1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
44 #include <cassert>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
50 
51 #define DEBUG_TYPE "vplan"
52 
53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
55   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
56   VPSlotTracker SlotTracker(
57       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
58   V.print(OS, SlotTracker);
59   return OS;
60 }
61 #endif
62 
63 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
64                                 const ElementCount &VF) const {
65   switch (LaneKind) {
66   case VPLane::Kind::ScalableLast:
67     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
68     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
69                              Builder.getInt32(VF.getKnownMinValue() - Lane));
70   case VPLane::Kind::First:
71     return Builder.getInt32(Lane);
72   }
73   llvm_unreachable("Unknown lane kind");
74 }
75 
76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
77     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
78   if (Def)
79     Def->addDefinedValue(this);
80 }
81 
82 VPValue::~VPValue() {
83   assert(Users.empty() && "trying to delete a VPValue with remaining users");
84   if (Def)
85     Def->removeDefinedValue(this);
86 }
87 
88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
90   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
91     R->print(OS, "", SlotTracker);
92   else
93     printAsOperand(OS, SlotTracker);
94 }
95 
96 void VPValue::dump() const {
97   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
98   VPSlotTracker SlotTracker(
99       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
100   print(dbgs(), SlotTracker);
101   dbgs() << "\n";
102 }
103 
104 void VPDef::dump() const {
105   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
106   VPSlotTracker SlotTracker(
107       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
108   print(dbgs(), "", SlotTracker);
109   dbgs() << "\n";
110 }
111 #endif
112 
113 // Get the top-most entry block of \p Start. This is the entry block of the
114 // containing VPlan. This function is templated to support both const and non-const blocks
115 template <typename T> static T *getPlanEntry(T *Start) {
116   T *Next = Start;
117   T *Current = Start;
118   while ((Next = Next->getParent()))
119     Current = Next;
120 
121   SmallSetVector<T *, 8> WorkList;
122   WorkList.insert(Current);
123 
124   for (unsigned i = 0; i < WorkList.size(); i++) {
125     T *Current = WorkList[i];
126     if (Current->getNumPredecessors() == 0)
127       return Current;
128     auto &Predecessors = Current->getPredecessors();
129     WorkList.insert(Predecessors.begin(), Predecessors.end());
130   }
131 
132   llvm_unreachable("VPlan without any entry node without predecessors");
133 }
134 
135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
136 
137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
138 
139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
141   const VPBlockBase *Block = this;
142   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
143     Block = Region->getEntry();
144   return cast<VPBasicBlock>(Block);
145 }
146 
147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
148   VPBlockBase *Block = this;
149   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
150     Block = Region->getEntry();
151   return cast<VPBasicBlock>(Block);
152 }
153 
154 void VPBlockBase::setPlan(VPlan *ParentPlan) {
155   assert(ParentPlan->getEntry() == this &&
156          "Can only set plan on its entry block.");
157   Plan = ParentPlan;
158 }
159 
160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
162   const VPBlockBase *Block = this;
163   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
164     Block = Region->getExit();
165   return cast<VPBasicBlock>(Block);
166 }
167 
168 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
169   VPBlockBase *Block = this;
170   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
171     Block = Region->getExit();
172   return cast<VPBasicBlock>(Block);
173 }
174 
175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
176   if (!Successors.empty() || !Parent)
177     return this;
178   assert(Parent->getExit() == this &&
179          "Block w/o successors not the exit of its parent.");
180   return Parent->getEnclosingBlockWithSuccessors();
181 }
182 
183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
184   if (!Predecessors.empty() || !Parent)
185     return this;
186   assert(Parent->getEntry() == this &&
187          "Block w/o predecessors not the entry of its parent.");
188   return Parent->getEnclosingBlockWithPredecessors();
189 }
190 
191 VPValue *VPBlockBase::getCondBit() {
192   return CondBitUser.getSingleOperandOrNull();
193 }
194 
195 const VPValue *VPBlockBase::getCondBit() const {
196   return CondBitUser.getSingleOperandOrNull();
197 }
198 
199 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); }
200 
201 VPValue *VPBlockBase::getPredicate() {
202   return PredicateUser.getSingleOperandOrNull();
203 }
204 
205 const VPValue *VPBlockBase::getPredicate() const {
206   return PredicateUser.getSingleOperandOrNull();
207 }
208 
209 void VPBlockBase::setPredicate(VPValue *CV) {
210   PredicateUser.resetSingleOpUser(CV);
211 }
212 
213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
214   SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry));
215 
216   for (VPBlockBase *Block : Blocks)
217     delete Block;
218 }
219 
220 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
221   iterator It = begin();
222   while (It != end() && It->isPhi())
223     It++;
224   return It;
225 }
226 
227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
228   if (!Def->getDef())
229     return Def->getLiveInIRValue();
230 
231   if (hasScalarValue(Def, Instance)) {
232     return Data
233         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
234   }
235 
236   assert(hasVectorValue(Def, Instance.Part));
237   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
238   if (!VecPart->getType()->isVectorTy()) {
239     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
240     return VecPart;
241   }
242   // TODO: Cache created scalar values.
243   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
244   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
245   // set(Def, Extract, Instance);
246   return Extract;
247 }
248 
249 BasicBlock *
250 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
251   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
252   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
253   BasicBlock *PrevBB = CFG.PrevBB;
254   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
255                                          PrevBB->getParent(), CFG.ExitBB);
256   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
257 
258   // Hook up the new basic block to its predecessors.
259   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
260     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
261     auto &PredVPSuccessors = PredVPBB->getSuccessors();
262     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
263 
264     // In outer loop vectorization scenario, the predecessor BBlock may not yet
265     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
266     // vectorization. We do not encounter this case in inner loop vectorization
267     // as we start out by building a loop skeleton with the vector loop header
268     // and latch blocks. As a result, we never enter this function for the
269     // header block in the non VPlan-native path.
270     if (!PredBB) {
271       assert(EnableVPlanNativePath &&
272              "Unexpected null predecessor in non VPlan-native path");
273       CFG.VPBBsToFix.push_back(PredVPBB);
274       continue;
275     }
276 
277     assert(PredBB && "Predecessor basic-block not found building successor.");
278     auto *PredBBTerminator = PredBB->getTerminator();
279     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
280     if (isa<UnreachableInst>(PredBBTerminator)) {
281       assert(PredVPSuccessors.size() == 1 &&
282              "Predecessor ending w/o branch must have single successor.");
283       DebugLoc DL = PredBBTerminator->getDebugLoc();
284       PredBBTerminator->eraseFromParent();
285       auto *Br = BranchInst::Create(NewBB, PredBB);
286       Br->setDebugLoc(DL);
287     } else {
288       assert(PredVPSuccessors.size() == 2 &&
289              "Predecessor ending with branch must have two successors.");
290       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
291       assert(!PredBBTerminator->getSuccessor(idx) &&
292              "Trying to reset an existing successor block.");
293       PredBBTerminator->setSuccessor(idx, NewBB);
294     }
295   }
296   return NewBB;
297 }
298 
299 void VPBasicBlock::execute(VPTransformState *State) {
300   bool Replica = State->Instance && !State->Instance->isFirstIteration();
301   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
302   VPBlockBase *SingleHPred = nullptr;
303   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
304 
305   // 1. Create an IR basic block, or reuse the last one if possible.
