1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
44 #include <cassert>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
50 
51 #define DEBUG_TYPE "vplan"
52 
53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
55   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
56   VPSlotTracker SlotTracker(
57       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
58   V.print(OS, SlotTracker);
59   return OS;
60 }
61 #endif
62 
63 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
64                                 const ElementCount &VF) const {
65   switch (LaneKind) {
66   case VPLane::Kind::ScalableLast:
67     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
68     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
69                              Builder.getInt32(VF.getKnownMinValue() - Lane));
70   case VPLane::Kind::First:
71     return Builder.getInt32(Lane);
72   }
73   llvm_unreachable("Unknown lane kind");
74 }
75 
76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
77     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
78   if (Def)
79     Def->addDefinedValue(this);
80 }
81 
82 VPValue::~VPValue() {
83   assert(Users.empty() && "trying to delete a VPValue with remaining users");
84   if (Def)
85     Def->removeDefinedValue(this);
86 }
87 
88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
90   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
91     R->print(OS, "", SlotTracker);
92   else
93     printAsOperand(OS, SlotTracker);
94 }
95 
96 void VPValue::dump() const {
97   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
98   VPSlotTracker SlotTracker(
99       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
100   print(dbgs(), SlotTracker);
101   dbgs() << "\n";
102 }
103 
104 void VPDef::dump() const {
105   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
106   VPSlotTracker SlotTracker(
107       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
108   print(dbgs(), "", SlotTracker);
109   dbgs() << "\n";
110 }
111 #endif
112 
113 // Get the top-most entry block of \p Start. This is the entry block of the
114 // containing VPlan. This function is templated to support both const and non-const blocks
115 template <typename T> static T *getPlanEntry(T *Start) {
116   T *Next = Start;
117   T *Current = Start;
118   while ((Next = Next->getParent()))
119     Current = Next;
120 
121   SmallSetVector<T *, 8> WorkList;
122   WorkList.insert(Current);
123 
124   for (unsigned i = 0; i < WorkList.size(); i++) {
125     T *Current = WorkList[i];
126     if (Current->getNumPredecessors() == 0)
127       return Current;
128     auto &Predecessors = Current->getPredecessors();
129     WorkList.insert(Predecessors.begin(), Predecessors.end());
130   }
131 
132   llvm_unreachable("VPlan without any entry node without predecessors");
133 }
134 
135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
136 
137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
138 
139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
141   const VPBlockBase *Block = this;
142   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
143     Block = Region->getEntry();
144   return cast<VPBasicBlock>(Block);
145 }
146 
147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
148   VPBlockBase *Block = this;
149   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
150     Block = Region->getEntry();
151   return cast<VPBasicBlock>(Block);
152 }
153 
154 void VPBlockBase::setPlan(VPlan *ParentPlan) {
155   assert(ParentPlan->getEntry() == this &&
156          "Can only set plan on its entry block.");
157   Plan = ParentPlan;
158 }
159 
160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
161 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
162   const VPBlockBase *Block = this;
163   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
164     Block = Region->getExiting();
165   return cast<VPBasicBlock>(Block);
166 }
167 
168 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
169   VPBlockBase *Block = this;
170   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
171     Block = Region->getExiting();
172   return cast<VPBasicBlock>(Block);
173 }
174 
175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
176   if (!Successors.empty() || !Parent)
177     return this;
178   assert(Parent->getExiting() == this &&
179          "Block w/o successors not the exiting block of its parent.");
180   return Parent->getEnclosingBlockWithSuccessors();
181 }
182 
183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
184   if (!Predecessors.empty() || !Parent)
185     return this;
186   assert(Parent->getEntry() == this &&
187          "Block w/o predecessors not the entry of its parent.");
188   return Parent->getEnclosingBlockWithPredecessors();
189 }
190 
191 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
192   SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry));
193 
194   for (VPBlockBase *Block : Blocks)
195     delete Block;
196 }
197 
198 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
199   iterator It = begin();
200   while (It != end() && It->isPhi())
201     It++;
202   return It;
203 }
204 
205 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
206   if (!Def->getDef())
207     return Def->getLiveInIRValue();
208 
209   if (hasScalarValue(Def, Instance)) {
210     return Data
211         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
212   }
213 
214   assert(hasVectorValue(Def, Instance.Part));
215   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
216   if (!VecPart->getType()->isVectorTy()) {
217     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
218     return VecPart;
219   }
220   // TODO: Cache created scalar values.
221   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
222   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
223   // set(Def, Extract, Instance);
224   return Extract;
225 }
226 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
227   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
228   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
229 }
230 
231 BasicBlock *
232 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
233   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
234   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
235   BasicBlock *PrevBB = CFG.PrevBB;
236   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
237                                          PrevBB->getParent(), CFG.ExitBB);
238   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
239 
240   // Hook up the new basic block to its predecessors.
241   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
242     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
243     auto &PredVPSuccessors = PredVPBB->getSuccessors();
244     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
245 
246     assert(PredBB && "Predecessor basic-block not found building successor.");
247     auto *PredBBTerminator = PredBB->getTerminator();
248     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
249 
250     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
251     if (isa<UnreachableInst>(PredBBTerminator)) {
252       assert(PredVPSuccessors.size() == 1 &&
253              "Predecessor ending w/o branch must have single successor.");
254       DebugLoc DL = PredBBTerminator->getDebugLoc();
255       PredBBTerminator->eraseFromParent();
256       auto *Br = BranchInst::Create(NewBB, PredBB);
257       Br->setDebugLoc(DL);
258     } else if (TermBr && !TermBr->isConditional()) {
259       TermBr->setSuccessor(0, NewBB);
260     } else if (PredVPSuccessors.size() == 2) {
261       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
262       assert(!PredBBTerminator->getSuccessor(idx) &&
263              "Trying to reset an existing successor block.");
264       PredBBTerminator->setSuccessor(idx, NewBB);
265     } else {
266       // PredVPBB is the exiting block of a loop region. Connect its successor
267       // outside the region.
268       auto *LoopRegion = cast<VPRegionBlock>(PredVPBB->getParent());
269       assert(!LoopRegion->isReplicator() &&
270              "predecessor must be in a loop region");
271       assert(PredVPSuccessors.empty() &&
272              LoopRegion->getExitingBasicBlock() == PredVPBB &&
273              "PredVPBB must be the exiting block of its parent region");
274       assert(this == LoopRegion->getSingleSuccessor() &&
275              "the current block must be the single successor of the region");
276       PredBBTerminator->setSuccessor(0, NewBB);
277       PredBBTerminator->setSuccessor(
278           1, CFG.VPBB2IRBB[LoopRegion->getEntryBasicBlock()]);
279     }
280   }
281   return NewBB;
282 }
283 
284 void VPBasicBlock::execute(VPTransformState *State) {
285   bool Replica = State->Instance && !State->Instance->isFirstIteration();
286   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
287   VPBlockBase *SingleHPred = nullptr;
288   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
289 
290   auto IsLoopRegion = [](VPBlockBase *BB) {
291     auto *R = dyn_cast<VPRegionBlock>(BB);
292     return R && !R->isReplicator();
293   };
294 
295   // 1. Create an IR basic block, or reuse the last one or ExitBB if possible.
296   if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) {
297     // ExitBB can be re-used for the exit block of the Plan.
