1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file contains the declarations of the Vectorization Plan base classes: 11 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual 12 /// VPBlockBase, together implementing a Hierarchical CFG; 13 /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be 14 /// treated as proper graphs for generic algorithms; 15 /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained 16 /// within VPBasicBlocks; 17 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned 18 /// instruction; 19 /// 5. The VPlan class holding a candidate for vectorization; 20 /// 6. The VPlanPrinter class providing a way to print a plan in dot format; 21 /// These are documented in docs/VectorizationPlan.rst. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 26 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 27 28 #include "VPlanLoopInfo.h" 29 #include "VPlanValue.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/DepthFirstIterator.h" 32 #include "llvm/ADT/GraphTraits.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/SmallBitVector.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallSet.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/ADT/Twine.h" 39 #include "llvm/ADT/ilist.h" 40 #include "llvm/ADT/ilist_node.h" 41 #include "llvm/Analysis/VectorUtils.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/Support/InstructionCost.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstddef> 48 #include <map> 49 #include <string> 50 51 namespace llvm { 52 53 class BasicBlock; 54 class DominatorTree; 55 class InductionDescriptor; 56 class InnerLoopVectorizer; 57 class LoopInfo; 58 class raw_ostream; 59 class RecurrenceDescriptor; 60 class Value; 61 class VPBasicBlock; 62 class VPRegionBlock; 63 class VPlan; 64 class VPReplicateRecipe; 65 class VPlanSlp; 66 67 /// Returns a calculation for the total number of elements for a given \p VF. 68 /// For fixed width vectors this value is a constant, whereas for scalable 69 /// vectors it is an expression determined at runtime. 70 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF); 71 72 /// Return a value for Step multiplied by VF. 73 Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF, int64_t Step); 74 75 /// A range of powers-of-2 vectorization factors with fixed start and 76 /// adjustable end. The range includes start and excludes end, e.g.,: 77 /// [1, 9) = {1, 2, 4, 8} 78 struct VFRange { 79 // A power of 2. 80 const ElementCount Start; 81 82 // Need not be a power of 2. If End <= Start range is empty. 83 ElementCount End; 84 85 bool isEmpty() const { 86 return End.getKnownMinValue() <= Start.getKnownMinValue(); 87 } 88 89 VFRange(const ElementCount &Start, const ElementCount &End) 90 : Start(Start), End(End) { 91 assert(Start.isScalable() == End.isScalable() && 92 "Both Start and End should have the same scalable flag"); 93 assert(isPowerOf2_32(Start.getKnownMinValue()) && 94 "Expected Start to be a power of 2"); 95 } 96 }; 97 98 using VPlanPtr = std::unique_ptr<VPlan>; 99 100 /// In what follows, the term "input IR" refers to code that is fed into the 101 /// vectorizer whereas the term "output IR" refers to code that is generated by 102 /// the vectorizer. 103 104 /// VPLane provides a way to access lanes in both fixed width and scalable 105 /// vectors, where for the latter the lane index sometimes needs calculating 106 /// as a runtime expression. 107 class VPLane { 108 public: 109 /// Kind describes how to interpret Lane. 110 enum class Kind : uint8_t { 111 /// For First, Lane is the index into the first N elements of a 112 /// fixed-vector <N x <ElTy>> or a scalable vector <vscale x N x <ElTy>>. 113 First, 114 /// For ScalableLast, Lane is the offset from the start of the last 115 /// N-element subvector in a scalable vector <vscale x N x <ElTy>>. For 116 /// example, a Lane of 0 corresponds to lane `(vscale - 1) * N`, a Lane of 117 /// 1 corresponds to `((vscale - 1) * N) + 1`, etc. 118 ScalableLast 119 }; 120 121 private: 122 /// in [0..VF) 123 unsigned Lane; 124 125 /// Indicates how the Lane should be interpreted, as described above. 126 Kind LaneKind; 127 128 public: 129 VPLane(unsigned Lane, Kind LaneKind) : Lane(Lane), LaneKind(LaneKind) {} 130 131 static VPLane getFirstLane() { return VPLane(0, VPLane::Kind::First); } 132 133 static VPLane getLastLaneForVF(const ElementCount &VF) { 134 unsigned LaneOffset = VF.getKnownMinValue() - 1; 135 Kind LaneKind; 136 if (VF.isScalable()) 137 // In this case 'LaneOffset' refers to the offset from the start of the 138 // last subvector with VF.getKnownMinValue() elements. 139 LaneKind = VPLane::Kind::ScalableLast; 140 else 141 LaneKind = VPLane::Kind::First; 142 return VPLane(LaneOffset, LaneKind); 143 } 144 145 /// Returns a compile-time known value for the lane index and asserts if the 146 /// lane can only be calculated at runtime. 147 unsigned getKnownLane() const { 148 assert(LaneKind == Kind::First); 149 return Lane; 150 } 151 152 /// Returns an expression describing the lane index that can be used at 153 /// runtime. 154 Value *getAsRuntimeExpr(IRBuilder<> &Builder, const ElementCount &VF) const; 155 156 /// Returns the Kind of lane offset. 157 Kind getKind() const { return LaneKind; } 158 159 /// Returns true if this is the first lane of the whole vector. 160 bool isFirstLane() const { return Lane == 0 && LaneKind == Kind::First; } 161 162 /// Maps the lane to a cache index based on \p VF. 163 unsigned mapToCacheIndex(const ElementCount &VF) const { 164 switch (LaneKind) { 165 case VPLane::Kind::ScalableLast: 166 assert(VF.isScalable() && Lane < VF.getKnownMinValue()); 167 return VF.getKnownMinValue() + Lane; 168 default: 169 assert(Lane < VF.getKnownMinValue()); 170 return Lane; 171 } 172 } 173 174 /// Returns the maxmimum number of lanes that we are able to consider 175 /// caching for \p VF. 176 static unsigned getNumCachedLanes(const ElementCount &VF) { 177 return VF.getKnownMinValue() * (VF.isScalable() ? 2 : 1); 178 } 179 }; 180 181 /// VPIteration represents a single point in the iteration space of the output 182 /// (vectorized and/or unrolled) IR loop. 183 struct VPIteration { 184 /// in [0..UF) 185 unsigned Part; 186 187 VPLane Lane; 188 189 VPIteration(unsigned Part, unsigned Lane, 190 VPLane::Kind Kind = VPLane::Kind::First) 191 : Part(Part), Lane(Lane, Kind) {} 192 193 VPIteration(unsigned Part, const VPLane &Lane) : Part(Part), Lane(Lane) {} 194 195 bool isFirstIteration() const { return Part == 0 && Lane.isFirstLane(); } 196 }; 197 198 /// VPTransformState holds information passed down when "executing" a VPlan, 199 /// needed for generating the output IR. 200 struct VPTransformState { 201 VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, 202 DominatorTree *DT, IRBuilder<> &Builder, 203 InnerLoopVectorizer *ILV, VPlan *Plan) 204 : VF(VF), UF(UF), LI(LI), DT(DT), Builder(Builder), ILV(ILV), Plan(Plan) { 205 } 206 207 /// The chosen Vectorization and Unroll Factors of the loop being vectorized. 208 ElementCount VF; 209 unsigned UF; 210 211 /// Hold the indices to generate specific scalar instructions. Null indicates 212 /// that all instances are to be generated, using either scalar or vector 213 /// instructions. 214 Optional<VPIteration> Instance; 215 216 struct DataState { 217 /// A type for vectorized values in the new loop. Each value from the 218 /// original loop, when vectorized, is represented by UF vector values in 219 /// the new unrolled loop, where UF is the unroll factor. 220 typedef SmallVector<Value *, 2> PerPartValuesTy; 221 222 DenseMap<VPValue *, PerPartValuesTy> PerPartOutput; 223 224 using ScalarsPerPartValuesTy = SmallVector<SmallVector<Value *, 4>, 2>; 225 DenseMap<VPValue *, ScalarsPerPartValuesTy> PerPartScalars; 226 } Data; 227 228 /// Get the generated Value for a given VPValue and a given Part. Note that 229 /// as some Defs are still created by ILV and managed in its ValueMap, this 230 /// method will delegate the call to ILV in such cases in order to provide 231 /// callers a consistent API. 232 /// \see set. 233 Value *get(VPValue *Def, unsigned Part); 234 235 /// Get the generated Value for a given VPValue and given Part and Lane. 236 Value *get(VPValue *Def, const VPIteration &Instance); 237 238 bool hasVectorValue(VPValue *Def, unsigned Part) { 239 auto I = Data.PerPartOutput.find(Def); 240 return I != Data.PerPartOutput.end() && Part < I->second.size() && 241 I->second[Part]; 242 } 243 244 bool hasAnyVectorValue(VPValue *Def) const { 245 return Data.PerPartOutput.find(Def) != Data.PerPartOutput.end(); 246 } 247 248 bool hasScalarValue(VPValue *Def, VPIteration Instance) { 249 auto I = Data.PerPartScalars.find(Def); 250 if (I == Data.PerPartScalars.end()) 251 return false; 252 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 253 return Instance.Part < I->second.size() && 254 CacheIdx < I->second[Instance.Part].size() && 255 I->second[Instance.Part][CacheIdx]; 256 } 257 258 /// Set the generated Value for a given VPValue and a given Part. 259 void set(VPValue *Def, Value *V, unsigned Part) { 260 if (!Data.PerPartOutput.count(Def)) { 261 DataState::PerPartValuesTy Entry(UF); 262 Data.PerPartOutput[Def] = Entry; 263 } 264 Data.PerPartOutput[Def][Part] = V; 265 } 266 /// Reset an existing vector value for \p Def and a given \p Part. 267 void reset(VPValue *Def, Value *V, unsigned Part) { 268 auto Iter = Data.PerPartOutput.find(Def); 269 assert(Iter != Data.PerPartOutput.end() && 270 "need to overwrite existing value"); 271 Iter->second[Part] = V; 272 } 273 274 /// Set the generated scalar \p V for \p Def and the given \p Instance. 275 void set(VPValue *Def, Value *V, const VPIteration &Instance) { 276 auto Iter = Data.PerPartScalars.insert({Def, {}}); 277 auto &PerPartVec = Iter.first->second; 278 while (PerPartVec.size() <= Instance.Part) 279 PerPartVec.emplace_back(); 280 auto &Scalars = PerPartVec[Instance.Part]; 281 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 282 while (Scalars.size() <= CacheIdx) 283 Scalars.push_back(nullptr); 284 assert(!Scalars[CacheIdx] && "should overwrite existing value"); 285 Scalars[CacheIdx] = V; 286 } 287 288 /// Reset an existing scalar value for \p Def and a given \p Instance. 289 void reset(VPValue *Def, Value *V, const VPIteration &Instance) { 290 auto Iter = Data.PerPartScalars.find(Def); 291 assert(Iter != Data.PerPartScalars.end() && 292 "need to overwrite existing value"); 293 assert(Instance.Part < Iter->second.size() && 294 "need to overwrite existing value"); 295 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 296 assert(CacheIdx < Iter->second[Instance.Part].size() && 297 "need to overwrite existing value"); 298 Iter->second[Instance.Part][CacheIdx] = V; 299 } 300 301 /// Hold state information used when constructing the CFG of the output IR, 302 /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. 303 struct CFGState { 304 /// The previous VPBasicBlock visited. Initially set to null. 305 VPBasicBlock *PrevVPBB = nullptr; 306 307 /// The previous IR BasicBlock created or used. Initially set to the new 308 /// header BasicBlock. 309 BasicBlock *PrevBB = nullptr; 310 311 /// The last IR BasicBlock in the output IR. Set to the new latch 312 /// BasicBlock, used for placing the newly created BasicBlocks. 313 BasicBlock *LastBB = nullptr; 314 315 /// The IR BasicBlock that is the preheader of the vector loop in the output 316 /// IR. 317 /// FIXME: The vector preheader should also be modeled in VPlan, so any code 318 /// that needs to be added to the preheader gets directly generated by 319 /// VPlan. There should be no need to manage a pointer to the IR BasicBlock. 320 BasicBlock *VectorPreHeader = nullptr; 321 322 /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case 323 /// of replication, maps the BasicBlock of the last replica created. 324 SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB; 325 326 /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed 327 /// up at the end of vector code generation. 328 SmallVector<VPBasicBlock *, 8> VPBBsToFix; 329 330 CFGState() = default; 331 } CFG; 332 333 /// Hold a pointer to LoopInfo to register new basic blocks in the loop. 334 LoopInfo *LI; 335 336 /// Hold a pointer to Dominator Tree to register new basic blocks in the loop. 337 DominatorTree *DT; 338 339 /// Hold a reference to the IRBuilder used to generate output IR code. 340 IRBuilder<> &Builder; 341 342 VPValue2ValueTy VPValue2Value; 343 344 /// Hold the canonical scalar IV of the vector loop (start=0, step=VF*UF). 345 Value *CanonicalIV = nullptr; 346 347 /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods. 348 InnerLoopVectorizer *ILV; 349 350 /// Pointer to the VPlan code is generated for. 351 VPlan *Plan; 352 353 /// Holds recipes that may generate a poison value that is used after 354 /// vectorization, even when their operands are not poison. 