1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file contains the declarations of the Vectorization Plan base classes: 11 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual 12 /// VPBlockBase, together implementing a Hierarchical CFG; 13 /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be 14 /// treated as proper graphs for generic algorithms; 15 /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained 16 /// within VPBasicBlocks; 17 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned 18 /// instruction; 19 /// 5. The VPlan class holding a candidate for vectorization; 20 /// 6. The VPlanPrinter class providing a way to print a plan in dot format; 21 /// These are documented in docs/VectorizationPlan.rst. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 26 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 27 28 #include "VPlanLoopInfo.h" 29 #include "VPlanValue.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/DepthFirstIterator.h" 32 #include "llvm/ADT/GraphTraits.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/SmallBitVector.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallSet.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/ADT/Twine.h" 39 #include "llvm/ADT/ilist.h" 40 #include "llvm/ADT/ilist_node.h" 41 #include "llvm/Analysis/VectorUtils.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/IR/FMF.h" 44 #include "llvm/Support/InstructionCost.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstddef> 48 #include <map> 49 #include <string> 50 51 namespace llvm { 52 53 class BasicBlock; 54 class DominatorTree; 55 class InductionDescriptor; 56 class InnerLoopVectorizer; 57 class IRBuilderBase; 58 class LoopInfo; 59 class raw_ostream; 60 class RecurrenceDescriptor; 61 class Value; 62 class VPBasicBlock; 63 class VPRegionBlock; 64 class VPlan; 65 class VPReplicateRecipe; 66 class VPlanSlp; 67 68 /// Returns a calculation for the total number of elements for a given \p VF. 69 /// For fixed width vectors this value is a constant, whereas for scalable 70 /// vectors it is an expression determined at runtime. 71 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF); 72 73 /// Return a value for Step multiplied by VF. 74 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 75 int64_t Step); 76 77 /// A range of powers-of-2 vectorization factors with fixed start and 78 /// adjustable end. The range includes start and excludes end, e.g.,: 79 /// [1, 9) = {1, 2, 4, 8} 80 struct VFRange { 81 // A power of 2. 82 const ElementCount Start; 83 84 // Need not be a power of 2. If End <= Start range is empty. 85 ElementCount End; 86 87 bool isEmpty() const { 88 return End.getKnownMinValue() <= Start.getKnownMinValue(); 89 } 90 91 VFRange(const ElementCount &Start, const ElementCount &End) 92 : Start(Start), End(End) { 93 assert(Start.isScalable() == End.isScalable() && 94 "Both Start and End should have the same scalable flag"); 95 assert(isPowerOf2_32(Start.getKnownMinValue()) && 96 "Expected Start to be a power of 2"); 97 } 98 }; 99 100 using VPlanPtr = std::unique_ptr<VPlan>; 101 102 /// In what follows, the term "input IR" refers to code that is fed into the 103 /// vectorizer whereas the term "output IR" refers to code that is generated by 104 /// the vectorizer. 105 106 /// VPLane provides a way to access lanes in both fixed width and scalable 107 /// vectors, where for the latter the lane index sometimes needs calculating 108 /// as a runtime expression. 109 class VPLane { 110 public: 111 /// Kind describes how to interpret Lane. 112 enum class Kind : uint8_t { 113 /// For First, Lane is the index into the first N elements of a 114 /// fixed-vector <N x <ElTy>> or a scalable vector <vscale x N x <ElTy>>. 115 First, 116 /// For ScalableLast, Lane is the offset from the start of the last 117 /// N-element subvector in a scalable vector <vscale x N x <ElTy>>. For 118 /// example, a Lane of 0 corresponds to lane `(vscale - 1) * N`, a Lane of 119 /// 1 corresponds to `((vscale - 1) * N) + 1`, etc. 120 ScalableLast 121 }; 122 123 private: 124 /// in [0..VF) 125 unsigned Lane; 126 127 /// Indicates how the Lane should be interpreted, as described above. 128 Kind LaneKind; 129 130 public: 131 VPLane(unsigned Lane, Kind LaneKind) : Lane(Lane), LaneKind(LaneKind) {} 132 133 static VPLane getFirstLane() { return VPLane(0, VPLane::Kind::First); } 134 135 static VPLane getLastLaneForVF(const ElementCount &VF) { 136 unsigned LaneOffset = VF.getKnownMinValue() - 1; 137 Kind LaneKind; 138 if (VF.isScalable()) 139 // In this case 'LaneOffset' refers to the offset from the start of the 140 // last subvector with VF.getKnownMinValue() elements. 141 LaneKind = VPLane::Kind::ScalableLast; 142 else 143 LaneKind = VPLane::Kind::First; 144 return VPLane(LaneOffset, LaneKind); 145 } 146 147 /// Returns a compile-time known value for the lane index and asserts if the 148 /// lane can only be calculated at runtime. 149 unsigned getKnownLane() const { 150 assert(LaneKind == Kind::First); 151 return Lane; 152 } 153 154 /// Returns an expression describing the lane index that can be used at 155 /// runtime. 156 Value *getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const; 157 158 /// Returns the Kind of lane offset. 159 Kind getKind() const { return LaneKind; } 160 161 /// Returns true if this is the first lane of the whole vector. 162 bool isFirstLane() const { return Lane == 0 && LaneKind == Kind::First; } 163 164 /// Maps the lane to a cache index based on \p VF. 165 unsigned mapToCacheIndex(const ElementCount &VF) const { 166 switch (LaneKind) { 167 case VPLane::Kind::ScalableLast: 168 assert(VF.isScalable() && Lane < VF.getKnownMinValue()); 169 return VF.getKnownMinValue() + Lane; 170 default: 171 assert(Lane < VF.getKnownMinValue()); 172 return Lane; 173 } 174 } 175 176 /// Returns the maxmimum number of lanes that we are able to consider 177 /// caching for \p VF. 178 static unsigned getNumCachedLanes(const ElementCount &VF) { 179 return VF.getKnownMinValue() * (VF.isScalable() ? 2 : 1); 180 } 181 }; 182 183 /// VPIteration represents a single point in the iteration space of the output 184 /// (vectorized and/or unrolled) IR loop. 185 struct VPIteration { 186 /// in [0..UF) 187 unsigned Part; 188 189 VPLane Lane; 190 191 VPIteration(unsigned Part, unsigned Lane, 192 VPLane::Kind Kind = VPLane::Kind::First) 193 : Part(Part), Lane(Lane, Kind) {} 194 195 VPIteration(unsigned Part, const VPLane &Lane) : Part(Part), Lane(Lane) {} 196 197 bool isFirstIteration() const { return Part == 0 && Lane.isFirstLane(); } 198 }; 199 200 /// VPTransformState holds information passed down when "executing" a VPlan, 201 /// needed for generating the output IR. 202 struct VPTransformState { 203 VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, 204 DominatorTree *DT, IRBuilderBase &Builder, 205 InnerLoopVectorizer *ILV, VPlan *Plan) 206 : VF(VF), UF(UF), LI(LI), DT(DT), Builder(Builder), ILV(ILV), Plan(Plan) { 207 } 208 209 /// The chosen Vectorization and Unroll Factors of the loop being vectorized. 210 ElementCount VF; 211 unsigned UF; 212 213 /// Hold the indices to generate specific scalar instructions. Null indicates 214 /// that all instances are to be generated, using either scalar or vector 215 /// instructions. 216 Optional<VPIteration> Instance; 217 218 struct DataState { 219 /// A type for vectorized values in the new loop. Each value from the 220 /// original loop, when vectorized, is represented by UF vector values in 221 /// the new unrolled loop, where UF is the unroll factor. 222 typedef SmallVector<Value *, 2> PerPartValuesTy; 223 224 DenseMap<VPValue *, PerPartValuesTy> PerPartOutput; 225 226 using ScalarsPerPartValuesTy = SmallVector<SmallVector<Value *, 4>, 2>; 227 DenseMap<VPValue *, ScalarsPerPartValuesTy> PerPartScalars; 228 } Data; 229 230 /// Get the generated Value for a given VPValue and a given Part. Note that 231 /// as some Defs are still created by ILV and managed in its ValueMap, this 232 /// method will delegate the call to ILV in such cases in order to provide 233 /// callers a consistent API. 234 /// \see set. 235 Value *get(VPValue *Def, unsigned Part); 236 237 /// Get the generated Value for a given VPValue and given Part and Lane. 238 Value *get(VPValue *Def, const VPIteration &Instance); 239 240 bool hasVectorValue(VPValue *Def, unsigned Part) { 241 auto I = Data.PerPartOutput.find(Def); 242 return I != Data.PerPartOutput.end() && Part < I->second.size() && 243 I->second[Part]; 244 } 245 246 bool hasAnyVectorValue(VPValue *Def) const { 247 return Data.PerPartOutput.find(Def) != Data.PerPartOutput.end(); 248 } 249 250 bool hasScalarValue(VPValue *Def, VPIteration Instance) { 251 auto I = Data.PerPartScalars.find(Def); 252 if (I == Data.PerPartScalars.end()) 253 return false; 254 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 255 return Instance.Part < I->second.size() && 256 CacheIdx < I->second[Instance.Part].size() && 257 I->second[Instance.Part][CacheIdx]; 258 } 259 260 /// Set the generated Value for a given VPValue and a given Part. 261 void set(VPValue *Def, Value *V, unsigned Part) { 262 if (!Data.PerPartOutput.count(Def)) { 263 DataState::PerPartValuesTy Entry(UF); 264 Data.PerPartOutput[Def] = Entry; 265 } 266 Data.PerPartOutput[Def][Part] = V; 267 } 268 /// Reset an existing vector value for \p Def and a given \p Part. 269 void reset(VPValue *Def, Value *V, unsigned Part) { 270 auto Iter = Data.PerPartOutput.find(Def); 271 assert(Iter != Data.PerPartOutput.end() && 272 "need to overwrite existing value"); 273 Iter->second[Part] = V; 274 } 275 276 /// Set the generated scalar \p V for \p Def and the given \p Instance. 277 void set(VPValue *Def, Value *V, const VPIteration &Instance) { 278 auto Iter = Data.PerPartScalars.insert({Def, {}}); 279 auto &PerPartVec = Iter.first->second; 280 while (PerPartVec.size() <= Instance.Part) 281 PerPartVec.emplace_back(); 282 auto &Scalars = PerPartVec[Instance.Part]; 283 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 284 while (Scalars.size() <= CacheIdx) 285 Scalars.push_back(nullptr); 286 assert(!Scalars[CacheIdx] && "should overwrite existing value"); 287 Scalars[CacheIdx] = V; 288 } 289 290 /// Reset an existing scalar value for \p Def and a given \p Instance. 291 void reset(VPValue *Def, Value *V, const VPIteration &Instance) { 292 auto Iter = Data.PerPartScalars.find(Def); 293 assert(Iter != Data.PerPartScalars.end() && 294 "need to overwrite existing value"); 295 assert(Instance.Part < Iter->second.size() && 296 "need to overwrite existing value"); 297 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 298 assert(CacheIdx < Iter->second[Instance.Part].size() && 299 "need to overwrite existing value"); 300 Iter->second[Instance.Part][CacheIdx] = V; 301 } 302 303 /// Hold state information used when constructing the CFG of the output IR, 304 /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. 305 struct CFGState { 306 /// The previous VPBasicBlock visited. Initially set to null. 307 VPBasicBlock *PrevVPBB = nullptr; 308 309 /// The previous IR BasicBlock created or used. Initially set to the new 310 /// header BasicBlock. 311 BasicBlock *PrevBB = nullptr; 312 313 /// The last IR BasicBlock in the output IR. Set to the new latch 314 /// BasicBlock, used for placing the newly created BasicBlocks. 315 BasicBlock *LastBB = nullptr; 316 317 /// The IR BasicBlock that is the preheader of the vector loop in the output 318 /// IR. 319 /// FIXME: The vector preheader should also be modeled in VPlan, so any code 320 /// that needs to be added to the preheader gets directly generated by 321 /// VPlan. There should be no need to manage a pointer to the IR BasicBlock. 322 BasicBlock *VectorPreHeader = nullptr; 323 324 /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case 325 /// of replication, maps the BasicBlock of the last replica created. 326 SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB; 327 328 /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed 329 /// up at the end of vector code generation. 330 SmallVector<VPBasicBlock *, 8> VPBBsToFix; 331 332 CFGState() = default; 333 } CFG; 334 335 /// Hold a pointer to LoopInfo to register new basic blocks in the loop. 336 LoopInfo *LI; 337 338 /// Hold a pointer to Dominator Tree to register new basic blocks in the loop. 339 DominatorTree *DT; 340 341 /// Hold a reference to the IRBuilder used to generate output IR code. 342 IRBuilderBase &Builder; 343 344 VPValue2ValueTy VPValue2Value; 345 346 /// Hold the canonical scalar IV of the vector loop (start=0, step=VF*UF). 347 Value *CanonicalIV = nullptr; 348 349 /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods. 350 InnerLoopVectorizer *ILV; 351 352 /// Pointer to the VPlan code is generated for. 353 VPlan *Plan; 354 355 /// Holds recipes that may generate a poison value that is used after 356 /// vectorization, even when their operands are not poison. 357 SmallPtrSet<VPRecipeBase *, 16> MayGeneratePoisonRecipes; 358 }; 359 360 /// VPUsers instance used by VPBlockBase to manage CondBit and the block 361 /// predicate. Currently VPBlockUsers are used in VPBlockBase for historical 362 /// reasons, but in the future the only VPUsers should either be recipes or 363 /// live-outs.VPBlockBase uses. 364 struct VPBlockUser : public VPUser { 365 VPBlockUser() : VPUser({}, VPUserID::Block) {} 366 367 VPValue *getSingleOperandOrNull() { 368 if (getNumOperands() == 1) 369 return getOperand(0); 370 371 return nullptr; 372 } 373 const VPValue *getSingleOperandOrNull() const { 374 if (getNumOperands() == 1) 375 return getOperand(0); 376 377 return nullptr; 378 } 379 380 void resetSingleOpUser(VPValue *NewVal) { 381 assert(getNumOperands() <= 1 && "Didn't expect more than one operand!"); 382 if (!NewVal) { 383 if (getNumOperands() == 1) 384 removeLastOperand(); 385 return; 386 } 387 388 if (getNumOperands() == 1) 389 setOperand(0, NewVal); 390 else 391 addOperand(NewVal); 392 } 393 }; 394 395 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. 396 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. 