1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 44 #include <cassert> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 55 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 56 VPSlotTracker SlotTracker( 57 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 58 V.print(OS, SlotTracker); 59 return OS; 60 } 61 #endif 62 63 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 64 const ElementCount &VF) const { 65 switch (LaneKind) { 66 case VPLane::Kind::ScalableLast: 67 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 68 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 69 Builder.getInt32(VF.getKnownMinValue() - Lane)); 70 case VPLane::Kind::First: 71 return Builder.getInt32(Lane); 72 } 73 llvm_unreachable("Unknown lane kind"); 74 } 75 76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 77 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 78 if (Def) 79 Def->addDefinedValue(this); 80 } 81 82 VPValue::~VPValue() { 83 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 84 if (Def) 85 Def->removeDefinedValue(this); 86 } 87 88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 90 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 91 R->print(OS, "", SlotTracker); 92 else 93 printAsOperand(OS, SlotTracker); 94 } 95 96 void VPValue::dump() const { 97 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 98 VPSlotTracker SlotTracker( 99 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 100 print(dbgs(), SlotTracker); 101 dbgs() << "\n"; 102 } 103 104 void VPDef::dump() const { 105 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 106 VPSlotTracker SlotTracker( 107 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 108 print(dbgs(), "", SlotTracker); 109 dbgs() << "\n"; 110 } 111 #endif 112 113 // Get the top-most entry block of \p Start. This is the entry block of the 114 // containing VPlan. This function is templated to support both const and non-const blocks 115 template <typename T> static T *getPlanEntry(T *Start) { 116 T *Next = Start; 117 T *Current = Start; 118 while ((Next = Next->getParent())) 119 Current = Next; 120 121 SmallSetVector<T *, 8> WorkList; 122 WorkList.insert(Current); 123 124 for (unsigned i = 0; i < WorkList.size(); i++) { 125 T *Current = WorkList[i]; 126 if (Current->getNumPredecessors() == 0) 127 return Current; 128 auto &Predecessors = Current->getPredecessors(); 129 WorkList.insert(Predecessors.begin(), Predecessors.end()); 130 } 131 132 llvm_unreachable("VPlan without any entry node without predecessors"); 133 } 134 135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 136 137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 138 139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 141 const VPBlockBase *Block = this; 142 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 143 Block = Region->getEntry(); 144 return cast<VPBasicBlock>(Block); 145 } 146 147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 148 VPBlockBase *Block = this; 149 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 150 Block = Region->getEntry(); 151 return cast<VPBasicBlock>(Block); 152 } 153 154 void VPBlockBase::setPlan(VPlan *ParentPlan) { 155 assert(ParentPlan->getEntry() == this && 156 "Can only set plan on its entry block."); 157 Plan = ParentPlan; 158 } 159 160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getExiting(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getExiting(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 176 if (!Successors.empty() || !Parent) 177 return this; 178 assert(Parent->getExiting() == this && 179 "Block w/o successors not the exiting block of its parent."); 180 return Parent->getEnclosingBlockWithSuccessors(); 181 } 182 183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 184 if (!Predecessors.empty() || !Parent) 185 return this; 186 assert(Parent->getEntry() == this && 187 "Block w/o predecessors not the entry of its parent."); 188 return Parent->getEnclosingBlockWithPredecessors(); 189 } 190 191 VPValue *VPBlockBase::getCondBit() { 192 return CondBitUser.getSingleOperandOrNull(); 193 } 194 195 const VPValue *VPBlockBase::getCondBit() const { 196 return CondBitUser.getSingleOperandOrNull(); 197 } 198 199 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); } 200 201 VPValue *VPBlockBase::getPredicate() { 202 return PredicateUser.getSingleOperandOrNull(); 203 } 204 205 const VPValue *VPBlockBase::getPredicate() const { 206 return PredicateUser.getSingleOperandOrNull(); 207 } 208 209 void VPBlockBase::setPredicate(VPValue *CV) { 210 PredicateUser.resetSingleOpUser(CV); 211 } 212 213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 214 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 215 216 for (VPBlockBase *Block : Blocks) 217 delete Block; 218 } 219 220 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 221 iterator It = begin(); 222 while (It != end() && It->isPhi()) 223 It++; 224 return It; 225 } 226 227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 228 if (!Def->getDef()) 229 return Def->getLiveInIRValue(); 230 231 if (hasScalarValue(Def, Instance)) { 232 return Data 233 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 234 } 235 236 assert(hasVectorValue(Def, Instance.Part)); 237 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 238 if (!VecPart->getType()->isVectorTy()) { 239 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 240 return VecPart; 241 } 242 // TODO: Cache created scalar values. 243 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 244 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 245 // set(Def, Extract, Instance); 246 return Extract; 247 } 248 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 249 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 250 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 251 } 252 253 BasicBlock * 254 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 255 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 256 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 257 BasicBlock *PrevBB = CFG.PrevBB; 258 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 259 PrevBB->getParent(), CFG.ExitBB); 260 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 261 262 // Hook up the new basic block to its predecessors. 263 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 264 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 265 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 266 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 267 268 assert(PredBB && "Predecessor basic-block not found building successor."); 269 auto *PredBBTerminator = PredBB->getTerminator(); 270 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 271 272 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 273 if (isa<UnreachableInst>(PredBBTerminator)) { 274 assert(PredVPSuccessors.size() == 1 && 275 "Predecessor ending w/o branch must have single successor."); 276 DebugLoc DL = PredBBTerminator->getDebugLoc(); 277 PredBBTerminator->eraseFromParent(); 278 auto *Br = BranchInst::Create(NewBB, PredBB); 279 Br->setDebugLoc(DL); 280 } else if (TermBr && !TermBr->isConditional()) { 281 TermBr->setSuccessor(0, NewBB); 282 } else if (PredVPSuccessors.size() == 2) { 283 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 284 assert(!PredBBTerminator->getSuccessor(idx) && 285 "Trying to reset an existing successor block."); 286 PredBBTerminator->setSuccessor(idx, NewBB); 287 } else { 288 // PredVPBB is the exiting block of a loop region. Connect its successor 289 // outside the region. 