1 //===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a set of utility VPlan to VPlan transformations. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "VPlanTransforms.h" 15 #include "llvm/ADT/PostOrderIterator.h" 16 #include "llvm/ADT/SetVector.h" 17 18 using namespace llvm; 19 20 void VPlanTransforms::VPInstructionsToVPRecipes( 21 Loop *OrigLoop, VPlanPtr &Plan, 22 function_ref<const InductionDescriptor *(PHINode *)> 23 GetIntOrFpInductionDescriptor, 24 SmallPtrSetImpl<Instruction *> &DeadInstructions, ScalarEvolution &SE) { 25 26 auto *TopRegion = cast<VPRegionBlock>(Plan->getEntry()); 27 ReversePostOrderTraversal<VPBlockBase *> RPOT(TopRegion->getEntry()); 28 29 for (VPBlockBase *Base : RPOT) { 30 // Do not widen instructions in pre-header and exit blocks. 31 if (Base->getNumPredecessors() == 0 || Base->getNumSuccessors() == 0) 32 continue; 33 34 VPBasicBlock *VPBB = Base->getEntryBasicBlock(); 35 // Introduce each ingredient into VPlan. 36 for (VPRecipeBase &Ingredient : llvm::make_early_inc_range(*VPBB)) { 37 VPValue *VPV = Ingredient.getVPSingleValue(); 38 Instruction *Inst = cast<Instruction>(VPV->getUnderlyingValue()); 39 if (DeadInstructions.count(Inst)) { 40 VPValue DummyValue; 41 VPV->replaceAllUsesWith(&DummyValue); 42 Ingredient.eraseFromParent(); 43 continue; 44 } 45 46 VPRecipeBase *NewRecipe = nullptr; 47 if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(&Ingredient)) { 48 auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue()); 49 if (const auto *II = GetIntOrFpInductionDescriptor(Phi)) { 50 VPValue *Start = Plan->getOrAddVPValue(II->getStartValue()); 51 NewRecipe = new VPWidenIntOrFpInductionRecipe(Phi, Start, *II, false, 52 true, SE); 53 } else { 54 Plan->addVPValue(Phi, VPPhi); 55 continue; 56 } 57 } else { 58 assert(isa<VPInstruction>(&Ingredient) && 59 "only VPInstructions expected here"); 60 assert(!isa<PHINode>(Inst) && "phis should be handled above"); 61 // Create VPWidenMemoryInstructionRecipe for loads and stores. 62 if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) { 63 NewRecipe = new VPWidenMemoryInstructionRecipe( 64 *Load, Plan->getOrAddVPValue(getLoadStorePointerOperand(Inst)), 65 nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/); 66 } else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) { 67 NewRecipe = new VPWidenMemoryInstructionRecipe( 68 *Store, Plan->getOrAddVPValue(getLoadStorePointerOperand(Inst)), 69 Plan->getOrAddVPValue(Store->getValueOperand()), nullptr /*Mask*/, 70 false /*Consecutive*/, false /*Reverse*/); 71 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 72 NewRecipe = new VPWidenGEPRecipe( 73 GEP, Plan->mapToVPValues(GEP->operands()), OrigLoop); 74 } else if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 75 NewRecipe = 76 new VPWidenCallRecipe(*CI, Plan->mapToVPValues(CI->args())); 77 } else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) { 78 bool InvariantCond = 79 SE.isLoopInvariant(SE.getSCEV(SI->getOperand(0)), OrigLoop); 80 NewRecipe = new VPWidenSelectRecipe( 81 *SI, Plan->mapToVPValues(SI->operands()), InvariantCond); 82 } else { 83 NewRecipe = 84 new VPWidenRecipe(*Inst, Plan->mapToVPValues(Inst->operands())); 85 } 86 } 87 88 NewRecipe->insertBefore(&Ingredient); 89 if (NewRecipe->getNumDefinedValues() == 1) 90 VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue()); 91 else 92 assert(NewRecipe->getNumDefinedValues() == 0 && 93 "Only recpies with zero or one defined values expected"); 94 Ingredient.eraseFromParent(); 95 Plan->removeVPValueFor(Inst); 96 for (auto *Def : NewRecipe->definedValues()) { 97 Plan->addVPValue(Inst, Def); 98 } 99 } 100 } 101 } 102 103 bool VPlanTransforms::sinkScalarOperands(VPlan &Plan) { 104 auto Iter = depth_first( 105 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry())); 106 bool Changed = false; 107 // First, collect the operands of all predicated replicate recipes as seeds 108 // for sinking. 