1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include <cassert> 44 #include <iterator> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 55 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 56 VPSlotTracker SlotTracker( 57 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 58 V.print(OS, SlotTracker); 59 return OS; 60 } 61 #endif 62 63 Value *VPLane::getAsRuntimeExpr(IRBuilder<> &Builder, 64 const ElementCount &VF) const { 65 switch (LaneKind) { 66 case VPLane::Kind::ScalableLast: 67 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 68 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 69 Builder.getInt32(VF.getKnownMinValue() - Lane)); 70 case VPLane::Kind::First: 71 return Builder.getInt32(Lane); 72 } 73 llvm_unreachable("Unknown lane kind"); 74 } 75 76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 77 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 78 if (Def) 79 Def->addDefinedValue(this); 80 } 81 82 VPValue::~VPValue() { 83 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 84 if (Def) 85 Def->removeDefinedValue(this); 86 } 87 88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 90 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 91 R->print(OS, "", SlotTracker); 92 else 93 printAsOperand(OS, SlotTracker); 94 } 95 96 void VPValue::dump() const { 97 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 98 VPSlotTracker SlotTracker( 99 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 100 print(dbgs(), SlotTracker); 101 dbgs() << "\n"; 102 } 103 104 void VPDef::dump() const { 105 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 106 VPSlotTracker SlotTracker( 107 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 108 print(dbgs(), "", SlotTracker); 109 dbgs() << "\n"; 110 } 111 #endif 112 113 // Get the top-most entry block of \p Start. This is the entry block of the 114 // containing VPlan. This function is templated to support both const and non-const blocks 115 template <typename T> static T *getPlanEntry(T *Start) { 116 T *Next = Start; 117 T *Current = Start; 118 while ((Next = Next->getParent())) 119 Current = Next; 120 121 SmallSetVector<T *, 8> WorkList; 122 WorkList.insert(Current); 123 124 for (unsigned i = 0; i < WorkList.size(); i++) { 125 T *Current = WorkList[i]; 126 if (Current->getNumPredecessors() == 0) 127 return Current; 128 auto &Predecessors = Current->getPredecessors(); 129 WorkList.insert(Predecessors.begin(), Predecessors.end()); 130 } 131 132 llvm_unreachable("VPlan without any entry node without predecessors"); 133 } 134 135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 136 137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 138 139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 141 const VPBlockBase *Block = this; 142 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 143 Block = Region->getEntry(); 144 return cast<VPBasicBlock>(Block); 145 } 146 147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 148 VPBlockBase *Block = this; 149 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 150 Block = Region->getEntry(); 151 return cast<VPBasicBlock>(Block); 152 } 153 154 void VPBlockBase::setPlan(VPlan *ParentPlan) { 155 assert(ParentPlan->getEntry() == this && 156 "Can only set plan on its entry block."); 157 Plan = ParentPlan; 158 } 159 160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getExit(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getExit(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 176 if (!Successors.empty() || !Parent) 177 return this; 178 assert(Parent->getExit() == this && 179 "Block w/o successors not the exit of its parent."); 180 return Parent->getEnclosingBlockWithSuccessors(); 181 } 182 183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 184 if (!Predecessors.empty() || !Parent) 185 return this; 186 assert(Parent->getEntry() == this && 187 "Block w/o predecessors not the entry of its parent."); 188 return Parent->getEnclosingBlockWithPredecessors(); 189 } 190 191 VPValue *VPBlockBase::getCondBit() { 192 return CondBitUser.getSingleOperandOrNull(); 193 } 194 195 const VPValue *VPBlockBase::getCondBit() const { 196 return CondBitUser.getSingleOperandOrNull(); 197 } 198 199 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); } 200 201 VPValue *VPBlockBase::getPredicate() { 202 return PredicateUser.getSingleOperandOrNull(); 203 } 204 205 const VPValue *VPBlockBase::getPredicate() const { 206 return PredicateUser.getSingleOperandOrNull(); 207 } 208 209 void VPBlockBase::setPredicate(VPValue *CV) { 210 PredicateUser.resetSingleOpUser(CV); 211 } 212 213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 214 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 215 216 for (VPBlockBase *Block : Blocks) 217 delete Block; 218 } 219 220 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 221 iterator It = begin(); 222 while (It != end() && It->isPhi()) 223 It++; 224 return It; 225 } 226 227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 228 if (!Def->getDef()) 229 return Def->getLiveInIRValue(); 230 231 if (hasScalarValue(Def, Instance)) { 232 return Data 233 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 234 } 235 236 assert(hasVectorValue(Def, Instance.Part)); 237 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 238 if (!VecPart->getType()->isVectorTy()) { 239 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 240 return VecPart; 241 } 242 // TODO: Cache created scalar values. 243 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 244 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 245 // set(Def, Extract, Instance); 246 return Extract; 247 } 248 249 BasicBlock * 250 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 251 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 252 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 253 BasicBlock *PrevBB = CFG.PrevBB; 254 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 255 PrevBB->getParent(), CFG.LastBB); 256 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 257 258 // Hook up the new basic block to its predecessors. 