290 auto *LoopRegion = cast<VPRegionBlock>(PredVPBB->getParent()); 291 assert(!LoopRegion->isReplicator() && 292 "predecessor must be in a loop region"); 293 assert(PredVPSuccessors.empty() && 294 LoopRegion->getExitingBasicBlock() == PredVPBB && 295 "PredVPBB must be the exiting block of its parent region"); 296 assert(this == LoopRegion->getSingleSuccessor() && 297 "the current block must be the single successor of the region"); 298 PredBBTerminator->setSuccessor(0, NewBB); 299 PredBBTerminator->setSuccessor( 300 1, CFG.VPBB2IRBB[LoopRegion->getEntryBasicBlock()]); 301 } 302 } 303 return NewBB; 304 } 305 306 void VPBasicBlock::execute(VPTransformState *State) { 307 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 308 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 309 VPBlockBase *SingleHPred = nullptr; 310 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 311 312 auto IsLoopRegion = [](VPBlockBase *BB) { 313 auto *R = dyn_cast<VPRegionBlock>(BB); 314 return R && !R->isReplicator(); 315 }; 316 317 // 1. Create an IR basic block, or reuse the last one or ExitBB if possible. 318 if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) { 319 // ExitBB can be re-used for the exit block of the Plan. 320 NewBB = State->CFG.ExitBB; 321 State->CFG.PrevBB = NewBB; 322 } else if (PrevVPBB && /* A */ 323 !((SingleHPred = getSingleHierarchicalPredecessor()) && 324 SingleHPred->getExitingBasicBlock() == PrevVPBB && 325 PrevVPBB->getSingleHierarchicalSuccessor() && 326 (SingleHPred->getParent() == getEnclosingLoopRegion() && 327 !IsLoopRegion(SingleHPred))) && /* B */ 328 !(Replica && getPredecessors().empty())) { /* C */ 329 // The last IR basic block is reused, as an optimization, in three cases: 330 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 331 // B. when the current VPBB has a single (hierarchical) predecessor which 332 // is PrevVPBB and the latter has a single (hierarchical) successor which 333 // both are in the same non-replicator region; and 334 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 335 // is the exiting VPBB of this region from a previous instance, or the 336 // predecessor of this region. 337 338 NewBB = createEmptyBasicBlock(State->CFG); 339 State->Builder.SetInsertPoint(NewBB); 340 // Temporarily terminate with unreachable until CFG is rewired. 341 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 342 // Register NewBB in its loop. In innermost loops its the same for all 343 // BB's. 344 if (State->CurrentVectorLoop) 345 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 346 State->Builder.SetInsertPoint(Terminator); 347 State->CFG.PrevBB = NewBB; 348 } 349 350 // 2. Fill the IR basic block with IR instructions. 351 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 352 << " in BB:" << NewBB->getName() << '\n'); 353 354 State->CFG.VPBB2IRBB[this] = NewBB; 355 State->CFG.PrevVPBB = this; 356 357 for (VPRecipeBase &Recipe : Recipes) 358 Recipe.execute(*State); 359 360 VPValue *CBV; 361 if (EnableVPlanNativePath && (CBV = getCondBit())) { 362 assert(CBV->getUnderlyingValue() && 363 "Unexpected null underlying value for condition bit"); 364 365 // Condition bit value in a VPBasicBlock is used as the branch selector. In 366 // the VPlan-native path case, since all branches are uniform we generate a 367 // branch instruction using the condition value from vector lane 0 and dummy 368 // successors. The successors are fixed later when the successor blocks are 369 // visited. 370 Value *NewCond = State->get(CBV, {0, 0}); 371 372 // Replace the temporary unreachable terminator with the new conditional 373 // branch. 374 auto *CurrentTerminator = NewBB->getTerminator(); 375 assert(isa<UnreachableInst>(CurrentTerminator) && 376 "Expected to replace unreachable terminator with conditional " 377 "branch."); 378 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 379 CondBr->setSuccessor(0, nullptr); 380 ReplaceInstWithInst(CurrentTerminator, CondBr); 381 } 382 383 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 384 } 385 386 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 387 for (VPRecipeBase &R : Recipes) { 388 for (auto *Def : R.definedValues()) 389 Def->replaceAllUsesWith(NewValue); 390 391 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 392 R.setOperand(I, NewValue); 393 } 394 } 395 396 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 397 assert((SplitAt == end() || SplitAt->getParent() == this) && 398 "can only split at a position in the same block"); 399 400 SmallVector<VPBlockBase *, 2> Succs(successors()); 401 // First, disconnect the current block from its successors. 402 for (VPBlockBase *Succ : Succs) 403 VPBlockUtils::disconnectBlocks(this, Succ); 404 405 // Create new empty block after the block to split. 406 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 407 VPBlockUtils::insertBlockAfter(SplitBlock, this); 408 409 // Add successors for block to split to new block. 410 for (VPBlockBase *Succ : Succs) 411 VPBlockUtils::connectBlocks(SplitBlock, Succ); 412 413 // Finally, move the recipes starting at SplitAt to new block. 414 for (VPRecipeBase &ToMove : 415 make_early_inc_range(make_range(SplitAt, this->end()))) 416 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 417 418 return SplitBlock; 419 } 420 421 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 422 VPRegionBlock *P = getParent(); 423 if (P && P->isReplicator()) { 424 P = P->getParent(); 425 assert(!cast<VPRegionBlock>(P)->isReplicator() && 426 "unexpected nested replicate regions"); 427 } 428 return P; 429 } 430 431 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 432 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 433 if (getSuccessors().empty()) { 434 O << Indent << "No successors\n"; 435 } else { 436 O << Indent << "Successor(s): "; 437 ListSeparator LS; 438 for (auto *Succ : getSuccessors()) 439 O << LS << Succ->getName(); 440 O << '\n'; 441 } 442 } 443 444 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 445 VPSlotTracker &SlotTracker) const { 446 O << Indent << getName() << ":\n"; 447 if (const VPValue *Pred = getPredicate()) { 448 O << Indent << "BlockPredicate:"; 449 Pred->printAsOperand(O, SlotTracker); 450 if (const auto *PredInst = dyn_cast<VPInstruction>(Pred)) 451 O << " (" << PredInst->getParent()->getName() << ")"; 452 O << '\n'; 453 } 454 455 auto RecipeIndent = Indent + " "; 456 for (const VPRecipeBase &Recipe : *this) { 457 Recipe.print(O, RecipeIndent, SlotTracker); 458 O << '\n'; 459 } 460 461 printSuccessors(O, Indent); 462 463 if (const VPValue *CBV = getCondBit()) { 464 O << Indent << "CondBit: "; 465 CBV->printAsOperand(O, SlotTracker); 466 if (const auto *CBI = dyn_cast<VPInstruction>(CBV)) 467 O << " (" << CBI->getParent()->getName() << ")"; 468 O << '\n'; 469 } 470 } 471 #endif 472 473 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 474 for (VPBlockBase *Block : depth_first(Entry)) 475 // Drop all references in VPBasicBlocks and replace all uses with 476 // DummyValue. 477 Block->dropAllReferences(NewValue); 478 } 479 480 void VPRegionBlock::execute(VPTransformState *State) { 481 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 482 483 if (!isReplicator()) { 484 // Create and register the new vector loop. 485 Loop *PrevLoop = State->CurrentVectorLoop; 486 State->CurrentVectorLoop = State->LI->AllocateLoop(); 487 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 488 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 489 490 // Insert the new loop into the loop nest and register the new basic blocks 491 // before calling any utilities such as SCEV that require valid LoopInfo. 