1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include <cassert>
44 #include <iterator>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
50 
51 #define DEBUG_TYPE "vplan"
52 
53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
55   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
56   VPSlotTracker SlotTracker(
57       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
58   V.print(OS, SlotTracker);
59   return OS;
60 }
61 #endif
62 
63 Value *VPLane::getAsRuntimeExpr(IRBuilder<> &Builder,
64                                 const ElementCount &VF) const {
65   switch (LaneKind) {
66   case VPLane::Kind::ScalableLast:
67     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
68     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
69                              Builder.getInt32(VF.getKnownMinValue() - Lane));
70   case VPLane::Kind::First:
71     return Builder.getInt32(Lane);
72   }
73   llvm_unreachable("Unknown lane kind");
74 }
75 
76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
77     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
78   if (Def)
79     Def->addDefinedValue(this);
80 }
81 
82 VPValue::~VPValue() {
83   assert(Users.empty() && "trying to delete a VPValue with remaining users");
84   if (Def)
85     Def->removeDefinedValue(this);
86 }
87 
88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
90   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
91     R->print(OS, "", SlotTracker);
92   else
93     printAsOperand(OS, SlotTracker);
94 }
95 
96 void VPValue::dump() const {
97   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
98   VPSlotTracker SlotTracker(
99       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
100   print(dbgs(), SlotTracker);
101   dbgs() << "\n";
102 }
103 
104 void VPDef::dump() const {
105   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
106   VPSlotTracker SlotTracker(
107       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
108   print(dbgs(), "", SlotTracker);
109   dbgs() << "\n";
110 }
111 #endif
112 
113 // Get the top-most entry block of \p Start. This is the entry block of the
114 // containing VPlan. This function is templated to support both const and non-const blocks
115 template <typename T> static T *getPlanEntry(T *Start) {
116   T *Next = Start;
117   T *Current = Start;
118   while ((Next = Next->getParent()))
119     Current = Next;
120 
121   SmallSetVector<T *, 8> WorkList;
122   WorkList.insert(Current);
123 
124   for (unsigned i = 0; i < WorkList.size(); i++) {
125     T *Current = WorkList[i];
126     if (Current->getNumPredecessors() == 0)
127       return Current;
128     auto &Predecessors = Current->getPredecessors();
129     WorkList.insert(Predecessors.begin(), Predecessors.end());
130   }
131 
132   llvm_unreachable("VPlan without any entry node without predecessors");
133 }
134 
135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
136 
137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
138 
139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
141   const VPBlockBase *Block = this;
142   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
143     Block = Region->getEntry();
144   return cast<VPBasicBlock>(Block);
145 }
146 
147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
148   VPBlockBase *Block = this;
149   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
150     Block = Region->getEntry();
151   return cast<VPBasicBlock>(Block);
152 }
153 
154 void VPBlockBase::setPlan(VPlan *ParentPlan) {
155   assert(ParentPlan->getEntry() == this &&
156          "Can only set plan on its entry block.");
157   Plan = ParentPlan;
158 }
159 
160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
162   const VPBlockBase *Block = this;
163   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
164     Block = Region->getExit();
165   return cast<VPBasicBlock>(Block);
166 }
167 
168 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
169   VPBlockBase *Block = this;
170   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
171     Block = Region->getExit();
172   return cast<VPBasicBlock>(Block);
173 }
174 
175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
176   if (!Successors.empty() || !Parent)
177     return this;
178   assert(Parent->getExit() == this &&
179          "Block w/o successors not the exit of its parent.");
180   return Parent->getEnclosingBlockWithSuccessors();
181 }
182 
183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
184   if (!Predecessors.empty() || !Parent)
185     return this;
186   assert(Parent->getEntry() == this &&
187          "Block w/o predecessors not the entry of its parent.");
188   return Parent->getEnclosingBlockWithPredecessors();
189 }
190 
191 VPValue *VPBlockBase::getCondBit() {
192   return CondBitUser.getSingleOperandOrNull();
193 }
194 
195 const VPValue *VPBlockBase::getCondBit() const {
196   return CondBitUser.getSingleOperandOrNull();
197 }
198 
199 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); }
200 
201 VPValue *VPBlockBase::getPredicate() {
202   return PredicateUser.getSingleOperandOrNull();
203 }
204 
205 const VPValue *VPBlockBase::getPredicate() const {
206   return PredicateUser.getSingleOperandOrNull();
207 }
208 
209 void VPBlockBase::setPredicate(VPValue *CV) {
210   PredicateUser.resetSingleOpUser(CV);
211 }
212 
213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
214   SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry));
215 
216   for (VPBlockBase *Block : Blocks)
217     delete Block;
218 }
219 
220 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
221   iterator It = begin();
222   while (It != end() && It->isPhi())
223     It++;
224   return It;
225 }
226 
227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
228   if (!Def->getDef())
229     return Def->getLiveInIRValue();
230 
231   if (hasScalarValue(Def, Instance)) {
232     return Data
233         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
234   }
235 
236   assert(hasVectorValue(Def, Instance.Part));
237   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
238   if (!VecPart->getType()->isVectorTy()) {
239     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
240     return VecPart;
241   }
242   // TODO: Cache created scalar values.
243   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
244   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
245   // set(Def, Extract, Instance);
246   return Extract;
247 }
248 
249 BasicBlock *
250 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
251   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
252   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
253   BasicBlock *PrevBB = CFG.PrevBB;
254   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
255                                          PrevBB->getParent(), CFG.LastBB);
256   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
257 
258   // Hook up the new basic block to its predecessors.
259   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
260     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
261     auto &PredVPSuccessors = PredVPBB->getSuccessors();
262     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
263 
264     // In outer loop vectorization scenario, the predecessor BBlock may not yet
265     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
266     // vectorization. We do not encounter this case in inner loop vectorization
267     // as we start out by building a loop skeleton with the vector loop header
268     // and latch blocks. As a result, we never enter this function for the
269     // header block in the non VPlan-native path.