306   // The last IR basic block is reused, as an optimization, in three cases:
307   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
308   // B. when the current VPBB has a single (hierarchical) predecessor which
309   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
310   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
311   //    is the exit of this region from a previous instance, or the predecessor
312   //    of this region.
313   if (PrevVPBB && /* A */
314       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
315         SingleHPred->getExitBasicBlock() == PrevVPBB &&
316         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
317       !(Replica && getPredecessors().empty())) {       /* C */
318     NewBB = createEmptyBasicBlock(State->CFG);
319     State->Builder.SetInsertPoint(NewBB);
320     // Temporarily terminate with unreachable until CFG is rewired.
321     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
322     // Register NewBB in its loop. In innermost loops its the same for all BB's.
323     State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
324     State->Builder.SetInsertPoint(Terminator);
325     State->CFG.PrevBB = NewBB;
326   } else {
327     // If the current VPBB is re-using the header block from skeleton creation,
328     // move it to the new vector loop.
329     VPBasicBlock *HeaderVPBB =
330         getPlan()->getVectorLoopRegion()->getEntryBasicBlock();
331     if (EnableVPlanNativePath)
332       HeaderVPBB = cast<VPBasicBlock>(HeaderVPBB->getSingleSuccessor());
333     if (this == HeaderVPBB) {
334       assert(State->CurrentVectorLoop);
335       State->LI->removeBlock(State->CFG.PrevBB);
336       State->CurrentVectorLoop->addBasicBlockToLoop(State->CFG.PrevBB,
337                                                     *State->LI);
338     }
339   }
340 
341   // 2. Fill the IR basic block with IR instructions.
342   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
343                     << " in BB:" << NewBB->getName() << '\n');
344 
345   State->CFG.VPBB2IRBB[this] = NewBB;
346   State->CFG.PrevVPBB = this;
347 
348   for (VPRecipeBase &Recipe : Recipes)
349     Recipe.execute(*State);
350 
351   VPValue *CBV;
352   if (EnableVPlanNativePath && (CBV = getCondBit())) {
353     assert(CBV->getUnderlyingValue() &&
354            "Unexpected null underlying value for condition bit");
355 
356     // Condition bit value in a VPBasicBlock is used as the branch selector. In
357     // the VPlan-native path case, since all branches are uniform we generate a
358     // branch instruction using the condition value from vector lane 0 and dummy
359     // successors. The successors are fixed later when the successor blocks are
360     // visited.
361     Value *NewCond = State->get(CBV, {0, 0});
362 
363     // Replace the temporary unreachable terminator with the new conditional
364     // branch.
365     auto *CurrentTerminator = NewBB->getTerminator();
366     assert(isa<UnreachableInst>(CurrentTerminator) &&
367            "Expected to replace unreachable terminator with conditional "
368            "branch.");
369     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
370     CondBr->setSuccessor(0, nullptr);
371     ReplaceInstWithInst(CurrentTerminator, CondBr);
372   }
373 
374   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
375 }
376 
377 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
378   for (VPRecipeBase &R : Recipes) {
379     for (auto *Def : R.definedValues())
380       Def->replaceAllUsesWith(NewValue);
381 
382     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
383       R.setOperand(I, NewValue);
384   }
385 }
386 
387 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
388   assert((SplitAt == end() || SplitAt->getParent() == this) &&
389          "can only split at a position in the same block");
390 
391   SmallVector<VPBlockBase *, 2> Succs(successors());
392   // First, disconnect the current block from its successors.
393   for (VPBlockBase *Succ : Succs)
394     VPBlockUtils::disconnectBlocks(this, Succ);
395 
396   // Create new empty block after the block to split.
397   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
398   VPBlockUtils::insertBlockAfter(SplitBlock, this);
399 
400   // Add successors for block to split to new block.
401   for (VPBlockBase *Succ : Succs)
402     VPBlockUtils::connectBlocks(SplitBlock, Succ);
403 
404   // Finally, move the recipes starting at SplitAt to new block.
405   for (VPRecipeBase &ToMove :
406        make_early_inc_range(make_range(SplitAt, this->end())))
407     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
408 
409   return SplitBlock;
410 }
411 
412 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
413 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
414   if (getSuccessors().empty()) {
415     O << Indent << "No successors\n";
416   } else {
417     O << Indent << "Successor(s): ";
418     ListSeparator LS;
419     for (auto *Succ : getSuccessors())
420       O << LS << Succ->getName();
421     O << '\n';
422   }
423 }
424 
425 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
426                          VPSlotTracker &SlotTracker) const {
427   O << Indent << getName() << ":\n";
428   if (const VPValue *Pred = getPredicate()) {
429     O << Indent << "BlockPredicate:";
430     Pred->printAsOperand(O, SlotTracker);
431     if (const auto *PredInst = dyn_cast<VPInstruction>(Pred))
432       O << " (" << PredInst->getParent()->getName() << ")";
433     O << '\n';
434   }
435 
436   auto RecipeIndent = Indent + "  ";
437   for (const VPRecipeBase &Recipe : *this) {
438     Recipe.print(O, RecipeIndent, SlotTracker);
439     O << '\n';
440   }
441 
442   printSuccessors(O, Indent);
443 
444   if (const VPValue *CBV = getCondBit()) {
445     O << Indent << "CondBit: ";
446     CBV->printAsOperand(O, SlotTracker);
447     if (const auto *CBI = dyn_cast<VPInstruction>(CBV))
448       O << " (" << CBI->getParent()->getName() << ")";
449     O << '\n';
450   }
451 }
452 #endif
453 
454 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
455   for (VPBlockBase *Block : depth_first(Entry))
456     // Drop all references in VPBasicBlocks and replace all uses with
457     // DummyValue.
458     Block->dropAllReferences(NewValue);
459 }
460 
461 void VPRegionBlock::execute(VPTransformState *State) {
462   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
463 
464   if (!isReplicator()) {
465     // Create and register the new vector loop.
466     Loop *PrevLoop = State->CurrentVectorLoop;
467     State->CurrentVectorLoop = State->LI->AllocateLoop();
468     Loop *ParentLoop = State->LI->getLoopFor(State->CFG.VectorPreHeader);
469 
470     // Insert the new loop into the loop nest and register the new basic blocks
471     // before calling any utilities such as SCEV that require valid LoopInfo.
472     if (ParentLoop)
473       ParentLoop->addChildLoop(State->CurrentVectorLoop);
474     else
475       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
476 
477     // Visit the VPBlocks connected to "this", starting from it.
478     for (VPBlockBase *Block : RPOT) {
479       if (EnableVPlanNativePath) {
480         // The inner loop vectorization path does not represent loop preheader
481         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
482         // vectorizing loop preheader block. In future, we may replace this
483         // check with the check for loop preheader.
484         if (Block->getNumPredecessors() == 0)
485           continue;
486 
487         // Skip vectorizing loop exit block. In future, we may replace this
488         // check with the check for loop exit.
489         if (Block->getNumSuccessors() == 0)
490           continue;
491       }
492 
493       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
494       Block->execute(State);
495     }
496 
497     State->CurrentVectorLoop = PrevLoop;
498     return;
499   }
500 
501   assert(!State->Instance && "Replicating a Region with non-null instance.");
502 
503   // Enter replicating mode.
