1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include <cassert> 44 #include <iterator> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 54 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 55 VPSlotTracker SlotTracker( 56 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 57 V.print(OS, SlotTracker); 58 return OS; 59 } 60 61 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 62 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 63 if (Def) 64 Def->addDefinedValue(this); 65 } 66 67 VPValue::~VPValue() { 68 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 69 if (Def) 70 Def->removeDefinedValue(this); 71 } 72 73 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 74 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 75 R->print(OS, "", SlotTracker); 76 else 77 printAsOperand(OS, SlotTracker); 78 } 79 80 void VPValue::dump() const { 81 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 82 VPSlotTracker SlotTracker( 83 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 84 print(dbgs(), SlotTracker); 85 dbgs() << "\n"; 86 } 87 88 void VPDef::dump() const { 89 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 90 VPSlotTracker SlotTracker( 91 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 92 print(dbgs(), "", SlotTracker); 93 dbgs() << "\n"; 94 } 95 96 VPUser *VPRecipeBase::toVPUser() { 97 if (auto *U = dyn_cast<VPInstruction>(this)) 98 return U; 99 if (auto *U = dyn_cast<VPWidenRecipe>(this)) 100 return U; 101 if (auto *U = dyn_cast<VPWidenCallRecipe>(this)) 102 return U; 103 if (auto *U = dyn_cast<VPWidenSelectRecipe>(this)) 104 return U; 105 if (auto *U = dyn_cast<VPWidenGEPRecipe>(this)) 106 return U; 107 if (auto *U = dyn_cast<VPBlendRecipe>(this)) 108 return U; 109 if (auto *U = dyn_cast<VPInterleaveRecipe>(this)) 110 return U; 111 if (auto *U = dyn_cast<VPReplicateRecipe>(this)) 112 return U; 113 if (auto *U = dyn_cast<VPBranchOnMaskRecipe>(this)) 114 return U; 115 if (auto *U = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 116 return U; 117 if (auto *U = dyn_cast<VPReductionRecipe>(this)) 118 return U; 119 if (auto *U = dyn_cast<VPPredInstPHIRecipe>(this)) 120 return U; 121 return nullptr; 122 } 123 124 // Get the top-most entry block of \p Start. This is the entry block of the 125 // containing VPlan. This function is templated to support both const and non-const blocks 126 template <typename T> static T *getPlanEntry(T *Start) { 127 T *Next = Start; 128 T *Current = Start; 129 while ((Next = Next->getParent())) 130 Current = Next; 131 132 SmallSetVector<T *, 8> WorkList; 133 WorkList.insert(Current); 134 135 for (unsigned i = 0; i < WorkList.size(); i++) { 136 T *Current = WorkList[i]; 137 if (Current->getNumPredecessors() == 0) 138 return Current; 139 auto &Predecessors = Current->getPredecessors(); 140 WorkList.insert(Predecessors.begin(), Predecessors.end()); 141 } 142 143 llvm_unreachable("VPlan without any entry node without predecessors"); 144 } 145 146 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 147 148 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 149 150 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 151 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 152 const VPBlockBase *Block = this; 153 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 154 Block = Region->getEntry(); 155 return cast<VPBasicBlock>(Block); 156 } 157 158 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 159 VPBlockBase *Block = this; 160 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 161 Block = Region->getEntry(); 162 return cast<VPBasicBlock>(Block); 163 } 164 165 void VPBlockBase::setPlan(VPlan *ParentPlan) { 166 assert(ParentPlan->getEntry() == this && 167 "Can only set plan on its entry block."); 168 Plan = ParentPlan; 169 } 170 171 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 172 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 173 const VPBlockBase *Block = this; 174 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 175 Block = Region->getExit(); 176 return cast<VPBasicBlock>(Block); 177 } 178 179 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 180 VPBlockBase *Block = this; 181 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 182 Block = Region->getExit(); 183 return cast<VPBasicBlock>(Block); 184 } 185 186 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 187 if (!Successors.empty() || !Parent) 188 return this; 189 assert(Parent->getExit() == this && 190 "Block w/o successors not the exit of its parent."); 191 return Parent->getEnclosingBlockWithSuccessors(); 192 } 193 194 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 