492 if (ParentLoop) 493 ParentLoop->addChildLoop(State->CurrentVectorLoop); 494 else 495 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 496 497 // Visit the VPBlocks connected to "this", starting from it. 498 for (VPBlockBase *Block : RPOT) { 499 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 500 Block->execute(State); 501 } 502 503 State->CurrentVectorLoop = PrevLoop; 504 return; 505 } 506 507 assert(!State->Instance && "Replicating a Region with non-null instance."); 508 509 // Enter replicating mode. 510 State->Instance = VPIteration(0, 0); 511 512 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 513 State->Instance->Part = Part; 514 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 515 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 516 ++Lane) { 517 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 518 // Visit the VPBlocks connected to \p this, starting from it. 519 for (VPBlockBase *Block : RPOT) { 520 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 521 Block->execute(State); 522 } 523 } 524 } 525 526 // Exit replicating mode. 527 State->Instance.reset(); 528 } 529 530 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 531 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 532 VPSlotTracker &SlotTracker) const { 533 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 534 auto NewIndent = Indent + " "; 535 for (auto *BlockBase : depth_first(Entry)) { 536 O << '\n'; 537 BlockBase->print(O, NewIndent, SlotTracker); 538 } 539 O << Indent << "}\n"; 540 541 printSuccessors(O, Indent); 542 } 543 #endif 544 545 bool VPRecipeBase::mayWriteToMemory() const { 546 switch (getVPDefID()) { 547 case VPWidenMemoryInstructionSC: { 548 return cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 549 } 550 case VPReplicateSC: 551 case VPWidenCallSC: 552 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 553 ->mayWriteToMemory(); 554 case VPBranchOnMaskSC: 555 return false; 556 case VPWidenIntOrFpInductionSC: 557 case VPWidenCanonicalIVSC: 558 case VPWidenPHISC: 559 case VPBlendSC: 560 case VPWidenSC: 561 case VPWidenGEPSC: 562 case VPReductionSC: 563 case VPWidenSelectSC: { 564 const Instruction *I = 565 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 566 (void)I; 567 assert((!I || !I->mayWriteToMemory()) && 568 "underlying instruction may write to memory"); 569 return false; 570 } 571 default: 572 return true; 573 } 574 } 575 576 bool VPRecipeBase::mayReadFromMemory() const { 577 switch (getVPDefID()) { 578 case VPWidenMemoryInstructionSC: { 579 return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 580 } 581 case VPReplicateSC: 582 case VPWidenCallSC: 583 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 584 ->mayReadFromMemory(); 585 case VPBranchOnMaskSC: 586 return false; 587 case VPWidenIntOrFpInductionSC: 588 case VPWidenCanonicalIVSC: 589 case VPWidenPHISC: 590 case VPBlendSC: 591 case VPWidenSC: 592 case VPWidenGEPSC: 593 case VPReductionSC: 594 case VPWidenSelectSC: { 595 const Instruction *I = 596 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 597 (void)I; 598 assert((!I || !I->mayReadFromMemory()) && 599 "underlying instruction may read from memory"); 600 return false; 601 } 602 default: 603 return true; 604 } 605 } 606 607 bool VPRecipeBase::mayHaveSideEffects() const { 608 switch (getVPDefID()) { 609 case VPBranchOnMaskSC: 610 return false; 611 case VPWidenIntOrFpInductionSC: 612 case VPWidenPointerInductionSC: 613 case VPWidenCanonicalIVSC: 614 case VPWidenPHISC: 615 case VPBlendSC: 616 case VPWidenSC: 617 case VPWidenGEPSC: 618 case VPReductionSC: 619 case VPWidenSelectSC: 620 case VPScalarIVStepsSC: { 621 const Instruction *I = 622 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 623 (void)I; 624 assert((!I || !I->mayHaveSideEffects()) && 625 "underlying instruction has side-effects"); 626 return false; 627 } 628 case VPReplicateSC: { 629 auto *R = cast<VPReplicateRecipe>(this); 630 return R->getUnderlyingInstr()->mayHaveSideEffects(); 631 } 632 default: 633 return true; 634 } 635 } 636 637 void VPLiveOut::fixPhi(VPlan &Plan, VPTransformState &State) { 638 auto Lane = VPLane::getLastLaneForVF(State.VF); 639 VPValue *ExitValue = getOperand(0); 640 if (Plan.isUniformAfterVectorization(ExitValue)) 641 Lane = VPLane::getFirstLane(); 642 Phi->addIncoming(State.get(ExitValue, VPIteration(State.UF - 1, Lane)), 643 State.Builder.GetInsertBlock()); 644 } 645 646 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 647 assert(!Parent && "Recipe already in some VPBasicBlock"); 648 assert(InsertPos->getParent() && 649 "Insertion position not in any VPBasicBlock"); 650 Parent = InsertPos->getParent(); 651 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 652 } 653 654 void VPRecipeBase::insertBefore(VPBasicBlock &BB, 655 iplist<VPRecipeBase>::iterator I) { 656 assert(!Parent && "Recipe already in some VPBasicBlock"); 657 assert(I == BB.end() || I->getParent() == &BB); 658 Parent = &BB; 659 BB.getRecipeList().insert(I, this); 660 } 661 662 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 663 assert(!Parent && "Recipe already in some VPBasicBlock"); 664 assert(InsertPos->getParent() && 665 "Insertion position not in any VPBasicBlock"); 666 Parent = InsertPos->getParent(); 667 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 668 } 669 670 void VPRecipeBase::removeFromParent() { 671 assert(getParent() && "Recipe not in any VPBasicBlock"); 672 getParent()->getRecipeList().remove(getIterator()); 673 Parent = nullptr; 674 } 675 676 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 677 assert(getParent() && "Recipe not in any VPBasicBlock"); 678 return getParent()->getRecipeList().erase(getIterator()); 679 } 680 681 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 682 removeFromParent(); 683 insertAfter(InsertPos); 684 } 685 686 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 687 iplist<VPRecipeBase>::iterator I) { 688 removeFromParent(); 689 insertBefore(BB, I); 690 } 691 692 void VPInstruction::generateInstruction(VPTransformState &State, 693 unsigned Part) { 694 IRBuilderBase &Builder = State.Builder; 695 Builder.SetCurrentDebugLocation(DL); 696 697 if (Instruction::isBinaryOp(getOpcode())) { 698 Value *A = State.get(getOperand(0), Part); 699 Value *B = State.get(getOperand(1), Part); 700 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 701 State.set(this, V, Part); 702 return; 703 } 704 705 switch (getOpcode()) { 706 case VPInstruction::Not: { 707 Value *A = State.get(getOperand(0), Part); 708 Value *V = Builder.CreateNot(A); 709 State.set(this, V, Part); 710 break; 711 } 712 case VPInstruction::ICmpULE: { 713 Value *IV = State.get(getOperand(0), Part); 714 Value *TC = State.get(getOperand(1), Part); 715 Value *V = Builder.CreateICmpULE(IV, TC); 716 State.set(this, V, Part); 717 break; 718 } 719 case Instruction::Select: { 720 Value *Cond = State.get(getOperand(0), Part); 721 Value *Op1 = State.get(getOperand(1), Part); 722 Value *Op2 = State.get(getOperand(2), Part); 723 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 724 State.set(this, V, Part); 725 break; 726 } 727 case VPInstruction::ActiveLaneMask: { 728 // Get first lane of vector induction variable. 