259 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 260 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 261 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 262 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 263 264 // In outer loop vectorization scenario, the predecessor BBlock may not yet 265 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 266 // vectorization. We do not encounter this case in inner loop vectorization 267 // as we start out by building a loop skeleton with the vector loop header 268 // and latch blocks. As a result, we never enter this function for the 269 // header block in the non VPlan-native path. 270 if (!PredBB) { 271 assert(EnableVPlanNativePath && 272 "Unexpected null predecessor in non VPlan-native path"); 273 CFG.VPBBsToFix.push_back(PredVPBB); 274 continue; 275 } 276 277 assert(PredBB && "Predecessor basic-block not found building successor."); 278 auto *PredBBTerminator = PredBB->getTerminator(); 279 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 280 if (isa<UnreachableInst>(PredBBTerminator)) { 281 assert(PredVPSuccessors.size() == 1 && 282 "Predecessor ending w/o branch must have single successor."); 283 PredBBTerminator->eraseFromParent(); 284 BranchInst::Create(NewBB, PredBB); 285 } else { 286 assert(PredVPSuccessors.size() == 2 && 287 "Predecessor ending with branch must have two successors."); 288 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 289 assert(!PredBBTerminator->getSuccessor(idx) && 290 "Trying to reset an existing successor block."); 291 PredBBTerminator->setSuccessor(idx, NewBB); 292 } 293 } 294 return NewBB; 295 } 296 297 void VPBasicBlock::execute(VPTransformState *State) { 298 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 299 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 300 VPBlockBase *SingleHPred = nullptr; 301 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 302 303 // 1. Create an IR basic block, or reuse the last one if possible. 304 // The last IR basic block is reused, as an optimization, in three cases: 305 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 306 // B. when the current VPBB has a single (hierarchical) predecessor which 307 // is PrevVPBB and the latter has a single (hierarchical) successor; and 308 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 309 // is the exit of this region from a previous instance, or the predecessor 310 // of this region. 311 if (PrevVPBB && /* A */ 312 !((SingleHPred = getSingleHierarchicalPredecessor()) && 313 SingleHPred->getExitBasicBlock() == PrevVPBB && 314 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 315 !(Replica && getPredecessors().empty())) { /* C */ 316 NewBB = createEmptyBasicBlock(State->CFG); 317 State->Builder.SetInsertPoint(NewBB); 318 // Temporarily terminate with unreachable until CFG is rewired. 319 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 320 State->Builder.SetInsertPoint(Terminator); 321 // Register NewBB in its loop. In innermost loops its the same for all BB's. 322 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 323 L->addBasicBlockToLoop(NewBB, *State->LI); 324 State->CFG.PrevBB = NewBB; 325 } 326 327 // 2. Fill the IR basic block with IR instructions. 328 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 329 << " in BB:" << NewBB->getName() << '\n'); 330 331 State->CFG.VPBB2IRBB[this] = NewBB; 332 State->CFG.PrevVPBB = this; 333 334 for (VPRecipeBase &Recipe : Recipes) 335 Recipe.execute(*State); 336 337 VPValue *CBV; 338 if (EnableVPlanNativePath && (CBV = getCondBit())) { 339 assert(CBV->getUnderlyingValue() && 340 "Unexpected null underlying value for condition bit"); 341 342 // Condition bit value in a VPBasicBlock is used as the branch selector. In 343 // the VPlan-native path case, since all branches are uniform we generate a 344 // branch instruction using the condition value from vector lane 0 and dummy 345 // successors. The successors are fixed later when the successor blocks are 346 // visited. 347 Value *NewCond = State->get(CBV, {0, 0}); 348 349 // Replace the temporary unreachable terminator with the new conditional 350 // branch. 351 auto *CurrentTerminator = NewBB->getTerminator(); 352 assert(isa<UnreachableInst>(CurrentTerminator) && 353 "Expected to replace unreachable terminator with conditional " 354 "branch."); 355 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 356 CondBr->setSuccessor(0, nullptr); 357 ReplaceInstWithInst(CurrentTerminator, CondBr); 358 } 359 360 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 361 } 362 363 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 364 for (VPRecipeBase &R : Recipes) { 365 for (auto *Def : R.definedValues()) 366 Def->replaceAllUsesWith(NewValue); 367 368 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 369 R.setOperand(I, NewValue); 370 } 371 } 372 373 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 374 assert((SplitAt == end() || SplitAt->getParent() == this) && 375 "can only split at a position in the same block"); 376 377 SmallVector<VPBlockBase *, 2> Succs(successors()); 378 // First, disconnect the current block from its successors. 379 for (VPBlockBase *Succ : Succs) 380 VPBlockUtils::disconnectBlocks(this, Succ); 381 382 // Create new empty block after the block to split. 383 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 384 VPBlockUtils::insertBlockAfter(SplitBlock, this); 385 386 // Add successors for block to split to new block. 387 for (VPBlockBase *Succ : Succs) 388 VPBlockUtils::connectBlocks(SplitBlock, Succ); 389 390 // Finally, move the recipes starting at SplitAt to new block. 391 for (VPRecipeBase &ToMove : 392 make_early_inc_range(make_range(SplitAt, this->end()))) 393 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 394 395 return SplitBlock; 396 } 397 398 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 399 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 400 if (getSuccessors().empty()) { 401 O << Indent << "No successors\n"; 402 } else { 403 O << Indent << "Successor(s): "; 404 ListSeparator LS; 405 for (auto *Succ : getSuccessors()) 406 O << LS << Succ->getName(); 407 O << '\n'; 408 } 409 } 410 411 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 412 VPSlotTracker &SlotTracker) const { 413 O << Indent << getName() << ":\n"; 414 if (const VPValue *Pred = getPredicate()) { 415 O << Indent << "BlockPredicate:"; 416 Pred->printAsOperand(O, SlotTracker); 417 if (const auto *PredInst = dyn_cast<VPInstruction>(Pred)) 418 O << " (" << PredInst->getParent()->getName() << ")"; 419 O << '\n'; 420 } 421 422 auto RecipeIndent = Indent + " "; 423 for (const VPRecipeBase &Recipe : *this) { 424 Recipe.print(O, RecipeIndent, SlotTracker); 425 O << '\n'; 426 } 427 428 printSuccessors(O, Indent); 429 430 if (const VPValue *CBV = getCondBit()) { 431 O << Indent << "CondBit: "; 432 CBV->printAsOperand(O, SlotTracker); 433 if (const auto *CBI = dyn_cast<VPInstruction>(CBV)) 434 O << " (" << CBI->getParent()->getName() << ")"; 435 O << '\n'; 436 } 437 } 438 #endif 439 440 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 441 for (VPBlockBase *Block : depth_first(Entry)) 442 // Drop all references in VPBasicBlocks and replace all uses with 443 // DummyValue. 