270     if (!PredBB) {
271       assert(EnableVPlanNativePath &&
272              "Unexpected null predecessor in non VPlan-native path");
273       CFG.VPBBsToFix.push_back(PredVPBB);
274       continue;
275     }
276 
277     assert(PredBB && "Predecessor basic-block not found building successor.");
278     auto *PredBBTerminator = PredBB->getTerminator();
279     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
280     if (isa<UnreachableInst>(PredBBTerminator)) {
281       assert(PredVPSuccessors.size() == 1 &&
282              "Predecessor ending w/o branch must have single successor.");
283       PredBBTerminator->eraseFromParent();
284       BranchInst::Create(NewBB, PredBB);
285     } else {
286       assert(PredVPSuccessors.size() == 2 &&
287              "Predecessor ending with branch must have two successors.");
288       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
289       assert(!PredBBTerminator->getSuccessor(idx) &&
290              "Trying to reset an existing successor block.");
291       PredBBTerminator->setSuccessor(idx, NewBB);
292     }
293   }
294   return NewBB;
295 }
296 
297 void VPBasicBlock::execute(VPTransformState *State) {
298   bool Replica = State->Instance && !State->Instance->isFirstIteration();
299   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
300   VPBlockBase *SingleHPred = nullptr;
301   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
302 
303   // 1. Create an IR basic block, or reuse the last one if possible.
304   // The last IR basic block is reused, as an optimization, in three cases:
305   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
306   // B. when the current VPBB has a single (hierarchical) predecessor which
307   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
308   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
309   //    is the exit of this region from a previous instance, or the predecessor
310   //    of this region.
311   if (PrevVPBB && /* A */
312       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
313         SingleHPred->getExitBasicBlock() == PrevVPBB &&
314         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
315       !(Replica && getPredecessors().empty())) {       /* C */
316     NewBB = createEmptyBasicBlock(State->CFG);
317     State->Builder.SetInsertPoint(NewBB);
318     // Temporarily terminate with unreachable until CFG is rewired.
319     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
320     State->Builder.SetInsertPoint(Terminator);
321     // Register NewBB in its loop. In innermost loops its the same for all BB's.
322     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
323     L->addBasicBlockToLoop(NewBB, *State->LI);
324     State->CFG.PrevBB = NewBB;
325   }
326 
327   // 2. Fill the IR basic block with IR instructions.
328   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
329                     << " in BB:" << NewBB->getName() << '\n');
330 
331   State->CFG.VPBB2IRBB[this] = NewBB;
332   State->CFG.PrevVPBB = this;
333 
334   for (VPRecipeBase &Recipe : Recipes)
335     Recipe.execute(*State);
336 
337   VPValue *CBV;
338   if (EnableVPlanNativePath && (CBV = getCondBit())) {
339     assert(CBV->getUnderlyingValue() &&
340            "Unexpected null underlying value for condition bit");
341 
342     // Condition bit value in a VPBasicBlock is used as the branch selector. In
343     // the VPlan-native path case, since all branches are uniform we generate a
344     // branch instruction using the condition value from vector lane 0 and dummy
345     // successors. The successors are fixed later when the successor blocks are
346     // visited.
347     Value *NewCond = State->get(CBV, {0, 0});
348 
349     // Replace the temporary unreachable terminator with the new conditional
350     // branch.
351     auto *CurrentTerminator = NewBB->getTerminator();
352     assert(isa<UnreachableInst>(CurrentTerminator) &&
353            "Expected to replace unreachable terminator with conditional "
354            "branch.");
355     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
356     CondBr->setSuccessor(0, nullptr);
357     ReplaceInstWithInst(CurrentTerminator, CondBr);
358   }
359 
360   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
361 }
362 
363 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
364   for (VPRecipeBase &R : Recipes) {
365     for (auto *Def : R.definedValues())
366       Def->replaceAllUsesWith(NewValue);
367 
368     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
369       R.setOperand(I, NewValue);
370   }
371 }
372 
373 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
374   assert((SplitAt == end() || SplitAt->getParent() == this) &&
375          "can only split at a position in the same block");
376 
377   SmallVector<VPBlockBase *, 2> Succs(successors());
378   // First, disconnect the current block from its successors.
379   for (VPBlockBase *Succ : Succs)
380     VPBlockUtils::disconnectBlocks(this, Succ);
381 
382   // Create new empty block after the block to split.
383   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
384   VPBlockUtils::insertBlockAfter(SplitBlock, this);
385 
386   // Add successors for block to split to new block.
387   for (VPBlockBase *Succ : Succs)
388     VPBlockUtils::connectBlocks(SplitBlock, Succ);
389 
390   // Finally, move the recipes starting at SplitAt to new block.
391   for (VPRecipeBase &ToMove :
392        make_early_inc_range(make_range(SplitAt, this->end())))
393     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
394 
395   return SplitBlock;
396 }
397 
398 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
399 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
400   if (getSuccessors().empty()) {
401     O << Indent << "No successors\n";
402   } else {
403     O << Indent << "Successor(s): ";
404     ListSeparator LS;
405     for (auto *Succ : getSuccessors())
406       O << LS << Succ->getName();
407     O << '\n';
408   }
409 }
410 
411 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
412                          VPSlotTracker &SlotTracker) const {
413   O << Indent << getName() << ":\n";
414   if (const VPValue *Pred = getPredicate()) {
415     O << Indent << "BlockPredicate:";
416     Pred->printAsOperand(O, SlotTracker);
417     if (const auto *PredInst = dyn_cast<VPInstruction>(Pred))
418       O << " (" << PredInst->getParent()->getName() << ")";
419     O << '\n';
420   }
421 
422   auto RecipeIndent = Indent + "  ";
423   for (const VPRecipeBase &Recipe : *this) {
424     Recipe.print(O, RecipeIndent, SlotTracker);
425     O << '\n';
426   }
427 
428   printSuccessors(O, Indent);
429 
430   if (const VPValue *CBV = getCondBit()) {
431     O << Indent << "CondBit: ";
432     CBV->printAsOperand(O, SlotTracker);
433     if (const auto *CBI = dyn_cast<VPInstruction>(CBV))
434       O << " (" << CBI->getParent()->getName() << ")";
435     O << '\n';
436   }
437 }
438 #endif
439 
440 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
441   for (VPBlockBase *Block : depth_first(Entry))
442     // Drop all references in VPBasicBlocks and replace all uses with
443     // DummyValue.
444     Block->dropAllReferences(NewValue);
445 }
446 
447 void VPRegionBlock::execute(VPTransformState *State) {
448   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
449 
450   if (!isReplicator()) {
451     // Visit the VPBlocks connected to "this", starting from it.
452     for (VPBlockBase *Block : RPOT) {
453       if (EnableVPlanNativePath) {
454         // The inner loop vectorization path does not represent loop preheader
455         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
456         // vectorizing loop preheader block. In future, we may replace this
457         // check with the check for loop preheader.
458         if (Block->getNumPredecessors() == 0)
459           continue;
460 
461         // Skip vectorizing loop exit block. In future, we may replace this
462         // check with the check for loop exit.