729 Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0)); 730 // Get the original loop tripcount. 731 Value *ScalarTC = State.get(getOperand(1), Part); 732 733 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 734 auto *PredTy = VectorType::get(Int1Ty, State.VF); 735 Instruction *Call = Builder.CreateIntrinsic( 736 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 737 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 738 State.set(this, Call, Part); 739 break; 740 } 741 case VPInstruction::FirstOrderRecurrenceSplice: { 742 // Generate code to combine the previous and current values in vector v3. 743 // 744 // vector.ph: 745 // v_init = vector(..., ..., ..., a[-1]) 746 // br vector.body 747 // 748 // vector.body 749 // i = phi [0, vector.ph], [i+4, vector.body] 750 // v1 = phi [v_init, vector.ph], [v2, vector.body] 751 // v2 = a[i, i+1, i+2, i+3]; 752 // v3 = vector(v1(3), v2(0, 1, 2)) 753 754 // For the first part, use the recurrence phi (v1), otherwise v2. 755 auto *V1 = State.get(getOperand(0), 0); 756 Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1); 757 if (!PartMinus1->getType()->isVectorTy()) { 758 State.set(this, PartMinus1, Part); 759 } else { 760 Value *V2 = State.get(getOperand(1), Part); 761 State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part); 762 } 763 break; 764 } 765 766 case VPInstruction::CanonicalIVIncrement: 767 case VPInstruction::CanonicalIVIncrementNUW: { 768 Value *Next = nullptr; 769 if (Part == 0) { 770 bool IsNUW = getOpcode() == VPInstruction::CanonicalIVIncrementNUW; 771 auto *Phi = State.get(getOperand(0), 0); 772 // The loop step is equal to the vectorization factor (num of SIMD 773 // elements) times the unroll factor (num of SIMD instructions). 774 Value *Step = 775 createStepForVF(Builder, Phi->getType(), State.VF, State.UF); 776 Next = Builder.CreateAdd(Phi, Step, "index.next", IsNUW, false); 777 } else { 778 Next = State.get(this, 0); 779 } 780 781 State.set(this, Next, Part); 782 break; 783 } 784 case VPInstruction::BranchOnCount: { 785 if (Part != 0) 786 break; 787 // First create the compare. 788 Value *IV = State.get(getOperand(0), Part); 789 Value *TC = State.get(getOperand(1), Part); 790 Value *Cond = Builder.CreateICmpEQ(IV, TC); 791 792 // Now create the branch. 793 auto *Plan = getParent()->getPlan(); 794 VPRegionBlock *TopRegion = Plan->getVectorLoopRegion(); 795 VPBasicBlock *Header = TopRegion->getEntry()->getEntryBasicBlock(); 796 if (Header->empty()) { 797 assert(EnableVPlanNativePath && 798 "empty entry block only expected in VPlanNativePath"); 799 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 800 } 801 // TODO: Once the exit block is modeled in VPlan, use it instead of going 802 // through State.CFG.ExitBB. 803 BasicBlock *Exit = State.CFG.ExitBB; 804 805 Builder.CreateCondBr(Cond, Exit, State.CFG.VPBB2IRBB[Header]); 806 Builder.GetInsertBlock()->getTerminator()->eraseFromParent(); 807 break; 808 } 809 default: 810 llvm_unreachable("Unsupported opcode for instruction"); 811 } 812 } 813 814 void VPInstruction::execute(VPTransformState &State) { 815 assert(!State.Instance && "VPInstruction executing an Instance"); 816 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 817 State.Builder.setFastMathFlags(FMF); 818 for (unsigned Part = 0; Part < State.UF; ++Part) 819 generateInstruction(State, Part); 820 } 821 822 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 823 void VPInstruction::dump() const { 824 VPSlotTracker SlotTracker(getParent()->getPlan()); 825 print(dbgs(), "", SlotTracker); 826 } 827 828 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 829 VPSlotTracker &SlotTracker) const { 830 O << Indent << "EMIT "; 831 832 if (hasResult()) { 833 printAsOperand(O, SlotTracker); 834 O << " = "; 835 } 836 837 switch (getOpcode()) { 838 case VPInstruction::Not: 839 O << "not"; 840 break; 841 case VPInstruction::ICmpULE: 842 O << "icmp ule"; 843 break; 844 case VPInstruction::SLPLoad: 845 O << "combined load"; 846 break; 847 case VPInstruction::SLPStore: 848 O << "combined store"; 849 break; 850 case VPInstruction::ActiveLaneMask: 851 O << "active lane mask"; 852 break; 853 case VPInstruction::FirstOrderRecurrenceSplice: 854 O << "first-order splice"; 855 break; 856 case VPInstruction::CanonicalIVIncrement: 857 O << "VF * UF + "; 858 break; 859 case VPInstruction::CanonicalIVIncrementNUW: 860 O << "VF * UF +(nuw) "; 861 break; 862 case VPInstruction::BranchOnCount: 863 O << "branch-on-count "; 864 break; 865 default: 866 O << Instruction::getOpcodeName(getOpcode()); 867 } 868 869 O << FMF; 870 871 for (const VPValue *Operand : operands()) { 872 O << " "; 873 Operand->printAsOperand(O, SlotTracker); 874 } 875 876 if (DL) { 877 O << ", !dbg "; 878 DL.print(O); 879 } 880 } 881 #endif 882 883 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) { 884 // Make sure the VPInstruction is a floating-point operation. 885 assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul || 886 Opcode == Instruction::FNeg || Opcode == Instruction::FSub || 887 Opcode == Instruction::FDiv || Opcode == Instruction::FRem || 888 Opcode == Instruction::FCmp) && 889 "this op can't take fast-math flags"); 890 FMF = FMFNew; 891 } 892 893 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 894 Value *CanonicalIVStartValue, 895 VPTransformState &State) { 896 // Check if the trip count is needed, and if so build it. 897 if (TripCount && TripCount->getNumUsers()) { 898 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 899 State.set(TripCount, TripCountV, Part); 900 } 901 902 // Check if the backedge taken count is needed, and if so build it. 903 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 904 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 905 auto *TCMO = Builder.CreateSub(TripCountV, 906 ConstantInt::get(TripCountV->getType(), 1), 907 "trip.count.minus.1"); 908 auto VF = State.VF; 909 Value *VTCMO = 910 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 911 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 912 State.set(BackedgeTakenCount, VTCMO, Part); 913 } 914 915 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 916 State.set(&VectorTripCount, VectorTripCountV, Part); 917 918 // When vectorizing the epilogue loop, the canonical induction start value 919 // needs to be changed from zero to the value after the main vector loop. 920 if (CanonicalIVStartValue) { 921 VPValue *VPV = getOrAddExternalDef(CanonicalIVStartValue); 922 auto *IV = getCanonicalIV(); 923 assert(all_of(IV->users(), 924 [](const VPUser *U) { 925 if (isa<VPScalarIVStepsRecipe>(U)) 926 return true; 927 auto *VPI = cast<VPInstruction>(U); 928 return VPI->getOpcode() == 929 VPInstruction::CanonicalIVIncrement || 930 VPI->getOpcode() == 931 VPInstruction::CanonicalIVIncrementNUW; 932 }) && 933 "the canonical IV should only be used by its increments or " 934 "ScalarIVSteps when " 935 "resetting the start value"); 936 IV->setOperand(0, VPV); 937 } 938 } 939 940 /// Generate the code inside the preheader and body of the vectorized loop. 941 /// Assumes a single pre-header basic-block was created for this. Introduce 942 /// additional basic-blocks as needed, and fill them all. 943 void VPlan::execute(VPTransformState *State) { 944 // Set the reverse mapping from VPValues to Values for code generation. 