444 Block->dropAllReferences(NewValue); 445 } 446 447 void VPRegionBlock::execute(VPTransformState *State) { 448 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 449 450 if (!isReplicator()) { 451 // Visit the VPBlocks connected to "this", starting from it. 452 for (VPBlockBase *Block : RPOT) { 453 if (EnableVPlanNativePath) { 454 // The inner loop vectorization path does not represent loop preheader 455 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 456 // vectorizing loop preheader block. In future, we may replace this 457 // check with the check for loop preheader. 458 if (Block->getNumPredecessors() == 0) 459 continue; 460 461 // Skip vectorizing loop exit block. In future, we may replace this 462 // check with the check for loop exit. 463 if (Block->getNumSuccessors() == 0) 464 continue; 465 } 466 467 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 468 Block->execute(State); 469 } 470 return; 471 } 472 473 assert(!State->Instance && "Replicating a Region with non-null instance."); 474 475 // Enter replicating mode. 476 State->Instance = VPIteration(0, 0); 477 478 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 479 State->Instance->Part = Part; 480 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 481 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 482 ++Lane) { 483 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 484 // Visit the VPBlocks connected to \p this, starting from it. 485 for (VPBlockBase *Block : RPOT) { 486 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 487 Block->execute(State); 488 } 489 } 490 } 491 492 // Exit replicating mode. 493 State->Instance.reset(); 494 } 495 496 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 497 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 498 VPSlotTracker &SlotTracker) const { 499 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 500 auto NewIndent = Indent + " "; 501 for (auto *BlockBase : depth_first(Entry)) { 502 O << '\n'; 503 BlockBase->print(O, NewIndent, SlotTracker); 504 } 505 O << Indent << "}\n"; 506 507 printSuccessors(O, Indent); 508 } 509 #endif 510 511 bool VPRecipeBase::mayWriteToMemory() const { 512 switch (getVPDefID()) { 513 case VPWidenMemoryInstructionSC: { 514 return cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 515 } 516 case VPReplicateSC: 517 case VPWidenCallSC: 518 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 519 ->mayWriteToMemory(); 520 case VPBranchOnMaskSC: 521 return false; 522 case VPWidenIntOrFpInductionSC: 523 case VPWidenCanonicalIVSC: 524 case VPWidenPHISC: 525 case VPBlendSC: 526 case VPWidenSC: 527 case VPWidenGEPSC: 528 case VPReductionSC: 529 case VPWidenSelectSC: { 530 const Instruction *I = 531 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 532 (void)I; 533 assert((!I || !I->mayWriteToMemory()) && 534 "underlying instruction may write to memory"); 535 return false; 536 } 537 default: 538 return true; 539 } 540 } 541 542 bool VPRecipeBase::mayReadFromMemory() const { 543 switch (getVPDefID()) { 544 case VPWidenMemoryInstructionSC: { 545 return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 546 } 547 case VPReplicateSC: 548 case VPWidenCallSC: 549 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 550 ->mayReadFromMemory(); 551 case VPBranchOnMaskSC: 552 return false; 553 case VPWidenIntOrFpInductionSC: 554 case VPWidenCanonicalIVSC: 555 case VPWidenPHISC: 556 case VPBlendSC: 557 case VPWidenSC: 558 case VPWidenGEPSC: 559 case VPReductionSC: 560 case VPWidenSelectSC: { 561 const Instruction *I = 562 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 563 (void)I; 564 assert((!I || !I->mayReadFromMemory()) && 565 "underlying instruction may read from memory"); 566 return false; 567 } 568 default: 569 return true; 570 } 571 } 572 573 bool VPRecipeBase::mayHaveSideEffects() const { 574 switch (getVPDefID()) { 575 case VPBranchOnMaskSC: 576 return false; 577 case VPWidenIntOrFpInductionSC: 578 case VPWidenCanonicalIVSC: 579 case VPWidenPHISC: 580 case VPBlendSC: 581 case VPWidenSC: 582 case VPWidenGEPSC: 583 case VPReductionSC: 584 case VPWidenSelectSC: { 585 const Instruction *I = 586 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 587 (void)I; 588 assert((!I || !I->mayHaveSideEffects()) && 589 "underlying instruction has side-effects"); 590 return false; 591 } 592 case VPReplicateSC: { 593 auto *R = cast<VPReplicateRecipe>(this); 594 return R->getUnderlyingInstr()->mayHaveSideEffects(); 595 } 596 default: 597 return true; 598 } 599 } 600 601 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 602 assert(!Parent && "Recipe already in some VPBasicBlock"); 603 assert(InsertPos->getParent() && 604 "Insertion position not in any VPBasicBlock"); 605 Parent = InsertPos->getParent(); 606 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 607 } 608 609 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 610 assert(!Parent && "Recipe already in some VPBasicBlock"); 611 assert(InsertPos->getParent() && 612 "Insertion position not in any VPBasicBlock"); 613 Parent = InsertPos->getParent(); 614 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 615 } 616 617 void VPRecipeBase::removeFromParent() { 618 assert(getParent() && "Recipe not in any VPBasicBlock"); 619 getParent()->getRecipeList().remove(getIterator()); 620 Parent = nullptr; 621 } 622 623 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 624 assert(getParent() && "Recipe not in any VPBasicBlock"); 625 return getParent()->getRecipeList().erase(getIterator()); 626 } 627 628 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 629 removeFromParent(); 630 insertAfter(InsertPos); 631 } 632 633 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 634 iplist<VPRecipeBase>::iterator I) { 635 assert(I == BB.end() || I->getParent() == &BB); 636 removeFromParent(); 637 Parent = &BB; 638 BB.getRecipeList().insert(I, this); 639 } 640 641 void VPInstruction::generateInstruction(VPTransformState &State, 642 unsigned Part) { 643 IRBuilder<> &Builder = State.Builder; 644 Builder.SetCurrentDebugLocation(DL); 645 646 if (Instruction::isBinaryOp(getOpcode())) { 647 Value *A = State.get(getOperand(0), Part); 648 Value *B = State.get(getOperand(1), Part); 649 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 650 State.set(this, V, Part); 651 return; 652 } 653 654 switch (getOpcode()) { 655 case VPInstruction::Not: { 656 Value *A = State.get(getOperand(0), Part); 657 Value *V = Builder.CreateNot(A); 658 State.set(this, V, Part); 659 break; 660 } 661 case VPInstruction::ICmpULE: { 662 Value *IV = State.get(getOperand(0), Part); 663 Value *TC = State.get(getOperand(1), Part); 664 Value *V = Builder.CreateICmpULE(IV, TC); 665 State.set(this, V, Part); 666 break; 667 } 668 case Instruction::Select: { 669 Value *Cond = State.get(getOperand(0), Part); 670 Value *Op1 = State.get(getOperand(1), Part); 671 Value *Op2 = State.get(getOperand(2), Part); 672 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 673 State.set(this, V, Part); 674 break; 675 } 676 case VPInstruction::ActiveLaneMask: { 677 // Get first lane of vector induction variable. 