them.
393     if (isa<VPScalarIVStepsRecipe>(&R) ||
394         (isa<VPWidenIntOrFpInductionRecipe>(&R) &&
395          !isa<TruncInst>(R.getUnderlyingInstr())))
396       return false;
397     return R.getUnderlyingInstr() &&
398            hasOutsideUser(*R.getUnderlyingInstr(), OrigLoop);
399   };
400   // Remove dead recipes in header block. The recipes in the block are processed
401   // in reverse order, to catch chains of dead recipes.
402   // TODO: Remove dead recipes across whole plan.
403   for (VPRecipeBase &R : make_early_inc_range(reverse(*Header))) {
404     if (R.mayHaveSideEffects() ||
405         any_of(R.definedValues(),
406                [](VPValue *V) { return V->getNumUsers() > 0; }) ||
407         HasUsersOutsideLoop(R))
408       continue;
409     R.eraseFromParent();
410   }
411 }
412 
413 void VPlanTransforms::optimizeInductions(VPlan &Plan, ScalarEvolution &SE) {
414   SmallVector<VPRecipeBase *> ToRemove;
415   VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
416   for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
417     auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
418     if (!IV || !IV->needsScalarIV())
419       continue;
420 
421     const InductionDescriptor &ID = IV->getInductionDescriptor();
422     const SCEV *StepSCEV = ID.getStep();
423     VPValue *Step = nullptr;
424     if (auto *E = dyn_cast<SCEVConstant>(StepSCEV)) {
425       Step = Plan.getOrAddExternalDef(E->getValue());
426     } else if (auto *E = dyn_cast<SCEVUnknown>(StepSCEV)) {
427       Step = Plan.getOrAddExternalDef(E->getValue());
428     } else {
429       Step = new VPExpandSCEVRecipe(StepSCEV, SE);
430     }
431 
432     Instruction *TruncI = IV->getTruncInst();
433     VPScalarIVStepsRecipe *Steps = new VPScalarIVStepsRecipe(
434         IV->getPHINode()->getType(), ID, Plan.getCanonicalIV(),
435         IV->getStartValue(), Step, TruncI ? TruncI->getType() : nullptr);
436 
437     HeaderVPBB->insert(Steps, HeaderVPBB->getFirstNonPhi());
438     if (Step->getDef())
439       Plan.getEntry()->getEntryBasicBlock()->appendRecipe(
440           cast<VPRecipeBase>(Step->getDef()));
441 
442     // If there are no vector users of IV, simply update all users to use Step
443     // instead.
444     if (!IV->needsVectorIV()) {
445       IV->replaceAllUsesWith(Steps);
446       continue;
447     }
448 
449     // Otherwise only update scalar users of IV to use Step instead. Use
450     // SetVector to ensure the list of users doesn't contain duplicates.
451     SetVector<VPUser *> Users(IV->user_begin(), IV->user_end());
452     for (VPUser *U : Users) {
453       VPRecipeBase *R = cast<VPRecipeBase>(U);
454       if (!R->usesScalars(IV))
455         continue;
456       for (unsigned I = 0, E = R->getNumOperands(); I != E; I++) {
457         if (R->getOperand(I) != IV)
458           continue;
459         R->setOperand(I, Steps);
460       }
461     }
462   }
463 }
464