504   State->Instance = VPIteration(0, 0);
505 
506   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
507     State->Instance->Part = Part;
508     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
509     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
510          ++Lane) {
511       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
512       // Visit the VPBlocks connected to \p this, starting from it.
513       for (VPBlockBase *Block : RPOT) {
514         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
515         Block->execute(State);
516       }
517     }
518   }
519 
520   // Exit replicating mode.
521   State->Instance.reset();
522 }
523 
524 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
525 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
526                           VPSlotTracker &SlotTracker) const {
527   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
528   auto NewIndent = Indent + "  ";
529   for (auto *BlockBase : depth_first(Entry)) {
530     O << '\n';
531     BlockBase->print(O, NewIndent, SlotTracker);
532   }
533   O << Indent << "}\n";
534 
535   printSuccessors(O, Indent);
536 }
537 #endif
538 
539 bool VPRecipeBase::mayWriteToMemory() const {
540   switch (getVPDefID()) {
541   case VPWidenMemoryInstructionSC: {
542     return cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
543   }
544   case VPReplicateSC:
545   case VPWidenCallSC:
546     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
547         ->mayWriteToMemory();
548   case VPBranchOnMaskSC:
549     return false;
550   case VPWidenIntOrFpInductionSC:
551   case VPWidenCanonicalIVSC:
552   case VPWidenPHISC:
553   case VPBlendSC:
554   case VPWidenSC:
555   case VPWidenGEPSC:
556   case VPReductionSC:
557   case VPWidenSelectSC: {
558     const Instruction *I =
559         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
560     (void)I;
561     assert((!I || !I->mayWriteToMemory()) &&
562            "underlying instruction may write to memory");
563     return false;
564   }
565   default:
566     return true;
567   }
568 }
569 
570 bool VPRecipeBase::mayReadFromMemory() const {
571   switch (getVPDefID()) {
572   case VPWidenMemoryInstructionSC: {
573     return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
574   }
575   case VPReplicateSC:
576   case VPWidenCallSC:
577     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
578         ->mayReadFromMemory();
579   case VPBranchOnMaskSC:
580     return false;
581   case VPWidenIntOrFpInductionSC:
582   case VPWidenCanonicalIVSC:
583   case VPWidenPHISC:
584   case VPBlendSC:
585   case VPWidenSC:
586   case VPWidenGEPSC:
587   case VPReductionSC:
588   case VPWidenSelectSC: {
589     const Instruction *I =
590         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
591     (void)I;
592     assert((!I || !I->mayReadFromMemory()) &&
593            "underlying instruction may read from memory");
594     return false;
595   }
596   default:
597     return true;
598   }
599 }
600 
601 bool VPRecipeBase::mayHaveSideEffects() const {
602   switch (getVPDefID()) {
603   case VPBranchOnMaskSC:
604     return false;
605   case VPWidenIntOrFpInductionSC:
606   case VPWidenPointerInductionSC:
607   case VPWidenCanonicalIVSC:
608   case VPWidenPHISC:
609   case VPBlendSC:
610   case VPWidenSC:
611   case VPWidenGEPSC:
612   case VPReductionSC:
613   case VPWidenSelectSC:
614   case VPScalarIVStepsSC: {
615     const Instruction *I =
616         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
617     (void)I;
618     assert((!I || !I->mayHaveSideEffects()) &&
619            "underlying instruction has side-effects");
620     return false;
621   }
622   case VPReplicateSC: {
623     auto *R = cast<VPReplicateRecipe>(this);
624     return R->getUnderlyingInstr()->mayHaveSideEffects();
625   }
626   default:
627     return true;
628   }
629 }
630 
631 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
632   assert(!Parent && "Recipe already in some VPBasicBlock");
633   assert(InsertPos->getParent() &&
634          "Insertion position not in any VPBasicBlock");
635   Parent = InsertPos->getParent();
636   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
637 }
638 
639 void VPRecipeBase::insertBefore(VPBasicBlock &BB,
640                                 iplist<VPRecipeBase>::iterator I) {
641   assert(!Parent && "Recipe already in some VPBasicBlock");
642   assert(I == BB.end() || I->getParent() == &BB);
643   Parent = &BB;
644   BB.getRecipeList().insert(I, this);
645 }
646 
647 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
648   assert(!Parent && "Recipe already in some VPBasicBlock");
649   assert(InsertPos->getParent() &&
650          "Insertion position not in any VPBasicBlock");
651   Parent = InsertPos->getParent();
652   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
653 }
654 
655 void VPRecipeBase::removeFromParent() {
656   assert(getParent() && "Recipe not in any VPBasicBlock");
657   getParent()->getRecipeList().remove(getIterator());
658   Parent = nullptr;
659 }
660 
661 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
662   assert(getParent() && "Recipe not in any VPBasicBlock");
663   return getParent()->getRecipeList().erase(getIterator());
664 }
665 
666 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
667   removeFromParent();
668   insertAfter(InsertPos);
669 }
670 
671 void VPRecipeBase::moveBefore(VPBasicBlock &BB,
672                               iplist<VPRecipeBase>::iterator I) {
673   removeFromParent();
674   insertBefore(BB, I);
675 }
676 
677 void VPInstruction::generateInstruction(VPTransformState &State,
678                                         unsigned Part) {
679   IRBuilderBase &Builder = State.Builder;
680   Builder.SetCurrentDebugLocation(DL);
681 
682   if (Instruction::isBinaryOp(getOpcode())) {
683     Value *A = State.get(getOperand(0), Part);
684     Value *B = State.get(getOperand(1), Part);
685     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
686     State.set(this, V, Part);
687     return;
688   }
689 
690   switch (getOpcode()) {
691   case VPInstruction::Not: {
692     Value *A = State.get(getOperand(0), Part);
693     Value *V = Builder.CreateNot(A);
694     State.set(this, V, Part);
695     break;
696   }
697   case VPInstruction::ICmpULE: {
698     Value *IV = State.get(getOperand(0), Part);
699     Value *TC = State.get(getOperand(1), Part);
700     Value *V = Builder.CreateICmpULE(IV, TC);
701     State.set(this, V, Part);
702     break;
703   }
704   case Instruction::Select: {
705     Value *Cond = State.get(getOperand(0), Part);
706     Value *Op1 = State.get(getOperand(1), Part);
707     Value *Op2 = State.get(getOperand(2), Part);
708     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
709     State.set(this, V, Part);
710     break;
711   }
712   case VPInstruction::ActiveLaneMask: {
713     // Get first lane of vector induction variable.
714     Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0));
715     // Get the original loop tripcount.
716     Value *ScalarTC = State.get(getOperand(1), Part);
717 
718     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
719     auto *PredTy = VectorType::get(Int1Ty, State.VF);
720     Instruction *Call = Builder.CreateIntrinsic(
721         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
722         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
723     State.set(this, Call, Part);
724     break;
725   }
726   case VPInstruction::FirstOrderRecurrenceSplice: {
727     // Generate code to combine the previous and current values in vector v3.