945 for (auto &Entry : Value2VPValue) 946 State->VPValue2Value[Entry.second] = Entry.first; 947 948 // Initialize CFG state. 949 State->CFG.PrevVPBB = nullptr; 950 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 951 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 952 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 953 954 // Generate code in the loop pre-header and body. 955 for (VPBlockBase *Block : depth_first(Entry)) 956 Block->execute(State); 957 958 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 959 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 960 961 // Fix the latch value of canonical, reduction and first-order recurrences 962 // phis in the vector loop. 963 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 964 for (VPRecipeBase &R : Header->phis()) { 965 // Skip phi-like recipes that generate their backedege values themselves. 966 if (isa<VPWidenPHIRecipe>(&R)) 967 continue; 968 969 if (isa<VPWidenPointerInductionRecipe>(&R) || 970 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 971 PHINode *Phi = nullptr; 972 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 973 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 974 } else { 975 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 976 // TODO: Split off the case that all users of a pointer phi are scalar 977 // from the VPWidenPointerInductionRecipe. 978 if (WidenPhi->onlyScalarsGenerated(State->VF)) 979 continue; 980 981 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 982 Phi = cast<PHINode>(GEP->getPointerOperand()); 983 } 984 985 Phi->setIncomingBlock(1, VectorLatchBB); 986 987 // Move the last step to the end of the latch block. This ensures 988 // consistent placement of all induction updates. 989 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 990 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 991 continue; 992 } 993 994 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 995 // For canonical IV, first-order recurrences and in-order reduction phis, 996 // only a single part is generated, which provides the last part from the 997 // previous iteration. For non-ordered reductions all UF parts are 998 // generated. 999 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 1000 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 1001 cast<VPReductionPHIRecipe>(PhiR)->isOrdered(); 1002 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 1003 1004 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1005 Value *Phi = State->get(PhiR, Part); 1006 Value *Val = State->get(PhiR->getBackedgeValue(), 1007 SinglePartNeeded ? State->UF - 1 : Part); 1008 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1009 } 1010 } 1011 1012 // We do not attempt to preserve DT for outer loop vectorization currently. 1013 if (!EnableVPlanNativePath) { 1014 BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header]; 1015 State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader); 1016 updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB, 1017 State->CFG.ExitBB); 1018 } 1019 } 1020 1021 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1022 LLVM_DUMP_METHOD 1023 void VPlan::print(raw_ostream &O) const { 1024 VPSlotTracker SlotTracker(this); 1025 1026 O << "VPlan '" << Name << "' {"; 1027 1028 if (VectorTripCount.getNumUsers() > 0) { 1029 O << "\nLive-in "; 1030 VectorTripCount.printAsOperand(O, SlotTracker); 1031 O << " = vector-trip-count\n"; 1032 } 1033 1034 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1035 O << "\nLive-in "; 1036 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1037 O << " = backedge-taken count\n"; 1038 } 1039 1040 for (const VPBlockBase *Block : depth_first(getEntry())) { 1041 O << '\n'; 1042 Block->print(O, "", SlotTracker); 1043 } 1044 1045 if (!LiveOuts.empty()) 1046 O << "\n"; 1047 for (auto &KV : LiveOuts) { 1048 O << "Live-out "; 1049 KV.second->getPhi()->printAsOperand(O); 1050 O << " = "; 1051 KV.second->getOperand(0)->printAsOperand(O, SlotTracker); 1052 O << "\n"; 1053 } 1054 1055 O << "}\n"; 1056 } 1057 1058 LLVM_DUMP_METHOD 1059 void VPlan::printDOT(raw_ostream &O) const { 1060 VPlanPrinter Printer(O, *this); 1061 Printer.dump(); 1062 } 1063 1064 LLVM_DUMP_METHOD 1065 void VPlan::dump() const { print(dbgs()); } 1066 #endif 1067 1068 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 1069 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 1070 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 1071 } 1072 1073 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB, 1074 BasicBlock *LoopLatchBB, 1075 BasicBlock *LoopExitBB) { 1076 // The vector body may be more than a single basic-block by this point. 1077 // Update the dominator tree information inside the vector body by propagating 1078 // it from header to latch, expecting only triangular control-flow, if any. 1079 BasicBlock *PostDomSucc = nullptr; 1080 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 1081 // Get the list of successors of this block. 1082 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 1083 assert(Succs.size() <= 2 && 1084 "Basic block in vector loop has more than 2 successors."); 1085 PostDomSucc = Succs[0]; 1086 if (Succs.size() == 1) { 1087 assert(PostDomSucc->getSinglePredecessor() && 1088 "PostDom successor has more than one predecessor."); 1089 DT->addNewBlock(PostDomSucc, BB); 1090 continue; 1091 } 1092 BasicBlock *InterimSucc = Succs[1]; 1093 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 1094 PostDomSucc = Succs[1]; 1095 InterimSucc = Succs[0]; 1096 } 1097 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 1098 "One successor of a basic block does not lead to the other."); 1099 assert(InterimSucc->getSinglePredecessor() && 1100 "Interim successor has more than one predecessor."); 1101 assert(PostDomSucc->hasNPredecessors(2) && 1102 "PostDom successor has more than two predecessors."); 1103 DT->addNewBlock(InterimSucc, BB); 1104 DT->addNewBlock(PostDomSucc, BB); 1105 } 1106 // Latch block is a new dominator for the loop exit. 1107 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 1108 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 1109 } 1110 1111 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1112 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1113 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1114 Twine(getOrCreateBID(Block)); 1115 } 1116 1117 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1118 const std::string &Name = Block->getName(); 1119 if (!Name.empty()) 1120 return Name; 1121 return "VPB" + Twine(getOrCreateBID(Block)); 1122 } 1123 1124 void VPlanPrinter::dump() { 1125 Depth = 1; 1126 bumpIndent(0); 1127 OS << "digraph VPlan {\n"; 1128 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1129 if (!Plan.getName().empty()) 1130 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1131 if (Plan.BackedgeTakenCount) { 1132 OS << ", where:\\n"; 1133 Plan.BackedgeTakenCount->print(OS, SlotTracker); 1134 OS << " := BackedgeTakenCount"; 1135 } 1136 OS << "\"]\n"; 1137 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1138 OS << "edge [fontname=Courier, fontsize=30]\n"; 1139 OS << "compound=true\n"; 1140 1141 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 1142 dumpBlock(Block); 1143 1144 OS << "}\n"; 1145 } 1146 1147 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1148 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1149 dumpBasicBlock(BasicBlock); 1150 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1151 dumpRegion(Region); 1152 else 1153 llvm_unreachable("Unsupported kind of VPBlock."); 1154 } 1155 1156 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1157 bool Hidden, const Twine &Label) { 1158 // Due to "dot" we print an edge between two regions as an edge between the 1159 // exiting basic block and the entry basic of the respective regions. 