1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include <cassert>
44 #include <iterator>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
50 
51 #define DEBUG_TYPE "vplan"
52 
53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
55   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
56   VPSlotTracker SlotTracker(
57       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
58   V.print(OS, SlotTracker);
59   return OS;
60 }
61 #endif
62 
63 Value *VPLane::getAsRuntimeExpr(IRBuilder<> &Builder,
64                                 const ElementCount &VF) const {
65   switch (LaneKind) {
66   case VPLane::Kind::ScalableLast:
67     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
68     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
69                              Builder.getInt32(VF.getKnownMinValue() - Lane));
70   case VPLane::Kind::First:
71     return Builder.getInt32(Lane);
72   }
73   llvm_unreachable("Unknown lane kind");
74 }
75 
76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
77     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
78   if (Def)
79     Def->addDefinedValue(this);
80 }
81 
82 VPValue::~VPValue() {
83   assert(Users.empty() && "trying to delete a VPValue with remaining users");
84   if (Def)
85     Def->removeDefinedValue(this);
86 }
87 
88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
90   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
91     R->print(OS, "", SlotTracker);
92   else
93     printAsOperand(OS, SlotTracker);
94 }
95 
96 void VPValue::dump() const {
97   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
98   VPSlotTracker SlotTracker(
99       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
100   print(dbgs(), SlotTracker);
101   dbgs() << "\n";
102 }
103 
104 void VPDef::dump() const {
105   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
106   VPSlotTracker SlotTracker(
107       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
108   print(dbgs(), "", SlotTracker);
109   dbgs() << "\n";
110 }
111 #endif
112 
113 // Get the top-most entry block of \p Start. This is the entry block of the
114 // containing VPlan. This function is templated to support both const and non-const blocks
115 template <typename T> static T *getPlanEntry(T *Start) {
116   T *Next = Start;
117   T *Current = Start;
118   while ((Next = Next->getParent()))
119     Current = Next;
120 
121   SmallSetVector<T *, 8> WorkList;
122   WorkList.insert(Current);
123 
124   for (unsigned i = 0; i < WorkList.size(); i++) {
125     T *Current = WorkList[i];
126     if (Current->getNumPredecessors() == 0)
127       return Current;
128     auto &Predecessors = Current->getPredecessors();
129     WorkList.insert(Predecessors.begin(), Predecessors.end());
130   }
131 
132   llvm_unreachable("VPlan without any entry node without predecessors");
133 }
134 
135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
136 
137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
138 
139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
141   const VPBlockBase *Block = this;
142   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
143     Block = Region->getEntry();
144   return cast<VPBasicBlock>(Block);
145 }
146 
147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
148   VPBlockBase *Block = this;
149   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
150     Block = Region->getEntry();
151   return cast<VPBasicBlock>(Block);
152 }
153 
154 void VPBlockBase::setPlan(VPlan *ParentPlan) {
155   assert(ParentPlan->getEntry() == this &&
156          "Can only set plan on its entry block.");
157   Plan = ParentPlan;
158 }
159 
160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
162   const VPBlockBase *Block = this;
163   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
164     Block = Region->getExit();
165   return cast<VPBasicBlock>(Block);
166 }
167 
168 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
169   VPBlockBase *Block = this;
170   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
171     Block = Region->getExit();
172   return cast<VPBasicBlock>(Block);
173 }
174 
175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
176   if (!Successors.empty() || !Parent)
177     return this;
178   assert(Parent->getExit() == this &&
179          "Block w/o successors not the exit of its parent.");
180   return Parent->getEnclosingBlockWithSuccessors();
181 }
182 
183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
184   if (!Predecessors.empty() || !Parent)
185     return this;
186   assert(Parent->getEntry() == this &&
187          "Block w/o predecessors not the entry of its parent.");
188   return Parent->getEnclosingBlockWithPredecessors();
189 }
190 
191 VPValue *VPBlockBase::getCondBit() {
192   return CondBitUser.getSingleOperandOrNull();
193 }
194 
195 const VPValue *VPBlockBase::getCondBit() const {
196   return CondBitUser.getSingleOperandOrNull();
197 }
198 
199 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); }
200 
201 VPValue *VPBlockBase::getPredicate() {
202   return PredicateUser.getSingleOperandOrNull();
203 }
204 
205 const VPValue *VPBlockBase::getPredicate() const {
206   return PredicateUser.getSingleOperandOrNull();
207 }
208 
209 void VPBlockBase::setPredicate(VPValue *CV) {
210   PredicateUser.resetSingleOpUser(CV);
211 }
212 
213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
214   SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry));
215 
216   for (VPBlockBase *Block : Blocks)
217     delete Block;
218 }
219 
220 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
221   iterator It = begin();
222   while (It != end() && It->isPhi())
223     It++;
224   return It;
225 }
226 
227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
228   if (!Def->getDef())
229     return Def->getLiveInIRValue();
230 
231   if (hasScalarValue(Def, Instance)) {
232     return Data
233         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
234   }
235 
236   assert(hasVectorValue(Def, Instance.Part));
237   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
238   if (!VecPart->getType()->isVectorTy()) {
239     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
240     return VecPart;
241   }
242   // TODO: Cache created scalar values.