728     //
729     //   vector.ph:
730     //     v_init = vector(..., ..., ..., a[-1])
731     //     br vector.body
732     //
733     //   vector.body
734     //     i = phi [0, vector.ph], [i+4, vector.body]
735     //     v1 = phi [v_init, vector.ph], [v2, vector.body]
736     //     v2 = a[i, i+1, i+2, i+3];
737     //     v3 = vector(v1(3), v2(0, 1, 2))
738 
739     // For the first part, use the recurrence phi (v1), otherwise v2.
740     auto *V1 = State.get(getOperand(0), 0);
741     Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1);
742     if (!PartMinus1->getType()->isVectorTy()) {
743       State.set(this, PartMinus1, Part);
744     } else {
745       Value *V2 = State.get(getOperand(1), Part);
746       State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part);
747     }
748     break;
749   }
750 
751   case VPInstruction::CanonicalIVIncrement:
752   case VPInstruction::CanonicalIVIncrementNUW: {
753     Value *Next = nullptr;
754     if (Part == 0) {
755       bool IsNUW = getOpcode() == VPInstruction::CanonicalIVIncrementNUW;
756       auto *Phi = State.get(getOperand(0), 0);
757       // The loop step is equal to the vectorization factor (num of SIMD
758       // elements) times the unroll factor (num of SIMD instructions).
759       Value *Step =
760           createStepForVF(Builder, Phi->getType(), State.VF, State.UF);
761       Next = Builder.CreateAdd(Phi, Step, "index.next", IsNUW, false);
762     } else {
763       Next = State.get(this, 0);
764     }
765 
766     State.set(this, Next, Part);
767     break;
768   }
769   case VPInstruction::BranchOnCount: {
770     if (Part != 0)
771       break;
772     // First create the compare.
773     Value *IV = State.get(getOperand(0), Part);
774     Value *TC = State.get(getOperand(1), Part);
775     Value *Cond = Builder.CreateICmpEQ(IV, TC);
776 
777     // Now create the branch.
778     auto *Plan = getParent()->getPlan();
779     VPRegionBlock *TopRegion = Plan->getVectorLoopRegion();
780     VPBasicBlock *Header = TopRegion->getEntry()->getEntryBasicBlock();
781     if (Header->empty()) {
782       assert(EnableVPlanNativePath &&
783              "empty entry block only expected in VPlanNativePath");
784       Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
785     }
786     // TODO: Once the exit block is modeled in VPlan, use it instead of going
787     // through State.CFG.ExitBB.
788     BasicBlock *Exit = State.CFG.ExitBB;
789 
790     Builder.CreateCondBr(Cond, Exit, State.CFG.VPBB2IRBB[Header]);
791     Builder.GetInsertBlock()->getTerminator()->eraseFromParent();
792     break;
793   }
794   default:
795     llvm_unreachable("Unsupported opcode for instruction");
796   }
797 }
798 
799 void VPInstruction::execute(VPTransformState &State) {
800   assert(!State.Instance && "VPInstruction executing an Instance");
801   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
802   State.Builder.setFastMathFlags(FMF);
803   for (unsigned Part = 0; Part < State.UF; ++Part)
804     generateInstruction(State, Part);
805 }
806 
807 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
808 void VPInstruction::dump() const {
809   VPSlotTracker SlotTracker(getParent()->getPlan());
810   print(dbgs(), "", SlotTracker);
811 }
812 
813 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
814                           VPSlotTracker &SlotTracker) const {
815   O << Indent << "EMIT ";
816 
817   if (hasResult()) {
818     printAsOperand(O, SlotTracker);
819     O << " = ";
820   }
821 
822   switch (getOpcode()) {
823   case VPInstruction::Not:
824     O << "not";
825     break;
826   case VPInstruction::ICmpULE:
827     O << "icmp ule";
828     break;
829   case VPInstruction::SLPLoad:
830     O << "combined load";
831     break;
832   case VPInstruction::SLPStore:
833     O << "combined store";
834     break;
835   case VPInstruction::ActiveLaneMask:
836     O << "active lane mask";
837     break;
838   case VPInstruction::FirstOrderRecurrenceSplice:
839     O << "first-order splice";
840     break;
841   case VPInstruction::CanonicalIVIncrement:
842     O << "VF * UF + ";
843     break;
844   case VPInstruction::CanonicalIVIncrementNUW:
845     O << "VF * UF +(nuw) ";
846     break;
847   case VPInstruction::BranchOnCount:
848     O << "branch-on-count ";
849     break;
850   default:
851     O << Instruction::getOpcodeName(getOpcode());
852   }
853 
854   O << FMF;
855 
856   for (const VPValue *Operand : operands()) {
857     O << " ";
858     Operand->printAsOperand(O, SlotTracker);
859   }
860 
861   if (DL) {
862     O << ", !dbg ";
863     DL.print(O);
864   }
865 }
866 #endif
867 
868 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) {
869   // Make sure the VPInstruction is a floating-point operation.
870   assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
871           Opcode == Instruction::FNeg || Opcode == Instruction::FSub ||
872           Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
873           Opcode == Instruction::FCmp) &&
874          "this op can't take fast-math flags");
875   FMF = FMFNew;
876 }
877 
878 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
879                              Value *CanonicalIVStartValue,
880                              VPTransformState &State) {
881   // Check if the trip count is needed, and if so build it.
882   if (TripCount && TripCount->getNumUsers()) {
883     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
884       State.set(TripCount, TripCountV, Part);
885   }
886 
887   // Check if the backedge taken count is needed, and if so build it.
888   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
889     IRBuilder<> Builder(State.CFG.VectorPreHeader->getTerminator());
890     auto *TCMO = Builder.CreateSub(TripCountV,
891                                    ConstantInt::get(TripCountV->getType(), 1),
892                                    "trip.count.minus.1");
893     auto VF = State.VF;
894     Value *VTCMO =
895         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
896     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
897       State.set(BackedgeTakenCount, VTCMO, Part);
898   }
899 
900   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
901     State.set(&VectorTripCount, VectorTripCountV, Part);
902 
903   // When vectorizing the epilogue loop, the canonical induction start value
904   // needs to be changed from zero to the value after the main vector loop.
905   if (CanonicalIVStartValue) {
906     VPValue *VPV = new VPValue(CanonicalIVStartValue);
907     addExternalDef(VPV);
908     auto *IV = getCanonicalIV();
909     assert(all_of(IV->users(),
910                   [](const VPUser *U) {
911                     if (isa<VPScalarIVStepsRecipe>(U))
912                       return true;
913                     auto *VPI = cast<VPInstruction>(U);
914                     return VPI->getOpcode() ==
915                                VPInstruction::CanonicalIVIncrement ||
916                            VPI->getOpcode() ==
917                                VPInstruction::CanonicalIVIncrementNUW;
918                   }) &&
919            "the canonical IV should only be used by its increments or "
920            "ScalarIVSteps when "
921            "resetting the start value");
922     IV->setOperand(0, VPV);
923   }
924 }
925 
926 /// Generate the code inside the body of the vectorized loop. Assumes a single
927 /// LoopVectorBody basic-block was created for this. Introduce additional
928 /// basic-blocks as needed, and fill them all.
929 void VPlan::execute(VPTransformState *State) {
930   // Set the reverse mapping from VPValues to Values for code generation.
931   for (auto &Entry : Value2VPValue)
932     State->VPValue2Value[Entry.second] = Entry.first;
933 
934   // Initialize CFG state.