1160 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1161 const VPBlockBase *Head = To->getEntryBasicBlock(); 1162 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1163 OS << " [ label=\"" << Label << '\"'; 1164 if (Tail != From) 1165 OS << " ltail=" << getUID(From); 1166 if (Head != To) 1167 OS << " lhead=" << getUID(To); 1168 if (Hidden) 1169 OS << "; splines=none"; 1170 OS << "]\n"; 1171 } 1172 1173 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1174 auto &Successors = Block->getSuccessors(); 1175 if (Successors.size() == 1) 1176 drawEdge(Block, Successors.front(), false, ""); 1177 else if (Successors.size() == 2) { 1178 drawEdge(Block, Successors.front(), false, "T"); 1179 drawEdge(Block, Successors.back(), false, "F"); 1180 } else { 1181 unsigned SuccessorNumber = 0; 1182 for (auto *Successor : Successors) 1183 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1184 } 1185 } 1186 1187 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1188 // Implement dot-formatted dump by performing plain-text dump into the 1189 // temporary storage followed by some post-processing. 1190 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1191 bumpIndent(1); 1192 std::string Str; 1193 raw_string_ostream SS(Str); 1194 // Use no indentation as we need to wrap the lines into quotes ourselves. 1195 BasicBlock->print(SS, "", SlotTracker); 1196 1197 // We need to process each line of the output separately, so split 1198 // single-string plain-text dump. 1199 SmallVector<StringRef, 0> Lines; 1200 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1201 1202 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1203 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1204 }; 1205 1206 // Don't need the "+" after the last line. 1207 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1208 EmitLine(Line, " +\n"); 1209 EmitLine(Lines.back(), "\n"); 1210 1211 bumpIndent(-1); 1212 OS << Indent << "]\n"; 1213 1214 dumpEdges(BasicBlock); 1215 } 1216 1217 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1218 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1219 bumpIndent(1); 1220 OS << Indent << "fontname=Courier\n" 1221 << Indent << "label=\"" 1222 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1223 << DOT::EscapeString(Region->getName()) << "\"\n"; 1224 // Dump the blocks of the region. 1225 assert(Region->getEntry() && "Region contains no inner blocks."); 1226 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 1227 dumpBlock(Block); 1228 bumpIndent(-1); 1229 OS << Indent << "}\n"; 1230 dumpEdges(Region); 1231 } 1232 1233 void VPlanIngredient::print(raw_ostream &O) const { 1234 if (auto *Inst = dyn_cast<Instruction>(V)) { 1235 if (!Inst->getType()->isVoidTy()) { 1236 Inst->printAsOperand(O, false); 1237 O << " = "; 1238 } 1239 O << Inst->getOpcodeName() << " "; 1240 unsigned E = Inst->getNumOperands(); 1241 if (E > 0) { 1242 Inst->getOperand(0)->printAsOperand(O, false); 1243 for (unsigned I = 1; I < E; ++I) 1244 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1245 } 1246 } else // !Inst 1247 V->printAsOperand(O, false); 1248 } 1249 1250 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 1251 VPSlotTracker &SlotTracker) const { 1252 O << Indent << "WIDEN-CALL "; 1253 1254 auto *CI = cast<CallInst>(getUnderlyingInstr()); 1255 if (CI->getType()->isVoidTy()) 1256 O << "void "; 1257 else { 1258 printAsOperand(O, SlotTracker); 1259 O << " = "; 1260 } 1261 1262 O << "call @" << CI->getCalledFunction()->getName() << "("; 1263 printOperands(O, SlotTracker); 1264 O << ")"; 1265 } 1266 1267 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 1268 VPSlotTracker &SlotTracker) const { 1269 O << Indent << "WIDEN-SELECT "; 1270 printAsOperand(O, SlotTracker); 1271 O << " = select "; 1272 getOperand(0)->printAsOperand(O, SlotTracker); 1273 O << ", "; 1274 getOperand(1)->printAsOperand(O, SlotTracker); 1275 O << ", "; 1276 getOperand(2)->printAsOperand(O, SlotTracker); 1277 O << (InvariantCond ? " (condition is loop invariant)" : ""); 1278 } 1279 1280 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 1281 VPSlotTracker &SlotTracker) const { 1282 O << Indent << "WIDEN "; 1283 printAsOperand(O, SlotTracker); 1284 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 1285 printOperands(O, SlotTracker); 1286 } 1287 1288 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1289 VPSlotTracker &SlotTracker) const { 1290 O << Indent << "WIDEN-INDUCTION"; 1291 if (getTruncInst()) { 1292 O << "\\l\""; 1293 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 1294 O << " +\n" << Indent << "\" "; 1295 getVPValue(0)->printAsOperand(O, SlotTracker); 1296 } else 1297 O << " " << VPlanIngredient(IV); 1298 1299 O << ", "; 1300 getStepValue()->printAsOperand(O, SlotTracker); 1301 } 1302 1303 void VPWidenPointerInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1304 VPSlotTracker &SlotTracker) const { 1305 O << Indent << "EMIT "; 1306 printAsOperand(O, SlotTracker); 1307 O << " = WIDEN-POINTER-INDUCTION "; 1308 getStartValue()->printAsOperand(O, SlotTracker); 1309 O << ", " << *IndDesc.getStep(); 1310 } 1311 1312 #endif 1313 1314 bool VPWidenIntOrFpInductionRecipe::isCanonical() const { 1315 auto *StartC = dyn_cast<ConstantInt>(getStartValue()->getLiveInIRValue()); 1316 auto *StepC = dyn_cast<SCEVConstant>(getInductionDescriptor().getStep()); 1317 return StartC && StartC->isZero() && StepC && StepC->isOne(); 1318 } 1319 1320 VPCanonicalIVPHIRecipe *VPScalarIVStepsRecipe::getCanonicalIV() const { 1321 return cast<VPCanonicalIVPHIRecipe>(getOperand(0)); 1322 } 1323 1324 bool VPScalarIVStepsRecipe::isCanonical() const { 1325 auto *CanIV = getCanonicalIV(); 1326 // The start value of the steps-recipe must match the start value of the 1327 // canonical induction and it must step by 1. 1328 if (CanIV->getStartValue() != getStartValue()) 1329 return false; 1330 auto *StepVPV = getStepValue(); 1331 if (StepVPV->getDef()) 1332 return false; 1333 auto *StepC = dyn_cast_or_null<ConstantInt>(StepVPV->getLiveInIRValue()); 1334 return StepC && StepC->isOne(); 1335 } 1336 1337 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1338 void VPScalarIVStepsRecipe::print(raw_ostream &O, const Twine &Indent, 1339 VPSlotTracker &SlotTracker) const { 1340 O << Indent; 1341 printAsOperand(O, SlotTracker); 1342 O << Indent << "= SCALAR-STEPS "; 1343 printOperands(O, SlotTracker); 1344 } 1345 1346 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 1347 VPSlotTracker &SlotTracker) const { 1348 O << Indent << "WIDEN-GEP "; 1349 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 1350 size_t IndicesNumber = IsIndexLoopInvariant.size(); 1351 for (size_t I = 0; I < IndicesNumber; ++I) 1352 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 1353 1354 O << " "; 1355 printAsOperand(O, SlotTracker); 1356 O << " = getelementptr "; 1357 printOperands(O, SlotTracker); 1358 } 1359 1360 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1361 VPSlotTracker &SlotTracker) const { 1362 O << Indent << "WIDEN-PHI "; 1363 1364 auto *OriginalPhi = cast<PHINode>(getUnderlyingValue()); 1365 // Unless all incoming values are modeled in VPlan print the original PHI 1366 // directly. 