1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <cassert> 42 #include <iterator> 43 #include <string> 44 #include <vector> 45 46 using namespace llvm; 47 extern cl::opt<bool> EnableVPlanNativePath; 48 49 #define DEBUG_TYPE "vplan" 50 51 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 52 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 53 VPSlotTracker SlotTracker( 54 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 55 V.print(OS, SlotTracker); 56 return OS; 57 } 58 59 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 60 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this)) 61 Instr->print(OS, SlotTracker); 62 else 63 printAsOperand(OS, SlotTracker); 64 } 65 66 // Get the top-most entry block of \p Start. This is the entry block of the 67 // containing VPlan. This function is templated to support both const and non-const blocks 68 template <typename T> static T *getPlanEntry(T *Start) { 69 T *Next = Start; 70 T *Current = Start; 71 while ((Next = Next->getParent())) 72 Current = Next; 73 74 SmallSetVector<T *, 8> WorkList; 75 WorkList.insert(Current); 76 77 for (unsigned i = 0; i < WorkList.size(); i++) { 78 T *Current = WorkList[i]; 79 if (Current->getNumPredecessors() == 0) 80 return Current; 81 auto &Predecessors = Current->getPredecessors(); 82 WorkList.insert(Predecessors.begin(), Predecessors.end()); 83 } 84 85 llvm_unreachable("VPlan without any entry node without predecessors"); 86 } 87 88 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 89 90 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 91 92 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 93 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 94 const VPBlockBase *Block = this; 95 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 96 Block = Region->getEntry(); 97 return cast<VPBasicBlock>(Block); 98 } 99 100 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 101 VPBlockBase *Block = this; 102 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 103 Block = Region->getEntry(); 104 return cast<VPBasicBlock>(Block); 105 } 106 107 void VPBlockBase::setPlan(VPlan *ParentPlan) { 108 assert(ParentPlan->getEntry() == this && 109 "Can only set plan on its entry block."); 110 Plan = ParentPlan; 111 } 112 113 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 114 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 115 const VPBlockBase *Block = this; 116 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 117 Block = Region->getExit(); 118 return cast<VPBasicBlock>(Block); 119 } 120 121 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 122 VPBlockBase *Block = this; 123 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 124 Block = Region->getExit(); 125 return cast<VPBasicBlock>(Block); 126 } 127 128 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 129 if (!Successors.empty() || !Parent) 130 return this; 131 assert(Parent->getExit() == this && 132 "Block w/o successors not the exit of its parent."); 133 return Parent->getEnclosingBlockWithSuccessors(); 134 } 135 136 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 137 if (!Predecessors.empty() || !Parent) 138 return this; 139 assert(Parent->getEntry() == this && 140 "Block w/o predecessors not the entry of its parent."); 141 return Parent->getEnclosingBlockWithPredecessors(); 142 } 143 144 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 145 SmallVector<VPBlockBase *, 8> Blocks; 146 for (VPBlockBase *Block : depth_first(Entry)) 147 Blocks.push_back(Block); 148 149 for (VPBlockBase *Block : Blocks) 150 delete Block; 151 } 152 153 BasicBlock * 154 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 155 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 156 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 157 BasicBlock *PrevBB = CFG.PrevBB; 158 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 159 PrevBB->getParent(), CFG.LastBB); 160 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 161 162 // Hook up the new basic block to its predecessors. 