463         if (Block->getNumSuccessors() == 0)
464           continue;
465       }
466 
467       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
468       Block->execute(State);
469     }
470     return;
471   }
472 
473   assert(!State->Instance && "Replicating a Region with non-null instance.");
474 
475   // Enter replicating mode.
476   State->Instance = VPIteration(0, 0);
477 
478   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
479     State->Instance->Part = Part;
480     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
481     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
482          ++Lane) {
483       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
484       // Visit the VPBlocks connected to \p this, starting from it.
485       for (VPBlockBase *Block : RPOT) {
486         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
487         Block->execute(State);
488       }
489     }
490   }
491 
492   // Exit replicating mode.
493   State->Instance.reset();
494 }
495 
496 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
497 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
498                           VPSlotTracker &SlotTracker) const {
499   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
500   auto NewIndent = Indent + "  ";
501   for (auto *BlockBase : depth_first(Entry)) {
502     O << '\n';
503     BlockBase->print(O, NewIndent, SlotTracker);
504   }
505   O << Indent << "}\n";
506 
507   printSuccessors(O, Indent);
508 }
509 #endif
510 
511 bool VPRecipeBase::mayWriteToMemory() const {
512   switch (getVPDefID()) {
513   case VPWidenMemoryInstructionSC: {
514     return cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
515   }
516   case VPReplicateSC:
517   case VPWidenCallSC:
518     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
519         ->mayWriteToMemory();
520   case VPBranchOnMaskSC:
521     return false;
522   case VPWidenIntOrFpInductionSC:
523   case VPWidenCanonicalIVSC:
524   case VPWidenPHISC:
525   case VPBlendSC:
526   case VPWidenSC:
527   case VPWidenGEPSC:
528   case VPReductionSC:
529   case VPWidenSelectSC: {
530     const Instruction *I =
531         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
532     (void)I;
533     assert((!I || !I->mayWriteToMemory()) &&
534            "underlying instruction may write to memory");
535     return false;
536   }
537   default:
538     return true;
539   }
540 }
541 
542 bool VPRecipeBase::mayReadFromMemory() const {
543   switch (getVPDefID()) {
544   case VPWidenMemoryInstructionSC: {
545     return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
546   }
547   case VPReplicateSC:
548   case VPWidenCallSC:
549     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
550         ->mayReadFromMemory();
551   case VPBranchOnMaskSC:
552     return false;
553   case VPWidenIntOrFpInductionSC:
554   case VPWidenCanonicalIVSC:
555   case VPWidenPHISC:
556   case VPBlendSC:
557   case VPWidenSC:
558   case VPWidenGEPSC:
559   case VPReductionSC:
560   case VPWidenSelectSC: {
561     const Instruction *I =
562         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
563     (void)I;
564     assert((!I || !I->mayReadFromMemory()) &&
565            "underlying instruction may read from memory");
566     return false;
567   }
568   default:
569     return true;
570   }
571 }
572 
573 bool VPRecipeBase::mayHaveSideEffects() const {
574   switch (getVPDefID()) {
575   case VPBranchOnMaskSC:
576     return false;
577   case VPWidenIntOrFpInductionSC:
578   case VPWidenCanonicalIVSC:
579   case VPWidenPHISC:
580   case VPBlendSC:
581   case VPWidenSC:
582   case VPWidenGEPSC:
583   case VPReductionSC:
584   case VPWidenSelectSC: {
585     const Instruction *I =
586         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
587     (void)I;
588     assert((!I || !I->mayHaveSideEffects()) &&
589            "underlying instruction has side-effects");
590     return false;
591   }
592   case VPReplicateSC: {
593     auto *R = cast<VPReplicateRecipe>(this);
594     return R->getUnderlyingInstr()->mayHaveSideEffects();
595   }
596   default:
597     return true;
598   }
599 }
600 
601 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
602   assert(!Parent && "Recipe already in some VPBasicBlock");
603   assert(InsertPos->getParent() &&
604          "Insertion position not in any VPBasicBlock");
605   Parent = InsertPos->getParent();
606   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
607 }
608 
609 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
610   assert(!Parent && "Recipe already in some VPBasicBlock");
611   assert(InsertPos->getParent() &&
612          "Insertion position not in any VPBasicBlock");
613   Parent = InsertPos->getParent();
614   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
615 }
616 
617 void VPRecipeBase::removeFromParent() {
618   assert(getParent() && "Recipe not in any VPBasicBlock");
619   getParent()->getRecipeList().remove(getIterator());
620   Parent = nullptr;
621 }
622 
623 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
624   assert(getParent() && "Recipe not in any VPBasicBlock");
625   return getParent()->getRecipeList().erase(getIterator());
626 }
627 
628 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
629   removeFromParent();
630   insertAfter(InsertPos);
631 }
632 
633 void VPRecipeBase::moveBefore(VPBasicBlock &BB,
634                               iplist<VPRecipeBase>::iterator I) {
635   assert(I == BB.end() || I->getParent() == &BB);
636   removeFromParent();
637   Parent = &BB;
638   BB.getRecipeList().insert(I, this);
639 }
640 
641 void VPInstruction::generateInstruction(VPTransformState &State,
642                                         unsigned Part) {
643   IRBuilder<> &Builder = State.Builder;
644   Builder.SetCurrentDebugLocation(DL);
645 
646   if (Instruction::isBinaryOp(getOpcode())) {
647     Value *A = State.get(getOperand(0), Part);
648     Value *B = State.get(getOperand(1), Part);
649     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
650     State.set(this, V, Part);
651     return;
652   }
653 
654   switch (getOpcode()) {
655   case VPInstruction::Not: {
656     Value *A = State.get(getOperand(0), Part);
657     Value *V = Builder.CreateNot(A);
658     State.set(this, V, Part);
659     break;
660   }
661   case VPInstruction::ICmpULE: {
662     Value *IV = State.get(getOperand(0), Part);
663     Value *TC = State.get(getOperand(1), Part);
664     Value *V = Builder.CreateICmpULE(IV, TC);
665     State.set(this, V, Part);
666     break;
667   }
668   case Instruction::Select: {
669     Value *Cond = State.get(getOperand(0), Part);
670     Value *Op1 = State.get(getOperand(1), Part);
671     Value *Op2 = State.get(getOperand(2), Part);
672     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
673     State.set(this, V, Part);
674     break;
675   }
676   case VPInstruction::ActiveLaneMask: {
677     // Get first lane of vector induction variable.
678     Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0));
679     // Get the original loop tripcount.