1367 // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming 1368 // values as VPValues. 1369 if (getNumOperands() != OriginalPhi->getNumOperands()) { 1370 O << VPlanIngredient(OriginalPhi); 1371 return; 1372 } 1373 1374 printAsOperand(O, SlotTracker); 1375 O << " = phi "; 1376 printOperands(O, SlotTracker); 1377 } 1378 1379 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 1380 VPSlotTracker &SlotTracker) const { 1381 O << Indent << "BLEND "; 1382 Phi->printAsOperand(O, false); 1383 O << " ="; 1384 if (getNumIncomingValues() == 1) { 1385 // Not a User of any mask: not really blending, this is a 1386 // single-predecessor phi. 1387 O << " "; 1388 getIncomingValue(0)->printAsOperand(O, SlotTracker); 1389 } else { 1390 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 1391 O << " "; 1392 getIncomingValue(I)->printAsOperand(O, SlotTracker); 1393 O << "/"; 1394 getMask(I)->printAsOperand(O, SlotTracker); 1395 } 1396 } 1397 } 1398 1399 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 1400 VPSlotTracker &SlotTracker) const { 1401 O << Indent << "REDUCE "; 1402 printAsOperand(O, SlotTracker); 1403 O << " = "; 1404 getChainOp()->printAsOperand(O, SlotTracker); 1405 O << " +"; 1406 if (isa<FPMathOperator>(getUnderlyingInstr())) 1407 O << getUnderlyingInstr()->getFastMathFlags(); 1408 O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " ("; 1409 getVecOp()->printAsOperand(O, SlotTracker); 1410 if (getCondOp()) { 1411 O << ", "; 1412 getCondOp()->printAsOperand(O, SlotTracker); 1413 } 1414 O << ")"; 1415 if (RdxDesc->IntermediateStore) 1416 O << " (with final reduction value stored in invariant address sank " 1417 "outside of loop)"; 1418 } 1419 1420 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 1421 VPSlotTracker &SlotTracker) const { 1422 O << Indent << (IsUniform ? "CLONE " : "REPLICATE "); 1423 1424 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 1425 printAsOperand(O, SlotTracker); 1426 O << " = "; 1427 } 1428 if (auto *CB = dyn_cast<CallBase>(getUnderlyingInstr())) { 1429 O << "call @" << CB->getCalledFunction()->getName() << "("; 1430 interleaveComma(make_range(op_begin(), op_begin() + (getNumOperands() - 1)), 1431 O, [&O, &SlotTracker](VPValue *Op) { 1432 Op->printAsOperand(O, SlotTracker); 1433 }); 1434 O << ")"; 1435 } else { 1436 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 1437 printOperands(O, SlotTracker); 1438 } 1439 1440 if (AlsoPack) 1441 O << " (S->V)"; 1442 } 1443 1444 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1445 VPSlotTracker &SlotTracker) const { 1446 O << Indent << "PHI-PREDICATED-INSTRUCTION "; 1447 printAsOperand(O, SlotTracker); 1448 O << " = "; 1449 printOperands(O, SlotTracker); 1450 } 1451 1452 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 1453 VPSlotTracker &SlotTracker) const { 1454 O << Indent << "WIDEN "; 1455 1456 if (!isStore()) { 1457 getVPSingleValue()->printAsOperand(O, SlotTracker); 1458 O << " = "; 1459 } 1460 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 1461 1462 printOperands(O, SlotTracker); 1463 } 1464 #endif 1465 1466 void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) { 1467 Value *Start = getStartValue()->getLiveInIRValue(); 1468 PHINode *EntryPart = PHINode::Create( 1469 Start->getType(), 2, "index", &*State.CFG.PrevBB->getFirstInsertionPt()); 1470 1471 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 1472 EntryPart->addIncoming(Start, VectorPH); 1473 EntryPart->setDebugLoc(DL); 1474 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 1475 State.set(this, EntryPart, Part); 1476 } 1477 1478 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1479 void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1480 VPSlotTracker &SlotTracker) const { 1481 O << Indent << "EMIT "; 1482 printAsOperand(O, SlotTracker); 1483 O << " = CANONICAL-INDUCTION"; 1484 } 1485 #endif 1486 1487 bool VPWidenPointerInductionRecipe::onlyScalarsGenerated(ElementCount VF) { 1488 bool IsUniform = vputils::onlyFirstLaneUsed(this); 1489 return all_of(users(), 1490 [&](const VPUser *U) { return U->usesScalars(this); }) && 1491 (IsUniform || !VF.isScalable()); 1492 } 1493 1494 void VPExpandSCEVRecipe::execute(VPTransformState &State) { 1495 assert(!State.Instance && "cannot be used in per-lane"); 1496 const DataLayout &DL = State.CFG.PrevBB->getModule()->getDataLayout(); 1497 SCEVExpander Exp(SE, DL, "induction"); 1498 1499 Value *Res = Exp.expandCodeFor(Expr, Expr->getType(), 1500 &*State.Builder.GetInsertPoint()); 1501 1502 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 1503 State.set(this, Res, Part); 1504 } 1505 1506 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1507 void VPExpandSCEVRecipe::print(raw_ostream &O, const Twine &Indent, 1508 VPSlotTracker &SlotTracker) const { 1509 O << Indent << "EMIT "; 1510 getVPSingleValue()->printAsOperand(O, SlotTracker); 1511 O << " = EXPAND SCEV " << *Expr; 1512 } 1513 #endif 1514 1515 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 1516 Value *CanonicalIV = State.get(getOperand(0), 0); 1517 Type *STy = CanonicalIV->getType(); 1518 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 1519 ElementCount VF = State.VF; 1520 Value *VStart = VF.isScalar() 1521 ? CanonicalIV 1522 : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast"); 1523 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 1524 Value *VStep = createStepForVF(Builder, STy, VF, Part); 1525 if (VF.isVector()) { 1526 VStep = Builder.CreateVectorSplat(VF, VStep); 1527 VStep = Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType())); 1528 } 1529 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1530 State.set(this, CanonicalVectorIV, Part); 1531 } 1532 } 1533 1534 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1535 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1536 VPSlotTracker &SlotTracker) const { 1537 O << Indent << "EMIT "; 1538 printAsOperand(O, SlotTracker); 1539 O << " = WIDEN-CANONICAL-INDUCTION "; 1540 printOperands(O, SlotTracker); 1541 } 1542 #endif 1543 1544 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) { 1545 auto &Builder = State.Builder; 1546 // Create a vector from the initial value. 1547 auto *VectorInit = getStartValue()->getLiveInIRValue(); 1548 1549 Type *VecTy = State.VF.isScalar() 1550 ? VectorInit->getType() 1551 : VectorType::get(VectorInit->getType(), State.VF); 1552 1553 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 1554 if (State.VF.isVector()) { 1555 auto *IdxTy = Builder.getInt32Ty(); 1556 auto *One = ConstantInt::get(IdxTy, 1); 1557 IRBuilder<>::InsertPointGuard Guard(Builder); 1558 Builder.SetInsertPoint(VectorPH->getTerminator()); 1559 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF); 1560 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 1561 VectorInit = Builder.CreateInsertElement( 1562 PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init"); 1563 } 1564 1565 // Create a phi node for the new recurrence. 