163 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 164 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 165 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 166 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 167 168 // In outer loop vectorization scenario, the predecessor BBlock may not yet 169 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 170 // vectorization. We do not encounter this case in inner loop vectorization 171 // as we start out by building a loop skeleton with the vector loop header 172 // and latch blocks. As a result, we never enter this function for the 173 // header block in the non VPlan-native path. 174 if (!PredBB) { 175 assert(EnableVPlanNativePath && 176 "Unexpected null predecessor in non VPlan-native path"); 177 CFG.VPBBsToFix.push_back(PredVPBB); 178 continue; 179 } 180 181 assert(PredBB && "Predecessor basic-block not found building successor."); 182 auto *PredBBTerminator = PredBB->getTerminator(); 183 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 184 if (isa<UnreachableInst>(PredBBTerminator)) { 185 assert(PredVPSuccessors.size() == 1 && 186 "Predecessor ending w/o branch must have single successor."); 187 PredBBTerminator->eraseFromParent(); 188 BranchInst::Create(NewBB, PredBB); 189 } else { 190 assert(PredVPSuccessors.size() == 2 && 191 "Predecessor ending with branch must have two successors."); 192 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 193 assert(!PredBBTerminator->getSuccessor(idx) && 194 "Trying to reset an existing successor block."); 195 PredBBTerminator->setSuccessor(idx, NewBB); 196 } 197 } 198 return NewBB; 199 } 200 201 void VPBasicBlock::execute(VPTransformState *State) { 202 bool Replica = State->Instance && 203 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 204 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 205 VPBlockBase *SingleHPred = nullptr; 206 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 207 208 // 1. Create an IR basic block, or reuse the last one if possible. 209 // The last IR basic block is reused, as an optimization, in three cases: 210 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 211 // B. when the current VPBB has a single (hierarchical) predecessor which 212 // is PrevVPBB and the latter has a single (hierarchical) successor; and 213 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 214 // is the exit of this region from a previous instance, or the predecessor 215 // of this region. 216 if (PrevVPBB && /* A */ 217 !((SingleHPred = getSingleHierarchicalPredecessor()) && 218 SingleHPred->getExitBasicBlock() == PrevVPBB && 219 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 220 !(Replica && getPredecessors().empty())) { /* C */ 221 NewBB = createEmptyBasicBlock(State->CFG); 222 State->Builder.SetInsertPoint(NewBB); 223 // Temporarily terminate with unreachable until CFG is rewired. 224 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 225 State->Builder.SetInsertPoint(Terminator); 226 // Register NewBB in its loop. In innermost loops its the same for all BB's. 227 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 228 L->addBasicBlockToLoop(NewBB, *State->LI); 229 State->CFG.PrevBB = NewBB; 230 } 231 232 // 2. Fill the IR basic block with IR instructions. 233 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 234 << " in BB:" << NewBB->getName() << '\n'); 235 236 State->CFG.VPBB2IRBB[this] = NewBB; 237 State->CFG.PrevVPBB = this; 238 239 for (VPRecipeBase &Recipe : Recipes) 240 Recipe.execute(*State); 241 242 VPValue *CBV; 243 if (EnableVPlanNativePath && (CBV = getCondBit())) { 244 Value *IRCBV = CBV->getUnderlyingValue(); 245 assert(IRCBV && "Unexpected null underlying value for condition bit"); 246 247 // Condition bit value in a VPBasicBlock is used as the branch selector. In 248 // the VPlan-native path case, since all branches are uniform we generate a 249 // branch instruction using the condition value from vector lane 0 and dummy 250 // successors. The successors are fixed later when the successor blocks are 251 // visited. 252 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 253 NewCond = State->Builder.CreateExtractElement(NewCond, 254 State->Builder.getInt32(0)); 255 256 // Replace the temporary unreachable terminator with the new conditional 257 // branch. 258 auto *CurrentTerminator = NewBB->getTerminator(); 259 assert(isa<UnreachableInst>(CurrentTerminator) && 260 "Expected to replace unreachable terminator with conditional " 261 "branch."); 262 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 263 CondBr->setSuccessor(0, nullptr); 264 ReplaceInstWithInst(CurrentTerminator, CondBr); 265 } 266 267 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 268 } 269 270 void VPRegionBlock::execute(VPTransformState *State) { 271 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 272 273 if (!isReplicator()) { 274 // Visit the VPBlocks connected to "this", starting from it. 275 for (VPBlockBase *Block : RPOT) { 276 if (EnableVPlanNativePath) { 277 // The inner loop vectorization path does not represent loop preheader 278 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 279 // vectorizing loop preheader block. In future, we may replace this 280 // check with the check for loop preheader. 