680     Value *ScalarTC = State.get(getOperand(1), Part);
681 
682     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
683     auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue());
684     Instruction *Call = Builder.CreateIntrinsic(
685         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
686         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
687     State.set(this, Call, Part);
688     break;
689   }
690   case VPInstruction::FirstOrderRecurrenceSplice: {
691     // Generate code to combine the previous and current values in vector v3.
692     //
693     //   vector.ph:
694     //     v_init = vector(..., ..., ..., a[-1])
695     //     br vector.body
696     //
697     //   vector.body
698     //     i = phi [0, vector.ph], [i+4, vector.body]
699     //     v1 = phi [v_init, vector.ph], [v2, vector.body]
700     //     v2 = a[i, i+1, i+2, i+3];
701     //     v3 = vector(v1(3), v2(0, 1, 2))
702 
703     // For the first part, use the recurrence phi (v1), otherwise v2.
704     auto *V1 = State.get(getOperand(0), 0);
705     Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1);
706     if (!PartMinus1->getType()->isVectorTy()) {
707       State.set(this, PartMinus1, Part);
708     } else {
709       Value *V2 = State.get(getOperand(1), Part);
710       State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part);
711     }
712     break;
713   }
714 
715   case VPInstruction::CanonicalIVIncrement:
716   case VPInstruction::CanonicalIVIncrementNUW: {
717     Value *Next = nullptr;
718     if (Part == 0) {
719       bool IsNUW = getOpcode() == VPInstruction::CanonicalIVIncrementNUW;
720       auto *Phi = State.get(getOperand(0), 0);
721       // The loop step is equal to the vectorization factor (num of SIMD
722       // elements) times the unroll factor (num of SIMD instructions).
723       Value *Step =
724           createStepForVF(Builder, Phi->getType(), State.VF, State.UF);
725       Next = Builder.CreateAdd(Phi, Step, "index.next", IsNUW, false);
726     } else {
727       Next = State.get(this, 0);
728     }
729 
730     State.set(this, Next, Part);
731     break;
732   }
733   default:
734     llvm_unreachable("Unsupported opcode for instruction");
735   }
736 }
737 
738 void VPInstruction::execute(VPTransformState &State) {
739   assert(!State.Instance && "VPInstruction executing an Instance");
740   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
741   State.Builder.setFastMathFlags(FMF);
742   for (unsigned Part = 0; Part < State.UF; ++Part)
743     generateInstruction(State, Part);
744 }
745 
746 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
747 void VPInstruction::dump() const {
748   VPSlotTracker SlotTracker(getParent()->getPlan());
749   print(dbgs(), "", SlotTracker);
750 }
751 
752 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
753                           VPSlotTracker &SlotTracker) const {
754   O << Indent << "EMIT ";
755 
756   if (hasResult()) {
757     printAsOperand(O, SlotTracker);
758     O << " = ";
759   }
760 
761   switch (getOpcode()) {
762   case VPInstruction::Not:
763     O << "not";
764     break;
765   case VPInstruction::ICmpULE:
766     O << "icmp ule";
767     break;
768   case VPInstruction::SLPLoad:
769     O << "combined load";
770     break;
771   case VPInstruction::SLPStore:
772     O << "combined store";
773     break;
774   case VPInstruction::ActiveLaneMask:
775     O << "active lane mask";
776     break;
777   case VPInstruction::FirstOrderRecurrenceSplice:
778     O << "first-order splice";
779     break;
780   case VPInstruction::CanonicalIVIncrement:
781     O << "VF * UF + ";
782     break;
783   case VPInstruction::CanonicalIVIncrementNUW:
784     O << "VF * UF +(nuw) ";
785     break;
786   default:
787     O << Instruction::getOpcodeName(getOpcode());
788   }
789 
790   O << FMF;
791 
792   for (const VPValue *Operand : operands()) {
793     O << " ";
794     Operand->printAsOperand(O, SlotTracker);
795   }
796 
797   if (DL) {
798     O << ", !dbg ";
799     DL.print(O);
800   }
801 }
802 #endif
803 
804 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) {
805   // Make sure the VPInstruction is a floating-point operation.
806   assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
807           Opcode == Instruction::FNeg || Opcode == Instruction::FSub ||
808           Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
809           Opcode == Instruction::FCmp) &&
810          "this op can't take fast-math flags");
811   FMF = FMFNew;
812 }
813 
814 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
815                              Value *CanonicalIVStartValue,
816                              VPTransformState &State) {
817   // Check if the trip count is needed, and if so build it.
818   if (TripCount && TripCount->getNumUsers()) {
819     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
820       State.set(TripCount, TripCountV, Part);
821   }
822 
823   // Check if the backedge taken count is needed, and if so build it.
824   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
825     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
826     auto *TCMO = Builder.CreateSub(TripCountV,
827                                    ConstantInt::get(TripCountV->getType(), 1),
828                                    "trip.count.minus.1");
829     auto VF = State.VF;
830     Value *VTCMO =
831         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
832     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
833       State.set(BackedgeTakenCount, VTCMO, Part);
834   }
835 
836   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
837     State.set(&VectorTripCount, VectorTripCountV, Part);
838 
839   // When vectorizing the epilogue loop, the canonical induction start value
840   // needs to be changed from zero to the value after the main vector loop.
841   if (CanonicalIVStartValue) {
842     VPValue *VPV = new VPValue(CanonicalIVStartValue);
843     addExternalDef(VPV);
844     auto *IV = getCanonicalIV();
845     IV->setOperand(0, VPV);
846   }
847 }
848 
849 /// Generate the code inside the body of the vectorized loop. Assumes a single
850 /// LoopVectorBody basic-block was created for this. Introduce additional
851 /// basic-blocks as needed, and fill them all.
852 void VPlan::execute(VPTransformState *State) {
853   // 0. Set the reverse mapping from VPValues to Values for code generation.
854   for (auto &Entry : Value2VPValue)
855     State->VPValue2Value[Entry.second] = Entry.first;
856 
857   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
858   State->CFG.VectorPreHeader = VectorPreHeaderBB;
859   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
860   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
861 
862   // 1. Make room to generate basic-blocks inside loop body if needed.
863   BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
864       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
865   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
866   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
867   // Remove the edge between Header and Latch to allow other connections.
868   // Temporarily terminate with unreachable until CFG is rewired.
869   // Note: this asserts the generated code's assumption that
870   // getFirstInsertionPt() can be dereferenced into an Instruction.