935   State->CFG.PrevVPBB = nullptr;
936   BasicBlock *VectorHeaderBB = State->CFG.VectorPreHeader->getSingleSuccessor();
937   State->CFG.PrevBB = VectorHeaderBB;
938   State->CFG.ExitBB = VectorHeaderBB->getSingleSuccessor();
939   State->CurrentVectorLoop = State->LI->getLoopFor(VectorHeaderBB);
940 
941   // Remove the edge between Header and Latch to allow other connections.
942   // Temporarily terminate with unreachable until CFG is rewired.
943   // Note: this asserts the generated code's assumption that
944   // getFirstInsertionPt() can be dereferenced into an Instruction.
945   VectorHeaderBB->getTerminator()->eraseFromParent();
946   State->Builder.SetInsertPoint(VectorHeaderBB);
947   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
948   State->Builder.SetInsertPoint(Terminator);
949 
950   // Generate code in loop body.
951   for (VPBlockBase *Block : depth_first(Entry))
952     Block->execute(State);
953 
954   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
955   // VPBB's successors.
956   for (auto VPBB : State->CFG.VPBBsToFix) {
957     assert(EnableVPlanNativePath &&
958            "Unexpected VPBBsToFix in non VPlan-native path");
959     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
960     assert(BB && "Unexpected null basic block for VPBB");
961 
962     unsigned Idx = 0;
963     auto *BBTerminator = BB->getTerminator();
964 
965     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
966       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
967       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
968       ++Idx;
969     }
970   }
971 
972   BasicBlock *VectorLatchBB = State->CFG.PrevBB;
973 
974   // Fix the latch value of canonical, reduction and first-order recurrences
975   // phis in the vector loop.
976   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
977   if (Header->empty()) {
978     assert(EnableVPlanNativePath);
979     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
980   }
981   for (VPRecipeBase &R : Header->phis()) {
982     // Skip phi-like recipes that generate their backedege values themselves.
983     if (isa<VPWidenPHIRecipe>(&R))
984       continue;
985 
986     if (isa<VPWidenPointerInductionRecipe>(&R) ||
987         isa<VPWidenIntOrFpInductionRecipe>(&R)) {
988       PHINode *Phi = nullptr;
989       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
990         Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
991       } else {
992         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
993         // TODO: Split off the case that all users of a pointer phi are scalar
994         // from the VPWidenPointerInductionRecipe.
995         if (all_of(WidenPhi->users(), [WidenPhi](const VPUser *U) {
996               return cast<VPRecipeBase>(U)->usesScalars(WidenPhi);
997             }))
998           continue;
999 
1000         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
1001         Phi = cast<PHINode>(GEP->getPointerOperand());
1002       }
1003 
1004       Phi->setIncomingBlock(1, VectorLatchBB);
1005 
1006       // Move the last step to the end of the latch block. This ensures
1007       // consistent placement of all induction updates.
1008       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1009       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1010       continue;
1011     }
1012 
1013     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1014     // For  canonical IV, first-order recurrences and in-order reduction phis,
1015     // only a single part is generated, which provides the last part from the
1016     // previous iteration. For non-ordered reductions all UF parts are
1017     // generated.
1018     bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) ||
1019                             isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) ||
1020                             cast<VPReductionPHIRecipe>(PhiR)->isOrdered();
1021     unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
1022 
1023     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1024       Value *Phi = State->get(PhiR, Part);
1025       Value *Val = State->get(PhiR->getBackedgeValue(),
1026                               SinglePartNeeded ? State->UF - 1 : Part);
1027       cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1028     }
1029   }
1030 
1031   // We do not attempt to preserve DT for outer loop vectorization currently.
1032   if (!EnableVPlanNativePath)
1033     updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB,
1034                         State->CFG.ExitBB);
1035 }
1036 
1037 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1038 LLVM_DUMP_METHOD
1039 void VPlan::print(raw_ostream &O) const {
1040   VPSlotTracker SlotTracker(this);
1041 
1042   O << "VPlan '" << Name << "' {";
1043 
1044   if (VectorTripCount.getNumUsers() > 0) {
1045     O << "\nLive-in ";
1046     VectorTripCount.printAsOperand(O, SlotTracker);
1047     O << " = vector-trip-count\n";
1048   }
1049 
1050   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1051     O << "\nLive-in ";
1052     BackedgeTakenCount->printAsOperand(O, SlotTracker);
1053     O << " = backedge-taken count\n";
1054   }
1055 
1056   for (const VPBlockBase *Block : depth_first(getEntry())) {
1057     O << '\n';
1058     Block->print(O, "", SlotTracker);
1059   }
1060   O << "}\n";
1061 }
1062 
1063 LLVM_DUMP_METHOD
1064 void VPlan::printDOT(raw_ostream &O) const {
1065   VPlanPrinter Printer(O, *this);
1066   Printer.dump();
1067 }
1068 
1069 LLVM_DUMP_METHOD
1070 void VPlan::dump() const { print(dbgs()); }
1071 #endif
1072 
1073 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB,
1074                                 BasicBlock *LoopLatchBB,
1075                                 BasicBlock *LoopExitBB) {
1076   // The vector body may be more than a single basic-block by this point.
1077   // Update the dominator tree information inside the vector body by propagating
1078   // it from header to latch, expecting only triangular control-flow, if any.
1079   BasicBlock *PostDomSucc = nullptr;
1080   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
1081     // Get the list of successors of this block.
1082     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
1083     assert(Succs.size() <= 2 &&
1084            "Basic block in vector loop has more than 2 successors.");
1085     PostDomSucc = Succs[0];
1086     if (Succs.size() == 1) {
1087       assert(PostDomSucc->getSinglePredecessor() &&
1088              "PostDom successor has more than one predecessor.");
1089       DT->addNewBlock(PostDomSucc, BB);
1090       continue;
1091     }
1092     BasicBlock *InterimSucc = Succs[1];
1093     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
1094       PostDomSucc = Succs[1];
1095       InterimSucc = Succs[0];
1096     }
1097     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
1098            "One successor of a basic block does not lead to the other.");
1099     assert(InterimSucc->getSinglePredecessor() &&
1100            "Interim successor has more than one predecessor.");
1101     assert(PostDomSucc->hasNPredecessors(2) &&
1102            "PostDom successor has more than two predecessors.");
1103     DT->addNewBlock(InterimSucc, BB);
1104     DT->addNewBlock(PostDomSucc, BB);
1105   }
1106   // Latch block is a new dominator for the loop exit.
1107   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
1108   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
1109 }
1110 
1111 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1112 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1113   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1114          Twine(getOrCreateBID(Block));
1115 }
1116 
1117 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1118   const std::string &Name = Block->getName();
1119   if (!Name.empty())
1120     return Name;
1121   return "VPB" + Twine(getOrCreateBID(Block));
1122 }
1123 
1124 void VPlanPrinter::dump() {
1125   Depth = 1;
1126   bumpIndent(0);
1127   OS << "digraph VPlan {\n";
1128   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1129   if (!Plan.getName().empty())
1130     OS << "\\n" << DOT::EscapeString(Plan.getName());
1131   if (Plan.BackedgeTakenCount) {
1132     OS << ", where:\\n";
1133     Plan.BackedgeTakenCount->print(OS, SlotTracker);
1134     OS << " := BackedgeTakenCount";
1135   }
1136   OS << "\"]\n";
1137   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1138   OS << "edge [fontname=Courier, fontsize=30]\n";
1139   OS << "compound=true\n";
1140 
1141   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
1142     dumpBlock(Block);
1143 
1144   OS << "}\n";
1145 }
1146 
1147 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1148   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1149     dumpBasicBlock(BasicBlock);
1150   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1151     dumpRegion(Region);
1152   else
1153     llvm_unreachable("Unsupported kind of VPBlock.");
1154 }
1155 
1156 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1157                             bool Hidden, const Twine &Label) {
1158   // Due to "dot" we print an edge between two regions as an edge between the
1159   // exit basic block and the entry basic of the respective regions.
