1 //===-- VPlanHCFGBuilder.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This file implements the construction of a VPlan-based Hierarchical CFG 12 /// (H-CFG) for an incoming IR. This construction comprises the following 13 /// components and steps: 14 // 15 /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that 16 /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top 17 /// Region) is created to enclose and serve as parent of all the VPBasicBlocks 18 /// in the plain CFG. 19 /// NOTE: At this point, there is a direct correspondence between all the 20 /// VPBasicBlocks created for the initial plain CFG and the incoming 21 /// BasicBlocks. However, this might change in the future. 22 /// 23 //===----------------------------------------------------------------------===// 24 25 #include "VPlanHCFGBuilder.h" 26 #include "LoopVectorizationPlanner.h" 27 #include "llvm/Analysis/LoopIterator.h" 28 29 #define DEBUG_TYPE "loop-vectorize" 30 31 using namespace llvm; 32 33 // Class that is used to build the plain CFG for the incoming IR. 34 class PlainCFGBuilder { 35 private: 36 // The outermost loop of the input loop nest considered for vectorization. 37 Loop *TheLoop; 38 39 // Loop Info analysis. 40 LoopInfo *LI; 41 42 // Vectorization plan that we are working on. 43 VPlan &Plan; 44 45 // Output Top Region. 46 VPRegionBlock *TopRegion = nullptr; 47 48 // Builder of the VPlan instruction-level representation. 49 VPBuilder VPIRBuilder; 50 51 // NOTE: The following maps are intentionally destroyed after the plain CFG 52 // construction because subsequent VPlan-to-VPlan transformation may 53 // invalidate them. 54 // Map incoming BasicBlocks to their newly-created VPBasicBlocks. 55 DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB; 56 // Map incoming Value definitions to their newly-created VPValues. 57 DenseMap<Value *, VPValue *> IRDef2VPValue; 58 59 // Hold phi node's that need to be fixed once the plain CFG has been built. 60 SmallVector<PHINode *, 8> PhisToFix; 61 62 // Utility functions. 63 void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB); 64 void fixPhiNodes(); 65 VPBasicBlock *getOrCreateVPBB(BasicBlock *BB); 66 bool isExternalDef(Value *Val); 67 VPValue *getOrCreateVPOperand(Value *IRVal); 68 void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB); 69 70 public: 71 PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P) 72 : TheLoop(Lp), LI(LI), Plan(P) {} 73 74 // Build the plain CFG and return its Top Region. 75 VPRegionBlock *buildPlainCFG(); 76 }; 77 78 // Return true if \p Inst is an incoming Instruction to be ignored in the VPlan 79 // representation. 80 static bool isInstructionToIgnore(Instruction *Inst) { 81 return isa<BranchInst>(Inst); 82 } 83 84 // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB 85 // must have no predecessors. 86 void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) { 87 SmallVector<VPBlockBase *, 8> VPBBPreds; 88 // Collect VPBB predecessors. 89 for (BasicBlock *Pred : predecessors(BB)) 90 VPBBPreds.push_back(getOrCreateVPBB(Pred)); 91 92 VPBB->setPredecessors(VPBBPreds); 93 } 94 95 // Add operands to VPInstructions representing phi nodes from the input IR. 96 void PlainCFGBuilder::fixPhiNodes() { 97 for (auto *Phi : PhisToFix) { 98 assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode."); 99 VPValue *VPVal = IRDef2VPValue[Phi]; 100 assert(isa<VPInstruction>(VPVal) && "Expected VPInstruction for phi node."); 101 auto *VPPhi = cast<VPInstruction>(VPVal); 102 assert(VPPhi->getNumOperands() == 0 && 103 "Expected VPInstruction with no operands."); 104 105 for (Value *Op : Phi->operands()) 106 VPPhi->addOperand(getOrCreateVPOperand(Op)); 107 } 108 } 109 110 // Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an 111 // existing one if it was already created. 112 VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) { 113 auto BlockIt = BB2VPBB.find(BB); 114 if (BlockIt != BB2VPBB.end()) 115 // Retrieve existing VPBB. 116 return BlockIt->second; 117 118 // Create new VPBB. 119 LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n"); 120 VPBasicBlock *VPBB = new VPBasicBlock(BB->getName()); 121 BB2VPBB[BB] = VPBB; 122 VPBB->setParent(TopRegion); 123 return VPBB; 124 } 125 126 // Return true if \p Val is considered an external definition. An external 127 // definition is either: 128 // 1. A Value that is not an Instruction. This will be refined in the future. 