1566 PHINode *EntryPart = PHINode::Create( 1567 VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt()); 1568 EntryPart->addIncoming(VectorInit, VectorPH); 1569 State.set(this, EntryPart, 0); 1570 } 1571 1572 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1573 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent, 1574 VPSlotTracker &SlotTracker) const { 1575 O << Indent << "FIRST-ORDER-RECURRENCE-PHI "; 1576 printAsOperand(O, SlotTracker); 1577 O << " = phi "; 1578 printOperands(O, SlotTracker); 1579 } 1580 #endif 1581 1582 void VPReductionPHIRecipe::execute(VPTransformState &State) { 1583 PHINode *PN = cast<PHINode>(getUnderlyingValue()); 1584 auto &Builder = State.Builder; 1585 1586 // In order to support recurrences we need to be able to vectorize Phi nodes. 1587 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 1588 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 1589 // this value when we vectorize all of the instructions that use the PHI. 1590 bool ScalarPHI = State.VF.isScalar() || IsInLoop; 1591 Type *VecTy = 1592 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 1593 1594 BasicBlock *HeaderBB = State.CFG.PrevBB; 1595 assert(State.CurrentVectorLoop->getHeader() == HeaderBB && 1596 "recipe must be in the vector loop header"); 1597 unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF; 1598 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1599 Value *EntryPart = 1600 PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt()); 1601 State.set(this, EntryPart, Part); 1602 } 1603 1604 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 1605 1606 // Reductions do not have to start at zero. They can start with 1607 // any loop invariant values. 1608 VPValue *StartVPV = getStartValue(); 1609 Value *StartV = StartVPV->getLiveInIRValue(); 1610 1611 Value *Iden = nullptr; 1612 RecurKind RK = RdxDesc.getRecurrenceKind(); 1613 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) || 1614 RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) { 1615 // MinMax reduction have the start value as their identify. 1616 if (ScalarPHI) { 1617 Iden = StartV; 1618 } else { 1619 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1620 Builder.SetInsertPoint(VectorPH->getTerminator()); 1621 StartV = Iden = 1622 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 1623 } 1624 } else { 1625 Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(), 1626 RdxDesc.getFastMathFlags()); 1627 1628 if (!ScalarPHI) { 1629 Iden = Builder.CreateVectorSplat(State.VF, Iden); 1630 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1631 Builder.SetInsertPoint(VectorPH->getTerminator()); 1632 Constant *Zero = Builder.getInt32(0); 1633 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 1634 } 1635 } 1636 1637 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1638 Value *EntryPart = State.get(this, Part); 1639 // Make sure to add the reduction start value only to the 1640 // first unroll part. 1641 Value *StartVal = (Part == 0) ? StartV : Iden; 1642 cast<PHINode>(EntryPart)->addIncoming(StartVal, VectorPH); 1643 } 1644 } 1645 1646 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1647 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1648 VPSlotTracker &SlotTracker) const { 1649 O << Indent << "WIDEN-REDUCTION-PHI "; 1650 1651 printAsOperand(O, SlotTracker); 1652 O << " = phi "; 1653 printOperands(O, SlotTracker); 1654 } 1655 #endif 1656 1657 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1658 1659 void VPValue::replaceAllUsesWith(VPValue *New) { 1660 for (unsigned J = 0; J < getNumUsers();) { 1661 VPUser *User = Users[J]; 1662 unsigned NumUsers = getNumUsers(); 1663 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1664 if (User->getOperand(I) == this) 1665 User->setOperand(I, New); 1666 // If a user got removed after updating the current user, the next user to 1667 // update will be moved to the current position, so we only need to 1668 // increment the index if the number of users did not change. 1669 if (NumUsers == getNumUsers()) 1670 J++; 1671 } 1672 } 1673 1674 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1675 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1676 if (const Value *UV = getUnderlyingValue()) { 1677 OS << "ir<"; 1678 UV->printAsOperand(OS, false); 1679 OS << ">"; 1680 return; 1681 } 1682 1683 unsigned Slot = Tracker.getSlot(this); 1684 if (Slot == unsigned(-1)) 1685 OS << "<badref>"; 1686 else 1687 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1688 } 1689 1690 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1691 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1692 Op->printAsOperand(O, SlotTracker); 1693 }); 1694 } 1695 #endif 1696 1697 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1698 Old2NewTy &Old2New, 1699 InterleavedAccessInfo &IAI) { 1700 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1701 for (VPBlockBase *Base : RPOT) { 1702 visitBlock(Base, Old2New, IAI); 1703 } 1704 } 1705 1706 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1707 InterleavedAccessInfo &IAI) { 1708 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1709 for (VPRecipeBase &VPI : *VPBB) { 1710 if (isa<VPHeaderPHIRecipe>(&VPI)) 1711 continue; 1712 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1713 auto *VPInst = cast<VPInstruction>(&VPI); 1714 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1715 auto *IG = IAI.getInterleaveGroup(Inst); 1716 if (!IG) 1717 continue; 1718 1719 auto NewIGIter = Old2New.find(IG); 1720 if (NewIGIter == Old2New.end()) 1721 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1722 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1723 1724 if (Inst == IG->getInsertPos()) 1725 Old2New[IG]->setInsertPos(VPInst); 1726 1727 InterleaveGroupMap[VPInst] = Old2New[IG]; 1728 InterleaveGroupMap[VPInst]->insertMember( 1729 VPInst, IG->getIndex(Inst), 1730 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1731 : IG->getFactor())); 1732 } 1733 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1734 visitRegion(Region, Old2New, IAI); 1735 else 1736 llvm_unreachable("Unsupported kind of VPBlock."); 1737 } 1738 1739 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1740 InterleavedAccessInfo &IAI) { 1741 Old2NewTy Old2New; 1742 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1743 } 1744 1745 void VPSlotTracker::assignSlot(const VPValue *V) { 1746 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1747 Slots[V] = NextSlot++; 1748 } 1749 1750 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1751 1752 for (const auto &P : Plan.VPExternalDefs) 1753 assignSlot(P.second); 1754 1755 assignSlot(&Plan.VectorTripCount); 1756 if (Plan.BackedgeTakenCount) 1757 assignSlot(Plan.BackedgeTakenCount); 1758 1759 ReversePostOrderTraversal< 1760 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1761 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1762 Plan.getEntry())); 1763 for (const VPBasicBlock *VPBB : 1764 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1765 for (const VPRecipeBase &Recipe : *VPBB) 1766 for (VPValue *Def : Recipe.definedValues()) 1767 assignSlot(Def); 1768 } 1769 1770 bool vputils::onlyFirstLaneUsed(VPValue *Def) { 1771 return all_of(Def->users(), 1772 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); }); 1773 } 1774 1775 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 1776 ScalarEvolution &SE) { 1777 if (auto *E = dyn_cast<SCEVConstant>(Expr)) 1778 return Plan.getOrAddExternalDef(E->getValue()); 1779 if (auto *E = dyn_cast<SCEVUnknown>(Expr)) 1780 return Plan.getOrAddExternalDef(E->getValue()); 1781 1782 VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); 1783 VPValue *Step = new VPExpandSCEVRecipe(Expr, SE); 1784 Preheader->appendRecipe(cast<VPRecipeBase>(Step->getDef())); 1785 return Step; 1786 } 1787