1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/GenericDomTreeConstruction.h" 41 #include "llvm/Support/GraphWriter.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include <cassert> 45 #include <iterator> 46 #include <string> 47 #include <vector> 48 49 using namespace llvm; 50 extern cl::opt<bool> EnableVPlanNativePath; 51 52 #define DEBUG_TYPE "vplan" 53 54 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 55 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 56 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 57 VPSlotTracker SlotTracker( 58 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 59 V.print(OS, SlotTracker); 60 return OS; 61 } 62 #endif 63 64 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 65 const ElementCount &VF) const { 66 switch (LaneKind) { 67 case VPLane::Kind::ScalableLast: 68 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 69 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 70 Builder.getInt32(VF.getKnownMinValue() - Lane)); 71 case VPLane::Kind::First: 72 return Builder.getInt32(Lane); 73 } 74 llvm_unreachable("Unknown lane kind"); 75 } 76 77 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 78 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 79 if (Def) 80 Def->addDefinedValue(this); 81 } 82 83 VPValue::~VPValue() { 84 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 85 if (Def) 86 Def->removeDefinedValue(this); 87 } 88 89 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 90 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 91 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 92 R->print(OS, "", SlotTracker); 93 else 94 printAsOperand(OS, SlotTracker); 95 } 96 97 void VPValue::dump() const { 98 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 99 VPSlotTracker SlotTracker( 100 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 101 print(dbgs(), SlotTracker); 102 dbgs() << "\n"; 103 } 104 105 void VPDef::dump() const { 106 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 107 VPSlotTracker SlotTracker( 108 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 109 print(dbgs(), "", SlotTracker); 110 dbgs() << "\n"; 111 } 112 #endif 113 114 // Get the top-most entry block of \p Start. This is the entry block of the 115 // containing VPlan. This function is templated to support both const and non-const blocks 116 template <typename T> static T *getPlanEntry(T *Start) { 117 T *Next = Start; 118 T *Current = Start; 119 while ((Next = Next->getParent())) 120 Current = Next; 121 122 SmallSetVector<T *, 8> WorkList; 123 WorkList.insert(Current); 124 125 for (unsigned i = 0; i < WorkList.size(); i++) { 126 T *Current = WorkList[i]; 127 if (Current->getNumPredecessors() == 0) 128 return Current; 129 auto &Predecessors = Current->getPredecessors(); 130 WorkList.insert(Predecessors.begin(), Predecessors.end()); 131 } 132 133 llvm_unreachable("VPlan without any entry node without predecessors"); 134 } 135 136 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 137 138 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 139 140 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 141 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 142 const VPBlockBase *Block = this; 143 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 144 Block = Region->getEntry(); 145 return cast<VPBasicBlock>(Block); 146 } 147 148 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 149 VPBlockBase *Block = this; 150 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 151 Block = Region->getEntry(); 152 return cast<VPBasicBlock>(Block); 153 } 154 155 void VPBlockBase::setPlan(VPlan *ParentPlan) { 156 assert(ParentPlan->getEntry() == this && 157 "Can only set plan on its entry block."); 158 Plan = ParentPlan; 159 } 160 161 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 162 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 163 const VPBlockBase *Block = this; 164 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 165 Block = Region->getExit(); 166 return cast<VPBasicBlock>(Block); 167 } 168 169 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 170 VPBlockBase *Block = this; 171 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 172 Block = Region->getExit(); 173 return cast<VPBasicBlock>(Block); 174 } 175 176 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 177 if (!Successors.empty() || !Parent) 178 return this; 179 assert(Parent->getExit() == this && 180 "Block w/o successors not the exit of its parent."); 181 return Parent->getEnclosingBlockWithSuccessors(); 182 } 183 184 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 185 if (!Predecessors.empty() || !Parent) 186 return this; 187 assert(Parent->getEntry() == this && 188 "Block w/o predecessors not the entry of its parent."); 189 return Parent->getEnclosingBlockWithPredecessors(); 190 } 191 192 VPValue *VPBlockBase::getCondBit() { 193 return CondBitUser.getSingleOperandOrNull(); 194 } 195 196 const VPValue *VPBlockBase::getCondBit() const { 197 return CondBitUser.getSingleOperandOrNull(); 198 } 199 200 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); } 201 202 VPValue *VPBlockBase::getPredicate() { 203 return PredicateUser.getSingleOperandOrNull(); 204 } 205 206 const VPValue *VPBlockBase::getPredicate() const { 207 return PredicateUser.getSingleOperandOrNull(); 208 } 209 210 void VPBlockBase::setPredicate(VPValue *CV) { 211 PredicateUser.resetSingleOpUser(CV); 212 } 213 214 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 215 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 216 217 for (VPBlockBase *Block : Blocks) 218 delete Block; 219 } 220 221 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 222 iterator It = begin(); 223 while (It != end() && It->isPhi()) 224 It++; 225 return It; 226 } 227 228 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 229 if (!Def->getDef()) 230 return Def->getLiveInIRValue(); 231 232 if (hasScalarValue(Def, Instance)) { 233 return Data 234 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 235 } 236 237 assert(hasVectorValue(Def, Instance.Part)); 238 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 239 if (!VecPart->getType()->isVectorTy()) { 240 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 241 return VecPart; 242 } 243 // TODO: Cache created scalar values. 244 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 245 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 246 // set(Def, Extract, Instance); 247 return Extract; 248 } 249 250 BasicBlock * 251 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 252 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 253 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 254 BasicBlock *PrevBB = CFG.PrevBB; 255 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 256 PrevBB->getParent(), CFG.LastBB); 257 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 258 259 // Hook up the new basic block to its predecessors. 