678 Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0)); 679 // Get the original loop tripcount. 680 Value *ScalarTC = State.get(getOperand(1), Part); 681 682 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 683 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 684 Instruction *Call = Builder.CreateIntrinsic( 685 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 686 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 687 State.set(this, Call, Part); 688 break; 689 } 690 case VPInstruction::FirstOrderRecurrenceSplice: { 691 // Generate code to combine the previous and current values in vector v3. 692 // 693 // vector.ph: 694 // v_init = vector(..., ..., ..., a[-1]) 695 // br vector.body 696 // 697 // vector.body 698 // i = phi [0, vector.ph], [i+4, vector.body] 699 // v1 = phi [v_init, vector.ph], [v2, vector.body] 700 // v2 = a[i, i+1, i+2, i+3]; 701 // v3 = vector(v1(3), v2(0, 1, 2)) 702 703 // For the first part, use the recurrence phi (v1), otherwise v2. 704 auto *V1 = State.get(getOperand(0), 0); 705 Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1); 706 if (!PartMinus1->getType()->isVectorTy()) { 707 State.set(this, PartMinus1, Part); 708 } else { 709 Value *V2 = State.get(getOperand(1), Part); 710 State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part); 711 } 712 break; 713 } 714 715 case VPInstruction::CanonicalIVIncrement: 716 case VPInstruction::CanonicalIVIncrementNUW: { 717 Value *Next = nullptr; 718 if (Part == 0) { 719 bool IsNUW = getOpcode() == VPInstruction::CanonicalIVIncrementNUW; 720 auto *Phi = State.get(getOperand(0), 0); 721 // The loop step is equal to the vectorization factor (num of SIMD 722 // elements) times the unroll factor (num of SIMD instructions). 723 Value *Step = 724 createStepForVF(Builder, Phi->getType(), State.VF, State.UF); 725 Next = Builder.CreateAdd(Phi, Step, "index.next", IsNUW, false); 726 } else { 727 Next = State.get(this, 0); 728 } 729 730 State.set(this, Next, Part); 731 break; 732 } 733 default: 734 llvm_unreachable("Unsupported opcode for instruction"); 735 } 736 } 737 738 void VPInstruction::execute(VPTransformState &State) { 739 assert(!State.Instance && "VPInstruction executing an Instance"); 740 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 741 State.Builder.setFastMathFlags(FMF); 742 for (unsigned Part = 0; Part < State.UF; ++Part) 743 generateInstruction(State, Part); 744 } 745 746 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 747 void VPInstruction::dump() const { 748 VPSlotTracker SlotTracker(getParent()->getPlan()); 749 print(dbgs(), "", SlotTracker); 750 } 751 752 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 753 VPSlotTracker &SlotTracker) const { 754 O << Indent << "EMIT "; 755 756 if (hasResult()) { 757 printAsOperand(O, SlotTracker); 758 O << " = "; 759 } 760 761 switch (getOpcode()) { 762 case VPInstruction::Not: 763 O << "not"; 764 break; 765 case VPInstruction::ICmpULE: 766 O << "icmp ule"; 767 break; 768 case VPInstruction::SLPLoad: 769 O << "combined load"; 770 break; 771 case VPInstruction::SLPStore: 772 O << "combined store"; 773 break; 774 case VPInstruction::ActiveLaneMask: 775 O << "active lane mask"; 776 break; 777 case VPInstruction::FirstOrderRecurrenceSplice: 778 O << "first-order splice"; 779 break; 780 case VPInstruction::CanonicalIVIncrement: 781 O << "VF * UF + "; 782 break; 783 case VPInstruction::CanonicalIVIncrementNUW: 784 O << "VF * UF +(nuw) "; 785 break; 786 default: 787 O << Instruction::getOpcodeName(getOpcode()); 788 } 789 790 O << FMF; 791 792 for (const VPValue *Operand : operands()) { 793 O << " "; 794 Operand->printAsOperand(O, SlotTracker); 795 } 796 797 if (DL) { 798 O << ", !dbg "; 799 DL.print(O); 800 } 801 } 802 #endif 803 804 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) { 805 // Make sure the VPInstruction is a floating-point operation. 806 assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul || 807 Opcode == Instruction::FNeg || Opcode == Instruction::FSub || 808 Opcode == Instruction::FDiv || Opcode == Instruction::FRem || 809 Opcode == Instruction::FCmp) && 810 "this op can't take fast-math flags"); 811 FMF = FMFNew; 812 } 813 814 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 815 Value *CanonicalIVStartValue, 816 VPTransformState &State) { 817 // Check if the trip count is needed, and if so build it. 818 if (TripCount && TripCount->getNumUsers()) { 819 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 820 State.set(TripCount, TripCountV, Part); 821 } 822 823 // Check if the backedge taken count is needed, and if so build it. 824 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 825 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 826 auto *TCMO = Builder.CreateSub(TripCountV, 827 ConstantInt::get(TripCountV->getType(), 1), 828 "trip.count.minus.1"); 829 auto VF = State.VF; 830 Value *VTCMO = 831 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 832 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 833 State.set(BackedgeTakenCount, VTCMO, Part); 834 } 835 836 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 837 State.set(&VectorTripCount, VectorTripCountV, Part); 838 839 // When vectorizing the epilogue loop, the canonical induction start value 840 // needs to be changed from zero to the value after the main vector loop. 841 if (CanonicalIVStartValue) { 842 VPValue *VPV = new VPValue(CanonicalIVStartValue); 843 addExternalDef(VPV); 844 auto *IV = getCanonicalIV(); 845 IV->setOperand(0, VPV); 846 } 847 } 848 849 /// Generate the code inside the body of the vectorized loop. Assumes a single 850 /// LoopVectorBody basic-block was created for this. Introduce additional 851 /// basic-blocks as needed, and fill them all. 852 void VPlan::execute(VPTransformState *State) { 853 // 0. Set the reverse mapping from VPValues to Values for code generation. 854 for (auto &Entry : Value2VPValue) 855 State->VPValue2Value[Entry.second] = Entry.first; 856 857 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 858 State->CFG.VectorPreHeader = VectorPreHeaderBB; 859 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 860 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 861 862 // 1. Make room to generate basic-blocks inside loop body if needed. 