243   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
244   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
245   // set(Def, Extract, Instance);
246   return Extract;
247 }
248 
249 BasicBlock *
250 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
251   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
252   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
253   BasicBlock *PrevBB = CFG.PrevBB;
254   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
255                                          PrevBB->getParent(), CFG.LastBB);
256   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
257 
258   // Hook up the new basic block to its predecessors.
259   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
260     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
261     auto &PredVPSuccessors = PredVPBB->getSuccessors();
262     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
263 
264     // In outer loop vectorization scenario, the predecessor BBlock may not yet
265     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
266     // vectorization. We do not encounter this case in inner loop vectorization
267     // as we start out by building a loop skeleton with the vector loop header
268     // and latch blocks. As a result, we never enter this function for the
269     // header block in the non VPlan-native path.
270     if (!PredBB) {
271       assert(EnableVPlanNativePath &&
272              "Unexpected null predecessor in non VPlan-native path");
273       CFG.VPBBsToFix.push_back(PredVPBB);
274       continue;
275     }
276 
277     assert(PredBB && "Predecessor basic-block not found building successor.");
278     auto *PredBBTerminator = PredBB->getTerminator();
279     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
280     if (isa<UnreachableInst>(PredBBTerminator)) {
281       assert(PredVPSuccessors.size() == 1 &&
282              "Predecessor ending w/o branch must have single successor.");
283       PredBBTerminator->eraseFromParent();
284       BranchInst::Create(NewBB, PredBB);
285     } else {
286       assert(PredVPSuccessors.size() == 2 &&
287              "Predecessor ending with branch must have two successors.");
288       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
289       assert(!PredBBTerminator->getSuccessor(idx) &&
290              "Trying to reset an existing successor block.");
291       PredBBTerminator->setSuccessor(idx, NewBB);
292     }
293   }
294   return NewBB;
295 }
296 
297 void VPBasicBlock::execute(VPTransformState *State) {
298   bool Replica = State->Instance && !State->Instance->isFirstIteration();
299   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
300   VPBlockBase *SingleHPred = nullptr;
301   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
302 
303   // 1. Create an IR basic block, or reuse the last one if possible.
304   // The last IR basic block is reused, as an optimization, in three cases:
305   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
306   // B. when the current VPBB has a single (hierarchical) predecessor which
307   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
308   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
309   //    is the exit of this region from a previous instance, or the predecessor
310   //    of this region.
311   if (PrevVPBB && /* A */
312       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
313         SingleHPred->getExitBasicBlock() == PrevVPBB &&
314         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
315       !(Replica && getPredecessors().empty())) {       /* C */
316     NewBB = createEmptyBasicBlock(State->CFG);
317     State->Builder.SetInsertPoint(NewBB);
318     // Temporarily terminate with unreachable until CFG is rewired.
319     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
320     State->Builder.SetInsertPoint(Terminator);
321     // Register NewBB in its loop. In innermost loops its the same for all BB's.
322     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
323     L->addBasicBlockToLoop(NewBB, *State->LI);
324     State->CFG.PrevBB = NewBB;
325   }
326 
327   // 2. Fill the IR basic block with IR instructions.
328   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
329                     << " in BB:" << NewBB->getName() << '\n');
330 
331   State->CFG.VPBB2IRBB[this] = NewBB;
332   State->CFG.PrevVPBB = this;
333 
334   for (VPRecipeBase &Recipe : Recipes)
335     Recipe.execute(*State);
336 
337   VPValue *CBV;
338   if (EnableVPlanNativePath && (CBV = getCondBit())) {
339     assert(CBV->getUnderlyingValue() &&
340            "Unexpected null underlying value for condition bit");
341 
342     // Condition bit value in a VPBasicBlock is used as the branch selector. In
343     // the VPlan-native path case, since all branches are uniform we generate a
344     // branch instruction using the condition value from vector lane 0 and dummy
345     // successors. The successors are fixed later when the successor blocks are
346     // visited.
347     Value *NewCond = State->get(CBV, {0, 0});
348 
349     // Replace the temporary unreachable terminator with the new conditional
350     // branch.
351     auto *CurrentTerminator = NewBB->getTerminator();
352     assert(isa<UnreachableInst>(CurrentTerminator) &&
353            "Expected to replace unreachable terminator with conditional "
354            "branch.");
355     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
356     CondBr->setSuccessor(0, nullptr);
357     ReplaceInstWithInst(CurrentTerminator, CondBr);
358   }
359 
360   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
361 }
362 
363 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
364   for (VPRecipeBase &R : Recipes) {
365     for (auto *Def : R.definedValues())
366       Def->replaceAllUsesWith(NewValue);
367 
368     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
369       R.setOperand(I, NewValue);
370   }
371 }
372 
373 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
374   assert((SplitAt == end() || SplitAt->getParent() == this) &&
375          "can only split at a position in the same block");
376 
377   SmallVector<VPBlockBase *, 2> Succs(getSuccessors().begin(),
378                                       getSuccessors().end());
379   // First, disconnect the current block from its successors.
380   for (VPBlockBase *Succ : Succs)
381     VPBlockUtils::disconnectBlocks(this, Succ);
382 
383   // Create new empty block after the block to split.
384   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
385   VPBlockUtils::insertBlockAfter(SplitBlock, this);
386 
387   // Add successors for block to split to new block.