260 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 261 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 262 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 263 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 264 265 // In outer loop vectorization scenario, the predecessor BBlock may not yet 266 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 267 // vectorization. We do not encounter this case in inner loop vectorization 268 // as we start out by building a loop skeleton with the vector loop header 269 // and latch blocks. As a result, we never enter this function for the 270 // header block in the non VPlan-native path. 271 if (!PredBB) { 272 assert(EnableVPlanNativePath && 273 "Unexpected null predecessor in non VPlan-native path"); 274 CFG.VPBBsToFix.push_back(PredVPBB); 275 continue; 276 } 277 278 assert(PredBB && "Predecessor basic-block not found building successor."); 279 auto *PredBBTerminator = PredBB->getTerminator(); 280 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 281 if (isa<UnreachableInst>(PredBBTerminator)) { 282 assert(PredVPSuccessors.size() == 1 && 283 "Predecessor ending w/o branch must have single successor."); 284 PredBBTerminator->eraseFromParent(); 285 BranchInst::Create(NewBB, PredBB); 286 } else { 287 assert(PredVPSuccessors.size() == 2 && 288 "Predecessor ending with branch must have two successors."); 289 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 290 assert(!PredBBTerminator->getSuccessor(idx) && 291 "Trying to reset an existing successor block."); 292 PredBBTerminator->setSuccessor(idx, NewBB); 293 } 294 } 295 return NewBB; 296 } 297 298 void VPBasicBlock::execute(VPTransformState *State) { 299 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 300 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 301 VPBlockBase *SingleHPred = nullptr; 302 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 303 304 // 1. Create an IR basic block, or reuse the last one if possible. 305 // The last IR basic block is reused, as an optimization, in three cases: 306 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 307 // B. when the current VPBB has a single (hierarchical) predecessor which 308 // is PrevVPBB and the latter has a single (hierarchical) successor; and 309 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 310 // is the exit of this region from a previous instance, or the predecessor 311 // of this region. 312 if (PrevVPBB && /* A */ 313 !((SingleHPred = getSingleHierarchicalPredecessor()) && 314 SingleHPred->getExitBasicBlock() == PrevVPBB && 315 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 316 !(Replica && getPredecessors().empty())) { /* C */ 317 NewBB = createEmptyBasicBlock(State->CFG); 318 State->Builder.SetInsertPoint(NewBB); 319 // Temporarily terminate with unreachable until CFG is rewired. 320 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 321 State->Builder.SetInsertPoint(Terminator); 322 // Register NewBB in its loop. In innermost loops its the same for all BB's. 323 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 324 L->addBasicBlockToLoop(NewBB, *State->LI); 325 State->CFG.PrevBB = NewBB; 326 } 327 328 // 2. Fill the IR basic block with IR instructions. 329 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 330 << " in BB:" << NewBB->getName() << '\n'); 331 332 State->CFG.VPBB2IRBB[this] = NewBB; 333 State->CFG.PrevVPBB = this; 334 335 for (VPRecipeBase &Recipe : Recipes) 336 Recipe.execute(*State); 337 338 VPValue *CBV; 339 if (EnableVPlanNativePath && (CBV = getCondBit())) { 340 assert(CBV->getUnderlyingValue() && 341 "Unexpected null underlying value for condition bit"); 342 343 // Condition bit value in a VPBasicBlock is used as the branch selector. In 344 // the VPlan-native path case, since all branches are uniform we generate a 345 // branch instruction using the condition value from vector lane 0 and dummy 346 // successors. The successors are fixed later when the successor blocks are 347 // visited. 348 Value *NewCond = State->get(CBV, {0, 0}); 349 350 // Replace the temporary unreachable terminator with the new conditional 351 // branch. 352 auto *CurrentTerminator = NewBB->getTerminator(); 353 assert(isa<UnreachableInst>(CurrentTerminator) && 354 "Expected to replace unreachable terminator with conditional " 355 "branch."); 356 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 357 CondBr->setSuccessor(0, nullptr); 358 ReplaceInstWithInst(CurrentTerminator, CondBr); 359 } 360 361 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 362 } 363 364 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 365 for (VPRecipeBase &R : Recipes) { 366 for (auto *Def : R.definedValues()) 367 Def->replaceAllUsesWith(NewValue); 368 369 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 370 R.setOperand(I, NewValue); 371 } 372 } 373 374 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 375 assert((SplitAt == end() || SplitAt->getParent() == this) && 376 "can only split at a position in the same block"); 377 378 SmallVector<VPBlockBase *, 2> Succs(successors()); 379 // First, disconnect the current block from its successors. 380 for (VPBlockBase *Succ : Succs) 381 VPBlockUtils::disconnectBlocks(this, Succ); 382 383 // Create new empty block after the block to split. 384 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 385 VPBlockUtils::insertBlockAfter(SplitBlock, this); 386 387 // Add successors for block to split to new block. 388 for (VPBlockBase *Succ : Succs) 389 VPBlockUtils::connectBlocks(SplitBlock, Succ); 390 391 // Finally, move the recipes starting at SplitAt to new block. 392 for (VPRecipeBase &ToMove : 393 make_early_inc_range(make_range(SplitAt, this->end()))) 394 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 395 396 return SplitBlock; 397 } 398 399 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 400 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 401 if (getSuccessors().empty()) { 402 O << Indent << "No successors\n"; 403 } else { 404 O << Indent << "Successor(s): "; 405 ListSeparator LS; 406 for (auto *Succ : getSuccessors()) 407 O << LS << Succ->getName(); 408 O << '\n'; 409 } 410 } 411 412 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 413 VPSlotTracker &SlotTracker) const { 414 O << Indent << getName() << ":\n"; 415 if (const VPValue *Pred = getPredicate()) { 416 O << Indent << "BlockPredicate:"; 417 Pred->printAsOperand(O, SlotTracker); 418 if (const auto *PredInst = dyn_cast<VPInstruction>(Pred)) 419 O << " (" << PredInst->getParent()->getName() << ")"; 420 O << '\n'; 421 } 422 423 auto RecipeIndent = Indent + " "; 424 for (const VPRecipeBase &Recipe : *this) { 425 Recipe.print(O, RecipeIndent, SlotTracker); 426 O << '\n'; 427 } 428 429 printSuccessors(O, Indent); 430 431 if (const VPValue *CBV = getCondBit()) { 432 O << Indent << "CondBit: "; 433 CBV->printAsOperand(O, SlotTracker); 434 if (const auto *CBI = dyn_cast<VPInstruction>(CBV)) 435 O << " (" << CBI->getParent()->getName() << ")"; 436 O << '\n'; 437 } 438 } 439 #endif 440 441 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 442 for (VPBlockBase *Block : depth_first(Entry)) 443 // Drop all references in VPBasicBlocks and replace all uses with 444 // DummyValue. 