109 SetVector<std::pair<VPBasicBlock *, VPValue *>> WorkList; 110 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 111 for (auto &Recipe : *VPBB) { 112 auto *RepR = dyn_cast<VPReplicateRecipe>(&Recipe); 113 if (!RepR || !RepR->isPredicated()) 114 continue; 115 for (VPValue *Op : RepR->operands()) 116 WorkList.insert(std::make_pair(RepR->getParent(), Op)); 117 } 118 } 119 120 // Try to sink each replicate recipe in the worklist. 121 while (!WorkList.empty()) { 122 VPBasicBlock *SinkTo; 123 VPValue *C; 124 std::tie(SinkTo, C) = WorkList.pop_back_val(); 125 auto *SinkCandidate = dyn_cast_or_null<VPReplicateRecipe>(C->Def); 126 if (!SinkCandidate || SinkCandidate->isUniform() || 127 SinkCandidate->getParent() == SinkTo || 128 SinkCandidate->mayHaveSideEffects() || 129 SinkCandidate->mayReadOrWriteMemory()) 130 continue; 131 132 bool NeedsDuplicating = false; 133 // All recipe users of the sink candidate must be in the same block SinkTo 134 // or all users outside of SinkTo must be uniform-after-vectorization ( 135 // i.e., only first lane is used) . In the latter case, we need to duplicate 136 // SinkCandidate. At the moment, we identify such UAV's by looking for the 137 // address operands of widened memory recipes. 138 auto CanSinkWithUser = [SinkTo, &NeedsDuplicating, 139 SinkCandidate](VPUser *U) { 140 auto *UI = dyn_cast<VPRecipeBase>(U); 141 if (!UI) 142 return false; 143 if (UI->getParent() == SinkTo) 144 return true; 145 auto *WidenI = dyn_cast<VPWidenMemoryInstructionRecipe>(UI); 146 if (WidenI && WidenI->getAddr() == SinkCandidate) { 147 NeedsDuplicating = true; 148 return true; 149 } 150 return false; 151 }; 152 if (!all_of(SinkCandidate->users(), CanSinkWithUser)) 153 continue; 154 155 if (NeedsDuplicating) { 156 Instruction *I = cast<Instruction>(SinkCandidate->getUnderlyingValue()); 157 auto *Clone = 158 new VPReplicateRecipe(I, SinkCandidate->operands(), true, false); 159 // TODO: add ".cloned" suffix to name of Clone's VPValue. 160 161 Clone->insertBefore(SinkCandidate); 162 SmallVector<VPUser *, 4> Users(SinkCandidate->users()); 163 for (auto *U : Users) { 164 auto *UI = cast<VPRecipeBase>(U); 165 if (UI->getParent() == SinkTo) 166 continue; 167 168 for (unsigned Idx = 0; Idx != UI->getNumOperands(); Idx++) { 169 if (UI->getOperand(Idx) != SinkCandidate) 170 continue; 171 UI->setOperand(Idx, Clone); 172 } 173 } 174 } 175 SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi()); 176 for (VPValue *Op : SinkCandidate->operands()) 177 WorkList.insert(std::make_pair(SinkTo, Op)); 178 Changed = true; 179 } 180 return Changed; 181 } 182 183 /// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return 184 /// the mask. 185 VPValue *getPredicatedMask(VPRegionBlock *R) { 186 auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry()); 187 if (!EntryBB || EntryBB->size() != 1 || 188 !isa<VPBranchOnMaskRecipe>(EntryBB->begin())) 189 return nullptr; 190 191 return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0); 192 } 193 194 /// If \p R is a triangle region, return the 'then' block of the triangle. 