388   for (VPBlockBase *Succ : Succs)
389     VPBlockUtils::connectBlocks(SplitBlock, Succ);
390 
391   // Finally, move the recipes starting at SplitAt to new block.
392   for (VPRecipeBase &ToMove :
393        make_early_inc_range(make_range(SplitAt, this->end())))
394     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
395 
396   return SplitBlock;
397 }
398 
399 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
400 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
401                          VPSlotTracker &SlotTracker) const {
402   O << Indent << getName() << ":\n";
403   if (const VPValue *Pred = getPredicate()) {
404     O << Indent << "BlockPredicate:";
405     Pred->printAsOperand(O, SlotTracker);
406     if (const auto *PredInst = dyn_cast<VPInstruction>(Pred))
407       O << " (" << PredInst->getParent()->getName() << ")";
408     O << '\n';
409   }
410 
411   auto RecipeIndent = Indent + "  ";
412   for (const VPRecipeBase &Recipe : *this) {
413     Recipe.print(O, RecipeIndent, SlotTracker);
414     O << '\n';
415   }
416 
417   if (getSuccessors().empty()) {
418     O << Indent << "No successors\n";
419   } else {
420     O << Indent << "Successor(s): ";
421     ListSeparator LS;
422     for (auto *Succ : getSuccessors())
423       O << LS << Succ->getName();
424     O << '\n';
425   }
426 
427   if (const VPValue *CBV = getCondBit()) {
428     O << Indent << "CondBit: ";
429     CBV->printAsOperand(O, SlotTracker);
430     if (const auto *CBI = dyn_cast<VPInstruction>(CBV))
431       O << " (" << CBI->getParent()->getName() << ")";
432     O << '\n';
433   }
434 }
435 #endif
436 
437 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
438   for (VPBlockBase *Block : depth_first(Entry))
439     // Drop all references in VPBasicBlocks and replace all uses with
440     // DummyValue.
441     Block->dropAllReferences(NewValue);
442 }
443 
444 void VPRegionBlock::execute(VPTransformState *State) {
445   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
446 
447   if (!isReplicator()) {
448     // Visit the VPBlocks connected to "this", starting from it.
449     for (VPBlockBase *Block : RPOT) {
450       if (EnableVPlanNativePath) {
451         // The inner loop vectorization path does not represent loop preheader
452         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
453         // vectorizing loop preheader block. In future, we may replace this
454         // check with the check for loop preheader.
455         if (Block->getNumPredecessors() == 0)
456           continue;
457 
458         // Skip vectorizing loop exit block. In future, we may replace this
459         // check with the check for loop exit.
460         if (Block->getNumSuccessors() == 0)
461           continue;
462       }
463 
464       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
465       Block->execute(State);
466     }
467     return;
468   }
469 
470   assert(!State->Instance && "Replicating a Region with non-null instance.");
471 
472   // Enter replicating mode.
473   State->Instance = VPIteration(0, 0);
474 
475   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
476     State->Instance->Part = Part;
477     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
478     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
479          ++Lane) {
480       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
481       // Visit the VPBlocks connected to \p this, starting from it.
482       for (VPBlockBase *Block : RPOT) {
483         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
484         Block->execute(State);
485       }
486     }
487   }
488 
489   // Exit replicating mode.
490   State->Instance.reset();
491 }
492 
493 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
494 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
495                           VPSlotTracker &SlotTracker) const {
496   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
497   auto NewIndent = Indent + "  ";
498   for (auto *BlockBase : depth_first(Entry)) {
499     O << '\n';
500     BlockBase->print(O, NewIndent, SlotTracker);
501   }
502   O << Indent << "}\n";
503 }
504 #endif
505 
506 bool VPRecipeBase::mayWriteToMemory() const {
507   switch (getVPDefID()) {
508   case VPWidenMemoryInstructionSC: {
509     return cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
510   }
511   case VPReplicateSC:
512   case VPWidenCallSC:
513     return cast<Instruction>(getVPValue()->getUnderlyingValue())
514         ->mayWriteToMemory();
515   case VPBranchOnMaskSC:
516     return false;
517   case VPWidenIntOrFpInductionSC:
518   case VPWidenCanonicalIVSC:
519   case VPWidenPHISC:
520   case VPBlendSC:
521   case VPWidenSC:
522   case VPWidenGEPSC:
523   case VPReductionSC:
524   case VPWidenSelectSC: {
525     const Instruction *I =
526         dyn_cast_or_null<Instruction>(getVPValue()->getUnderlyingValue());
527     (void)I;
528     assert((!I || !I->mayWriteToMemory()) &&
529            "underlying instruction may write to memory");
530     return false;
531   }
532   default:
533     return true;
534   }
535 }
536 
537 bool VPRecipeBase::mayReadFromMemory() const {
538   switch (getVPDefID()) {
539   case VPWidenMemoryInstructionSC: {
540     return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
541   }
542   case VPReplicateSC:
543   case VPWidenCallSC:
544     return cast<Instruction>(getVPValue()->getUnderlyingValue())
545         ->mayReadFromMemory();
546   case VPBranchOnMaskSC:
547     return false;
548   case VPWidenIntOrFpInductionSC:
549   case VPWidenCanonicalIVSC:
550   case VPWidenPHISC:
551   case VPBlendSC:
552   case VPWidenSC:
553   case VPWidenGEPSC:
554   case VPReductionSC:
555   case VPWidenSelectSC: {
556     const Instruction *I =
557         dyn_cast_or_null<Instruction>(getVPValue()->getUnderlyingValue());
558     (void)I;
559     assert((!I || !I->mayReadFromMemory()) &&