445 Block->dropAllReferences(NewValue); 446 } 447 448 void VPRegionBlock::execute(VPTransformState *State) { 449 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 450 451 if (!isReplicator()) { 452 // Visit the VPBlocks connected to "this", starting from it. 453 for (VPBlockBase *Block : RPOT) { 454 if (EnableVPlanNativePath) { 455 // The inner loop vectorization path does not represent loop preheader 456 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 457 // vectorizing loop preheader block. In future, we may replace this 458 // check with the check for loop preheader. 459 if (Block->getNumPredecessors() == 0) 460 continue; 461 462 // Skip vectorizing loop exit block. In future, we may replace this 463 // check with the check for loop exit. 464 if (Block->getNumSuccessors() == 0) 465 continue; 466 } 467 468 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 469 Block->execute(State); 470 } 471 return; 472 } 473 474 assert(!State->Instance && "Replicating a Region with non-null instance."); 475 476 // Enter replicating mode. 477 State->Instance = VPIteration(0, 0); 478 479 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 480 State->Instance->Part = Part; 481 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 482 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 483 ++Lane) { 484 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 485 // Visit the VPBlocks connected to \p this, starting from it. 486 for (VPBlockBase *Block : RPOT) { 487 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 488 Block->execute(State); 489 } 490 } 491 } 492 493 // Exit replicating mode. 494 State->Instance.reset(); 495 } 496 497 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 498 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 499 VPSlotTracker &SlotTracker) const { 500 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 501 auto NewIndent = Indent + " "; 502 for (auto *BlockBase : depth_first(Entry)) { 503 O << '\n'; 504 BlockBase->print(O, NewIndent, SlotTracker); 505 } 506 O << Indent << "}\n"; 507 508 printSuccessors(O, Indent); 509 } 510 #endif 511 512 bool VPRecipeBase::mayWriteToMemory() const { 513 switch (getVPDefID()) { 514 case VPWidenMemoryInstructionSC: { 515 return cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 516 } 517 case VPReplicateSC: 518 case VPWidenCallSC: 519 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 520 ->mayWriteToMemory(); 521 case VPBranchOnMaskSC: 522 return false; 523 case VPWidenIntOrFpInductionSC: 524 case VPWidenCanonicalIVSC: 525 case VPWidenPHISC: 526 case VPBlendSC: 527 case VPWidenSC: 528 case VPWidenGEPSC: 529 case VPReductionSC: 530 case VPWidenSelectSC: { 531 const Instruction *I = 532 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 533 (void)I; 534 assert((!I || !I->mayWriteToMemory()) && 535 "underlying instruction may write to memory"); 536 return false; 537 } 538 default: 539 return true; 540 } 541 } 542 543 bool VPRecipeBase::mayReadFromMemory() const { 544 switch (getVPDefID()) { 545 case VPWidenMemoryInstructionSC: { 546 return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 547 } 548 case VPReplicateSC: 549 case VPWidenCallSC: 550 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 551 ->mayReadFromMemory(); 552 case VPBranchOnMaskSC: 553 return false; 554 case VPWidenIntOrFpInductionSC: 555 case VPWidenCanonicalIVSC: 556 case VPWidenPHISC: 557 case VPBlendSC: 558 case VPWidenSC: 559 case VPWidenGEPSC: 560 case VPReductionSC: 561 case VPWidenSelectSC: { 562 const Instruction *I = 563 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 564 (void)I; 565 assert((!I || !I->mayReadFromMemory()) && 566 "underlying instruction may read from memory"); 567 return false; 568 } 569 default: 570 return true; 571 } 572 } 573 574 bool VPRecipeBase::mayHaveSideEffects() const { 575 switch (getVPDefID()) { 576 case VPBranchOnMaskSC: 577 return false; 578 case VPWidenIntOrFpInductionSC: 579 case VPWidenCanonicalIVSC: 580 case VPWidenPHISC: 581 case VPBlendSC: 582 case VPWidenSC: 583 case VPWidenGEPSC: 584 case VPReductionSC: 585 case VPWidenSelectSC: { 586 const Instruction *I = 587 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 588 (void)I; 589 assert((!I || !I->mayHaveSideEffects()) && 590 "underlying instruction has side-effects"); 591 return false; 592 } 593 case VPReplicateSC: { 594 auto *R = cast<VPReplicateRecipe>(this); 595 return R->getUnderlyingInstr()->mayHaveSideEffects(); 596 } 597 default: 598 return true; 599 } 600 } 601 602 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 603 assert(!Parent && "Recipe already in some VPBasicBlock"); 604 assert(InsertPos->getParent() && 605 "Insertion position not in any VPBasicBlock"); 606 Parent = InsertPos->getParent(); 607 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 608 } 609 610 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 611 assert(!Parent && "Recipe already in some VPBasicBlock"); 612 assert(InsertPos->getParent() && 613 "Insertion position not in any VPBasicBlock"); 614 Parent = InsertPos->getParent(); 615 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 616 } 617 618 void VPRecipeBase::removeFromParent() { 619 assert(getParent() && "Recipe not in any VPBasicBlock"); 620 getParent()->getRecipeList().remove(getIterator()); 621 Parent = nullptr; 622 } 623 624 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 625 assert(getParent() && "Recipe not in any VPBasicBlock"); 626 return getParent()->getRecipeList().erase(getIterator()); 627 } 628 629 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 630 removeFromParent(); 631 insertAfter(InsertPos); 632 } 633 634 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 635 iplist<VPRecipeBase>::iterator I) { 636 assert(I == BB.end() || I->getParent() == &BB); 637 removeFromParent(); 638 Parent = &BB; 639 BB.getRecipeList().insert(I, this); 640 } 641 642 void VPInstruction::generateInstruction(VPTransformState &State, 643 unsigned Part) { 644 IRBuilderBase &Builder = State.Builder; 645 Builder.SetCurrentDebugLocation(DL); 646 647 if (Instruction::isBinaryOp(getOpcode())) { 648 Value *A = State.get(getOperand(0), Part); 649 Value *B = State.get(getOperand(1), Part); 650 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 651 State.set(this, V, Part); 652 return; 653 } 654 655 switch (getOpcode()) { 656 case VPInstruction::Not: { 657 Value *A = State.get(getOperand(0), Part); 658 Value *V = Builder.CreateNot(A); 659 State.set(this, V, Part); 660 break; 661 } 662 case VPInstruction::ICmpULE: { 663 Value *IV = State.get(getOperand(0), Part); 664 Value *TC = State.get(getOperand(1), Part); 665 Value *V = Builder.CreateICmpULE(IV, TC); 666 State.set(this, V, Part); 667 break; 668 } 669 case Instruction::Select: { 670 Value *Cond = State.get(getOperand(0), Part); 671 Value *Op1 = State.get(getOperand(1), Part); 672 Value *Op2 = State.get(getOperand(2), Part); 673 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 674 State.set(this, V, Part); 675 break; 676 } 677 case VPInstruction::ActiveLaneMask: { 678 // Get first lane of vector induction variable. 