195 if (!Predecessors.empty() || !Parent) 196 return this; 197 assert(Parent->getEntry() == this && 198 "Block w/o predecessors not the entry of its parent."); 199 return Parent->getEnclosingBlockWithPredecessors(); 200 } 201 202 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 203 SmallVector<VPBlockBase *, 8> Blocks; 204 205 for (VPBlockBase *Block : depth_first(Entry)) 206 Blocks.push_back(Block); 207 208 for (VPBlockBase *Block : Blocks) 209 delete Block; 210 } 211 212 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 213 iterator It = begin(); 214 while (It != end() && (isa<VPWidenPHIRecipe>(&*It) || 215 isa<VPWidenIntOrFpInductionRecipe>(&*It) || 216 isa<VPPredInstPHIRecipe>(&*It) || 217 isa<VPWidenCanonicalIVRecipe>(&*It))) 218 It++; 219 return It; 220 } 221 222 BasicBlock * 223 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 224 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 225 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 226 BasicBlock *PrevBB = CFG.PrevBB; 227 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 228 PrevBB->getParent(), CFG.LastBB); 229 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 230 231 // Hook up the new basic block to its predecessors. 232 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 233 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 234 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 235 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 236 237 // In outer loop vectorization scenario, the predecessor BBlock may not yet 238 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 239 // vectorization. We do not encounter this case in inner loop vectorization 240 // as we start out by building a loop skeleton with the vector loop header 241 // and latch blocks. As a result, we never enter this function for the 242 // header block in the non VPlan-native path. 243 if (!PredBB) { 244 assert(EnableVPlanNativePath && 245 "Unexpected null predecessor in non VPlan-native path"); 246 CFG.VPBBsToFix.push_back(PredVPBB); 247 continue; 248 } 249 250 assert(PredBB && "Predecessor basic-block not found building successor."); 251 auto *PredBBTerminator = PredBB->getTerminator(); 252 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 253 if (isa<UnreachableInst>(PredBBTerminator)) { 254 assert(PredVPSuccessors.size() == 1 && 255 "Predecessor ending w/o branch must have single successor."); 256 PredBBTerminator->eraseFromParent(); 257 BranchInst::Create(NewBB, PredBB); 258 } else { 259 assert(PredVPSuccessors.size() == 2 && 260 "Predecessor ending with branch must have two successors."); 261 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 262 assert(!PredBBTerminator->getSuccessor(idx) && 263 "Trying to reset an existing successor block."); 264 PredBBTerminator->setSuccessor(idx, NewBB); 265 } 266 } 267 return NewBB; 268 } 269 270 void VPBasicBlock::execute(VPTransformState *State) { 271 bool Replica = State->Instance && 272 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 273 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 274 VPBlockBase *SingleHPred = nullptr; 275 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 276 277 // 1. Create an IR basic block, or reuse the last one if possible. 278 // The last IR basic block is reused, as an optimization, in three cases: 279 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 280 // B. when the current VPBB has a single (hierarchical) predecessor which 281 // is PrevVPBB and the latter has a single (hierarchical) successor; and 282 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 283 // is the exit of this region from a previous instance, or the predecessor 284 // of this region. 285 if (PrevVPBB && /* A */ 286 !((SingleHPred = getSingleHierarchicalPredecessor()) && 287 SingleHPred->getExitBasicBlock() == PrevVPBB && 288 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 289 !(Replica && getPredecessors().empty())) { /* C */ 290 NewBB = createEmptyBasicBlock(State->CFG); 291 State->Builder.SetInsertPoint(NewBB); 292 // Temporarily terminate with unreachable until CFG is rewired. 293 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 294 State->Builder.SetInsertPoint(Terminator); 295 // Register NewBB in its loop. In innermost loops its the same for all BB's. 296 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 297 L->addBasicBlockToLoop(NewBB, *State->LI); 298 State->CFG.PrevBB = NewBB; 299 } 300 301 // 2. Fill the IR basic block with IR instructions. 