560            "underlying instruction may read from memory");
561     return false;
562   }
563   default:
564     return true;
565   }
566 }
567 
568 bool VPRecipeBase::mayHaveSideEffects() const {
569   switch (getVPDefID()) {
570   case VPBranchOnMaskSC:
571     return false;
572   case VPWidenIntOrFpInductionSC:
573   case VPWidenCanonicalIVSC:
574   case VPWidenPHISC:
575   case VPBlendSC:
576   case VPWidenSC:
577   case VPWidenGEPSC:
578   case VPReductionSC:
579   case VPWidenSelectSC: {
580     const Instruction *I =
581         dyn_cast_or_null<Instruction>(getVPValue()->getUnderlyingValue());
582     (void)I;
583     assert((!I || !I->mayHaveSideEffects()) &&
584            "underlying instruction has side-effects");
585     return false;
586   }
587   case VPReplicateSC: {
588     auto *R = cast<VPReplicateRecipe>(this);
589     return R->getUnderlyingInstr()->mayHaveSideEffects();
590   }
591   default:
592     return true;
593   }
594 }
595 
596 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
597   assert(!Parent && "Recipe already in some VPBasicBlock");
598   assert(InsertPos->getParent() &&
599          "Insertion position not in any VPBasicBlock");
600   Parent = InsertPos->getParent();
601   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
602 }
603 
604 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
605   assert(!Parent && "Recipe already in some VPBasicBlock");
606   assert(InsertPos->getParent() &&
607          "Insertion position not in any VPBasicBlock");
608   Parent = InsertPos->getParent();
609   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
610 }
611 
612 void VPRecipeBase::removeFromParent() {
613   assert(getParent() && "Recipe not in any VPBasicBlock");
614   getParent()->getRecipeList().remove(getIterator());
615   Parent = nullptr;
616 }
617 
618 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
619   assert(getParent() && "Recipe not in any VPBasicBlock");
620   return getParent()->getRecipeList().erase(getIterator());
621 }
622 
623 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
624   removeFromParent();
625   insertAfter(InsertPos);
626 }
627 
628 void VPRecipeBase::moveBefore(VPBasicBlock &BB,
629                               iplist<VPRecipeBase>::iterator I) {
630   assert(I == BB.end() || I->getParent() == &BB);
631   removeFromParent();
632   Parent = &BB;
633   BB.getRecipeList().insert(I, this);
634 }
635 
636 void VPInstruction::generateInstruction(VPTransformState &State,
637                                         unsigned Part) {
638   IRBuilder<> &Builder = State.Builder;
639 
640   if (Instruction::isBinaryOp(getOpcode())) {
641     Value *A = State.get(getOperand(0), Part);
642     Value *B = State.get(getOperand(1), Part);
643     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
644     State.set(this, V, Part);
645     return;
646   }
647 
648   switch (getOpcode()) {
649   case VPInstruction::Not: {
650     Value *A = State.get(getOperand(0), Part);
651     Value *V = Builder.CreateNot(A);
652     State.set(this, V, Part);
653     break;
654   }
655   case VPInstruction::ICmpULE: {
656     Value *IV = State.get(getOperand(0), Part);
657     Value *TC = State.get(getOperand(1), Part);
658     Value *V = Builder.CreateICmpULE(IV, TC);
659     State.set(this, V, Part);
660     break;
661   }
662   case Instruction::Select: {
663     Value *Cond = State.get(getOperand(0), Part);
664     Value *Op1 = State.get(getOperand(1), Part);
665     Value *Op2 = State.get(getOperand(2), Part);
666     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
667     State.set(this, V, Part);
668     break;
669   }
670   case VPInstruction::ActiveLaneMask: {
671     // Get first lane of vector induction variable.
672     Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0));
673     // Get the original loop tripcount.
674     Value *ScalarTC = State.TripCount;
675 
676     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
677     auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue());
678     Instruction *Call = Builder.CreateIntrinsic(
679         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
680         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
681     State.set(this, Call, Part);
682     break;
683   }
684   default:
685     llvm_unreachable("Unsupported opcode for instruction");
686   }
687 }
688 
689 void VPInstruction::execute(VPTransformState &State) {
690   assert(!State.Instance && "VPInstruction executing an Instance");
691   for (unsigned Part = 0; Part < State.UF; ++Part)
692     generateInstruction(State, Part);
693 }
694 
695 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
696 void VPInstruction::dump() const {
697   VPSlotTracker SlotTracker(getParent()->getPlan());
698   print(dbgs(), "", SlotTracker);
699 }
700 
701 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
702                           VPSlotTracker &SlotTracker) const {
703   O << Indent << "EMIT ";
704 
705   if (hasResult()) {
706     printAsOperand(O, SlotTracker);
707     O << " = ";
708   }
709 
710   switch (getOpcode()) {
711   case VPInstruction::Not:
712     O << "not";
713     break;
714   case VPInstruction::ICmpULE:
715     O << "icmp ule";
716     break;
717   case VPInstruction::SLPLoad:
718     O << "combined load";
719     break;
720   case VPInstruction::SLPStore:
721     O << "combined store";
722     break;
723   case VPInstruction::ActiveLaneMask:
724     O << "active lane mask";
725     break;
726 
727   default:
728     O << Instruction::getOpcodeName(getOpcode());
729   }
730 
731   for (const VPValue *Operand : operands()) {
732     O << " ";
733     Operand->printAsOperand(O, SlotTracker);
734   }
735 }
736 #endif
737 
738 /// Generate the code inside the body of the vectorized loop. Assumes a single
739 /// LoopVectorBody basic-block was created for this. Introduce additional
740 /// basic-blocks as needed, and fill them all.