679 Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0)); 680 // Get the original loop tripcount. 681 Value *ScalarTC = State.get(getOperand(1), Part); 682 683 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 684 auto *PredTy = VectorType::get(Int1Ty, State.VF); 685 Instruction *Call = Builder.CreateIntrinsic( 686 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 687 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 688 State.set(this, Call, Part); 689 break; 690 } 691 case VPInstruction::FirstOrderRecurrenceSplice: { 692 // Generate code to combine the previous and current values in vector v3. 693 // 694 // vector.ph: 695 // v_init = vector(..., ..., ..., a[-1]) 696 // br vector.body 697 // 698 // vector.body 699 // i = phi [0, vector.ph], [i+4, vector.body] 700 // v1 = phi [v_init, vector.ph], [v2, vector.body] 701 // v2 = a[i, i+1, i+2, i+3]; 702 // v3 = vector(v1(3), v2(0, 1, 2)) 703 704 // For the first part, use the recurrence phi (v1), otherwise v2. 705 auto *V1 = State.get(getOperand(0), 0); 706 Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1); 707 if (!PartMinus1->getType()->isVectorTy()) { 708 State.set(this, PartMinus1, Part); 709 } else { 710 Value *V2 = State.get(getOperand(1), Part); 711 State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part); 712 } 713 break; 714 } 715 716 case VPInstruction::CanonicalIVIncrement: 717 case VPInstruction::CanonicalIVIncrementNUW: { 718 Value *Next = nullptr; 719 if (Part == 0) { 720 bool IsNUW = getOpcode() == VPInstruction::CanonicalIVIncrementNUW; 721 auto *Phi = State.get(getOperand(0), 0); 722 // The loop step is equal to the vectorization factor (num of SIMD 723 // elements) times the unroll factor (num of SIMD instructions). 724 Value *Step = 725 createStepForVF(Builder, Phi->getType(), State.VF, State.UF); 726 Next = Builder.CreateAdd(Phi, Step, "index.next", IsNUW, false); 727 } else { 728 Next = State.get(this, 0); 729 } 730 731 State.set(this, Next, Part); 732 break; 733 } 734 case VPInstruction::BranchOnCount: { 735 if (Part != 0) 736 break; 737 // First create the compare. 738 Value *IV = State.get(getOperand(0), Part); 739 Value *TC = State.get(getOperand(1), Part); 740 Value *Cond = Builder.CreateICmpEQ(IV, TC); 741 742 // Now create the branch. 743 auto *Plan = getParent()->getPlan(); 744 VPRegionBlock *TopRegion = Plan->getVectorLoopRegion(); 745 VPBasicBlock *Header = TopRegion->getEntry()->getEntryBasicBlock(); 746 if (Header->empty()) { 747 assert(EnableVPlanNativePath && 748 "empty entry block only expected in VPlanNativePath"); 749 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 750 } 751 // TODO: Once the exit block is modeled in VPlan, use it instead of going 752 // through State.CFG.LastBB. 753 BasicBlock *Exit = 754 cast<BranchInst>(State.CFG.LastBB->getTerminator())->getSuccessor(0); 755 756 Builder.CreateCondBr(Cond, Exit, State.CFG.VPBB2IRBB[Header]); 757 Builder.GetInsertBlock()->getTerminator()->eraseFromParent(); 758 break; 759 } 760 default: 761 llvm_unreachable("Unsupported opcode for instruction"); 762 } 763 } 764 765 void VPInstruction::execute(VPTransformState &State) { 766 assert(!State.Instance && "VPInstruction executing an Instance"); 767 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 768 State.Builder.setFastMathFlags(FMF); 769 for (unsigned Part = 0; Part < State.UF; ++Part) 770 generateInstruction(State, Part); 771 } 772 773 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 774 void VPInstruction::dump() const { 775 VPSlotTracker SlotTracker(getParent()->getPlan()); 776 print(dbgs(), "", SlotTracker); 777 } 778 779 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 780 VPSlotTracker &SlotTracker) const { 781 O << Indent << "EMIT "; 782 783 if (hasResult()) { 784 printAsOperand(O, SlotTracker); 785 O << " = "; 786 } 787 788 switch (getOpcode()) { 789 case VPInstruction::Not: 790 O << "not"; 791 break; 792 case VPInstruction::ICmpULE: 793 O << "icmp ule"; 794 break; 795 case VPInstruction::SLPLoad: 796 O << "combined load"; 797 break; 798 case VPInstruction::SLPStore: 799 O << "combined store"; 800 break; 801 case VPInstruction::ActiveLaneMask: 802 O << "active lane mask"; 803 break; 804 case VPInstruction::FirstOrderRecurrenceSplice: 805 O << "first-order splice"; 806 break; 807 case VPInstruction::CanonicalIVIncrement: 808 O << "VF * UF + "; 809 break; 810 case VPInstruction::CanonicalIVIncrementNUW: 811 O << "VF * UF +(nuw) "; 812 break; 813 case VPInstruction::BranchOnCount: 814 O << "branch-on-count "; 815 break; 816 default: 817 O << Instruction::getOpcodeName(getOpcode()); 818 } 819 820 O << FMF; 821 822 for (const VPValue *Operand : operands()) { 823 O << " "; 824 Operand->printAsOperand(O, SlotTracker); 825 } 826 827 if (DL) { 828 O << ", !dbg "; 829 DL.print(O); 830 } 831 } 832 #endif 833 834 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) { 835 // Make sure the VPInstruction is a floating-point operation. 836 assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul || 837 Opcode == Instruction::FNeg || Opcode == Instruction::FSub || 838 Opcode == Instruction::FDiv || Opcode == Instruction::FRem || 839 Opcode == Instruction::FCmp) && 840 "this op can't take fast-math flags"); 841 FMF = FMFNew; 842 } 843 844 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 845 Value *CanonicalIVStartValue, 846 VPTransformState &State) { 847 // Check if the trip count is needed, and if so build it. 848 if (TripCount && TripCount->getNumUsers()) { 849 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 850 State.set(TripCount, TripCountV, Part); 851 } 852 853 // Check if the backedge taken count is needed, and if so build it. 854 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 855 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 856 auto *TCMO = Builder.CreateSub(TripCountV, 857 ConstantInt::get(TripCountV->getType(), 1), 858 "trip.count.minus.1"); 859 auto VF = State.VF; 860 Value *VTCMO = 861 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 862 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 863 State.set(BackedgeTakenCount, VTCMO, Part); 864 } 865 866 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 867 State.set(&VectorTripCount, VectorTripCountV, Part); 868 869 // When vectorizing the epilogue loop, the canonical induction start value 870 // needs to be changed from zero to the value after the main vector loop. 871 if (CanonicalIVStartValue) { 872 VPValue *VPV = new VPValue(CanonicalIVStartValue); 873 addExternalDef(VPV); 874 auto *IV = getCanonicalIV(); 875 assert(all_of(IV->users(), 876 [](const VPUser *U) { 877 auto *VPI = cast<VPInstruction>(U); 878 return VPI->getOpcode() == 879 VPInstruction::CanonicalIVIncrement || 880 VPI->getOpcode() == 881 VPInstruction::CanonicalIVIncrementNUW; 882 }) && 883 "the canonical IV should only be used by its increments when " 884 "resetting the start value"); 885 IV->setOperand(0, VPV); 886 } 887 } 888 889 /// Generate the code inside the body of the vectorized loop. Assumes a single 890 /// LoopVectorBody basic-block was created for this. Introduce additional 891 /// basic-blocks as needed, and fill them all. 892 void VPlan::execute(VPTransformState *State) { 893 // 0. Set the reverse mapping from VPValues to Values for code generation. 