397 class VPBlockBase { 398 friend class VPBlockUtils; 399 400 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). 401 402 /// An optional name for the block. 403 std::string Name; 404 405 /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if 406 /// it is a topmost VPBlockBase. 407 VPRegionBlock *Parent = nullptr; 408 409 /// List of predecessor blocks. 410 SmallVector<VPBlockBase *, 1> Predecessors; 411 412 /// List of successor blocks. 413 SmallVector<VPBlockBase *, 1> Successors; 414 415 /// Successor selector managed by a VPUser. For blocks with zero or one 416 /// successors, there is no operand. Otherwise there is exactly one operand 417 /// which is the branch condition. 418 VPBlockUser CondBitUser; 419 420 /// If the block is predicated, its predicate is stored as an operand of this 421 /// VPUser to maintain the def-use relations. Otherwise there is no operand 422 /// here. 423 VPBlockUser PredicateUser; 424 425 /// VPlan containing the block. Can only be set on the entry block of the 426 /// plan. 427 VPlan *Plan = nullptr; 428 429 /// Add \p Successor as the last successor to this block. 430 void appendSuccessor(VPBlockBase *Successor) { 431 assert(Successor && "Cannot add nullptr successor!"); 432 Successors.push_back(Successor); 433 } 434 435 /// Add \p Predecessor as the last predecessor to this block. 436 void appendPredecessor(VPBlockBase *Predecessor) { 437 assert(Predecessor && "Cannot add nullptr predecessor!"); 438 Predecessors.push_back(Predecessor); 439 } 440 441 /// Remove \p Predecessor from the predecessors of this block. 442 void removePredecessor(VPBlockBase *Predecessor) { 443 auto Pos = find(Predecessors, Predecessor); 444 assert(Pos && "Predecessor does not exist"); 445 Predecessors.erase(Pos); 446 } 447 448 /// Remove \p Successor from the successors of this block. 449 void removeSuccessor(VPBlockBase *Successor) { 450 auto Pos = find(Successors, Successor); 451 assert(Pos && "Successor does not exist"); 452 Successors.erase(Pos); 453 } 454 455 protected: 456 VPBlockBase(const unsigned char SC, const std::string &N) 457 : SubclassID(SC), Name(N) {} 458 459 public: 460 /// An enumeration for keeping track of the concrete subclass of VPBlockBase 461 /// that are actually instantiated. Values of this enumeration are kept in the 462 /// SubclassID field of the VPBlockBase objects. They are used for concrete 463 /// type identification. 464 using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC }; 465 466 using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; 467 468 virtual ~VPBlockBase() = default; 469 470 const std::string &getName() const { return Name; } 471 472 void setName(const Twine &newName) { Name = newName.str(); } 473 474 /// \return an ID for the concrete type of this object. 475 /// This is used to implement the classof checks. This should not be used 476 /// for any other purpose, as the values may change as LLVM evolves. 477 unsigned getVPBlockID() const { return SubclassID; } 478 479 VPRegionBlock *getParent() { return Parent; } 480 const VPRegionBlock *getParent() const { return Parent; } 481 482 /// \return A pointer to the plan containing the current block. 483 VPlan *getPlan(); 484 const VPlan *getPlan() const; 485 486 /// Sets the pointer of the plan containing the block. The block must be the 487 /// entry block into the VPlan. 488 void setPlan(VPlan *ParentPlan); 489 490 void setParent(VPRegionBlock *P) { Parent = P; } 491 492 /// \return the VPBasicBlock that is the entry of this VPBlockBase, 493 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 494 /// VPBlockBase is a VPBasicBlock, it is returned. 495 const VPBasicBlock *getEntryBasicBlock() const; 496 VPBasicBlock *getEntryBasicBlock(); 497 498 /// \return the VPBasicBlock that is the exit of this VPBlockBase, 499 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 500 /// VPBlockBase is a VPBasicBlock, it is returned. 501 const VPBasicBlock *getExitBasicBlock() const; 502 VPBasicBlock *getExitBasicBlock(); 503 504 const VPBlocksTy &getSuccessors() const { return Successors; } 505 VPBlocksTy &getSuccessors() { return Successors; } 506 507 iterator_range<VPBlockBase **> successors() { return Successors; } 508 509 const VPBlocksTy &getPredecessors() const { return Predecessors; } 510 VPBlocksTy &getPredecessors() { return Predecessors; } 511 512 /// \return the successor of this VPBlockBase if it has a single successor. 513 /// Otherwise return a null pointer. 514 VPBlockBase *getSingleSuccessor() const { 515 return (Successors.size() == 1 ? *Successors.begin() : nullptr); 516 } 517 518 /// \return the predecessor of this VPBlockBase if it has a single 519 /// predecessor. Otherwise return a null pointer. 520 VPBlockBase *getSinglePredecessor() const { 521 return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); 522 } 523 524 size_t getNumSuccessors() const { return Successors.size(); } 525 size_t getNumPredecessors() const { return Predecessors.size(); } 526 527 /// An Enclosing Block of a block B is any block containing B, including B 528 /// itself. \return the closest enclosing block starting from "this", which 529 /// has successors. \return the root enclosing block if all enclosing blocks 530 /// have no successors. 531 VPBlockBase *getEnclosingBlockWithSuccessors(); 532 533 /// \return the closest enclosing block starting from "this", which has 534 /// predecessors. \return the root enclosing block if all enclosing blocks 535 /// have no predecessors. 536 VPBlockBase *getEnclosingBlockWithPredecessors(); 537 538 /// \return the successors either attached directly to this VPBlockBase or, if 539 /// this VPBlockBase is the exit block of a VPRegionBlock and has no 540 /// successors of its own, search recursively for the first enclosing 541 /// VPRegionBlock that has successors and return them. If no such 542 /// VPRegionBlock exists, return the (empty) successors of the topmost 543 /// VPBlockBase reached. 544 const VPBlocksTy &getHierarchicalSuccessors() { 545 return getEnclosingBlockWithSuccessors()->getSuccessors(); 546 } 547 548 /// \return the hierarchical successor of this VPBlockBase if it has a single 549 /// hierarchical successor. Otherwise return a null pointer. 550 VPBlockBase *getSingleHierarchicalSuccessor() { 551 return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); 552 } 553 554 /// \return the predecessors either attached directly to this VPBlockBase or, 555 /// if this VPBlockBase is the entry block of a VPRegionBlock and has no 556 /// predecessors of its own, search recursively for the first enclosing 557 /// VPRegionBlock that has predecessors and return them. If no such 558 /// VPRegionBlock exists, return the (empty) predecessors of the topmost 559 /// VPBlockBase reached. 560 const VPBlocksTy &getHierarchicalPredecessors() { 561 return getEnclosingBlockWithPredecessors()->getPredecessors(); 562 } 563 564 /// \return the hierarchical predecessor of this VPBlockBase if it has a 565 /// single hierarchical predecessor. Otherwise return a null pointer. 566 VPBlockBase *getSingleHierarchicalPredecessor() { 567 return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); 568 } 569 570 /// \return the condition bit selecting the successor. 571 VPValue *getCondBit(); 572 /// \return the condition bit selecting the successor. 573 const VPValue *getCondBit() const; 574 /// Set the condition bit selecting the successor. 575 void setCondBit(VPValue *CV); 576 577 /// \return the block's predicate. 578 VPValue *getPredicate(); 579 /// \return the block's predicate. 580 const VPValue *getPredicate() const; 581 /// Set the block's predicate. 582 void setPredicate(VPValue *Pred); 583 584 /// Set a given VPBlockBase \p Successor as the single successor of this 585 /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. 586 /// This VPBlockBase must have no successors. 587 void setOneSuccessor(VPBlockBase *Successor) { 588 assert(Successors.empty() && "Setting one successor when others exist."); 589 appendSuccessor(Successor); 590 } 591 592 /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two 593 /// successors of this VPBlockBase. \p Condition is set as the successor 594 /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p 595 /// IfFalse. This VPBlockBase must have no successors. 596 void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse, 597 VPValue *Condition) { 598 assert(Successors.empty() && "Setting two successors when others exist."); 599 assert(Condition && "Setting two successors without condition!"); 600 setCondBit(Condition); 601 appendSuccessor(IfTrue); 602 appendSuccessor(IfFalse); 603 } 604 605 /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. 606 /// This VPBlockBase must have no predecessors. This VPBlockBase is not added 607 /// as successor of any VPBasicBlock in \p NewPreds. 608 void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) { 609 assert(Predecessors.empty() && "Block predecessors already set."); 610 for (auto *Pred : NewPreds) 611 appendPredecessor(Pred); 612 } 613 614 /// Remove all the predecessor of this block. 615 void clearPredecessors() { Predecessors.clear(); } 616 617 /// Remove all the successors of this block and set to null its condition bit 618 void clearSuccessors() { 619 Successors.clear(); 620 setCondBit(nullptr); 621 } 622 623 /// The method which generates the output IR that correspond to this 624 /// VPBlockBase, thereby "executing" the VPlan. 625 virtual void execute(struct VPTransformState *State) = 0; 626 627 /// Delete all blocks reachable from a given VPBlockBase, inclusive. 628 static void deleteCFG(VPBlockBase *Entry); 629 630 /// Return true if it is legal to hoist instructions into this block. 631 bool isLegalToHoistInto() { 632 // There are currently no constraints that prevent an instruction to be 633 // hoisted into a VPBlockBase. 634 return true; 635 } 636 637 /// Replace all operands of VPUsers in the block with \p NewValue and also 638 /// replaces all uses of VPValues defined in the block with NewValue. 639 virtual void dropAllReferences(VPValue *NewValue) = 0; 640 641 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 642 void printAsOperand(raw_ostream &OS, bool PrintType) const { 643 OS << getName(); 644 } 645 646 /// Print plain-text dump of this VPBlockBase to \p O, prefixing all lines 647 /// with \p Indent. \p SlotTracker is used to print unnamed VPValue's using 648 /// consequtive numbers. 649 /// 650 /// Note that the numbering is applied to the whole VPlan, so printing 651 /// individual blocks is consistent with the whole VPlan printing. 652 virtual void print(raw_ostream &O, const Twine &Indent, 653 VPSlotTracker &SlotTracker) const = 0; 654 655 /// Print plain-text dump of this VPlan to \p O. 656 void print(raw_ostream &O) const { 657 VPSlotTracker SlotTracker(getPlan()); 658 print(O, "", SlotTracker); 659 } 660 661 /// Print the successors of this block to \p O, prefixing all lines with \p 662 /// Indent. 663 void printSuccessors(raw_ostream &O, const Twine &Indent) const; 664 665 /// Dump this VPBlockBase to dbgs(). 666 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 667 #endif 668 }; 669 670 /// VPRecipeBase is a base class modeling a sequence of one or more output IR 671 /// instructions. VPRecipeBase owns the the VPValues it defines through VPDef 672 /// and is responsible for deleting its defined values. Single-value 673 /// VPRecipeBases that also inherit from VPValue must make sure to inherit from 674 /// VPRecipeBase before VPValue. 675 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>, 676 public VPDef, 677 public VPUser { 678 friend VPBasicBlock; 679 friend class VPBlockUtils; 680 681 /// Each VPRecipe belongs to a single VPBasicBlock. 682 VPBasicBlock *Parent = nullptr; 683 684 public: 685 VPRecipeBase(const unsigned char SC, ArrayRef<VPValue *> Operands) 686 : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe) {} 687 688 template <typename IterT> 689 VPRecipeBase(const unsigned char SC, iterator_range<IterT> Operands) 690 : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe) {} 691 virtual ~VPRecipeBase() = default; 692 693 /// \return the VPBasicBlock which this VPRecipe belongs to. 694 VPBasicBlock *getParent() { return Parent; } 695 const VPBasicBlock *getParent() const { return Parent; } 696 697 /// The method which generates the output IR instructions that correspond to 698 /// this VPRecipe, thereby "executing" the VPlan. 699 virtual void execute(struct VPTransformState &State) = 0; 700 701 /// Insert an unlinked recipe into a basic block immediately before 702 /// the specified recipe. 703 void insertBefore(VPRecipeBase *InsertPos); 704 /// Insert an unlinked recipe into \p BB immediately before the insertion 705 /// point \p IP; 706 void insertBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator IP); 707 708 /// Insert an unlinked Recipe into a basic block immediately after 709 /// the specified Recipe. 710 void insertAfter(VPRecipeBase *InsertPos); 711 712 /// Unlink this recipe from its current VPBasicBlock and insert it into 713 /// the VPBasicBlock that MovePos lives in, right after MovePos. 714 void moveAfter(VPRecipeBase *MovePos); 715 716 /// Unlink this recipe and insert into BB before I. 717 /// 718 /// \pre I is a valid iterator into BB. 719 void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I); 720 721 /// This method unlinks 'this' from the containing basic block, but does not 722 /// delete it. 723 void removeFromParent(); 724 725 /// This method unlinks 'this' from the containing basic block and deletes it. 726 /// 727 /// \returns an iterator pointing to the element after the erased one 728 iplist<VPRecipeBase>::iterator eraseFromParent(); 729 730 /// Returns the underlying instruction, if the recipe is a VPValue or nullptr 731 /// otherwise. 732 Instruction *getUnderlyingInstr() { 733 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()); 734 } 735 const Instruction *getUnderlyingInstr() const { 736 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()); 737 } 738 739 /// Method to support type inquiry through isa, cast, and dyn_cast. 740 static inline bool classof(const VPDef *D) { 741 // All VPDefs are also VPRecipeBases. 