298     NewBB = State->CFG.ExitBB;
299     State->CFG.PrevBB = NewBB;
300   } else if (PrevVPBB && /* A */
301              !((SingleHPred = getSingleHierarchicalPredecessor()) &&
302                SingleHPred->getExitingBasicBlock() == PrevVPBB &&
303                PrevVPBB->getSingleHierarchicalSuccessor() &&
304                (SingleHPred->getParent() == getEnclosingLoopRegion() &&
305                 !IsLoopRegion(SingleHPred))) &&         /* B */
306              !(Replica && getPredecessors().empty())) { /* C */
307     // The last IR basic block is reused, as an optimization, in three cases:
308     // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null;
309     // B. when the current VPBB has a single (hierarchical) predecessor which
310     //    is PrevVPBB and the latter has a single (hierarchical) successor which
311     //    both are in the same non-replicator region; and
312     // C. when the current VPBB is an entry of a region replica - where PrevVPBB
313     //    is the exiting VPBB of this region from a previous instance, or the
314     //    predecessor of this region.
315 
316     NewBB = createEmptyBasicBlock(State->CFG);
317     State->Builder.SetInsertPoint(NewBB);
318     // Temporarily terminate with unreachable until CFG is rewired.
319     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
320     // Register NewBB in its loop. In innermost loops its the same for all
321     // BB's.
322     if (State->CurrentVectorLoop)
323       State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
324     State->Builder.SetInsertPoint(Terminator);
325     State->CFG.PrevBB = NewBB;
326   }
327 
328   // 2. Fill the IR basic block with IR instructions.
329   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
330                     << " in BB:" << NewBB->getName() << '\n');
331 
332   State->CFG.VPBB2IRBB[this] = NewBB;
333   State->CFG.PrevVPBB = this;
334 
335   for (VPRecipeBase &Recipe : Recipes)
336     Recipe.execute(*State);
337 
338   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
339 }
340 
341 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
342   for (VPRecipeBase &R : Recipes) {
343     for (auto *Def : R.definedValues())
344       Def->replaceAllUsesWith(NewValue);
345 
346     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
347       R.setOperand(I, NewValue);
348   }
349 }
350 
351 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
352   assert((SplitAt == end() || SplitAt->getParent() == this) &&
353          "can only split at a position in the same block");
354 
355   SmallVector<VPBlockBase *, 2> Succs(successors());
356   // First, disconnect the current block from its successors.
357   for (VPBlockBase *Succ : Succs)
358     VPBlockUtils::disconnectBlocks(this, Succ);
359 
360   // Create new empty block after the block to split.
361   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
362   VPBlockUtils::insertBlockAfter(SplitBlock, this);
363 
364   // Add successors for block to split to new block.
365   for (VPBlockBase *Succ : Succs)
366     VPBlockUtils::connectBlocks(SplitBlock, Succ);
367 
368   // Finally, move the recipes starting at SplitAt to new block.
369   for (VPRecipeBase &ToMove :
370        make_early_inc_range(make_range(SplitAt, this->end())))
371     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
372 
373   return SplitBlock;
374 }
375 
376 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
377   VPRegionBlock *P = getParent();
378   if (P && P->isReplicator()) {
379     P = P->getParent();
380     assert(!cast<VPRegionBlock>(P)->isReplicator() &&
381            "unexpected nested replicate regions");
382   }
383   return P;
384 }
385 
386 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
387   if (VPBB->empty()) {
388     assert(
389         VPBB->getNumSuccessors() < 2 &&
390         "block with multiple successors doesn't have a recipe as terminator");
391     return false;
392   }
393 
394   const VPRecipeBase *R = &VPBB->back();
395   auto *VPI = dyn_cast<VPInstruction>(R);
396   bool IsCondBranch =
397       isa<VPBranchOnMaskRecipe>(R) ||
398       (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond ||
399                VPI->getOpcode() == VPInstruction::BranchOnCount));
400 
401   if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) {
402     assert(IsCondBranch && "block with multiple successors not terminated by "
403                            "conditional branch recipe");
404 
405     return true;
406   }
407 
408   assert(
409       !IsCondBranch &&
410       "block with 0 or 1 successors terminated by conditional branch recipe");
411   return false;
412 }
413 
414 VPRecipeBase *VPBasicBlock::getTerminator() {
415   if (hasConditionalTerminator(this))
416     return &back();
417   return nullptr;
418 }
419 
420 const VPRecipeBase *VPBasicBlock::getTerminator() const {
421   if (hasConditionalTerminator(this))
422     return &back();
423   return nullptr;
424 }
425 
426 bool VPBasicBlock::isExiting() const {
427   return getParent()->getExitingBasicBlock() == this;
428 }
429 
430 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
431 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
432   if (getSuccessors().empty()) {
433     O << Indent << "No successors\n";
434   } else {
435     O << Indent << "Successor(s): ";
436     ListSeparator LS;
437     for (auto *Succ : getSuccessors())
438       O << LS << Succ->getName();
439     O << '\n';
440   }
441 }
442 
443 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
444                          VPSlotTracker &SlotTracker) const {
445   O << Indent << getName() << ":\n";
446 
447   auto RecipeIndent = Indent + "  ";
448   for (const VPRecipeBase &Recipe : *this) {
449     Recipe.print(O, RecipeIndent, SlotTracker);
450     O << '\n';
451   }
452 
453   printSuccessors(O, Indent);
454 }
455 #endif
456 
457 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
458   for (VPBlockBase *Block : depth_first(Entry))
459     // Drop all references in VPBasicBlocks and replace all uses with
460     // DummyValue.
461     Block->dropAllReferences(NewValue);
462 }
463 
464 void VPRegionBlock::execute(VPTransformState *State) {
465   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
466 
467   if (!isReplicator()) {
468     // Create and register the new vector loop.
469     Loop *PrevLoop = State->CurrentVectorLoop;
470     State->CurrentVectorLoop = State->LI->AllocateLoop();
471     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
472     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
473 
474     // Insert the new loop into the loop nest and register the new basic blocks
475     // before calling any utilities such as SCEV that require valid LoopInfo.
476     if (ParentLoop)
477       ParentLoop->addChildLoop(State->CurrentVectorLoop);
478     else
479       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
480 
481     // Visit the VPBlocks connected to "this", starting from it.
482     for (VPBlockBase *Block : RPOT) {
483       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
484       Block->execute(State);
485     }
486 
487     State->CurrentVectorLoop = PrevLoop;
488     return;
489   }
490 
491   assert(!State->Instance && "Replicating a Region with non-null instance.");
492 
493   // Enter replicating mode.
494   State->Instance = VPIteration(0, 0);
495 
496   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
497     State->Instance->Part = Part;
498     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
499     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
500          ++Lane) {
501       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
502       // Visit the VPBlocks connected to \p this, starting from it.
503       for (VPBlockBase *Block : RPOT) {
504         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
505         Block->execute(State);
506       }
507     }
508   }
509 
510   // Exit replicating mode.