355 SmallPtrSet<VPRecipeBase *, 16> MayGeneratePoisonRecipes; 356 }; 357 358 /// VPUsers instance used by VPBlockBase to manage CondBit and the block 359 /// predicate. Currently VPBlockUsers are used in VPBlockBase for historical 360 /// reasons, but in the future the only VPUsers should either be recipes or 361 /// live-outs.VPBlockBase uses. 362 struct VPBlockUser : public VPUser { 363 VPBlockUser() : VPUser({}, VPUserID::Block) {} 364 365 VPValue *getSingleOperandOrNull() { 366 if (getNumOperands() == 1) 367 return getOperand(0); 368 369 return nullptr; 370 } 371 const VPValue *getSingleOperandOrNull() const { 372 if (getNumOperands() == 1) 373 return getOperand(0); 374 375 return nullptr; 376 } 377 378 void resetSingleOpUser(VPValue *NewVal) { 379 assert(getNumOperands() <= 1 && "Didn't expect more than one operand!"); 380 if (!NewVal) { 381 if (getNumOperands() == 1) 382 removeLastOperand(); 383 return; 384 } 385 386 if (getNumOperands() == 1) 387 setOperand(0, NewVal); 388 else 389 addOperand(NewVal); 390 } 391 }; 392 393 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. 394 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. 395 class VPBlockBase { 396 friend class VPBlockUtils; 397 398 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). 399 400 /// An optional name for the block. 401 std::string Name; 402 403 /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if 404 /// it is a topmost VPBlockBase. 405 VPRegionBlock *Parent = nullptr; 406 407 /// List of predecessor blocks. 408 SmallVector<VPBlockBase *, 1> Predecessors; 409 410 /// List of successor blocks. 411 SmallVector<VPBlockBase *, 1> Successors; 412 413 /// Successor selector managed by a VPUser. For blocks with zero or one 414 /// successors, there is no operand. Otherwise there is exactly one operand 415 /// which is the branch condition. 416 VPBlockUser CondBitUser; 417 418 /// If the block is predicated, its predicate is stored as an operand of this 419 /// VPUser to maintain the def-use relations. Otherwise there is no operand 420 /// here. 421 VPBlockUser PredicateUser; 422 423 /// VPlan containing the block. Can only be set on the entry block of the 424 /// plan. 425 VPlan *Plan = nullptr; 426 427 /// Add \p Successor as the last successor to this block. 428 void appendSuccessor(VPBlockBase *Successor) { 429 assert(Successor && "Cannot add nullptr successor!"); 430 Successors.push_back(Successor); 431 } 432 433 /// Add \p Predecessor as the last predecessor to this block. 434 void appendPredecessor(VPBlockBase *Predecessor) { 435 assert(Predecessor && "Cannot add nullptr predecessor!"); 436 Predecessors.push_back(Predecessor); 437 } 438 439 /// Remove \p Predecessor from the predecessors of this block. 440 void removePredecessor(VPBlockBase *Predecessor) { 441 auto Pos = find(Predecessors, Predecessor); 442 assert(Pos && "Predecessor does not exist"); 443 Predecessors.erase(Pos); 444 } 445 446 /// Remove \p Successor from the successors of this block. 447 void removeSuccessor(VPBlockBase *Successor) { 448 auto Pos = find(Successors, Successor); 449 assert(Pos && "Successor does not exist"); 450 Successors.erase(Pos); 451 } 452 453 protected: 454 VPBlockBase(const unsigned char SC, const std::string &N) 455 : SubclassID(SC), Name(N) {} 456 457 public: 458 /// An enumeration for keeping track of the concrete subclass of VPBlockBase 459 /// that are actually instantiated. Values of this enumeration are kept in the 460 /// SubclassID field of the VPBlockBase objects. They are used for concrete 461 /// type identification. 462 using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC }; 463 464 using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; 465 466 virtual ~VPBlockBase() = default; 467 468 const std::string &getName() const { return Name; } 469 470 void setName(const Twine &newName) { Name = newName.str(); } 471 472 /// \return an ID for the concrete type of this object. 473 /// This is used to implement the classof checks. This should not be used 474 /// for any other purpose, as the values may change as LLVM evolves. 475 unsigned getVPBlockID() const { return SubclassID; } 476 477 VPRegionBlock *getParent() { return Parent; } 478 const VPRegionBlock *getParent() const { return Parent; } 479 480 /// \return A pointer to the plan containing the current block. 481 VPlan *getPlan(); 482 const VPlan *getPlan() const; 483 484 /// Sets the pointer of the plan containing the block. The block must be the 485 /// entry block into the VPlan. 486 void setPlan(VPlan *ParentPlan); 487 488 void setParent(VPRegionBlock *P) { Parent = P; } 489 490 /// \return the VPBasicBlock that is the entry of this VPBlockBase, 491 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 492 /// VPBlockBase is a VPBasicBlock, it is returned. 493 const VPBasicBlock *getEntryBasicBlock() const; 494 VPBasicBlock *getEntryBasicBlock(); 495 496 /// \return the VPBasicBlock that is the exit of this VPBlockBase, 497 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 498 /// VPBlockBase is a VPBasicBlock, it is returned. 499 const VPBasicBlock *getExitBasicBlock() const; 500 VPBasicBlock *getExitBasicBlock(); 501 502 const VPBlocksTy &getSuccessors() const { return Successors; } 503 VPBlocksTy &getSuccessors() { return Successors; } 504 505 iterator_range<VPBlockBase **> successors() { return Successors; } 506 507 const VPBlocksTy &getPredecessors() const { return Predecessors; } 508 VPBlocksTy &getPredecessors() { return Predecessors; } 509 510 /// \return the successor of this VPBlockBase if it has a single successor. 511 /// Otherwise return a null pointer. 512 VPBlockBase *getSingleSuccessor() const { 513 return (Successors.size() == 1 ? *Successors.begin() : nullptr); 514 } 515 516 /// \return the predecessor of this VPBlockBase if it has a single 517 /// predecessor. Otherwise return a null pointer. 518 VPBlockBase *getSinglePredecessor() const { 519 return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); 520 } 521 522 size_t getNumSuccessors() const { return Successors.size(); } 523 size_t getNumPredecessors() const { return Predecessors.size(); } 524 525 /// An Enclosing Block of a block B is any block containing B, including B 526 /// itself. \return the closest enclosing block starting from "this", which 527 /// has successors. \return the root enclosing block if all enclosing blocks 528 /// have no successors. 529 VPBlockBase *getEnclosingBlockWithSuccessors(); 530 531 /// \return the closest enclosing block starting from "this", which has 532 /// predecessors. \return the root enclosing block if all enclosing blocks 533 /// have no predecessors. 534 VPBlockBase *getEnclosingBlockWithPredecessors(); 535 536 /// \return the successors either attached directly to this VPBlockBase or, if 537 /// this VPBlockBase is the exit block of a VPRegionBlock and has no 538 /// successors of its own, search recursively for the first enclosing 539 /// VPRegionBlock that has successors and return them. If no such 540 /// VPRegionBlock exists, return the (empty) successors of the topmost 541 /// VPBlockBase reached. 542 const VPBlocksTy &getHierarchicalSuccessors() { 543 return getEnclosingBlockWithSuccessors()->getSuccessors(); 544 } 545 546 /// \return the hierarchical successor of this VPBlockBase if it has a single 547 /// hierarchical successor. Otherwise return a null pointer. 548 VPBlockBase *getSingleHierarchicalSuccessor() { 549 return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); 550 } 551 552 /// \return the predecessors either attached directly to this VPBlockBase or, 553 /// if this VPBlockBase is the entry block of a VPRegionBlock and has no 554 /// predecessors of its own, search recursively for the first enclosing 555 /// VPRegionBlock that has predecessors and return them. If no such 556 /// VPRegionBlock exists, return the (empty) predecessors of the topmost 557 /// VPBlockBase reached. 558 const VPBlocksTy &getHierarchicalPredecessors() { 559 return getEnclosingBlockWithPredecessors()->getPredecessors(); 560 } 561 562 /// \return the hierarchical predecessor of this VPBlockBase if it has a 563 /// single hierarchical predecessor. Otherwise return a null pointer. 564 VPBlockBase *getSingleHierarchicalPredecessor() { 565 return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); 566 } 567 568 /// \return the condition bit selecting the successor. 569 VPValue *getCondBit(); 570 /// \return the condition bit selecting the successor. 571 const VPValue *getCondBit() const; 572 /// Set the condition bit selecting the successor. 573 void setCondBit(VPValue *CV); 574 575 /// \return the block's predicate. 576 VPValue *getPredicate(); 577 /// \return the block's predicate. 578 const VPValue *getPredicate() const; 579 /// Set the block's predicate. 580 void setPredicate(VPValue *Pred); 581 582 /// Set a given VPBlockBase \p Successor as the single successor of this 583 /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. 584 /// This VPBlockBase must have no successors. 585 void setOneSuccessor(VPBlockBase *Successor) { 586 assert(Successors.empty() && "Setting one successor when others exist."); 587 appendSuccessor(Successor); 588 } 589 590 /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two 591 /// successors of this VPBlockBase. \p Condition is set as the successor 592 /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p 593 /// IfFalse. This VPBlockBase must have no successors. 594 void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse, 595 VPValue *Condition) { 596 assert(Successors.empty() && "Setting two successors when others exist."); 597 assert(Condition && "Setting two successors without condition!"); 598 setCondBit(Condition); 599 appendSuccessor(IfTrue); 600 appendSuccessor(IfFalse); 601 } 602 603 /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. 604 /// This VPBlockBase must have no predecessors. This VPBlockBase is not added 605 /// as successor of any VPBasicBlock in \p NewPreds. 606 void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) { 607 assert(Predecessors.empty() && "Block predecessors already set."); 608 for (auto *Pred : NewPreds) 609 appendPredecessor(Pred); 610 } 611 612 /// Remove all the predecessor of this block. 613 void clearPredecessors() { Predecessors.clear(); } 614 615 /// Remove all the successors of this block and set to null its condition bit 616 void clearSuccessors() { 617 Successors.clear(); 618 setCondBit(nullptr); 619 } 620 621 /// The method which generates the output IR that correspond to this 622 /// VPBlockBase, thereby "executing" the VPlan. 623 virtual void execute(struct VPTransformState *State) = 0; 624 625 /// Delete all blocks reachable from a given VPBlockBase, inclusive. 626 static void deleteCFG(VPBlockBase *Entry); 627 628 /// Return true if it is legal to hoist instructions into this block. 629 bool isLegalToHoistInto() { 630 // There are currently no constraints that prevent an instruction to be 631 // hoisted into a VPBlockBase. 632 return true; 633 } 634 635 /// Replace all operands of VPUsers in the block with \p NewValue and also 636 /// replaces all uses of VPValues defined in the block with NewValue. 637 virtual void dropAllReferences(VPValue *NewValue) = 0; 638 639 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 640 void printAsOperand(raw_ostream &OS, bool PrintType) const { 641 OS << getName(); 642 } 643 644 /// Print plain-text dump of this VPBlockBase to \p O, prefixing all lines 645 /// with \p Indent. \p SlotTracker is used to print unnamed VPValue's using 646 /// consequtive numbers. 647 /// 648 /// Note that the numbering is applied to the whole VPlan, so printing 649 /// individual blocks is consistent with the whole VPlan printing. 650 virtual void print(raw_ostream &O, const Twine &Indent, 651 VPSlotTracker &SlotTracker) const = 0; 652 653 /// Print plain-text dump of this VPlan to \p O. 654 void print(raw_ostream &O) const { 655 VPSlotTracker SlotTracker(getPlan()); 656 print(O, "", SlotTracker); 657 } 658 659 /// Print the successors of this block to \p O, prefixing all lines with \p 660 /// Indent. 661 void printSuccessors(raw_ostream &O, const Twine &Indent) const; 662 663 /// Dump this VPBlockBase to dbgs(). 664 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 665 #endif 666 }; 667 668 /// VPRecipeBase is a base class modeling a sequence of one or more output IR 669 /// instructions. VPRecipeBase owns the the VPValues it defines through VPDef 670 /// and is responsible for deleting its defined values. Single-value 671 /// VPRecipeBases that also inherit from VPValue must make sure to inherit from 672 /// VPRecipeBase before VPValue. 673 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>, 674 public VPDef, 675 public VPUser { 676 friend VPBasicBlock; 677 friend class VPBlockUtils; 678 679 /// Each VPRecipe belongs to a single VPBasicBlock. 