742 return true; 743 } 744 745 static inline bool classof(const VPUser *U) { 746 return U->getVPUserID() == VPUser::VPUserID::Recipe; 747 } 748 749 /// Returns true if the recipe may have side-effects. 750 bool mayHaveSideEffects() const; 751 752 /// Returns true for PHI-like recipes. 753 bool isPhi() const { 754 return getVPDefID() >= VPFirstPHISC && getVPDefID() <= VPLastPHISC; 755 } 756 757 /// Returns true if the recipe may read from memory. 758 bool mayReadFromMemory() const; 759 760 /// Returns true if the recipe may write to memory. 761 bool mayWriteToMemory() const; 762 763 /// Returns true if the recipe may read from or write to memory. 764 bool mayReadOrWriteMemory() const { 765 return mayReadFromMemory() || mayWriteToMemory(); 766 } 767 768 /// Returns true if the recipe only uses the first lane of operand \p Op. 769 /// Conservatively returns false. 770 virtual bool onlyFirstLaneUsed(const VPValue *Op) const { 771 assert(is_contained(operands(), Op) && 772 "Op must be an operand of the recipe"); 773 return false; 774 } 775 }; 776 777 inline bool VPUser::classof(const VPDef *Def) { 778 return Def->getVPDefID() == VPRecipeBase::VPInstructionSC || 779 Def->getVPDefID() == VPRecipeBase::VPWidenSC || 780 Def->getVPDefID() == VPRecipeBase::VPWidenCallSC || 781 Def->getVPDefID() == VPRecipeBase::VPWidenSelectSC || 782 Def->getVPDefID() == VPRecipeBase::VPWidenGEPSC || 783 Def->getVPDefID() == VPRecipeBase::VPBlendSC || 784 Def->getVPDefID() == VPRecipeBase::VPInterleaveSC || 785 Def->getVPDefID() == VPRecipeBase::VPReplicateSC || 786 Def->getVPDefID() == VPRecipeBase::VPReductionSC || 787 Def->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC || 788 Def->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC; 789 } 790 791 /// This is a concrete Recipe that models a single VPlan-level instruction. 792 /// While as any Recipe it may generate a sequence of IR instructions when 793 /// executed, these instructions would always form a single-def expression as 794 /// the VPInstruction is also a single def-use vertex. 795 class VPInstruction : public VPRecipeBase, public VPValue { 796 friend class VPlanSlp; 797 798 public: 799 /// VPlan opcodes, extending LLVM IR with idiomatics instructions. 800 enum { 801 FirstOrderRecurrenceSplice = 802 Instruction::OtherOpsEnd + 1, // Combines the incoming and previous 803 // values of a first-order recurrence. 804 Not, 805 ICmpULE, 806 SLPLoad, 807 SLPStore, 808 ActiveLaneMask, 809 CanonicalIVIncrement, 810 CanonicalIVIncrementNUW, 811 BranchOnCount, 812 }; 813 814 private: 815 typedef unsigned char OpcodeTy; 816 OpcodeTy Opcode; 817 FastMathFlags FMF; 818 DebugLoc DL; 819 820 /// Utility method serving execute(): generates a single instance of the 821 /// modeled instruction. 822 void generateInstruction(VPTransformState &State, unsigned Part); 823 824 protected: 825 void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); } 826 827 public: 828 VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands, DebugLoc DL) 829 : VPRecipeBase(VPRecipeBase::VPInstructionSC, Operands), 830 VPValue(VPValue::VPVInstructionSC, nullptr, this), Opcode(Opcode), 831 DL(DL) {} 832 833 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands, 834 DebugLoc DL = {}) 835 : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL) {} 836 837 /// Method to support type inquiry through isa, cast, and dyn_cast. 838 static inline bool classof(const VPValue *V) { 839 return V->getVPValueID() == VPValue::VPVInstructionSC; 840 } 841 842 VPInstruction *clone() const { 843 SmallVector<VPValue *, 2> Operands(operands()); 844 return new VPInstruction(Opcode, Operands, DL); 845 } 846 847 /// Method to support type inquiry through isa, cast, and dyn_cast. 848 static inline bool classof(const VPDef *R) { 849 return R->getVPDefID() == VPRecipeBase::VPInstructionSC; 850 } 851 852 /// Extra classof implementations to allow directly casting from VPUser -> 853 /// VPInstruction. 854 static inline bool classof(const VPUser *U) { 855 auto *R = dyn_cast<VPRecipeBase>(U); 856 return R && R->getVPDefID() == VPRecipeBase::VPInstructionSC; 857 } 858 static inline bool classof(const VPRecipeBase *R) { 859 return R->getVPDefID() == VPRecipeBase::VPInstructionSC; 860 } 861 862 unsigned getOpcode() const { return Opcode; } 863 864 /// Generate the instruction. 865 /// TODO: We currently execute only per-part unless a specific instance is 866 /// provided. 867 void execute(VPTransformState &State) override; 868 869 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 870 /// Print the VPInstruction to \p O. 871 void print(raw_ostream &O, const Twine &Indent, 872 VPSlotTracker &SlotTracker) const override; 873 874 /// Print the VPInstruction to dbgs() (for debugging). 875 LLVM_DUMP_METHOD void dump() const; 876 #endif 877 878 /// Return true if this instruction may modify memory. 879 bool mayWriteToMemory() const { 880 // TODO: we can use attributes of the called function to rule out memory 881 // modifications. 882 return Opcode == Instruction::Store || Opcode == Instruction::Call || 883 Opcode == Instruction::Invoke || Opcode == SLPStore; 884 } 885 886 bool hasResult() const { 887 // CallInst may or may not have a result, depending on the called function. 888 // Conservatively return calls have results for now. 889 switch (getOpcode()) { 890 case Instruction::Ret: 891 case Instruction::Br: 892 case Instruction::Store: 893 case Instruction::Switch: 894 case Instruction::IndirectBr: 895 case Instruction::Resume: 896 case Instruction::CatchRet: 897 case Instruction::Unreachable: 898 case Instruction::Fence: 899 case Instruction::AtomicRMW: 900 case VPInstruction::BranchOnCount: 901 return false; 902 default: 903 return true; 904 } 905 } 906 907 /// Set the fast-math flags. 908 void setFastMathFlags(FastMathFlags FMFNew); 909 910 /// Returns true if the recipe only uses the first lane of operand \p Op. 911 bool onlyFirstLaneUsed(const VPValue *Op) const override { 912 assert(is_contained(operands(), Op) && 913 "Op must be an operand of the recipe"); 914 if (getOperand(0) != Op) 915 return false; 916 switch (getOpcode()) { 917 default: 918 return false; 919 case VPInstruction::ActiveLaneMask: 920 case VPInstruction::CanonicalIVIncrement: 921 case VPInstruction::CanonicalIVIncrementNUW: 922 case VPInstruction::BranchOnCount: 923 return true; 924 }; 925 llvm_unreachable("switch should return"); 926 } 927 }; 928 929 /// VPWidenRecipe is a recipe for producing a copy of vector type its 930 /// ingredient. This recipe covers most of the traditional vectorization cases 931 /// where each ingredient transforms into a vectorized version of itself. 932 class VPWidenRecipe : public VPRecipeBase, public VPValue { 933 public: 934 template <typename IterT> 935 VPWidenRecipe(Instruction &I, iterator_range<IterT> Operands) 936 : VPRecipeBase(VPRecipeBase::VPWidenSC, Operands), 937 VPValue(VPValue::VPVWidenSC, &I, this) {} 938 939 ~VPWidenRecipe() override = default; 940 941 /// Method to support type inquiry through isa, cast, and dyn_cast. 942 static inline bool classof(const VPDef *D) { 943 return D->getVPDefID() == VPRecipeBase::VPWidenSC; 944 } 945 static inline bool classof(const VPValue *V) { 946 return V->getVPValueID() == VPValue::VPVWidenSC; 947 } 948 949 /// Produce widened copies of all Ingredients. 950 void execute(VPTransformState &State) override; 951 952 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 953 /// Print the recipe. 954 void print(raw_ostream &O, const Twine &Indent, 955 VPSlotTracker &SlotTracker) const override; 956 #endif 957 }; 958 959 /// A recipe for widening Call instructions. 960 class VPWidenCallRecipe : public VPRecipeBase, public VPValue { 961 962 public: 963 template <typename IterT> 964 VPWidenCallRecipe(CallInst &I, iterator_range<IterT> CallArguments) 965 : VPRecipeBase(VPRecipeBase::VPWidenCallSC, CallArguments), 966 VPValue(VPValue::VPVWidenCallSC, &I, this) {} 967 968 ~VPWidenCallRecipe() override = default; 969 970 /// Method to support type inquiry through isa, cast, and dyn_cast. 971 static inline bool classof(const VPDef *D) { 972 return D->getVPDefID() == VPRecipeBase::VPWidenCallSC; 973 } 974 975 /// Produce a widened version of the call instruction. 976 void execute(VPTransformState &State) override; 977 978 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 979 /// Print the recipe. 980 void print(raw_ostream &O, const Twine &Indent, 981 VPSlotTracker &SlotTracker) const override; 982 #endif 983 }; 984 985 /// A recipe for widening select instructions. 986 class VPWidenSelectRecipe : public VPRecipeBase, public VPValue { 987 988 /// Is the condition of the select loop invariant? 989 bool InvariantCond; 990 991 public: 992 template <typename IterT> 993 VPWidenSelectRecipe(SelectInst &I, iterator_range<IterT> Operands, 994 bool InvariantCond) 995 : VPRecipeBase(VPRecipeBase::VPWidenSelectSC, Operands), 996 VPValue(VPValue::VPVWidenSelectSC, &I, this), 997 InvariantCond(InvariantCond) {} 998 999 ~VPWidenSelectRecipe() override = default; 1000 1001 /// Method to support type inquiry through isa, cast, and dyn_cast. 1002 static inline bool classof(const VPDef *D) { 1003 return D->getVPDefID() == VPRecipeBase::VPWidenSelectSC; 1004 } 1005 1006 /// Produce a widened version of the select instruction. 1007 void execute(VPTransformState &State) override; 1008 1009 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1010 /// Print the recipe. 1011 void print(raw_ostream &O, const Twine &Indent, 1012 VPSlotTracker &SlotTracker) const override; 1013 #endif 1014 }; 1015 1016 /// A recipe for handling GEP instructions. 1017 class VPWidenGEPRecipe : public VPRecipeBase, public VPValue { 1018 bool IsPtrLoopInvariant; 1019 SmallBitVector IsIndexLoopInvariant; 1020 1021 public: 1022 template <typename IterT> 1023 VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands) 1024 : VPRecipeBase(VPRecipeBase::VPWidenGEPSC, Operands), 1025 VPValue(VPWidenGEPSC, GEP, this), 1026 IsIndexLoopInvariant(GEP->getNumIndices(), false) {} 1027 1028 template <typename IterT> 1029 VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands, 1030 Loop *OrigLoop) 1031 : VPRecipeBase(VPRecipeBase::VPWidenGEPSC, Operands), 1032 VPValue(VPValue::VPVWidenGEPSC, GEP, this), 1033 IsIndexLoopInvariant(GEP->getNumIndices(), false) { 1034 IsPtrLoopInvariant = OrigLoop->isLoopInvariant(GEP->getPointerOperand()); 1035 for (auto Index : enumerate(GEP->indices())) 1036 IsIndexLoopInvariant[Index.index()] = 1037 OrigLoop->isLoopInvariant(Index.value().get()); 1038 } 1039 ~VPWidenGEPRecipe() override = default; 1040 1041 /// Method to support type inquiry through isa, cast, and dyn_cast. 1042 static inline bool classof(const VPDef *D) { 1043 return D->getVPDefID() == VPRecipeBase::VPWidenGEPSC; 1044 } 1045 1046 /// Generate the gep nodes. 1047 void execute(VPTransformState &State) override; 1048 1049 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1050 /// Print the recipe. 1051 void print(raw_ostream &O, const Twine &Indent, 1052 VPSlotTracker &SlotTracker) const override; 1053 #endif 1054 }; 1055 1056 /// A recipe for handling phi nodes of integer and floating-point inductions, 1057 /// producing their vector and scalar values. 1058 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase, public VPValue { 1059 PHINode *IV; 1060 const InductionDescriptor &IndDesc; 1061 bool NeedsScalarIV; 1062 bool NeedsVectorIV; 1063 1064 public: 1065 VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, 1066 const InductionDescriptor &IndDesc, 1067 bool NeedsScalarIV, bool NeedsVectorIV) 1068 : VPRecipeBase(VPWidenIntOrFpInductionSC, {Start}), VPValue(IV, this), 1069 IV(IV), IndDesc(IndDesc), NeedsScalarIV(NeedsScalarIV), 1070 NeedsVectorIV(NeedsVectorIV) {} 1071 1072 VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, 1073 const InductionDescriptor &IndDesc, 1074 TruncInst *Trunc, bool NeedsScalarIV, 1075 bool NeedsVectorIV) 1076 : VPRecipeBase(VPWidenIntOrFpInductionSC, {Start}), VPValue(Trunc, this), 1077 IV(IV), IndDesc(IndDesc), NeedsScalarIV(NeedsScalarIV), 1078 NeedsVectorIV(NeedsVectorIV) {} 1079 1080 ~VPWidenIntOrFpInductionRecipe() override = default; 1081 1082 /// Method to support type inquiry through isa, cast, and dyn_cast. 1083 static inline bool classof(const VPDef *D) { 1084 return D->getVPDefID() == VPRecipeBase::VPWidenIntOrFpInductionSC; 1085 } 1086 1087 /// Generate the vectorized and scalarized versions of the phi node as 1088 /// needed by their users. 1089 void execute(VPTransformState &State) override; 1090 1091 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1092 /// Print the recipe. 1093 void print(raw_ostream &O, const Twine &Indent, 1094 VPSlotTracker &SlotTracker) const override; 1095 #endif 1096 1097 /// Returns the start value of the induction. 1098 VPValue *getStartValue() { return getOperand(0); } 1099 const VPValue *getStartValue() const { return getOperand(0); } 1100 1101 /// Returns the first defined value as TruncInst, if it is one or nullptr 1102 /// otherwise. 1103 TruncInst *getTruncInst() { 1104 return dyn_cast_or_null<TruncInst>(getVPValue(0)->getUnderlyingValue()); 1105 } 1106 const TruncInst *getTruncInst() const { 1107 return dyn_cast_or_null<TruncInst>(getVPValue(0)->getUnderlyingValue()); 1108 } 1109 1110 PHINode *getPHINode() { return IV; } 1111 1112 /// Returns the induction descriptor for the recipe. 1113 const InductionDescriptor &getInductionDescriptor() const { return IndDesc; } 1114 1115 /// Returns true if the induction is canonical, i.e. starting at 0 and 1116 /// incremented by UF * VF (= the original IV is incremented by 1). 1117 bool isCanonical() const; 1118 1119 /// Returns the scalar type of the induction. 1120 const Type *getScalarType() const { 1121 const TruncInst *TruncI = getTruncInst(); 1122 return TruncI ? TruncI->getType() : IV->getType(); 1123 } 1124 1125 /// Returns true if a scalar phi needs to be created for the induction. 