871   VectorHeaderBB->getTerminator()->eraseFromParent();
872   State->Builder.SetInsertPoint(VectorHeaderBB);
873   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
874   State->Builder.SetInsertPoint(Terminator);
875 
876   // 2. Generate code in loop body.
877   State->CFG.PrevVPBB = nullptr;
878   State->CFG.PrevBB = VectorHeaderBB;
879   State->CFG.LastBB = VectorLatchBB;
880 
881   for (VPBlockBase *Block : depth_first(Entry))
882     Block->execute(State);
883 
884   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
885   // VPBB's successors.
886   for (auto VPBB : State->CFG.VPBBsToFix) {
887     assert(EnableVPlanNativePath &&
888            "Unexpected VPBBsToFix in non VPlan-native path");
889     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
890     assert(BB && "Unexpected null basic block for VPBB");
891 
892     unsigned Idx = 0;
893     auto *BBTerminator = BB->getTerminator();
894 
895     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
896       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
897       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
898       ++Idx;
899     }
900   }
901 
902   // 3. Merge the temporary latch created with the last basic-block filled.
903   BasicBlock *LastBB = State->CFG.PrevBB;
904   // Connect LastBB to VectorLatchBB to facilitate their merge.
905   assert((EnableVPlanNativePath ||
906           isa<UnreachableInst>(LastBB->getTerminator())) &&
907          "Expected InnerLoop VPlan CFG to terminate with unreachable");
908   assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
909          "Expected VPlan CFG to terminate with branch in NativePath");
910   LastBB->getTerminator()->eraseFromParent();
911   BranchInst::Create(VectorLatchBB, LastBB);
912 
913   // Merge LastBB with Latch.
914   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
915   (void)Merged;
916   assert(Merged && "Could not merge last basic block with latch.");
917   VectorLatchBB = LastBB;
918 
919   // Fix the latch value of canonical, reduction and first-order recurrences
920   // phis in the vector loop.
921   VPBasicBlock *Header = Entry->getEntryBasicBlock();
922   if (Header->empty()) {
923     assert(EnableVPlanNativePath);
924     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
925   }
926   for (VPRecipeBase &R : Header->phis()) {
927     // Skip phi-like recipes that generate their backedege values themselves.
928     // TODO: Model their backedge values explicitly.
929     if (isa<VPWidenIntOrFpInductionRecipe>(&R) || isa<VPWidenPHIRecipe>(&R))
930       continue;
931 
932     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
933     // For  canonical IV, first-order recurrences and in-order reduction phis,
934     // only a single part is generated, which provides the last part from the
935     // previous iteration. For non-ordered reductions all UF parts are
936     // generated.
937     bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) ||
938                             isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) ||
939                             cast<VPReductionPHIRecipe>(PhiR)->isOrdered();
940     unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
941 
942     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
943       Value *Phi = State->get(PhiR, Part);
944       Value *Val = State->get(PhiR->getBackedgeValue(),
945                               SinglePartNeeded ? State->UF - 1 : Part);
946       cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
947     }
948   }
949 
950   // Add the loop exit condition and branch based on the canonical induction.
951   auto *CanonicalIV = getCanonicalIV();
952   // TODO: Model compare and branch explicitly in VPlan as recipes.
953   auto *Next = State->get(CanonicalIV->getBackedgeValue(), 0);
954   auto *TermBr = cast<BranchInst>(VectorLatchBB->getTerminator());
955   State->Builder.SetInsertPoint(TermBr);
956   auto *ICmp =
957       State->Builder.CreateICmpEQ(Next, State->get(&getVectorTripCount(), 0));
958   TermBr->setCondition(ICmp);
959 
960   // We do not attempt to preserve DT for outer loop vectorization currently.
961   if (!EnableVPlanNativePath)
962     updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
963                         L->getExitBlock());
964 }
965 
966 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
967 LLVM_DUMP_METHOD
968 void VPlan::print(raw_ostream &O) const {
969   VPSlotTracker SlotTracker(this);
970 
971   O << "VPlan '" << Name << "' {";
972 
973   assert(VectorTripCount.getNumUsers() == 0 &&
974          "should not be used yet in VPlan");
975   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
976     O << "\nLive-in ";
977     BackedgeTakenCount->printAsOperand(O, SlotTracker);
978     O << " = backedge-taken count\n";
979   }
980 
981   for (const VPBlockBase *Block : depth_first(getEntry())) {
982     O << '\n';
983     Block->print(O, "", SlotTracker);
984   }
985   O << "}\n";
986 }
987 
988 LLVM_DUMP_METHOD
989 void VPlan::printDOT(raw_ostream &O) const {
990   VPlanPrinter Printer(O, *this);
991   Printer.dump();
992 }
993 
994 LLVM_DUMP_METHOD
995 void VPlan::dump() const { print(dbgs()); }
996 #endif
997 
998 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
999                                 BasicBlock *LoopLatchBB,
1000                                 BasicBlock *LoopExitBB) {
1001   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
1002   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
1003   // The vector body may be more than a single basic-block by this point.
1004   // Update the dominator tree information inside the vector body by propagating
1005   // it from header to latch, expecting only triangular control-flow, if any.
1006   BasicBlock *PostDomSucc = nullptr;
1007   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
1008     // Get the list of successors of this block.
1009     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
1010     assert(Succs.size() <= 2 &&
1011            "Basic block in vector loop has more than 2 successors.");
1012     PostDomSucc = Succs[0];
1013     if (Succs.size() == 1) {
1014       assert(PostDomSucc->getSinglePredecessor() &&
1015              "PostDom successor has more than one predecessor.");
1016       DT->addNewBlock(PostDomSucc, BB);
1017       continue;
1018     }
1019     BasicBlock *InterimSucc = Succs[1];
1020     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
1021       PostDomSucc = Succs[1];
1022       InterimSucc = Succs[0];
1023     }
1024     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
1025            "One successor of a basic block does not lead to the other.");
1026     assert(InterimSucc->getSinglePredecessor() &&
1027            "Interim successor has more than one predecessor.");
1028     assert(PostDomSucc->hasNPredecessors(2) &&
1029            "PostDom successor has more than two predecessors.");
1030     DT->addNewBlock(InterimSucc, BB);
1031     DT->addNewBlock(PostDomSucc, BB);
1032   }
1033   // Latch block is a new dominator for the loop exit.