741 void VPlan::execute(VPTransformState *State) {
742   // -1. Check if the backedge taken count is needed, and if so build it.
743   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
744     Value *TC = State->TripCount;
745     IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
746     auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
747                                    "trip.count.minus.1");
748     auto VF = State->VF;
749     Value *VTCMO =
750         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
751     for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part)
752       State->set(BackedgeTakenCount, VTCMO, Part);
753   }
754 
755   // 0. Set the reverse mapping from VPValues to Values for code generation.
756   for (auto &Entry : Value2VPValue)
757     State->VPValue2Value[Entry.second] = Entry.first;
758 
759   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
760   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
761   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
762 
763   // 1. Make room to generate basic-blocks inside loop body if needed.
764   BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
765       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
766   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
767   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
768   // Remove the edge between Header and Latch to allow other connections.
769   // Temporarily terminate with unreachable until CFG is rewired.
770   // Note: this asserts the generated code's assumption that
771   // getFirstInsertionPt() can be dereferenced into an Instruction.
772   VectorHeaderBB->getTerminator()->eraseFromParent();
773   State->Builder.SetInsertPoint(VectorHeaderBB);
774   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
775   State->Builder.SetInsertPoint(Terminator);
776 
777   // 2. Generate code in loop body.
778   State->CFG.PrevVPBB = nullptr;
779   State->CFG.PrevBB = VectorHeaderBB;
780   State->CFG.LastBB = VectorLatchBB;
781 
782   for (VPBlockBase *Block : depth_first(Entry))
783     Block->execute(State);
784 
785   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
786   // VPBB's successors.
787   for (auto VPBB : State->CFG.VPBBsToFix) {
788     assert(EnableVPlanNativePath &&
789            "Unexpected VPBBsToFix in non VPlan-native path");
790     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
791     assert(BB && "Unexpected null basic block for VPBB");
792 
793     unsigned Idx = 0;
794     auto *BBTerminator = BB->getTerminator();
795 
796     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
797       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
798       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
799       ++Idx;
800     }
801   }
802 
803   // 3. Merge the temporary latch created with the last basic-block filled.
804   BasicBlock *LastBB = State->CFG.PrevBB;
805   // Connect LastBB to VectorLatchBB to facilitate their merge.
806   assert((EnableVPlanNativePath ||
807           isa<UnreachableInst>(LastBB->getTerminator())) &&
808          "Expected InnerLoop VPlan CFG to terminate with unreachable");
809   assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
810          "Expected VPlan CFG to terminate with branch in NativePath");
811   LastBB->getTerminator()->eraseFromParent();
812   BranchInst::Create(VectorLatchBB, LastBB);
813 
814   // Merge LastBB with Latch.
815   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
816   (void)Merged;
817   assert(Merged && "Could not merge last basic block with latch.");
818   VectorLatchBB = LastBB;
819 
820   // We do not attempt to preserve DT for outer loop vectorization currently.
821   if (!EnableVPlanNativePath)
822     updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
823                         L->getExitBlock());
824 }
825 
826 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
827 LLVM_DUMP_METHOD
828 void VPlan::print(raw_ostream &O) const {
829   VPSlotTracker SlotTracker(this);
830 
831   O << "VPlan '" << Name << "' {";
832   for (const VPBlockBase *Block : depth_first(getEntry())) {
833     O << '\n';
834     Block->print(O, "", SlotTracker);
835   }
836   O << "}\n";
837 }
838 
839 LLVM_DUMP_METHOD
840 void VPlan::printDOT(raw_ostream &O) const {
841   VPlanPrinter Printer(O, *this);
842   Printer.dump();
843 }
844 
845 LLVM_DUMP_METHOD
846 void VPlan::dump() const { print(dbgs()); }
847 #endif
848 
849 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
850                                 BasicBlock *LoopLatchBB,
851                                 BasicBlock *LoopExitBB) {
852   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
853   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
854   // The vector body may be more than a single basic-block by this point.
855   // Update the dominator tree information inside the vector body by propagating
856   // it from header to latch, expecting only triangular control-flow, if any.
857   BasicBlock *PostDomSucc = nullptr;
858   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
859     // Get the list of successors of this block.