1126 bool needsScalarIV() const { return NeedsScalarIV; } 1127 1128 /// Returns true if a vector phi needs to be created for the induction. 1129 bool needsVectorIV() const { return NeedsVectorIV; } 1130 }; 1131 1132 /// A pure virtual base class for all recipes modeling header phis, including 1133 /// phis for first order recurrences, pointer inductions and reductions. The 1134 /// start value is the first operand of the recipe and the incoming value from 1135 /// the backedge is the second operand. 1136 class VPHeaderPHIRecipe : public VPRecipeBase, public VPValue { 1137 protected: 1138 VPHeaderPHIRecipe(unsigned char VPVID, unsigned char VPDefID, PHINode *Phi, 1139 VPValue *Start = nullptr) 1140 : VPRecipeBase(VPDefID, {}), VPValue(VPVID, Phi, this) { 1141 if (Start) 1142 addOperand(Start); 1143 } 1144 1145 public: 1146 ~VPHeaderPHIRecipe() override = default; 1147 1148 /// Method to support type inquiry through isa, cast, and dyn_cast. 1149 static inline bool classof(const VPRecipeBase *B) { 1150 return B->getVPDefID() == VPRecipeBase::VPCanonicalIVPHISC || 1151 B->getVPDefID() == VPRecipeBase::VPFirstOrderRecurrencePHISC || 1152 B->getVPDefID() == VPRecipeBase::VPReductionPHISC || 1153 B->getVPDefID() == VPRecipeBase::VPWidenIntOrFpInductionSC || 1154 B->getVPDefID() == VPRecipeBase::VPWidenPHISC; 1155 } 1156 static inline bool classof(const VPValue *V) { 1157 return V->getVPValueID() == VPValue::VPVCanonicalIVPHISC || 1158 V->getVPValueID() == VPValue::VPVFirstOrderRecurrencePHISC || 1159 V->getVPValueID() == VPValue::VPVReductionPHISC || 1160 V->getVPValueID() == VPValue::VPVWidenIntOrFpInductionSC || 1161 V->getVPValueID() == VPValue::VPVWidenPHISC; 1162 } 1163 1164 /// Generate the phi nodes. 1165 void execute(VPTransformState &State) override = 0; 1166 1167 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1168 /// Print the recipe. 1169 void print(raw_ostream &O, const Twine &Indent, 1170 VPSlotTracker &SlotTracker) const override = 0; 1171 #endif 1172 1173 /// Returns the start value of the phi, if one is set. 1174 VPValue *getStartValue() { 1175 return getNumOperands() == 0 ? nullptr : getOperand(0); 1176 } 1177 1178 /// Returns the incoming value from the loop backedge. 1179 VPValue *getBackedgeValue() { 1180 return getOperand(1); 1181 } 1182 1183 /// Returns the backedge value as a recipe. The backedge value is guaranteed 1184 /// to be a recipe. 1185 VPRecipeBase *getBackedgeRecipe() { 1186 return cast<VPRecipeBase>(getBackedgeValue()->getDef()); 1187 } 1188 }; 1189 1190 /// A recipe for handling header phis that are widened in the vector loop. 1191 /// In the VPlan native path, all incoming VPValues & VPBasicBlock pairs are 1192 /// managed in the recipe directly. 1193 class VPWidenPHIRecipe : public VPHeaderPHIRecipe { 1194 /// List of incoming blocks. Only used in the VPlan native path. 1195 SmallVector<VPBasicBlock *, 2> IncomingBlocks; 1196 1197 public: 1198 /// Create a new VPWidenPHIRecipe for \p Phi with start value \p Start. 1199 VPWidenPHIRecipe(PHINode *Phi, VPValue *Start = nullptr) 1200 : VPHeaderPHIRecipe(VPVWidenPHISC, VPWidenPHISC, Phi) { 1201 if (Start) 1202 addOperand(Start); 1203 } 1204 1205 ~VPWidenPHIRecipe() override = default; 1206 1207 /// Method to support type inquiry through isa, cast, and dyn_cast. 1208 static inline bool classof(const VPRecipeBase *B) { 1209 return B->getVPDefID() == VPRecipeBase::VPWidenPHISC; 1210 } 1211 static inline bool classof(const VPHeaderPHIRecipe *R) { 1212 return R->getVPDefID() == VPRecipeBase::VPWidenPHISC; 1213 } 1214 static inline bool classof(const VPValue *V) { 1215 return V->getVPValueID() == VPValue::VPVWidenPHISC; 1216 } 1217 1218 /// Generate the phi/select nodes. 1219 void execute(VPTransformState &State) override; 1220 1221 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1222 /// Print the recipe. 1223 void print(raw_ostream &O, const Twine &Indent, 1224 VPSlotTracker &SlotTracker) const override; 1225 #endif 1226 1227 /// Adds a pair (\p IncomingV, \p IncomingBlock) to the phi. 1228 void addIncoming(VPValue *IncomingV, VPBasicBlock *IncomingBlock) { 1229 addOperand(IncomingV); 1230 IncomingBlocks.push_back(IncomingBlock); 1231 } 1232 1233 /// Returns the \p I th incoming VPBasicBlock. 1234 VPBasicBlock *getIncomingBlock(unsigned I) { return IncomingBlocks[I]; } 1235 1236 /// Returns the \p I th incoming VPValue. 1237 VPValue *getIncomingValue(unsigned I) { return getOperand(I); } 1238 }; 1239 1240 /// A recipe for handling first-order recurrence phis. The start value is the 1241 /// first operand of the recipe and the incoming value from the backedge is the 1242 /// second operand. 1243 struct VPFirstOrderRecurrencePHIRecipe : public VPHeaderPHIRecipe { 1244 VPFirstOrderRecurrencePHIRecipe(PHINode *Phi, VPValue &Start) 1245 : VPHeaderPHIRecipe(VPVFirstOrderRecurrencePHISC, 1246 VPFirstOrderRecurrencePHISC, Phi, &Start) {} 1247 1248 /// Method to support type inquiry through isa, cast, and dyn_cast. 1249 static inline bool classof(const VPRecipeBase *R) { 1250 return R->getVPDefID() == VPRecipeBase::VPFirstOrderRecurrencePHISC; 1251 } 1252 static inline bool classof(const VPHeaderPHIRecipe *R) { 1253 return R->getVPDefID() == VPRecipeBase::VPFirstOrderRecurrencePHISC; 1254 } 1255 static inline bool classof(const VPValue *V) { 1256 return V->getVPValueID() == VPValue::VPVFirstOrderRecurrencePHISC; 1257 } 1258 1259 void execute(VPTransformState &State) override; 1260 1261 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1262 /// Print the recipe. 1263 void print(raw_ostream &O, const Twine &Indent, 1264 VPSlotTracker &SlotTracker) const override; 1265 #endif 1266 }; 1267 1268 /// A recipe for handling reduction phis. The start value is the first operand 1269 /// of the recipe and the incoming value from the backedge is the second 1270 /// operand. 1271 class VPReductionPHIRecipe : public VPHeaderPHIRecipe { 1272 /// Descriptor for the reduction. 1273 const RecurrenceDescriptor &RdxDesc; 1274 1275 /// The phi is part of an in-loop reduction. 1276 bool IsInLoop; 1277 1278 /// The phi is part of an ordered reduction. Requires IsInLoop to be true. 1279 bool IsOrdered; 1280 1281 public: 1282 /// Create a new VPReductionPHIRecipe for the reduction \p Phi described by \p 1283 /// RdxDesc. 1284 VPReductionPHIRecipe(PHINode *Phi, const RecurrenceDescriptor &RdxDesc, 1285 VPValue &Start, bool IsInLoop = false, 1286 bool IsOrdered = false) 1287 : VPHeaderPHIRecipe(VPVReductionPHISC, VPReductionPHISC, Phi, &Start), 1288 RdxDesc(RdxDesc), IsInLoop(IsInLoop), IsOrdered(IsOrdered) { 1289 assert((!IsOrdered || IsInLoop) && "IsOrdered requires IsInLoop"); 1290 } 1291 1292 ~VPReductionPHIRecipe() override = default; 1293 1294 /// Method to support type inquiry through isa, cast, and dyn_cast. 1295 static inline bool classof(const VPRecipeBase *R) { 1296 return R->getVPDefID() == VPRecipeBase::VPReductionPHISC; 1297 } 1298 static inline bool classof(const VPHeaderPHIRecipe *R) { 1299 return R->getVPDefID() == VPRecipeBase::VPReductionPHISC; 1300 } 1301 static inline bool classof(const VPValue *V) { 1302 return V->getVPValueID() == VPValue::VPVReductionPHISC; 1303 } 1304 1305 /// Generate the phi/select nodes. 1306 void execute(VPTransformState &State) override; 1307 1308 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1309 /// Print the recipe. 1310 void print(raw_ostream &O, const Twine &Indent, 1311 VPSlotTracker &SlotTracker) const override; 1312 #endif 1313 1314 const RecurrenceDescriptor &getRecurrenceDescriptor() const { 1315 return RdxDesc; 1316 } 1317 1318 /// Returns true, if the phi is part of an ordered reduction. 1319 bool isOrdered() const { return IsOrdered; } 1320 1321 /// Returns true, if the phi is part of an in-loop reduction. 1322 bool isInLoop() const { return IsInLoop; } 1323 }; 1324 1325 /// A recipe for vectorizing a phi-node as a sequence of mask-based select 1326 /// instructions. 1327 class VPBlendRecipe : public VPRecipeBase, public VPValue { 1328 PHINode *Phi; 1329 1330 public: 1331 /// The blend operation is a User of the incoming values and of their 1332 /// respective masks, ordered [I0, M0, I1, M1, ...]. Note that a single value 1333 /// might be incoming with a full mask for which there is no VPValue. 1334 VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands) 1335 : VPRecipeBase(VPBlendSC, Operands), 1336 VPValue(VPValue::VPVBlendSC, Phi, this), Phi(Phi) { 1337 assert(Operands.size() > 0 && 1338 ((Operands.size() == 1) || (Operands.size() % 2 == 0)) && 1339 "Expected either a single incoming value or a positive even number " 1340 "of operands"); 1341 } 1342 1343 /// Method to support type inquiry through isa, cast, and dyn_cast. 1344 static inline bool classof(const VPDef *D) { 1345 return D->getVPDefID() == VPRecipeBase::VPBlendSC; 1346 } 1347 1348 /// Return the number of incoming values, taking into account that a single 1349 /// incoming value has no mask. 1350 unsigned getNumIncomingValues() const { return (getNumOperands() + 1) / 2; } 1351 1352 /// Return incoming value number \p Idx. 1353 VPValue *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); } 1354 1355 /// Return mask number \p Idx. 1356 VPValue *getMask(unsigned Idx) const { return getOperand(Idx * 2 + 1); } 1357 1358 /// Generate the phi/select nodes. 1359 void execute(VPTransformState &State) override; 1360 1361 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1362 /// Print the recipe. 1363 void print(raw_ostream &O, const Twine &Indent, 1364 VPSlotTracker &SlotTracker) const override; 1365 #endif 1366 1367 /// Returns true if the recipe only uses the first lane of operand \p Op. 1368 bool onlyFirstLaneUsed(const VPValue *Op) const override { 1369 assert(is_contained(operands(), Op) && 1370 "Op must be an operand of the recipe"); 1371 // Recursing through Blend recipes only, must terminate at header phi's the 1372 // latest. 1373 return all_of(users(), [this](VPUser *U) { 1374 return cast<VPRecipeBase>(U)->onlyFirstLaneUsed(this); 1375 }); 1376 } 1377 }; 1378 1379 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load 1380 /// or stores into one wide load/store and shuffles. The first operand of a 1381 /// VPInterleave recipe is the address, followed by the stored values, followed 1382 /// by an optional mask. 1383 class VPInterleaveRecipe : public VPRecipeBase { 1384 const InterleaveGroup<Instruction> *IG; 1385 1386 bool HasMask = false; 1387 1388 public: 1389 VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr, 1390 ArrayRef<VPValue *> StoredValues, VPValue *Mask) 1391 : VPRecipeBase(VPInterleaveSC, {Addr}), IG(IG) { 1392 for (unsigned i = 0; i < IG->getFactor(); ++i) 1393 if (Instruction *I = IG->getMember(i)) { 1394 if (I->getType()->isVoidTy()) 1395 continue; 1396 new VPValue(I, this); 1397 } 1398 1399 for (auto *SV : StoredValues) 1400 addOperand(SV); 1401 if (Mask) { 1402 HasMask = true; 1403 addOperand(Mask); 1404 } 1405 } 1406 ~VPInterleaveRecipe() override = default; 1407 1408 /// Method to support type inquiry through isa, cast, and dyn_cast. 1409 static inline bool classof(const VPDef *D) { 1410 return D->getVPDefID() == VPRecipeBase::VPInterleaveSC; 1411 } 1412 1413 /// Return the address accessed by this recipe. 1414 VPValue *getAddr() const { 1415 return getOperand(0); // Address is the 1st, mandatory operand. 1416 } 1417 1418 /// Return the mask used by this recipe. Note that a full mask is represented 1419 /// by a nullptr. 1420 VPValue *getMask() const { 1421 // Mask is optional and therefore the last, currently 2nd operand. 1422 return HasMask ? getOperand(getNumOperands() - 1) : nullptr; 1423 } 1424 1425 /// Return the VPValues stored by this interleave group. If it is a load 1426 /// interleave group, return an empty ArrayRef. 1427 ArrayRef<VPValue *> getStoredValues() const { 1428 // The first operand is the address, followed by the stored values, followed 1429 // by an optional mask. 1430 return ArrayRef<VPValue *>(op_begin(), getNumOperands()) 1431 .slice(1, getNumStoreOperands()); 1432 } 1433 1434 /// Generate the wide load or store, and shuffles. 1435 void execute(VPTransformState &State) override; 1436 1437 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1438 /// Print the recipe. 1439 void print(raw_ostream &O, const Twine &Indent, 1440 VPSlotTracker &SlotTracker) const override; 1441 #endif 1442 1443 const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; } 1444 1445 /// Returns the number of stored operands of this interleave group. Returns 0 1446 /// for load interleave groups. 1447 unsigned getNumStoreOperands() const { 1448 return getNumOperands() - (HasMask ? 2 : 1); 1449 } 1450 }; 1451 1452 /// A recipe to represent inloop reduction operations, performing a reduction on 1453 /// a vector operand into a scalar value, and adding the result to a chain. 1454 /// The Operands are {ChainOp, VecOp, [Condition]}. 1455 class VPReductionRecipe : public VPRecipeBase, public VPValue { 1456 /// The recurrence decriptor for the reduction in question. 1457 const RecurrenceDescriptor *RdxDesc; 1458 /// Pointer to the TTI, needed to create the target reduction 1459 const TargetTransformInfo *TTI; 1460 1461 public: 1462 VPReductionRecipe(const RecurrenceDescriptor *R, Instruction *I, 1463 VPValue *ChainOp, VPValue *VecOp, VPValue *CondOp, 1464 const TargetTransformInfo *TTI) 1465 : VPRecipeBase(VPRecipeBase::VPReductionSC, {ChainOp, VecOp}), 1466 VPValue(VPValue::VPVReductionSC, I, this), RdxDesc(R), TTI(TTI) { 1467 if (CondOp) 1468 addOperand(CondOp); 1469 } 1470 1471 ~VPReductionRecipe() override = default; 1472 1473 /// Method to support type inquiry through isa, cast, and dyn_cast. 1474 static inline bool classof(const VPValue *V) { 1475 return V->getVPValueID() == VPValue::VPVReductionSC; 1476 } 1477 1478 /// Generate the reduction in the loop 1479 void execute(VPTransformState &State) override; 1480 1481 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1482 /// Print the recipe. 1483 void print(raw_ostream &O, const Twine &Indent, 1484 VPSlotTracker &SlotTracker) const override; 1485 #endif 1486 1487 /// The VPValue of the scalar Chain being accumulated. 