863 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 864 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 865 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 866 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 867 // Remove the edge between Header and Latch to allow other connections. 868 // Temporarily terminate with unreachable until CFG is rewired. 869 // Note: this asserts the generated code's assumption that 870 // getFirstInsertionPt() can be dereferenced into an Instruction. 871 VectorHeaderBB->getTerminator()->eraseFromParent(); 872 State->Builder.SetInsertPoint(VectorHeaderBB); 873 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 874 State->Builder.SetInsertPoint(Terminator); 875 876 // 2. Generate code in loop body. 877 State->CFG.PrevVPBB = nullptr; 878 State->CFG.PrevBB = VectorHeaderBB; 879 State->CFG.LastBB = VectorLatchBB; 880 881 for (VPBlockBase *Block : depth_first(Entry)) 882 Block->execute(State); 883 884 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 885 // VPBB's successors. 886 for (auto VPBB : State->CFG.VPBBsToFix) { 887 assert(EnableVPlanNativePath && 888 "Unexpected VPBBsToFix in non VPlan-native path"); 889 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 890 assert(BB && "Unexpected null basic block for VPBB"); 891 892 unsigned Idx = 0; 893 auto *BBTerminator = BB->getTerminator(); 894 895 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 896 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 897 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 898 ++Idx; 899 } 900 } 901 902 // 3. Merge the temporary latch created with the last basic-block filled. 903 BasicBlock *LastBB = State->CFG.PrevBB; 904 // Connect LastBB to VectorLatchBB to facilitate their merge. 905 assert((EnableVPlanNativePath || 906 isa<UnreachableInst>(LastBB->getTerminator())) && 907 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 908 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 909 "Expected VPlan CFG to terminate with branch in NativePath"); 910 LastBB->getTerminator()->eraseFromParent(); 911 BranchInst::Create(VectorLatchBB, LastBB); 912 913 // Merge LastBB with Latch. 914 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 915 (void)Merged; 916 assert(Merged && "Could not merge last basic block with latch."); 917 VectorLatchBB = LastBB; 918 919 // Fix the latch value of canonical, reduction and first-order recurrences 920 // phis in the vector loop. 921 VPBasicBlock *Header = Entry->getEntryBasicBlock(); 922 if (Header->empty()) { 923 assert(EnableVPlanNativePath); 924 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 925 } 926 for (VPRecipeBase &R : Header->phis()) { 927 // Skip phi-like recipes that generate their backedege values themselves. 928 // TODO: Model their backedge values explicitly. 929 if (isa<VPWidenIntOrFpInductionRecipe>(&R) || isa<VPWidenPHIRecipe>(&R)) 930 continue; 931 932 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 933 // For canonical IV, first-order recurrences and in-order reduction phis, 934 // only a single part is generated, which provides the last part from the 935 // previous iteration. For non-ordered reductions all UF parts are 936 // generated. 937 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 938 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 939 cast<VPReductionPHIRecipe>(PhiR)->isOrdered(); 940 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 941 942 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 943 Value *Phi = State->get(PhiR, Part); 944 Value *Val = State->get(PhiR->getBackedgeValue(), 945 SinglePartNeeded ? State->UF - 1 : Part); 946 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 947 } 948 } 949 950 // Add the loop exit condition and branch based on the canonical induction. 951 auto *CanonicalIV = getCanonicalIV(); 952 // TODO: Model compare and branch explicitly in VPlan as recipes. 953 auto *Next = State->get(CanonicalIV->getBackedgeValue(), 0); 954 auto *TermBr = cast<BranchInst>(VectorLatchBB->getTerminator()); 955 State->Builder.SetInsertPoint(TermBr); 956 auto *ICmp = 957 State->Builder.CreateICmpEQ(Next, State->get(&getVectorTripCount(), 0)); 958 TermBr->setCondition(ICmp); 959 960 // We do not attempt to preserve DT for outer loop vectorization currently. 961 if (!EnableVPlanNativePath) 962 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 963 L->getExitBlock()); 964 } 965 966 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 967 LLVM_DUMP_METHOD 968 void VPlan::print(raw_ostream &O) const { 969 VPSlotTracker SlotTracker(this); 970 971 O << "VPlan '" << Name << "' {"; 972 973 assert(VectorTripCount.getNumUsers() == 0 && 974 "should not be used yet in VPlan"); 975 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 976 O << "\nLive-in "; 977 BackedgeTakenCount->printAsOperand(O, SlotTracker); 978 O << " = backedge-taken count\n"; 979 } 980 981 for (const VPBlockBase *Block : depth_first(getEntry())) { 982 O << '\n'; 983 Block->print(O, "", SlotTracker); 984 } 985 O << "}\n"; 986 } 987 988 LLVM_DUMP_METHOD 989 void VPlan::printDOT(raw_ostream &O) const { 990 VPlanPrinter Printer(O, *this); 991 Printer.dump(); 992 } 993 994 LLVM_DUMP_METHOD 995 void VPlan::dump() const { print(dbgs()); } 996 #endif 997 998 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 999 BasicBlock *LoopLatchBB, 1000 BasicBlock *LoopExitBB) { 1001 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 1002 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 1003 // The vector body may be more than a single basic-block by this point. 1004 // Update the dominator tree information inside the vector body by propagating 1005 // it from header to latch, expecting only triangular control-flow, if any. 1006 BasicBlock *PostDomSucc = nullptr; 1007 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 1008 // Get the list of successors of this block. 