894 for (auto &Entry : Value2VPValue) 895 State->VPValue2Value[Entry.second] = Entry.first; 896 897 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 898 State->CFG.VectorPreHeader = VectorPreHeaderBB; 899 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 900 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 901 902 // 1. Make room to generate basic-blocks inside loop body if needed. 903 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 904 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 905 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 906 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 907 // Remove the edge between Header and Latch to allow other connections. 908 // Temporarily terminate with unreachable until CFG is rewired. 909 // Note: this asserts the generated code's assumption that 910 // getFirstInsertionPt() can be dereferenced into an Instruction. 911 VectorHeaderBB->getTerminator()->eraseFromParent(); 912 State->Builder.SetInsertPoint(VectorHeaderBB); 913 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 914 State->Builder.SetInsertPoint(Terminator); 915 916 // 2. Generate code in loop body. 917 State->CFG.PrevVPBB = nullptr; 918 State->CFG.PrevBB = VectorHeaderBB; 919 State->CFG.LastBB = VectorLatchBB; 920 921 for (VPBlockBase *Block : depth_first(Entry)) 922 Block->execute(State); 923 924 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 925 // VPBB's successors. 926 for (auto VPBB : State->CFG.VPBBsToFix) { 927 assert(EnableVPlanNativePath && 928 "Unexpected VPBBsToFix in non VPlan-native path"); 929 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 930 assert(BB && "Unexpected null basic block for VPBB"); 931 932 unsigned Idx = 0; 933 auto *BBTerminator = BB->getTerminator(); 934 935 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 936 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 937 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 938 ++Idx; 939 } 940 } 941 942 // 3. Merge the temporary latch created with the last basic-block filled. 943 BasicBlock *LastBB = State->CFG.PrevBB; 944 assert(isa<BranchInst>(LastBB->getTerminator()) && 945 "Expected VPlan CFG to terminate with branch"); 946 947 // Move both the branch and check from LastBB to VectorLatchBB. 948 auto *LastBranch = cast<BranchInst>(LastBB->getTerminator()); 949 LastBranch->moveBefore(VectorLatchBB->getTerminator()); 950 VectorLatchBB->getTerminator()->eraseFromParent(); 951 // Move condition so it is guaranteed to be next to branch. This is only done 952 // to avoid excessive test updates. 953 // TODO: Remove special handling once the increments for all inductions are 954 // modeled explicitly in VPlan. 955 cast<Instruction>(LastBranch->getCondition())->moveBefore(LastBranch); 956 // Connect LastBB to VectorLatchBB to facilitate their merge. 957 BranchInst::Create(VectorLatchBB, LastBB); 958 959 // Merge LastBB with Latch. 960 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 961 (void)Merged; 962 assert(Merged && "Could not merge last basic block with latch."); 963 VectorLatchBB = LastBB; 964 965 // Fix the latch value of canonical, reduction and first-order recurrences 966 // phis in the vector loop. 967 VPBasicBlock *Header = Entry->getEntryBasicBlock(); 968 if (Header->empty()) { 969 assert(EnableVPlanNativePath); 970 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 971 } 972 for (VPRecipeBase &R : Header->phis()) { 973 // Skip phi-like recipes that generate their backedege values themselves. 974 // TODO: Model their backedge values explicitly. 975 if (isa<VPWidenIntOrFpInductionRecipe>(&R) || isa<VPWidenPHIRecipe>(&R)) 976 continue; 977 978 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 979 // For canonical IV, first-order recurrences and in-order reduction phis, 980 // only a single part is generated, which provides the last part from the 981 // previous iteration. For non-ordered reductions all UF parts are 982 // generated. 983 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 984 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 985 cast<VPReductionPHIRecipe>(PhiR)->isOrdered(); 986 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 987 988 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 989 Value *Phi = State->get(PhiR, Part); 990 Value *Val = State->get(PhiR->getBackedgeValue(), 991 SinglePartNeeded ? State->UF - 1 : Part); 992 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 993 } 994 } 995 996 // We do not attempt to preserve DT for outer loop vectorization currently. 997 if (!EnableVPlanNativePath) 998 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 999 L->getExitBlock()); 1000 } 1001 1002 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1003 LLVM_DUMP_METHOD 1004 void VPlan::print(raw_ostream &O) const { 1005 VPSlotTracker SlotTracker(this); 1006 1007 O << "VPlan '" << Name << "' {"; 1008 1009 if (VectorTripCount.getNumUsers() > 0) { 1010 O << "\nLive-in "; 1011 VectorTripCount.printAsOperand(O, SlotTracker); 1012 O << " = vector-trip-count\n"; 1013 } 1014 1015 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1016 O << "\nLive-in "; 1017 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1018 O << " = backedge-taken count\n"; 1019 } 1020 1021 for (const VPBlockBase *Block : depth_first(getEntry())) { 1022 O << '\n'; 1023 Block->print(O, "", SlotTracker); 1024 } 1025 O << "}\n"; 1026 } 1027 1028 LLVM_DUMP_METHOD 1029 void VPlan::printDOT(raw_ostream &O) const { 1030 VPlanPrinter Printer(O, *this); 1031 Printer.dump(); 1032 } 1033 1034 LLVM_DUMP_METHOD 1035 void VPlan::dump() const { print(dbgs()); } 1036 #endif 1037 1038 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 1039 BasicBlock *LoopLatchBB, 1040 BasicBlock *LoopExitBB) { 1041 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 1042 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 1043 // The vector body may be more than a single basic-block by this point. 1044 // Update the dominator tree information inside the vector body by propagating 1045 // it from header to latch, expecting only triangular control-flow, if any. 1046 BasicBlock *PostDomSucc = nullptr; 1047 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 1048 // Get the list of successors of this block. 