129 // 2. An Instruction that is outside of the CFG snippet represented in VPlan, 130 // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c) 131 // outermost loop exits. 132 bool PlainCFGBuilder::isExternalDef(Value *Val) { 133 // All the Values that are not Instructions are considered external 134 // definitions for now. 135 Instruction *Inst = dyn_cast<Instruction>(Val); 136 if (!Inst) 137 return true; 138 139 BasicBlock *InstParent = Inst->getParent(); 140 assert(InstParent && "Expected instruction parent."); 141 142 // Check whether Instruction definition is in loop PH. 143 BasicBlock *PH = TheLoop->getLoopPreheader(); 144 assert(PH && "Expected loop pre-header."); 145 146 if (InstParent == PH) 147 // Instruction definition is in outermost loop PH. 148 return false; 149 150 // Check whether Instruction definition is in the loop exit. 151 BasicBlock *Exit = TheLoop->getUniqueExitBlock(); 152 assert(Exit && "Expected loop with single exit."); 153 if (InstParent == Exit) { 154 // Instruction definition is in outermost loop exit. 155 return false; 156 } 157 158 // Check whether Instruction definition is in loop body. 159 return !TheLoop->contains(Inst); 160 } 161 162 // Create a new VPValue or retrieve an existing one for the Instruction's 163 // operand \p IRVal. This function must only be used to create/retrieve VPValues 164 // for *Instruction's operands* and not to create regular VPInstruction's. For 165 // the latter, please, look at 'createVPInstructionsForVPBB'. 166 VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) { 167 auto VPValIt = IRDef2VPValue.find(IRVal); 168 if (VPValIt != IRDef2VPValue.end()) 169 // Operand has an associated VPInstruction or VPValue that was previously 170 // created. 171 return VPValIt->second; 172 173 // Operand doesn't have a previously created VPInstruction/VPValue. This 174 // means that operand is: 175 // A) a definition external to VPlan, 176 // B) any other Value without specific representation in VPlan. 177 // For now, we use VPValue to represent A and B and classify both as external 178 // definitions. We may introduce specific VPValue subclasses for them in the 179 // future. 180 assert(isExternalDef(IRVal) && "Expected external definition as operand."); 181 182 // A and B: Create VPValue and add it to the pool of external definitions and 183 // to the Value->VPValue map. 184 VPValue *NewVPVal = new VPValue(IRVal); 185 Plan.addExternalDef(NewVPVal); 186 IRDef2VPValue[IRVal] = NewVPVal; 187 return NewVPVal; 188 } 189 190 // Create new VPInstructions in a VPBasicBlock, given its BasicBlock 191 // counterpart. This function must be invoked in RPO so that the operands of a 192 // VPInstruction in \p BB have been visited before (except for Phi nodes). 193 void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB, 194 BasicBlock *BB) { 195 VPIRBuilder.setInsertPoint(VPBB); 196 for (Instruction &InstRef : *BB) { 197 Instruction *Inst = &InstRef; 198 if (isInstructionToIgnore(Inst)) 199 continue; 200 201 // There should't be any VPValue for Inst at this point. Otherwise, we 202 // visited Inst when we shouldn't, breaking the RPO traversal order. 203 assert(!IRDef2VPValue.count(Inst) && 204 "Instruction shouldn't have been visited."); 205 206 VPInstruction *NewVPInst; 207 if (PHINode *Phi = dyn_cast<PHINode>(Inst)) { 208 // Phi node's operands may have not been visited at this point. We create 209 // an empty VPInstruction that we will fix once the whole plain CFG has 210 // been built. 211 NewVPInst = cast<VPInstruction>(VPIRBuilder.createNaryOp( 212 Inst->getOpcode(), {} /*No operands*/, Inst)); 213 PhisToFix.push_back(Phi); 214 } else { 215 // Translate LLVM-IR operands into VPValue operands and set them in the 216 // new VPInstruction. 217 SmallVector<VPValue *, 4> VPOperands; 218 for (Value *Op : Inst->operands()) 219 VPOperands.push_back(getOrCreateVPOperand(Op)); 220 221 // Build VPInstruction for any arbitraty Instruction without specific 222 // representation in VPlan. 