1009 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 1010 assert(Succs.size() <= 2 && 1011 "Basic block in vector loop has more than 2 successors."); 1012 PostDomSucc = Succs[0]; 1013 if (Succs.size() == 1) { 1014 assert(PostDomSucc->getSinglePredecessor() && 1015 "PostDom successor has more than one predecessor."); 1016 DT->addNewBlock(PostDomSucc, BB); 1017 continue; 1018 } 1019 BasicBlock *InterimSucc = Succs[1]; 1020 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 1021 PostDomSucc = Succs[1]; 1022 InterimSucc = Succs[0]; 1023 } 1024 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 1025 "One successor of a basic block does not lead to the other."); 1026 assert(InterimSucc->getSinglePredecessor() && 1027 "Interim successor has more than one predecessor."); 1028 assert(PostDomSucc->hasNPredecessors(2) && 1029 "PostDom successor has more than two predecessors."); 1030 DT->addNewBlock(InterimSucc, BB); 1031 DT->addNewBlock(PostDomSucc, BB); 1032 } 1033 // Latch block is a new dominator for the loop exit. 1034 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 1035 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 1036 } 1037 1038 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1039 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1040 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1041 Twine(getOrCreateBID(Block)); 1042 } 1043 1044 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1045 const std::string &Name = Block->getName(); 1046 if (!Name.empty()) 1047 return Name; 1048 return "VPB" + Twine(getOrCreateBID(Block)); 1049 } 1050 1051 void VPlanPrinter::dump() { 1052 Depth = 1; 1053 bumpIndent(0); 1054 OS << "digraph VPlan {\n"; 1055 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1056 if (!Plan.getName().empty()) 1057 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1058 if (Plan.BackedgeTakenCount) { 1059 OS << ", where:\\n"; 1060 Plan.BackedgeTakenCount->print(OS, SlotTracker); 1061 OS << " := BackedgeTakenCount"; 1062 } 1063 OS << "\"]\n"; 1064 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1065 OS << "edge [fontname=Courier, fontsize=30]\n"; 1066 OS << "compound=true\n"; 1067 1068 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 1069 dumpBlock(Block); 1070 1071 OS << "}\n"; 1072 } 1073 1074 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1075 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1076 dumpBasicBlock(BasicBlock); 1077 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1078 dumpRegion(Region); 1079 else 1080 llvm_unreachable("Unsupported kind of VPBlock."); 1081 } 1082 1083 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1084 bool Hidden, const Twine &Label) { 1085 // Due to "dot" we print an edge between two regions as an edge between the 1086 // exit basic block and the entry basic of the respective regions. 1087 const VPBlockBase *Tail = From->getExitBasicBlock(); 1088 const VPBlockBase *Head = To->getEntryBasicBlock(); 1089 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1090 OS << " [ label=\"" << Label << '\"'; 1091 if (Tail != From) 1092 OS << " ltail=" << getUID(From); 1093 if (Head != To) 1094 OS << " lhead=" << getUID(To); 1095 if (Hidden) 1096 OS << "; splines=none"; 1097 OS << "]\n"; 1098 } 1099 1100 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1101 auto &Successors = Block->getSuccessors(); 1102 if (Successors.size() == 1) 1103 drawEdge(Block, Successors.front(), false, ""); 1104 else if (Successors.size() == 2) { 1105 drawEdge(Block, Successors.front(), false, "T"); 1106 drawEdge(Block, Successors.back(), false, "F"); 1107 } else { 1108 unsigned SuccessorNumber = 0; 1109 for (auto *Successor : Successors) 1110 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1111 } 1112 } 1113 1114 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1115 // Implement dot-formatted dump by performing plain-text dump into the 1116 // temporary storage followed by some post-processing. 1117 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1118 bumpIndent(1); 1119 std::string Str; 1120 raw_string_ostream SS(Str); 1121 // Use no indentation as we need to wrap the lines into quotes ourselves. 1122 BasicBlock->print(SS, "", SlotTracker); 1123 1124 // We need to process each line of the output separately, so split 1125 // single-string plain-text dump. 1126 SmallVector<StringRef, 0> Lines; 1127 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1128 1129 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1130 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1131 }; 1132 1133 // Don't need the "+" after the last line. 1134 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1135 EmitLine(Line, " +\n"); 1136 EmitLine(Lines.back(), "\n"); 1137 1138 bumpIndent(-1); 1139 OS << Indent << "]\n"; 1140 1141 dumpEdges(BasicBlock); 1142 } 1143 1144 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1145 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1146 bumpIndent(1); 1147 OS << Indent << "fontname=Courier\n" 1148 << Indent << "label=\"" 1149 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1150 << DOT::EscapeString(Region->getName()) << "\"\n"; 1151 // Dump the blocks of the region. 1152 assert(Region->getEntry() && "Region contains no inner blocks."); 1153 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 1154 dumpBlock(Block); 1155 bumpIndent(-1); 1156 OS << Indent << "}\n"; 1157 dumpEdges(Region); 1158 } 1159 1160 void VPlanIngredient::print(raw_ostream &O) const { 1161 if (auto *Inst = dyn_cast<Instruction>(V)) { 1162 if (!Inst->getType()->isVoidTy()) { 1163 Inst->printAsOperand(O, false); 1164 O << " = "; 1165 } 1166 O << Inst->getOpcodeName() << " "; 1167 unsigned E = Inst->getNumOperands(); 1168 if (E > 0) { 1169 Inst->getOperand(0)->printAsOperand(O, false); 1170 for (unsigned I = 1; I < E; ++I) 1171 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1172 } 1173 } else // !Inst 1174 V->printAsOperand(O, false); 1175 } 1176 1177 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 1178 VPSlotTracker &SlotTracker) const { 1179 O << Indent << "WIDEN-CALL "; 1180 1181 auto *CI = cast<CallInst>(getUnderlyingInstr()); 1182 if (CI->getType()->isVoidTy()) 1183 O << "void "; 1184 else { 1185 printAsOperand(O, SlotTracker); 1186 O << " = "; 1187 } 1188 1189 O << "call @" << CI->getCalledFunction()->getName() << "("; 1190 printOperands(O, SlotTracker); 1191 O << ")"; 1192 } 1193 1194 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 1195 VPSlotTracker &SlotTracker) const { 1196 O << Indent << "WIDEN-SELECT "; 1197 printAsOperand(O, SlotTracker); 1198 O << " = select "; 1199 getOperand(0)->printAsOperand(O, SlotTracker); 1200 O << ", "; 1201 getOperand(1)->printAsOperand(O, SlotTracker); 1202 O << ", "; 1203 getOperand(2)->printAsOperand(O, SlotTracker); 1204 O << (InvariantCond ? " (condition is loop invariant)" : ""); 1205 } 1206 1207 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 1208 VPSlotTracker &SlotTracker) const { 1209 O << Indent << "WIDEN "; 1210 printAsOperand(O, SlotTracker); 1211 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 1212 printOperands(O, SlotTracker); 1213 } 1214 1215 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1216 VPSlotTracker &SlotTracker) const { 1217 O << Indent << "WIDEN-INDUCTION"; 1218 if (getTruncInst()) { 1219 O << "\\l\""; 1220 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 1221 O << " +\n" << Indent << "\" "; 1222 getVPValue(0)->printAsOperand(O, SlotTracker); 1223 } else 1224 O << " " << VPlanIngredient(IV); 1225 } 1226 1227 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 1228 VPSlotTracker &SlotTracker) const { 1229 O << Indent << "WIDEN-GEP "; 1230 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 1231 size_t IndicesNumber = IsIndexLoopInvariant.size(); 1232 for (size_t I = 0; I < IndicesNumber; ++I) 1233 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 1234 1235 O << " "; 1236 printAsOperand(O, SlotTracker); 1237 O << " = getelementptr "; 1238 printOperands(O, SlotTracker); 1239 } 1240 1241 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1242 VPSlotTracker &SlotTracker) const { 1243 O << Indent << "WIDEN-PHI "; 1244 1245 auto *OriginalPhi = cast<PHINode>(getUnderlyingValue()); 1246 // Unless all incoming values are modeled in VPlan print the original PHI 1247 // directly. 