1488 VPValue *getChainOp() const { return getOperand(0); } 1489 /// The VPValue of the vector value to be reduced. 1490 VPValue *getVecOp() const { return getOperand(1); } 1491 /// The VPValue of the condition for the block. 1492 VPValue *getCondOp() const { 1493 return getNumOperands() > 2 ? getOperand(2) : nullptr; 1494 } 1495 }; 1496 1497 /// VPReplicateRecipe replicates a given instruction producing multiple scalar 1498 /// copies of the original scalar type, one per lane, instead of producing a 1499 /// single copy of widened type for all lanes. If the instruction is known to be 1500 /// uniform only one copy, per lane zero, will be generated. 1501 class VPReplicateRecipe : public VPRecipeBase, public VPValue { 1502 /// Indicator if only a single replica per lane is needed. 1503 bool IsUniform; 1504 1505 /// Indicator if the replicas are also predicated. 1506 bool IsPredicated; 1507 1508 /// Indicator if the scalar values should also be packed into a vector. 1509 bool AlsoPack; 1510 1511 public: 1512 template <typename IterT> 1513 VPReplicateRecipe(Instruction *I, iterator_range<IterT> Operands, 1514 bool IsUniform, bool IsPredicated = false) 1515 : VPRecipeBase(VPReplicateSC, Operands), VPValue(VPVReplicateSC, I, this), 1516 IsUniform(IsUniform), IsPredicated(IsPredicated) { 1517 // Retain the previous behavior of predicateInstructions(), where an 1518 // insert-element of a predicated instruction got hoisted into the 1519 // predicated basic block iff it was its only user. This is achieved by 1520 // having predicated instructions also pack their values into a vector by 1521 // default unless they have a replicated user which uses their scalar value. 1522 AlsoPack = IsPredicated && !I->use_empty(); 1523 } 1524 1525 ~VPReplicateRecipe() override = default; 1526 1527 /// Method to support type inquiry through isa, cast, and dyn_cast. 1528 static inline bool classof(const VPDef *D) { 1529 return D->getVPDefID() == VPRecipeBase::VPReplicateSC; 1530 } 1531 1532 static inline bool classof(const VPValue *V) { 1533 return V->getVPValueID() == VPValue::VPVReplicateSC; 1534 } 1535 1536 /// Generate replicas of the desired Ingredient. Replicas will be generated 1537 /// for all parts and lanes unless a specific part and lane are specified in 1538 /// the \p State. 1539 void execute(VPTransformState &State) override; 1540 1541 void setAlsoPack(bool Pack) { AlsoPack = Pack; } 1542 1543 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1544 /// Print the recipe. 1545 void print(raw_ostream &O, const Twine &Indent, 1546 VPSlotTracker &SlotTracker) const override; 1547 #endif 1548 1549 bool isUniform() const { return IsUniform; } 1550 1551 bool isPacked() const { return AlsoPack; } 1552 1553 bool isPredicated() const { return IsPredicated; } 1554 1555 /// Returns true if the recipe only uses the first lane of operand \p Op. 1556 bool onlyFirstLaneUsed(const VPValue *Op) const override { 1557 assert(is_contained(operands(), Op) && 1558 "Op must be an operand of the recipe"); 1559 return isUniform(); 1560 } 1561 }; 1562 1563 /// A recipe for generating conditional branches on the bits of a mask. 1564 class VPBranchOnMaskRecipe : public VPRecipeBase { 1565 public: 1566 VPBranchOnMaskRecipe(VPValue *BlockInMask) 1567 : VPRecipeBase(VPBranchOnMaskSC, {}) { 1568 if (BlockInMask) // nullptr means all-one mask. 1569 addOperand(BlockInMask); 1570 } 1571 1572 /// Method to support type inquiry through isa, cast, and dyn_cast. 1573 static inline bool classof(const VPDef *D) { 1574 return D->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC; 1575 } 1576 1577 /// Generate the extraction of the appropriate bit from the block mask and the 1578 /// conditional branch. 1579 void execute(VPTransformState &State) override; 1580 1581 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1582 /// Print the recipe. 1583 void print(raw_ostream &O, const Twine &Indent, 1584 VPSlotTracker &SlotTracker) const override { 1585 O << Indent << "BRANCH-ON-MASK "; 1586 if (VPValue *Mask = getMask()) 1587 Mask->printAsOperand(O, SlotTracker); 1588 else 1589 O << " All-One"; 1590 } 1591 #endif 1592 1593 /// Return the mask used by this recipe. Note that a full mask is represented 1594 /// by a nullptr. 1595 VPValue *getMask() const { 1596 assert(getNumOperands() <= 1 && "should have either 0 or 1 operands"); 1597 // Mask is optional. 1598 return getNumOperands() == 1 ? getOperand(0) : nullptr; 1599 } 1600 }; 1601 1602 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when 1603 /// control converges back from a Branch-on-Mask. The phi nodes are needed in 1604 /// order to merge values that are set under such a branch and feed their uses. 1605 /// The phi nodes can be scalar or vector depending on the users of the value. 1606 /// This recipe works in concert with VPBranchOnMaskRecipe. 1607 class VPPredInstPHIRecipe : public VPRecipeBase, public VPValue { 1608 public: 1609 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi 1610 /// nodes after merging back from a Branch-on-Mask. 1611 VPPredInstPHIRecipe(VPValue *PredV) 1612 : VPRecipeBase(VPPredInstPHISC, PredV), 1613 VPValue(VPValue::VPVPredInstPHI, nullptr, this) {} 1614 ~VPPredInstPHIRecipe() override = default; 1615 1616 /// Method to support type inquiry through isa, cast, and dyn_cast. 1617 static inline bool classof(const VPDef *D) { 1618 return D->getVPDefID() == VPRecipeBase::VPPredInstPHISC; 1619 } 1620 1621 /// Generates phi nodes for live-outs as needed to retain SSA form. 1622 void execute(VPTransformState &State) override; 1623 1624 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1625 /// Print the recipe. 1626 void print(raw_ostream &O, const Twine &Indent, 1627 VPSlotTracker &SlotTracker) const override; 1628 #endif 1629 }; 1630 1631 /// A Recipe for widening load/store operations. 1632 /// The recipe uses the following VPValues: 1633 /// - For load: Address, optional mask 1634 /// - For store: Address, stored value, optional mask 1635 /// TODO: We currently execute only per-part unless a specific instance is 1636 /// provided. 1637 class VPWidenMemoryInstructionRecipe : public VPRecipeBase, public VPValue { 1638 Instruction &Ingredient; 1639 1640 // Whether the loaded-from / stored-to addresses are consecutive. 1641 bool Consecutive; 1642 1643 // Whether the consecutive loaded/stored addresses are in reverse order. 1644 bool Reverse; 1645 1646 void setMask(VPValue *Mask) { 1647 if (!Mask) 1648 return; 1649 addOperand(Mask); 1650 } 1651 1652 bool isMasked() const { 1653 return isStore() ? getNumOperands() == 3 : getNumOperands() == 2; 1654 } 1655 1656 public: 1657 VPWidenMemoryInstructionRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask, 1658 bool Consecutive, bool Reverse) 1659 : VPRecipeBase(VPWidenMemoryInstructionSC, {Addr}), 1660 VPValue(VPValue::VPVMemoryInstructionSC, &Load, this), Ingredient(Load), 1661 Consecutive(Consecutive), Reverse(Reverse) { 1662 assert((Consecutive || !Reverse) && "Reverse implies consecutive"); 1663 setMask(Mask); 1664 } 1665 1666 VPWidenMemoryInstructionRecipe(StoreInst &Store, VPValue *Addr, 1667 VPValue *StoredValue, VPValue *Mask, 1668 bool Consecutive, bool Reverse) 1669 : VPRecipeBase(VPWidenMemoryInstructionSC, {Addr, StoredValue}), 1670 VPValue(VPValue::VPVMemoryInstructionSC, &Store, this), 1671 Ingredient(Store), Consecutive(Consecutive), Reverse(Reverse) { 1672 assert((Consecutive || !Reverse) && "Reverse implies consecutive"); 1673 setMask(Mask); 1674 } 1675 1676 /// Method to support type inquiry through isa, cast, and dyn_cast. 1677 static inline bool classof(const VPDef *D) { 1678 return D->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC; 1679 } 1680 1681 /// Return the address accessed by this recipe. 1682 VPValue *getAddr() const { 1683 return getOperand(0); // Address is the 1st, mandatory operand. 1684 } 1685 1686 /// Return the mask used by this recipe. Note that a full mask is represented 1687 /// by a nullptr. 1688 VPValue *getMask() const { 1689 // Mask is optional and therefore the last operand. 1690 return isMasked() ? getOperand(getNumOperands() - 1) : nullptr; 1691 } 1692 1693 /// Returns true if this recipe is a store. 1694 bool isStore() const { return isa<StoreInst>(Ingredient); } 1695 1696 /// Return the address accessed by this recipe. 1697 VPValue *getStoredValue() const { 1698 assert(isStore() && "Stored value only available for store instructions"); 1699 return getOperand(1); // Stored value is the 2nd, mandatory operand. 1700 } 1701 1702 // Return whether the loaded-from / stored-to addresses are consecutive. 1703 bool isConsecutive() const { return Consecutive; } 1704 1705 // Return whether the consecutive loaded/stored addresses are in reverse 1706 // order. 1707 bool isReverse() const { return Reverse; } 1708 1709 /// Generate the wide load/store. 1710 void execute(VPTransformState &State) override; 1711 1712 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1713 /// Print the recipe. 1714 void print(raw_ostream &O, const Twine &Indent, 1715 VPSlotTracker &SlotTracker) const override; 1716 #endif 1717 1718 /// Returns true if the recipe only uses the first lane of operand \p Op. 1719 bool onlyFirstLaneUsed(const VPValue *Op) const override { 1720 assert(is_contained(operands(), Op) && 1721 "Op must be an operand of the recipe"); 1722 1723 // Widened, consecutive memory operations only demand the first lane of 1724 // their address. 1725 return Op == getAddr() && isConsecutive(); 1726 } 1727 }; 1728 1729 /// Recipe to expand a SCEV expression. 1730 /// TODO: Currently the recipe always expands the expression in the loop 1731 /// pre-header, but the recipe is currently placed in the header; place it in 1732 /// the pre-header once the latter is modeled in VPlan as a VPBasicBlock. 1733 class VPExpandSCEVRecipe : public VPRecipeBase, public VPValue { 1734 const SCEV *Expr; 1735 ScalarEvolution &SE; 1736 1737 public: 1738 VPExpandSCEVRecipe(const SCEV *Expr, ScalarEvolution &SE) 1739 : VPRecipeBase(VPExpandSCEVSC, {}), VPValue(nullptr, this), Expr(Expr), 1740 SE(SE) {} 1741 1742 ~VPExpandSCEVRecipe() override = default; 1743 1744 /// Method to support type inquiry through isa, cast, and dyn_cast. 1745 static inline bool classof(const VPDef *D) { 1746 return D->getVPDefID() == VPExpandSCEVSC; 1747 } 1748 1749 /// Generate a canonical vector induction variable of the vector loop, with 1750 void execute(VPTransformState &State) override; 1751 1752 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1753 /// Print the recipe. 1754 void print(raw_ostream &O, const Twine &Indent, 1755 VPSlotTracker &SlotTracker) const override; 1756 #endif 1757 }; 1758 1759 /// Canonical scalar induction phi of the vector loop. Starting at the specified 1760 /// start value (either 0 or the resume value when vectorizing the epilogue 1761 /// loop). VPWidenCanonicalIVRecipe represents the vector version of the 1762 /// canonical induction variable. 1763 class VPCanonicalIVPHIRecipe : public VPHeaderPHIRecipe { 1764 DebugLoc DL; 1765 1766 public: 1767 VPCanonicalIVPHIRecipe(VPValue *StartV, DebugLoc DL) 1768 : VPHeaderPHIRecipe(VPValue::VPVCanonicalIVPHISC, VPCanonicalIVPHISC, 1769 nullptr, StartV), 1770 DL(DL) {} 1771 1772 ~VPCanonicalIVPHIRecipe() override = default; 1773 1774 /// Method to support type inquiry through isa, cast, and dyn_cast. 1775 static inline bool classof(const VPDef *D) { 1776 return D->getVPDefID() == VPCanonicalIVPHISC; 1777 } 1778 static inline bool classof(const VPHeaderPHIRecipe *D) { 1779 return D->getVPDefID() == VPCanonicalIVPHISC; 1780 } 1781 static inline bool classof(const VPValue *V) { 1782 return V->getVPValueID() == VPValue::VPVCanonicalIVPHISC; 1783 } 1784 1785 /// Generate the canonical scalar induction phi of the vector loop. 1786 void execute(VPTransformState &State) override; 1787 1788 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1789 /// Print the recipe. 1790 void print(raw_ostream &O, const Twine &Indent, 1791 VPSlotTracker &SlotTracker) const override; 1792 #endif 1793 1794 /// Returns the scalar type of the induction. 1795 const Type *getScalarType() const { 1796 return getOperand(0)->getLiveInIRValue()->getType(); 1797 } 1798 1799 /// Returns true if the recipe only uses the first lane of operand \p Op. 1800 bool onlyFirstLaneUsed(const VPValue *Op) const override { 1801 assert(is_contained(operands(), Op) && 1802 "Op must be an operand of the recipe"); 1803 return true; 1804 } 1805 }; 1806 1807 /// A Recipe for widening the canonical induction variable of the vector loop. 1808 class VPWidenCanonicalIVRecipe : public VPRecipeBase, public VPValue { 1809 public: 1810 VPWidenCanonicalIVRecipe(VPCanonicalIVPHIRecipe *CanonicalIV) 1811 : VPRecipeBase(VPWidenCanonicalIVSC, {CanonicalIV}), 1812 VPValue(VPValue::VPVWidenCanonicalIVSC, nullptr, this) {} 1813 1814 ~VPWidenCanonicalIVRecipe() override = default; 1815 1816 /// Method to support type inquiry through isa, cast, and dyn_cast. 1817 static inline bool classof(const VPDef *D) { 1818 return D->getVPDefID() == VPRecipeBase::VPWidenCanonicalIVSC; 1819 } 1820 1821 /// Extra classof implementations to allow directly casting from VPUser -> 1822 /// VPWidenCanonicalIVRecipe. 1823 static inline bool classof(const VPUser *U) { 1824 auto *R = dyn_cast<VPRecipeBase>(U); 1825 return R && R->getVPDefID() == VPRecipeBase::VPWidenCanonicalIVSC; 1826 } 1827 static inline bool classof(const VPRecipeBase *R) { 1828 return R->getVPDefID() == VPRecipeBase::VPWidenCanonicalIVSC; 1829 } 1830 1831 /// Generate a canonical vector induction variable of the vector loop, with 1832 /// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and 1833 /// step = <VF*UF, VF*UF, ..., VF*UF>. 1834 void execute(VPTransformState &State) override; 1835 1836 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1837 /// Print the recipe. 1838 void print(raw_ostream &O, const Twine &Indent, 1839 VPSlotTracker &SlotTracker) const override; 1840 #endif 1841 1842 /// Returns the scalar type of the induction. 