511   State->Instance.reset();
512 }
513 
514 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
515 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
516                           VPSlotTracker &SlotTracker) const {
517   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
518   auto NewIndent = Indent + "  ";
519   for (auto *BlockBase : depth_first(Entry)) {
520     O << '\n';
521     BlockBase->print(O, NewIndent, SlotTracker);
522   }
523   O << Indent << "}\n";
524 
525   printSuccessors(O, Indent);
526 }
527 #endif
528 
529 bool VPRecipeBase::mayWriteToMemory() const {
530   switch (getVPDefID()) {
531   case VPWidenMemoryInstructionSC: {
532     return cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
533   }
534   case VPReplicateSC:
535   case VPWidenCallSC:
536     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
537         ->mayWriteToMemory();
538   case VPBranchOnMaskSC:
539     return false;
540   case VPWidenIntOrFpInductionSC:
541   case VPWidenCanonicalIVSC:
542   case VPWidenPHISC:
543   case VPBlendSC:
544   case VPWidenSC:
545   case VPWidenGEPSC:
546   case VPReductionSC:
547   case VPWidenSelectSC: {
548     const Instruction *I =
549         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
550     (void)I;
551     assert((!I || !I->mayWriteToMemory()) &&
552            "underlying instruction may write to memory");
553     return false;
554   }
555   default:
556     return true;
557   }
558 }
559 
560 bool VPRecipeBase::mayReadFromMemory() const {
561   switch (getVPDefID()) {
562   case VPWidenMemoryInstructionSC: {
563     return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
564   }
565   case VPReplicateSC:
566   case VPWidenCallSC:
567     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
568         ->mayReadFromMemory();
569   case VPBranchOnMaskSC:
570     return false;
571   case VPWidenIntOrFpInductionSC:
572   case VPWidenCanonicalIVSC:
573   case VPWidenPHISC:
574   case VPBlendSC:
575   case VPWidenSC:
576   case VPWidenGEPSC:
577   case VPReductionSC:
578   case VPWidenSelectSC: {
579     const Instruction *I =
580         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
581     (void)I;
582     assert((!I || !I->mayReadFromMemory()) &&
583            "underlying instruction may read from memory");
584     return false;
585   }
586   default:
587     return true;
588   }
589 }
590 
591 bool VPRecipeBase::mayHaveSideEffects() const {
592   switch (getVPDefID()) {
593   case VPBranchOnMaskSC:
594     return false;
595   case VPWidenIntOrFpInductionSC:
596   case VPWidenPointerInductionSC:
597   case VPWidenCanonicalIVSC:
598   case VPWidenPHISC:
599   case VPBlendSC:
600   case VPWidenSC:
601   case VPWidenGEPSC:
602   case VPReductionSC:
603   case VPWidenSelectSC:
604   case VPScalarIVStepsSC: {
605     const Instruction *I =
606         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
607     (void)I;
608     assert((!I || !I->mayHaveSideEffects()) &&
609            "underlying instruction has side-effects");
610     return false;
611   }
612   case VPReplicateSC: {
613     auto *R = cast<VPReplicateRecipe>(this);
614     return R->getUnderlyingInstr()->mayHaveSideEffects();
615   }
616   default:
617     return true;
618   }
619 }
620 
621 void VPLiveOut::fixPhi(VPlan &Plan, VPTransformState &State) {
622   auto Lane = VPLane::getLastLaneForVF(State.VF);
623   VPValue *ExitValue = getOperand(0);
624   if (Plan.isUniformAfterVectorization(ExitValue))
625     Lane = VPLane::getFirstLane();
626   Phi->addIncoming(State.get(ExitValue, VPIteration(State.UF - 1, Lane)),
627                    State.Builder.GetInsertBlock());
628 }
629 
630 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
631   assert(!Parent && "Recipe already in some VPBasicBlock");
632   assert(InsertPos->getParent() &&
633          "Insertion position not in any VPBasicBlock");
634   Parent = InsertPos->getParent();
635   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
636 }
637 
638 void VPRecipeBase::insertBefore(VPBasicBlock &BB,
639                                 iplist<VPRecipeBase>::iterator I) {
640   assert(!Parent && "Recipe already in some VPBasicBlock");
641   assert(I == BB.end() || I->getParent() == &BB);
642   Parent = &BB;
643   BB.getRecipeList().insert(I, this);
644 }
645 
646 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
647   assert(!Parent && "Recipe already in some VPBasicBlock");
648   assert(InsertPos->getParent() &&
649          "Insertion position not in any VPBasicBlock");
650   Parent = InsertPos->getParent();
651   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
652 }
653 
654 void VPRecipeBase::removeFromParent() {
655   assert(getParent() && "Recipe not in any VPBasicBlock");
656   getParent()->getRecipeList().remove(getIterator());
657   Parent = nullptr;
658 }
659 
660 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
661   assert(getParent() && "Recipe not in any VPBasicBlock");
662   return getParent()->getRecipeList().erase(getIterator());
663 }
664 
665 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
666   removeFromParent();
667   insertAfter(InsertPos);
668 }
669 
670 void VPRecipeBase::moveBefore(VPBasicBlock &BB,
671                               iplist<VPRecipeBase>::iterator I) {
672   removeFromParent();
673   insertBefore(BB, I);
674 }
675 
676 void VPInstruction::generateInstruction(VPTransformState &State,
677                                         unsigned Part) {
678   IRBuilderBase &Builder = State.Builder;
679   Builder.SetCurrentDebugLocation(DL);
680 
681   if (Instruction::isBinaryOp(getOpcode())) {
682     Value *A = State.get(getOperand(0), Part);
683     Value *B = State.get(getOperand(1), Part);
684     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
685     State.set(this, V, Part);
686     return;
687   }
688 
689   switch (getOpcode()) {
690   case VPInstruction::Not: {
691     Value *A = State.get(getOperand(0), Part);
692     Value *V = Builder.CreateNot(A);
693     State.set(this, V, Part);
694     break;
695   }
696   case VPInstruction::ICmpULE: {
697     Value *IV = State.get(getOperand(0), Part);
698     Value *TC = State.get(getOperand(1), Part);
699     Value *V = Builder.CreateICmpULE(IV, TC);
700     State.set(this, V, Part);
701     break;
702   }
703   case Instruction::Select: {
704     Value *Cond = State.get(getOperand(0), Part);
705     Value *Op1 = State.get(getOperand(1), Part);
706     Value *Op2 = State.get(getOperand(2), Part);
707     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
708     State.set(this, V, Part);
709     break;
710   }
711   case VPInstruction::ActiveLaneMask: {
712     // Get first lane of vector induction variable.
713     Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0));
714     // Get the original loop tripcount.
715     Value *ScalarTC = State.get(getOperand(1), Part);
716 
717     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
718     auto *PredTy = VectorType::get(Int1Ty, State.VF);
719     Instruction *Call = Builder.CreateIntrinsic(
720         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
721         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
722     State.set(this, Call, Part);
723     break;
724   }
725   case VPInstruction::FirstOrderRecurrenceSplice: {
726     // Generate code to combine the previous and current values in vector v3.
727     //
728     //   vector.ph:
729     //     v_init = vector(..., ..., ..., a[-1])
730     //     br vector.body
731     //
732     //   vector.body
733     //     i = phi [0, vector.ph], [i+4, vector.body]
734     //     v1 = phi [v_init, vector.ph], [v2, vector.body]
735     //     v2 = a[i, i+1, i+2, i+3];
736     //     v3 = vector(v1(3), v2(0, 1, 2))
737 
738     // For the first part, use the recurrence phi (v1), otherwise v2.
739     auto *V1 = State.get(getOperand(0), 0);
740     Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1);
741     if (!PartMinus1->getType()->isVectorTy()) {
742       State.set(this, PartMinus1, Part);
743     } else {
744       Value *V2 = State.get(getOperand(1), Part);
745       State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part);
746     }
747     break;
748   }
749 
750   case VPInstruction::CanonicalIVIncrement:
751   case VPInstruction::CanonicalIVIncrementNUW: {
752     Value *Next = nullptr;
753     if (Part == 0) {
754       bool IsNUW = getOpcode() == VPInstruction::CanonicalIVIncrementNUW;
755       auto *Phi = State.get(getOperand(0), 0);
756       // The loop step is equal to the vectorization factor (num of SIMD
757       // elements) times the unroll factor (num of SIMD instructions).