1248 // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming 1249 // values as VPValues. 1250 if (getNumOperands() != OriginalPhi->getNumOperands()) { 1251 O << VPlanIngredient(OriginalPhi); 1252 return; 1253 } 1254 1255 printAsOperand(O, SlotTracker); 1256 O << " = phi "; 1257 printOperands(O, SlotTracker); 1258 } 1259 1260 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 1261 VPSlotTracker &SlotTracker) const { 1262 O << Indent << "BLEND "; 1263 Phi->printAsOperand(O, false); 1264 O << " ="; 1265 if (getNumIncomingValues() == 1) { 1266 // Not a User of any mask: not really blending, this is a 1267 // single-predecessor phi. 1268 O << " "; 1269 getIncomingValue(0)->printAsOperand(O, SlotTracker); 1270 } else { 1271 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 1272 O << " "; 1273 getIncomingValue(I)->printAsOperand(O, SlotTracker); 1274 O << "/"; 1275 getMask(I)->printAsOperand(O, SlotTracker); 1276 } 1277 } 1278 } 1279 1280 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 1281 VPSlotTracker &SlotTracker) const { 1282 O << Indent << "REDUCE "; 1283 printAsOperand(O, SlotTracker); 1284 O << " = "; 1285 getChainOp()->printAsOperand(O, SlotTracker); 1286 O << " +"; 1287 if (isa<FPMathOperator>(getUnderlyingInstr())) 1288 O << getUnderlyingInstr()->getFastMathFlags(); 1289 O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " ("; 1290 getVecOp()->printAsOperand(O, SlotTracker); 1291 if (getCondOp()) { 1292 O << ", "; 1293 getCondOp()->printAsOperand(O, SlotTracker); 1294 } 1295 O << ")"; 1296 } 1297 1298 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 1299 VPSlotTracker &SlotTracker) const { 1300 O << Indent << (IsUniform ? "CLONE " : "REPLICATE "); 1301 1302 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 1303 printAsOperand(O, SlotTracker); 1304 O << " = "; 1305 } 1306 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 1307 printOperands(O, SlotTracker); 1308 1309 if (AlsoPack) 1310 O << " (S->V)"; 1311 } 1312 1313 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1314 VPSlotTracker &SlotTracker) const { 1315 O << Indent << "PHI-PREDICATED-INSTRUCTION "; 1316 printAsOperand(O, SlotTracker); 1317 O << " = "; 1318 printOperands(O, SlotTracker); 1319 } 1320 1321 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 1322 VPSlotTracker &SlotTracker) const { 1323 O << Indent << "WIDEN "; 1324 1325 if (!isStore()) { 1326 getVPSingleValue()->printAsOperand(O, SlotTracker); 1327 O << " = "; 1328 } 1329 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 1330 1331 printOperands(O, SlotTracker); 1332 } 1333 #endif 1334 1335 void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) { 1336 Value *Start = getStartValue()->getLiveInIRValue(); 1337 PHINode *EntryPart = PHINode::Create( 1338 Start->getType(), 2, "index", &*State.CFG.PrevBB->getFirstInsertionPt()); 1339 EntryPart->addIncoming(Start, State.CFG.VectorPreHeader); 1340 EntryPart->setDebugLoc(DL); 1341 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 1342 State.set(this, EntryPart, Part); 1343 } 1344 1345 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1346 void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1347 VPSlotTracker &SlotTracker) const { 1348 O << Indent << "EMIT "; 1349 getVPSingleValue()->printAsOperand(O, SlotTracker); 1350 O << " = CANONICAL-INDUCTION"; 1351 } 1352 #endif 1353 1354 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 1355 Value *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 1356 Type *STy = CanonicalIV->getType(); 1357 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 1358 ElementCount VF = State.VF; 1359 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 1360 Value *VStart = VF.isScalar() 1361 ? CanonicalIV 1362 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 1363 CanonicalIV, "broadcast"); 1364 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 1365 SmallVector<Constant *, 8> Indices; 1366 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 1367 Indices.push_back( 1368 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 1369 // If VF == 1, there is only one iteration in the loop above, thus the 1370 // element pushed back into Indices is ConstantInt::get(STy, Part) 1371 Constant *VStep = 1372 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices); 1373 // Add the consecutive indices to the vector value. 1374 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1375 State.set(this, CanonicalVectorIV, Part); 1376 } 1377 } 1378 1379 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1380 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1381 VPSlotTracker &SlotTracker) const { 1382 O << Indent << "EMIT "; 1383 printAsOperand(O, SlotTracker); 1384 O << " = WIDEN-CANONICAL-INDUCTION"; 1385 } 1386 #endif 1387 1388 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) { 1389 auto &Builder = State.Builder; 1390 // Create a vector from the initial value. 1391 auto *VectorInit = getStartValue()->getLiveInIRValue(); 1392 1393 Type *VecTy = State.VF.isScalar() 1394 ? VectorInit->getType() 1395 : VectorType::get(VectorInit->getType(), State.VF); 1396 1397 if (State.VF.isVector()) { 1398 auto *IdxTy = Builder.getInt32Ty(); 1399 auto *One = ConstantInt::get(IdxTy, 1); 1400 IRBuilder<>::InsertPointGuard Guard(Builder); 1401 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 1402 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF); 1403 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 1404 VectorInit = Builder.CreateInsertElement( 1405 PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init"); 1406 } 1407 1408 // Create a phi node for the new recurrence. 