302 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 303 << " in BB:" << NewBB->getName() << '\n'); 304 305 State->CFG.VPBB2IRBB[this] = NewBB; 306 State->CFG.PrevVPBB = this; 307 308 for (VPRecipeBase &Recipe : Recipes) 309 Recipe.execute(*State); 310 311 VPValue *CBV; 312 if (EnableVPlanNativePath && (CBV = getCondBit())) { 313 Value *IRCBV = CBV->getUnderlyingValue(); 314 assert(IRCBV && "Unexpected null underlying value for condition bit"); 315 316 // Condition bit value in a VPBasicBlock is used as the branch selector. In 317 // the VPlan-native path case, since all branches are uniform we generate a 318 // branch instruction using the condition value from vector lane 0 and dummy 319 // successors. The successors are fixed later when the successor blocks are 320 // visited. 321 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 322 NewCond = State->Builder.CreateExtractElement(NewCond, 323 State->Builder.getInt32(0)); 324 325 // Replace the temporary unreachable terminator with the new conditional 326 // branch. 327 auto *CurrentTerminator = NewBB->getTerminator(); 328 assert(isa<UnreachableInst>(CurrentTerminator) && 329 "Expected to replace unreachable terminator with conditional " 330 "branch."); 331 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 332 CondBr->setSuccessor(0, nullptr); 333 ReplaceInstWithInst(CurrentTerminator, CondBr); 334 } 335 336 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 337 } 338 339 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 340 for (VPRecipeBase &R : Recipes) { 341 for (auto *Def : R.definedValues()) 342 Def->replaceAllUsesWith(NewValue); 343 344 if (auto *User = R.toVPUser()) 345 for (unsigned I = 0, E = User->getNumOperands(); I != E; I++) 346 User->setOperand(I, NewValue); 347 } 348 } 349 350 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 351 for (VPBlockBase *Block : depth_first(Entry)) 352 // Drop all references in VPBasicBlocks and replace all uses with 353 // DummyValue. 354 Block->dropAllReferences(NewValue); 355 } 356 357 void VPRegionBlock::execute(VPTransformState *State) { 358 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 359 360 if (!isReplicator()) { 361 // Visit the VPBlocks connected to "this", starting from it. 362 for (VPBlockBase *Block : RPOT) { 363 if (EnableVPlanNativePath) { 364 // The inner loop vectorization path does not represent loop preheader 365 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 366 // vectorizing loop preheader block. In future, we may replace this 367 // check with the check for loop preheader. 368 if (Block->getNumPredecessors() == 0) 369 continue; 370 371 // Skip vectorizing loop exit block. In future, we may replace this 372 // check with the check for loop exit. 373 if (Block->getNumSuccessors() == 0) 374 continue; 375 } 376 377 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 378 Block->execute(State); 379 } 380 return; 381 } 382 383 assert(!State->Instance && "Replicating a Region with non-null instance."); 384 385 // Enter replicating mode. 386 State->Instance = {0, 0}; 387 388 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 389 State->Instance->Part = Part; 390 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 391 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 392 ++Lane) { 393 State->Instance->Lane = Lane; 394 // Visit the VPBlocks connected to \p this, starting from it. 395 for (VPBlockBase *Block : RPOT) { 396 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 397 Block->execute(State); 398 } 399 } 400 } 401 402 // Exit replicating mode. 403 State->Instance.reset(); 404 } 405 406 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 407 assert(!Parent && "Recipe already in some VPBasicBlock"); 408 assert(InsertPos->getParent() && 409 "Insertion position not in any VPBasicBlock"); 410 Parent = InsertPos->getParent(); 411 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 412 } 413 414 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 415 assert(!Parent && "Recipe already in some VPBasicBlock"); 416 assert(InsertPos->getParent() && 417 "Insertion position not in any VPBasicBlock"); 418 Parent = InsertPos->getParent(); 419 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 420 } 421 422 void VPRecipeBase::removeFromParent() { 423 assert(getParent() && "Recipe not in any VPBasicBlock"); 424 getParent()->getRecipeList().remove(getIterator()); 425 Parent = nullptr; 426 } 427 428 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 429 assert(getParent() && "Recipe not in any VPBasicBlock"); 430 return getParent()->getRecipeList().erase(getIterator()); 431 } 432 433 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 434 removeFromParent(); 435 insertAfter(InsertPos); 436 } 437 438 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 439 iplist<VPRecipeBase>::iterator I) { 440 assert(I == BB.end() || I->getParent() == &BB); 441 removeFromParent(); 442 Parent = &BB; 443 BB.getRecipeList().insert(I, this); 444 } 445 446 void VPInstruction::generateInstruction(VPTransformState &State, 447 unsigned Part) { 448 IRBuilder<> &Builder = State.Builder; 449 450 if (Instruction::isBinaryOp(getOpcode())) { 451 Value *A = State.get(getOperand(0), Part); 452 Value *B = State.get(getOperand(1), Part); 453 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 454 State.set(this, V, Part); 455 return; 456 } 457 458 switch (getOpcode()) { 459 case VPInstruction::Not: { 460 Value *A = State.get(getOperand(0), Part); 461 Value *V = Builder.CreateNot(A); 462 State.set(this, V, Part); 463 break; 464 } 465 case VPInstruction::ICmpULE: { 466 Value *IV = State.get(getOperand(0), Part); 467 Value *TC = State.get(getOperand(1), Part); 468 Value *V = Builder.CreateICmpULE(IV, TC); 469 State.set(this, V, Part); 470 break; 471 } 472 case Instruction::Select: { 473 Value *Cond = State.get(getOperand(0), Part); 474 Value *Op1 = State.get(getOperand(1), Part); 475 Value *Op2 = State.get(getOperand(2), Part); 476 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 477 State.set(this, V, Part); 478 break; 479 } 480 case VPInstruction::ActiveLaneMask: { 481 // Get first lane of vector induction variable. 482 Value *VIVElem0 = State.get(getOperand(0), {Part, 0}); 483 // Get the original loop tripcount. 484 Value *ScalarTC = State.TripCount; 485 486 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 487 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 488 Instruction *Call = Builder.CreateIntrinsic( 489 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 490 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 491 State.set(this, Call, Part); 492 break; 493 } 494 default: 495 llvm_unreachable("Unsupported opcode for instruction"); 496 } 497 } 498 499 void VPInstruction::execute(VPTransformState &State) { 500 assert(!State.Instance && "VPInstruction executing an Instance"); 501 for (unsigned Part = 0; Part < State.UF; ++Part) 502 generateInstruction(State, Part); 503 } 504 505 void VPInstruction::dump() const { 506 VPSlotTracker SlotTracker(getParent()->getPlan()); 507 print(dbgs(), "", SlotTracker); 508 } 509 510 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 511 VPSlotTracker &SlotTracker) const { 512 O << "EMIT "; 513 514 if (hasResult()) { 515 printAsOperand(O, SlotTracker); 516 O << " = "; 517 } 518 519 switch (getOpcode()) { 520 case VPInstruction::Not: 521 O << "not"; 522 break; 523 case VPInstruction::ICmpULE: 524 O << "icmp ule"; 525 break; 526 case VPInstruction::SLPLoad: 527 O << "combined load"; 528 break; 529 case VPInstruction::SLPStore: 530 O << "combined store"; 531 break; 532 case VPInstruction::ActiveLaneMask: 533 O << "active lane mask"; 534 break; 535 536 default: 537 O << Instruction::getOpcodeName(getOpcode()); 538 } 539 540 for (const VPValue *Operand : operands()) { 541 O << " "; 542 Operand->printAsOperand(O, SlotTracker); 543 } 544 } 545 546 /// Generate the code inside the body of the vectorized loop. Assumes a single 547 /// LoopVectorBody basic-block was created for this. Introduce additional 548 /// basic-blocks as needed, and fill them all. 549 void VPlan::execute(VPTransformState *State) { 550 // -1. Check if the backedge taken count is needed, and if so build it. 551 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 552 Value *TC = State->TripCount; 553 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 554 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 555 "trip.count.minus.1"); 556 auto VF = State->VF; 557 Value *VTCMO = 558 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 559 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 560 State->set(BackedgeTakenCount, VTCMO, Part); 561 } 562 563 // 0. Set the reverse mapping from VPValues to Values for code generation. 564 for (auto &Entry : Value2VPValue) 565 State->VPValue2Value[Entry.second] = Entry.first; 566 567 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 568 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 569 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 570 571 // 1. Make room to generate basic-blocks inside loop body if needed. 572 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 573 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 574 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 575 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 576 // Remove the edge between Header and Latch to allow other connections. 