680 VPBasicBlock *Parent = nullptr; 681 682 public: 683 VPRecipeBase(const unsigned char SC, ArrayRef<VPValue *> Operands) 684 : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe) {} 685 686 template <typename IterT> 687 VPRecipeBase(const unsigned char SC, iterator_range<IterT> Operands) 688 : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe) {} 689 virtual ~VPRecipeBase() = default; 690 691 /// \return the VPBasicBlock which this VPRecipe belongs to. 692 VPBasicBlock *getParent() { return Parent; } 693 const VPBasicBlock *getParent() const { return Parent; } 694 695 /// The method which generates the output IR instructions that correspond to 696 /// this VPRecipe, thereby "executing" the VPlan. 697 virtual void execute(struct VPTransformState &State) = 0; 698 699 /// Insert an unlinked recipe into a basic block immediately before 700 /// the specified recipe. 701 void insertBefore(VPRecipeBase *InsertPos); 702 703 /// Insert an unlinked Recipe into a basic block immediately after 704 /// the specified Recipe. 705 void insertAfter(VPRecipeBase *InsertPos); 706 707 /// Unlink this recipe from its current VPBasicBlock and insert it into 708 /// the VPBasicBlock that MovePos lives in, right after MovePos. 709 void moveAfter(VPRecipeBase *MovePos); 710 711 /// Unlink this recipe and insert into BB before I. 712 /// 713 /// \pre I is a valid iterator into BB. 714 void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I); 715 716 /// This method unlinks 'this' from the containing basic block, but does not 717 /// delete it. 718 void removeFromParent(); 719 720 /// This method unlinks 'this' from the containing basic block and deletes it. 721 /// 722 /// \returns an iterator pointing to the element after the erased one 723 iplist<VPRecipeBase>::iterator eraseFromParent(); 724 725 /// Returns the underlying instruction, if the recipe is a VPValue or nullptr 726 /// otherwise. 727 Instruction *getUnderlyingInstr() { 728 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()); 729 } 730 const Instruction *getUnderlyingInstr() const { 731 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()); 732 } 733 734 /// Method to support type inquiry through isa, cast, and dyn_cast. 735 static inline bool classof(const VPDef *D) { 736 // All VPDefs are also VPRecipeBases. 737 return true; 738 } 739 740 static inline bool classof(const VPUser *U) { 741 return U->getVPUserID() == VPUser::VPUserID::Recipe; 742 } 743 744 /// Returns true if the recipe may have side-effects. 745 bool mayHaveSideEffects() const; 746 747 /// Returns true for PHI-like recipes. 748 bool isPhi() const { 749 return getVPDefID() >= VPFirstPHISC && getVPDefID() <= VPLastPHISC; 750 } 751 752 /// Returns true if the recipe may read from memory. 753 bool mayReadFromMemory() const; 754 755 /// Returns true if the recipe may write to memory. 756 bool mayWriteToMemory() const; 757 758 /// Returns true if the recipe may read from or write to memory. 759 bool mayReadOrWriteMemory() const { 760 return mayReadFromMemory() || mayWriteToMemory(); 761 } 762 }; 763 764 inline bool VPUser::classof(const VPDef *Def) { 765 return Def->getVPDefID() == VPRecipeBase::VPInstructionSC || 766 Def->getVPDefID() == VPRecipeBase::VPWidenSC || 767 Def->getVPDefID() == VPRecipeBase::VPWidenCallSC || 768 Def->getVPDefID() == VPRecipeBase::VPWidenSelectSC || 769 Def->getVPDefID() == VPRecipeBase::VPWidenGEPSC || 770 Def->getVPDefID() == VPRecipeBase::VPBlendSC || 771 Def->getVPDefID() == VPRecipeBase::VPInterleaveSC || 772 Def->getVPDefID() == VPRecipeBase::VPReplicateSC || 773 Def->getVPDefID() == VPRecipeBase::VPReductionSC || 774 Def->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC || 775 Def->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC; 776 } 777 778 /// This is a concrete Recipe that models a single VPlan-level instruction. 779 /// While as any Recipe it may generate a sequence of IR instructions when 780 /// executed, these instructions would always form a single-def expression as 781 /// the VPInstruction is also a single def-use vertex. 782 class VPInstruction : public VPRecipeBase, public VPValue { 783 friend class VPlanSlp; 784 785 public: 786 /// VPlan opcodes, extending LLVM IR with idiomatics instructions. 787 enum { 788 FirstOrderRecurrenceSplice = 789 Instruction::OtherOpsEnd + 1, // Combines the incoming and previous 790 // values of a first-order recurrence. 791 Not, 792 ICmpULE, 793 SLPLoad, 794 SLPStore, 795 ActiveLaneMask, 796 CanonicalIVIncrement, 797 CanonicalIVIncrementNUW, 798 BranchOnCount, 799 }; 800 801 private: 802 typedef unsigned char OpcodeTy; 803 OpcodeTy Opcode; 804 FastMathFlags FMF; 805 DebugLoc DL; 806 807 /// Utility method serving execute(): generates a single instance of the 808 /// modeled instruction. 809 void generateInstruction(VPTransformState &State, unsigned Part); 810 811 protected: 812 void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); } 813 814 public: 815 VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands, DebugLoc DL) 816 : VPRecipeBase(VPRecipeBase::VPInstructionSC, Operands), 817 VPValue(VPValue::VPVInstructionSC, nullptr, this), Opcode(Opcode), 818 DL(DL) {} 819 820 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands, 821 DebugLoc DL = {}) 822 : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL) {} 823 824 /// Method to support type inquiry through isa, cast, and dyn_cast. 825 static inline bool classof(const VPValue *V) { 826 return V->getVPValueID() == VPValue::VPVInstructionSC; 827 } 828 829 VPInstruction *clone() const { 830 SmallVector<VPValue *, 2> Operands(operands()); 831 return new VPInstruction(Opcode, Operands, DL); 832 } 833 834 /// Method to support type inquiry through isa, cast, and dyn_cast. 835 static inline bool classof(const VPDef *R) { 836 return R->getVPDefID() == VPRecipeBase::VPInstructionSC; 837 } 838 839 unsigned getOpcode() const { return Opcode; } 840 841 /// Generate the instruction. 842 /// TODO: We currently execute only per-part unless a specific instance is 843 /// provided. 844 void execute(VPTransformState &State) override; 845 846 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 847 /// Print the VPInstruction to \p O. 848 void print(raw_ostream &O, const Twine &Indent, 849 VPSlotTracker &SlotTracker) const override; 850 851 /// Print the VPInstruction to dbgs() (for debugging). 852 LLVM_DUMP_METHOD void dump() const; 853 #endif 854 855 /// Return true if this instruction may modify memory. 856 bool mayWriteToMemory() const { 857 // TODO: we can use attributes of the called function to rule out memory 858 // modifications. 859 return Opcode == Instruction::Store || Opcode == Instruction::Call || 860 Opcode == Instruction::Invoke || Opcode == SLPStore; 861 } 862 863 bool hasResult() const { 864 // CallInst may or may not have a result, depending on the called function. 865 // Conservatively return calls have results for now. 866 switch (getOpcode()) { 867 case Instruction::Ret: 868 case Instruction::Br: 869 case Instruction::Store: 870 case Instruction::Switch: 871 case Instruction::IndirectBr: 872 case Instruction::Resume: 873 case Instruction::CatchRet: 874 case Instruction::Unreachable: 875 case Instruction::Fence: 876 case Instruction::AtomicRMW: 877 case VPInstruction::BranchOnCount: 878 return false; 879 default: 880 return true; 881 } 882 } 883 884 /// Set the fast-math flags. 885 void setFastMathFlags(FastMathFlags FMFNew); 886 }; 887 888 /// VPWidenRecipe is a recipe for producing a copy of vector type its 889 /// ingredient. This recipe covers most of the traditional vectorization cases 890 /// where each ingredient transforms into a vectorized version of itself. 891 class VPWidenRecipe : public VPRecipeBase, public VPValue { 892 public: 893 template <typename IterT> 894 VPWidenRecipe(Instruction &I, iterator_range<IterT> Operands) 895 : VPRecipeBase(VPRecipeBase::VPWidenSC, Operands), 896 VPValue(VPValue::VPVWidenSC, &I, this) {} 897 898 ~VPWidenRecipe() override = default; 899 900 /// Method to support type inquiry through isa, cast, and dyn_cast. 901 static inline bool classof(const VPDef *D) { 902 return D->getVPDefID() == VPRecipeBase::VPWidenSC; 903 } 904 static inline bool classof(const VPValue *V) { 905 return V->getVPValueID() == VPValue::VPVWidenSC; 906 } 907 908 /// Produce widened copies of all Ingredients. 909 void execute(VPTransformState &State) override; 910 911 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 912 /// Print the recipe. 913 void print(raw_ostream &O, const Twine &Indent, 914 VPSlotTracker &SlotTracker) const override; 915 #endif 916 }; 917 918 /// A recipe for widening Call instructions. 919 class VPWidenCallRecipe : public VPRecipeBase, public VPValue { 920 921 public: 922 template <typename IterT> 923 VPWidenCallRecipe(CallInst &I, iterator_range<IterT> CallArguments) 924 : VPRecipeBase(VPRecipeBase::VPWidenCallSC, CallArguments), 925 VPValue(VPValue::VPVWidenCallSC, &I, this) {} 926 927 ~VPWidenCallRecipe() override = default; 928 929 /// Method to support type inquiry through isa, cast, and dyn_cast. 930 static inline bool classof(const VPDef *D) { 931 return D->getVPDefID() == VPRecipeBase::VPWidenCallSC; 932 } 933 934 /// Produce a widened version of the call instruction. 935 void execute(VPTransformState &State) override; 936 937 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 938 /// Print the recipe. 939 void print(raw_ostream &O, const Twine &Indent, 940 VPSlotTracker &SlotTracker) const override; 941 #endif 942 }; 943 944 /// A recipe for widening select instructions. 945 class VPWidenSelectRecipe : public VPRecipeBase, public VPValue { 946 947 /// Is the condition of the select loop invariant? 948 bool InvariantCond; 949 950 public: 951 template <typename IterT> 952 VPWidenSelectRecipe(SelectInst &I, iterator_range<IterT> Operands, 953 bool InvariantCond) 954 : VPRecipeBase(VPRecipeBase::VPWidenSelectSC, Operands), 955 VPValue(VPValue::VPVWidenSelectSC, &I, this), 956 InvariantCond(InvariantCond) {} 957 958 ~VPWidenSelectRecipe() override = default; 959 960 /// Method to support type inquiry through isa, cast, and dyn_cast. 961 static inline bool classof(const VPDef *D) { 962 return D->getVPDefID() == VPRecipeBase::VPWidenSelectSC; 963 } 964 965 /// Produce a widened version of the select instruction. 966 void execute(VPTransformState &State) override; 967 968 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 969 /// Print the recipe. 970 void print(raw_ostream &O, const Twine &Indent, 971 VPSlotTracker &SlotTracker) const override; 972 #endif 973 }; 974 975 /// A recipe for handling GEP instructions. 976 class VPWidenGEPRecipe : public VPRecipeBase, public VPValue { 977 bool IsPtrLoopInvariant; 978 SmallBitVector IsIndexLoopInvariant; 979 980 public: 981 template <typename IterT> 982 VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands) 983 : VPRecipeBase(VPRecipeBase::VPWidenGEPSC, Operands), 984 VPValue(VPWidenGEPSC, GEP, this), 985 IsIndexLoopInvariant(GEP->getNumIndices(), false) {} 986 987 template <typename IterT> 988 VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands, 989 Loop *OrigLoop) 990 : VPRecipeBase(VPRecipeBase::VPWidenGEPSC, Operands), 991 VPValue(VPValue::VPVWidenGEPSC, GEP, this), 992 IsIndexLoopInvariant(GEP->getNumIndices(), false) { 993 IsPtrLoopInvariant = OrigLoop->isLoopInvariant(GEP->getPointerOperand()); 994 for (auto Index : enumerate(GEP->indices())) 995 IsIndexLoopInvariant[Index.index()] = 996 OrigLoop->isLoopInvariant(Index.value().get()); 997 } 998 ~VPWidenGEPRecipe() override = default; 999 1000 /// Method to support type inquiry through isa, cast, and dyn_cast. 1001 static inline bool classof(const VPDef *D) { 1002 return D->getVPDefID() == VPRecipeBase::VPWidenGEPSC; 1003 } 1004 1005 /// Generate the gep nodes. 1006 void execute(VPTransformState &State) override; 1007 1008 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1009 /// Print the recipe. 1010 void print(raw_ostream &O, const Twine &Indent, 1011 VPSlotTracker &SlotTracker) const override; 1012 #endif 1013 }; 1014 1015 /// A recipe for handling phi nodes of integer and floating-point inductions, 1016 /// producing their vector and scalar values. 1017 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase, public VPValue { 1018 PHINode *IV; 1019 const InductionDescriptor &IndDesc; 1020 1021 public: 1022 VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, 1023 const InductionDescriptor &IndDesc) 1024 : VPRecipeBase(VPWidenIntOrFpInductionSC, {Start}), VPValue(IV, this), 1025 IV(IV), IndDesc(IndDesc) {} 1026 1027 VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, 1028 const InductionDescriptor &IndDesc, 1029 TruncInst *Trunc) 1030 : VPRecipeBase(VPWidenIntOrFpInductionSC, {Start}), VPValue(Trunc, this), 1031 IV(IV), IndDesc(IndDesc) {} 1032 1033 ~VPWidenIntOrFpInductionRecipe() override = default; 1034 1035 /// Method to support type inquiry through isa, cast, and dyn_cast. 1036 static inline bool classof(const VPDef *D) { 1037 return D->getVPDefID() == VPRecipeBase::VPWidenIntOrFpInductionSC; 1038 } 1039 1040 /// Generate the vectorized and scalarized versions of the phi node as 1041 /// needed by their users. 1042 void execute(VPTransformState &State) override; 1043 1044 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1045 /// Print the recipe. 