1160   const VPBlockBase *Tail = From->getExitBasicBlock();
1161   const VPBlockBase *Head = To->getEntryBasicBlock();
1162   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1163   OS << " [ label=\"" << Label << '\"';
1164   if (Tail != From)
1165     OS << " ltail=" << getUID(From);
1166   if (Head != To)
1167     OS << " lhead=" << getUID(To);
1168   if (Hidden)
1169     OS << "; splines=none";
1170   OS << "]\n";
1171 }
1172 
1173 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1174   auto &Successors = Block->getSuccessors();
1175   if (Successors.size() == 1)
1176     drawEdge(Block, Successors.front(), false, "");
1177   else if (Successors.size() == 2) {
1178     drawEdge(Block, Successors.front(), false, "T");
1179     drawEdge(Block, Successors.back(), false, "F");
1180   } else {
1181     unsigned SuccessorNumber = 0;
1182     for (auto *Successor : Successors)
1183       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1184   }
1185 }
1186 
1187 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1188   // Implement dot-formatted dump by performing plain-text dump into the
1189   // temporary storage followed by some post-processing.
1190   OS << Indent << getUID(BasicBlock) << " [label =\n";
1191   bumpIndent(1);
1192   std::string Str;
1193   raw_string_ostream SS(Str);
1194   // Use no indentation as we need to wrap the lines into quotes ourselves.
1195   BasicBlock->print(SS, "", SlotTracker);
1196 
1197   // We need to process each line of the output separately, so split
1198   // single-string plain-text dump.
1199   SmallVector<StringRef, 0> Lines;
1200   StringRef(Str).rtrim('\n').split(Lines, "\n");
1201 
1202   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1203     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1204   };
1205 
1206   // Don't need the "+" after the last line.
1207   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1208     EmitLine(Line, " +\n");
1209   EmitLine(Lines.back(), "\n");
1210 
1211   bumpIndent(-1);
1212   OS << Indent << "]\n";
1213 
1214   dumpEdges(BasicBlock);
1215 }
1216 
1217 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1218   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1219   bumpIndent(1);
1220   OS << Indent << "fontname=Courier\n"
1221      << Indent << "label=\""
1222      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1223      << DOT::EscapeString(Region->getName()) << "\"\n";
1224   // Dump the blocks of the region.
1225   assert(Region->getEntry() && "Region contains no inner blocks.");
1226   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
1227     dumpBlock(Block);
1228   bumpIndent(-1);
1229   OS << Indent << "}\n";
1230   dumpEdges(Region);
1231 }
1232 
1233 void VPlanIngredient::print(raw_ostream &O) const {
1234   if (auto *Inst = dyn_cast<Instruction>(V)) {
1235     if (!Inst->getType()->isVoidTy()) {
1236       Inst->printAsOperand(O, false);
1237       O << " = ";
1238     }
1239     O << Inst->getOpcodeName() << " ";
1240     unsigned E = Inst->getNumOperands();
1241     if (E > 0) {
1242       Inst->getOperand(0)->printAsOperand(O, false);
1243       for (unsigned I = 1; I < E; ++I)
1244         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1245     }
1246   } else // !Inst
1247     V->printAsOperand(O, false);
1248 }
1249 
1250 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
1251                               VPSlotTracker &SlotTracker) const {
1252   O << Indent << "WIDEN-CALL ";
1253 
1254   auto *CI = cast<CallInst>(getUnderlyingInstr());
1255   if (CI->getType()->isVoidTy())
1256     O << "void ";
1257   else {
1258     printAsOperand(O, SlotTracker);
1259     O << " = ";
1260   }
1261 
1262   O << "call @" << CI->getCalledFunction()->getName() << "(";
1263   printOperands(O, SlotTracker);
1264   O << ")";
1265 }
1266 
1267 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
1268                                 VPSlotTracker &SlotTracker) const {
1269   O << Indent << "WIDEN-SELECT ";
1270   printAsOperand(O, SlotTracker);
1271   O << " = select ";
1272   getOperand(0)->printAsOperand(O, SlotTracker);
1273   O << ", ";
1274   getOperand(1)->printAsOperand(O, SlotTracker);
1275   O << ", ";
1276   getOperand(2)->printAsOperand(O, SlotTracker);
1277   O << (InvariantCond ? " (condition is loop invariant)" : "");
1278 }
1279 
1280 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
1281                           VPSlotTracker &SlotTracker) const {
1282   O << Indent << "WIDEN ";
1283   printAsOperand(O, SlotTracker);
1284   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
1285   printOperands(O, SlotTracker);
1286 }
1287 
1288 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
1289                                           VPSlotTracker &SlotTracker) const {
1290   O << Indent << "WIDEN-INDUCTION";
1291   if (getTruncInst()) {
1292     O << "\\l\"";
1293     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
1294     O << " +\n" << Indent << "\"  ";
1295     getVPValue(0)->printAsOperand(O, SlotTracker);
1296   } else
1297     O << " " << VPlanIngredient(IV);
1298 }
1299 
1300 void VPWidenPointerInductionRecipe::print(raw_ostream &O, const Twine &Indent,
1301                                           VPSlotTracker &SlotTracker) const {
1302   O << Indent << "EMIT ";
1303   printAsOperand(O, SlotTracker);
1304   O << " = WIDEN-POINTER-INDUCTION ";
1305   getStartValue()->printAsOperand(O, SlotTracker);
1306   O << ", " << *IndDesc.getStep();
1307 }
1308 
1309 #endif
1310 
1311 bool VPWidenIntOrFpInductionRecipe::isCanonical() const {
1312   auto *StartC = dyn_cast<ConstantInt>(getStartValue()->getLiveInIRValue());
1313   auto *StepC = dyn_cast<SCEVConstant>(getInductionDescriptor().getStep());
1314   return StartC && StartC->isZero() && StepC && StepC->isOne();
1315 }
1316 
1317 VPCanonicalIVPHIRecipe *VPScalarIVStepsRecipe::getCanonicalIV() const {
1318   return cast<VPCanonicalIVPHIRecipe>(getOperand(0));
1319 }
1320 
1321 bool VPScalarIVStepsRecipe::isCanonical() const {
1322   auto *CanIV = getCanonicalIV();
1323   // The start value of the steps-recipe must match the start value of the
1324   // canonical induction and it must step by 1.