577 // Temporarily terminate with unreachable until CFG is rewired. 578 // Note: this asserts the generated code's assumption that 579 // getFirstInsertionPt() can be dereferenced into an Instruction. 580 VectorHeaderBB->getTerminator()->eraseFromParent(); 581 State->Builder.SetInsertPoint(VectorHeaderBB); 582 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 583 State->Builder.SetInsertPoint(Terminator); 584 585 // 2. Generate code in loop body. 586 State->CFG.PrevVPBB = nullptr; 587 State->CFG.PrevBB = VectorHeaderBB; 588 State->CFG.LastBB = VectorLatchBB; 589 590 for (VPBlockBase *Block : depth_first(Entry)) 591 Block->execute(State); 592 593 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 594 // VPBB's successors. 595 for (auto VPBB : State->CFG.VPBBsToFix) { 596 assert(EnableVPlanNativePath && 597 "Unexpected VPBBsToFix in non VPlan-native path"); 598 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 599 assert(BB && "Unexpected null basic block for VPBB"); 600 601 unsigned Idx = 0; 602 auto *BBTerminator = BB->getTerminator(); 603 604 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 605 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 606 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 607 ++Idx; 608 } 609 } 610 611 // 3. Merge the temporary latch created with the last basic-block filled. 612 BasicBlock *LastBB = State->CFG.PrevBB; 613 // Connect LastBB to VectorLatchBB to facilitate their merge. 614 assert((EnableVPlanNativePath || 615 isa<UnreachableInst>(LastBB->getTerminator())) && 616 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 617 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 618 "Expected VPlan CFG to terminate with branch in NativePath"); 619 LastBB->getTerminator()->eraseFromParent(); 620 BranchInst::Create(VectorLatchBB, LastBB); 621 622 // Merge LastBB with Latch. 623 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 624 (void)Merged; 625 assert(Merged && "Could not merge last basic block with latch."); 626 VectorLatchBB = LastBB; 627 628 // We do not attempt to preserve DT for outer loop vectorization currently. 629 if (!EnableVPlanNativePath) 630 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 631 L->getExitBlock()); 632 } 633 634 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 635 LLVM_DUMP_METHOD 636 void VPlan::dump() const { dbgs() << *this << '\n'; } 637 #endif 638 639 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 640 BasicBlock *LoopLatchBB, 641 BasicBlock *LoopExitBB) { 642 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 643 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 644 // The vector body may be more than a single basic-block by this point. 645 // Update the dominator tree information inside the vector body by propagating 646 // it from header to latch, expecting only triangular control-flow, if any. 647 BasicBlock *PostDomSucc = nullptr; 648 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 649 // Get the list of successors of this block. 650 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 651 assert(Succs.size() <= 2 && 652 "Basic block in vector loop has more than 2 successors."); 653 PostDomSucc = Succs[0]; 654 if (Succs.size() == 1) { 655 assert(PostDomSucc->getSinglePredecessor() && 656 "PostDom successor has more than one predecessor."); 657 DT->addNewBlock(PostDomSucc, BB); 658 continue; 659 } 660 BasicBlock *InterimSucc = Succs[1]; 661 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 662 PostDomSucc = Succs[1]; 663 InterimSucc = Succs[0]; 664 } 665 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 666 "One successor of a basic block does not lead to the other."); 667 assert(InterimSucc->getSinglePredecessor() && 668 "Interim successor has more than one predecessor."); 669 assert(PostDomSucc->hasNPredecessors(2) && 670 "PostDom successor has more than two predecessors."); 671 DT->addNewBlock(InterimSucc, BB); 672 DT->addNewBlock(PostDomSucc, BB); 673 } 674 // Latch block is a new dominator for the loop exit. 675 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 676 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 677 } 678 679 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 680 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 681 Twine(getOrCreateBID(Block)); 682 } 683 684 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 685 const std::string &Name = Block->getName(); 686 if (!Name.empty()) 687 return Name; 688 return "VPB" + Twine(getOrCreateBID(Block)); 689 } 690 691 void VPlanPrinter::dump() { 692 Depth = 1; 693 bumpIndent(0); 694 