281 if (Block->getNumPredecessors() == 0) 282 continue; 283 284 // Skip vectorizing loop exit block. In future, we may replace this 285 // check with the check for loop exit. 286 if (Block->getNumSuccessors() == 0) 287 continue; 288 } 289 290 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 291 Block->execute(State); 292 } 293 return; 294 } 295 296 assert(!State->Instance && "Replicating a Region with non-null instance."); 297 298 // Enter replicating mode. 299 State->Instance = {0, 0}; 300 301 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 302 State->Instance->Part = Part; 303 for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) { 304 State->Instance->Lane = Lane; 305 // Visit the VPBlocks connected to \p this, starting from it. 306 for (VPBlockBase *Block : RPOT) { 307 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 308 Block->execute(State); 309 } 310 } 311 } 312 313 // Exit replicating mode. 314 State->Instance.reset(); 315 } 316 317 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 318 assert(!Parent && "Recipe already in some VPBasicBlock"); 319 assert(InsertPos->getParent() && 320 "Insertion position not in any VPBasicBlock"); 321 Parent = InsertPos->getParent(); 322 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 323 } 324 325 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 326 assert(!Parent && "Recipe already in some VPBasicBlock"); 327 assert(InsertPos->getParent() && 328 "Insertion position not in any VPBasicBlock"); 329 Parent = InsertPos->getParent(); 330 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 331 } 332 333 void VPRecipeBase::removeFromParent() { 334 assert(getParent() && "Recipe not in any VPBasicBlock"); 335 getParent()->getRecipeList().remove(getIterator()); 336 Parent = nullptr; 337 } 338 339 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 340 assert(getParent() && "Recipe not in any VPBasicBlock"); 341 return getParent()->getRecipeList().erase(getIterator()); 342 } 343 344 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 345 removeFromParent(); 346 insertAfter(InsertPos); 347 } 348 349 void VPInstruction::generateInstruction(VPTransformState &State, 350 unsigned Part) { 351 IRBuilder<> &Builder = State.Builder; 352 353 if (Instruction::isBinaryOp(getOpcode())) { 354 Value *A = State.get(getOperand(0), Part); 355 Value *B = State.get(getOperand(1), Part); 356 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 357 State.set(this, V, Part); 358 return; 359 } 360 361 switch (getOpcode()) { 362 case VPInstruction::Not: { 363 Value *A = State.get(getOperand(0), Part); 364 Value *V = Builder.CreateNot(A); 365 State.set(this, V, Part); 366 break; 367 } 368 case VPInstruction::ICmpULE: { 369 Value *IV = State.get(getOperand(0), Part); 370 Value *TC = State.get(getOperand(1), Part); 371 Value *V = Builder.CreateICmpULE(IV, TC); 372 State.set(this, V, Part); 373 break; 374 } 375 case Instruction::Select: { 376 Value *Cond = State.get(getOperand(0), Part); 377 Value *Op1 = State.get(getOperand(1), Part); 378 Value *Op2 = State.get(getOperand(2), Part); 379 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 380 State.set(this, V, Part); 381 break; 382 } 383 default: 384 llvm_unreachable("Unsupported opcode for instruction"); 385 } 386 } 387 388 void VPInstruction::execute(VPTransformState &State) { 389 assert(!State.Instance && "VPInstruction executing an Instance"); 390 for (unsigned Part = 0; Part < State.UF; ++Part) 391 generateInstruction(State, Part); 392 } 393 394 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 395 VPSlotTracker &SlotTracker) const { 396 O << "\"EMIT "; 397 print(O, SlotTracker); 398 } 399 400 void VPInstruction::print(raw_ostream &O) const { 401 VPSlotTracker SlotTracker(getParent()->getPlan()); 402 print(O, SlotTracker); 403 } 404 405 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const { 406 if (hasResult()) { 407 printAsOperand(O, SlotTracker); 408 O << " = "; 409 } 410 411 switch (getOpcode()) { 412 case VPInstruction::Not: 413 O << "not"; 414 break; 415 case VPInstruction::ICmpULE: 416 O << "icmp ule"; 417 break; 418 case VPInstruction::SLPLoad: 419 O << "combined load"; 420 break; 421 case VPInstruction::SLPStore: 422 O << "combined store"; 423 break; 424 default: 425 O << Instruction::getOpcodeName(getOpcode()); 426 } 427 428 for (const VPValue *Operand : operands()) { 