223 NewVPInst = cast<VPInstruction>( 224 VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst)); 225 } 226 227 IRDef2VPValue[Inst] = NewVPInst; 228 } 229 } 230 231 // Main interface to build the plain CFG. 232 VPRegionBlock *PlainCFGBuilder::buildPlainCFG() { 233 // 1. Create the Top Region. It will be the parent of all VPBBs. 234 TopRegion = new VPRegionBlock("TopRegion", false /*isReplicator*/); 235 236 // 2. Scan the body of the loop in a topological order to visit each basic 237 // block after having visited its predecessor basic blocks. Create a VPBB for 238 // each BB and link it to its successor and predecessor VPBBs. Note that 239 // predecessors must be set in the same order as they are in the incomming IR. 240 // Otherwise, there might be problems with existing phi nodes and algorithm 241 // based on predecessors traversal. 242 243 // Loop PH needs to be explicitly visited since it's not taken into account by 244 // LoopBlocksDFS. 245 BasicBlock *PreheaderBB = TheLoop->getLoopPreheader(); 246 assert((PreheaderBB->getTerminator()->getNumSuccessors() == 1) && 247 "Unexpected loop preheader"); 248 VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(PreheaderBB); 249 createVPInstructionsForVPBB(PreheaderVPBB, PreheaderBB); 250 // Create empty VPBB for Loop H so that we can link PH->H. 251 VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader()); 252 // Preheader's predecessors will be set during the loop RPO traversal below. 253 PreheaderVPBB->setOneSuccessor(HeaderVPBB); 254 255 LoopBlocksRPO RPO(TheLoop); 256 RPO.perform(LI); 257 258 for (BasicBlock *BB : RPO) { 259 // Create or retrieve the VPBasicBlock for this BB and create its 260 // VPInstructions. 261 VPBasicBlock *VPBB = getOrCreateVPBB(BB); 262 createVPInstructionsForVPBB(VPBB, BB); 263 264 // Set VPBB successors. We create empty VPBBs for successors if they don't 265 // exist already. Recipes will be created when the successor is visited 266 // during the RPO traversal. 267 TerminatorInst *TI = BB->getTerminator(); 268 assert(TI && "Terminator expected."); 269 unsigned NumSuccs = TI->getNumSuccessors(); 270 271 if (NumSuccs == 1) { 272 VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0)); 273 assert(SuccVPBB && "VPBB Successor not found."); 274 VPBB->setOneSuccessor(SuccVPBB); 275 } else if (NumSuccs == 2) { 276 VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0)); 277 assert(SuccVPBB0 && "Successor 0 not found."); 278 VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1)); 279 assert(SuccVPBB1 && "Successor 1 not found."); 280 VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1); 281 } else 282 llvm_unreachable("Number of successors not supported."); 283 284 // Set VPBB predecessors in the same order as they are in the incoming BB. 285 setVPBBPredsFromBB(VPBB, BB); 286 } 287 288 // 3. Process outermost loop exit. We created an empty VPBB for the loop 289 // single exit BB during the RPO traversal of the loop body but Instructions 290 // weren't visited because it's not part of the the loop. 291 BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock(); 292 assert(LoopExitBB && "Loops with multiple exits are not supported."); 293 VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB]; 294 createVPInstructionsForVPBB(LoopExitVPBB, LoopExitBB); 295 // Loop exit was already set as successor of the loop exiting BB. 296 // We only set its predecessor VPBB now. 297 setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB); 298 299 // 4. The whole CFG has been built at this point so all the input Values must 300 // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding 301 // VPlan operands. 302 fixPhiNodes(); 303 304 // 5. Final Top Region setup. Set outermost loop pre-header and single exit as 305 // Top Region entry and exit. 306 TopRegion->setEntry(PreheaderVPBB); 307 TopRegion->setExit(LoopExitVPBB); 308 return TopRegion; 309 } 310 311 // Public interface to build a H-CFG. 312 void VPlanHCFGBuilder::buildHierarchicalCFG(VPlan &Plan) { 313 // Build Top Region enclosing the plain CFG and set it as VPlan entry. 314 PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan); 315 VPRegionBlock *TopRegion = PCFGBuilder.buildPlainCFG(); 316 Plan.setEntry(TopRegion); 317 LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan); 318 319 Verifier.verifyHierarchicalCFG(TopRegion); 320 } 321