OS << "digraph VPlan {\n"; 695 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 696 if (!Plan.getName().empty()) 697 OS << "\\n" << DOT::EscapeString(Plan.getName()); 698 if (Plan.BackedgeTakenCount) { 699 OS << ", where:\\n"; 700 Plan.BackedgeTakenCount->print(OS, SlotTracker); 701 OS << " := BackedgeTakenCount"; 702 } 703 OS << "\"]\n"; 704 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 705 OS << "edge [fontname=Courier, fontsize=30]\n"; 706 OS << "compound=true\n"; 707 708 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 709 dumpBlock(Block); 710 711 OS << "}\n"; 712 } 713 714 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 715 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 716 dumpBasicBlock(BasicBlock); 717 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 718 dumpRegion(Region); 719 else 720 llvm_unreachable("Unsupported kind of VPBlock."); 721 } 722 723 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 724 bool Hidden, const Twine &Label) { 725 // Due to "dot" we print an edge between two regions as an edge between the 726 // exit basic block and the entry basic of the respective regions. 727 const VPBlockBase *Tail = From->getExitBasicBlock(); 728 const VPBlockBase *Head = To->getEntryBasicBlock(); 729 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 730 OS << " [ label=\"" << Label << '\"'; 731 if (Tail != From) 732 OS << " ltail=" << getUID(From); 733 if (Head != To) 734 OS << " lhead=" << getUID(To); 735 if (Hidden) 736 OS << "; splines=none"; 737 OS << "]\n"; 738 } 739 740 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 741 auto &Successors = Block->getSuccessors(); 742 if (Successors.size() == 1) 743 drawEdge(Block, Successors.front(), false, ""); 744 else if (Successors.size() == 2) { 745 drawEdge(Block, Successors.front(), false, "T"); 746 drawEdge(Block, Successors.back(), false, "F"); 747 } else { 748 unsigned SuccessorNumber = 0; 749 for (auto *Successor : Successors) 750 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 751 } 752 } 753 754 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 755 OS << Indent << getUID(BasicBlock) << " [label =\n"; 756 bumpIndent(1); 757 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 758 bumpIndent(1); 759 760 // Dump the block predicate. 761 const VPValue *Pred = BasicBlock->getPredicate(); 762 if (Pred) { 763 OS << " +\n" << Indent << " \"BlockPredicate: \""; 764 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 765 PredI->printAsOperand(OS, SlotTracker); 766 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 767 << ")\\l\""; 768 } else 769 Pred->printAsOperand(OS, SlotTracker); 770 } 771 772 for (const VPRecipeBase &Recipe : *BasicBlock) { 773 OS << " +\n" << Indent << "\""; 774 Recipe.print(OS, Indent, SlotTracker); 775 OS << "\\l\""; 776 } 777 778 // Dump the condition bit. 779 const VPValue *CBV = BasicBlock->getCondBit(); 780 if (CBV) { 781 OS << " +\n" << Indent << " \"CondBit: "; 782 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 783 CBI->printAsOperand(OS, SlotTracker); 784 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 785 } else { 786 CBV->printAsOperand(OS, SlotTracker); 787 OS << "\""; 788 } 789 } 790 791 bumpIndent(-2); 792 OS << "\n" << Indent << "]\n"; 793 dumpEdges(BasicBlock); 794 } 795 796 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 797 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 798 bumpIndent(1); 799 OS << Indent << "fontname=Courier\n" 800 << Indent << "label=\"" 801 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 802 << DOT::EscapeString(Region->getName()) << "\"\n"; 803 // Dump the blocks of the region. 804 assert(Region->getEntry() && "Region contains no inner blocks."); 805 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 806 dumpBlock(Block); 807 bumpIndent(-1); 808 OS << Indent << "}\n"; 809 dumpEdges(Region); 810 } 811 812 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) { 813 std::string IngredientString; 814 raw_string_ostream RSO(IngredientString); 815 if (auto *Inst = dyn_cast<Instruction>(V)) { 816 if (!Inst->getType()->isVoidTy()) { 817 Inst->printAsOperand(RSO, false); 818 RSO << " = "; 819 } 820 RSO << Inst->getOpcodeName() << " "; 821 unsigned E = Inst->getNumOperands(); 822 if (E > 0) { 823 Inst->getOperand(0)->printAsOperand(RSO, false); 824 for (unsigned I = 1; I < E; ++I) 825 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 826 } 827 } else // !Inst 828 V->printAsOperand(RSO, false); 829 RSO.flush(); 830 O << DOT::EscapeString(IngredientString); 831 } 832 833 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 834 