429 O << " "; 430 Operand->printAsOperand(O, SlotTracker); 431 } 432 } 433 434 /// Generate the code inside the body of the vectorized loop. Assumes a single 435 /// LoopVectorBody basic-block was created for this. Introduce additional 436 /// basic-blocks as needed, and fill them all. 437 void VPlan::execute(VPTransformState *State) { 438 // -1. Check if the backedge taken count is needed, and if so build it. 439 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 440 Value *TC = State->TripCount; 441 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 442 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 443 "trip.count.minus.1"); 444 Value *VTCMO = Builder.CreateVectorSplat(State->VF, TCMO, "broadcast"); 445 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 446 State->set(BackedgeTakenCount, VTCMO, Part); 447 } 448 449 // 0. Set the reverse mapping from VPValues to Values for code generation. 450 for (auto &Entry : Value2VPValue) 451 State->VPValue2Value[Entry.second] = Entry.first; 452 453 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 454 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 455 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 456 457 // 1. Make room to generate basic-blocks inside loop body if needed. 458 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 459 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 460 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 461 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 462 // Remove the edge between Header and Latch to allow other connections. 463 // Temporarily terminate with unreachable until CFG is rewired. 464 // Note: this asserts the generated code's assumption that 465 // getFirstInsertionPt() can be dereferenced into an Instruction. 466 VectorHeaderBB->getTerminator()->eraseFromParent(); 467 State->Builder.SetInsertPoint(VectorHeaderBB); 468 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 469 State->Builder.SetInsertPoint(Terminator); 470 471 // 2. Generate code in loop body. 472 State->CFG.PrevVPBB = nullptr; 473 State->CFG.PrevBB = VectorHeaderBB; 474 State->CFG.LastBB = VectorLatchBB; 475 476 for (VPBlockBase *Block : depth_first(Entry)) 477 Block->execute(State); 478 479 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 480 // VPBB's successors. 481 for (auto VPBB : State->CFG.VPBBsToFix) { 482 assert(EnableVPlanNativePath && 483 "Unexpected VPBBsToFix in non VPlan-native path"); 484 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 485 assert(BB && "Unexpected null basic block for VPBB"); 486 487 unsigned Idx = 0; 488 auto *BBTerminator = BB->getTerminator(); 489 490 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 491 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 492 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 493 ++Idx; 494 } 495 } 496 497 // 3. Merge the temporary latch created with the last basic-block filled. 498 BasicBlock *LastBB = State->CFG.PrevBB; 499 // Connect LastBB to VectorLatchBB to facilitate their merge. 500 assert((EnableVPlanNativePath || 501 isa<UnreachableInst>(LastBB->getTerminator())) && 502 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 503 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 504 "Expected VPlan CFG to terminate with branch in NativePath"); 505 LastBB->getTerminator()->eraseFromParent(); 506 BranchInst::Create(VectorLatchBB, LastBB); 507 508 // Merge LastBB with Latch. 509 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 510 (void)Merged; 511 assert(Merged && "Could not merge last basic block with latch."); 512 VectorLatchBB = LastBB; 513 514 // We do not attempt to preserve DT for outer loop vectorization currently. 515 if (!EnableVPlanNativePath) 516 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 517 L->getExitBlock()); 518 } 519 520 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 521 LLVM_DUMP_METHOD 522 void VPlan::dump() const { dbgs() << *this << '\n'; } 523 #endif 524 525 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 526 BasicBlock *LoopLatchBB, 527 BasicBlock *LoopExitBB) { 528 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 529 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 530 // The vector body may be more than a single basic-block by this point. 531 // Update the dominator tree information inside the vector body by propagating 532 // it from header to latch, expecting only triangular control-flow, if any. 533 BasicBlock *PostDomSucc = nullptr; 534 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 535 // Get the list of successors of this block. 