1325   if (CanIV->getStartValue() != getStartValue())
1326     return false;
1327   auto *StepVPV = getStepValue();
1328   if (StepVPV->getDef())
1329     return false;
1330   auto *StepC = dyn_cast_or_null<ConstantInt>(StepVPV->getLiveInIRValue());
1331   return StepC && StepC->isOne();
1332 }
1333 
1334 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1335 void VPScalarIVStepsRecipe::print(raw_ostream &O, const Twine &Indent,
1336                                   VPSlotTracker &SlotTracker) const {
1337   O << Indent;
1338   printAsOperand(O, SlotTracker);
1339   O << Indent << "= SCALAR-STEPS ";
1340   printOperands(O, SlotTracker);
1341 }
1342 
1343 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
1344                              VPSlotTracker &SlotTracker) const {
1345   O << Indent << "WIDEN-GEP ";
1346   O << (IsPtrLoopInvariant ? "Inv" : "Var");
1347   size_t IndicesNumber = IsIndexLoopInvariant.size();
1348   for (size_t I = 0; I < IndicesNumber; ++I)
1349     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
1350 
1351   O << " ";
1352   printAsOperand(O, SlotTracker);
1353   O << " = getelementptr ";
1354   printOperands(O, SlotTracker);
1355 }
1356 
1357 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1358                              VPSlotTracker &SlotTracker) const {
1359   O << Indent << "WIDEN-PHI ";
1360 
1361   auto *OriginalPhi = cast<PHINode>(getUnderlyingValue());
1362   // Unless all incoming values are modeled in VPlan  print the original PHI
1363   // directly.
1364   // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming
1365   // values as VPValues.
1366   if (getNumOperands() != OriginalPhi->getNumOperands()) {
1367     O << VPlanIngredient(OriginalPhi);
1368     return;
1369   }
1370 
1371   printAsOperand(O, SlotTracker);
1372   O << " = phi ";
1373   printOperands(O, SlotTracker);
1374 }
1375 
1376 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
1377                           VPSlotTracker &SlotTracker) const {
1378   O << Indent << "BLEND ";
1379   Phi->printAsOperand(O, false);
1380   O << " =";
1381   if (getNumIncomingValues() == 1) {
1382     // Not a User of any mask: not really blending, this is a
1383     // single-predecessor phi.
1384     O << " ";
1385     getIncomingValue(0)->printAsOperand(O, SlotTracker);
1386   } else {
1387     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
1388       O << " ";
1389       getIncomingValue(I)->printAsOperand(O, SlotTracker);
1390       O << "/";
1391       getMask(I)->printAsOperand(O, SlotTracker);
1392     }
1393   }
1394 }
1395 
1396 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
1397                               VPSlotTracker &SlotTracker) const {
1398   O << Indent << "REDUCE ";
1399   printAsOperand(O, SlotTracker);
1400   O << " = ";
1401   getChainOp()->printAsOperand(O, SlotTracker);
1402   O << " +";
1403   if (isa<FPMathOperator>(getUnderlyingInstr()))
1404     O << getUnderlyingInstr()->getFastMathFlags();
1405   O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " (";
1406   getVecOp()->printAsOperand(O, SlotTracker);
1407   if (getCondOp()) {
1408     O << ", ";
1409     getCondOp()->printAsOperand(O, SlotTracker);
1410   }
1411   O << ")";
1412 }
1413 
1414 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
1415                               VPSlotTracker &SlotTracker) const {
1416   O << Indent << (IsUniform ? "CLONE " : "REPLICATE ");
1417 
1418   if (!getUnderlyingInstr()->getType()->isVoidTy()) {
1419     printAsOperand(O, SlotTracker);
1420     O << " = ";
1421   }
1422   O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
1423   printOperands(O, SlotTracker);
1424 
1425   if (AlsoPack)
1426     O << " (S->V)";
1427 }
1428 
1429 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1430                                 VPSlotTracker &SlotTracker) const {
1431   O << Indent << "PHI-PREDICATED-INSTRUCTION ";
1432   printAsOperand(O, SlotTracker);
1433   O << " = ";
1434   printOperands(O, SlotTracker);
1435 }
1436 
1437 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
1438                                            VPSlotTracker &SlotTracker) const {
1439   O << Indent << "WIDEN ";
1440 
1441   if (!isStore()) {
1442     printAsOperand(O, SlotTracker);
1443     O << " = ";
1444   }
1445   O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";
1446 
1447   printOperands(O, SlotTracker);
1448 }
1449 #endif
1450 
1451 void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) {
1452   Value *Start = getStartValue()->getLiveInIRValue();
1453   PHINode *EntryPart = PHINode::Create(
1454       Start->getType(), 2, "index", &*State.CFG.PrevBB->getFirstInsertionPt());
1455   EntryPart->addIncoming(Start, State.CFG.VectorPreHeader);
1456   EntryPart->setDebugLoc(DL);
1457   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
1458     State.set(this, EntryPart, Part);
1459 }
1460 
1461 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1462 void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1463                                    VPSlotTracker &SlotTracker) const {
1464   O << Indent << "EMIT ";
1465   printAsOperand(O, SlotTracker);
1466   O << " = CANONICAL-INDUCTION";
1467 }
1468 #endif
1469 
1470 void VPExpandSCEVRecipe::execute(VPTransformState &State) {
1471   assert(!State.Instance && "cannot be used in per-lane");
1472   const DataLayout &DL =
1473       State.CFG.VectorPreHeader->getModule()->getDataLayout();
1474   SCEVExpander Exp(SE, DL, "induction");
1475   Value *Res = Exp.expandCodeFor(Expr, Expr->getType(),
1476                                  State.CFG.VectorPreHeader->getTerminator());
1477 
1478   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
1479     State.set(this, Res, Part);
1480 }
1481 
1482 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1483 void VPExpandSCEVRecipe::print(raw_ostream &O, const Twine &Indent,
1484                                VPSlotTracker &SlotTracker) const {
1485   O << Indent << "EMIT ";
1486   getVPSingleValue()->printAsOperand(O, SlotTracker);
1487   O << " = EXPAND SCEV " << *Expr;
1488 }
1489 #endif
1490 
1491 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
1492   Value *CanonicalIV = State.get(getOperand(0), 0);
1493   Type *STy = CanonicalIV->getType();
1494   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
1495   ElementCount VF = State.VF;
1496   Value *VStart = VF.isScalar()
1497                       ? CanonicalIV
1498                       : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast");
1499   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
1500     Value *VStep = createStepForVF(Builder, STy, VF, Part);
1501     if (VF.isVector()) {
1502       VStep = Builder.CreateVectorSplat(VF, VStep);
1503       VStep = Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType()));
1504     }
1505     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
1506     State.set(this, CanonicalVectorIV, Part);
1507   }
1508 }
1509 
1510 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1511 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
1512                                      VPSlotTracker &SlotTracker) const {
1513   O << Indent << "EMIT ";
1514   printAsOperand(O, SlotTracker);
1515   O << " = WIDEN-CANONICAL-INDUCTION ";
1516   printOperands(O, SlotTracker);
1517 }
1518 #endif
1519 
1520 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) {
1521   auto &Builder = State.Builder;
1522   // Create a vector from the initial value.