1046 void print(raw_ostream &O, const Twine &Indent, 1047 VPSlotTracker &SlotTracker) const override; 1048 #endif 1049 1050 /// Returns the start value of the induction. 1051 VPValue *getStartValue() { return getOperand(0); } 1052 1053 /// Returns the first defined value as TruncInst, if it is one or nullptr 1054 /// otherwise. 1055 TruncInst *getTruncInst() { 1056 return dyn_cast_or_null<TruncInst>(getVPValue(0)->getUnderlyingValue()); 1057 } 1058 const TruncInst *getTruncInst() const { 1059 return dyn_cast_or_null<TruncInst>(getVPValue(0)->getUnderlyingValue()); 1060 } 1061 1062 /// Returns the induction descriptor for the recipe. 1063 const InductionDescriptor &getInductionDescriptor() const { return IndDesc; } 1064 }; 1065 1066 /// A pure virtual base class for all recipes modeling header phis, including 1067 /// phis for first order recurrences, pointer inductions and reductions. The 1068 /// start value is the first operand of the recipe and the incoming value from 1069 /// the backedge is the second operand. 1070 class VPHeaderPHIRecipe : public VPRecipeBase, public VPValue { 1071 protected: 1072 VPHeaderPHIRecipe(unsigned char VPVID, unsigned char VPDefID, PHINode *Phi, 1073 VPValue *Start = nullptr) 1074 : VPRecipeBase(VPDefID, {}), VPValue(VPVID, Phi, this) { 1075 if (Start) 1076 addOperand(Start); 1077 } 1078 1079 public: 1080 ~VPHeaderPHIRecipe() override = default; 1081 1082 /// Method to support type inquiry through isa, cast, and dyn_cast. 1083 static inline bool classof(const VPRecipeBase *B) { 1084 return B->getVPDefID() == VPRecipeBase::VPCanonicalIVPHISC || 1085 B->getVPDefID() == VPRecipeBase::VPFirstOrderRecurrencePHISC || 1086 B->getVPDefID() == VPRecipeBase::VPReductionPHISC || 1087 B->getVPDefID() == VPRecipeBase::VPWidenIntOrFpInductionSC || 1088 B->getVPDefID() == VPRecipeBase::VPWidenPHISC; 1089 } 1090 static inline bool classof(const VPValue *V) { 1091 return V->getVPValueID() == VPValue::VPVCanonicalIVPHISC || 1092 V->getVPValueID() == VPValue::VPVFirstOrderRecurrencePHISC || 1093 V->getVPValueID() == VPValue::VPVReductionPHISC || 1094 V->getVPValueID() == VPValue::VPVWidenIntOrFpInductionSC || 1095 V->getVPValueID() == VPValue::VPVWidenPHISC; 1096 } 1097 1098 /// Generate the phi nodes. 1099 void execute(VPTransformState &State) override = 0; 1100 1101 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1102 /// Print the recipe. 1103 void print(raw_ostream &O, const Twine &Indent, 1104 VPSlotTracker &SlotTracker) const override = 0; 1105 #endif 1106 1107 /// Returns the start value of the phi, if one is set. 1108 VPValue *getStartValue() { 1109 return getNumOperands() == 0 ? nullptr : getOperand(0); 1110 } 1111 1112 /// Returns the incoming value from the loop backedge. 1113 VPValue *getBackedgeValue() { 1114 return getOperand(1); 1115 } 1116 1117 /// Returns the backedge value as a recipe. The backedge value is guaranteed 1118 /// to be a recipe. 1119 VPRecipeBase *getBackedgeRecipe() { 1120 return cast<VPRecipeBase>(getBackedgeValue()->getDef()); 1121 } 1122 }; 1123 1124 /// A recipe for handling header phis that are widened in the vector loop. 1125 /// In the VPlan native path, all incoming VPValues & VPBasicBlock pairs are 1126 /// managed in the recipe directly. 1127 class VPWidenPHIRecipe : public VPHeaderPHIRecipe { 1128 /// List of incoming blocks. Only used in the VPlan native path. 1129 SmallVector<VPBasicBlock *, 2> IncomingBlocks; 1130 1131 public: 1132 /// Create a new VPWidenPHIRecipe for \p Phi with start value \p Start. 1133 VPWidenPHIRecipe(PHINode *Phi, VPValue *Start = nullptr) 1134 : VPHeaderPHIRecipe(VPVWidenPHISC, VPWidenPHISC, Phi) { 1135 if (Start) 1136 addOperand(Start); 1137 } 1138 1139 ~VPWidenPHIRecipe() override = default; 1140 1141 /// Method to support type inquiry through isa, cast, and dyn_cast. 1142 static inline bool classof(const VPRecipeBase *B) { 1143 return B->getVPDefID() == VPRecipeBase::VPWidenPHISC; 1144 } 1145 static inline bool classof(const VPHeaderPHIRecipe *R) { 1146 return R->getVPDefID() == VPRecipeBase::VPWidenPHISC; 1147 } 1148 static inline bool classof(const VPValue *V) { 1149 return V->getVPValueID() == VPValue::VPVWidenPHISC; 1150 } 1151 1152 /// Generate the phi/select nodes. 1153 void execute(VPTransformState &State) override; 1154 1155 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1156 /// Print the recipe. 1157 void print(raw_ostream &O, const Twine &Indent, 1158 VPSlotTracker &SlotTracker) const override; 1159 #endif 1160 1161 /// Adds a pair (\p IncomingV, \p IncomingBlock) to the phi. 1162 void addIncoming(VPValue *IncomingV, VPBasicBlock *IncomingBlock) { 1163 addOperand(IncomingV); 1164 IncomingBlocks.push_back(IncomingBlock); 1165 } 1166 1167 /// Returns the \p I th incoming VPBasicBlock. 1168 VPBasicBlock *getIncomingBlock(unsigned I) { return IncomingBlocks[I]; } 1169 1170 /// Returns the \p I th incoming VPValue. 1171 VPValue *getIncomingValue(unsigned I) { return getOperand(I); } 1172 }; 1173 1174 /// A recipe for handling first-order recurrence phis. The start value is the 1175 /// first operand of the recipe and the incoming value from the backedge is the 1176 /// second operand. 1177 struct VPFirstOrderRecurrencePHIRecipe : public VPHeaderPHIRecipe { 1178 VPFirstOrderRecurrencePHIRecipe(PHINode *Phi, VPValue &Start) 1179 : VPHeaderPHIRecipe(VPVFirstOrderRecurrencePHISC, 1180 VPFirstOrderRecurrencePHISC, Phi, &Start) {} 1181 1182 /// Method to support type inquiry through isa, cast, and dyn_cast. 1183 static inline bool classof(const VPRecipeBase *R) { 1184 return R->getVPDefID() == VPRecipeBase::VPFirstOrderRecurrencePHISC; 1185 } 1186 static inline bool classof(const VPHeaderPHIRecipe *R) { 1187 return R->getVPDefID() == VPRecipeBase::VPFirstOrderRecurrencePHISC; 1188 } 1189 static inline bool classof(const VPValue *V) { 1190 return V->getVPValueID() == VPValue::VPVFirstOrderRecurrencePHISC; 1191 } 1192 1193 void execute(VPTransformState &State) override; 1194 1195 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1196 /// Print the recipe. 1197 void print(raw_ostream &O, const Twine &Indent, 1198 VPSlotTracker &SlotTracker) const override; 1199 #endif 1200 }; 1201 1202 /// A recipe for handling reduction phis. The start value is the first operand 1203 /// of the recipe and the incoming value from the backedge is the second 1204 /// operand. 1205 class VPReductionPHIRecipe : public VPHeaderPHIRecipe { 1206 /// Descriptor for the reduction. 1207 const RecurrenceDescriptor &RdxDesc; 1208 1209 /// The phi is part of an in-loop reduction. 1210 bool IsInLoop; 1211 1212 /// The phi is part of an ordered reduction. Requires IsInLoop to be true. 1213 bool IsOrdered; 1214 1215 public: 1216 /// Create a new VPReductionPHIRecipe for the reduction \p Phi described by \p 1217 /// RdxDesc. 1218 VPReductionPHIRecipe(PHINode *Phi, const RecurrenceDescriptor &RdxDesc, 1219 VPValue &Start, bool IsInLoop = false, 1220 bool IsOrdered = false) 1221 : VPHeaderPHIRecipe(VPVReductionPHISC, VPReductionPHISC, Phi, &Start), 1222 RdxDesc(RdxDesc), IsInLoop(IsInLoop), IsOrdered(IsOrdered) { 1223 assert((!IsOrdered || IsInLoop) && "IsOrdered requires IsInLoop"); 1224 } 1225 1226 ~VPReductionPHIRecipe() override = default; 1227 1228 /// Method to support type inquiry through isa, cast, and dyn_cast. 1229 static inline bool classof(const VPRecipeBase *R) { 1230 return R->getVPDefID() == VPRecipeBase::VPReductionPHISC; 1231 } 1232 static inline bool classof(const VPHeaderPHIRecipe *R) { 1233 return R->getVPDefID() == VPRecipeBase::VPReductionPHISC; 1234 } 1235 static inline bool classof(const VPValue *V) { 1236 return V->getVPValueID() == VPValue::VPVReductionPHISC; 1237 } 1238 1239 /// Generate the phi/select nodes. 1240 void execute(VPTransformState &State) override; 1241 1242 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1243 /// Print the recipe. 1244 void print(raw_ostream &O, const Twine &Indent, 1245 VPSlotTracker &SlotTracker) const override; 1246 #endif 1247 1248 const RecurrenceDescriptor &getRecurrenceDescriptor() const { 1249 return RdxDesc; 1250 } 1251 1252 /// Returns true, if the phi is part of an ordered reduction. 1253 bool isOrdered() const { return IsOrdered; } 1254 1255 /// Returns true, if the phi is part of an in-loop reduction. 1256 bool isInLoop() const { return IsInLoop; } 1257 }; 1258 1259 /// A recipe for vectorizing a phi-node as a sequence of mask-based select 1260 /// instructions. 1261 class VPBlendRecipe : public VPRecipeBase, public VPValue { 1262 PHINode *Phi; 1263 1264 public: 1265 /// The blend operation is a User of the incoming values and of their 1266 /// respective masks, ordered [I0, M0, I1, M1, ...]. Note that a single value 1267 /// might be incoming with a full mask for which there is no VPValue. 1268 VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands) 1269 : VPRecipeBase(VPBlendSC, Operands), 1270 VPValue(VPValue::VPVBlendSC, Phi, this), Phi(Phi) { 1271 assert(Operands.size() > 0 && 1272 ((Operands.size() == 1) || (Operands.size() % 2 == 0)) && 1273 "Expected either a single incoming value or a positive even number " 1274 "of operands"); 1275 } 1276 1277 /// Method to support type inquiry through isa, cast, and dyn_cast. 1278 static inline bool classof(const VPDef *D) { 1279 return D->getVPDefID() == VPRecipeBase::VPBlendSC; 1280 } 1281 1282 /// Return the number of incoming values, taking into account that a single 1283 /// incoming value has no mask. 1284 unsigned getNumIncomingValues() const { return (getNumOperands() + 1) / 2; } 1285 1286 /// Return incoming value number \p Idx. 1287 VPValue *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); } 1288 1289 /// Return mask number \p Idx. 1290 VPValue *getMask(unsigned Idx) const { return getOperand(Idx * 2 + 1); } 1291 1292 /// Generate the phi/select nodes. 1293 void execute(VPTransformState &State) override; 1294 1295 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1296 /// Print the recipe. 1297 void print(raw_ostream &O, const Twine &Indent, 1298 VPSlotTracker &SlotTracker) const override; 1299 #endif 1300 }; 1301 1302 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load 1303 /// or stores into one wide load/store and shuffles. The first operand of a 1304 /// VPInterleave recipe is the address, followed by the stored values, followed 1305 /// by an optional mask. 1306 class VPInterleaveRecipe : public VPRecipeBase { 1307 const InterleaveGroup<Instruction> *IG; 1308 1309 bool HasMask = false; 1310 1311 public: 1312 VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr, 1313 ArrayRef<VPValue *> StoredValues, VPValue *Mask) 1314 : VPRecipeBase(VPInterleaveSC, {Addr}), IG(IG) { 1315 for (unsigned i = 0; i < IG->getFactor(); ++i) 1316 if (Instruction *I = IG->getMember(i)) { 1317 if (I->getType()->isVoidTy()) 1318 continue; 1319 new VPValue(I, this); 1320 } 1321 1322 for (auto *SV : StoredValues) 1323 addOperand(SV); 1324 if (Mask) { 1325 HasMask = true; 1326 addOperand(Mask); 1327 } 1328 } 1329 ~VPInterleaveRecipe() override = default; 1330 1331 /// Method to support type inquiry through isa, cast, and dyn_cast. 1332 static inline bool classof(const VPDef *D) { 1333 return D->getVPDefID() == VPRecipeBase::VPInterleaveSC; 1334 } 1335 1336 /// Return the address accessed by this recipe. 1337 VPValue *getAddr() const { 1338 return getOperand(0); // Address is the 1st, mandatory operand. 1339 } 1340 1341 /// Return the mask used by this recipe. Note that a full mask is represented 1342 /// by a nullptr. 1343 VPValue *getMask() const { 1344 // Mask is optional and therefore the last, currently 2nd operand. 1345 return HasMask ? getOperand(getNumOperands() - 1) : nullptr; 1346 } 1347 1348 /// Return the VPValues stored by this interleave group. If it is a load 1349 /// interleave group, return an empty ArrayRef. 1350 ArrayRef<VPValue *> getStoredValues() const { 1351 // The first operand is the address, followed by the stored values, followed 1352 // by an optional mask. 1353 return ArrayRef<VPValue *>(op_begin(), getNumOperands()) 1354 .slice(1, getNumStoreOperands()); 1355 } 1356 1357 /// Generate the wide load or store, and shuffles. 1358 void execute(VPTransformState &State) override; 1359 1360 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1361 /// Print the recipe. 1362 void print(raw_ostream &O, const Twine &Indent, 1363 VPSlotTracker &SlotTracker) const override; 1364 #endif 1365 1366 const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; } 1367 1368 /// Returns the number of stored operands of this interleave group. Returns 0 1369 /// for load interleave groups. 1370 unsigned getNumStoreOperands() const { 1371 return getNumOperands() - (HasMask ? 2 : 1); 1372 } 1373 }; 1374 1375 /// A recipe to represent inloop reduction operations, performing a reduction on 1376 /// a vector operand into a scalar value, and adding the result to a chain. 1377 /// The Operands are {ChainOp, VecOp, [Condition]}. 1378 class VPReductionRecipe : public VPRecipeBase, public VPValue { 1379 /// The recurrence decriptor for the reduction in question. 