536 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 537 assert(Succs.size() <= 2 && 538 "Basic block in vector loop has more than 2 successors."); 539 PostDomSucc = Succs[0]; 540 if (Succs.size() == 1) { 541 assert(PostDomSucc->getSinglePredecessor() && 542 "PostDom successor has more than one predecessor."); 543 DT->addNewBlock(PostDomSucc, BB); 544 continue; 545 } 546 BasicBlock *InterimSucc = Succs[1]; 547 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 548 PostDomSucc = Succs[1]; 549 InterimSucc = Succs[0]; 550 } 551 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 552 "One successor of a basic block does not lead to the other."); 553 assert(InterimSucc->getSinglePredecessor() && 554 "Interim successor has more than one predecessor."); 555 assert(PostDomSucc->hasNPredecessors(2) && 556 "PostDom successor has more than two predecessors."); 557 DT->addNewBlock(InterimSucc, BB); 558 DT->addNewBlock(PostDomSucc, BB); 559 } 560 // Latch block is a new dominator for the loop exit. 561 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 562 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 563 } 564 565 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 566 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 567 Twine(getOrCreateBID(Block)); 568 } 569 570 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 571 const std::string &Name = Block->getName(); 572 if (!Name.empty()) 573 return Name; 574 return "VPB" + Twine(getOrCreateBID(Block)); 575 } 576 577 void VPlanPrinter::dump() { 578 Depth = 1; 579 bumpIndent(0); 580 OS << "digraph VPlan {\n"; 581 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 582 if (!Plan.getName().empty()) 583 OS << "\\n" << DOT::EscapeString(Plan.getName()); 584 if (Plan.BackedgeTakenCount) { 585 OS << ", where:\\n"; 586 Plan.BackedgeTakenCount->print(OS, SlotTracker); 587 OS << " := BackedgeTakenCount"; 588 } 589 OS << "\"]\n"; 590 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 591 OS << "edge [fontname=Courier, fontsize=30]\n"; 592 OS << "compound=true\n"; 593 594 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 595 dumpBlock(Block); 596 597 OS << "}\n"; 598 } 599 600 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 601 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 602 dumpBasicBlock(BasicBlock); 603 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 604 dumpRegion(Region); 605 else 606 llvm_unreachable("Unsupported kind of VPBlock."); 607 } 608 609 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 610 bool Hidden, const Twine &Label) { 611 // Due to "dot" we print an edge between two regions as an edge between the 612 // exit basic block and the entry basic of the respective regions. 613 const VPBlockBase *Tail = From->getExitBasicBlock(); 614 const VPBlockBase *Head = To->getEntryBasicBlock(); 615 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 616 OS << " [ label=\"" << Label << '\"'; 617 if (Tail != From) 618 OS << " ltail=" << getUID(From); 619 if (Head != To) 620 OS << " lhead=" << getUID(To); 621 if (Hidden) 622 OS << "; splines=none"; 623 OS << "]\n"; 624 } 625 626 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 627 auto &Successors = Block->getSuccessors(); 628 if (Successors.size() == 1) 629 drawEdge(Block, Successors.front(), false, ""); 630 else if (Successors.size() == 2) { 631 drawEdge(Block, Successors.front(), false, "T"); 632 drawEdge(Block, Successors.back(), false, "F"); 633 } else { 634 unsigned SuccessorNumber = 0; 635 for (auto *Successor : Successors) 636 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 637 } 638 } 639 640 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 641 OS << Indent << getUID(BasicBlock) << " [label =\n"; 642 bumpIndent(1); 643 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 644 bumpIndent(1); 645 646 // Dump the block predicate. 