1409 PHINode *EntryPart = PHINode::Create( 1410 VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt()); 1411 EntryPart->addIncoming(VectorInit, State.CFG.VectorPreHeader); 1412 State.set(this, EntryPart, 0); 1413 } 1414 1415 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1416 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent, 1417 VPSlotTracker &SlotTracker) const { 1418 O << Indent << "FIRST-ORDER-RECURRENCE-PHI "; 1419 printAsOperand(O, SlotTracker); 1420 O << " = phi "; 1421 printOperands(O, SlotTracker); 1422 } 1423 #endif 1424 1425 void VPReductionPHIRecipe::execute(VPTransformState &State) { 1426 PHINode *PN = cast<PHINode>(getUnderlyingValue()); 1427 auto &Builder = State.Builder; 1428 1429 // In order to support recurrences we need to be able to vectorize Phi nodes. 1430 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 1431 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 1432 // this value when we vectorize all of the instructions that use the PHI. 1433 bool ScalarPHI = State.VF.isScalar() || IsInLoop; 1434 Type *VecTy = 1435 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 1436 1437 BasicBlock *HeaderBB = State.CFG.PrevBB; 1438 assert(State.LI->getLoopFor(HeaderBB)->getHeader() == HeaderBB && 1439 "recipe must be in the vector loop header"); 1440 unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF; 1441 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1442 Value *EntryPart = 1443 PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt()); 1444 State.set(this, EntryPart, Part); 1445 } 1446 1447 // Reductions do not have to start at zero. They can start with 1448 // any loop invariant values. 1449 VPValue *StartVPV = getStartValue(); 1450 Value *StartV = StartVPV->getLiveInIRValue(); 1451 1452 Value *Iden = nullptr; 1453 RecurKind RK = RdxDesc.getRecurrenceKind(); 1454 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) || 1455 RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) { 1456 // MinMax reduction have the start value as their identify. 1457 if (ScalarPHI) { 1458 Iden = StartV; 1459 } else { 1460 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1461 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 1462 StartV = Iden = 1463 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 1464 } 1465 } else { 1466 Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(), 1467 RdxDesc.getFastMathFlags()); 1468 1469 if (!ScalarPHI) { 1470 Iden = Builder.CreateVectorSplat(State.VF, Iden); 1471 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1472 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 1473 Constant *Zero = Builder.getInt32(0); 1474 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 1475 } 1476 } 1477 1478 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1479 Value *EntryPart = State.get(this, Part); 1480 // Make sure to add the reduction start value only to the 1481 // first unroll part. 1482 Value *StartVal = (Part == 0) ? StartV : Iden; 1483 cast<PHINode>(EntryPart)->addIncoming(StartVal, State.CFG.VectorPreHeader); 1484 } 1485 } 1486 1487 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1488 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1489 VPSlotTracker &SlotTracker) const { 1490 O << Indent << "WIDEN-REDUCTION-PHI "; 1491 1492 printAsOperand(O, SlotTracker); 1493 O << " = phi "; 1494 printOperands(O, SlotTracker); 1495 } 1496 #endif 1497 1498 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1499 1500 void VPValue::replaceAllUsesWith(VPValue *New) { 1501 for (unsigned J = 0; J < getNumUsers();) { 1502 VPUser *User = Users[J]; 1503 unsigned NumUsers = getNumUsers(); 1504 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1505 if (User->getOperand(I) == this) 1506 User->setOperand(I, New); 1507 // If a user got removed after updating the current user, the next user to 1508 // update will be moved to the current position, so we only need to 1509 // increment the index if the number of users did not change. 1510 if (NumUsers == getNumUsers()) 1511 J++; 1512 } 1513 } 1514 1515 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1516 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1517 if (const Value *UV = getUnderlyingValue()) { 1518 OS << "ir<"; 1519 UV->printAsOperand(OS, false); 1520 OS << ">"; 1521 return; 1522 } 1523 1524 unsigned Slot = Tracker.getSlot(this); 1525 if (Slot == unsigned(-1)) 1526 OS << "<badref>"; 1527 else 1528 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1529 } 1530 1531 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1532 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1533 Op->printAsOperand(O, SlotTracker); 1534 }); 1535 } 1536 #endif 1537 1538 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1539 Old2NewTy &Old2New, 1540 InterleavedAccessInfo &IAI) { 1541 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1542 for (VPBlockBase *Base : RPOT) { 1543 visitBlock(Base, Old2New, IAI); 1544 } 1545 } 1546 1547 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1548 InterleavedAccessInfo &IAI) { 1549 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1550 for (VPRecipeBase &VPI : *VPBB) { 1551 if (isa<VPHeaderPHIRecipe>(&VPI)) 1552 continue; 1553 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1554 auto *VPInst = cast<VPInstruction>(&VPI); 1555 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1556 auto *IG = IAI.getInterleaveGroup(Inst); 1557 if (!IG) 1558 continue; 1559 1560 auto NewIGIter = Old2New.find(IG); 1561 if (NewIGIter == Old2New.end()) 1562 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1563 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1564 1565 if (Inst == IG->getInsertPos()) 1566 Old2New[IG]->setInsertPos(VPInst); 1567 1568 InterleaveGroupMap[VPInst] = Old2New[IG]; 1569 InterleaveGroupMap[VPInst]->insertMember( 1570 VPInst, IG->getIndex(Inst), 1571 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1572 : IG->getFactor())); 1573 } 1574 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1575 visitRegion(Region, Old2New, IAI); 1576 else 1577 llvm_unreachable("Unsupported kind of VPBlock."); 1578 } 1579 1580 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1581 InterleavedAccessInfo &IAI) { 1582 Old2NewTy Old2New; 1583 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1584 } 1585 1586 void VPSlotTracker::assignSlot(const VPValue *V) { 1587 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1588 Slots[V] = NextSlot++; 1589 } 1590 1591 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1592 1593 for (const VPValue *V : Plan.VPExternalDefs) 1594 assignSlot(V); 1595 1596 assignSlot(&Plan.VectorTripCount); 1597 if (Plan.BackedgeTakenCount) 1598 assignSlot(Plan.BackedgeTakenCount); 1599 1600 ReversePostOrderTraversal< 1601 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1602 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1603 Plan.getEntry())); 1604 for (const VPBasicBlock *VPBB : 1605 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1606 for (const VPRecipeBase &Recipe : *VPBB) 1607 for (VPValue *Def : Recipe.definedValues()) 1608 assignSlot(Def); 1609 } 1610