1843 const Type *getScalarType() const { 1844 return cast<VPCanonicalIVPHIRecipe>(getOperand(0)->getDef()) 1845 ->getScalarType(); 1846 } 1847 }; 1848 1849 /// A recipe for handling phi nodes of integer and floating-point inductions, 1850 /// producing their scalar values. 1851 class VPScalarIVStepsRecipe : public VPRecipeBase, public VPValue { 1852 /// Scalar type to use for the generated values. 1853 Type *Ty; 1854 /// If not nullptr, truncate the generated values to TruncToTy. 1855 Type *TruncToTy; 1856 const InductionDescriptor &IndDesc; 1857 1858 public: 1859 VPScalarIVStepsRecipe(Type *Ty, const InductionDescriptor &IndDesc, 1860 VPValue *CanonicalIV, VPValue *Start, VPValue *Step, 1861 Type *TruncToTy) 1862 : VPRecipeBase(VPScalarIVStepsSC, {CanonicalIV, Start, Step}), 1863 VPValue(nullptr, this), Ty(Ty), TruncToTy(TruncToTy), IndDesc(IndDesc) { 1864 } 1865 1866 ~VPScalarIVStepsRecipe() override = default; 1867 1868 /// Method to support type inquiry through isa, cast, and dyn_cast. 1869 static inline bool classof(const VPDef *D) { 1870 return D->getVPDefID() == VPRecipeBase::VPScalarIVStepsSC; 1871 } 1872 /// Extra classof implementations to allow directly casting from VPUser -> 1873 /// VPScalarIVStepsRecipe. 1874 static inline bool classof(const VPUser *U) { 1875 auto *R = dyn_cast<VPRecipeBase>(U); 1876 return R && R->getVPDefID() == VPRecipeBase::VPScalarIVStepsSC; 1877 } 1878 static inline bool classof(const VPRecipeBase *R) { 1879 return R->getVPDefID() == VPRecipeBase::VPScalarIVStepsSC; 1880 } 1881 1882 /// Generate the scalarized versions of the phi node as needed by their users. 1883 void execute(VPTransformState &State) override; 1884 1885 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1886 /// Print the recipe. 1887 void print(raw_ostream &O, const Twine &Indent, 1888 VPSlotTracker &SlotTracker) const override; 1889 #endif 1890 1891 /// Returns true if the induction is canonical, i.e. starting at 0 and 1892 /// incremented by UF * VF (= the original IV is incremented by 1). 1893 bool isCanonical() const; 1894 1895 VPCanonicalIVPHIRecipe *getCanonicalIV() const; 1896 VPValue *getStartValue() const { return getOperand(1); } 1897 VPValue *getStepValue() const { return getOperand(2); } 1898 }; 1899 1900 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It 1901 /// holds a sequence of zero or more VPRecipe's each representing a sequence of 1902 /// output IR instructions. All PHI-like recipes must come before any non-PHI recipes. 1903 class VPBasicBlock : public VPBlockBase { 1904 public: 1905 using RecipeListTy = iplist<VPRecipeBase>; 1906 1907 private: 1908 /// The VPRecipes held in the order of output instructions to generate. 1909 RecipeListTy Recipes; 1910 1911 public: 1912 VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) 1913 : VPBlockBase(VPBasicBlockSC, Name.str()) { 1914 if (Recipe) 1915 appendRecipe(Recipe); 1916 } 1917 1918 ~VPBasicBlock() override { 1919 while (!Recipes.empty()) 1920 Recipes.pop_back(); 1921 } 1922 1923 /// Instruction iterators... 1924 using iterator = RecipeListTy::iterator; 1925 using const_iterator = RecipeListTy::const_iterator; 1926 using reverse_iterator = RecipeListTy::reverse_iterator; 1927 using const_reverse_iterator = RecipeListTy::const_reverse_iterator; 1928 1929 //===--------------------------------------------------------------------===// 1930 /// Recipe iterator methods 1931 /// 1932 inline iterator begin() { return Recipes.begin(); } 1933 inline const_iterator begin() const { return Recipes.begin(); } 1934 inline iterator end() { return Recipes.end(); } 1935 inline const_iterator end() const { return Recipes.end(); } 1936 1937 inline reverse_iterator rbegin() { return Recipes.rbegin(); } 1938 inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } 1939 inline reverse_iterator rend() { return Recipes.rend(); } 1940 inline const_reverse_iterator rend() const { return Recipes.rend(); } 1941 1942 inline size_t size() const { return Recipes.size(); } 1943 inline bool empty() const { return Recipes.empty(); } 1944 inline const VPRecipeBase &front() const { return Recipes.front(); } 1945 inline VPRecipeBase &front() { return Recipes.front(); } 1946 inline const VPRecipeBase &back() const { return Recipes.back(); } 1947 inline VPRecipeBase &back() { return Recipes.back(); } 1948 1949 /// Returns a reference to the list of recipes. 1950 RecipeListTy &getRecipeList() { return Recipes; } 1951 1952 /// Returns a pointer to a member of the recipe list. 1953 static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { 1954 return &VPBasicBlock::Recipes; 1955 } 1956 1957 /// Method to support type inquiry through isa, cast, and dyn_cast. 1958 static inline bool classof(const VPBlockBase *V) { 1959 return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC; 1960 } 1961 1962 void insert(VPRecipeBase *Recipe, iterator InsertPt) { 1963 assert(Recipe && "No recipe to append."); 1964 assert(!Recipe->Parent && "Recipe already in VPlan"); 1965 Recipe->Parent = this; 1966 Recipes.insert(InsertPt, Recipe); 1967 } 1968 1969 /// Augment the existing recipes of a VPBasicBlock with an additional 1970 /// \p Recipe as the last recipe. 1971 void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); } 1972 1973 /// The method which generates the output IR instructions that correspond to 1974 /// this VPBasicBlock, thereby "executing" the VPlan. 1975 void execute(struct VPTransformState *State) override; 1976 1977 /// Return the position of the first non-phi node recipe in the block. 1978 iterator getFirstNonPhi(); 1979 1980 /// Returns an iterator range over the PHI-like recipes in the block. 1981 iterator_range<iterator> phis() { 1982 return make_range(begin(), getFirstNonPhi()); 1983 } 1984 1985 void dropAllReferences(VPValue *NewValue) override; 1986 1987 /// Split current block at \p SplitAt by inserting a new block between the 1988 /// current block and its successors and moving all recipes starting at 1989 /// SplitAt to the new block. Returns the new block. 1990 VPBasicBlock *splitAt(iterator SplitAt); 1991 1992 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1993 /// Print this VPBsicBlock to \p O, prefixing all lines with \p Indent. \p 1994 /// SlotTracker is used to print unnamed VPValue's using consequtive numbers. 1995 /// 1996 /// Note that the numbering is applied to the whole VPlan, so printing 1997 /// individual blocks is consistent with the whole VPlan printing. 1998 void print(raw_ostream &O, const Twine &Indent, 1999 VPSlotTracker &SlotTracker) const override; 2000 using VPBlockBase::print; // Get the print(raw_stream &O) version. 2001 #endif 2002 2003 private: 2004 /// Create an IR BasicBlock to hold the output instructions generated by this 2005 /// VPBasicBlock, and return it. Update the CFGState accordingly. 2006 BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG); 2007 }; 2008 2009 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks 2010 /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG. 2011 /// A VPRegionBlock may indicate that its contents are to be replicated several 2012 /// times. This is designed to support predicated scalarization, in which a 2013 /// scalar if-then code structure needs to be generated VF * UF times. Having 2014 /// this replication indicator helps to keep a single model for multiple 2015 /// candidate VF's. The actual replication takes place only once the desired VF 2016 /// and UF have been determined. 2017 class VPRegionBlock : public VPBlockBase { 2018 /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. 2019 VPBlockBase *Entry; 2020 2021 /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock. 2022 VPBlockBase *Exit; 2023 2024 /// An indicator whether this region is to generate multiple replicated 2025 /// instances of output IR corresponding to its VPBlockBases. 2026 bool IsReplicator; 2027 2028 public: 2029 VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit, 2030 const std::string &Name = "", bool IsReplicator = false) 2031 : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit), 2032 IsReplicator(IsReplicator) { 2033 assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); 2034 assert(Exit->getSuccessors().empty() && "Exit block has successors."); 2035 Entry->setParent(this); 2036 Exit->setParent(this); 2037 } 2038 VPRegionBlock(const std::string &Name = "", bool IsReplicator = false) 2039 : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr), 2040 IsReplicator(IsReplicator) {} 2041 2042 ~VPRegionBlock() override { 2043 if (Entry) { 2044 VPValue DummyValue; 2045 Entry->dropAllReferences(&DummyValue); 2046 deleteCFG(Entry); 2047 } 2048 } 2049 2050 /// Method to support type inquiry through isa, cast, and dyn_cast. 2051 static inline bool classof(const VPBlockBase *V) { 2052 return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; 2053 } 2054 2055 const VPBlockBase *getEntry() const { return Entry; } 2056 VPBlockBase *getEntry() { return Entry; } 2057 2058 /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p 2059 /// EntryBlock must have no predecessors. 2060 void setEntry(VPBlockBase *EntryBlock) { 2061 assert(EntryBlock->getPredecessors().empty() && 2062 "Entry block cannot have predecessors."); 2063 Entry = EntryBlock; 2064 EntryBlock->setParent(this); 2065 } 2066 2067 // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a 2068 // specific interface of llvm::Function, instead of using 2069 // GraphTraints::getEntryNode. We should add a new template parameter to 2070 // DominatorTreeBase representing the Graph type. 2071 VPBlockBase &front() const { return *Entry; } 2072 2073 const VPBlockBase *getExit() const { return Exit; } 2074 VPBlockBase *getExit() { return Exit; } 2075 2076 /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p 2077 /// ExitBlock must have no successors. 2078 void setExit(VPBlockBase *ExitBlock) { 2079 assert(ExitBlock->getSuccessors().empty() && 2080 "Exit block cannot have successors."); 2081 Exit = ExitBlock; 2082 ExitBlock->setParent(this); 2083 } 2084 2085 /// An indicator whether this region is to generate multiple replicated 2086 /// instances of output IR corresponding to its VPBlockBases. 2087 bool isReplicator() const { return IsReplicator; } 2088 2089 /// The method which generates the output IR instructions that correspond to 2090 /// this VPRegionBlock, thereby "executing" the VPlan. 2091 void execute(struct VPTransformState *State) override; 2092 2093 void dropAllReferences(VPValue *NewValue) override; 2094 2095 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2096 /// Print this VPRegionBlock to \p O (recursively), prefixing all lines with 2097 /// \p Indent. \p SlotTracker is used to print unnamed VPValue's using 2098 /// consequtive numbers. 2099 /// 2100 /// Note that the numbering is applied to the whole VPlan, so printing 2101 /// individual regions is consistent with the whole VPlan printing. 2102 void print(raw_ostream &O, const Twine &Indent, 2103 VPSlotTracker &SlotTracker) const override; 2104 using VPBlockBase::print; // Get the print(raw_stream &O) version. 2105 #endif 2106 }; 2107 2108 //===----------------------------------------------------------------------===// 2109 // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs // 2110 //===----------------------------------------------------------------------===// 2111 2112 // The following set of template specializations implement GraphTraits to treat 2113 // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note 2114 // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the 2115 // VPBlockBase is a VPRegionBlock, this specialization provides access to its 2116 // successors/predecessors but not to the blocks inside the region. 2117 2118 template <> struct GraphTraits<VPBlockBase *> { 2119 using NodeRef = VPBlockBase *; 2120 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; 2121 2122 static NodeRef getEntryNode(NodeRef N) { return N; } 2123 2124 static inline ChildIteratorType child_begin(NodeRef N) { 2125 return N->getSuccessors().begin(); 2126 } 2127 2128 static inline ChildIteratorType child_end(NodeRef N) { 2129 return N->getSuccessors().end(); 2130 } 2131 }; 2132 2133 template <> struct GraphTraits<const VPBlockBase *> { 2134 using NodeRef = const VPBlockBase *; 2135 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator; 2136 2137 static NodeRef getEntryNode(NodeRef N) { return N; } 2138 2139 static inline ChildIteratorType child_begin(NodeRef N) { 2140 return N->getSuccessors().begin(); 2141 } 2142 2143 static inline ChildIteratorType child_end(NodeRef N) { 2144 return N->getSuccessors().end(); 2145 } 2146 }; 2147 2148 // Inverse order specialization for VPBasicBlocks. Predecessors are used instead 2149 // of successors for the inverse traversal. 2150 template <> struct GraphTraits<Inverse<VPBlockBase *>> { 2151 using NodeRef = VPBlockBase *; 2152 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; 2153 2154 static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; } 2155 2156 static inline ChildIteratorType child_begin(NodeRef N) { 2157 return N->getPredecessors().begin(); 2158 } 2159 2160 static inline ChildIteratorType child_end(NodeRef N) { 2161 return N->getPredecessors().end(); 2162 } 2163 }; 2164 2165 // The following set of template specializations implement GraphTraits to 2166 // treat VPRegionBlock as a graph and recurse inside its nodes. It's important 2167 // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases 2168 // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so 2169 // there won't be automatic recursion into other VPBlockBases that turn to be 2170 // VPRegionBlocks. 2171 2172 template <> 2173 struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> { 2174 using GraphRef = VPRegionBlock *; 2175 using nodes_iterator = df_iterator<NodeRef>; 2176 2177 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } 2178 2179 static nodes_iterator nodes_begin(GraphRef N) { 2180 return nodes_iterator::begin(N->getEntry()); 2181 } 2182 2183 static nodes_iterator nodes_end(GraphRef N) { 2184 // df_iterator::end() returns an empty iterator so the node used doesn't 2185 // matter. 