1523   auto *VectorInit = getStartValue()->getLiveInIRValue();
1524 
1525   Type *VecTy = State.VF.isScalar()
1526                     ? VectorInit->getType()
1527                     : VectorType::get(VectorInit->getType(), State.VF);
1528 
1529   if (State.VF.isVector()) {
1530     auto *IdxTy = Builder.getInt32Ty();
1531     auto *One = ConstantInt::get(IdxTy, 1);
1532     IRBuilder<>::InsertPointGuard Guard(Builder);
1533     Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1534     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
1535     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
1536     VectorInit = Builder.CreateInsertElement(
1537         PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
1538   }
1539 
1540   // Create a phi node for the new recurrence.
1541   PHINode *EntryPart = PHINode::Create(
1542       VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt());
1543   EntryPart->addIncoming(VectorInit, State.CFG.VectorPreHeader);
1544   State.set(this, EntryPart, 0);
1545 }
1546 
1547 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1548 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent,
1549                                             VPSlotTracker &SlotTracker) const {
1550   O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
1551   printAsOperand(O, SlotTracker);
1552   O << " = phi ";
1553   printOperands(O, SlotTracker);
1554 }
1555 #endif
1556 
1557 void VPReductionPHIRecipe::execute(VPTransformState &State) {
1558   PHINode *PN = cast<PHINode>(getUnderlyingValue());
1559   auto &Builder = State.Builder;
1560 
1561   // In order to support recurrences we need to be able to vectorize Phi nodes.
1562   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
1563   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
1564   // this value when we vectorize all of the instructions that use the PHI.
1565   bool ScalarPHI = State.VF.isScalar() || IsInLoop;
1566   Type *VecTy =
1567       ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
1568 
1569   BasicBlock *HeaderBB = State.CFG.PrevBB;
1570   assert(State.CurrentVectorLoop->getHeader() == HeaderBB &&
1571          "recipe must be in the vector loop header");
1572   unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF;
1573   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1574     Value *EntryPart =
1575         PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt());
1576     State.set(this, EntryPart, Part);
1577   }
1578 
1579   // Reductions do not have to start at zero. They can start with
1580   // any loop invariant values.
1581   VPValue *StartVPV = getStartValue();
1582   Value *StartV = StartVPV->getLiveInIRValue();
1583 
1584   Value *Iden = nullptr;
1585   RecurKind RK = RdxDesc.getRecurrenceKind();
1586   if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) ||
1587       RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) {
1588     // MinMax reduction have the start value as their identify.
1589     if (ScalarPHI) {
1590       Iden = StartV;
1591     } else {
1592       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1593       Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1594       StartV = Iden =
1595           Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
1596     }
1597   } else {
1598     Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(),
1599                                          RdxDesc.getFastMathFlags());
1600 
1601     if (!ScalarPHI) {
1602       Iden = Builder.CreateVectorSplat(State.VF, Iden);
1603       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1604       Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1605       Constant *Zero = Builder.getInt32(0);
1606       StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
1607     }
1608   }
1609 
1610   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1611     Value *EntryPart = State.get(this, Part);
1612     // Make sure to add the reduction start value only to the
1613     // first unroll part.
1614     Value *StartVal = (Part == 0) ? StartV : Iden;
1615     cast<PHINode>(EntryPart)->addIncoming(StartVal, State.CFG.VectorPreHeader);
1616   }
1617 }
1618 
1619 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1620 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1621                                  VPSlotTracker &SlotTracker) const {
1622   O << Indent << "WIDEN-REDUCTION-PHI ";
1623 
1624   printAsOperand(O, SlotTracker);
1625   O << " = phi ";
1626   printOperands(O, SlotTracker);
1627 }
1628 #endif
1629 
1630 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1631 
1632 void VPValue::replaceAllUsesWith(VPValue *New) {
1633   for (unsigned J = 0; J < getNumUsers();) {
1634     VPUser *User = Users[J];
1635     unsigned NumUsers = getNumUsers();
1636     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1637       if (User->getOperand(I) == this)
1638         User->setOperand(I, New);
1639     // If a user got removed after updating the current user, the next user to
1640     // update will be moved to the current position, so we only need to
1641     // increment the index if the number of users did not change.
1642     if (NumUsers == getNumUsers())
1643       J++;
1644   }
1645 }
1646 
1647 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1648 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1649   if (const Value *UV = getUnderlyingValue()) {
1650     OS << "ir<";
1651     UV->printAsOperand(OS, false);
1652     OS << ">";
1653     return;
1654   }
1655 
1656   unsigned Slot = Tracker.getSlot(this);
1657   if (Slot == unsigned(-1))
1658     OS << "<badref>";
1659   else
1660     OS << "vp<%" << Tracker.getSlot(this) << ">";
1661 }
1662 
1663 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1664   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1665     Op->printAsOperand(O, SlotTracker);
1666   });
1667 }
1668 #endif
1669 
1670 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1671                                           Old2NewTy &Old2New,
1672                                           InterleavedAccessInfo &IAI) {
1673   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1674   for (VPBlockBase *Base : RPOT) {
1675     visitBlock(Base, Old2New, IAI);
1676   }
1677 }
1678 
1679 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1680                                          InterleavedAccessInfo &IAI) {
1681   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1682     for (VPRecipeBase &VPI : *VPBB) {
1683       if (isa<VPHeaderPHIRecipe>(&VPI))
1684         continue;
1685       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1686       auto *VPInst = cast<VPInstruction>(&VPI);
1687       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1688       auto *IG = IAI.getInterleaveGroup(Inst);
1689       if (!IG)
1690         continue;
1691 
1692       auto NewIGIter = Old2New.find(IG);
1693       if (NewIGIter == Old2New.end())
1694         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1695             IG->getFactor(), IG->isReverse(), IG->getAlign());
1696 
1697       if (Inst == IG->getInsertPos())
1698         Old2New[IG]->setInsertPos(VPInst);
1699 
1700       InterleaveGroupMap[VPInst] = Old2New[IG];
1701       InterleaveGroupMap[VPInst]->insertMember(
1702           VPInst, IG->getIndex(Inst),
1703           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1704                                 : IG->getFactor()));
1705     }
1706   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1707     visitRegion(Region, Old2New, IAI);
1708   else
1709     llvm_unreachable("Unsupported kind of VPBlock.");
1710 }
1711 
1712 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1713                                                  InterleavedAccessInfo &IAI) {
1714   Old2NewTy Old2New;
1715   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1716 }
1717 
1718 void VPSlotTracker::assignSlot(const VPValue *V) {
1719   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1720   Slots[V] = NextSlot++;
1721 }
1722 
1723 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1724 
1725   for (const VPValue *V : Plan.VPExternalDefs)
1726     assignSlot(V);
1727 
1728   assignSlot(&Plan.VectorTripCount);
1729   if (Plan.BackedgeTakenCount)
1730     assignSlot(Plan.BackedgeTakenCount);
1731 
1732   ReversePostOrderTraversal<
1733       VPBlockRecursiveTraversalWrapper<const VPBlockBase *>>
1734       RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>(
1735           Plan.getEntry()));
1736   for (const VPBasicBlock *VPBB :
1737        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1738     for (const VPRecipeBase &Recipe : *VPBB)
1739       for (VPValue *Def : Recipe.definedValues())
1740         assignSlot(Def);
1741 }
1742 
1743 bool vputils::onlyFirstLaneUsed(VPValue *Def) {
1744   return all_of(Def->users(), [Def](VPUser *U) {
1745     return cast<VPRecipeBase>(U)->onlyFirstLaneUsed(Def);
1746   });
1747 }
1748