1049 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 1050 assert(Succs.size() <= 2 && 1051 "Basic block in vector loop has more than 2 successors."); 1052 PostDomSucc = Succs[0]; 1053 if (Succs.size() == 1) { 1054 assert(PostDomSucc->getSinglePredecessor() && 1055 "PostDom successor has more than one predecessor."); 1056 DT->addNewBlock(PostDomSucc, BB); 1057 continue; 1058 } 1059 BasicBlock *InterimSucc = Succs[1]; 1060 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 1061 PostDomSucc = Succs[1]; 1062 InterimSucc = Succs[0]; 1063 } 1064 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 1065 "One successor of a basic block does not lead to the other."); 1066 assert(InterimSucc->getSinglePredecessor() && 1067 "Interim successor has more than one predecessor."); 1068 assert(PostDomSucc->hasNPredecessors(2) && 1069 "PostDom successor has more than two predecessors."); 1070 DT->addNewBlock(InterimSucc, BB); 1071 DT->addNewBlock(PostDomSucc, BB); 1072 } 1073 // Latch block is a new dominator for the loop exit. 1074 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 1075 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 1076 } 1077 1078 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1079 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1080 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1081 Twine(getOrCreateBID(Block)); 1082 } 1083 1084 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1085 const std::string &Name = Block->getName(); 1086 if (!Name.empty()) 1087 return Name; 1088 return "VPB" + Twine(getOrCreateBID(Block)); 1089 } 1090 1091 void VPlanPrinter::dump() { 1092 Depth = 1; 1093 bumpIndent(0); 1094 OS << "digraph VPlan {\n"; 1095 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1096 if (!Plan.getName().empty()) 1097 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1098 if (Plan.BackedgeTakenCount) { 1099 OS << ", where:\\n"; 1100 Plan.BackedgeTakenCount->print(OS, SlotTracker); 1101 OS << " := BackedgeTakenCount"; 1102 } 1103 OS << "\"]\n"; 1104 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1105 OS << "edge [fontname=Courier, fontsize=30]\n"; 1106 OS << "compound=true\n"; 1107 1108 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 1109 dumpBlock(Block); 1110 1111 OS << "}\n"; 1112 } 1113 1114 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1115 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1116 dumpBasicBlock(BasicBlock); 1117 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1118 dumpRegion(Region); 1119 else 1120 llvm_unreachable("Unsupported kind of VPBlock."); 1121 } 1122 1123 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1124 bool Hidden, const Twine &Label) { 1125 // Due to "dot" we print an edge between two regions as an edge between the 1126 // exit basic block and the entry basic of the respective regions. 1127 const VPBlockBase *Tail = From->getExitBasicBlock(); 1128 const VPBlockBase *Head = To->getEntryBasicBlock(); 1129 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1130 OS << " [ label=\"" << Label << '\"'; 1131 if (Tail != From) 1132 OS << " ltail=" << getUID(From); 1133 if (Head != To) 1134 OS << " lhead=" << getUID(To); 1135 if (Hidden) 1136 OS << "; splines=none"; 1137 OS << "]\n"; 1138 } 1139 1140 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1141 auto &Successors = Block->getSuccessors(); 1142 if (Successors.size() == 1) 1143 drawEdge(Block, Successors.front(), false, ""); 1144 else if (Successors.size() == 2) { 1145 drawEdge(Block, Successors.front(), false, "T"); 1146 drawEdge(Block, Successors.back(), false, "F"); 1147 } else { 1148 unsigned SuccessorNumber = 0; 1149 for (auto *Successor : Successors) 1150 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1151 } 1152 } 1153 1154 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1155 // Implement dot-formatted dump by performing plain-text dump into the 1156 // temporary storage followed by some post-processing. 1157 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1158 bumpIndent(1); 1159 std::string Str; 1160 raw_string_ostream SS(Str); 1161 // Use no indentation as we need to wrap the lines into quotes ourselves. 1162 BasicBlock->print(SS, "", SlotTracker); 1163 1164 // We need to process each line of the output separately, so split 1165 // single-string plain-text dump. 1166 SmallVector<StringRef, 0> Lines; 1167 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1168 1169 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1170 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1171 }; 1172 1173 // Don't need the "+" after the last line. 1174 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1175 EmitLine(Line, " +\n"); 1176 EmitLine(Lines.back(), "\n"); 1177 1178 bumpIndent(-1); 1179 OS << Indent << "]\n"; 1180 1181 dumpEdges(BasicBlock); 1182 } 1183 1184 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1185 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1186 bumpIndent(1); 1187 OS << Indent << "fontname=Courier\n" 1188 << Indent << "label=\"" 1189 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1190 << DOT::EscapeString(Region->getName()) << "\"\n"; 1191 // Dump the blocks of the region. 1192 assert(Region->getEntry() && "Region contains no inner blocks."); 1193 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 1194 dumpBlock(Block); 1195 bumpIndent(-1); 1196 OS << Indent << "}\n"; 1197 dumpEdges(Region); 1198 } 1199 1200 void VPlanIngredient::print(raw_ostream &O) const { 1201 if (auto *Inst = dyn_cast<Instruction>(V)) { 1202 if (!Inst->getType()->isVoidTy()) { 1203 Inst->printAsOperand(O, false); 1204 O << " = "; 1205 } 1206 O << Inst->getOpcodeName() << " "; 1207 unsigned E = Inst->getNumOperands(); 1208 if (E > 0) { 1209 Inst->getOperand(0)->printAsOperand(O, false); 1210 for (unsigned I = 1; I < E; ++I) 1211 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1212 } 1213 } else // !Inst 1214 V->printAsOperand(O, false); 1215 } 1216 1217 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 1218 VPSlotTracker &SlotTracker) const { 1219 O << Indent << "WIDEN-CALL "; 1220 1221 auto *CI = cast<CallInst>(getUnderlyingInstr()); 1222 if (CI->getType()->isVoidTy()) 1223 O << "void "; 1224 else { 1225 printAsOperand(O, SlotTracker); 1226 O << " = "; 1227 } 1228 1229 O << "call @" << CI->getCalledFunction()->getName() << "("; 1230 printOperands(O, SlotTracker); 1231 O << ")"; 1232 } 1233 1234 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 1235 VPSlotTracker &SlotTracker) const { 1236 O << Indent << "WIDEN-SELECT "; 1237 printAsOperand(O, SlotTracker); 1238 O << " = select "; 1239 getOperand(0)->printAsOperand(O, SlotTracker); 1240 O << ", "; 1241 getOperand(1)->printAsOperand(O, SlotTracker); 1242 O << ", "; 1243 getOperand(2)->printAsOperand(O, SlotTracker); 1244 O << (InvariantCond ? " (condition is loop invariant)" : ""); 1245 } 1246 1247 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 1248 VPSlotTracker &SlotTracker) const { 1249 O << Indent << "WIDEN "; 1250 printAsOperand(O, SlotTracker); 1251 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 1252 printOperands(O, SlotTracker); 1253 } 1254 1255 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1256 VPSlotTracker &SlotTracker) const { 1257 O << Indent << "WIDEN-INDUCTION"; 1258 if (getTruncInst()) { 1259 O << "\\l\""; 1260 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 1261 O << " +\n" << Indent << "\" "; 1262 getVPValue(0)->printAsOperand(O, SlotTracker); 1263 } else 1264 O << " " << VPlanIngredient(IV); 1265 } 1266 #endif 1267 1268 bool VPWidenIntOrFpInductionRecipe::isCanonical() const { 1269 auto *StartC = dyn_cast<ConstantInt>(getStartValue()->getLiveInIRValue()); 1270 auto *StepC = dyn_cast<SCEVConstant>(getInductionDescriptor().getStep()); 1271 return StartC && StartC->isZero() && StepC && StepC->isOne(); 1272 } 1273 1274 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1275 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 1276 VPSlotTracker &SlotTracker) const { 1277 O << Indent << "WIDEN-GEP "; 1278 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 1279 size_t IndicesNumber = IsIndexLoopInvariant.size(); 1280 for (size_t I = 0; I < IndicesNumber; ++I) 1281 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 1282 1283 O << " "; 1284 printAsOperand(O, SlotTracker); 1285 O << " = getelementptr "; 1286 printOperands(O, SlotTracker); 1287 } 1288 1289 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1290 VPSlotTracker &SlotTracker) const { 1291 O << Indent << "WIDEN-PHI "; 1292 1293 auto *OriginalPhi = cast<PHINode>(getUnderlyingValue()); 1294 // Unless all incoming values are modeled in VPlan print the original PHI 1295 // directly. 1296 // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming 1297 // values as VPValues. 1298 if (getNumOperands() != OriginalPhi->getNumOperands()) { 1299 O << VPlanIngredient(OriginalPhi); 1300 return; 1301 } 1302 1303 printAsOperand(O, SlotTracker); 1304 O << " = phi "; 1305 printOperands(O, SlotTracker); 1306 } 1307 1308 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 1309 VPSlotTracker &SlotTracker) const { 1310 O << Indent << "BLEND "; 1311 Phi->printAsOperand(O, false); 1312 O << " ="; 1313 if (getNumIncomingValues() == 1) { 1314 // Not a User of any mask: not really blending, this is a 1315 // single-predecessor phi. 1316 O << " "; 1317 getIncomingValue(0)->printAsOperand(O, SlotTracker); 1318 } else { 1319 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 1320 O << " "; 1321 getIncomingValue(I)->printAsOperand(O, SlotTracker); 1322 O << "/"; 1323 getMask(I)->printAsOperand(O, SlotTracker); 1324 } 1325 } 1326 } 1327 1328 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 1329 VPSlotTracker &SlotTracker) const { 1330 O << Indent << "REDUCE "; 1331 printAsOperand(O, SlotTracker); 1332 O << " = "; 1333 getChainOp()->printAsOperand(O, SlotTracker); 1334 O << " +"; 1335 if (isa<FPMathOperator>(getUnderlyingInstr())) 1336 O << getUnderlyingInstr()->getFastMathFlags(); 1337 O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " ("; 1338 getVecOp()->printAsOperand(O, SlotTracker); 1339 if (getCondOp()) { 1340 O << ", "; 1341 getCondOp()->printAsOperand(O, SlotTracker); 1342 } 1343 O << ")"; 1344 } 1345 1346 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 1347 VPSlotTracker &SlotTracker) const { 1348 O << Indent << (IsUniform ? "CLONE " : "REPLICATE "); 1349 1350 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 1351 printAsOperand(O, SlotTracker); 1352 O << " = "; 1353 } 1354 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 1355 printOperands(O, SlotTracker); 1356 1357 if (AlsoPack) 1358 O << " (S->V)"; 1359 } 1360 1361 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1362 VPSlotTracker &SlotTracker) const { 1363 O << Indent << "PHI-PREDICATED-INSTRUCTION "; 1364 printAsOperand(O, SlotTracker); 1365 O << " = "; 1366 printOperands(O, SlotTracker); 1367 } 1368 1369 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 1370 VPSlotTracker &SlotTracker) const { 1371 O << Indent << "WIDEN "; 1372 1373 if (!isStore()) { 1374 printAsOperand(O, SlotTracker); 1375 O << " = "; 1376 } 1377 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 1378 1379 printOperands(O, SlotTracker); 1380 } 1381 #endif 1382 1383 void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) { 1384 Value *Start = getStartValue()->getLiveInIRValue(); 1385 PHINode *EntryPart = PHINode::Create( 1386 Start->getType(), 2, "index", &*State.CFG.PrevBB->getFirstInsertionPt()); 1387 EntryPart->addIncoming(Start, State.CFG.VectorPreHeader); 1388 EntryPart->setDebugLoc(DL); 1389 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 1390 State.set(this, EntryPart, Part); 1391 } 1392 1393 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1394 void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1395 VPSlotTracker &SlotTracker) const { 1396 O << Indent << "EMIT "; 1397 printAsOperand(O, SlotTracker); 1398 O << " = CANONICAL-INDUCTION"; 1399 } 1400 #endif 1401 1402 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 1403 Value *CanonicalIV = State.get(getOperand(0), 0); 1404 Type *STy = CanonicalIV->getType(); 1405 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 1406 ElementCount VF = State.VF; 1407 Value *VStart = VF.isScalar() 1408 ? CanonicalIV 1409 : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast"); 1410 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 1411 Value *VStep = createStepForVF(Builder, STy, VF, Part); 1412 if (VF.isVector()) { 1413 VStep = Builder.CreateVectorSplat(VF, VStep); 1414 VStep = Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType())); 1415 } 1416 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1417 State.set(this, CanonicalVectorIV, Part); 1418 } 1419 } 1420 1421 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1422 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1423 VPSlotTracker &SlotTracker) const { 1424 O << Indent << "EMIT "; 1425 printAsOperand(O, SlotTracker); 1426 O << " = WIDEN-CANONICAL-INDUCTION "; 1427 printOperands(O, SlotTracker); 1428 } 1429 #endif 1430 1431 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) { 1432 auto &Builder = State.Builder; 1433 // Create a vector from the initial value. 1434 auto *VectorInit = getStartValue()->getLiveInIRValue(); 1435 1436 Type *VecTy = State.VF.isScalar() 1437 ? VectorInit->getType() 1438 : VectorType::get(VectorInit->getType(), State.VF); 1439 1440 if (State.VF.isVector()) { 1441 auto *IdxTy = Builder.getInt32Ty(); 1442 auto *One = ConstantInt::get(IdxTy, 1); 1443 IRBuilder<>::InsertPointGuard Guard(Builder); 1444 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 1445 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF); 1446 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 1447 VectorInit = Builder.CreateInsertElement( 1448 PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init"); 1449 } 1450 1451 // Create a phi node for the new recurrence. 