2186 return nodes_iterator::end(N); 2187 } 2188 }; 2189 2190 template <> 2191 struct GraphTraits<const VPRegionBlock *> 2192 : public GraphTraits<const VPBlockBase *> { 2193 using GraphRef = const VPRegionBlock *; 2194 using nodes_iterator = df_iterator<NodeRef>; 2195 2196 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } 2197 2198 static nodes_iterator nodes_begin(GraphRef N) { 2199 return nodes_iterator::begin(N->getEntry()); 2200 } 2201 2202 static nodes_iterator nodes_end(GraphRef N) { 2203 // df_iterator::end() returns an empty iterator so the node used doesn't 2204 // matter. 2205 return nodes_iterator::end(N); 2206 } 2207 }; 2208 2209 template <> 2210 struct GraphTraits<Inverse<VPRegionBlock *>> 2211 : public GraphTraits<Inverse<VPBlockBase *>> { 2212 using GraphRef = VPRegionBlock *; 2213 using nodes_iterator = df_iterator<NodeRef>; 2214 2215 static NodeRef getEntryNode(Inverse<GraphRef> N) { 2216 return N.Graph->getExit(); 2217 } 2218 2219 static nodes_iterator nodes_begin(GraphRef N) { 2220 return nodes_iterator::begin(N->getExit()); 2221 } 2222 2223 static nodes_iterator nodes_end(GraphRef N) { 2224 // df_iterator::end() returns an empty iterator so the node used doesn't 2225 // matter. 2226 return nodes_iterator::end(N); 2227 } 2228 }; 2229 2230 /// Iterator to traverse all successors of a VPBlockBase node. This includes the 2231 /// entry node of VPRegionBlocks. Exit blocks of a region implicitly have their 2232 /// parent region's successors. This ensures all blocks in a region are visited 2233 /// before any blocks in a successor region when doing a reverse post-order 2234 // traversal of the graph. 2235 template <typename BlockPtrTy> 2236 class VPAllSuccessorsIterator 2237 : public iterator_facade_base<VPAllSuccessorsIterator<BlockPtrTy>, 2238 std::forward_iterator_tag, VPBlockBase> { 2239 BlockPtrTy Block; 2240 /// Index of the current successor. For VPBasicBlock nodes, this simply is the 2241 /// index for the successor array. For VPRegionBlock, SuccessorIdx == 0 is 2242 /// used for the region's entry block, and SuccessorIdx - 1 are the indices 2243 /// for the successor array. 2244 size_t SuccessorIdx; 2245 2246 static BlockPtrTy getBlockWithSuccs(BlockPtrTy Current) { 2247 while (Current && Current->getNumSuccessors() == 0) 2248 Current = Current->getParent(); 2249 return Current; 2250 } 2251 2252 /// Templated helper to dereference successor \p SuccIdx of \p Block. Used by 2253 /// both the const and non-const operator* implementations. 2254 template <typename T1> static T1 deref(T1 Block, unsigned SuccIdx) { 2255 if (auto *R = dyn_cast<VPRegionBlock>(Block)) { 2256 if (SuccIdx == 0) 2257 return R->getEntry(); 2258 SuccIdx--; 2259 } 2260 2261 // For exit blocks, use the next parent region with successors. 2262 return getBlockWithSuccs(Block)->getSuccessors()[SuccIdx]; 2263 } 2264 2265 public: 2266 VPAllSuccessorsIterator(BlockPtrTy Block, size_t Idx = 0) 2267 : Block(Block), SuccessorIdx(Idx) {} 2268 VPAllSuccessorsIterator(const VPAllSuccessorsIterator &Other) 2269 : Block(Other.Block), SuccessorIdx(Other.SuccessorIdx) {} 2270 2271 VPAllSuccessorsIterator &operator=(const VPAllSuccessorsIterator &R) { 2272 Block = R.Block; 2273 SuccessorIdx = R.SuccessorIdx; 2274 return *this; 2275 } 2276 2277 static VPAllSuccessorsIterator end(BlockPtrTy Block) { 2278 BlockPtrTy ParentWithSuccs = getBlockWithSuccs(Block); 2279 unsigned NumSuccessors = ParentWithSuccs 2280 ? ParentWithSuccs->getNumSuccessors() 2281 : Block->getNumSuccessors(); 2282 2283 if (auto *R = dyn_cast<VPRegionBlock>(Block)) 2284 return {R, NumSuccessors + 1}; 2285 return {Block, NumSuccessors}; 2286 } 2287 2288 bool operator==(const VPAllSuccessorsIterator &R) const { 2289 return Block == R.Block && SuccessorIdx == R.SuccessorIdx; 2290 } 2291 2292 const VPBlockBase *operator*() const { return deref(Block, SuccessorIdx); } 2293 2294 BlockPtrTy operator*() { return deref(Block, SuccessorIdx); } 2295 2296 VPAllSuccessorsIterator &operator++() { 2297 SuccessorIdx++; 2298 return *this; 2299 } 2300 2301 VPAllSuccessorsIterator operator++(int X) { 2302 VPAllSuccessorsIterator Orig = *this; 2303 SuccessorIdx++; 2304 return Orig; 2305 } 2306 }; 2307 2308 /// Helper for GraphTraits specialization that traverses through VPRegionBlocks. 2309 template <typename BlockTy> class VPBlockRecursiveTraversalWrapper { 2310 BlockTy Entry; 2311 2312 public: 2313 VPBlockRecursiveTraversalWrapper(BlockTy Entry) : Entry(Entry) {} 2314 BlockTy getEntry() { return Entry; } 2315 }; 2316 2317 /// GraphTraits specialization to recursively traverse VPBlockBase nodes, 2318 /// including traversing through VPRegionBlocks. Exit blocks of a region 2319 /// implicitly have their parent region's successors. This ensures all blocks in 2320 /// a region are visited before any blocks in a successor region when doing a 2321 /// reverse post-order traversal of the graph. 2322 template <> 2323 struct GraphTraits<VPBlockRecursiveTraversalWrapper<VPBlockBase *>> { 2324 using NodeRef = VPBlockBase *; 2325 using ChildIteratorType = VPAllSuccessorsIterator<VPBlockBase *>; 2326 2327 static NodeRef 2328 getEntryNode(VPBlockRecursiveTraversalWrapper<VPBlockBase *> N) { 2329 return N.getEntry(); 2330 } 2331 2332 static inline ChildIteratorType child_begin(NodeRef N) { 2333 return ChildIteratorType(N); 2334 } 2335 2336 static inline ChildIteratorType child_end(NodeRef N) { 2337 return ChildIteratorType::end(N); 2338 } 2339 }; 2340 2341 template <> 2342 struct GraphTraits<VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> { 2343 using NodeRef = const VPBlockBase *; 2344 using ChildIteratorType = VPAllSuccessorsIterator<const VPBlockBase *>; 2345 2346 static NodeRef 2347 getEntryNode(VPBlockRecursiveTraversalWrapper<const VPBlockBase *> N) { 2348 return N.getEntry(); 2349 } 2350 2351 static inline ChildIteratorType child_begin(NodeRef N) { 2352 return ChildIteratorType(N); 2353 } 2354 2355 static inline ChildIteratorType child_end(NodeRef N) { 2356 return ChildIteratorType::end(N); 2357 } 2358 }; 2359 2360 /// VPlan models a candidate for vectorization, encoding various decisions take 2361 /// to produce efficient output IR, including which branches, basic-blocks and 2362 /// output IR instructions to generate, and their cost. VPlan holds a 2363 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry 2364 /// VPBlock. 2365 class VPlan { 2366 friend class VPlanPrinter; 2367 friend class VPSlotTracker; 2368 2369 /// Hold the single entry to the Hierarchical CFG of the VPlan. 2370 VPBlockBase *Entry; 2371 2372 /// Holds the VFs applicable to this VPlan. 2373 SmallSetVector<ElementCount, 2> VFs; 2374 2375 /// Holds the name of the VPlan, for printing. 2376 std::string Name; 2377 2378 /// Holds all the external definitions created for this VPlan. 2379 // TODO: Introduce a specific representation for external definitions in 2380 // VPlan. External definitions must be immutable and hold a pointer to its 2381 // underlying IR that will be used to implement its structural comparison 2382 // (operators '==' and '<'). 2383 SetVector<VPValue *> VPExternalDefs; 2384 2385 /// Represents the trip count of the original loop, for folding 2386 /// the tail. 2387 VPValue *TripCount = nullptr; 2388 2389 /// Represents the backedge taken count of the original loop, for folding 2390 /// the tail. It equals TripCount - 1. 2391 VPValue *BackedgeTakenCount = nullptr; 2392 2393 /// Represents the vector trip count. 2394 VPValue VectorTripCount; 2395 2396 /// Holds a mapping between Values and their corresponding VPValue inside 2397 /// VPlan. 2398 Value2VPValueTy Value2VPValue; 2399 2400 /// Contains all VPValues that been allocated by addVPValue directly and need 2401 /// to be free when the plan's destructor is called. 2402 SmallVector<VPValue *, 16> VPValuesToFree; 2403 2404 /// Holds the VPLoopInfo analysis for this VPlan. 2405 VPLoopInfo VPLInfo; 2406 2407 /// Indicates whether it is safe use the Value2VPValue mapping or if the 2408 /// mapping cannot be used any longer, because it is stale. 2409 bool Value2VPValueEnabled = true; 2410 2411 public: 2412 VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) { 2413 if (Entry) 2414 Entry->setPlan(this); 2415 } 2416 2417 ~VPlan() { 2418 if (Entry) { 2419 VPValue DummyValue; 2420 for (VPBlockBase *Block : depth_first(Entry)) 2421 Block->dropAllReferences(&DummyValue); 2422 2423 VPBlockBase::deleteCFG(Entry); 2424 } 2425 for (VPValue *VPV : VPValuesToFree) 2426 delete VPV; 2427 if (TripCount) 2428 delete TripCount; 2429 if (BackedgeTakenCount) 2430 delete BackedgeTakenCount; 2431 for (VPValue *Def : VPExternalDefs) 2432 delete Def; 2433 } 2434 2435 /// Prepare the plan for execution, setting up the required live-in values. 2436 void prepareToExecute(Value *TripCount, Value *VectorTripCount, 2437 Value *CanonicalIVStartValue, VPTransformState &State); 2438 2439 /// Generate the IR code for this VPlan. 2440 void execute(struct VPTransformState *State); 2441 2442 VPBlockBase *getEntry() { return Entry; } 2443 const VPBlockBase *getEntry() const { return Entry; } 2444 2445 VPBlockBase *setEntry(VPBlockBase *Block) { 2446 Entry = Block; 2447 Block->setPlan(this); 2448 return Entry; 2449 } 2450 2451 /// The trip count of the original loop. 2452 VPValue *getOrCreateTripCount() { 2453 if (!TripCount) 2454 TripCount = new VPValue(); 2455 return TripCount; 2456 } 2457 2458 /// The backedge taken count of the original loop. 2459 VPValue *getOrCreateBackedgeTakenCount() { 2460 if (!BackedgeTakenCount) 2461 BackedgeTakenCount = new VPValue(); 2462 return BackedgeTakenCount; 2463 } 2464 2465 /// The vector trip count. 2466 VPValue &getVectorTripCount() { return VectorTripCount; } 2467 2468 /// Mark the plan to indicate that using Value2VPValue is not safe any 2469 /// longer, because it may be stale. 2470 void disableValue2VPValue() { Value2VPValueEnabled = false; } 2471 2472 void addVF(ElementCount VF) { VFs.insert(VF); } 2473 2474 bool hasVF(ElementCount VF) { return VFs.count(VF); } 2475 2476 const std::string &getName() const { return Name; } 2477 2478 void setName(const Twine &newName) { Name = newName.str(); } 2479 2480 /// Add \p VPVal to the pool of external definitions if it's not already 2481 /// in the pool. 2482 void addExternalDef(VPValue *VPVal) { VPExternalDefs.insert(VPVal); } 2483 2484 void addVPValue(Value *V) { 2485 assert(Value2VPValueEnabled && 2486 "IR value to VPValue mapping may be out of date!"); 2487 assert(V && "Trying to add a null Value to VPlan"); 2488 assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); 2489 VPValue *VPV = new VPValue(V); 2490 Value2VPValue[V] = VPV; 2491 VPValuesToFree.push_back(VPV); 2492 } 2493 2494 void addVPValue(Value *V, VPValue *VPV) { 2495 assert(Value2VPValueEnabled && "Value2VPValue mapping may be out of date!"); 2496 assert(V && "Trying to add a null Value to VPlan"); 2497 assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); 2498 Value2VPValue[V] = VPV; 2499 } 2500 2501 /// Returns the VPValue for \p V. \p OverrideAllowed can be used to disable 2502 /// checking whether it is safe to query VPValues using IR Values. 2503 VPValue *getVPValue(Value *V, bool OverrideAllowed = false) { 2504 assert((OverrideAllowed || isa<Constant>(V) || Value2VPValueEnabled) && 2505 "Value2VPValue mapping may be out of date!"); 2506 assert(V && "Trying to get the VPValue of a null Value"); 2507 assert(Value2VPValue.count(V) && "Value does not exist in VPlan"); 2508 return Value2VPValue[V]; 2509 } 2510 2511 /// Gets the VPValue or adds a new one (if none exists yet) for \p V. \p 2512 /// OverrideAllowed can be used to disable checking whether it is safe to 2513 /// query VPValues using IR Values. 2514 VPValue *getOrAddVPValue(Value *V, bool OverrideAllowed = false) { 2515 assert((OverrideAllowed || isa<Constant>(V) || Value2VPValueEnabled) && 2516 "Value2VPValue mapping may be out of date!"); 2517 assert(V && "Trying to get or add the VPValue of a null Value"); 2518 if (!Value2VPValue.count(V)) 2519 addVPValue(V); 2520 return getVPValue(V); 2521 } 2522 2523 void removeVPValueFor(Value *V) { 2524 assert(Value2VPValueEnabled && 2525 "IR value to VPValue mapping may be out of date!"); 2526 Value2VPValue.erase(V); 2527 } 2528 2529 /// Return the VPLoopInfo analysis for this VPlan. 2530 VPLoopInfo &getVPLoopInfo() { return VPLInfo; } 2531 const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; } 2532 2533 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2534 /// Print this VPlan to \p O. 2535 void print(raw_ostream &O) const; 2536 2537 /// Print this VPlan in DOT format to \p O. 2538 void printDOT(raw_ostream &O) const; 2539 2540 /// Dump the plan to stderr (for debugging). 2541 LLVM_DUMP_METHOD void dump() const; 2542 #endif 2543 2544 /// Returns a range mapping the values the range \p Operands to their 2545 /// corresponding VPValues. 2546 iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>> 2547 mapToVPValues(User::op_range Operands) { 2548 std::function<VPValue *(Value *)> Fn = [this](Value *Op) { 2549 return getOrAddVPValue(Op); 2550 }; 2551 return map_range(Operands, Fn); 2552 } 2553 2554 /// Returns true if \p VPV is uniform after vectorization. 2555 bool isUniformAfterVectorization(VPValue *VPV) const { 2556 auto RepR = dyn_cast_or_null<VPReplicateRecipe>(VPV->getDef()); 2557 return !VPV->getDef() || (RepR && RepR->isUniform()); 2558 } 2559 2560 /// Returns the VPRegionBlock of the vector loop. 2561 VPRegionBlock *getVectorLoopRegion() { 2562 return cast<VPRegionBlock>(getEntry()); 2563 } 2564 2565 /// Returns the canonical induction recipe of the vector loop. 2566 VPCanonicalIVPHIRecipe *getCanonicalIV() { 2567 VPBasicBlock *EntryVPBB = getVectorLoopRegion()->getEntryBasicBlock(); 2568 if (EntryVPBB->empty()) { 2569 // VPlan native path. 2570 EntryVPBB = cast<VPBasicBlock>(EntryVPBB->getSingleSuccessor()); 2571 } 2572 return cast<VPCanonicalIVPHIRecipe>(&*EntryVPBB->begin()); 2573 } 2574 2575 private: 2576 /// Add to the given dominator tree the header block and every new basic block 2577 /// that was created between it and the latch block, inclusive. 