195 static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) { 196 auto *EntryBB = cast<VPBasicBlock>(R->getEntry()); 197 if (EntryBB->getNumSuccessors() != 2) 198 return nullptr; 199 200 auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]); 201 auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]); 202 if (!Succ0 || !Succ1) 203 return nullptr; 204 205 if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1) 206 return nullptr; 207 if (Succ0->getSingleSuccessor() == Succ1) 208 return Succ0; 209 if (Succ1->getSingleSuccessor() == Succ0) 210 return Succ1; 211 return nullptr; 212 } 213 214 bool VPlanTransforms::mergeReplicateRegions(VPlan &Plan) { 215 SetVector<VPRegionBlock *> DeletedRegions; 216 bool Changed = false; 217 218 // Collect region blocks to process up-front, to avoid iterator invalidation 219 // issues while merging regions. 220 SmallVector<VPRegionBlock *, 8> CandidateRegions( 221 VPBlockUtils::blocksOnly<VPRegionBlock>(depth_first( 222 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry())))); 223 224 // Check if Base is a predicated triangle, followed by an empty block, 225 // followed by another predicate triangle. If that's the case, move the 226 // recipes from the first to the second triangle. 227 for (VPRegionBlock *Region1 : CandidateRegions) { 228 if (DeletedRegions.contains(Region1)) 229 continue; 230 auto *MiddleBasicBlock = 231 dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor()); 232 if (!MiddleBasicBlock || !MiddleBasicBlock->empty()) 233 continue; 234 235 auto *Region2 = 236 dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor()); 237 if (!Region2) 238 continue; 239 240 VPValue *Mask1 = getPredicatedMask(Region1); 241 VPValue *Mask2 = getPredicatedMask(Region2); 242 if (!Mask1 || Mask1 != Mask2) 243 continue; 244 VPBasicBlock *Then1 = getPredicatedThenBlock(Region1); 245 VPBasicBlock *Then2 = getPredicatedThenBlock(Region2); 246 if (!Then1 || !Then2) 247 continue; 248 249 assert(Mask1 && Mask2 && "both region must have conditions"); 250 251 // Note: No fusion-preventing memory dependencies are expected in either 252 // region. Such dependencies should be rejected during earlier dependence 253 // checks, which guarantee accesses can be re-ordered for vectorization. 254 // 255 // Move recipes to the successor region. 256 for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1))) 257 ToMove.moveBefore(*Then2, Then2->getFirstNonPhi()); 258 259 auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor()); 260 auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor()); 261 262 // Move VPPredInstPHIRecipes from the merge block to the successor region's 263 // merge block. Update all users inside the successor region to use the 264 // original values. 265 for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) { 266 VPValue *PredInst1 = 267 cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0); 268 VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue(); 269 SmallVector<VPUser *> Users(Phi1ToMoveV->users()); 270 for (VPUser *U : Users) { 271 auto *UI = dyn_cast<VPRecipeBase>(U); 272 if (!UI || UI->getParent() != Then2) 273 continue; 274 for (unsigned I = 0, E = U->getNumOperands(); I != E; ++I) { 275 if (Phi1ToMoveV != U->getOperand(I)) 276 continue; 277 U->setOperand(I, PredInst1); 278 } 279 } 280 281 Phi1ToMove.moveBefore(*Merge2, Merge2->begin()); 282 } 283 284 // Finally, remove the first region. 