1452 PHINode *EntryPart = PHINode::Create( 1453 VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt()); 1454 EntryPart->addIncoming(VectorInit, State.CFG.VectorPreHeader); 1455 State.set(this, EntryPart, 0); 1456 } 1457 1458 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1459 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent, 1460 VPSlotTracker &SlotTracker) const { 1461 O << Indent << "FIRST-ORDER-RECURRENCE-PHI "; 1462 printAsOperand(O, SlotTracker); 1463 O << " = phi "; 1464 printOperands(O, SlotTracker); 1465 } 1466 #endif 1467 1468 void VPReductionPHIRecipe::execute(VPTransformState &State) { 1469 PHINode *PN = cast<PHINode>(getUnderlyingValue()); 1470 auto &Builder = State.Builder; 1471 1472 // In order to support recurrences we need to be able to vectorize Phi nodes. 1473 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 1474 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 1475 // this value when we vectorize all of the instructions that use the PHI. 1476 bool ScalarPHI = State.VF.isScalar() || IsInLoop; 1477 Type *VecTy = 1478 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 1479 1480 BasicBlock *HeaderBB = State.CFG.PrevBB; 1481 assert(State.LI->getLoopFor(HeaderBB)->getHeader() == HeaderBB && 1482 "recipe must be in the vector loop header"); 1483 unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF; 1484 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1485 Value *EntryPart = 1486 PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt()); 1487 State.set(this, EntryPart, Part); 1488 } 1489 1490 // Reductions do not have to start at zero. They can start with 1491 // any loop invariant values. 1492 VPValue *StartVPV = getStartValue(); 1493 Value *StartV = StartVPV->getLiveInIRValue(); 1494 1495 Value *Iden = nullptr; 1496 RecurKind RK = RdxDesc.getRecurrenceKind(); 1497 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) || 1498 RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) { 1499 // MinMax reduction have the start value as their identify. 1500 if (ScalarPHI) { 1501 Iden = StartV; 1502 } else { 1503 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1504 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 1505 StartV = Iden = 1506 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 1507 } 1508 } else { 1509 Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(), 1510 RdxDesc.getFastMathFlags()); 1511 1512 if (!ScalarPHI) { 1513 Iden = Builder.CreateVectorSplat(State.VF, Iden); 1514 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1515 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 1516 Constant *Zero = Builder.getInt32(0); 1517 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 1518 } 1519 } 1520 1521 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1522 Value *EntryPart = State.get(this, Part); 1523 // Make sure to add the reduction start value only to the 1524 // first unroll part. 1525 Value *StartVal = (Part == 0) ? StartV : Iden; 1526 cast<PHINode>(EntryPart)->addIncoming(StartVal, State.CFG.VectorPreHeader); 1527 } 1528 } 1529 1530 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1531 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1532 VPSlotTracker &SlotTracker) const { 1533 O << Indent << "WIDEN-REDUCTION-PHI "; 1534 1535 printAsOperand(O, SlotTracker); 1536 O << " = phi "; 1537 printOperands(O, SlotTracker); 1538 } 1539 #endif 1540 1541 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1542 1543 void VPValue::replaceAllUsesWith(VPValue *New) { 1544 for (unsigned J = 0; J < getNumUsers();) { 1545 VPUser *User = Users[J]; 1546 unsigned NumUsers = getNumUsers(); 1547 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1548 if (User->getOperand(I) == this) 1549 User->setOperand(I, New); 1550 // If a user got removed after updating the current user, the next user to 1551 // update will be moved to the current position, so we only need to 1552 // increment the index if the number of users did not change. 1553 if (NumUsers == getNumUsers()) 1554 J++; 1555 } 1556 } 1557 1558 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1559 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1560 if (const Value *UV = getUnderlyingValue()) { 1561 OS << "ir<"; 1562 UV->printAsOperand(OS, false); 1563 OS << ">"; 1564 return; 1565 } 1566 1567 unsigned Slot = Tracker.getSlot(this); 1568 if (Slot == unsigned(-1)) 1569 OS << "<badref>"; 1570 else 1571 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1572 } 1573 1574 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1575 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1576 Op->printAsOperand(O, SlotTracker); 1577 }); 1578 } 1579 #endif 1580 1581 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1582 Old2NewTy &Old2New, 1583 InterleavedAccessInfo &IAI) { 1584 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1585 for (VPBlockBase *Base : RPOT) { 1586 visitBlock(Base, Old2New, IAI); 1587 } 1588 } 1589 1590 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1591 InterleavedAccessInfo &IAI) { 1592 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1593 for (VPRecipeBase &VPI : *VPBB) { 1594 if (isa<VPHeaderPHIRecipe>(&VPI)) 1595 continue; 1596 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1597 auto *VPInst = cast<VPInstruction>(&VPI); 1598 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1599 auto *IG = IAI.getInterleaveGroup(Inst); 1600 if (!IG) 1601 continue; 1602 1603 auto NewIGIter = Old2New.find(IG); 1604 if (NewIGIter == Old2New.end()) 1605 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1606 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1607 1608 if (Inst == IG->getInsertPos()) 1609 Old2New[IG]->setInsertPos(VPInst); 1610 1611 InterleaveGroupMap[VPInst] = Old2New[IG]; 1612 InterleaveGroupMap[VPInst]->insertMember( 1613 VPInst, IG->getIndex(Inst), 1614 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1615 : IG->getFactor())); 1616 } 1617 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1618 visitRegion(Region, Old2New, IAI); 1619 else 1620 llvm_unreachable("Unsupported kind of VPBlock."); 1621 } 1622 1623 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1624 InterleavedAccessInfo &IAI) { 1625 Old2NewTy Old2New; 1626 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1627 } 1628 1629 void VPSlotTracker::assignSlot(const VPValue *V) { 1630 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1631 Slots[V] = NextSlot++; 1632 } 1633 1634 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1635 1636 for (const VPValue *V : Plan.VPExternalDefs) 1637 assignSlot(V); 1638 1639 assignSlot(&Plan.VectorTripCount); 1640 if (Plan.BackedgeTakenCount) 1641 assignSlot(Plan.BackedgeTakenCount); 1642 1643 ReversePostOrderTraversal< 1644 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1645 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1646 Plan.getEntry())); 1647 for (const VPBasicBlock *VPBB : 1648 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1649 for (const VPRecipeBase &Recipe : *VPBB) 1650 for (VPValue *Def : Recipe.definedValues()) 1651 assignSlot(Def); 1652 } 1653 1654 bool vputils::onlyFirstLaneUsed(VPValue *Def) { 1655 return all_of(Def->users(), [Def](VPUser *U) { 1656 return cast<VPRecipeBase>(U)->onlyFirstLaneUsed(Def); 1657 }); 1658 } 1659