1380 const RecurrenceDescriptor *RdxDesc; 1381 /// Pointer to the TTI, needed to create the target reduction 1382 const TargetTransformInfo *TTI; 1383 1384 public: 1385 VPReductionRecipe(const RecurrenceDescriptor *R, Instruction *I, 1386 VPValue *ChainOp, VPValue *VecOp, VPValue *CondOp, 1387 const TargetTransformInfo *TTI) 1388 : VPRecipeBase(VPRecipeBase::VPReductionSC, {ChainOp, VecOp}), 1389 VPValue(VPValue::VPVReductionSC, I, this), RdxDesc(R), TTI(TTI) { 1390 if (CondOp) 1391 addOperand(CondOp); 1392 } 1393 1394 ~VPReductionRecipe() override = default; 1395 1396 /// Method to support type inquiry through isa, cast, and dyn_cast. 1397 static inline bool classof(const VPValue *V) { 1398 return V->getVPValueID() == VPValue::VPVReductionSC; 1399 } 1400 1401 /// Generate the reduction in the loop 1402 void execute(VPTransformState &State) override; 1403 1404 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1405 /// Print the recipe. 1406 void print(raw_ostream &O, const Twine &Indent, 1407 VPSlotTracker &SlotTracker) const override; 1408 #endif 1409 1410 /// The VPValue of the scalar Chain being accumulated. 1411 VPValue *getChainOp() const { return getOperand(0); } 1412 /// The VPValue of the vector value to be reduced. 1413 VPValue *getVecOp() const { return getOperand(1); } 1414 /// The VPValue of the condition for the block. 1415 VPValue *getCondOp() const { 1416 return getNumOperands() > 2 ? getOperand(2) : nullptr; 1417 } 1418 }; 1419 1420 /// VPReplicateRecipe replicates a given instruction producing multiple scalar 1421 /// copies of the original scalar type, one per lane, instead of producing a 1422 /// single copy of widened type for all lanes. If the instruction is known to be 1423 /// uniform only one copy, per lane zero, will be generated. 1424 class VPReplicateRecipe : public VPRecipeBase, public VPValue { 1425 /// Indicator if only a single replica per lane is needed. 1426 bool IsUniform; 1427 1428 /// Indicator if the replicas are also predicated. 1429 bool IsPredicated; 1430 1431 /// Indicator if the scalar values should also be packed into a vector. 1432 bool AlsoPack; 1433 1434 public: 1435 template <typename IterT> 1436 VPReplicateRecipe(Instruction *I, iterator_range<IterT> Operands, 1437 bool IsUniform, bool IsPredicated = false) 1438 : VPRecipeBase(VPReplicateSC, Operands), VPValue(VPVReplicateSC, I, this), 1439 IsUniform(IsUniform), IsPredicated(IsPredicated) { 1440 // Retain the previous behavior of predicateInstructions(), where an 1441 // insert-element of a predicated instruction got hoisted into the 1442 // predicated basic block iff it was its only user. This is achieved by 1443 // having predicated instructions also pack their values into a vector by 1444 // default unless they have a replicated user which uses their scalar value. 1445 AlsoPack = IsPredicated && !I->use_empty(); 1446 } 1447 1448 ~VPReplicateRecipe() override = default; 1449 1450 /// Method to support type inquiry through isa, cast, and dyn_cast. 1451 static inline bool classof(const VPDef *D) { 1452 return D->getVPDefID() == VPRecipeBase::VPReplicateSC; 1453 } 1454 1455 static inline bool classof(const VPValue *V) { 1456 return V->getVPValueID() == VPValue::VPVReplicateSC; 1457 } 1458 1459 /// Generate replicas of the desired Ingredient. Replicas will be generated 1460 /// for all parts and lanes unless a specific part and lane are specified in 1461 /// the \p State. 1462 void execute(VPTransformState &State) override; 1463 1464 void setAlsoPack(bool Pack) { AlsoPack = Pack; } 1465 1466 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1467 /// Print the recipe. 1468 void print(raw_ostream &O, const Twine &Indent, 1469 VPSlotTracker &SlotTracker) const override; 1470 #endif 1471 1472 bool isUniform() const { return IsUniform; } 1473 1474 bool isPacked() const { return AlsoPack; } 1475 1476 bool isPredicated() const { return IsPredicated; } 1477 }; 1478 1479 /// A recipe for generating conditional branches on the bits of a mask. 1480 class VPBranchOnMaskRecipe : public VPRecipeBase { 1481 public: 1482 VPBranchOnMaskRecipe(VPValue *BlockInMask) 1483 : VPRecipeBase(VPBranchOnMaskSC, {}) { 1484 if (BlockInMask) // nullptr means all-one mask. 1485 addOperand(BlockInMask); 1486 } 1487 1488 /// Method to support type inquiry through isa, cast, and dyn_cast. 1489 static inline bool classof(const VPDef *D) { 1490 return D->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC; 1491 } 1492 1493 /// Generate the extraction of the appropriate bit from the block mask and the 1494 /// conditional branch. 1495 void execute(VPTransformState &State) override; 1496 1497 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1498 /// Print the recipe. 1499 void print(raw_ostream &O, const Twine &Indent, 1500 VPSlotTracker &SlotTracker) const override { 1501 O << Indent << "BRANCH-ON-MASK "; 1502 if (VPValue *Mask = getMask()) 1503 Mask->printAsOperand(O, SlotTracker); 1504 else 1505 O << " All-One"; 1506 } 1507 #endif 1508 1509 /// Return the mask used by this recipe. Note that a full mask is represented 1510 /// by a nullptr. 1511 VPValue *getMask() const { 1512 assert(getNumOperands() <= 1 && "should have either 0 or 1 operands"); 1513 // Mask is optional. 1514 return getNumOperands() == 1 ? getOperand(0) : nullptr; 1515 } 1516 }; 1517 1518 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when 1519 /// control converges back from a Branch-on-Mask. The phi nodes are needed in 1520 /// order to merge values that are set under such a branch and feed their uses. 1521 /// The phi nodes can be scalar or vector depending on the users of the value. 1522 /// This recipe works in concert with VPBranchOnMaskRecipe. 1523 class VPPredInstPHIRecipe : public VPRecipeBase, public VPValue { 1524 public: 1525 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi 1526 /// nodes after merging back from a Branch-on-Mask. 1527 VPPredInstPHIRecipe(VPValue *PredV) 1528 : VPRecipeBase(VPPredInstPHISC, PredV), 1529 VPValue(VPValue::VPVPredInstPHI, nullptr, this) {} 1530 ~VPPredInstPHIRecipe() override = default; 1531 1532 /// Method to support type inquiry through isa, cast, and dyn_cast. 1533 static inline bool classof(const VPDef *D) { 1534 return D->getVPDefID() == VPRecipeBase::VPPredInstPHISC; 1535 } 1536 1537 /// Generates phi nodes for live-outs as needed to retain SSA form. 1538 void execute(VPTransformState &State) override; 1539 1540 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1541 /// Print the recipe. 1542 void print(raw_ostream &O, const Twine &Indent, 1543 VPSlotTracker &SlotTracker) const override; 1544 #endif 1545 }; 1546 1547 /// A Recipe for widening load/store operations. 1548 /// The recipe uses the following VPValues: 1549 /// - For load: Address, optional mask 1550 /// - For store: Address, stored value, optional mask 1551 /// TODO: We currently execute only per-part unless a specific instance is 1552 /// provided. 1553 class VPWidenMemoryInstructionRecipe : public VPRecipeBase, public VPValue { 1554 Instruction &Ingredient; 1555 1556 // Whether the loaded-from / stored-to addresses are consecutive. 1557 bool Consecutive; 1558 1559 // Whether the consecutive loaded/stored addresses are in reverse order. 1560 bool Reverse; 1561 1562 void setMask(VPValue *Mask) { 1563 if (!Mask) 1564 return; 1565 addOperand(Mask); 1566 } 1567 1568 bool isMasked() const { 1569 return isStore() ? getNumOperands() == 3 : getNumOperands() == 2; 1570 } 1571 1572 public: 1573 VPWidenMemoryInstructionRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask, 1574 bool Consecutive, bool Reverse) 1575 : VPRecipeBase(VPWidenMemoryInstructionSC, {Addr}), 1576 VPValue(VPValue::VPVMemoryInstructionSC, &Load, this), Ingredient(Load), 1577 Consecutive(Consecutive), Reverse(Reverse) { 1578 assert((Consecutive || !Reverse) && "Reverse implies consecutive"); 1579 setMask(Mask); 1580 } 1581 1582 VPWidenMemoryInstructionRecipe(StoreInst &Store, VPValue *Addr, 1583 VPValue *StoredValue, VPValue *Mask, 1584 bool Consecutive, bool Reverse) 1585 : VPRecipeBase(VPWidenMemoryInstructionSC, {Addr, StoredValue}), 1586 VPValue(VPValue::VPVMemoryInstructionSC, &Store, this), 1587 Ingredient(Store), Consecutive(Consecutive), Reverse(Reverse) { 1588 assert((Consecutive || !Reverse) && "Reverse implies consecutive"); 1589 setMask(Mask); 1590 } 1591 1592 /// Method to support type inquiry through isa, cast, and dyn_cast. 1593 static inline bool classof(const VPDef *D) { 1594 return D->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC; 1595 } 1596 1597 /// Return the address accessed by this recipe. 1598 VPValue *getAddr() const { 1599 return getOperand(0); // Address is the 1st, mandatory operand. 1600 } 1601 1602 /// Return the mask used by this recipe. Note that a full mask is represented 1603 /// by a nullptr. 1604 VPValue *getMask() const { 1605 // Mask is optional and therefore the last operand. 1606 return isMasked() ? getOperand(getNumOperands() - 1) : nullptr; 1607 } 1608 1609 /// Returns true if this recipe is a store. 1610 bool isStore() const { return isa<StoreInst>(Ingredient); } 1611 1612 /// Return the address accessed by this recipe. 1613 VPValue *getStoredValue() const { 1614 assert(isStore() && "Stored value only available for store instructions"); 1615 return getOperand(1); // Stored value is the 2nd, mandatory operand. 1616 } 1617 1618 // Return whether the loaded-from / stored-to addresses are consecutive. 1619 bool isConsecutive() const { return Consecutive; } 1620 1621 // Return whether the consecutive loaded/stored addresses are in reverse 1622 // order. 1623 bool isReverse() const { return Reverse; } 1624 1625 /// Generate the wide load/store. 1626 void execute(VPTransformState &State) override; 1627 1628 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1629 /// Print the recipe. 1630 void print(raw_ostream &O, const Twine &Indent, 1631 VPSlotTracker &SlotTracker) const override; 1632 #endif 1633 }; 1634 1635 /// Canonical scalar induction phi of the vector loop. Starting at the specified 1636 /// start value (either 0 or the resume value when vectorizing the epilogue 1637 /// loop). VPWidenCanonicalIVRecipe represents the vector version of the 1638 /// canonical induction variable. 1639 class VPCanonicalIVPHIRecipe : public VPHeaderPHIRecipe { 1640 DebugLoc DL; 1641 1642 public: 1643 VPCanonicalIVPHIRecipe(VPValue *StartV, DebugLoc DL) 1644 : VPHeaderPHIRecipe(VPValue::VPVCanonicalIVPHISC, VPCanonicalIVPHISC, 1645 nullptr, StartV), 1646 DL(DL) {} 1647 1648 ~VPCanonicalIVPHIRecipe() override = default; 1649 1650 /// Method to support type inquiry through isa, cast, and dyn_cast. 1651 static inline bool classof(const VPDef *D) { 1652 return D->getVPDefID() == VPCanonicalIVPHISC; 1653 } 1654 1655 /// Generate the canonical scalar induction phi of the vector loop. 1656 void execute(VPTransformState &State) override; 1657 1658 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1659 /// Print the recipe. 1660 void print(raw_ostream &O, const Twine &Indent, 1661 VPSlotTracker &SlotTracker) const override; 1662 #endif 1663 }; 1664 1665 /// A Recipe for widening the canonical induction variable of the vector loop. 1666 class VPWidenCanonicalIVRecipe : public VPRecipeBase, public VPValue { 1667 public: 1668 VPWidenCanonicalIVRecipe(VPCanonicalIVPHIRecipe *CanonicalIV) 1669 : VPRecipeBase(VPWidenCanonicalIVSC, {CanonicalIV}), 1670 VPValue(VPValue::VPVWidenCanonicalIVSC, nullptr, this) {} 1671 1672 ~VPWidenCanonicalIVRecipe() override = default; 1673 1674 /// Method to support type inquiry through isa, cast, and dyn_cast. 1675 static inline bool classof(const VPDef *D) { 1676 return D->getVPDefID() == VPRecipeBase::VPWidenCanonicalIVSC; 1677 } 1678 1679 /// Generate a canonical vector induction variable of the vector loop, with 1680 /// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and 1681 /// step = <VF*UF, VF*UF, ..., VF*UF>. 1682 void execute(VPTransformState &State) override; 1683 1684 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1685 /// Print the recipe. 1686 void print(raw_ostream &O, const Twine &Indent, 1687 VPSlotTracker &SlotTracker) const override; 1688 #endif 1689 }; 1690 1691 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It 1692 /// holds a sequence of zero or more VPRecipe's each representing a sequence of 1693 /// output IR instructions. All PHI-like recipes must come before any non-PHI recipes. 1694 class VPBasicBlock : public VPBlockBase { 1695 public: 1696 using RecipeListTy = iplist<VPRecipeBase>; 1697 1698 private: 1699 /// The VPRecipes held in the order of output instructions to generate. 1700 RecipeListTy Recipes; 1701 1702 public: 1703 VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) 1704 : VPBlockBase(VPBasicBlockSC, Name.str()) { 1705 if (Recipe) 1706 appendRecipe(Recipe); 1707 } 1708 1709 ~VPBasicBlock() override { 1710 while (!Recipes.empty()) 1711 Recipes.pop_back(); 1712 } 1713 1714 /// Instruction iterators... 