1034   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
1035   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
1036 }
1037 
1038 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1039 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1040   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1041          Twine(getOrCreateBID(Block));
1042 }
1043 
1044 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1045   const std::string &Name = Block->getName();
1046   if (!Name.empty())
1047     return Name;
1048   return "VPB" + Twine(getOrCreateBID(Block));
1049 }
1050 
1051 void VPlanPrinter::dump() {
1052   Depth = 1;
1053   bumpIndent(0);
1054   OS << "digraph VPlan {\n";
1055   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1056   if (!Plan.getName().empty())
1057     OS << "\\n" << DOT::EscapeString(Plan.getName());
1058   if (Plan.BackedgeTakenCount) {
1059     OS << ", where:\\n";
1060     Plan.BackedgeTakenCount->print(OS, SlotTracker);
1061     OS << " := BackedgeTakenCount";
1062   }
1063   OS << "\"]\n";
1064   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1065   OS << "edge [fontname=Courier, fontsize=30]\n";
1066   OS << "compound=true\n";
1067 
1068   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
1069     dumpBlock(Block);
1070 
1071   OS << "}\n";
1072 }
1073 
1074 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1075   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1076     dumpBasicBlock(BasicBlock);
1077   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1078     dumpRegion(Region);
1079   else
1080     llvm_unreachable("Unsupported kind of VPBlock.");
1081 }
1082 
1083 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1084                             bool Hidden, const Twine &Label) {
1085   // Due to "dot" we print an edge between two regions as an edge between the
1086   // exit basic block and the entry basic of the respective regions.
1087   const VPBlockBase *Tail = From->getExitBasicBlock();
1088   const VPBlockBase *Head = To->getEntryBasicBlock();
1089   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1090   OS << " [ label=\"" << Label << '\"';
1091   if (Tail != From)
1092     OS << " ltail=" << getUID(From);
1093   if (Head != To)
1094     OS << " lhead=" << getUID(To);
1095   if (Hidden)
1096     OS << "; splines=none";
1097   OS << "]\n";
1098 }
1099 
1100 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1101   auto &Successors = Block->getSuccessors();
1102   if (Successors.size() == 1)
1103     drawEdge(Block, Successors.front(), false, "");
1104   else if (Successors.size() == 2) {
1105     drawEdge(Block, Successors.front(), false, "T");
1106     drawEdge(Block, Successors.back(), false, "F");
1107   } else {
1108     unsigned SuccessorNumber = 0;
1109     for (auto *Successor : Successors)
1110       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1111   }
1112 }
1113 
1114 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1115   // Implement dot-formatted dump by performing plain-text dump into the
1116   // temporary storage followed by some post-processing.
1117   OS << Indent << getUID(BasicBlock) << " [label =\n";
1118   bumpIndent(1);
1119   std::string Str;
1120   raw_string_ostream SS(Str);
1121   // Use no indentation as we need to wrap the lines into quotes ourselves.
1122   BasicBlock->print(SS, "", SlotTracker);
1123 
1124   // We need to process each line of the output separately, so split
1125   // single-string plain-text dump.
1126   SmallVector<StringRef, 0> Lines;
1127   StringRef(Str).rtrim('\n').split(Lines, "\n");
1128 
1129   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1130     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1131   };
1132 
1133   // Don't need the "+" after the last line.
1134   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1135     EmitLine(Line, " +\n");
1136   EmitLine(Lines.back(), "\n");
1137 
1138   bumpIndent(-1);
1139   OS << Indent << "]\n";
1140 
1141   dumpEdges(BasicBlock);
1142 }
1143 
1144 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1145   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1146   bumpIndent(1);
1147   OS << Indent << "fontname=Courier\n"
1148      << Indent << "label=\""
1149      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1150      << DOT::EscapeString(Region->getName()) << "\"\n";
1151   // Dump the blocks of the region.
1152   assert(Region->getEntry() && "Region contains no inner blocks.");
1153   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
1154     dumpBlock(Block);
1155   bumpIndent(-1);
1156   OS << Indent << "}\n";
1157   dumpEdges(Region);
1158 }
1159 
1160 void VPlanIngredient::print(raw_ostream &O) const {
1161   if (auto *Inst = dyn_cast<Instruction>(V)) {
1162     if (!Inst->getType()->isVoidTy()) {
1163       Inst->printAsOperand(O, false);
1164       O << " = ";
1165     }
1166     O << Inst->getOpcodeName() << " ";
1167     unsigned E = Inst->getNumOperands();
1168     if (E > 0) {
1169       Inst->getOperand(0)->printAsOperand(O, false);
1170       for (unsigned I = 1; I < E; ++I)
1171         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1172     }
1173   } else // !Inst
1174     V->printAsOperand(O, false);
1175 }
1176 
1177 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
1178                               VPSlotTracker &SlotTracker) const {
1179   O << Indent << "WIDEN-CALL ";
1180 
1181   auto *CI = cast<CallInst>(getUnderlyingInstr());
1182   if (CI->getType()->isVoidTy())
1183     O << "void ";
1184   else {
1185     printAsOperand(O, SlotTracker);
1186     O << " = ";
1187   }
1188 
1189   O << "call @" << CI->getCalledFunction()->getName() << "(";
1190   printOperands(O, SlotTracker);
1191   O << ")";
1192 }
1193 
1194 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
1195                                 VPSlotTracker &SlotTracker) const {
1196   O << Indent << "WIDEN-SELECT ";
1197   printAsOperand(O, SlotTracker);
1198   O << " = select ";
1199   getOperand(0)->printAsOperand(O, SlotTracker);
1200   O << ", ";
1201   getOperand(1)->printAsOperand(O, SlotTracker);
1202   O << ", ";
1203   getOperand(2)->printAsOperand(O, SlotTracker);
1204   O << (InvariantCond ? " (condition is loop invariant)" : "");
1205 }
1206 
1207 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
1208                           VPSlotTracker &SlotTracker) const {
1209   O << Indent << "WIDEN ";
1210   printAsOperand(O, SlotTracker);
1211   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
1212   printOperands(O, SlotTracker);
1213 }
1214 
1215 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
1216                                           VPSlotTracker &SlotTracker) const {
1217   O << Indent << "WIDEN-INDUCTION";
1218   if (getTruncInst()) {
1219     O << "\\l\"";
1220     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
1221     O << " +\n" << Indent << "\"  ";
1222     getVPValue(0)->printAsOperand(O, SlotTracker);
1223   } else
1224     O << " " << VPlanIngredient(IV);
1225 }
1226 
1227 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
1228                              VPSlotTracker &SlotTracker) const {
1229   O << Indent << "WIDEN-GEP ";
1230   O << (IsPtrLoopInvariant ? "Inv" : "Var");
1231   size_t IndicesNumber = IsIndexLoopInvariant.size();
1232   for (size_t I = 0; I < IndicesNumber; ++I)
1233     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
1234 
1235   O << " ";
1236   printAsOperand(O, SlotTracker);
1237   O << " = getelementptr ";
1238   printOperands(O, SlotTracker);
1239 }
1240 
1241 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1242                              VPSlotTracker &SlotTracker) const {
1243   O << Indent << "WIDEN-PHI ";
1244 
1245   auto *OriginalPhi = cast<PHINode>(getUnderlyingValue());
1246   // Unless all incoming values are modeled in VPlan  print the original PHI
1247   // directly.