647 const VPValue *Pred = BasicBlock->getPredicate(); 648 if (Pred) { 649 OS << " +\n" << Indent << " \"BlockPredicate: "; 650 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 651 PredI->printAsOperand(OS, SlotTracker); 652 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 653 << ")\\l\""; 654 } else 655 Pred->printAsOperand(OS, SlotTracker); 656 } 657 658 for (const VPRecipeBase &Recipe : *BasicBlock) { 659 OS << " +\n" << Indent; 660 Recipe.print(OS, Indent, SlotTracker); 661 OS << "\\l\""; 662 } 663 664 // Dump the condition bit. 665 const VPValue *CBV = BasicBlock->getCondBit(); 666 if (CBV) { 667 OS << " +\n" << Indent << " \"CondBit: "; 668 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 669 CBI->printAsOperand(OS, SlotTracker); 670 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 671 } else { 672 CBV->printAsOperand(OS, SlotTracker); 673 OS << "\""; 674 } 675 } 676 677 bumpIndent(-2); 678 OS << "\n" << Indent << "]\n"; 679 dumpEdges(BasicBlock); 680 } 681 682 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 683 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 684 bumpIndent(1); 685 OS << Indent << "fontname=Courier\n" 686 << Indent << "label=\"" 687 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 688 << DOT::EscapeString(Region->getName()) << "\"\n"; 689 // Dump the blocks of the region. 690 assert(Region->getEntry() && "Region contains no inner blocks."); 691 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 692 dumpBlock(Block); 693 bumpIndent(-1); 694 OS << Indent << "}\n"; 695 dumpEdges(Region); 696 } 697 698 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { 699 std::string IngredientString; 700 raw_string_ostream RSO(IngredientString); 701 if (auto *Inst = dyn_cast<Instruction>(V)) { 702 if (!Inst->getType()->isVoidTy()) { 703 Inst->printAsOperand(RSO, false); 704 RSO << " = "; 705 } 706 RSO << Inst->getOpcodeName() << " "; 707 unsigned E = Inst->getNumOperands(); 708 if (E > 0) { 709 Inst->getOperand(0)->printAsOperand(RSO, false); 710 for (unsigned I = 1; I < E; ++I) 711 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 712 } 713 } else // !Inst 714 V->printAsOperand(RSO, false); 715 RSO.flush(); 716 O << DOT::EscapeString(IngredientString); 717 } 718 719 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 720 VPSlotTracker &SlotTracker) const { 721 O << "\"WIDEN-CALL " << VPlanIngredient(&Ingredient); 722 } 723 724 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 725 VPSlotTracker &SlotTracker) const { 726 O << "\"WIDEN-SELECT" << VPlanIngredient(&Ingredient) 727 << (InvariantCond ? " (condition is loop invariant)" : ""); 728 } 729 730 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 731 VPSlotTracker &SlotTracker) const { 732 O << "\"WIDEN\\l\""; 733 O << "\" " << VPlanIngredient(&Ingredient); 734 } 735 736 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 737 VPSlotTracker &SlotTracker) const { 738 O << "\"WIDEN-INDUCTION"; 739 if (Trunc) { 740 O << "\\l\""; 741 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 742 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc); 743 } else 744 O << " " << VPlanIngredient(IV); 745 } 746 747 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 748 VPSlotTracker &SlotTracker) const { 749 O << "\"WIDEN-GEP "; 750 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 751 size_t IndicesNumber = IsIndexLoopInvariant.size(); 752 for (size_t I = 0; I < IndicesNumber; ++I) 753 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 754 O << "\\l\""; 755 O << " +\n" << Indent << "\" " << VPlanIngredient(GEP); 756 } 757 758 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 759 VPSlotTracker &SlotTracker) const { 760 O << "\"WIDEN-PHI " << VPlanIngredient(Phi); 761 } 762 763 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 764 VPSlotTracker &SlotTracker) const { 765 O << "\"BLEND "; 766 Phi->printAsOperand(O, false); 767 O << " ="; 768 if (getNumIncomingValues() == 1) { 769 // Not a User of any mask: not really blending, this is a 770 // single-predecessor phi. 771 O << " "; 772 getIncomingValue(0)->printAsOperand(O, SlotTracker); 773 } else { 774 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 775 O << " "; 776 getIncomingValue(I)->printAsOperand(O, SlotTracker); 777 O << "/"; 778 getMask(I)->printAsOperand(O, SlotTracker); 779 } 780 } 781 } 782 783 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 784 VPSlotTracker &SlotTracker) const { 785 O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 786 << VPlanIngredient(Ingredient); 787 if (AlsoPack) 788 O << " (S->V)"; 789 } 790 791 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 792 VPSlotTracker &SlotTracker) const { 793 O << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst); 794 } 795 796 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 797 VPSlotTracker &SlotTracker) const { 798 O << "\"WIDEN " << VPlanIngredient(&Instr); 799 O << ", "; 800 getAddr()->printAsOperand(O, SlotTracker); 801 VPValue *Mask = getMask(); 802 if (Mask) { 803 O << ", "; 804 Mask->printAsOperand(O, SlotTracker); 805 } 806 } 807 808 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 809 Value *CanonicalIV = State.CanonicalIV; 810 Type *STy = CanonicalIV->getType(); 811 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 812 Value *VStart = Builder.CreateVectorSplat(State.VF, CanonicalIV, "broadcast"); 813 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 814 SmallVector<Constant *, 8> Indices; 815 for (unsigned Lane = 0, VF = State.VF; Lane < VF; ++Lane) 816 Indices.push_back(ConstantInt::get(STy, Part * VF + Lane)); 817 Constant *VStep = ConstantVector::get(Indices); 818 // Add the consecutive indices to the vector value. 