285 for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) { 286 VPBlockUtils::disconnectBlocks(Pred, Region1); 287 VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock); 288 } 289 VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock); 290 DeletedRegions.insert(Region1); 291 } 292 293 for (VPRegionBlock *ToDelete : DeletedRegions) 294 delete ToDelete; 295 return Changed; 296 } 297 298 void VPlanTransforms::removeRedundantInductionCasts(VPlan &Plan) { 299 for (auto &Phi : Plan.getEntry()->getEntryBasicBlock()->phis()) { 300 auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 301 if (!IV || IV->getTruncInst()) 302 continue; 303 304 // A sequence of IR Casts has potentially been recorded for IV, which 305 // *must be bypassed* when the IV is vectorized, because the vectorized IV 306 // will produce the desired casted value. This sequence forms a def-use 307 // chain and is provided in reverse order, ending with the cast that uses 308 // the IV phi. Search for the recipe of the last cast in the chain and 309 // replace it with the original IV. Note that only the final cast is 310 // expected to have users outside the cast-chain and the dead casts left 311 // over will be cleaned up later. 312 auto &Casts = IV->getInductionDescriptor().getCastInsts(); 313 VPValue *FindMyCast = IV; 314 for (Instruction *IRCast : reverse(Casts)) { 315 VPRecipeBase *FoundUserCast = nullptr; 316 for (auto *U : FindMyCast->users()) { 317 auto *UserCast = cast<VPRecipeBase>(U); 318 if (UserCast->getNumDefinedValues() == 1 && 319 UserCast->getVPSingleValue()->getUnderlyingValue() == IRCast) { 320 FoundUserCast = UserCast; 321 break; 322 } 323 } 324 FindMyCast = FoundUserCast->getVPSingleValue(); 325 } 326 FindMyCast->replaceAllUsesWith(IV); 327 } 328 } 329 330 void VPlanTransforms::removeRedundantCanonicalIVs(VPlan &Plan) { 331 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); 332 VPWidenCanonicalIVRecipe *WidenNewIV = nullptr; 333 for (VPUser *U : CanonicalIV->users()) { 334 WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(U); 335 if (WidenNewIV) 336 break; 337 } 338 339 if (!WidenNewIV) 340 return; 341 342 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 343 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 344 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 345 346 if (!WidenOriginalIV || !WidenOriginalIV->isCanonical() || 347 WidenOriginalIV->getScalarType() != WidenNewIV->getScalarType()) 348 continue; 349 350 // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides 351 // everything WidenNewIV's users need. That is, WidenOriginalIV will 352 // generate a vector phi or all users of WidenNewIV demand the first lane 353 // only. 354 if (WidenOriginalIV->needsVectorIV() || 355 vputils::onlyFirstLaneUsed(WidenNewIV)) { 356 WidenNewIV->replaceAllUsesWith(WidenOriginalIV); 357 WidenNewIV->eraseFromParent(); 358 return; 359 } 360 } 361 } 362 363 // Check for live-out users currently not modeled in VPlan. 364 // Note that exit values of inductions are generated independent of 365 // the recipe. This means VPWidenIntOrFpInductionRecipe & 366 // VPScalarIVStepsRecipe can be removed, independent of uses outside 367 // the loop. 368 // TODO: Remove once live-outs are modeled in VPlan. 