1715 using iterator = RecipeListTy::iterator; 1716 using const_iterator = RecipeListTy::const_iterator; 1717 using reverse_iterator = RecipeListTy::reverse_iterator; 1718 using const_reverse_iterator = RecipeListTy::const_reverse_iterator; 1719 1720 //===--------------------------------------------------------------------===// 1721 /// Recipe iterator methods 1722 /// 1723 inline iterator begin() { return Recipes.begin(); } 1724 inline const_iterator begin() const { return Recipes.begin(); } 1725 inline iterator end() { return Recipes.end(); } 1726 inline const_iterator end() const { return Recipes.end(); } 1727 1728 inline reverse_iterator rbegin() { return Recipes.rbegin(); } 1729 inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } 1730 inline reverse_iterator rend() { return Recipes.rend(); } 1731 inline const_reverse_iterator rend() const { return Recipes.rend(); } 1732 1733 inline size_t size() const { return Recipes.size(); } 1734 inline bool empty() const { return Recipes.empty(); } 1735 inline const VPRecipeBase &front() const { return Recipes.front(); } 1736 inline VPRecipeBase &front() { return Recipes.front(); } 1737 inline const VPRecipeBase &back() const { return Recipes.back(); } 1738 inline VPRecipeBase &back() { return Recipes.back(); } 1739 1740 /// Returns a reference to the list of recipes. 1741 RecipeListTy &getRecipeList() { return Recipes; } 1742 1743 /// Returns a pointer to a member of the recipe list. 1744 static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { 1745 return &VPBasicBlock::Recipes; 1746 } 1747 1748 /// Method to support type inquiry through isa, cast, and dyn_cast. 1749 static inline bool classof(const VPBlockBase *V) { 1750 return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC; 1751 } 1752 1753 void insert(VPRecipeBase *Recipe, iterator InsertPt) { 1754 assert(Recipe && "No recipe to append."); 1755 assert(!Recipe->Parent && "Recipe already in VPlan"); 1756 Recipe->Parent = this; 1757 Recipes.insert(InsertPt, Recipe); 1758 } 1759 1760 /// Augment the existing recipes of a VPBasicBlock with an additional 1761 /// \p Recipe as the last recipe. 1762 void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); } 1763 1764 /// The method which generates the output IR instructions that correspond to 1765 /// this VPBasicBlock, thereby "executing" the VPlan. 1766 void execute(struct VPTransformState *State) override; 1767 1768 /// Return the position of the first non-phi node recipe in the block. 1769 iterator getFirstNonPhi(); 1770 1771 /// Returns an iterator range over the PHI-like recipes in the block. 1772 iterator_range<iterator> phis() { 1773 return make_range(begin(), getFirstNonPhi()); 1774 } 1775 1776 void dropAllReferences(VPValue *NewValue) override; 1777 1778 /// Split current block at \p SplitAt by inserting a new block between the 1779 /// current block and its successors and moving all recipes starting at 1780 /// SplitAt to the new block. Returns the new block. 1781 VPBasicBlock *splitAt(iterator SplitAt); 1782 1783 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1784 /// Print this VPBsicBlock to \p O, prefixing all lines with \p Indent. \p 1785 /// SlotTracker is used to print unnamed VPValue's using consequtive numbers. 1786 /// 1787 /// Note that the numbering is applied to the whole VPlan, so printing 1788 /// individual blocks is consistent with the whole VPlan printing. 1789 void print(raw_ostream &O, const Twine &Indent, 1790 VPSlotTracker &SlotTracker) const override; 1791 using VPBlockBase::print; // Get the print(raw_stream &O) version. 1792 #endif 1793 1794 private: 1795 /// Create an IR BasicBlock to hold the output instructions generated by this 1796 /// VPBasicBlock, and return it. Update the CFGState accordingly. 1797 BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG); 1798 }; 1799 1800 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks 1801 /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG. 1802 /// A VPRegionBlock may indicate that its contents are to be replicated several 1803 /// times. This is designed to support predicated scalarization, in which a 1804 /// scalar if-then code structure needs to be generated VF * UF times. Having 1805 /// this replication indicator helps to keep a single model for multiple 1806 /// candidate VF's. The actual replication takes place only once the desired VF 1807 /// and UF have been determined. 1808 class VPRegionBlock : public VPBlockBase { 1809 /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. 1810 VPBlockBase *Entry; 1811 1812 /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock. 1813 VPBlockBase *Exit; 1814 1815 /// An indicator whether this region is to generate multiple replicated 1816 /// instances of output IR corresponding to its VPBlockBases. 1817 bool IsReplicator; 1818 1819 public: 1820 VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit, 1821 const std::string &Name = "", bool IsReplicator = false) 1822 : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit), 1823 IsReplicator(IsReplicator) { 1824 assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); 1825 assert(Exit->getSuccessors().empty() && "Exit block has successors."); 1826 Entry->setParent(this); 1827 Exit->setParent(this); 1828 } 1829 VPRegionBlock(const std::string &Name = "", bool IsReplicator = false) 1830 : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr), 1831 IsReplicator(IsReplicator) {} 1832 1833 ~VPRegionBlock() override { 1834 if (Entry) { 1835 VPValue DummyValue; 1836 Entry->dropAllReferences(&DummyValue); 1837 deleteCFG(Entry); 1838 } 1839 } 1840 1841 /// Method to support type inquiry through isa, cast, and dyn_cast. 1842 static inline bool classof(const VPBlockBase *V) { 1843 return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; 1844 } 1845 1846 const VPBlockBase *getEntry() const { return Entry; } 1847 VPBlockBase *getEntry() { return Entry; } 1848 1849 /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p 1850 /// EntryBlock must have no predecessors. 1851 void setEntry(VPBlockBase *EntryBlock) { 1852 assert(EntryBlock->getPredecessors().empty() && 1853 "Entry block cannot have predecessors."); 1854 Entry = EntryBlock; 1855 EntryBlock->setParent(this); 1856 } 1857 1858 // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a 1859 // specific interface of llvm::Function, instead of using 1860 // GraphTraints::getEntryNode. We should add a new template parameter to 1861 // DominatorTreeBase representing the Graph type. 1862 VPBlockBase &front() const { return *Entry; } 1863 1864 const VPBlockBase *getExit() const { return Exit; } 1865 VPBlockBase *getExit() { return Exit; } 1866 1867 /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p 1868 /// ExitBlock must have no successors. 1869 void setExit(VPBlockBase *ExitBlock) { 1870 assert(ExitBlock->getSuccessors().empty() && 1871 "Exit block cannot have successors."); 1872 Exit = ExitBlock; 1873 ExitBlock->setParent(this); 1874 } 1875 1876 /// An indicator whether this region is to generate multiple replicated 1877 /// instances of output IR corresponding to its VPBlockBases. 1878 bool isReplicator() const { return IsReplicator; } 1879 1880 /// The method which generates the output IR instructions that correspond to 1881 /// this VPRegionBlock, thereby "executing" the VPlan. 1882 void execute(struct VPTransformState *State) override; 1883 1884 void dropAllReferences(VPValue *NewValue) override; 1885 1886 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1887 /// Print this VPRegionBlock to \p O (recursively), prefixing all lines with 1888 /// \p Indent. \p SlotTracker is used to print unnamed VPValue's using 1889 /// consequtive numbers. 1890 /// 1891 /// Note that the numbering is applied to the whole VPlan, so printing 1892 /// individual regions is consistent with the whole VPlan printing. 1893 void print(raw_ostream &O, const Twine &Indent, 1894 VPSlotTracker &SlotTracker) const override; 1895 using VPBlockBase::print; // Get the print(raw_stream &O) version. 1896 #endif 1897 }; 1898 1899 //===----------------------------------------------------------------------===// 1900 // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs // 1901 //===----------------------------------------------------------------------===// 1902 1903 // The following set of template specializations implement GraphTraits to treat 1904 // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note 1905 // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the 1906 // VPBlockBase is a VPRegionBlock, this specialization provides access to its 1907 // successors/predecessors but not to the blocks inside the region. 1908 1909 template <> struct GraphTraits<VPBlockBase *> { 1910 using NodeRef = VPBlockBase *; 1911 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; 1912 1913 static NodeRef getEntryNode(NodeRef N) { return N; } 1914 1915 static inline ChildIteratorType child_begin(NodeRef N) { 1916 return N->getSuccessors().begin(); 1917 } 1918 1919 static inline ChildIteratorType child_end(NodeRef N) { 1920 return N->getSuccessors().end(); 1921 } 1922 }; 1923 1924 template <> struct GraphTraits<const VPBlockBase *> { 1925 using NodeRef = const VPBlockBase *; 1926 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator; 1927 1928 static NodeRef getEntryNode(NodeRef N) { return N; } 1929 1930 static inline ChildIteratorType child_begin(NodeRef N) { 1931 return N->getSuccessors().begin(); 1932 } 1933 1934 static inline ChildIteratorType child_end(NodeRef N) { 1935 return N->getSuccessors().end(); 1936 } 1937 }; 1938 1939 // Inverse order specialization for VPBasicBlocks. Predecessors are used instead 1940 // of successors for the inverse traversal. 1941 template <> struct GraphTraits<Inverse<VPBlockBase *>> { 1942 using NodeRef = VPBlockBase *; 1943 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; 1944 1945 static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; } 1946 1947 static inline ChildIteratorType child_begin(NodeRef N) { 1948 return N->getPredecessors().begin(); 1949 } 1950 1951 static inline ChildIteratorType child_end(NodeRef N) { 1952 return N->getPredecessors().end(); 1953 } 1954 }; 1955 1956 // The following set of template specializations implement GraphTraits to 1957 // treat VPRegionBlock as a graph and recurse inside its nodes. It's important 1958 // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases 1959 // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so 1960 // there won't be automatic recursion into other VPBlockBases that turn to be 1961 // VPRegionBlocks. 1962 1963 template <> 1964 struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> { 1965 using GraphRef = VPRegionBlock *; 1966 using nodes_iterator = df_iterator<NodeRef>; 1967 1968 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } 1969 1970 static nodes_iterator nodes_begin(GraphRef N) { 1971 return nodes_iterator::begin(N->getEntry()); 1972 } 1973 1974 static nodes_iterator nodes_end(GraphRef N) { 1975 // df_iterator::end() returns an empty iterator so the node used doesn't 1976 // matter. 1977 return nodes_iterator::end(N); 1978 } 1979 }; 1980 1981 template <> 1982 struct GraphTraits<const VPRegionBlock *> 1983 : public GraphTraits<const VPBlockBase *> { 1984 using GraphRef = const VPRegionBlock *; 1985 using nodes_iterator = df_iterator<NodeRef>; 1986 1987 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } 1988 1989 static nodes_iterator nodes_begin(GraphRef N) { 1990 return nodes_iterator::begin(N->getEntry()); 1991 } 1992 1993 static nodes_iterator nodes_end(GraphRef N) { 1994 // df_iterator::end() returns an empty iterator so the node used doesn't 1995 // matter. 1996 return nodes_iterator::end(N); 1997 } 1998 }; 1999 2000 template <> 2001 struct GraphTraits<Inverse<VPRegionBlock *>> 2002 : public GraphTraits<Inverse<VPBlockBase *>> { 2003 using GraphRef = VPRegionBlock *; 2004 using nodes_iterator = df_iterator<NodeRef>; 2005 2006 static NodeRef getEntryNode(Inverse<GraphRef> N) { 2007 return N.Graph->getExit(); 2008 } 2009 2010 static nodes_iterator nodes_begin(GraphRef N) { 2011 return nodes_iterator::begin(N->getExit()); 2012 } 2013 2014 static nodes_iterator nodes_end(GraphRef N) { 2015 // df_iterator::end() returns an empty iterator so the node used doesn't 2016 // matter. 2017 return nodes_iterator::end(N); 2018 } 2019 }; 2020 2021 /// Iterator to traverse all successors of a VPBlockBase node. This includes the 2022 /// entry node of VPRegionBlocks. Exit blocks of a region implicitly have their 2023 /// parent region's successors. This ensures all blocks in a region are visited 2024 /// before any blocks in a successor region when doing a reverse post-order 2025 // traversal of the graph. 2026 template <typename BlockPtrTy> 2027 class VPAllSuccessorsIterator 2028 : public iterator_facade_base<VPAllSuccessorsIterator<BlockPtrTy>, 2029 std::forward_iterator_tag, VPBlockBase> { 2030 BlockPtrTy Block; 2031 /// Index of the current successor. For VPBasicBlock nodes, this simply is the 2032 /// index for the successor array. For VPRegionBlock, SuccessorIdx == 0 is 2033 /// used for the region's entry block, and SuccessorIdx - 1 are the indices 2034 /// for the successor array. 