860     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
861     assert(Succs.size() <= 2 &&
862            "Basic block in vector loop has more than 2 successors.");
863     PostDomSucc = Succs[0];
864     if (Succs.size() == 1) {
865       assert(PostDomSucc->getSinglePredecessor() &&
866              "PostDom successor has more than one predecessor.");
867       DT->addNewBlock(PostDomSucc, BB);
868       continue;
869     }
870     BasicBlock *InterimSucc = Succs[1];
871     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
872       PostDomSucc = Succs[1];
873       InterimSucc = Succs[0];
874     }
875     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
876            "One successor of a basic block does not lead to the other.");
877     assert(InterimSucc->getSinglePredecessor() &&
878            "Interim successor has more than one predecessor.");
879     assert(PostDomSucc->hasNPredecessors(2) &&
880            "PostDom successor has more than two predecessors.");
881     DT->addNewBlock(InterimSucc, BB);
882     DT->addNewBlock(PostDomSucc, BB);
883   }
884   // Latch block is a new dominator for the loop exit.
885   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
886   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
887 }
888 
889 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
890 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
891   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
892          Twine(getOrCreateBID(Block));
893 }
894 
895 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
896   const std::string &Name = Block->getName();
897   if (!Name.empty())
898     return Name;
899   return "VPB" + Twine(getOrCreateBID(Block));
900 }
901 
902 void VPlanPrinter::dump() {
903   Depth = 1;
904   bumpIndent(0);
905   OS << "digraph VPlan {\n";
906   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
907   if (!Plan.getName().empty())
908     OS << "\\n" << DOT::EscapeString(Plan.getName());
909   if (Plan.BackedgeTakenCount) {
910     OS << ", where:\\n";
911     Plan.BackedgeTakenCount->print(OS, SlotTracker);
912     OS << " := BackedgeTakenCount";
913   }
914   OS << "\"]\n";
915   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
916   OS << "edge [fontname=Courier, fontsize=30]\n";
917   OS << "compound=true\n";
918 
919   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
920     dumpBlock(Block);
921 
922   OS << "}\n";
923 }
924 
925 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
926   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
927     dumpBasicBlock(BasicBlock);
928   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
929     dumpRegion(Region);
930   else
931     llvm_unreachable("Unsupported kind of VPBlock.");
932 }
933 
934 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
935                             bool Hidden, const Twine &Label) {
936   // Due to "dot" we print an edge between two regions as an edge between the
937   // exit basic block and the entry basic of the respective regions.
938   const VPBlockBase *Tail = From->getExitBasicBlock();
939   const VPBlockBase *Head = To->getEntryBasicBlock();
940   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
941   OS << " [ label=\"" << Label << '\"';
942   if (Tail != From)
943     OS << " ltail=" << getUID(From);
944   if (Head != To)
945     OS << " lhead=" << getUID(To);
946   if (Hidden)
947     OS << "; splines=none";
948   OS << "]\n";
949 }
950 
951 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
952   auto &Successors = Block->getSuccessors();
953   if (Successors.size() == 1)
954     drawEdge(Block, Successors.front(), false, "");
955   else if (Successors.size() == 2) {
956     drawEdge(Block, Successors.front(), false, "T");
957     drawEdge(Block, Successors.back(), false, "F");
958   } else {
959     unsigned SuccessorNumber = 0;
960     for (auto *Successor : Successors)
961       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
962   }
963 }
964 
965 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
966   // Implement dot-formatted dump by performing plain-text dump into the
967   // temporary storage followed by some post-processing.
968   OS << Indent << getUID(BasicBlock) << " [label =\n";
969   bumpIndent(1);
970   std::string Str;
971   raw_string_ostream SS(Str);
972   // Use no indentation as we need to wrap the lines into quotes ourselves.
973   BasicBlock->print(SS, "", SlotTracker);
974 
975   // We need to process each line of the output separately, so split
976   // single-string plain-text dump.
977   SmallVector<StringRef, 0> Lines;
978   StringRef(Str).rtrim('\n').split(Lines, "\n");
979 
980   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
981     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
982   };
983 
984   // Don't need the "+" after the last line.
985   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
986     EmitLine(Line, " +\n");
987   EmitLine(Lines.back(), "\n");
988 
989   bumpIndent(-1);
990   OS << Indent << "]\n";
991 
992   dumpEdges(BasicBlock);
993 }
994 
995 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
996   OS << Indent << "subgraph " << getUID(Region) << " {\n";
997   bumpIndent(1);
998   OS << Indent << "fontname=Courier\n"
999      << Indent << "label=\""
1000      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1001      << DOT::EscapeString(Region->getName()) << "\"\n";
1002   // Dump the blocks of the region.