VPSlotTracker &SlotTracker) const { 835 O << "WIDEN-CALL "; 836 837 auto *CI = cast<CallInst>(getUnderlyingInstr()); 838 if (CI->getType()->isVoidTy()) 839 O << "void "; 840 else { 841 printAsOperand(O, SlotTracker); 842 O << " = "; 843 } 844 845 O << "call @" << CI->getCalledFunction()->getName() << "("; 846 printOperands(O, SlotTracker); 847 O << ")"; 848 } 849 850 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 851 VPSlotTracker &SlotTracker) const { 852 O << "WIDEN-SELECT "; 853 printAsOperand(O, SlotTracker); 854 O << " = select "; 855 getOperand(0)->printAsOperand(O, SlotTracker); 856 O << ", "; 857 getOperand(1)->printAsOperand(O, SlotTracker); 858 O << ", "; 859 getOperand(2)->printAsOperand(O, SlotTracker); 860 O << (InvariantCond ? " (condition is loop invariant)" : ""); 861 } 862 863 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 864 VPSlotTracker &SlotTracker) const { 865 O << "WIDEN "; 866 printAsOperand(O, SlotTracker); 867 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 868 printOperands(O, SlotTracker); 869 } 870 871 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 872 VPSlotTracker &SlotTracker) const { 873 O << "WIDEN-INDUCTION"; 874 if (Trunc) { 875 O << "\\l\""; 876 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 877 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc); 878 } else 879 O << " " << VPlanIngredient(IV); 880 } 881 882 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 883 VPSlotTracker &SlotTracker) const { 884 O << "WIDEN-GEP "; 885 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 886 size_t IndicesNumber = IsIndexLoopInvariant.size(); 887 for (size_t I = 0; I < IndicesNumber; ++I) 888 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 889 890 O << " "; 891 printAsOperand(O, SlotTracker); 892 O << " = getelementptr "; 893 printOperands(O, SlotTracker); 894 } 895 896 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 897 VPSlotTracker &SlotTracker) const { 898 O << "WIDEN-PHI " << VPlanIngredient(Phi); 899 } 900 901 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 902 VPSlotTracker &SlotTracker) const { 903 O << "BLEND "; 904 Phi->printAsOperand(O, false); 905 O << " ="; 906 if (getNumIncomingValues() == 1) { 907 // Not a User of any mask: not really blending, this is a 908 // single-predecessor phi. 909 O << " "; 910 getIncomingValue(0)->printAsOperand(O, SlotTracker); 911 } else { 912 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 913 O << " "; 914 getIncomingValue(I)->printAsOperand(O, SlotTracker); 915 O << "/"; 916 getMask(I)->printAsOperand(O, SlotTracker); 917 } 918 } 919 } 920 921 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 922 VPSlotTracker &SlotTracker) const { 923 O << "REDUCE "; 924 printAsOperand(O, SlotTracker); 925 O << " = "; 926 getChainOp()->printAsOperand(O, SlotTracker); 927 O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) 928 << " ("; 929 getVecOp()->printAsOperand(O, SlotTracker); 930 if (getCondOp()) { 931 O << ", "; 932 getCondOp()->printAsOperand(O, SlotTracker); 933 } 934 O << ")"; 935 } 936 937 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 938 VPSlotTracker &SlotTracker) const { 939 O << (IsUniform ? "CLONE " : "REPLICATE "); 940 941 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 942 printAsOperand(O, SlotTracker); 943 O << " = "; 944 } 945 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 946 printOperands(O, SlotTracker); 947 948 if (AlsoPack) 949 O << " (S->V)"; 950 } 951 952 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 953 VPSlotTracker &SlotTracker) const { 954 O << "PHI-PREDICATED-INSTRUCTION "; 955 printOperands(O, SlotTracker); 956 } 957 958 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 959 VPSlotTracker &SlotTracker) const { 960 O << "WIDEN "; 961 962 if (!isStore()) { 963 getVPValue()->printAsOperand(O, SlotTracker); 964 O << " = "; 965 } 966 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 967 968 printOperands(O, SlotTracker); 969 } 970 971 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 972 Value *CanonicalIV = State.CanonicalIV; 973 Type *STy = CanonicalIV->getType(); 974 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 975 ElementCount VF = State.VF; 976 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 977 Value *VStart = VF.isScalar() 978 ? CanonicalIV 979 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 980 CanonicalIV, "broadcast"); 981 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 982 SmallVector<Constant *, 8> Indices; 983 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 984 Indices.push_back( 985 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 986 // If VF == 1, there is only one iteration in the loop above, thus the 987 // element pushed back into Indices is ConstantInt::get(STy, Part) 988 Constant *VStep = 989 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices); 990 // Add the consecutive indices to the vector value. 