758       Value *Step =
759           createStepForVF(Builder, Phi->getType(), State.VF, State.UF);
760       Next = Builder.CreateAdd(Phi, Step, "index.next", IsNUW, false);
761     } else {
762       Next = State.get(this, 0);
763     }
764 
765     State.set(this, Next, Part);
766     break;
767   }
768   case VPInstruction::BranchOnCond: {
769     if (Part != 0)
770       break;
771     Value *Cond = State.get(getOperand(0), VPIteration(Part, 0));
772     VPRegionBlock *ParentRegion = getParent()->getParent();
773     VPBasicBlock *Header = ParentRegion->getEntryBasicBlock();
774 
775     // Replace the temporary unreachable terminator with a new conditional
776     // branch, hooking it up to backward destination for exiting blocks now and
777     // to forward destination(s) later when they are created.
778     BranchInst *CondBr =
779         Builder.CreateCondBr(Cond, Builder.GetInsertBlock(), nullptr);
780 
781     if (getParent()->isExiting())
782       CondBr->setSuccessor(1, State.CFG.VPBB2IRBB[Header]);
783 
784     CondBr->setSuccessor(0, nullptr);
785     Builder.GetInsertBlock()->getTerminator()->eraseFromParent();
786     break;
787   }
788   case VPInstruction::BranchOnCount: {
789     if (Part != 0)
790       break;
791     // First create the compare.
792     Value *IV = State.get(getOperand(0), Part);
793     Value *TC = State.get(getOperand(1), Part);
794     Value *Cond = Builder.CreateICmpEQ(IV, TC);
795 
796     // Now create the branch.
797     auto *Plan = getParent()->getPlan();
798     VPRegionBlock *TopRegion = Plan->getVectorLoopRegion();
799     VPBasicBlock *Header = TopRegion->getEntry()->getEntryBasicBlock();
800     // TODO: Once the exit block is modeled in VPlan, use it instead of going
801     // through State.CFG.ExitBB.
802     BasicBlock *Exit = State.CFG.ExitBB;
803 
804     Builder.CreateCondBr(Cond, Exit, State.CFG.VPBB2IRBB[Header]);
805     Builder.GetInsertBlock()->getTerminator()->eraseFromParent();
806     break;
807   }
808   default:
809     llvm_unreachable("Unsupported opcode for instruction");
810   }
811 }
812 
813 void VPInstruction::execute(VPTransformState &State) {
814   assert(!State.Instance && "VPInstruction executing an Instance");
815   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
816   State.Builder.setFastMathFlags(FMF);
817   for (unsigned Part = 0; Part < State.UF; ++Part)
818     generateInstruction(State, Part);
819 }
820 
821 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
822 void VPInstruction::dump() const {
823   VPSlotTracker SlotTracker(getParent()->getPlan());
824   print(dbgs(), "", SlotTracker);
825 }
826 
827 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
828                           VPSlotTracker &SlotTracker) const {
829   O << Indent << "EMIT ";
830 
831   if (hasResult()) {
832     printAsOperand(O, SlotTracker);
833     O << " = ";
834   }
835 
836   switch (getOpcode()) {
837   case VPInstruction::Not:
838     O << "not";
839     break;
840   case VPInstruction::ICmpULE:
841     O << "icmp ule";
842     break;
843   case VPInstruction::SLPLoad:
844     O << "combined load";
845     break;
846   case VPInstruction::SLPStore:
847     O << "combined store";
848     break;
849   case VPInstruction::ActiveLaneMask:
850     O << "active lane mask";
851     break;
852   case VPInstruction::FirstOrderRecurrenceSplice:
853     O << "first-order splice";
854     break;
855   case VPInstruction::CanonicalIVIncrement:
856     O << "VF * UF + ";
857     break;
858   case VPInstruction::CanonicalIVIncrementNUW:
859     O << "VF * UF +(nuw) ";
860     break;
861   case VPInstruction::BranchOnCond:
862     O << "branch-on-cond";
863     break;
864   case VPInstruction::BranchOnCount:
865     O << "branch-on-count ";
866     break;
867   default:
868     O << Instruction::getOpcodeName(getOpcode());
869   }
870 
871   O << FMF;
872 
873   for (const VPValue *Operand : operands()) {
874     O << " ";
875     Operand->printAsOperand(O, SlotTracker);
876   }
877 
878   if (DL) {
879     O << ", !dbg ";
880     DL.print(O);
881   }
882 }
883 #endif
884 
885 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) {
886   // Make sure the VPInstruction is a floating-point operation.
887   assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
888           Opcode == Instruction::FNeg || Opcode == Instruction::FSub ||
889           Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
890           Opcode == Instruction::FCmp) &&
891          "this op can't take fast-math flags");
892   FMF = FMFNew;
893 }
894 
895 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
896                              Value *CanonicalIVStartValue,
897                              VPTransformState &State) {
898   // Check if the trip count is needed, and if so build it.
899   if (TripCount && TripCount->getNumUsers()) {
900     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
901       State.set(TripCount, TripCountV, Part);
902   }
903 
904   // Check if the backedge taken count is needed, and if so build it.
905   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
906     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
907     auto *TCMO = Builder.CreateSub(TripCountV,
908                                    ConstantInt::get(TripCountV->getType(), 1),
909                                    "trip.count.minus.1");
910     auto VF = State.VF;
911     Value *VTCMO =
912         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
913     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
914       State.set(BackedgeTakenCount, VTCMO, Part);
915   }
916 
917   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
918     State.set(&VectorTripCount, VectorTripCountV, Part);
919 
920   // When vectorizing the epilogue loop, the canonical induction start value
921   // needs to be changed from zero to the value after the main vector loop.
922   if (CanonicalIVStartValue) {
923     VPValue *VPV = getOrAddExternalDef(CanonicalIVStartValue);
924     auto *IV = getCanonicalIV();
925     assert(all_of(IV->users(),
926                   [](const VPUser *U) {
927                     if (isa<VPScalarIVStepsRecipe>(U))
928                       return true;
929                     auto *VPI = cast<VPInstruction>(U);
930                     return VPI->getOpcode() ==
931                                VPInstruction::CanonicalIVIncrement ||
932                            VPI->getOpcode() ==
933                                VPInstruction::CanonicalIVIncrementNUW;
934                   }) &&
935            "the canonical IV should only be used by its increments or "
936            "ScalarIVSteps when "
937            "resetting the start value");
938     IV->setOperand(0, VPV);
939   }
940 }
941 
942 /// Generate the code inside the preheader and body of the vectorized loop.
943 /// Assumes a single pre-header basic-block was created for this. Introduce
944 /// additional basic-blocks as needed, and fill them all.
945 void VPlan::execute(VPTransformState *State) {
946   // Set the reverse mapping from VPValues to Values for code generation.
947   for (auto &Entry : Value2VPValue)
948     State->VPValue2Value[Entry.second] = Entry.first;
949 
950   // Initialize CFG state.
951   State->CFG.PrevVPBB = nullptr;
952   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
953   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
954   State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
955 
956   // Generate code in the loop pre-header and body.