1003   assert(Region->getEntry() && "Region contains no inner blocks.");
1004   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
1005     dumpBlock(Block);
1006   bumpIndent(-1);
1007   OS << Indent << "}\n";
1008   dumpEdges(Region);
1009 }
1010 
1011 void VPlanIngredient::print(raw_ostream &O) const {
1012   if (auto *Inst = dyn_cast<Instruction>(V)) {
1013     if (!Inst->getType()->isVoidTy()) {
1014       Inst->printAsOperand(O, false);
1015       O << " = ";
1016     }
1017     O << Inst->getOpcodeName() << " ";
1018     unsigned E = Inst->getNumOperands();
1019     if (E > 0) {
1020       Inst->getOperand(0)->printAsOperand(O, false);
1021       for (unsigned I = 1; I < E; ++I)
1022         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1023     }
1024   } else // !Inst
1025     V->printAsOperand(O, false);
1026 }
1027 
1028 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
1029                               VPSlotTracker &SlotTracker) const {
1030   O << Indent << "WIDEN-CALL ";
1031 
1032   auto *CI = cast<CallInst>(getUnderlyingInstr());
1033   if (CI->getType()->isVoidTy())
1034     O << "void ";
1035   else {
1036     printAsOperand(O, SlotTracker);
1037     O << " = ";
1038   }
1039 
1040   O << "call @" << CI->getCalledFunction()->getName() << "(";
1041   printOperands(O, SlotTracker);
1042   O << ")";
1043 }
1044 
1045 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
1046                                 VPSlotTracker &SlotTracker) const {
1047   O << Indent << "WIDEN-SELECT ";
1048   printAsOperand(O, SlotTracker);
1049   O << " = select ";
1050   getOperand(0)->printAsOperand(O, SlotTracker);
1051   O << ", ";
1052   getOperand(1)->printAsOperand(O, SlotTracker);
1053   O << ", ";
1054   getOperand(2)->printAsOperand(O, SlotTracker);
1055   O << (InvariantCond ? " (condition is loop invariant)" : "");
1056 }
1057 
1058 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
1059                           VPSlotTracker &SlotTracker) const {
1060   O << Indent << "WIDEN ";
1061   printAsOperand(O, SlotTracker);
1062   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
1063   printOperands(O, SlotTracker);
1064 }
1065 
1066 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
1067                                           VPSlotTracker &SlotTracker) const {
1068   O << Indent << "WIDEN-INDUCTION";
1069   if (getTruncInst()) {
1070     O << "\\l\"";
1071     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
1072     O << " +\n" << Indent << "\"  ";
1073     getVPValue(0)->printAsOperand(O, SlotTracker);
1074   } else
1075     O << " " << VPlanIngredient(IV);
1076 }
1077 
1078 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
1079                              VPSlotTracker &SlotTracker) const {
1080   O << Indent << "WIDEN-GEP ";
1081   O << (IsPtrLoopInvariant ? "Inv" : "Var");
1082   size_t IndicesNumber = IsIndexLoopInvariant.size();
1083   for (size_t I = 0; I < IndicesNumber; ++I)
1084     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
1085 
1086   O << " ";
1087   printAsOperand(O, SlotTracker);
1088   O << " = getelementptr ";
1089   printOperands(O, SlotTracker);
1090 }
1091 
1092 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1093                              VPSlotTracker &SlotTracker) const {
1094   O << Indent << "WIDEN-PHI ";
1095 
1096   auto *OriginalPhi = cast<PHINode>(getUnderlyingValue());
1097   // Unless all incoming values are modeled in VPlan  print the original PHI
1098   // directly.
1099   // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming
1100   // values as VPValues.
1101   if (getNumOperands() != OriginalPhi->getNumOperands()) {
1102     O << VPlanIngredient(OriginalPhi);
1103     return;
1104   }
1105 
1106   printAsOperand(O, SlotTracker);
1107   O << " = phi ";
1108   printOperands(O, SlotTracker);
1109 }
1110 
1111 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
1112                           VPSlotTracker &SlotTracker) const {
1113   O << Indent << "BLEND ";
1114   Phi->printAsOperand(O, false);
1115   O << " =";
1116   if (getNumIncomingValues() == 1) {
1117     // Not a User of any mask: not really blending, this is a
1118     // single-predecessor phi.
1119     O << " ";
1120     getIncomingValue(0)->printAsOperand(O, SlotTracker);
1121   } else {
1122     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
1123       O << " ";
1124       getIncomingValue(I)->printAsOperand(O, SlotTracker);
1125       O << "/";
1126       getMask(I)->printAsOperand(O, SlotTracker);
1127     }
1128   }
1129 }
1130 
1131 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
1132                               VPSlotTracker &SlotTracker) const {
1133   O << Indent << "REDUCE ";
1134   printAsOperand(O, SlotTracker);
1135   O << " = ";
1136   getChainOp()->printAsOperand(O, SlotTracker);
1137   O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode())
1138     << " (";
1139   getVecOp()->printAsOperand(O, SlotTracker);
1140   if (getCondOp()) {
1141     O << ", ";
1142     getCondOp()->printAsOperand(O, SlotTracker);
1143   }
1144   O << ")";
1145 }
1146 
1147 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
1148                               VPSlotTracker &SlotTracker) const {
1149   O << Indent << (IsUniform ? "CLONE " : "REPLICATE ");
1150 
1151   if (!getUnderlyingInstr()->getType()->isVoidTy()) {
1152     printAsOperand(O, SlotTracker);
1153     O << " = ";
1154   }
1155   O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
1156   printOperands(O, SlotTracker);
1157 
1158   if (AlsoPack)
1159     O << " (S->V)";
1160 }
1161 
1162 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1163                                 VPSlotTracker &SlotTracker) const {
1164   O << Indent << "PHI-PREDICATED-INSTRUCTION ";
1165   printAsOperand(O, SlotTracker);
1166   O << " = ";
1167   printOperands(O, SlotTracker);
1168 }
1169 
1170 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
1171                                            VPSlotTracker &SlotTracker) const {
1172   O << Indent << "WIDEN ";
1173 
1174   if (!isStore()) {
1175     getVPValue()->printAsOperand(O, SlotTracker);
1176     O << " = ";
1177   }
1178   O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";
1179 
1180   printOperands(O, SlotTracker);
1181 }
1182 #endif
1183 
1184 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
1185   Value *CanonicalIV = State.CanonicalIV;
1186   Type *STy = CanonicalIV->getType();
1187   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
1188   ElementCount VF = State.VF;
1189   assert(!VF.isScalable() && "the code following assumes non scalables ECs");
1190   Value *VStart = VF.isScalar()
1191                       ? CanonicalIV
1192                       : Builder.CreateVectorSplat(VF.getKnownMinValue(),
1193                                                   CanonicalIV, "broadcast");
1194   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
1195     SmallVector<Constant *, 8> Indices;
1196     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
1197       Indices.push_back(
1198           ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane));
1199     // If VF == 1, there is only one iteration in the loop above, thus the
1200     // element pushed back into Indices is ConstantInt::get(STy, Part)
1201     Constant *VStep =
1202         VF.isScalar() ? Indices.back() : ConstantVector::get(Indices);
1203     // Add the consecutive indices to the vector value.