2035 size_t SuccessorIdx; 2036 2037 static BlockPtrTy getBlockWithSuccs(BlockPtrTy Current) { 2038 while (Current && Current->getNumSuccessors() == 0) 2039 Current = Current->getParent(); 2040 return Current; 2041 } 2042 2043 /// Templated helper to dereference successor \p SuccIdx of \p Block. Used by 2044 /// both the const and non-const operator* implementations. 2045 template <typename T1> static T1 deref(T1 Block, unsigned SuccIdx) { 2046 if (auto *R = dyn_cast<VPRegionBlock>(Block)) { 2047 if (SuccIdx == 0) 2048 return R->getEntry(); 2049 SuccIdx--; 2050 } 2051 2052 // For exit blocks, use the next parent region with successors. 2053 return getBlockWithSuccs(Block)->getSuccessors()[SuccIdx]; 2054 } 2055 2056 public: 2057 VPAllSuccessorsIterator(BlockPtrTy Block, size_t Idx = 0) 2058 : Block(Block), SuccessorIdx(Idx) {} 2059 VPAllSuccessorsIterator(const VPAllSuccessorsIterator &Other) 2060 : Block(Other.Block), SuccessorIdx(Other.SuccessorIdx) {} 2061 2062 VPAllSuccessorsIterator &operator=(const VPAllSuccessorsIterator &R) { 2063 Block = R.Block; 2064 SuccessorIdx = R.SuccessorIdx; 2065 return *this; 2066 } 2067 2068 static VPAllSuccessorsIterator end(BlockPtrTy Block) { 2069 BlockPtrTy ParentWithSuccs = getBlockWithSuccs(Block); 2070 unsigned NumSuccessors = ParentWithSuccs 2071 ? ParentWithSuccs->getNumSuccessors() 2072 : Block->getNumSuccessors(); 2073 2074 if (auto *R = dyn_cast<VPRegionBlock>(Block)) 2075 return {R, NumSuccessors + 1}; 2076 return {Block, NumSuccessors}; 2077 } 2078 2079 bool operator==(const VPAllSuccessorsIterator &R) const { 2080 return Block == R.Block && SuccessorIdx == R.SuccessorIdx; 2081 } 2082 2083 const VPBlockBase *operator*() const { return deref(Block, SuccessorIdx); } 2084 2085 BlockPtrTy operator*() { return deref(Block, SuccessorIdx); } 2086 2087 VPAllSuccessorsIterator &operator++() { 2088 SuccessorIdx++; 2089 return *this; 2090 } 2091 2092 VPAllSuccessorsIterator operator++(int X) { 2093 VPAllSuccessorsIterator Orig = *this; 2094 SuccessorIdx++; 2095 return Orig; 2096 } 2097 }; 2098 2099 /// Helper for GraphTraits specialization that traverses through VPRegionBlocks. 2100 template <typename BlockTy> class VPBlockRecursiveTraversalWrapper { 2101 BlockTy Entry; 2102 2103 public: 2104 VPBlockRecursiveTraversalWrapper(BlockTy Entry) : Entry(Entry) {} 2105 BlockTy getEntry() { return Entry; } 2106 }; 2107 2108 /// GraphTraits specialization to recursively traverse VPBlockBase nodes, 2109 /// including traversing through VPRegionBlocks. Exit blocks of a region 2110 /// implicitly have their parent region's successors. This ensures all blocks in 2111 /// a region are visited before any blocks in a successor region when doing a 2112 /// reverse post-order traversal of the graph. 2113 template <> 2114 struct GraphTraits<VPBlockRecursiveTraversalWrapper<VPBlockBase *>> { 2115 using NodeRef = VPBlockBase *; 2116 using ChildIteratorType = VPAllSuccessorsIterator<VPBlockBase *>; 2117 2118 static NodeRef 2119 getEntryNode(VPBlockRecursiveTraversalWrapper<VPBlockBase *> N) { 2120 return N.getEntry(); 2121 } 2122 2123 static inline ChildIteratorType child_begin(NodeRef N) { 2124 return ChildIteratorType(N); 2125 } 2126 2127 static inline ChildIteratorType child_end(NodeRef N) { 2128 return ChildIteratorType::end(N); 2129 } 2130 }; 2131 2132 template <> 2133 struct GraphTraits<VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> { 2134 using NodeRef = const VPBlockBase *; 2135 using ChildIteratorType = VPAllSuccessorsIterator<const VPBlockBase *>; 2136 2137 static NodeRef 2138 getEntryNode(VPBlockRecursiveTraversalWrapper<const VPBlockBase *> N) { 2139 return N.getEntry(); 2140 } 2141 2142 static inline ChildIteratorType child_begin(NodeRef N) { 2143 return ChildIteratorType(N); 2144 } 2145 2146 static inline ChildIteratorType child_end(NodeRef N) { 2147 return ChildIteratorType::end(N); 2148 } 2149 }; 2150 2151 /// VPlan models a candidate for vectorization, encoding various decisions take 2152 /// to produce efficient output IR, including which branches, basic-blocks and 2153 /// output IR instructions to generate, and their cost. VPlan holds a 2154 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry 2155 /// VPBlock. 2156 class VPlan { 2157 friend class VPlanPrinter; 2158 friend class VPSlotTracker; 2159 2160 /// Hold the single entry to the Hierarchical CFG of the VPlan. 2161 VPBlockBase *Entry; 2162 2163 /// Holds the VFs applicable to this VPlan. 2164 SmallSetVector<ElementCount, 2> VFs; 2165 2166 /// Holds the name of the VPlan, for printing. 2167 std::string Name; 2168 2169 /// Holds all the external definitions created for this VPlan. 2170 // TODO: Introduce a specific representation for external definitions in 2171 // VPlan. External definitions must be immutable and hold a pointer to its 2172 // underlying IR that will be used to implement its structural comparison 2173 // (operators '==' and '<'). 2174 SetVector<VPValue *> VPExternalDefs; 2175 2176 /// Represents the trip count of the original loop, for folding 2177 /// the tail. 2178 VPValue *TripCount = nullptr; 2179 2180 /// Represents the backedge taken count of the original loop, for folding 2181 /// the tail. It equals TripCount - 1. 2182 VPValue *BackedgeTakenCount = nullptr; 2183 2184 /// Represents the vector trip count. 2185 VPValue VectorTripCount; 2186 2187 /// Holds a mapping between Values and their corresponding VPValue inside 2188 /// VPlan. 2189 Value2VPValueTy Value2VPValue; 2190 2191 /// Contains all VPValues that been allocated by addVPValue directly and need 2192 /// to be free when the plan's destructor is called. 2193 SmallVector<VPValue *, 16> VPValuesToFree; 2194 2195 /// Holds the VPLoopInfo analysis for this VPlan. 2196 VPLoopInfo VPLInfo; 2197 2198 /// Indicates whether it is safe use the Value2VPValue mapping or if the 2199 /// mapping cannot be used any longer, because it is stale. 2200 bool Value2VPValueEnabled = true; 2201 2202 public: 2203 VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) { 2204 if (Entry) 2205 Entry->setPlan(this); 2206 } 2207 2208 ~VPlan() { 2209 if (Entry) { 2210 VPValue DummyValue; 2211 for (VPBlockBase *Block : depth_first(Entry)) 2212 Block->dropAllReferences(&DummyValue); 2213 2214 VPBlockBase::deleteCFG(Entry); 2215 } 2216 for (VPValue *VPV : VPValuesToFree) 2217 delete VPV; 2218 if (TripCount) 2219 delete TripCount; 2220 if (BackedgeTakenCount) 2221 delete BackedgeTakenCount; 2222 for (VPValue *Def : VPExternalDefs) 2223 delete Def; 2224 } 2225 2226 /// Prepare the plan for execution, setting up the required live-in values. 2227 void prepareToExecute(Value *TripCount, Value *VectorTripCount, 2228 Value *CanonicalIVStartValue, VPTransformState &State); 2229 2230 /// Generate the IR code for this VPlan. 2231 void execute(struct VPTransformState *State); 2232 2233 VPBlockBase *getEntry() { return Entry; } 2234 const VPBlockBase *getEntry() const { return Entry; } 2235 2236 VPBlockBase *setEntry(VPBlockBase *Block) { 2237 Entry = Block; 2238 Block->setPlan(this); 2239 return Entry; 2240 } 2241 2242 /// The trip count of the original loop. 2243 VPValue *getOrCreateTripCount() { 2244 if (!TripCount) 2245 TripCount = new VPValue(); 2246 return TripCount; 2247 } 2248 2249 /// The backedge taken count of the original loop. 2250 VPValue *getOrCreateBackedgeTakenCount() { 2251 if (!BackedgeTakenCount) 2252 BackedgeTakenCount = new VPValue(); 2253 return BackedgeTakenCount; 2254 } 2255 2256 /// The vector trip count. 2257 VPValue &getVectorTripCount() { return VectorTripCount; } 2258 2259 /// Mark the plan to indicate that using Value2VPValue is not safe any 2260 /// longer, because it may be stale. 2261 void disableValue2VPValue() { Value2VPValueEnabled = false; } 2262 2263 void addVF(ElementCount VF) { VFs.insert(VF); } 2264 2265 bool hasVF(ElementCount VF) { return VFs.count(VF); } 2266 2267 const std::string &getName() const { return Name; } 2268 2269 void setName(const Twine &newName) { Name = newName.str(); } 2270 2271 /// Add \p VPVal to the pool of external definitions if it's not already 2272 /// in the pool. 2273 void addExternalDef(VPValue *VPVal) { VPExternalDefs.insert(VPVal); } 2274 2275 void addVPValue(Value *V) { 2276 assert(Value2VPValueEnabled && 2277 "IR value to VPValue mapping may be out of date!"); 2278 assert(V && "Trying to add a null Value to VPlan"); 2279 assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); 2280 VPValue *VPV = new VPValue(V); 2281 Value2VPValue[V] = VPV; 2282 VPValuesToFree.push_back(VPV); 2283 } 2284 2285 void addVPValue(Value *V, VPValue *VPV) { 2286 assert(Value2VPValueEnabled && "Value2VPValue mapping may be out of date!"); 2287 assert(V && "Trying to add a null Value to VPlan"); 2288 assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); 2289 Value2VPValue[V] = VPV; 2290 } 2291 2292 /// Returns the VPValue for \p V. \p OverrideAllowed can be used to disable 2293 /// checking whether it is safe to query VPValues using IR Values. 2294 VPValue *getVPValue(Value *V, bool OverrideAllowed = false) { 2295 assert((OverrideAllowed || isa<Constant>(V) || Value2VPValueEnabled) && 2296 "Value2VPValue mapping may be out of date!"); 2297 assert(V && "Trying to get the VPValue of a null Value"); 2298 assert(Value2VPValue.count(V) && "Value does not exist in VPlan"); 2299 return Value2VPValue[V]; 2300 } 2301 2302 /// Gets the VPValue or adds a new one (if none exists yet) for \p V. \p 2303 /// OverrideAllowed can be used to disable checking whether it is safe to 2304 /// query VPValues using IR Values. 2305 VPValue *getOrAddVPValue(Value *V, bool OverrideAllowed = false) { 2306 assert((OverrideAllowed || isa<Constant>(V) || Value2VPValueEnabled) && 2307 "Value2VPValue mapping may be out of date!"); 2308 assert(V && "Trying to get or add the VPValue of a null Value"); 2309 if (!Value2VPValue.count(V)) 2310 addVPValue(V); 2311 return getVPValue(V); 2312 } 2313 2314 void removeVPValueFor(Value *V) { 2315 assert(Value2VPValueEnabled && 2316 "IR value to VPValue mapping may be out of date!"); 2317 Value2VPValue.erase(V); 2318 } 2319 2320 /// Return the VPLoopInfo analysis for this VPlan. 2321 VPLoopInfo &getVPLoopInfo() { return VPLInfo; } 2322 const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; } 2323 2324 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2325 /// Print this VPlan to \p O. 2326 void print(raw_ostream &O) const; 2327 2328 /// Print this VPlan in DOT format to \p O. 2329 void printDOT(raw_ostream &O) const; 2330 2331 /// Dump the plan to stderr (for debugging). 2332 LLVM_DUMP_METHOD void dump() const; 2333 #endif 2334 2335 /// Returns a range mapping the values the range \p Operands to their 2336 /// corresponding VPValues. 2337 iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>> 2338 mapToVPValues(User::op_range Operands) { 2339 std::function<VPValue *(Value *)> Fn = [this](Value *Op) { 2340 return getOrAddVPValue(Op); 2341 }; 2342 return map_range(Operands, Fn); 2343 } 2344 2345 /// Returns true if \p VPV is uniform after vectorization. 2346 bool isUniformAfterVectorization(VPValue *VPV) const { 2347 auto RepR = dyn_cast_or_null<VPReplicateRecipe>(VPV->getDef()); 2348 return !VPV->getDef() || (RepR && RepR->isUniform()); 2349 } 2350 2351 /// Returns the VPRegionBlock of the vector loop. 2352 VPRegionBlock *getVectorLoopRegion() { 2353 return cast<VPRegionBlock>(getEntry()); 2354 } 2355 2356 /// Returns the canonical induction recipe of the vector loop. 2357 VPCanonicalIVPHIRecipe *getCanonicalIV() { 2358 VPBasicBlock *EntryVPBB = getVectorLoopRegion()->getEntryBasicBlock(); 2359 if (EntryVPBB->empty()) { 2360 // VPlan native path. 2361 EntryVPBB = cast<VPBasicBlock>(EntryVPBB->getSingleSuccessor()); 2362 } 2363 return cast<VPCanonicalIVPHIRecipe>(&*EntryVPBB->begin()); 2364 } 2365 2366 private: 2367 /// Add to the given dominator tree the header block and every new basic block 2368 /// that was created between it and the latch block, inclusive. 2369 static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB, 2370 BasicBlock *LoopPreHeaderBB, 2371 BasicBlock *LoopExitBB); 2372 }; 2373 2374 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2375 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is 2376 /// indented and follows the dot format. 2377 class VPlanPrinter { 2378 raw_ostream &OS; 2379 const VPlan &Plan; 2380 unsigned Depth = 0; 2381 unsigned TabWidth = 2; 2382 std::string Indent; 2383 unsigned BID = 0; 2384 SmallDenseMap<const VPBlockBase *, unsigned> BlockID; 2385 2386 VPSlotTracker SlotTracker; 2387 2388 /// Handle indentation. 2389 void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } 2390 2391 /// Print a given \p Block of the Plan. 2392 void dumpBlock(const VPBlockBase *Block); 2393 2394 /// Print the information related to the CFG edges going out of a given 2395 /// \p Block, followed by printing the successor blocks themselves. 