957   for (VPBlockBase *Block : depth_first(Entry))
958     Block->execute(State);
959 
960   VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
961   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
962 
963   // Fix the latch value of canonical, reduction and first-order recurrences
964   // phis in the vector loop.
965   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
966   for (VPRecipeBase &R : Header->phis()) {
967     // Skip phi-like recipes that generate their backedege values themselves.
968     if (isa<VPWidenPHIRecipe>(&R))
969       continue;
970 
971     if (isa<VPWidenPointerInductionRecipe>(&R) ||
972         isa<VPWidenIntOrFpInductionRecipe>(&R)) {
973       PHINode *Phi = nullptr;
974       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
975         Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
976       } else {
977         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
978         // TODO: Split off the case that all users of a pointer phi are scalar
979         // from the VPWidenPointerInductionRecipe.
980         if (WidenPhi->onlyScalarsGenerated(State->VF))
981           continue;
982 
983         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
984         Phi = cast<PHINode>(GEP->getPointerOperand());
985       }
986 
987       Phi->setIncomingBlock(1, VectorLatchBB);
988 
989       // Move the last step to the end of the latch block. This ensures
990       // consistent placement of all induction updates.
991       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
992       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
993       continue;
994     }
995 
996     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
997     // For  canonical IV, first-order recurrences and in-order reduction phis,
998     // only a single part is generated, which provides the last part from the
999     // previous iteration. For non-ordered reductions all UF parts are
1000     // generated.
1001     bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) ||
1002                             isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) ||
1003                             cast<VPReductionPHIRecipe>(PhiR)->isOrdered();
1004     unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
1005 
1006     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1007       Value *Phi = State->get(PhiR, Part);
1008       Value *Val = State->get(PhiR->getBackedgeValue(),
1009                               SinglePartNeeded ? State->UF - 1 : Part);
1010       cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1011     }
1012   }
1013 
1014   // We do not attempt to preserve DT for outer loop vectorization currently.
1015   if (!EnableVPlanNativePath) {
1016     BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header];
1017     State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader);
1018     updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB,
1019                         State->CFG.ExitBB);
1020   }
1021 }
1022 
1023 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1024 LLVM_DUMP_METHOD
1025 void VPlan::print(raw_ostream &O) const {
1026   VPSlotTracker SlotTracker(this);
1027 
1028   O << "VPlan '" << Name << "' {";
1029 
1030   if (VectorTripCount.getNumUsers() > 0) {
1031     O << "\nLive-in ";
1032     VectorTripCount.printAsOperand(O, SlotTracker);
1033     O << " = vector-trip-count\n";
1034   }
1035 
1036   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1037     O << "\nLive-in ";
1038     BackedgeTakenCount->printAsOperand(O, SlotTracker);
1039     O << " = backedge-taken count\n";
1040   }
1041 
1042   for (const VPBlockBase *Block : depth_first(getEntry())) {
1043     O << '\n';
1044     Block->print(O, "", SlotTracker);
1045   }
1046 
1047   if (!LiveOuts.empty())
1048     O << "\n";
1049   for (auto &KV : LiveOuts) {
1050     O << "Live-out ";
1051     KV.second->getPhi()->printAsOperand(O);
1052     O << " = ";
1053     KV.second->getOperand(0)->printAsOperand(O, SlotTracker);
1054     O << "\n";
1055   }
1056 
1057   O << "}\n";
1058 }
1059 
1060 LLVM_DUMP_METHOD
1061 void VPlan::printDOT(raw_ostream &O) const {
1062   VPlanPrinter Printer(O, *this);
1063   Printer.dump();
1064 }
1065 
1066 LLVM_DUMP_METHOD
1067 void VPlan::dump() const { print(dbgs()); }
1068 #endif
1069 
1070 void VPlan::addLiveOut(PHINode *PN, VPValue *V) {
1071   assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists");
1072   LiveOuts.insert({PN, new VPLiveOut(PN, V)});
1073 }
1074 
1075 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB,
1076                                 BasicBlock *LoopLatchBB,
1077                                 BasicBlock *LoopExitBB) {
1078   // The vector body may be more than a single basic-block by this point.
1079   // Update the dominator tree information inside the vector body by propagating
1080   // it from header to latch, expecting only triangular control-flow, if any.
1081   BasicBlock *PostDomSucc = nullptr;
1082   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
1083     // Get the list of successors of this block.
1084     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
1085     assert(Succs.size() <= 2 &&
1086            "Basic block in vector loop has more than 2 successors.");
1087     PostDomSucc = Succs[0];
1088     if (Succs.size() == 1) {
1089       assert(PostDomSucc->getSinglePredecessor() &&
1090              "PostDom successor has more than one predecessor.");
1091       DT->addNewBlock(PostDomSucc, BB);
1092       continue;
1093     }
1094     BasicBlock *InterimSucc = Succs[1];
1095     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
1096       PostDomSucc = Succs[1];
1097       InterimSucc = Succs[0];
1098     }
1099     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
1100            "One successor of a basic block does not lead to the other.");
1101     assert(InterimSucc->getSinglePredecessor() &&
1102            "Interim successor has more than one predecessor.");
1103     assert(PostDomSucc->hasNPredecessors(2) &&
1104            "PostDom successor has more than two predecessors.");
1105     DT->addNewBlock(InterimSucc, BB);
1106     DT->addNewBlock(PostDomSucc, BB);
1107   }
1108   // Latch block is a new dominator for the loop exit.
1109   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
1110   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
1111 }
1112 
1113 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1114 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1115   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1116          Twine(getOrCreateBID(Block));
1117 }
1118 
1119 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1120   const std::string &Name = Block->getName();
1121   if (!Name.empty())
1122     return Name;
1123   return "VPB" + Twine(getOrCreateBID(Block));
1124 }
1125 
1126 void VPlanPrinter::dump() {
1127   Depth = 1;
1128   bumpIndent(0);
1129   OS << "digraph VPlan {\n";
1130   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1131   if (!Plan.getName().empty())
1132     OS << "\\n" << DOT::EscapeString(Plan.getName());
1133   if (Plan.BackedgeTakenCount) {
1134     OS << ", where:\\n";
1135     Plan.BackedgeTakenCount->print(OS, SlotTracker);
1136     OS << " := BackedgeTakenCount";
1137   }
1138   OS << "\"]\n";
1139   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1140   OS << "edge [fontname=Courier, fontsize=30]\n";
1141   OS << "compound=true\n";
1142 
1143   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
1144     dumpBlock(Block);
1145 
1146   OS << "}\n";
1147 }
1148 
1149 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1150   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1151     dumpBasicBlock(BasicBlock);
1152   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1153     dumpRegion(Region);
1154   else
1155     llvm_unreachable("Unsupported kind of VPBlock.");
1156 }
1157 
1158 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1159                             bool Hidden, const Twine &Label) {
1160   // Due to "dot" we print an edge between two regions as an edge between the
1161   // exiting basic block and the entry basic of the respective regions.