1248   // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming
1249   // values as VPValues.
1250   if (getNumOperands() != OriginalPhi->getNumOperands()) {
1251     O << VPlanIngredient(OriginalPhi);
1252     return;
1253   }
1254 
1255   printAsOperand(O, SlotTracker);
1256   O << " = phi ";
1257   printOperands(O, SlotTracker);
1258 }
1259 
1260 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
1261                           VPSlotTracker &SlotTracker) const {
1262   O << Indent << "BLEND ";
1263   Phi->printAsOperand(O, false);
1264   O << " =";
1265   if (getNumIncomingValues() == 1) {
1266     // Not a User of any mask: not really blending, this is a
1267     // single-predecessor phi.
1268     O << " ";
1269     getIncomingValue(0)->printAsOperand(O, SlotTracker);
1270   } else {
1271     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
1272       O << " ";
1273       getIncomingValue(I)->printAsOperand(O, SlotTracker);
1274       O << "/";
1275       getMask(I)->printAsOperand(O, SlotTracker);
1276     }
1277   }
1278 }
1279 
1280 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
1281                               VPSlotTracker &SlotTracker) const {
1282   O << Indent << "REDUCE ";
1283   printAsOperand(O, SlotTracker);
1284   O << " = ";
1285   getChainOp()->printAsOperand(O, SlotTracker);
1286   O << " +";
1287   if (isa<FPMathOperator>(getUnderlyingInstr()))
1288     O << getUnderlyingInstr()->getFastMathFlags();
1289   O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " (";
1290   getVecOp()->printAsOperand(O, SlotTracker);
1291   if (getCondOp()) {
1292     O << ", ";
1293     getCondOp()->printAsOperand(O, SlotTracker);
1294   }
1295   O << ")";
1296 }
1297 
1298 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
1299                               VPSlotTracker &SlotTracker) const {
1300   O << Indent << (IsUniform ? "CLONE " : "REPLICATE ");
1301 
1302   if (!getUnderlyingInstr()->getType()->isVoidTy()) {
1303     printAsOperand(O, SlotTracker);
1304     O << " = ";
1305   }
1306   O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
1307   printOperands(O, SlotTracker);
1308 
1309   if (AlsoPack)
1310     O << " (S->V)";
1311 }
1312 
1313 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1314                                 VPSlotTracker &SlotTracker) const {
1315   O << Indent << "PHI-PREDICATED-INSTRUCTION ";
1316   printAsOperand(O, SlotTracker);
1317   O << " = ";
1318   printOperands(O, SlotTracker);
1319 }
1320 
1321 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
1322                                            VPSlotTracker &SlotTracker) const {
1323   O << Indent << "WIDEN ";
1324 
1325   if (!isStore()) {
1326     getVPSingleValue()->printAsOperand(O, SlotTracker);
1327     O << " = ";
1328   }
1329   O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";
1330 
1331   printOperands(O, SlotTracker);
1332 }
1333 #endif
1334 
1335 void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) {
1336   Value *Start = getStartValue()->getLiveInIRValue();
1337   PHINode *EntryPart = PHINode::Create(
1338       Start->getType(), 2, "index", &*State.CFG.PrevBB->getFirstInsertionPt());
1339   EntryPart->addIncoming(Start, State.CFG.VectorPreHeader);
1340   EntryPart->setDebugLoc(DL);
1341   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
1342     State.set(this, EntryPart, Part);
1343 }
1344 
1345 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1346 void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1347                                    VPSlotTracker &SlotTracker) const {
1348   O << Indent << "EMIT ";
1349   getVPSingleValue()->printAsOperand(O, SlotTracker);
1350   O << " = CANONICAL-INDUCTION";
1351 }
1352 #endif
1353 
1354 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
1355   Value *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
1356   Type *STy = CanonicalIV->getType();
1357   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
1358   ElementCount VF = State.VF;
1359   assert(!VF.isScalable() && "the code following assumes non scalables ECs");
1360   Value *VStart = VF.isScalar()
1361                       ? CanonicalIV
1362                       : Builder.CreateVectorSplat(VF.getKnownMinValue(),
1363                                                   CanonicalIV, "broadcast");
1364   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
1365     SmallVector<Constant *, 8> Indices;
1366     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
1367       Indices.push_back(
1368           ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane));
1369     // If VF == 1, there is only one iteration in the loop above, thus the
1370     // element pushed back into Indices is ConstantInt::get(STy, Part)
1371     Constant *VStep =
1372         VF.isScalar() ? Indices.back() : ConstantVector::get(Indices);
1373     // Add the consecutive indices to the vector value.
1374     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
1375     State.set(this, CanonicalVectorIV, Part);
1376   }
1377 }
1378 
1379 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1380 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
1381                                      VPSlotTracker &SlotTracker) const {
1382   O << Indent << "EMIT ";
1383   printAsOperand(O, SlotTracker);
1384   O << " = WIDEN-CANONICAL-INDUCTION";
1385 }
1386 #endif
1387 
1388 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) {
1389   auto &Builder = State.Builder;
1390   // Create a vector from the initial value.
1391   auto *VectorInit = getStartValue()->getLiveInIRValue();
1392 
1393   Type *VecTy = State.VF.isScalar()
1394                     ? VectorInit->getType()
1395                     : VectorType::get(VectorInit->getType(), State.VF);
1396 
1397   if (State.VF.isVector()) {
1398     auto *IdxTy = Builder.getInt32Ty();
1399     auto *One = ConstantInt::get(IdxTy, 1);
1400     IRBuilder<>::InsertPointGuard Guard(Builder);
1401     Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1402     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
1403     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
1404     VectorInit = Builder.CreateInsertElement(
1405         PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
1406   }
1407 
1408   // Create a phi node for the new recurrence.