2396 void dumpEdges(const VPBlockBase *Block); 2397 2398 /// Print a given \p BasicBlock, including its VPRecipes, followed by printing 2399 /// its successor blocks. 2400 void dumpBasicBlock(const VPBasicBlock *BasicBlock); 2401 2402 /// Print a given \p Region of the Plan. 2403 void dumpRegion(const VPRegionBlock *Region); 2404 2405 unsigned getOrCreateBID(const VPBlockBase *Block) { 2406 return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; 2407 } 2408 2409 Twine getOrCreateName(const VPBlockBase *Block); 2410 2411 Twine getUID(const VPBlockBase *Block); 2412 2413 /// Print the information related to a CFG edge between two VPBlockBases. 2414 void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, 2415 const Twine &Label); 2416 2417 public: 2418 VPlanPrinter(raw_ostream &O, const VPlan &P) 2419 : OS(O), Plan(P), SlotTracker(&P) {} 2420 2421 LLVM_DUMP_METHOD void dump(); 2422 }; 2423 2424 struct VPlanIngredient { 2425 const Value *V; 2426 2427 VPlanIngredient(const Value *V) : V(V) {} 2428 2429 void print(raw_ostream &O) const; 2430 }; 2431 2432 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) { 2433 I.print(OS); 2434 return OS; 2435 } 2436 2437 inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) { 2438 Plan.print(OS); 2439 return OS; 2440 } 2441 #endif 2442 2443 //===----------------------------------------------------------------------===// 2444 // VPlan Utilities 2445 //===----------------------------------------------------------------------===// 2446 2447 /// Class that provides utilities for VPBlockBases in VPlan. 2448 class VPBlockUtils { 2449 public: 2450 VPBlockUtils() = delete; 2451 2452 /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p 2453 /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p 2454 /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. \p BlockPtr's 2455 /// successors are moved from \p BlockPtr to \p NewBlock and \p BlockPtr's 2456 /// conditional bit is propagated to \p NewBlock. \p NewBlock must have 2457 /// neither successors nor predecessors. 2458 static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) { 2459 assert(NewBlock->getSuccessors().empty() && 2460 NewBlock->getPredecessors().empty() && 2461 "Can't insert new block with predecessors or successors."); 2462 NewBlock->setParent(BlockPtr->getParent()); 2463 SmallVector<VPBlockBase *> Succs(BlockPtr->successors()); 2464 for (VPBlockBase *Succ : Succs) { 2465 disconnectBlocks(BlockPtr, Succ); 2466 connectBlocks(NewBlock, Succ); 2467 } 2468 NewBlock->setCondBit(BlockPtr->getCondBit()); 2469 BlockPtr->setCondBit(nullptr); 2470 connectBlocks(BlockPtr, NewBlock); 2471 } 2472 2473 /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p 2474 /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p 2475 /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr 2476 /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor 2477 /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse 2478 /// must have neither successors nor predecessors. 2479 static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, 2480 VPValue *Condition, VPBlockBase *BlockPtr) { 2481 assert(IfTrue->getSuccessors().empty() && 2482 "Can't insert IfTrue with successors."); 2483 assert(IfFalse->getSuccessors().empty() && 2484 "Can't insert IfFalse with successors."); 2485 BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition); 2486 IfTrue->setPredecessors({BlockPtr}); 2487 IfFalse->setPredecessors({BlockPtr}); 2488 IfTrue->setParent(BlockPtr->getParent()); 2489 IfFalse->setParent(BlockPtr->getParent()); 2490 } 2491 2492 /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to 2493 /// the successors of \p From and \p From to the predecessors of \p To. Both 2494 /// VPBlockBases must have the same parent, which can be null. Both 2495 /// VPBlockBases can be already connected to other VPBlockBases. 2496 static void connectBlocks(VPBlockBase *From, VPBlockBase *To) { 2497 assert((From->getParent() == To->getParent()) && 2498 "Can't connect two block with different parents"); 2499 assert(From->getNumSuccessors() < 2 && 2500 "Blocks can't have more than two successors."); 2501 From->appendSuccessor(To); 2502 To->appendPredecessor(From); 2503 } 2504 2505 /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To 2506 /// from the successors of \p From and \p From from the predecessors of \p To. 2507 static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) { 2508 assert(To && "Successor to disconnect is null."); 2509 From->removeSuccessor(To); 2510 To->removePredecessor(From); 2511 } 2512 2513 /// Try to merge \p Block into its single predecessor, if \p Block is a 2514 /// VPBasicBlock and its predecessor has a single successor. Returns a pointer 2515 /// to the predecessor \p Block was merged into or nullptr otherwise. 2516 static VPBasicBlock *tryToMergeBlockIntoPredecessor(VPBlockBase *Block) { 2517 auto *VPBB = dyn_cast<VPBasicBlock>(Block); 2518 auto *PredVPBB = 2519 dyn_cast_or_null<VPBasicBlock>(Block->getSinglePredecessor()); 2520 if (!VPBB || !PredVPBB || PredVPBB->getNumSuccessors() != 1) 2521 return nullptr; 2522 2523 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) 2524 R.moveBefore(*PredVPBB, PredVPBB->end()); 2525 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); 2526 auto *ParentRegion = cast<VPRegionBlock>(Block->getParent()); 2527 if (ParentRegion->getExit() == Block) 2528 ParentRegion->setExit(PredVPBB); 2529 SmallVector<VPBlockBase *> Successors(Block->successors()); 2530 for (auto *Succ : Successors) { 2531 VPBlockUtils::disconnectBlocks(Block, Succ); 2532 VPBlockUtils::connectBlocks(PredVPBB, Succ); 2533 } 2534 delete Block; 2535 return PredVPBB; 2536 } 2537 2538 /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge. 2539 static bool isBackEdge(const VPBlockBase *FromBlock, 2540 const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) { 2541 assert(FromBlock->getParent() == ToBlock->getParent() && 2542 FromBlock->getParent() && "Must be in same region"); 2543 const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock); 2544 const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock); 2545 if (!FromLoop || !ToLoop || FromLoop != ToLoop) 2546 return false; 2547 2548 // A back-edge is a branch from the loop latch to its header. 2549 return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader(); 2550 } 2551 2552 /// Returns true if \p Block is a loop latch 2553 static bool blockIsLoopLatch(const VPBlockBase *Block, 2554 const VPLoopInfo *VPLInfo) { 2555 if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block)) 2556 return ParentVPL->isLoopLatch(Block); 2557 2558 return false; 2559 } 2560 2561 /// Count and return the number of succesors of \p PredBlock excluding any 2562 /// backedges. 2563 static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock, 2564 VPLoopInfo *VPLI) { 2565 unsigned Count = 0; 2566 for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) { 2567 if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI)) 2568 Count++; 2569 } 2570 return Count; 2571 } 2572 2573 /// Return an iterator range over \p Range which only includes \p BlockTy 2574 /// blocks. The accesses are casted to \p BlockTy. 2575 template <typename BlockTy, typename T> 2576 static auto blocksOnly(const T &Range) { 2577 // Create BaseTy with correct const-ness based on BlockTy. 2578 using BaseTy = 2579 typename std::conditional<std::is_const<BlockTy>::value, 2580 const VPBlockBase, VPBlockBase>::type; 2581 2582 // We need to first create an iterator range over (const) BlocktTy & instead 2583 // of (const) BlockTy * for filter_range to work properly. 2584 auto Mapped = 2585 map_range(Range, [](BaseTy *Block) -> BaseTy & { return *Block; }); 2586 auto Filter = make_filter_range( 2587 Mapped, [](BaseTy &Block) { return isa<BlockTy>(&Block); }); 2588 return map_range(Filter, [](BaseTy &Block) -> BlockTy * { 2589 return cast<BlockTy>(&Block); 2590 }); 2591 } 2592 }; 2593 2594 class VPInterleavedAccessInfo { 2595 DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *> 2596 InterleaveGroupMap; 2597 2598 /// Type for mapping of instruction based interleave groups to VPInstruction 2599 /// interleave groups 2600 using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *, 2601 InterleaveGroup<VPInstruction> *>; 2602 2603 /// Recursively \p Region and populate VPlan based interleave groups based on 2604 /// \p IAI. 2605 void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New, 2606 InterleavedAccessInfo &IAI); 2607 /// Recursively traverse \p Block and populate VPlan based interleave groups 2608 /// based on \p IAI. 2609 void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 2610 InterleavedAccessInfo &IAI); 2611 2612 public: 2613 VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI); 2614 2615 ~VPInterleavedAccessInfo() { 2616 SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet; 2617 // Avoid releasing a pointer twice. 2618 for (auto &I : InterleaveGroupMap) 2619 DelSet.insert(I.second); 2620 for (auto *Ptr : DelSet) 2621 delete Ptr; 2622 } 2623 2624 /// Get the interleave group that \p Instr belongs to. 2625 /// 2626 /// \returns nullptr if doesn't have such group. 2627 InterleaveGroup<VPInstruction> * 2628 getInterleaveGroup(VPInstruction *Instr) const { 2629 return InterleaveGroupMap.lookup(Instr); 2630 } 2631 }; 2632 2633 /// Class that maps (parts of) an existing VPlan to trees of combined 2634 /// VPInstructions. 2635 class VPlanSlp { 2636 enum class OpMode { Failed, Load, Opcode }; 2637 2638 /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as 2639 /// DenseMap keys. 2640 struct BundleDenseMapInfo { 2641 static SmallVector<VPValue *, 4> getEmptyKey() { 2642 return {reinterpret_cast<VPValue *>(-1)}; 2643 } 2644 2645 static SmallVector<VPValue *, 4> getTombstoneKey() { 2646 return {reinterpret_cast<VPValue *>(-2)}; 2647 } 2648 2649 static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) { 2650 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2651 } 2652 2653 static bool isEqual(const SmallVector<VPValue *, 4> &LHS, 2654 const SmallVector<VPValue *, 4> &RHS) { 2655 return LHS == RHS; 2656 } 2657 }; 2658 2659 /// Mapping of values in the original VPlan to a combined VPInstruction. 2660 DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo> 2661 BundleToCombined; 2662 2663 VPInterleavedAccessInfo &IAI; 2664 2665 /// Basic block to operate on. For now, only instructions in a single BB are 2666 /// considered. 2667 const VPBasicBlock &BB; 2668 2669 /// Indicates whether we managed to combine all visited instructions or not. 2670 bool CompletelySLP = true; 2671 2672 /// Width of the widest combined bundle in bits. 2673 unsigned WidestBundleBits = 0; 2674 2675 using MultiNodeOpTy = 2676 typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>; 2677 2678 // Input operand bundles for the current multi node. Each multi node operand 2679 // bundle contains values not matching the multi node's opcode. They will 2680 // be reordered in reorderMultiNodeOps, once we completed building a 2681 // multi node. 2682 SmallVector<MultiNodeOpTy, 4> MultiNodeOps; 2683 2684 /// Indicates whether we are building a multi node currently. 2685 bool MultiNodeActive = false; 2686 2687 /// Check if we can vectorize Operands together. 2688 bool areVectorizable(ArrayRef<VPValue *> Operands) const; 2689 2690 /// Add combined instruction \p New for the bundle \p Operands. 2691 void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New); 2692 2693 /// Indicate we hit a bundle we failed to combine. Returns nullptr for now. 2694 VPInstruction *markFailed(); 2695 2696 /// Reorder operands in the multi node to maximize sequential memory access 2697 /// and commutative operations. 2698 SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps(); 2699 2700 /// Choose the best candidate to use for the lane after \p Last. The set of 2701 /// candidates to choose from are values with an opcode matching \p Last's 2702 /// or loads consecutive to \p Last. 2703 std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last, 2704 SmallPtrSetImpl<VPValue *> &Candidates, 2705 VPInterleavedAccessInfo &IAI); 2706 2707 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2708 /// Print bundle \p Values to dbgs(). 2709 void dumpBundle(ArrayRef<VPValue *> Values); 2710 #endif 2711 2712 public: 2713 VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {} 2714 2715 ~VPlanSlp() = default; 2716 2717 /// Tries to build an SLP tree rooted at \p Operands and returns a 2718 /// VPInstruction combining \p Operands, if they can be combined. 2719 VPInstruction *buildGraph(ArrayRef<VPValue *> Operands); 2720 2721 /// Return the width of the widest combined bundle in bits. 2722 unsigned getWidestBundleBits() const { return WidestBundleBits; } 2723 2724 /// Return true if all visited instruction can be combined. 2725 bool isCompletelySLP() const { return CompletelySLP; } 2726 }; 2727 } // end namespace llvm 2728 2729 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 2730