1162   const VPBlockBase *Tail = From->getExitingBasicBlock();
1163   const VPBlockBase *Head = To->getEntryBasicBlock();
1164   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1165   OS << " [ label=\"" << Label << '\"';
1166   if (Tail != From)
1167     OS << " ltail=" << getUID(From);
1168   if (Head != To)
1169     OS << " lhead=" << getUID(To);
1170   if (Hidden)
1171     OS << "; splines=none";
1172   OS << "]\n";
1173 }
1174 
1175 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1176   auto &Successors = Block->getSuccessors();
1177   if (Successors.size() == 1)
1178     drawEdge(Block, Successors.front(), false, "");
1179   else if (Successors.size() == 2) {
1180     drawEdge(Block, Successors.front(), false, "T");
1181     drawEdge(Block, Successors.back(), false, "F");
1182   } else {
1183     unsigned SuccessorNumber = 0;
1184     for (auto *Successor : Successors)
1185       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1186   }
1187 }
1188 
1189 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1190   // Implement dot-formatted dump by performing plain-text dump into the
1191   // temporary storage followed by some post-processing.
1192   OS << Indent << getUID(BasicBlock) << " [label =\n";
1193   bumpIndent(1);
1194   std::string Str;
1195   raw_string_ostream SS(Str);
1196   // Use no indentation as we need to wrap the lines into quotes ourselves.
1197   BasicBlock->print(SS, "", SlotTracker);
1198 
1199   // We need to process each line of the output separately, so split
1200   // single-string plain-text dump.
1201   SmallVector<StringRef, 0> Lines;
1202   StringRef(Str).rtrim('\n').split(Lines, "\n");
1203 
1204   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1205     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1206   };
1207 
1208   // Don't need the "+" after the last line.
1209   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1210     EmitLine(Line, " +\n");
1211   EmitLine(Lines.back(), "\n");
1212 
1213   bumpIndent(-1);
1214   OS << Indent << "]\n";
1215 
1216   dumpEdges(BasicBlock);
1217 }
1218 
1219 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1220   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1221   bumpIndent(1);
1222   OS << Indent << "fontname=Courier\n"
1223      << Indent << "label=\""
1224      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1225      << DOT::EscapeString(Region->getName()) << "\"\n";
1226   // Dump the blocks of the region.
1227   assert(Region->getEntry() && "Region contains no inner blocks.");
1228   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
1229     dumpBlock(Block);
1230   bumpIndent(-1);
1231   OS << Indent << "}\n";
1232   dumpEdges(Region);
1233 }
1234 
1235 void VPlanIngredient::print(raw_ostream &O) const {
1236   if (auto *Inst = dyn_cast<Instruction>(V)) {
1237     if (!Inst->getType()->isVoidTy()) {
1238       Inst->printAsOperand(O, false);
1239       O << " = ";
1240     }
1241     O << Inst->getOpcodeName() << " ";
1242     unsigned E = Inst->getNumOperands();
1243     if (E > 0) {
1244       Inst->getOperand(0)->printAsOperand(O, false);
1245       for (unsigned I = 1; I < E; ++I)
1246         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1247     }
1248   } else // !Inst
1249     V->printAsOperand(O, false);
1250 }
1251 
1252 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
1253                               VPSlotTracker &SlotTracker) const {
1254   O << Indent << "WIDEN-CALL ";
1255 
1256   auto *CI = cast<CallInst>(getUnderlyingInstr());
1257   if (CI->getType()->isVoidTy())
1258     O << "void ";
1259   else {
1260     printAsOperand(O, SlotTracker);
1261     O << " = ";
1262   }
1263 
1264   O << "call @" << CI->getCalledFunction()->getName() << "(";
1265   printOperands(O, SlotTracker);
1266   O << ")";
1267 }
1268 
1269 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
1270                                 VPSlotTracker &SlotTracker) const {
1271   O << Indent << "WIDEN-SELECT ";
1272   printAsOperand(O, SlotTracker);
1273   O << " = select ";
1274   getOperand(0)->printAsOperand(O, SlotTracker);
1275   O << ", ";
1276   getOperand(1)->printAsOperand(O, SlotTracker);
1277   O << ", ";
1278   getOperand(2)->printAsOperand(O, SlotTracker);
1279   O << (InvariantCond ? " (condition is loop invariant)" : "");
1280 }
1281 
1282 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
1283                           VPSlotTracker &SlotTracker) const {
1284   O << Indent << "WIDEN ";
1285   printAsOperand(O, SlotTracker);
1286   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
1287   printOperands(O, SlotTracker);
1288 }
1289 
1290 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
1291                                           VPSlotTracker &SlotTracker) const {
1292   O << Indent << "WIDEN-INDUCTION";
1293   if (getTruncInst()) {
1294     O << "\\l\"";
1295     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
1296     O << " +\n" << Indent << "\"  ";
1297     getVPValue(0)->printAsOperand(O, SlotTracker);
1298   } else
1299     O << " " << VPlanIngredient(IV);
1300 
1301   O << ", ";
1302   getStepValue()->printAsOperand(O, SlotTracker);
1303 }
1304 
1305 void VPWidenPointerInductionRecipe::print(raw_ostream &O, const Twine &Indent,
1306                                           VPSlotTracker &SlotTracker) const {
1307   O << Indent << "EMIT ";
1308   printAsOperand(O, SlotTracker);
1309   O << " = WIDEN-POINTER-INDUCTION ";
1310   getStartValue()->printAsOperand(O, SlotTracker);
1311   O << ", " << *IndDesc.getStep();
1312 }
1313 
1314 #endif
1315 
1316 bool VPWidenIntOrFpInductionRecipe::isCanonical() const {
1317   auto *StartC = dyn_cast<ConstantInt>(getStartValue()->getLiveInIRValue());
1318   auto *StepC = dyn_cast<SCEVConstant>(getInductionDescriptor().getStep());
1319   return StartC && StartC->isZero() && StepC && StepC->isOne();
1320 }
1321 
1322 VPCanonicalIVPHIRecipe *VPScalarIVStepsRecipe::getCanonicalIV() const {
1323   return cast<VPCanonicalIVPHIRecipe>(getOperand(0));
1324 }
1325 
1326 bool VPScalarIVStepsRecipe::isCanonical() const {
1327   auto *CanIV = getCanonicalIV();
1328   // The start value of the steps-recipe must match the start value of the
1329   // canonical induction and it must step by 1.
1330   if (CanIV->getStartValue() != getStartValue())
1331     return false;
1332   auto *StepVPV = getStepValue();
1333   if (StepVPV->getDef())
1334     return false;
1335   auto *StepC = dyn_cast_or_null<ConstantInt>(StepVPV->getLiveInIRValue());
1336   return StepC && StepC->isOne();
1337 }
1338 
1339 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1340 void VPScalarIVStepsRecipe::print(raw_ostream &O, const Twine &Indent,
1341                                   VPSlotTracker &SlotTracker) const {
1342   O << Indent;
1343   printAsOperand(O, SlotTracker);
1344   O << Indent << "= SCALAR-STEPS ";
1345   printOperands(O, SlotTracker);
1346 }
1347 
1348 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
1349                              VPSlotTracker &SlotTracker) const {
1350   O << Indent << "WIDEN-GEP ";
1351   O << (IsPtrLoopInvariant ? "Inv" : "Var");
1352   size_t IndicesNumber = IsIndexLoopInvariant.size();
1353   for (size_t I = 0; I < IndicesNumber; ++I)
1354     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
1355 
1356   O << " ";
1357   printAsOperand(O, SlotTracker);
1358   O << " = getelementptr ";
1359   printOperands(O, SlotTracker);
1360 }
1361 
1362 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1363                              VPSlotTracker &SlotTracker) const {
1364   O << Indent << "WIDEN-PHI ";
1365 
1366   auto *OriginalPhi = cast<PHINode>(getUnderlyingValue());
1367   // Unless all incoming values are modeled in VPlan  print the original PHI
1368   // directly.