819 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 820 State.set(getVPValue(), CanonicalVectorIV, Part); 821 } 822 } 823 824 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 825 VPSlotTracker &SlotTracker) const { 826 O << "\"EMIT "; 827 getVPValue()->printAsOperand(O, SlotTracker); 828 O << " = WIDEN-CANONICAL-INDUCTION"; 829 } 830 831 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 832 833 void VPValue::replaceAllUsesWith(VPValue *New) { 834 for (VPUser *User : users()) 835 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 836 if (User->getOperand(I) == this) 837 User->setOperand(I, New); 838 } 839 840 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 841 if (const Value *UV = getUnderlyingValue()) { 842 OS << "ir<"; 843 UV->printAsOperand(OS, false); 844 OS << ">"; 845 return; 846 } 847 848 unsigned Slot = Tracker.getSlot(this); 849 if (Slot == unsigned(-1)) 850 OS << "<badref>"; 851 else 852 OS << "vp<%" << Tracker.getSlot(this) << ">"; 853 } 854 855 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 856 Old2NewTy &Old2New, 857 InterleavedAccessInfo &IAI) { 858 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 859 for (VPBlockBase *Base : RPOT) { 860 visitBlock(Base, Old2New, IAI); 861 } 862 } 863 864 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 865 InterleavedAccessInfo &IAI) { 866 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 867 for (VPRecipeBase &VPI : *VPBB) { 868 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 869 auto *VPInst = cast<VPInstruction>(&VPI); 870 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 871 auto *IG = IAI.getInterleaveGroup(Inst); 872 if (!IG) 873 continue; 874 875 auto NewIGIter = Old2New.find(IG); 876 if (NewIGIter == Old2New.end()) 877 Old2New[IG] = new InterleaveGroup<VPInstruction>( 878 IG->getFactor(), IG->isReverse(), IG->getAlign()); 879 880 if (Inst == IG->getInsertPos()) 881 Old2New[IG]->setInsertPos(VPInst); 882 883 InterleaveGroupMap[VPInst] = Old2New[IG]; 884 InterleaveGroupMap[VPInst]->insertMember( 885 VPInst, IG->getIndex(Inst), 886 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 887 : IG->getFactor())); 888 } 889 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 890 visitRegion(Region, Old2New, IAI); 891 else 892 llvm_unreachable("Unsupported kind of VPBlock."); 893 } 894 895 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 896 InterleavedAccessInfo &IAI) { 897 Old2NewTy Old2New; 898 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 899 } 900 901 void VPSlotTracker::assignSlot(const VPValue *V) { 902 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 903 const Value *UV = V->getUnderlyingValue(); 904 if (UV) 905 return; 906 const auto *VPI = dyn_cast<VPInstruction>(V); 907 if (VPI && !VPI->hasResult()) 908 return; 909 910 Slots[V] = NextSlot++; 911 } 912 913 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 914 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 915 assignSlots(Region); 916 else 917 assignSlots(cast<VPBasicBlock>(VPBB)); 918 } 919 920 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 921 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 922 for (const VPBlockBase *Block : RPOT) 923 assignSlots(Block); 924 } 925 926 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 927 for (const VPRecipeBase &Recipe : *VPBB) { 928 if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe)) 929 assignSlot(VPI); 930 else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe)) 931 assignSlot(VPIV->getVPValue()); 932 } 933 } 934 935 void VPSlotTracker::assignSlots(const VPlan &Plan) { 936 937 for (const VPValue *V : Plan.VPExternalDefs) 938 assignSlot(V); 939 940 for (auto &E : Plan.Value2VPValue) 941 if (!isa<VPInstruction>(E.second)) 942 assignSlot(E.second); 943 944 for (const VPValue *V : Plan.VPCBVs) 945 assignSlot(V); 946 947 if (Plan.BackedgeTakenCount) 948 assignSlot(Plan.BackedgeTakenCount); 949 950 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 951 for (const VPBlockBase *Block : RPOT) 952 assignSlots(Block); 953 } 954