369 static bool hasOutsideUser(Instruction &I, Loop &OrigLoop) { 370 return any_of(I.users(), [&OrigLoop](User *U) { 371 if (!OrigLoop.contains(cast<Instruction>(U))) 372 return true; 373 374 // Look through single-value phis in the loop, as they won't be modeled in 375 // VPlan and may be used outside the loop. 376 if (auto *PN = dyn_cast<PHINode>(U)) 377 if (PN->getNumIncomingValues() == 1) 378 return hasOutsideUser(*PN, OrigLoop); 379 380 return false; 381 }); 382 } 383 384 void VPlanTransforms::removeDeadRecipes(VPlan &Plan, Loop &OrigLoop) { 385 VPBasicBlock *Header = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 386 // Check if \p R is used outside the loop, if required. 387 // TODO: Remove once live-outs are modeled in VPlan. 388 auto HasUsersOutsideLoop = [&OrigLoop](VPRecipeBase &R) { 389 // Exit values for induction recipes are generated independent of the 390 // recipes, expect for truncated inductions. Hence there is no need to check 391 // for users outside the loop for them. 392 if (isa<VPScalarIVStepsRecipe>(&R) || 393 (isa<VPWidenIntOrFpInductionRecipe>(&R) && 394 !isa<TruncInst>(R.getUnderlyingInstr()))) 395 return false; 396 return R.getUnderlyingInstr() && 397 hasOutsideUser(*R.getUnderlyingInstr(), OrigLoop); 398 }; 399 // Remove dead recipes in header block. The recipes in the block are processed 400 // in reverse order, to catch chains of dead recipes. 401 // TODO: Remove dead recipes across whole plan. 402 for (VPRecipeBase &R : make_early_inc_range(reverse(*Header))) { 403 if (R.mayHaveSideEffects() || 404 any_of(R.definedValues(), 405 [](VPValue *V) { return V->getNumUsers() > 0; }) || 406 HasUsersOutsideLoop(R)) 407 continue; 408 R.eraseFromParent(); 409 } 410 } 411 412 void VPlanTransforms::optimizeInductions(VPlan &Plan, ScalarEvolution &SE) { 413 SmallVector<VPRecipeBase *> ToRemove; 414 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 415 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 416 auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 417 if (!IV || !IV->needsScalarIV()) 418 continue; 419 420 const InductionDescriptor &ID = IV->getInductionDescriptor(); 421 const SCEV *StepSCEV = ID.getStep(); 422 VPValue *Step = nullptr; 423 if (auto *E = dyn_cast<SCEVConstant>(StepSCEV)) { 424 Step = new VPValue(E->getValue()); 425 Plan.addExternalDef(Step); 426 } else if (auto *E = dyn_cast<SCEVUnknown>(StepSCEV)) { 427 Step = new VPValue(E->getValue()); 428 Plan.addExternalDef(Step); 429 } else { 430 Step = new VPExpandSCEVRecipe(StepSCEV, SE); 431 } 432 433 Instruction *TruncI = IV->getTruncInst(); 434 VPScalarIVStepsRecipe *Steps = new VPScalarIVStepsRecipe( 435 IV->getPHINode()->getType(), ID, Plan.getCanonicalIV(), 436 IV->getStartValue(), Step, TruncI ? TruncI->getType() : nullptr); 437 438 HeaderVPBB->insert(Steps, HeaderVPBB->getFirstNonPhi()); 439 if (Step->getDef()) { 440 // TODO: Place the step in the preheader, once it is explicitly modeled in 441 // VPlan. 442 HeaderVPBB->insert(cast<VPRecipeBase>(Step->getDef()), 443 HeaderVPBB->getFirstNonPhi()); 444 } 445 446 // If there are no vector users of IV, simply update all users to use Step 447 // instead. 448 if (!IV->needsVectorIV()) { 449 IV->replaceAllUsesWith(Steps); 450 continue; 451 } 452 453 // Otherwise only update scalar users of IV to use Step instead. Use 454 // SetVector to ensure the list of users doesn't contain duplicates. 455 SetVector<VPUser *> Users(IV->user_begin(), IV->user_end()); 456 for (VPUser *U : Users) { 457 VPRecipeBase *R = cast<VPRecipeBase>(U); 458 if (!R->usesScalars(IV)) 459 continue; 460 for (unsigned I = 0, E = R->getNumOperands(); I != E; I++) { 461 if (R->getOperand(I) != IV) 462 continue; 463 R->setOperand(I, Steps); 464 } 465 } 466 } 467 } 468