1369   // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming
1370   // values as VPValues.
1371   if (getNumOperands() != OriginalPhi->getNumOperands()) {
1372     O << VPlanIngredient(OriginalPhi);
1373     return;
1374   }
1375 
1376   printAsOperand(O, SlotTracker);
1377   O << " = phi ";
1378   printOperands(O, SlotTracker);
1379 }
1380 
1381 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
1382                           VPSlotTracker &SlotTracker) const {
1383   O << Indent << "BLEND ";
1384   Phi->printAsOperand(O, false);
1385   O << " =";
1386   if (getNumIncomingValues() == 1) {
1387     // Not a User of any mask: not really blending, this is a
1388     // single-predecessor phi.
1389     O << " ";
1390     getIncomingValue(0)->printAsOperand(O, SlotTracker);
1391   } else {
1392     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
1393       O << " ";
1394       getIncomingValue(I)->printAsOperand(O, SlotTracker);
1395       O << "/";
1396       getMask(I)->printAsOperand(O, SlotTracker);
1397     }
1398   }
1399 }
1400 
1401 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
1402                               VPSlotTracker &SlotTracker) const {
1403   O << Indent << "REDUCE ";
1404   printAsOperand(O, SlotTracker);
1405   O << " = ";
1406   getChainOp()->printAsOperand(O, SlotTracker);
1407   O << " +";
1408   if (isa<FPMathOperator>(getUnderlyingInstr()))
1409     O << getUnderlyingInstr()->getFastMathFlags();
1410   O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " (";
1411   getVecOp()->printAsOperand(O, SlotTracker);
1412   if (getCondOp()) {
1413     O << ", ";
1414     getCondOp()->printAsOperand(O, SlotTracker);
1415   }
1416   O << ")";
1417   if (RdxDesc->IntermediateStore)
1418     O << " (with final reduction value stored in invariant address sank "
1419          "outside of loop)";
1420 }
1421 
1422 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
1423                               VPSlotTracker &SlotTracker) const {
1424   O << Indent << (IsUniform ? "CLONE " : "REPLICATE ");
1425 
1426   if (!getUnderlyingInstr()->getType()->isVoidTy()) {
1427     printAsOperand(O, SlotTracker);
1428     O << " = ";
1429   }
1430   if (auto *CB = dyn_cast<CallBase>(getUnderlyingInstr())) {
1431     O << "call @" << CB->getCalledFunction()->getName() << "(";
1432     interleaveComma(make_range(op_begin(), op_begin() + (getNumOperands() - 1)),
1433                     O, [&O, &SlotTracker](VPValue *Op) {
1434                       Op->printAsOperand(O, SlotTracker);
1435                     });
1436     O << ")";
1437   } else {
1438     O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
1439     printOperands(O, SlotTracker);
1440   }
1441 
1442   if (AlsoPack)
1443     O << " (S->V)";
1444 }
1445 
1446 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1447                                 VPSlotTracker &SlotTracker) const {
1448   O << Indent << "PHI-PREDICATED-INSTRUCTION ";
1449   printAsOperand(O, SlotTracker);
1450   O << " = ";
1451   printOperands(O, SlotTracker);
1452 }
1453 
1454 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
1455                                            VPSlotTracker &SlotTracker) const {
1456   O << Indent << "WIDEN ";
1457 
1458   if (!isStore()) {
1459     getVPSingleValue()->printAsOperand(O, SlotTracker);
1460     O << " = ";
1461   }
1462   O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";
1463 
1464   printOperands(O, SlotTracker);
1465 }
1466 #endif
1467 
1468 void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) {
1469   Value *Start = getStartValue()->getLiveInIRValue();
1470   PHINode *EntryPart = PHINode::Create(
1471       Start->getType(), 2, "index", &*State.CFG.PrevBB->getFirstInsertionPt());
1472 
1473   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
1474   EntryPart->addIncoming(Start, VectorPH);
1475   EntryPart->setDebugLoc(DL);
1476   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
1477     State.set(this, EntryPart, Part);
1478 }
1479 
1480 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1481 void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1482                                    VPSlotTracker &SlotTracker) const {
1483   O << Indent << "EMIT ";
1484   printAsOperand(O, SlotTracker);
1485   O << " = CANONICAL-INDUCTION";
1486 }
1487 #endif
1488 
1489 bool VPWidenPointerInductionRecipe::onlyScalarsGenerated(ElementCount VF) {
1490   bool IsUniform = vputils::onlyFirstLaneUsed(this);
1491   return all_of(users(),
1492                 [&](const VPUser *U) { return U->usesScalars(this); }) &&
1493          (IsUniform || !VF.isScalable());
1494 }
1495 
1496 void VPExpandSCEVRecipe::execute(VPTransformState &State) {
1497   assert(!State.Instance && "cannot be used in per-lane");
1498   const DataLayout &DL = State.CFG.PrevBB->getModule()->getDataLayout();
1499   SCEVExpander Exp(SE, DL, "induction");
1500 
1501   Value *Res = Exp.expandCodeFor(Expr, Expr->getType(),
1502                                  &*State.Builder.GetInsertPoint());
1503 
1504   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
1505     State.set(this, Res, Part);
1506 }
1507 
1508 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1509 void VPExpandSCEVRecipe::print(raw_ostream &O, const Twine &Indent,
1510                                VPSlotTracker &SlotTracker) const {
1511   O << Indent << "EMIT ";
1512   getVPSingleValue()->printAsOperand(O, SlotTracker);
1513   O << " = EXPAND SCEV " << *Expr;
1514 }
1515 #endif
1516 
1517 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
1518   Value *CanonicalIV = State.get(getOperand(0), 0);
1519   Type *STy = CanonicalIV->getType();
1520   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
1521   ElementCount VF = State.VF;
1522   Value *VStart = VF.isScalar()
1523                       ? CanonicalIV
1524                       : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast");
1525   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
1526     Value *VStep = createStepForVF(Builder, STy, VF, Part);
1527     if (VF.isVector()) {
1528       VStep = Builder.CreateVectorSplat(VF, VStep);
1529       VStep = Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType()));
1530     }
1531     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
1532     State.set(this, CanonicalVectorIV, Part);
1533   }
1534 }
1535 
1536 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1537 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
1538                                      VPSlotTracker &SlotTracker) const {
1539   O << Indent << "EMIT ";
1540   printAsOperand(O, SlotTracker);
1541   O << " = WIDEN-CANONICAL-INDUCTION ";
1542   printOperands(O, SlotTracker);
1543 }
1544 #endif
1545 
1546 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) {
1547   auto &Builder = State.Builder;
1548   // Create a vector from the initial value.
1549   auto *VectorInit = getStartValue()->getLiveInIRValue();
1550 
1551   Type *VecTy = State.VF.isScalar()
1552                     ? VectorInit->getType()
1553                     : VectorType::get(VectorInit->getType(), State.VF);
1554 
1555   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
1556   if (State.VF.isVector()) {
1557     auto *IdxTy = Builder.getInt32Ty();
1558     auto *One = ConstantInt::get(IdxTy, 1);
1559     IRBuilder<>::InsertPointGuard Guard(Builder);
1560     Builder.SetInsertPoint(VectorPH->getTerminator());
1561     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
1562     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
1563     VectorInit = Builder.CreateInsertElement(
1564         PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
1565   }
1566 
1567   // Create a phi node for the new recurrence.