2578 static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB, 2579 BasicBlock *LoopPreHeaderBB, 2580 BasicBlock *LoopExitBB); 2581 }; 2582 2583 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2584 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is 2585 /// indented and follows the dot format. 2586 class VPlanPrinter { 2587 raw_ostream &OS; 2588 const VPlan &Plan; 2589 unsigned Depth = 0; 2590 unsigned TabWidth = 2; 2591 std::string Indent; 2592 unsigned BID = 0; 2593 SmallDenseMap<const VPBlockBase *, unsigned> BlockID; 2594 2595 VPSlotTracker SlotTracker; 2596 2597 /// Handle indentation. 2598 void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } 2599 2600 /// Print a given \p Block of the Plan. 2601 void dumpBlock(const VPBlockBase *Block); 2602 2603 /// Print the information related to the CFG edges going out of a given 2604 /// \p Block, followed by printing the successor blocks themselves. 2605 void dumpEdges(const VPBlockBase *Block); 2606 2607 /// Print a given \p BasicBlock, including its VPRecipes, followed by printing 2608 /// its successor blocks. 2609 void dumpBasicBlock(const VPBasicBlock *BasicBlock); 2610 2611 /// Print a given \p Region of the Plan. 2612 void dumpRegion(const VPRegionBlock *Region); 2613 2614 unsigned getOrCreateBID(const VPBlockBase *Block) { 2615 return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; 2616 } 2617 2618 Twine getOrCreateName(const VPBlockBase *Block); 2619 2620 Twine getUID(const VPBlockBase *Block); 2621 2622 /// Print the information related to a CFG edge between two VPBlockBases. 2623 void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, 2624 const Twine &Label); 2625 2626 public: 2627 VPlanPrinter(raw_ostream &O, const VPlan &P) 2628 : OS(O), Plan(P), SlotTracker(&P) {} 2629 2630 LLVM_DUMP_METHOD void dump(); 2631 }; 2632 2633 struct VPlanIngredient { 2634 const Value *V; 2635 2636 VPlanIngredient(const Value *V) : V(V) {} 2637 2638 void print(raw_ostream &O) const; 2639 }; 2640 2641 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) { 2642 I.print(OS); 2643 return OS; 2644 } 2645 2646 inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) { 2647 Plan.print(OS); 2648 return OS; 2649 } 2650 #endif 2651 2652 //===----------------------------------------------------------------------===// 2653 // VPlan Utilities 2654 //===----------------------------------------------------------------------===// 2655 2656 /// Class that provides utilities for VPBlockBases in VPlan. 2657 class VPBlockUtils { 2658 public: 2659 VPBlockUtils() = delete; 2660 2661 /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p 2662 /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p 2663 /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. \p BlockPtr's 2664 /// successors are moved from \p BlockPtr to \p NewBlock and \p BlockPtr's 2665 /// conditional bit is propagated to \p NewBlock. \p NewBlock must have 2666 /// neither successors nor predecessors. 2667 static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) { 2668 assert(NewBlock->getSuccessors().empty() && 2669 NewBlock->getPredecessors().empty() && 2670 "Can't insert new block with predecessors or successors."); 2671 NewBlock->setParent(BlockPtr->getParent()); 2672 SmallVector<VPBlockBase *> Succs(BlockPtr->successors()); 2673 for (VPBlockBase *Succ : Succs) { 2674 disconnectBlocks(BlockPtr, Succ); 2675 connectBlocks(NewBlock, Succ); 2676 } 2677 NewBlock->setCondBit(BlockPtr->getCondBit()); 2678 BlockPtr->setCondBit(nullptr); 2679 connectBlocks(BlockPtr, NewBlock); 2680 } 2681 2682 /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p 2683 /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p 2684 /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr 2685 /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor 2686 /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse 2687 /// must have neither successors nor predecessors. 2688 static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, 2689 VPValue *Condition, VPBlockBase *BlockPtr) { 2690 assert(IfTrue->getSuccessors().empty() && 2691 "Can't insert IfTrue with successors."); 2692 assert(IfFalse->getSuccessors().empty() && 2693 "Can't insert IfFalse with successors."); 2694 BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition); 2695 IfTrue->setPredecessors({BlockPtr}); 2696 IfFalse->setPredecessors({BlockPtr}); 2697 IfTrue->setParent(BlockPtr->getParent()); 2698 IfFalse->setParent(BlockPtr->getParent()); 2699 } 2700 2701 /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to 2702 /// the successors of \p From and \p From to the predecessors of \p To. Both 2703 /// VPBlockBases must have the same parent, which can be null. Both 2704 /// VPBlockBases can be already connected to other VPBlockBases. 2705 static void connectBlocks(VPBlockBase *From, VPBlockBase *To) { 2706 assert((From->getParent() == To->getParent()) && 2707 "Can't connect two block with different parents"); 2708 assert(From->getNumSuccessors() < 2 && 2709 "Blocks can't have more than two successors."); 2710 From->appendSuccessor(To); 2711 To->appendPredecessor(From); 2712 } 2713 2714 /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To 2715 /// from the successors of \p From and \p From from the predecessors of \p To. 2716 static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) { 2717 assert(To && "Successor to disconnect is null."); 2718 From->removeSuccessor(To); 2719 To->removePredecessor(From); 2720 } 2721 2722 /// Try to merge \p Block into its single predecessor, if \p Block is a 2723 /// VPBasicBlock and its predecessor has a single successor. Returns a pointer 2724 /// to the predecessor \p Block was merged into or nullptr otherwise. 2725 static VPBasicBlock *tryToMergeBlockIntoPredecessor(VPBlockBase *Block) { 2726 auto *VPBB = dyn_cast<VPBasicBlock>(Block); 2727 auto *PredVPBB = 2728 dyn_cast_or_null<VPBasicBlock>(Block->getSinglePredecessor()); 2729 if (!VPBB || !PredVPBB || PredVPBB->getNumSuccessors() != 1) 2730 return nullptr; 2731 2732 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) 2733 R.moveBefore(*PredVPBB, PredVPBB->end()); 2734 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); 2735 auto *ParentRegion = cast<VPRegionBlock>(Block->getParent()); 2736 if (ParentRegion->getExit() == Block) 2737 ParentRegion->setExit(PredVPBB); 2738 SmallVector<VPBlockBase *> Successors(Block->successors()); 2739 for (auto *Succ : Successors) { 2740 VPBlockUtils::disconnectBlocks(Block, Succ); 2741 VPBlockUtils::connectBlocks(PredVPBB, Succ); 2742 } 2743 delete Block; 2744 return PredVPBB; 2745 } 2746 2747 /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge. 2748 static bool isBackEdge(const VPBlockBase *FromBlock, 2749 const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) { 2750 assert(FromBlock->getParent() == ToBlock->getParent() && 2751 FromBlock->getParent() && "Must be in same region"); 2752 const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock); 2753 const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock); 2754 if (!FromLoop || !ToLoop || FromLoop != ToLoop) 2755 return false; 2756 2757 // A back-edge is a branch from the loop latch to its header. 2758 return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader(); 2759 } 2760 2761 /// Returns true if \p Block is a loop latch 2762 static bool blockIsLoopLatch(const VPBlockBase *Block, 2763 const VPLoopInfo *VPLInfo) { 2764 if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block)) 2765 return ParentVPL->isLoopLatch(Block); 2766 2767 return false; 2768 } 2769 2770 /// Count and return the number of succesors of \p PredBlock excluding any 2771 /// backedges. 2772 static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock, 2773 VPLoopInfo *VPLI) { 2774 unsigned Count = 0; 2775 for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) { 2776 if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI)) 2777 Count++; 2778 } 2779 return Count; 2780 } 2781 2782 /// Return an iterator range over \p Range which only includes \p BlockTy 2783 /// blocks. The accesses are casted to \p BlockTy. 2784 template <typename BlockTy, typename T> 2785 static auto blocksOnly(const T &Range) { 2786 // Create BaseTy with correct const-ness based on BlockTy. 2787 using BaseTy = 2788 typename std::conditional<std::is_const<BlockTy>::value, 2789 const VPBlockBase, VPBlockBase>::type; 2790 2791 // We need to first create an iterator range over (const) BlocktTy & instead 2792 // of (const) BlockTy * for filter_range to work properly. 2793 auto Mapped = 2794 map_range(Range, [](BaseTy *Block) -> BaseTy & { return *Block; }); 2795 auto Filter = make_filter_range( 2796 Mapped, [](BaseTy &Block) { return isa<BlockTy>(&Block); }); 2797 return map_range(Filter, [](BaseTy &Block) -> BlockTy * { 2798 return cast<BlockTy>(&Block); 2799 }); 2800 } 2801 }; 2802 2803 class VPInterleavedAccessInfo { 2804 DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *> 2805 InterleaveGroupMap; 2806 2807 /// Type for mapping of instruction based interleave groups to VPInstruction 2808 /// interleave groups 2809 using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *, 2810 InterleaveGroup<VPInstruction> *>; 2811 2812 /// Recursively \p Region and populate VPlan based interleave groups based on 2813 /// \p IAI. 2814 void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New, 2815 InterleavedAccessInfo &IAI); 2816 /// Recursively traverse \p Block and populate VPlan based interleave groups 2817 /// based on \p IAI. 2818 void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 2819 InterleavedAccessInfo &IAI); 2820 2821 public: 2822 VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI); 2823 2824 ~VPInterleavedAccessInfo() { 2825 SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet; 2826 // Avoid releasing a pointer twice. 2827 for (auto &I : InterleaveGroupMap) 2828 DelSet.insert(I.second); 2829 for (auto *Ptr : DelSet) 2830 delete Ptr; 2831 } 2832 2833 /// Get the interleave group that \p Instr belongs to. 2834 /// 2835 /// \returns nullptr if doesn't have such group. 2836 InterleaveGroup<VPInstruction> * 2837 getInterleaveGroup(VPInstruction *Instr) const { 2838 return InterleaveGroupMap.lookup(Instr); 2839 } 2840 }; 2841 2842 /// Class that maps (parts of) an existing VPlan to trees of combined 2843 /// VPInstructions. 2844 class VPlanSlp { 2845 enum class OpMode { Failed, Load, Opcode }; 2846 2847 /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as 2848 /// DenseMap keys. 2849 struct BundleDenseMapInfo { 2850 static SmallVector<VPValue *, 4> getEmptyKey() { 2851 return {reinterpret_cast<VPValue *>(-1)}; 2852 } 2853 2854 static SmallVector<VPValue *, 4> getTombstoneKey() { 2855 return {reinterpret_cast<VPValue *>(-2)}; 2856 } 2857 2858 static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) { 2859 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2860 } 2861 2862 static bool isEqual(const SmallVector<VPValue *, 4> &LHS, 2863 const SmallVector<VPValue *, 4> &RHS) { 2864 return LHS == RHS; 2865 } 2866 }; 2867 2868 /// Mapping of values in the original VPlan to a combined VPInstruction. 2869 DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo> 2870 BundleToCombined; 2871 2872 VPInterleavedAccessInfo &IAI; 2873 2874 /// Basic block to operate on. For now, only instructions in a single BB are 2875 /// considered. 2876 const VPBasicBlock &BB; 2877 2878 /// Indicates whether we managed to combine all visited instructions or not. 2879 bool CompletelySLP = true; 2880 2881 /// Width of the widest combined bundle in bits. 2882 unsigned WidestBundleBits = 0; 2883 2884 using MultiNodeOpTy = 2885 typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>; 2886 2887 // Input operand bundles for the current multi node. Each multi node operand 2888 // bundle contains values not matching the multi node's opcode. They will 2889 // be reordered in reorderMultiNodeOps, once we completed building a 2890 // multi node. 2891 SmallVector<MultiNodeOpTy, 4> MultiNodeOps; 2892 2893 /// Indicates whether we are building a multi node currently. 2894 bool MultiNodeActive = false; 2895 2896 /// Check if we can vectorize Operands together. 2897 bool areVectorizable(ArrayRef<VPValue *> Operands) const; 2898 2899 /// Add combined instruction \p New for the bundle \p Operands. 2900 void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New); 2901 2902 /// Indicate we hit a bundle we failed to combine. Returns nullptr for now. 2903 VPInstruction *markFailed(); 2904 2905 /// Reorder operands in the multi node to maximize sequential memory access 2906 /// and commutative operations. 2907 SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps(); 2908 2909 /// Choose the best candidate to use for the lane after \p Last. The set of 2910 /// candidates to choose from are values with an opcode matching \p Last's 2911 /// or loads consecutive to \p Last. 2912 std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last, 2913 SmallPtrSetImpl<VPValue *> &Candidates, 2914 VPInterleavedAccessInfo &IAI); 2915 2916 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2917 /// Print bundle \p Values to dbgs(). 2918 void dumpBundle(ArrayRef<VPValue *> Values); 2919 #endif 2920 2921 public: 2922 VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {} 2923 2924 ~VPlanSlp() = default; 2925 2926 /// Tries to build an SLP tree rooted at \p Operands and returns a 2927 /// VPInstruction combining \p Operands, if they can be combined. 2928 VPInstruction *buildGraph(ArrayRef<VPValue *> Operands); 2929 2930 /// Return the width of the widest combined bundle in bits. 2931 unsigned getWidestBundleBits() const { return WidestBundleBits; } 2932 2933 /// Return true if all visited instruction can be combined. 2934 bool isCompletelySLP() const { return CompletelySLP; } 2935 }; 2936 2937 namespace vputils { 2938 2939 /// Returns true if only the first lane of \p Def is used. 2940 bool onlyFirstLaneUsed(VPValue *Def); 2941 2942 } // end namespace vputils 2943 2944 } // end namespace llvm 2945 2946 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 2947