991 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 992 State.set(getVPValue(), CanonicalVectorIV, Part); 993 } 994 } 995 996 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 997 VPSlotTracker &SlotTracker) const { 998 O << "EMIT "; 999 getVPValue()->printAsOperand(O, SlotTracker); 1000 O << " = WIDEN-CANONICAL-INDUCTION"; 1001 } 1002 1003 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1004 1005 void VPValue::replaceAllUsesWith(VPValue *New) { 1006 for (unsigned J = 0; J < getNumUsers();) { 1007 VPUser *User = Users[J]; 1008 unsigned NumUsers = getNumUsers(); 1009 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1010 if (User->getOperand(I) == this) 1011 User->setOperand(I, New); 1012 // If a user got removed after updating the current user, the next user to 1013 // update will be moved to the current position, so we only need to 1014 // increment the index if the number of users did not change. 1015 if (NumUsers == getNumUsers()) 1016 J++; 1017 } 1018 } 1019 1020 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1021 if (const Value *UV = getUnderlyingValue()) { 1022 OS << "ir<"; 1023 UV->printAsOperand(OS, false); 1024 OS << ">"; 1025 return; 1026 } 1027 1028 unsigned Slot = Tracker.getSlot(this); 1029 if (Slot == unsigned(-1)) 1030 OS << "<badref>"; 1031 else 1032 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1033 } 1034 1035 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1036 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1037 Op->printAsOperand(O, SlotTracker); 1038 }); 1039 } 1040 1041 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1042 Old2NewTy &Old2New, 1043 InterleavedAccessInfo &IAI) { 1044 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1045 for (VPBlockBase *Base : RPOT) { 1046 visitBlock(Base, Old2New, IAI); 1047 } 1048 } 1049 1050 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1051 InterleavedAccessInfo &IAI) { 1052 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1053 for (VPRecipeBase &VPI : *VPBB) { 1054 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1055 auto *VPInst = cast<VPInstruction>(&VPI); 1056 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1057 auto *IG = IAI.getInterleaveGroup(Inst); 1058 if (!IG) 1059 continue; 1060 1061 auto NewIGIter = Old2New.find(IG); 1062 if (NewIGIter == Old2New.end()) 1063 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1064 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1065 1066 if (Inst == IG->getInsertPos()) 1067 Old2New[IG]->setInsertPos(VPInst); 1068 1069 InterleaveGroupMap[VPInst] = Old2New[IG]; 1070 InterleaveGroupMap[VPInst]->insertMember( 1071 VPInst, IG->getIndex(Inst), 1072 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1073 : IG->getFactor())); 1074 } 1075 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1076 visitRegion(Region, Old2New, IAI); 1077 else 1078 llvm_unreachable("Unsupported kind of VPBlock."); 1079 } 1080 1081 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1082 InterleavedAccessInfo &IAI) { 1083 Old2NewTy Old2New; 1084 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1085 } 1086 1087 void VPSlotTracker::assignSlot(const VPValue *V) { 1088 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1089 Slots[V] = NextSlot++; 1090 } 1091 1092 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 1093 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 1094 assignSlots(Region); 1095 else 1096 assignSlots(cast<VPBasicBlock>(VPBB)); 1097 } 1098 1099 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 1100 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 1101 for (const VPBlockBase *Block : RPOT) 1102 assignSlots(Block); 1103 } 1104 1105 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 1106 for (const VPRecipeBase &Recipe : *VPBB) { 1107 for (VPValue *Def : Recipe.definedValues()) 1108 assignSlot(Def); 1109 } 1110 } 1111 1112 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1113 1114 for (const VPValue *V : Plan.VPExternalDefs) 1115 assignSlot(V); 1116 1117 for (const VPValue *V : Plan.VPCBVs) 1118 assignSlot(V); 1119 1120 if (Plan.BackedgeTakenCount) 1121 assignSlot(Plan.BackedgeTakenCount); 1122 1123 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 1124 for (const VPBlockBase *Block : RPOT) 1125 assignSlots(Block); 1126 } 1127