1409   PHINode *EntryPart = PHINode::Create(
1410       VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt());
1411   EntryPart->addIncoming(VectorInit, State.CFG.VectorPreHeader);
1412   State.set(this, EntryPart, 0);
1413 }
1414 
1415 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1416 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent,
1417                                             VPSlotTracker &SlotTracker) const {
1418   O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
1419   printAsOperand(O, SlotTracker);
1420   O << " = phi ";
1421   printOperands(O, SlotTracker);
1422 }
1423 #endif
1424 
1425 void VPReductionPHIRecipe::execute(VPTransformState &State) {
1426   PHINode *PN = cast<PHINode>(getUnderlyingValue());
1427   auto &Builder = State.Builder;
1428 
1429   // In order to support recurrences we need to be able to vectorize Phi nodes.
1430   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
1431   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
1432   // this value when we vectorize all of the instructions that use the PHI.
1433   bool ScalarPHI = State.VF.isScalar() || IsInLoop;
1434   Type *VecTy =
1435       ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
1436 
1437   BasicBlock *HeaderBB = State.CFG.PrevBB;
1438   assert(State.LI->getLoopFor(HeaderBB)->getHeader() == HeaderBB &&
1439          "recipe must be in the vector loop header");
1440   unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF;
1441   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1442     Value *EntryPart =
1443         PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt());
1444     State.set(this, EntryPart, Part);
1445   }
1446 
1447   // Reductions do not have to start at zero. They can start with
1448   // any loop invariant values.
1449   VPValue *StartVPV = getStartValue();
1450   Value *StartV = StartVPV->getLiveInIRValue();
1451 
1452   Value *Iden = nullptr;
1453   RecurKind RK = RdxDesc.getRecurrenceKind();
1454   if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) ||
1455       RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) {
1456     // MinMax reduction have the start value as their identify.
1457     if (ScalarPHI) {
1458       Iden = StartV;
1459     } else {
1460       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1461       Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1462       StartV = Iden =
1463           Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
1464     }
1465   } else {
1466     Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(),
1467                                          RdxDesc.getFastMathFlags());
1468 
1469     if (!ScalarPHI) {
1470       Iden = Builder.CreateVectorSplat(State.VF, Iden);
1471       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1472       Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1473       Constant *Zero = Builder.getInt32(0);
1474       StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
1475     }
1476   }
1477 
1478   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1479     Value *EntryPart = State.get(this, Part);
1480     // Make sure to add the reduction start value only to the
1481     // first unroll part.
1482     Value *StartVal = (Part == 0) ? StartV : Iden;
1483     cast<PHINode>(EntryPart)->addIncoming(StartVal, State.CFG.VectorPreHeader);
1484   }
1485 }
1486 
1487 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1488 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1489                                  VPSlotTracker &SlotTracker) const {
1490   O << Indent << "WIDEN-REDUCTION-PHI ";
1491 
1492   printAsOperand(O, SlotTracker);
1493   O << " = phi ";
1494   printOperands(O, SlotTracker);
1495 }
1496 #endif
1497 
1498 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1499 
1500 void VPValue::replaceAllUsesWith(VPValue *New) {
1501   for (unsigned J = 0; J < getNumUsers();) {
1502     VPUser *User = Users[J];
1503     unsigned NumUsers = getNumUsers();
1504     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1505       if (User->getOperand(I) == this)
1506         User->setOperand(I, New);
1507     // If a user got removed after updating the current user, the next user to
1508     // update will be moved to the current position, so we only need to
1509     // increment the index if the number of users did not change.
1510     if (NumUsers == getNumUsers())
1511       J++;
1512   }
1513 }
1514 
1515 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1516 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1517   if (const Value *UV = getUnderlyingValue()) {
1518     OS << "ir<";
1519     UV->printAsOperand(OS, false);
1520     OS << ">";
1521     return;
1522   }
1523 
1524   unsigned Slot = Tracker.getSlot(this);
1525   if (Slot == unsigned(-1))
1526     OS << "<badref>";
1527   else
1528     OS << "vp<%" << Tracker.getSlot(this) << ">";
1529 }
1530 
1531 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1532   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1533     Op->printAsOperand(O, SlotTracker);
1534   });
1535 }
1536 #endif
1537 
1538 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1539                                           Old2NewTy &Old2New,
1540                                           InterleavedAccessInfo &IAI) {
1541   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1542   for (VPBlockBase *Base : RPOT) {
1543     visitBlock(Base, Old2New, IAI);
1544   }
1545 }
1546 
1547 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1548                                          InterleavedAccessInfo &IAI) {
1549   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1550     for (VPRecipeBase &VPI : *VPBB) {
1551       if (isa<VPHeaderPHIRecipe>(&VPI))
1552         continue;
1553       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1554       auto *VPInst = cast<VPInstruction>(&VPI);
1555       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1556       auto *IG = IAI.getInterleaveGroup(Inst);
1557       if (!IG)
1558         continue;
1559 
1560       auto NewIGIter = Old2New.find(IG);
1561       if (NewIGIter == Old2New.end())
1562         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1563             IG->getFactor(), IG->isReverse(), IG->getAlign());
1564 
1565       if (Inst == IG->getInsertPos())
1566         Old2New[IG]->setInsertPos(VPInst);
1567 
1568       InterleaveGroupMap[VPInst] = Old2New[IG];
1569       InterleaveGroupMap[VPInst]->insertMember(
1570           VPInst, IG->getIndex(Inst),
1571           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1572                                 : IG->getFactor()));
1573     }
1574   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1575     visitRegion(Region, Old2New, IAI);
1576   else
1577     llvm_unreachable("Unsupported kind of VPBlock.");
1578 }
1579 
1580 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1581                                                  InterleavedAccessInfo &IAI) {
1582   Old2NewTy Old2New;
1583   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
1584 }
1585 
1586 void VPSlotTracker::assignSlot(const VPValue *V) {
1587   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1588   Slots[V] = NextSlot++;
1589 }
1590 
1591 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1592 
1593   for (const VPValue *V : Plan.VPExternalDefs)
1594     assignSlot(V);
1595 
1596   assignSlot(&Plan.VectorTripCount);
1597   if (Plan.BackedgeTakenCount)
1598     assignSlot(Plan.BackedgeTakenCount);
1599 
1600   ReversePostOrderTraversal<
1601       VPBlockRecursiveTraversalWrapper<const VPBlockBase *>>
1602       RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>(
1603           Plan.getEntry()));
1604   for (const VPBasicBlock *VPBB :
1605        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1606     for (const VPRecipeBase &Recipe : *VPBB)
1607       for (VPValue *Def : Recipe.definedValues())
1608         assignSlot(Def);
1609 }
1610