1568   PHINode *EntryPart = PHINode::Create(
1569       VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt());
1570   EntryPart->addIncoming(VectorInit, VectorPH);
1571   State.set(this, EntryPart, 0);
1572 }
1573 
1574 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1575 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent,
1576                                             VPSlotTracker &SlotTracker) const {
1577   O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
1578   printAsOperand(O, SlotTracker);
1579   O << " = phi ";
1580   printOperands(O, SlotTracker);
1581 }
1582 #endif
1583 
1584 void VPReductionPHIRecipe::execute(VPTransformState &State) {
1585   PHINode *PN = cast<PHINode>(getUnderlyingValue());
1586   auto &Builder = State.Builder;
1587 
1588   // In order to support recurrences we need to be able to vectorize Phi nodes.
1589   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
1590   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
1591   // this value when we vectorize all of the instructions that use the PHI.
1592   bool ScalarPHI = State.VF.isScalar() || IsInLoop;
1593   Type *VecTy =
1594       ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
1595 
1596   BasicBlock *HeaderBB = State.CFG.PrevBB;
1597   assert(State.CurrentVectorLoop->getHeader() == HeaderBB &&
1598          "recipe must be in the vector loop header");
1599   unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF;
1600   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1601     Value *EntryPart =
1602         PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt());
1603     State.set(this, EntryPart, Part);
1604   }
1605 
1606   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
1607 
1608   // Reductions do not have to start at zero. They can start with
1609   // any loop invariant values.
1610   VPValue *StartVPV = getStartValue();
1611   Value *StartV = StartVPV->getLiveInIRValue();
1612 
1613   Value *Iden = nullptr;
1614   RecurKind RK = RdxDesc.getRecurrenceKind();
1615   if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) ||
1616       RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) {
1617     // MinMax reduction have the start value as their identify.
1618     if (ScalarPHI) {
1619       Iden = StartV;
1620     } else {
1621       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1622       Builder.SetInsertPoint(VectorPH->getTerminator());
1623       StartV = Iden =
1624           Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
1625     }
1626   } else {
1627     Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(),
1628                                          RdxDesc.getFastMathFlags());
1629 
1630     if (!ScalarPHI) {
1631       Iden = Builder.CreateVectorSplat(State.VF, Iden);
1632       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1633       Builder.SetInsertPoint(VectorPH->getTerminator());
1634       Constant *Zero = Builder.getInt32(0);
1635       StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
1636     }
1637   }
1638 
1639   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1640     Value *EntryPart = State.get(this, Part);
1641     // Make sure to add the reduction start value only to the
1642     // first unroll part.
1643     Value *StartVal = (Part == 0) ? StartV : Iden;
1644     cast<PHINode>(EntryPart)->addIncoming(StartVal, VectorPH);
1645   }
1646 }
1647 
1648 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1649 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1650                                  VPSlotTracker &SlotTracker) const {
1651   O << Indent << "WIDEN-REDUCTION-PHI ";
1652 
1653   printAsOperand(O, SlotTracker);
1654   O << " = phi ";
1655   printOperands(O, SlotTracker);
1656 }
1657 #endif
1658 
1659 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1660 
1661 void VPValue::replaceAllUsesWith(VPValue *New) {
1662   for (unsigned J = 0; J < getNumUsers();) {
1663     VPUser *User = Users[J];
1664     unsigned NumUsers = getNumUsers();
1665     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1666       if (User->getOperand(I) == this)
1667         User->setOperand(I, New);
1668     // If a user got removed after updating the current user, the next user to
1669     // update will be moved to the current position, so we only need to
1670     // increment the index if the number of users did not change.
1671     if (NumUsers == getNumUsers())
1672       J++;
1673   }
1674 }
1675 
1676 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1677 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1678   if (const Value *UV = getUnderlyingValue()) {
1679     OS << "ir<";
1680     UV->printAsOperand(OS, false);
1681     OS << ">";
1682     return;
1683   }
1684 
1685   unsigned Slot = Tracker.getSlot(this);
1686   if (Slot == unsigned(-1))
1687     OS << "<badref>";
1688   else
1689     OS << "vp<%" << Tracker.getSlot(this) << ">";
1690 }
1691 
1692 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1693   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1694     Op->printAsOperand(O, SlotTracker);
1695   });
1696 }
1697 #endif
1698 
1699 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1700                                           Old2NewTy &Old2New,
1701                                           InterleavedAccessInfo &IAI) {
1702   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1703   for (VPBlockBase *Base : RPOT) {
1704     visitBlock(Base, Old2New, IAI);
1705   }
1706 }
1707 
1708 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1709                                          InterleavedAccessInfo &IAI) {
1710   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1711     for (VPRecipeBase &VPI : *VPBB) {
1712       if (isa<VPHeaderPHIRecipe>(&VPI))
1713         continue;
1714       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1715       auto *VPInst = cast<VPInstruction>(&VPI);
1716       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1717       auto *IG = IAI.getInterleaveGroup(Inst);
1718       if (!IG)
1719         continue;
1720 
1721       auto NewIGIter = Old2New.find(IG);
1722       if (NewIGIter == Old2New.end())
1723         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1724             IG->getFactor(), IG->isReverse(), IG->getAlign());
1725 
1726       if (Inst == IG->getInsertPos())
1727         Old2New[IG]->setInsertPos(VPInst);
1728 
1729       InterleaveGroupMap[VPInst] = Old2New[IG];
1730       InterleaveGroupMap[VPInst]->insertMember(
1731           VPInst, IG->getIndex(Inst),
1732           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1733                                 : IG->getFactor()));
1734     }
1735   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1736     visitRegion(Region, Old2New, IAI);
1737   else
1738     llvm_unreachable("Unsupported kind of VPBlock.");
1739 }
1740 
1741 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1742                                                  InterleavedAccessInfo &IAI) {
1743   Old2NewTy Old2New;
1744   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1745 }
1746 
1747 void VPSlotTracker::assignSlot(const VPValue *V) {
1748   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1749   Slots[V] = NextSlot++;
1750 }
1751 
1752 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1753 
1754   for (const auto &P : Plan.VPExternalDefs)
1755     assignSlot(P.second);
1756 
1757   assignSlot(&Plan.VectorTripCount);
1758   if (Plan.BackedgeTakenCount)
1759     assignSlot(Plan.BackedgeTakenCount);
1760 
1761   ReversePostOrderTraversal<
1762       VPBlockRecursiveTraversalWrapper<const VPBlockBase *>>
1763       RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>(
1764           Plan.getEntry()));
1765   for (const VPBasicBlock *VPBB :
1766        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1767     for (const VPRecipeBase &Recipe : *VPBB)
1768       for (VPValue *Def : Recipe.definedValues())
1769         assignSlot(Def);
1770 }
1771 
1772 bool vputils::onlyFirstLaneUsed(VPValue *Def) {
1773   return all_of(Def->users(),
1774                 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); });
1775 }
1776 
1777 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
1778                                                 ScalarEvolution &SE) {
1779   if (auto *E = dyn_cast<SCEVConstant>(Expr))
1780     return Plan.getOrAddExternalDef(E->getValue());
1781   if (auto *E = dyn_cast<SCEVUnknown>(Expr))
1782     return Plan.getOrAddExternalDef(E->getValue());
1783 
1784   VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock();
1785   VPValue *Step = new VPExpandSCEVRecipe(Expr, SE);
1786   Preheader->appendRecipe(cast<VPRecipeBase>(Step->getDef()));
1787   return Step;
1788 }
1789