1204     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
1205     State.set(getVPSingleValue(), CanonicalVectorIV, Part);
1206   }
1207 }
1208 
1209 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1210 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
1211                                      VPSlotTracker &SlotTracker) const {
1212   O << Indent << "EMIT ";
1213   getVPValue()->printAsOperand(O, SlotTracker);
1214   O << " = WIDEN-CANONICAL-INDUCTION";
1215 }
1216 #endif
1217 
1218 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1219 
1220 void VPValue::replaceAllUsesWith(VPValue *New) {
1221   for (unsigned J = 0; J < getNumUsers();) {
1222     VPUser *User = Users[J];
1223     unsigned NumUsers = getNumUsers();
1224     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1225       if (User->getOperand(I) == this)
1226         User->setOperand(I, New);
1227     // If a user got removed after updating the current user, the next user to
1228     // update will be moved to the current position, so we only need to
1229     // increment the index if the number of users did not change.
1230     if (NumUsers == getNumUsers())
1231       J++;
1232   }
1233 }
1234 
1235 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1236 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1237   if (const Value *UV = getUnderlyingValue()) {
1238     OS << "ir<";
1239     UV->printAsOperand(OS, false);
1240     OS << ">";
1241     return;
1242   }
1243 
1244   unsigned Slot = Tracker.getSlot(this);
1245   if (Slot == unsigned(-1))
1246     OS << "<badref>";
1247   else
1248     OS << "vp<%" << Tracker.getSlot(this) << ">";
1249 }
1250 
1251 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1252   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1253     Op->printAsOperand(O, SlotTracker);
1254   });
1255 }
1256 #endif
1257 
1258 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1259                                           Old2NewTy &Old2New,
1260                                           InterleavedAccessInfo &IAI) {
1261   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1262   for (VPBlockBase *Base : RPOT) {
1263     visitBlock(Base, Old2New, IAI);
1264   }
1265 }
1266 
1267 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1268                                          InterleavedAccessInfo &IAI) {
1269   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1270     for (VPRecipeBase &VPI : *VPBB) {
1271       if (isa<VPWidenPHIRecipe>(&VPI))
1272         continue;
1273       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1274       auto *VPInst = cast<VPInstruction>(&VPI);
1275       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1276       auto *IG = IAI.getInterleaveGroup(Inst);
1277       if (!IG)
1278         continue;
1279 
1280       auto NewIGIter = Old2New.find(IG);
1281       if (NewIGIter == Old2New.end())
1282         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1283             IG->getFactor(), IG->isReverse(), IG->getAlign());
1284 
1285       if (Inst == IG->getInsertPos())
1286         Old2New[IG]->setInsertPos(VPInst);
1287 
1288       InterleaveGroupMap[VPInst] = Old2New[IG];
1289       InterleaveGroupMap[VPInst]->insertMember(
1290           VPInst, IG->getIndex(Inst),
1291           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1292                                 : IG->getFactor()));
1293     }
1294   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1295     visitRegion(Region, Old2New, IAI);
1296   else
1297     llvm_unreachable("Unsupported kind of VPBlock.");
1298 }
1299 
1300 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1301                                                  InterleavedAccessInfo &IAI) {
1302   Old2NewTy Old2New;
1303   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
1304 }
1305 
1306 void VPSlotTracker::assignSlot(const VPValue *V) {
1307   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1308   Slots[V] = NextSlot++;
1309 }
1310 
1311 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1312 
1313   for (const VPValue *V : Plan.VPExternalDefs)
1314     assignSlot(V);
1315 
1316   if (Plan.BackedgeTakenCount)
1317     assignSlot(Plan.BackedgeTakenCount);
1318 
1319   ReversePostOrderTraversal<
1320       VPBlockRecursiveTraversalWrapper<const VPBlockBase *>>
1321       RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>(
1322           Plan.getEntry()));
1323   for (const VPBasicBlock *VPBB :
1324        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1325     for (const VPRecipeBase &Recipe : *VPBB)
1326       for (VPValue *Def : Recipe.definedValues())
1327         assignSlot(Def);
1328 }
1329